modelId
string | author
string | last_modified
timestamp[us, tz=UTC] | downloads
int64 | likes
int64 | library_name
string | tags
list | pipeline_tag
string | createdAt
timestamp[us, tz=UTC] | card
string |
---|---|---|---|---|---|---|---|---|---|
Kuray107/librispeech-semi-supervised-without-LM
|
Kuray107
| 2022-03-07T17:14:04Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-07T03:31:57Z |
---
tags:
- generated_from_trainer
model-index:
- name: librispeech-semi-supervised-without-LM
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# librispeech-semi-supervised-without-LM
This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1837
- Wer: 0.0580
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.0565 | 0.56 | 1000 | 0.1354 | 0.0641 |
| 0.0548 | 1.12 | 2000 | 0.1320 | 0.0628 |
| 0.0478 | 1.68 | 3000 | 0.1247 | 0.0612 |
| 0.0451 | 2.24 | 4000 | 0.1256 | 0.0613 |
| 0.0401 | 2.8 | 5000 | 0.1269 | 0.0606 |
| 0.035 | 3.36 | 6000 | 0.1370 | 0.0595 |
| 0.0344 | 3.92 | 7000 | 0.1280 | 0.0589 |
| 0.031 | 4.48 | 8000 | 0.1350 | 0.0589 |
| 0.031 | 5.04 | 9000 | 0.1418 | 0.0614 |
| 0.0278 | 5.61 | 10000 | 0.1382 | 0.0604 |
| 0.0272 | 6.17 | 11000 | 0.1502 | 0.0615 |
| 0.0246 | 6.73 | 12000 | 0.1443 | 0.0609 |
| 0.0233 | 7.29 | 13000 | 0.1548 | 0.0589 |
| 0.0224 | 7.85 | 14000 | 0.1547 | 0.0599 |
| 0.0202 | 8.41 | 15000 | 0.1570 | 0.0590 |
| 0.0199 | 8.97 | 16000 | 0.1564 | 0.0594 |
| 0.0186 | 9.53 | 17000 | 0.1598 | 0.0595 |
| 0.0187 | 10.09 | 18000 | 0.1657 | 0.0585 |
| 0.017 | 10.65 | 19000 | 0.1690 | 0.0584 |
| 0.016 | 11.21 | 20000 | 0.1689 | 0.0588 |
| 0.0156 | 11.77 | 21000 | 0.1745 | 0.0585 |
| 0.0151 | 12.33 | 22000 | 0.1777 | 0.0583 |
| 0.0144 | 12.89 | 23000 | 0.1778 | 0.0590 |
| 0.0142 | 13.45 | 24000 | 0.1803 | 0.0585 |
| 0.0137 | 14.01 | 25000 | 0.1796 | 0.0581 |
| 0.0132 | 14.57 | 26000 | 0.1837 | 0.0580 |
### Framework versions
- Transformers 4.14.1
- Pytorch 1.10.2
- Datasets 1.18.2
- Tokenizers 0.10.3
|
Kevincp560/distilbart-cnn-12-3-finetuned-pubmed
|
Kevincp560
| 2022-03-07T15:55:27Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bart",
"text2text-generation",
"generated_from_trainer",
"dataset:pub_med_summarization_dataset",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-07T10:26:20Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- pub_med_summarization_dataset
metrics:
- rouge
model-index:
- name: distilbart-cnn-12-3-finetuned-pubmed
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: pub_med_summarization_dataset
type: pub_med_summarization_dataset
args: document
metrics:
- name: Rouge1
type: rouge
value: 40.5642
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbart-cnn-12-3-finetuned-pubmed
This model is a fine-tuned version of [sshleifer/distilbart-cnn-12-3](https://huggingface.co/sshleifer/distilbart-cnn-12-3) on the pub_med_summarization_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1743
- Rouge1: 40.5642
- Rouge2: 16.9812
- Rougel: 25.3449
- Rougelsum: 36.46
- Gen Len: 141.95
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:|
| 2.469 | 1.0 | 4000 | 2.2956 | 38.3713 | 15.2594 | 23.6734 | 34.1634 | 141.707 |
| 2.2527 | 2.0 | 8000 | 2.1994 | 39.5939 | 16.2376 | 24.6363 | 35.5106 | 141.831 |
| 2.0669 | 3.0 | 12000 | 2.1780 | 40.078 | 16.6705 | 25.1119 | 35.9605 | 141.8475 |
| 1.9275 | 4.0 | 16000 | 2.1669 | 40.0825 | 16.6169 | 24.9702 | 36.0191 | 141.928 |
| 1.8102 | 5.0 | 20000 | 2.1743 | 40.5642 | 16.9812 | 25.3449 | 36.46 | 141.95 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.6
|
severo/tensorboard-embedding-projector
|
severo
| 2022-03-07T15:14:28Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2022-03-07T14:23:19Z |
---
license: apache-2.0
---
# Embedding Projector in TensorBoard
This empty model repository only contains data to test the TensorBoard Embedding Projector. The data in [./logs/imdb-example](./logs/imdb-example) have been generated using the [notebook](https://colab.research.google.com/github/tensorflow/tensorboard/blob/master/docs/tensorboard_projector_plugin.ipynb) of the official documentation page ["Visualizing Data using the Embedding Projector in TensorBoard"](https://www.tensorflow.org/tensorboard/tensorboard_projector_plugin).
To see the Embedding Projector in a local Tensorboard (assuming Ubuntu):
```bash
git clone https://huggingface.co/severo/tensorboard-embedding-projector
cd tensorboard-embedding-projector
python3 -m venv .venv-2.8
source .venv-2.8/bin/activate
pip install tensorboard tensorflow
tensorboard --logdir logs/imdb-example
# access http://localhost:6006/#projector
```
Notes:
- to see the projector in a local tensorboard instance, you have to point the `--logdir` argument specifically to the `logs/imdb-example` directory, as tensorboard does not succeed in looking for projector data recursively as it does for scalar data with `--logdir .`.
- `tensorflow` must be installed, or the projector plugin will not be able to load these data.
|
gayanin/bart-mlm-paraphrasing
|
gayanin
| 2022-03-07T12:37:38Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bart",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-07T11:50:34Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: bart-mlm-paraphrasing
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-mlm-paraphrasing
This model is a fine-tuned version of [gayanin/bart-mlm-pubmed](https://huggingface.co/gayanin/bart-mlm-pubmed) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4617
- Rouge2 Precision: 0.8361
- Rouge2 Recall: 0.6703
- Rouge2 Fmeasure: 0.7304
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
|:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:|
| 0.4845 | 1.0 | 1325 | 0.4270 | 0.8332 | 0.6701 | 0.7294 |
| 0.3911 | 2.0 | 2650 | 0.4195 | 0.8358 | 0.6713 | 0.7313 |
| 0.328 | 3.0 | 3975 | 0.4119 | 0.8355 | 0.6706 | 0.7304 |
| 0.2783 | 4.0 | 5300 | 0.4160 | 0.8347 | 0.6678 | 0.7284 |
| 0.2397 | 5.0 | 6625 | 0.4329 | 0.8411 | 0.6747 | 0.7351 |
| 0.2155 | 6.0 | 7950 | 0.4389 | 0.8382 | 0.6716 | 0.7321 |
| 0.1888 | 7.0 | 9275 | 0.4432 | 0.838 | 0.6718 | 0.7323 |
| 0.1724 | 8.0 | 10600 | 0.4496 | 0.8381 | 0.6714 | 0.7319 |
| 0.1586 | 9.0 | 11925 | 0.4575 | 0.8359 | 0.6704 | 0.7303 |
| 0.1496 | 10.0 | 13250 | 0.4617 | 0.8361 | 0.6703 | 0.7304 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.4
- Tokenizers 0.11.6
|
malteos/scincl-wol
|
malteos
| 2022-03-07T10:43:21Z | 128 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"feature-extraction",
"license:mit",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-03-07T10:32:44Z |
---
license: mit
---
# SciNCL based on training data w/o SciDocs leakage.
See [malteos/scincl](https://huggingface.co/malteos/scincl) for more details.
|
spy24/autonlp-parrot_paraphrasing-615317556
|
spy24
| 2022-03-07T09:36:20Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"autonlp",
"unk",
"dataset:spy24/autonlp-data-parrot_paraphrasing",
"co2_eq_emissions",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-07T09:35:01Z |
---
tags: autonlp
language: unk
widget:
- text: "I love AutoNLP 🤗"
datasets:
- spy24/autonlp-data-parrot_paraphrasing
co2_eq_emissions: 0.8335491678002559
---
# Model Trained Using AutoNLP
- Problem type: Summarization
- Model ID: 615317556
- CO2 Emissions (in grams): 0.8335491678002559
## Validation Metrics
- Loss: 0.0001514342293376103
- Rouge1: 100.0
- Rouge2: 51.4451
- RougeL: 100.0
- RougeLsum: 100.0
- Gen Len: 4.104
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/spy24/autonlp-parrot_paraphrasing-615317556
```
|
diwank/silicone-deberta-pair
|
diwank
| 2022-03-07T08:43:13Z | 20 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"deberta",
"text-classification",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: mit
---
# diwank/silicone-deberta-pair
`deberta-base`-based dialog acts classifier. Trained on the `balanced` variant of the [silicone-merged](https://huggingface.co/datasets/diwank/silicone-merged) dataset: a simplified merged dialog act data from datasets in the [silicone](https://huggingface.co/datasets/silicone) collection.
Takes two sentences as inputs (one previous and one current utterance of a dialog). The previous sentence can be an empty string if this is the first utterance of a speaker in a dialog. **Outputs one of 11 labels**:
```python
(0, 'acknowledge')
(1, 'answer')
(2, 'backchannel')
(3, 'reply_yes')
(4, 'exclaim')
(5, 'say')
(6, 'reply_no')
(7, 'hold')
(8, 'ask')
(9, 'intent')
(10, 'ask_yes_no')
```
## Example:
```python
from simpletransformers.classification import (
ClassificationModel, ClassificationArgs
)
model = ClassificationModel("deberta", "diwank/silicone-deberta-pair")
convert_to_label = lambda n: [
['acknowledge',
'answer',
'backchannel',
'reply_yes',
'exclaim',
'say',
'reply_no',
'hold',
'ask',
'intent',
'ask_yes_no'
][i] for i in n
]
predictions, raw_outputs = model.predict([["Say what is the meaning of life?", "I dont know"]])
convert_to_label(predictions) # answer
```
## Report from W&B
https://wandb.ai/diwank/da-silicone-combined/reports/silicone-deberta-pair--VmlldzoxNTczNjE5?accessToken=yj1jz4c365z0y5b3olgzye7qgsl7qv9lxvqhmfhtb6300hql6veqa5xiq1skn8ys
|
akshaychaudhary/distilbert-base-uncased-finetuned-devops-ner
|
akshaychaudhary
| 2022-03-07T06:58:51Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-03-07T05:23:22Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-devops-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-devops-ner
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6065
- Precision: 0.0254
- Recall: 0.1371
- F1: 0.0428
- Accuracy: 0.7637
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 144 | 0.8566 | 0.0300 | 0.1573 | 0.0503 | 0.7742 |
| No log | 2.0 | 288 | 1.3542 | 0.0283 | 0.1532 | 0.0477 | 0.7641 |
| No log | 3.0 | 432 | 1.6065 | 0.0254 | 0.1371 | 0.0428 | 0.7637 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.6
|
cammy/bart-large-cnn-1000-sum-pad-early-tfidf1
|
cammy
| 2022-03-07T05:57:08Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bart",
"text2text-generation",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-07T05:28:36Z |
---
license: mit
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-large-cnn-1000-sum-pad-early-tfidf1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-large-cnn-1000-sum-pad-early-tfidf1
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8527
- Rouge1: 24.6303
- Rouge2: 11.0396
- Rougel: 19.1384
- Rougelsum: 20.94
- Gen Len: 67.84
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 0.3304 | 1.0 | 1000 | 0.7234 | 25.9428 | 12.5482 | 21.0784 | 23.6041 | 64.68 |
| 0.1502 | 2.0 | 2000 | 0.8527 | 24.6303 | 11.0396 | 19.1384 | 20.94 | 67.84 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.2
- Datasets 1.18.3
- Tokenizers 0.11.0
|
SAI2-EXP/TNANA-th-th
|
SAI2-EXP
| 2022-03-07T05:56:03Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"marian",
"text2text-generation",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-07T05:49:43Z |
---
license: apache-2.0
---
|
timothyshi/bart-large-cnn-finetuned-booksum-chapter
|
timothyshi
| 2022-03-07T05:13:01Z | 8 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bart",
"text2text-generation",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-04T20:32:40Z |
---
license: mit
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-large-cnn-finetuned-booksum-chapter
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-large-cnn-finetuned-booksum-chapter
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.1373
- Rouge1: 18.1222
- Rouge2: 3.5783
- Rougel: 13.4084
- Rougelsum: 13.5832
- Gen Len: 63.5121
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| 2.5297 | 1.0 | 23094 | 3.1373 | 18.1222 | 3.5783 | 13.4084 | 13.5832 | 63.5121 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.6
|
Splend1dchan/byt5small-squad-5000
|
Splend1dchan
| 2022-03-07T04:39:29Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-07T04:25:56Z |
Byt5 trained on squad, input = 512, output = 256, 5000 steps
Tokenizer is Byt5
|
billfrench/autonlp-cyberlandr-ai-4-614417501
|
billfrench
| 2022-03-07T00:57:12Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"autonlp",
"en",
"dataset:billfrench/autonlp-data-cyberlandr-ai-4",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-07T00:54:15Z |
---
tags: autonlp
language: en
widget:
- text: "I love AutoNLP 🤗"
datasets:
- billfrench/autonlp-data-cyberlandr-ai-4
co2_eq_emissions: 1.6912535041856878
---
# Model Trained Using AutoNLP
- Problem type: Multi-class Classification
- Model ID: 614417501
- CO2 Emissions (in grams): 1.6912535041856878
## Validation Metrics
- Loss: 1.305419921875
- Accuracy: 0.5
- Macro F1: 0.3333333333333333
- Micro F1: 0.5
- Weighted F1: 0.4444444444444444
- Macro Precision: 0.375
- Micro Precision: 0.5
- Weighted Precision: 0.5
- Macro Recall: 0.375
- Micro Recall: 0.5
- Weighted Recall: 0.5
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/billfrench/autonlp-cyberlandr-ai-4-614417501
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("billfrench/autonlp-cyberlandr-ai-4-614417501", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("billfrench/autonlp-cyberlandr-ai-4-614417501", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
```
|
billfrench/autonlp-cyberlandr-ai-4-614417500
|
billfrench
| 2022-03-07T00:56:09Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"autonlp",
"en",
"dataset:billfrench/autonlp-data-cyberlandr-ai-4",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-07T00:54:24Z |
---
tags: autonlp
language: en
widget:
- text: "I love AutoNLP 🤗"
datasets:
- billfrench/autonlp-data-cyberlandr-ai-4
co2_eq_emissions: 1.131603488976132
---
# Model Trained Using AutoNLP
- Problem type: Multi-class Classification
- Model ID: 614417500
- CO2 Emissions (in grams): 1.131603488976132
## Validation Metrics
- Loss: 1.4588216543197632
- Accuracy: 0.3333333333333333
- Macro F1: 0.225
- Micro F1: 0.3333333333333333
- Weighted F1: 0.2333333333333333
- Macro Precision: 0.1875
- Micro Precision: 0.3333333333333333
- Weighted Precision: 0.20833333333333334
- Macro Recall: 0.375
- Micro Recall: 0.3333333333333333
- Weighted Recall: 0.3333333333333333
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/billfrench/autonlp-cyberlandr-ai-4-614417500
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("billfrench/autonlp-cyberlandr-ai-4-614417500", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("billfrench/autonlp-cyberlandr-ai-4-614417500", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
```
|
smartiros/BERT_for_sentiment_50k_2_epochs_preprocessed
|
smartiros
| 2022-03-07T00:22:36Z | 6 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-07T00:22:21Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: tmpmrwiph1p
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# tmpmrwiph1p
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1382
- Train Accuracy: 0.9482
- Validation Loss: 0.7241
- Validation Accuracy: 0.8109
- Epoch: 1
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'clipnorm': 1.0, 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.3773 | 0.8313 | 0.4627 | 0.8131 | 0 |
| 0.1382 | 0.9482 | 0.7241 | 0.8109 | 1 |
### Framework versions
- Transformers 4.17.0
- TensorFlow 2.8.0
- Tokenizers 0.11.6
|
Kevincp560/distilbart-cnn-12-6-finetuned-pubmed
|
Kevincp560
| 2022-03-06T22:33:03Z | 4 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bart",
"text2text-generation",
"generated_from_trainer",
"dataset:pub_med_summarization_dataset",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-06T16:25:29Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- pub_med_summarization_dataset
metrics:
- rouge
model-index:
- name: distilbart-cnn-12-6-finetuned-pubmed
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: pub_med_summarization_dataset
type: pub_med_summarization_dataset
args: document
metrics:
- name: Rouge1
type: rouge
value: 40.0985
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbart-cnn-12-6-finetuned-pubmed
This model is a fine-tuned version of [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) on the pub_med_summarization_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9895
- Rouge1: 40.0985
- Rouge2: 16.5016
- Rougel: 24.8319
- Rougelsum: 36.0775
- Gen Len: 141.884
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:|
| 2.1709 | 1.0 | 4000 | 2.0257 | 38.1012 | 15.112 | 23.4064 | 33.9373 | 141.9195 |
| 1.9495 | 2.0 | 8000 | 1.9593 | 39.529 | 16.1693 | 24.487 | 35.5238 | 141.9785 |
| 1.756 | 3.0 | 12000 | 1.9488 | 39.9623 | 16.5799 | 24.949 | 35.9194 | 141.8855 |
| 1.6032 | 4.0 | 16000 | 1.9732 | 39.672 | 16.1994 | 24.5996 | 35.7021 | 141.921 |
| 1.4817 | 5.0 | 20000 | 1.9895 | 40.0985 | 16.5016 | 24.8319 | 36.0775 | 141.884 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.6
|
osanseviero/xlm-roberta-base-finetuned-panx-de-fr
|
osanseviero
| 2022-03-06T21:30:10Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-03-06T20:35:13Z |
---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de-fr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de-fr
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1754
- F1: 0.8616
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2815 | 1.0 | 1430 | 0.2079 | 0.8067 |
| 0.1521 | 2.0 | 2860 | 0.1759 | 0.8525 |
| 0.093 | 3.0 | 4290 | 0.1754 | 0.8616 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1
- Datasets 1.18.0
- Tokenizers 0.10.3
|
cammy/bart-large-cnn-finetuned-weaksup-1000-pad-early-new
|
cammy
| 2022-03-06T17:51:08Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bart",
"text2text-generation",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-06T16:33:39Z |
---
license: mit
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-large-cnn-finetuned-weaksup-1000-pad-early-new
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-large-cnn-finetuned-weaksup-1000-pad-early-new
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4896
- Rouge1: 29.4505
- Rouge2: 14.4038
- Rougel: 23.1757
- Rougelsum: 26.3813
- Gen Len: 66.55
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 0.154 | 1.0 | 1000 | 0.4255 | 27.2971 | 12.4331 | 20.851 | 23.9583 | 66.64 |
| 0.0806 | 2.0 | 2000 | 0.4896 | 29.4505 | 14.4038 | 23.1757 | 26.3813 | 66.55 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.2
- Datasets 1.18.3
- Tokenizers 0.11.0
|
Kuray107/swbd-5percent-supervised
|
Kuray107
| 2022-03-06T16:14:11Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-05T15:36:19Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: swbd-5percent-supervised
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swbd-5percent-supervised
This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6970
- Wer: 0.1352
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 6.8534 | 0.64 | 1000 | 2.9535 | 1.0 |
| 1.8605 | 1.28 | 2000 | 0.7878 | 0.3719 |
| 0.9862 | 1.92 | 3000 | 0.5906 | 0.2684 |
| 0.8405 | 2.56 | 4000 | 0.5555 | 0.2151 |
| 0.6972 | 3.2 | 5000 | 0.5905 | 0.1992 |
| 0.6033 | 3.84 | 6000 | 0.4867 | 0.1781 |
| 0.5393 | 4.48 | 7000 | 0.5447 | 0.1805 |
| 0.529 | 5.12 | 8000 | 0.5398 | 0.1746 |
| 0.5072 | 5.77 | 9000 | 0.5093 | 0.1706 |
| 0.4331 | 6.41 | 10000 | 0.4990 | 0.1627 |
| 0.4837 | 7.05 | 11000 | 0.5319 | 0.1634 |
| 0.3867 | 7.69 | 12000 | 0.4866 | 0.1595 |
| 0.345 | 8.33 | 13000 | 0.5202 | 0.1582 |
| 0.372 | 8.97 | 14000 | 0.5396 | 0.1547 |
| 0.355 | 9.61 | 15000 | 0.5992 | 0.1493 |
| 0.3258 | 10.25 | 16000 | 0.5247 | 0.1527 |
| 0.3327 | 10.89 | 17000 | 0.5664 | 0.1512 |
| 0.3422 | 11.53 | 18000 | 0.5819 | 0.1456 |
| 0.2815 | 12.17 | 19000 | 0.5692 | 0.1453 |
| 0.2719 | 12.81 | 20000 | 0.5012 | 0.1476 |
| 0.2838 | 13.45 | 21000 | 0.5286 | 0.1454 |
| 0.2418 | 14.09 | 22000 | 0.6238 | 0.1486 |
| 0.2412 | 14.73 | 23000 | 0.5889 | 0.1456 |
| 0.2227 | 15.37 | 24000 | 0.5901 | 0.1459 |
| 0.2129 | 16.02 | 25000 | 0.5959 | 0.1454 |
| 0.2071 | 16.66 | 26000 | 0.6259 | 0.1427 |
| 0.2185 | 17.3 | 27000 | 0.6581 | 0.1437 |
| 0.1982 | 17.94 | 28000 | 0.6194 | 0.1411 |
| 0.1928 | 18.58 | 29000 | 0.5940 | 0.1409 |
| 0.1885 | 19.22 | 30000 | 0.6733 | 0.1417 |
| 0.1835 | 19.86 | 31000 | 0.6363 | 0.1393 |
| 0.1756 | 20.5 | 32000 | 0.6675 | 0.1382 |
| 0.1776 | 21.14 | 33000 | 0.6147 | 0.1407 |
| 0.1758 | 21.78 | 34000 | 0.6405 | 0.1420 |
| 0.1645 | 22.42 | 35000 | 0.6999 | 0.1401 |
| 0.1631 | 23.06 | 36000 | 0.6224 | 0.1385 |
| 0.1494 | 23.7 | 37000 | 0.6639 | 0.1374 |
| 0.1472 | 24.34 | 38000 | 0.6471 | 0.1373 |
| 0.1514 | 24.98 | 39000 | 0.6570 | 0.1395 |
| 0.1527 | 25.62 | 40000 | 0.6876 | 0.1375 |
| 0.1514 | 26.27 | 41000 | 0.6835 | 0.1376 |
| 0.1344 | 26.91 | 42000 | 0.6987 | 0.1372 |
| 0.1267 | 27.55 | 43000 | 0.7026 | 0.1362 |
| 0.1384 | 28.19 | 44000 | 0.7021 | 0.1366 |
| 0.1264 | 28.83 | 45000 | 0.7016 | 0.1355 |
| 0.1227 | 29.47 | 46000 | 0.6970 | 0.1352 |
### Framework versions
- Transformers 4.14.1
- Pytorch 1.10.2
- Datasets 1.18.2
- Tokenizers 0.10.3
|
smartiros/Silva_TEST
|
smartiros
| 2022-03-06T15:46:41Z | 4 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-06T15:46:28Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: tmplujkwod0
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# tmplujkwod0
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.5292
- Train Accuracy: 0.875
- Validation Loss: 0.5870
- Validation Accuracy: 0.5
- Epoch: 1
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'clipnorm': 1.0, 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.6565 | 0.625 | 0.7534 | 0.5 | 0 |
| 0.5292 | 0.875 | 0.5870 | 0.5 | 1 |
### Framework versions
- Transformers 4.17.0
- TensorFlow 2.8.0
- Tokenizers 0.11.6
|
orisuchy/Descriptive_Classifier
|
orisuchy
| 2022-03-06T13:20:02Z | 5 | 2 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"Text Classification",
"he",
"dataset:orisuchy/Descriptive_Sentences_He",
"license:afl-3.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: afl-3.0
language: "he"
tags:
- Text Classification
widget:
- text: "היער השחור והגדול"
- text: "ואז הוא הלך לטייל בתוך היער השחור והגדול"
datasets:
- orisuchy/Descriptive_Sentences_He
metrics:
- accuracy
- f1
---
# **Descriptive Sentences Classifier**
Based on [AlephBERT](https://huggingface.co/onlplab/alephbert-base) model.
# **Metrics**
[accuracy](https://huggingface.co/metrics/accuracy): 0.813953488372093
</br>
[f1](https://huggingface.co/metrics/f1): 0.8181818181818182
## How to Use the model:
```python
from transformers import pipeline
classifier = pipeline("text-classification",model='orisuchy/Descriptive_Classifier', return_all_scores=True)
outputs = classifier("מסווג חתיך במיוחד")
print(outputs)
"""
Output:
[[
{'label': 'Descriptive', 'score': 0.999764621257782},
{'label': 'Not Descriptive', 'score': 0.00023541577684227377}]]
"""
```
#### Or, if you want only the final class:
```python
from transformers import pipeline
classifier = pipeline("text-classification",model='orisuchy/Descriptive_Classifier')
output = classifier("הלכתי אליו הביתה וחיכיתי")
print(output)
"""
Output:
[{'label': 'Not Descriptive', 'score': 0.999901533126831}]
"""
```
Created by Daniel Smotritsky & Ori Suchy
<br>
[GitHub](https://github.com/orisuchy/miniProject_DHU)
<iframe src="https://wandb.ai/orisuchy/huggingface/reports/Shared-panel-22-03-01-15-03-08--VmlldzoxNjI5MjM0?highlightShare" style="border:none;height:1024px;width:100%">
|
AG/pretraining
|
AG
| 2022-03-06T12:27:50Z | 17 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-03-02T23:29:04Z |
Pre trained on clus_ chapter only.
|
mp6kv/main_intent_test
|
mp6kv
| 2022-03-05T19:18:02Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-05T17:22:41Z |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: main_intent_test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# main_intent_test
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
## Model description
Custom data generated labeling text according to these five categories.
Five categories represent the five essential intents of a user for the ACTS scenario.
- Connect : Greetings and introduction with the student
- Pump : Asking the student for information
- Inform : Providing information to the student
- Feedback : Praising the student (positive feedback) or informing the student they are not on the right path (negative feedback)
- None : Not related to scenario
Takes a user input of string text and classifies it according to one of five categories.
## Intended uses & limitations
from transformers import pipeline
classifier = pipeline("text-classification",model="mp6kv/main_intent_test")
output = classifier("great job, you're getting it!")
score = output[0]['score']
label = output[0]['label']
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.6
|
huggingtweets/ragnar_furup
|
huggingtweets
| 2022-03-05T18:34:56Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-05T18:34:14Z |
---
language: en
thumbnail: http://www.huggingtweets.com/ragnar_furup/1646505291174/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1500138558765608969/Qgc4pMtC_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">R4 G4.mp3🌻</div>
<div style="text-align: center; font-size: 14px;">@ragnar_furup</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from R4 G4.mp3🌻.
| Data | R4 G4.mp3🌻 |
| --- | --- |
| Tweets downloaded | 1695 |
| Retweets | 889 |
| Short tweets | 104 |
| Tweets kept | 702 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3eum19q4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ragnar_furup's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/30kqu5u4) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/30kqu5u4/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/ragnar_furup')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
batterydata/batterybert-uncased
|
batterydata
| 2022-03-05T16:18:02Z | 15 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"exbert",
"en",
"dataset:batterypapers",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
---
language: en
tags:
- exbert
license: apache-2.0
datasets:
- batterypapers
---
# BatteryBERT-uncased model
Pretrained model on a large corpus of battery research papers using a masked language modeling (MLM) objective, starting with the [bert-base-uncased](https://huggingface.co/bert-base-uncased) weights. It was introduced in
[this paper](paper_link) and first released in
[this repository](https://github.com/ShuHuang/batterybert). This model is uncased: it does not make a difference
between english and English.
## Model description
BatteryBERT is a transformers model pretrained on a large corpus of battery research papers in a self-supervised fashion, starting with the [bert-base-uncased](https://huggingface.co/bert-base-uncased) weights. This means
it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts.
More precisely, it was pretrained with the Masked language modeling (MLM) objective. Taking a sentence, the model
randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict
the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one
after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to
learn a bidirectional representation of the sentence.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the BERT model as inputs.
## Training data
The BatteryBERT model was pretrained on the full text of battery papers only, after initialized from the [bert-base-uncased](https://huggingface.co/bert-base-uncased) weights. The paper corpus contains a total of 400,366 battery research papers that are published from 2000 to June 2021, from the publishers Royal Society of Chemistry (RSC), Elsevier, and Springer. The list of DOIs can be found at [Github](https://github.com/ShuHuang/batterybert/blob/main/corpus.txt).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,522. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
### Pretraining
The model was trained on 8 NVIDIA DGX A100 GPUs for 1,000,000 steps with a batch size of 256. The sequence length was limited to 512 tokens. The optimizer used is Adam with a learning rate of 2e-5, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01,
learning rate warmup for 10,000 steps and linear decay of the learning rate after.
## Intended uses & limitations
You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task.
See the [model hub](https://huggingface.co/models?filter=batterybert) to look for fine-tuned versions on a task that
interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='batterydata/batterybert-uncased')
>>> unmasker("Hello I'm a <mask> model.")
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('batterydata/batterybert-uncased')
model = BertModel.from_pretrained('batterydata/batterybert-uncased')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('batterydata/batterybert-uncased')
model = TFBertModel.from_pretrained('batterydata/batterybert-uncased')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
## Evaluation results
Final loss: 1.0317.
## Authors
Shu Huang: `sh2009 [at] cam.ac.uk`
Jacqueline Cole: `jmc61 [at] cam.ac.uk`
## Citation
BatteryBERT: A Pre-trained Language Model for Battery Database Enhancement
|
batterydata/batteryscibert-uncased
|
batterydata
| 2022-03-05T16:14:28Z | 9 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"exbert",
"en",
"dataset:batterypapers",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
---
language: en
tags:
- exbert
license: apache-2.0
datasets:
- batterypapers
---
# BatterySciBERT-uncased model
Pretrained model on a large corpus of battery research papers using a masked language modeling (MLM) objective, starting with the [SciBERT-uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) weights. It was introduced in
[this paper](paper_link) and first released in
[this repository](https://github.com/ShuHuang/batterybert). This model is uncased: it does not make a difference
between english and English.
## Model description
BatterySciBERT is a transformers model pretrained on a large corpus of battery research papers in a self-supervised fashion, starting with the [SciBERT-uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) weights. This means
it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts.
More precisely, it was pretrained with the Masked language modeling (MLM) objective. Taking a sentence, the model
randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict
the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one
after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to
learn a bidirectional representation of the sentence.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the BERT model as inputs.
## Training data
The BatterySciBERT model was pretrained on the full text of battery papers only, after initialized from the [SciBERT-uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) weights. The paper corpus contains a total of 400,366 battery research papers that are published from 2000 to June 2021, from the publishers Royal Society of Chemistry (RSC), Elsevier, and Springer. The list of DOIs can be found at [Github](https://github.com/ShuHuang/batterybert/blob/main/corpus.txt).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using WordPiece and a vocabulary size of 31,090. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
### Pretraining
The model was trained on 8 NVIDIA DGX A100 GPUs for 1,000,000 steps with a batch size of 256. The sequence length was limited to 512 tokens. The optimizer used is Adam with a learning rate of 2e-5, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01,
learning rate warmup for 10,000 steps and linear decay of the learning rate after.
## Intended uses & limitations
You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task.
See the [model hub](https://huggingface.co/models?filter=batterybert) to look for fine-tuned versions on a task that
interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='batterydata/batteryscibert-uncased')
>>> unmasker("Hello I'm a <mask> model.")
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('batterydata/batteryscibert-uncased')
model = BertModel.from_pretrained('batterydata/batteryscibert-uncased')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('batterydata/batteryscibert-uncased')
model = TFBertModel.from_pretrained('batterydata/batteryscibert-uncased')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
## Evaluation results
Final loss: 1.095.
## Authors
Shu Huang: `sh2009 [at] cam.ac.uk`
Jacqueline Cole: `jmc61 [at] cam.ac.uk`
## Citation
BatteryBERT: A Pre-trained Language Model for Battery Database Enhancement
|
batterydata/batteryonlybert-cased
|
batterydata
| 2022-03-05T16:04:11Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"fill-mask",
"exbert",
"en",
"dataset:batterypapers",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-03T19:09:24Z |
---
language: en
tags:
- exbert
license: apache-2.0
datasets:
- batterypapers
---
# BatteryOnlyBERT-uncased model
Pretrained model on a large corpus of battery research papers using a masked language modeling (MLM) objective. It was introduced in
[this paper](paper_link) and first released in
[this repository](https://github.com/ShuHuang/batterybert). This model is uncased: it does not make a difference
between english and English.
## Model description
BatteryOnlyBERT is a transformers model pretrained on a large corpus of battery research papers in a self-supervised fashion. This means
it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts.
More precisely, it was pretrained with the Masked language modeling (MLM) objective. Taking a sentence, the model
randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict
the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one
after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to
learn a bidirectional representation of the sentence.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the BERT model as inputs.
## Training data
The BatteryOnlyBERT model was pretrained on the full text of battery papers only. The paper corpus contains a total of 400,366 battery research papers that are published from 2000 to June 2021, from the publishers Royal Society of Chemistry (RSC), Elsevier, and Springer. The list of DOIs can be found at [Github](https://github.com/ShuHuang/batterybert/blob/main/corpus.txt).
## Training procedure
### Preprocessing
The texts are tokenized using WordPiece and a vocabulary size of 30,522. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
### Pretraining
The model was trained on 8 NVIDIA DGX A100 GPUs for 1,500,000 steps with a batch size of 256. The sequence length was limited to 512 tokens. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01,
learning rate warmup for 10,000 steps and linear decay of the learning rate after.
## Intended uses & limitations
You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task.
See the [model hub](https://huggingface.co/models?filter=batterybert) to look for fine-tuned versions on a task that
interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='batterydata/batteryonlybert-uncased')
>>> unmasker("Hello I'm a <mask> model.")
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('batterydata/batteryonlybert-uncased')
model = BertModel.from_pretrained('batterydata/batteryonlybert-uncased')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('batterydata/batteryonlybert-uncased')
model = TFBertModel.from_pretrained('batterydata/batteryonlybert-uncased')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
## Evaluation results
Final loss: 1.1012.
## Authors
Shu Huang: `sh2009 [at] cam.ac.uk`
Jacqueline Cole: `jmc61 [at] cam.ac.uk`
## Citation
BatteryBERT: A Pre-trained Language Model for Battery Database Enhancement
|
batterydata/batteryonlybert-uncased
|
batterydata
| 2022-03-05T16:03:58Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"fill-mask",
"exbert",
"en",
"dataset:batterypapers",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-03T19:09:37Z |
---
language: en
tags:
- exbert
license: apache-2.0
datasets:
- batterypapers
---
# BatteryOnlyBERT-cased model
Pretrained model on a large corpus of battery research papers using a masked language modeling (MLM) objective. It was introduced in
[this paper](paper_link) and first released in
[this repository](https://github.com/ShuHuang/batterybert). This model is case-sensitive: it
makes a difference between english and English.
## Model description
BatteryOnlyBERT is a transformers model pretrained on a large corpus of battery research papers in a self-supervised fashion. This means
it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts.
More precisely, it was pretrained with the Masked language modeling (MLM) objective. Taking a sentence, the model
randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict
the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one
after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to
learn a bidirectional representation of the sentence.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the BERT model as inputs.
## Training data
The BatteryOnlyBERT model was pretrained on the full text of battery papers only. The paper corpus contains 1.87B tokens form a total of 400,366 battery research papers that are published from 2000 to June 2021, from the publishers Royal Society of Chemistry (RSC), Elsevier, and Springer. The list of DOIs can be found at [Github](https://github.com/ShuHuang/batterybert/blob/main/corpus.txt).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using WordPiece and a vocabulary size of 28,996. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
### Pretraining
The model was trained on 8 NVIDIA DGX A100 GPUs for 1,500,000 steps with a batch size of 256. The sequence length was limited to 512 tokens. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01,
learning rate warmup for 10,000 steps and linear decay of the learning rate after.
## Intended uses & limitations
You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task.
See the [model hub](https://huggingface.co/models?filter=batterybert) to look for fine-tuned versions on a task that
interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='batterydata/batteryonlybert-cased')
>>> unmasker("Hello I'm a <mask> model.")
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('batterydata/batteryonlybert-cased')
model = BertModel.from_pretrained('batterydata/batteryonlybert-cased')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('batterydata/batteryonlybert-cased')
model = TFBertModel.from_pretrained('batterydata/batteryonlybert-cased')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
## Evaluation results
Final loss: 1.0614.
## Authors
Shu Huang: `sh2009 [at] cam.ac.uk`
Jacqueline Cole: `jmc61 [at] cam.ac.uk`
## Citation
BatteryBERT: A Pre-trained Language Model for Battery Database Enhancement
|
batterydata/batteryonlybert-cased-abstract
|
batterydata
| 2022-03-05T14:54:53Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"Text Classification",
"en",
"dataset:batterydata/paper-abstracts",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
language: en
tags: Text Classification
license: apache-2.0
datasets:
- batterydata/paper-abstracts
metrics: glue
---
# BatteryOnlyBERT-cased for Battery Abstract Classification
**Language model:** batteryonlybert-cased
**Language:** English
**Downstream-task:** Text Classification
**Training data:** training\_data.csv
**Eval data:** val\_data.csv
**Code:** See [example](https://github.com/ShuHuang/batterybert)
**Infrastructure**: 8x DGX A100
## Hyperparameters
```
batch_size = 32
n_epochs = 14
base_LM_model = "batteryonlybert-cased"
learning_rate = 2e-5
```
## Performance
```
"Validation accuracy": 97.33,
"Test accuracy": 97.34,
```
## Usage
### In Transformers
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
model_name = "batterydata/batteryonlybert-cased-abstract"
# a) Get predictions
nlp = pipeline('text-classification', model=model_name, tokenizer=model_name)
input = {'The typical non-aqueous electrolyte for commercial Li-ion cells is a solution of LiPF6 in linear and cyclic carbonates.'}
res = nlp(input)
# b) Load model & tokenizer
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
```
## Authors
Shu Huang: `sh2009 [at] cam.ac.uk`
Jacqueline Cole: `jmc61 [at] cam.ac.uk`
## Citation
BatteryBERT: A Pre-trained Language Model for Battery Database Enhancement
|
batterydata/batterybert-cased-abstract
|
batterydata
| 2022-03-05T14:54:39Z | 12 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"Text Classification",
"en",
"dataset:batterydata/paper-abstracts",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
language: en
tags: Text Classification
license: apache-2.0
datasets:
- batterydata/paper-abstracts
metrics: glue
---
# BatteryBERT-cased for Battery Abstract Classification
**Language model:** batterybert-cased
**Language:** English
**Downstream-task:** Text Classification
**Training data:** training\_data.csv
**Eval data:** val\_data.csv
**Code:** See [example](https://github.com/ShuHuang/batterybert)
**Infrastructure**: 8x DGX A100
## Hyperparameters
```
batch_size = 32
n_epochs = 11
base_LM_model = "batterybert-cased"
learning_rate = 2e-5
```
## Performance
```
"Validation accuracy": 97.29,
"Test accuracy": 96.85,
```
## Usage
### In Transformers
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
model_name = "batterydata/batterybert-cased-abstract"
# a) Get predictions
nlp = pipeline('text-classification', model=model_name, tokenizer=model_name)
input = {'The typical non-aqueous electrolyte for commercial Li-ion cells is a solution of LiPF6 in linear and cyclic carbonates.'}
res = nlp(input)
# b) Load model & tokenizer
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
```
## Authors
Shu Huang: `sh2009 [at] cam.ac.uk`
Jacqueline Cole: `jmc61 [at] cam.ac.uk`
## Citation
BatteryBERT: A Pre-trained Language Model for Battery Database Enhancement
|
batterydata/batterybert-uncased-abstract
|
batterydata
| 2022-03-05T14:52:59Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"Text Classification",
"en",
"dataset:batterydata/paper-abstracts",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
language: en
tags: Text Classification
license: apache-2.0
datasets:
- batterydata/paper-abstracts
metrics: glue
---
# BatteryBERT-uncased for Battery Abstract Classification
**Language model:** batterybert-uncased
**Language:** English
**Downstream-task:** Text Classification
**Training data:** training\_data.csv
**Eval data:** val\_data.csv
**Code:** See [example](https://github.com/ShuHuang/batterybert)
**Infrastructure**: 8x DGX A100
## Hyperparameters
```
batch_size = 32
n_epochs = 11
base_LM_model = "batterybert-uncased"
learning_rate = 2e-5
```
## Performance
```
"Validation accuracy": 97.10,
"Test accuracy": 96.94,
```
## Usage
### In Transformers
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
model_name = "batterydata/batterybert-uncased-abstract"
# a) Get predictions
nlp = pipeline('text-classification', model=model_name, tokenizer=model_name)
input = {'The typical non-aqueous electrolyte for commercial Li-ion cells is a solution of LiPF6 in linear and cyclic carbonates.'}
res = nlp(input)
# b) Load model & tokenizer
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
```
## Authors
Shu Huang: `sh2009 [at] cam.ac.uk`
Jacqueline Cole: `jmc61 [at] cam.ac.uk`
## Citation
BatteryBERT: A Pre-trained Language Model for Battery Database Enhancement
|
batterydata/batterybert-uncased-squad-v1
|
batterydata
| 2022-03-05T13:52:33Z | 26 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"question-answering",
"question answering",
"en",
"dataset:squad",
"dataset:batterydata/battery-device-data-qa",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:05Z |
---
language: en
tags: question answering
license: apache-2.0
datasets:
- squad
- batterydata/battery-device-data-qa
metrics: squad
---
# BatteryBERT-uncased for QA
**Language model:** batterybert-uncased
**Language:** English
**Downstream-task:** Extractive QA
**Training data:** SQuAD v1
**Eval data:** SQuAD v1
**Code:** See [example](https://github.com/ShuHuang/batterybert)
**Infrastructure**: 8x DGX A100
## Hyperparameters
```
batch_size = 32
n_epochs = 3
base_LM_model = "batterybert-uncased"
max_seq_len = 386
learning_rate = 3e-5
doc_stride=128
max_query_length=64
```
## Performance
Evaluated on the SQuAD v1.0 dev set.
```
"exact": 81.08,
"f1": 88.41,
```
Evaluated on the battery device dataset.
```
"precision": 68.27,
"recall": 80.88,
```
## Usage
### In Transformers
```python
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
model_name = "batterydata/batterybert-uncased-squad-v1"
# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
'question': 'What is the electrolyte?',
'context': 'The typical non-aqueous electrolyte for commercial Li-ion cells is a solution of LiPF6 in linear and cyclic carbonates.'
}
res = nlp(QA_input)
# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
```
## Authors
Shu Huang: `sh2009 [at] cam.ac.uk`
Jacqueline Cole: `jmc61 [at] cam.ac.uk`
## Citation
BatteryBERT: A Pre-trained Language Model for Battery Database Enhancement
|
naam/xlm-roberta-base-finetuned-panx-de
|
naam
| 2022-03-05T13:48:33Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"dataset:xtreme",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-03-05T13:36:41Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.de
metrics:
- name: F1
type: f1
value: 0.8594910162670748
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1348
- F1: 0.8595
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2556 | 1.0 | 525 | 0.1629 | 0.8218 |
| 0.1309 | 2.0 | 1050 | 0.1378 | 0.8522 |
| 0.0812 | 3.0 | 1575 | 0.1348 | 0.8595 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
elena-soare/t5-base-datasaur
|
elena-soare
| 2022-03-05T13:18:15Z | 0 | 0 | null |
[
"region:us"
] | null | 2022-03-05T13:17:43Z |
T5-base model pre-trained on e-commerce data.
|
nielsr/segformer-b0-finetuned-segments-sidewalk
|
nielsr
| 2022-03-05T09:39:11Z | 9 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"segformer",
"vision",
"image-segmentation",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
image-segmentation
| 2022-03-05T08:17:45Z |
---
license: apache-2.0
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b0-finetuned-segments-sidewalk
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-sidewalk
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5679
- Miou: 0.2769
- Macc: 0.3331
- Overall Accuracy: 0.8424
- Per Category Iou: [nan, 0.7174911859423314, 0.8790751054409742, 0.6065232798410057, 0.6975274018055722, 0.3486407385349508, nan, 0.40093167116703843, 0.28779837903852556, 0.0, 0.7870339041746186, 0.0, 0.0, 0.0, 0.0, 0.1464360606454247, 0.0, 0.0, 0.6770283275082656, 0.0, 0.338555175257431, 0.14697310016578427, 0.0, nan, 0.0, 0.27163002251763635, 0.0, 0.0, 0.8257437911843676, 0.7169333376341568, 0.9108105550493353, 0.0, 0.0, 0.1016801552778885, 0.0]
- Per Category Accuracy: [nan, 0.9199960254104915, 0.9327745517652714, 0.7304629327758765, 0.7378309547498484, 0.45295941407150275, nan, 0.5188608021128075, 0.5327441812670195, 0.0, 0.9353764765979435, 0.0, 0.0, 0.0, 0.0, 0.1588525415198792, 0.0, 0.0, 0.9238854794385364, 0.0, 0.4400394213522207, 0.15130051149615126, 0.0, nan, 0.0, 0.3570096986572905, 0.0, 0.0, 0.9359897980968498, 0.8570458108260572, 0.9549583230619891, 0.0, 0.0, 0.11786971668879294, 0.0]
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Miou | Macc | Overall Accuracy | Per Category Iou | Per Category Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:----------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| 1.357 | 1.0 | 400 | 1.0006 | 0.1632 | 0.2069 | 0.7524 | [nan, 0.5642795884663824, 0.7491853309192827, 0.0, 0.40589649630192104, 0.02723606910696284, nan, 0.0002207740938439576, 0.0, 0.0, 0.6632462867093903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5671699281129761, 0.0, 0.0009207911027492868, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.7507253434892517, 0.6157793573905029, 0.8774768871968204, 0.0, 0.0, 0.0, 0.0] | [nan, 0.6839993330882016, 0.9786792586618772, 0.0, 0.4818162160949784, 0.02785198456498826, nan, 0.00022133459131411787, 0.0, 0.0, 0.9043689536433023, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8606078323791991, 0.0, 0.0009210330367246509, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.895198618615298, 0.8549807032886052, 0.9328734839751688, 0.0, 0.0, 0.0, 0.0] |
| 1.6346 | 2.0 | 800 | 0.7856 | 0.1903 | 0.2334 | 0.7917 | [nan, 0.6276046255936906, 0.8379492348238635, 0.0, 0.5220035981992285, 0.19441920935217594, nan, 0.16135703555333, 0.0, 0.0, 0.7357165628674137, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.567598980063164, 0.0, 0.07867871139133086, 0.0, 0.0, nan, 0.0, 0.02123705398363847, 0.0, 0.0, 0.7917172051343153, 0.6589515948064048, 0.8916684207946344, 0.0, 0.0, 0.00013685918191589503, 0.0] | [nan, 0.8610263337355926, 0.9499345560017969, 0.0, 0.5908796687797819, 0.2144081438468206, nan, 0.1813236746419022, 0.0, 0.0, 0.8825551027577866, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9239907140298015, 0.0, 0.08495225520298297, 0.0, 0.0, nan, 0.0, 0.021302829364985724, 0.0, 0.0, 0.9258397010509258, 0.8834861376443207, 0.9489131468773239, 0.0, 0.0, 0.0001372777815910495, 0.0] |
| 0.659 | 3.0 | 1200 | 0.6798 | 0.2215 | 0.2687 | 0.8107 | [nan, 0.6728474586764454, 0.8404607924530816, 0.21147709475332813, 0.5407350347311378, 0.23535489130104167, nan, 0.3087159264982809, 0.0060319580742948155, 0.0, 0.7331305064022374, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6378031991744924, 0.0, 0.35289337122777764, 6.24997656258789e-05, 0.0, nan, 0.0, 0.14698390926256938, 0.0, 0.0, 0.8019042204623998, 0.669283249725758, 0.8928145424856038, 0.0, 0.0, 0.03847722460691187, 0.0] | [nan, 0.866012011452706, 0.9627112260298595, 0.21236715482371135, 0.5645869262075475, 0.2750610095322395, nan, 0.3857655597748765, 0.0060319580742948155, 0.0, 0.939196440844118, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8380282443529743, 0.0, 0.5749902063170915, 6.256068386334744e-05, 0.0, nan, 0.0, 0.1605725590139305, 0.0, 0.0, 0.9212803460870584, 0.8870298583701837, 0.959700359744241, 0.0, 0.0, 0.04453994364914478, 0.0] |
| 0.5481 | 4.0 | 1600 | 0.5999 | 0.2522 | 0.2998 | 0.8312 | [nan, 0.7078353465279917, 0.8661728761172196, 0.3857324719136883, 0.6338278880825696, 0.3440050078187208, nan, 0.35980405625532347, 0.23875867241702606, 0.0, 0.773703347865372, 0.0, 0.0, 0.0, 0.0, 0.0004931363471679884, 0.0, 0.0, 0.6554146448850521, 0.0, 0.367673493717809, 0.03089804641909161, 0.0, nan, 0.0, 0.21529017459808872, 0.0, 0.0, 0.818951849158376, 0.7007504838794707, 0.9053929635423027, 0.0, 0.0, 0.06626212301200333, 0.0] | [nan, 0.8955207784307155, 0.9536263694097721, 0.39712577675621036, 0.6989299616008556, 0.4248959179453637, nan, 0.42984959564233455, 0.26168627652468784, 0.0, 0.9055166364779607, 0.0, 0.0, 0.0, 0.0, 0.0004932058379466533, 0.0, 0.0, 0.8632164276000204, 0.0, 0.6365580872107307, 0.031401709658368616, 0.0, nan, 0.0, 0.2497286263775161, 0.0, 0.0, 0.9296676429517725, 0.8858954297713482, 0.9555756265860916, 0.0, 0.0, 0.0750792276952902, 0.0] |
| 0.7855 | 5.0 | 2000 | 0.5679 | 0.2769 | 0.3331 | 0.8424 | [nan, 0.7174911859423314, 0.8790751054409742, 0.6065232798410057, 0.6975274018055722, 0.3486407385349508, nan, 0.40093167116703843, 0.28779837903852556, 0.0, 0.7870339041746186, 0.0, 0.0, 0.0, 0.0, 0.1464360606454247, 0.0, 0.0, 0.6770283275082656, 0.0, 0.338555175257431, 0.14697310016578427, 0.0, nan, 0.0, 0.27163002251763635, 0.0, 0.0, 0.8257437911843676, 0.7169333376341568, 0.9108105550493353, 0.0, 0.0, 0.1016801552778885, 0.0] | [nan, 0.9199960254104915, 0.9327745517652714, 0.7304629327758765, 0.7378309547498484, 0.45295941407150275, nan, 0.5188608021128075, 0.5327441812670195, 0.0, 0.9353764765979435, 0.0, 0.0, 0.0, 0.0, 0.1588525415198792, 0.0, 0.0, 0.9238854794385364, 0.0, 0.4400394213522207, 0.15130051149615126, 0.0, nan, 0.0, 0.3570096986572905, 0.0, 0.0, 0.9359897980968498, 0.8570458108260572, 0.9549583230619891, 0.0, 0.0, 0.11786971668879294, 0.0] |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.6
|
Kevincp560/distilbart-xsum-12-1-finetuned-pubmed
|
Kevincp560
| 2022-03-05T00:06:55Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bart",
"text2text-generation",
"generated_from_trainer",
"dataset:pub_med_summarization_dataset",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-04T18:48:32Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- pub_med_summarization_dataset
metrics:
- rouge
model-index:
- name: distilbart-xsum-12-1-finetuned-pubmed
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: pub_med_summarization_dataset
type: pub_med_summarization_dataset
args: document
metrics:
- name: Rouge1
type: rouge
value: 27.0012
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbart-xsum-12-1-finetuned-pubmed
This model is a fine-tuned version of [sshleifer/distilbart-xsum-12-1](https://huggingface.co/sshleifer/distilbart-xsum-12-1) on the pub_med_summarization_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8236
- Rouge1: 27.0012
- Rouge2: 12.728
- Rougel: 19.8685
- Rougelsum: 25.0485
- Gen Len: 59.969
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 3.3604 | 1.0 | 4000 | 3.1575 | 25.0078 | 11.5381 | 18.4246 | 23.1605 | 54.8935 |
| 3.0697 | 2.0 | 8000 | 2.9478 | 26.4947 | 12.5411 | 19.4328 | 24.6123 | 57.948 |
| 2.8638 | 3.0 | 12000 | 2.8672 | 26.8856 | 12.7568 | 19.8949 | 24.8745 | 59.6245 |
| 2.7243 | 4.0 | 16000 | 2.8347 | 26.7347 | 12.5152 | 19.6516 | 24.7756 | 60.439 |
| 2.6072 | 5.0 | 20000 | 2.8236 | 27.0012 | 12.728 | 19.8685 | 25.0485 | 59.969 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.6
|
Ayham/ernie_ernie_summarization_cnn_dailymail
|
Ayham
| 2022-03-04T20:54:42Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"encoder-decoder",
"text2text-generation",
"generated_from_trainer",
"dataset:cnn_dailymail",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-04T14:48:41Z |
---
tags:
- generated_from_trainer
datasets:
- cnn_dailymail
model-index:
- name: ernie_ernie_summarization_cnn_dailymail
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ernie_ernie_summarization_cnn_dailymail
This model is a fine-tuned version of [](https://huggingface.co/) on the cnn_dailymail dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.12.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.10.3
|
azaninello/distilgpt2-finetuned-shroomstoy
|
azaninello
| 2022-03-04T19:13:30Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-04T19:07:36Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: distilgpt2-finetuned-shroomstoy
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilgpt2-finetuned-shroomstoy
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 4.0958
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 10 | 4.1207 |
| No log | 2.0 | 20 | 4.1009 |
| No log | 3.0 | 30 | 4.0958 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.6
|
daisyxie21/bert-base-uncased-8-10-0.01
|
daisyxie21
| 2022-03-04T16:27:40Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-04T14:27:09Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- matthews_correlation
model-index:
- name: bert-base-uncased-8-10-0.01
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: cola
metrics:
- name: Matthews Correlation
type: matthews_correlation
value: 0.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-8-10-0.01
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8324
- Matthews Correlation: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.01
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| No log | 1.0 | 400 | 0.8324 | 0.0 |
| 1.0904 | 2.0 | 800 | 1.3157 | 0.0 |
| 0.9461 | 3.0 | 1200 | 0.4407 | 0.0 |
| 0.9565 | 4.0 | 1600 | 2.1082 | 0.0 |
| 1.024 | 5.0 | 2000 | 0.7220 | 0.0 |
| 1.024 | 6.0 | 2400 | 0.7414 | 0.0 |
| 0.8362 | 7.0 | 2800 | 0.4442 | 0.0 |
| 0.6765 | 8.0 | 3200 | 0.5481 | 0.0 |
| 0.5902 | 9.0 | 3600 | 0.5642 | 0.0 |
| 0.5476 | 10.0 | 4000 | 0.4449 | 0.0 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.9.0
- Datasets 1.18.3
- Tokenizers 0.11.0
|
jiobiala24/wav2vec2-base-2
|
jiobiala24
| 2022-03-04T15:56:54Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-04T04:00:58Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-base-2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-2
This model is a fine-tuned version of [jiobiala24/wav2vec2-base-1](https://huggingface.co/jiobiala24/wav2vec2-base-1) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9415
- Wer: 0.3076
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.4206 | 1.96 | 1000 | 0.6022 | 0.3435 |
| 0.3278 | 3.93 | 2000 | 0.6191 | 0.3344 |
| 0.2604 | 5.89 | 3000 | 0.6170 | 0.3288 |
| 0.2135 | 7.86 | 4000 | 0.6590 | 0.3239 |
| 0.1805 | 9.82 | 5000 | 0.7359 | 0.3289 |
| 0.1582 | 11.79 | 6000 | 0.7450 | 0.3276 |
| 0.1399 | 13.75 | 7000 | 0.7914 | 0.3218 |
| 0.1252 | 15.72 | 8000 | 0.8254 | 0.3185 |
| 0.1095 | 17.68 | 9000 | 0.8524 | 0.3184 |
| 0.1 | 19.65 | 10000 | 0.8340 | 0.3165 |
| 0.0905 | 21.61 | 11000 | 0.8846 | 0.3161 |
| 0.0819 | 23.58 | 12000 | 0.8994 | 0.3142 |
| 0.0763 | 25.54 | 13000 | 0.9018 | 0.3134 |
| 0.0726 | 27.5 | 14000 | 0.9552 | 0.3081 |
| 0.0668 | 29.47 | 15000 | 0.9415 | 0.3076 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
jish/distilgpt2-finetuned-wikitext2
|
jish
| 2022-03-04T15:14:19Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-04T14:44:11Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: distilgpt2-finetuned-wikitext2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilgpt2-finetuned-wikitext2
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.6423
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.7602 | 1.0 | 2334 | 3.6669 |
| 3.633 | 2.0 | 4668 | 3.6455 |
| 3.6078 | 3.0 | 7002 | 3.6423 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.6
|
augustoortiz/bert-finetuned-squad2
|
augustoortiz
| 2022-03-04T12:53:53Z | 4 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"question-answering",
"generated_from_keras_callback",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: augustoortiz/bert-finetuned-squad2
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# augustoortiz/bert-finetuned-squad2
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.2223
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 11091, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Epoch |
|:----------:|:-----:|
| 1.2223 | 0 |
### Framework versions
- Transformers 4.17.0.dev0
- TensorFlow 2.8.0
- Datasets 1.18.3
- Tokenizers 0.11.0
|
Ayou/chinese_mobile_bert
|
Ayou
| 2022-03-04T12:49:12Z | 15 | 5 |
transformers
|
[
"transformers",
"pytorch",
"mobilebert",
"fill-mask",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:04Z |
---
license: apache-2.0
---
在2.5亿的中文语料上,进行mobie_bert进行预训练。在单卡-A100下迭代100万 steps,训练15天。
|
jkhan447/sentiment-model-sample
|
jkhan447
| 2022-03-04T11:13:39Z | 12 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"dataset:imdb",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imdb
metrics:
- accuracy
model-index:
- name: sentiment-model-sample
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: imdb
type: imdb
args: plain_text
metrics:
- name: Accuracy
type: accuracy
value: 0.93948
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sentiment-model-sample
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5280
- Accuracy: 0.9395
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.6
|
gustavecortal/T0_3B-8bit
|
gustavecortal
| 2022-03-04T10:32:31Z | 6 | 10 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"en",
"fr",
"dataset:bigscience/P3",
"arxiv:2110.08207",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
language: fr
license: mit
tags:
- en
datasets:
- bigscience/P3
---
### Quantized BigScience's T0 3B with 8-bit weights
This is a version of [BigScience's T0](https://huggingface.co/bigscience/T0_3B) with 3 billion parameters that is modified so you can generate **and fine-tune the model in colab or equivalent desktop gpu (e.g. single 1080Ti)**. Inspired by [GPT-J 8bit](https://huggingface.co/hivemind/gpt-j-6B-8bit).
Here's how to run it: [](https://colab.research.google.com/drive/1lMja-CPc0vm5_-gXNXAWU-9c0nom7vZ9)
This model can be easily loaded using the `T5ForConditionalGeneration` functionality:
```python
from transformers import T5ForConditionalGeneration
model = T5ForConditionalGeneration.from_pretrained("gustavecortal/T0_3B-8bit")
```
Before loading, you have to Monkey-Patch T5:
```python
class T5ForConditionalGeneration(transformers.models.t5.modeling_t5.T5ForConditionalGeneration):
def __init__(self, config):
super().__init__(config)
convert_to_int8(self)
transformers.models.t5.modeling_t5.T5ForConditionalGeneration = T5ForConditionalGeneration
```
## Model Description
T0* shows zero-shot task generalization on English natural language prompts, outperforming GPT-3 on many tasks, while being 16x smaller. It is a series of encoder-decoder models trained on a large set of different tasks specified in natural language prompts. We convert numerous English supervised datasets into prompts, each with multiple templates using varying formulations. These prompted datasets allow for benchmarking the ability of a model to perform completely unseen tasks specified in natural language. To obtain T0*, we fine-tune a pretrained language model on this multitask mixture covering many different NLP tasks.
## Links
* [BigScience](https://bigscience.huggingface.co/)
* [Hivemind](https://training-transformers-together.github.io/)
* [Gustave Cortal](https://twitter.com/gustavecortal)
```bibtex
@misc{sanh2021multitask,
title={Multitask Prompted Training Enables Zero-Shot Task Generalization},
author={Victor Sanh and Albert Webson and Colin Raffel and Stephen H. Bach and Lintang Sutawika and Zaid Alyafeai and Antoine Chaffin and Arnaud Stiegler and Teven Le Scao and Arun Raja and Manan Dey and M Saiful Bari and Canwen Xu and Urmish Thakker and Shanya Sharma Sharma and Eliza Szczechla and Taewoon Kim and Gunjan Chhablani and Nihal Nayak and Debajyoti Datta and Jonathan Chang and Mike Tian-Jian Jiang and Han Wang and Matteo Manica and Sheng Shen and Zheng Xin Yong and Harshit Pandey and Rachel Bawden and Thomas Wang and Trishala Neeraj and Jos Rozen and Abheesht Sharma and Andrea Santilli and Thibault Fevry and Jason Alan Fries and Ryan Teehan and Stella Biderman and Leo Gao and Tali Bers and Thomas Wolf and Alexander M. Rush},
year={2021},
eprint={2110.08207},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
|
MarioPenguin/beto_amazon_final_posneg
|
MarioPenguin
| 2022-03-04T09:34:33Z | 4 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-03T13:55:40Z |
---
tags:
- generated_from_keras_callback
model-index:
- name: beto_amazon_final_posneg
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# beto_amazon_final_posneg
This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-uncased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1429
- Train Accuracy: 0.9510
- Validation Loss: 0.2942
- Validation Accuracy: 0.8913
- Epoch: 9
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 5e-07, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.6474 | 0.6545 | 0.5618 | 0.7893 | 0 |
| 0.4576 | 0.8360 | 0.3672 | 0.8560 | 1 |
| 0.3088 | 0.8925 | 0.3096 | 0.8752 | 2 |
| 0.2529 | 0.9028 | 0.2888 | 0.8855 | 3 |
| 0.2177 | 0.9168 | 0.2876 | 0.8865 | 4 |
| 0.1973 | 0.9280 | 0.2921 | 0.8865 | 5 |
| 0.1792 | 0.9373 | 0.2844 | 0.8903 | 6 |
| 0.1686 | 0.9423 | 0.2859 | 0.8898 | 7 |
| 0.1525 | 0.9480 | 0.2884 | 0.8917 | 8 |
| 0.1429 | 0.9510 | 0.2942 | 0.8913 | 9 |
### Framework versions
- Transformers 4.17.0
- TensorFlow 2.8.0
- Datasets 1.18.3
- Tokenizers 0.11.6
|
kabelomalapane/Helsinki-NLP-opus-finetuned-en-to-zu
|
kabelomalapane
| 2022-03-04T08:53:37Z | 3 | 0 |
transformers
|
[
"transformers",
"tf",
"marian",
"text2text-generation",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-03T17:46:12Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: kabelomalapane/Helsinki-NLP-opus-finetuned-en-to-zu
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# kabelomalapane/Helsinki-NLP-opus-finetuned-en-to-zu
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-mul](https://huggingface.co/Helsinki-NLP/opus-mt-en-mul) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.5907
- Validation Loss: 1.6321
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
This model is to be used to translate English into Zulu. But there are still some problems in running this model, so it's still to be modified.
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 783, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 2.1622 | 1.7379 | 0 |
| 1.7292 | 1.6529 | 1 |
| 1.5907 | 1.6321 | 2 |
### Framework versions
- Transformers 4.16.2
- TensorFlow 2.8.0
- Datasets 1.18.3
- Tokenizers 0.11.0
|
batterydata/batteryscibert-cased-squad-v1
|
batterydata
| 2022-03-03T20:29:14Z | 15 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"question-answering",
"question answering",
"en",
"dataset:squad",
"dataset:batterydata/battery-device-data-qa",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:05Z |
---
language: en
tags: question answering
license: apache-2.0
datasets:
- squad
- batterydata/battery-device-data-qa
metrics: squad
---
# BatterySciBERT-cased for QA
**Language model:** batteryscibert-cased
**Language:** English
**Downstream-task:** Extractive QA
**Training data:** SQuAD v1
**Eval data:** SQuAD v1
**Code:** See [example](https://github.com/ShuHuang/batterybert)
**Infrastructure**: 8x DGX A100
## Hyperparameters
```
batch_size = 32
n_epochs = 3
base_LM_model = "batteryscibert-cased"
max_seq_len = 386
learning_rate = 2e-5
doc_stride=128
max_query_length=64
```
## Performance
Evaluated on the SQuAD v1.0 dev set.
```
"exact": 79.66,
"f1": 87.43,
```
Evaluated on the battery device dataset.
```
"precision": 65.09,
"recall": 84.56,
```
## Usage
### In Transformers
```python
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
model_name = "batterydata/batteryscibert-cased-squad-v1"
# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
'question': 'What is the electrolyte?',
'context': 'The typical non-aqueous electrolyte for commercial Li-ion cells is a solution of LiPF6 in linear and cyclic carbonates.'
}
res = nlp(QA_input)
# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
```
## Authors
Shu Huang: `sh2009 [at] cam.ac.uk`
Jacqueline Cole: `jmc61 [at] cam.ac.uk`
## Citation
BatteryBERT: A Pre-trained Language Model for Battery Database Enhancement
|
batterydata/batteryonlybert-uncased-squad-v1
|
batterydata
| 2022-03-03T20:25:01Z | 16 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"question-answering",
"question answering",
"en",
"dataset:squad",
"dataset:batterydata/battery-device-data-qa",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:05Z |
---
language: en
tags: question answering
license: apache-2.0
datasets:
- squad
- batterydata/battery-device-data-qa
metrics: squad
---
# BatteryOnlyBERT-uncased for QA
**Language model:** batteryonlybert-uncased
**Language:** English
**Downstream-task:** Extractive QA
**Training data:** SQuAD v1
**Eval data:** SQuAD v1
**Code:** See [example](https://github.com/ShuHuang/batterybert)
**Infrastructure**: 8x DGX A100
## Hyperparameters
```
batch_size = 16
n_epochs = 2
base_LM_model = "batteryonlybert-uncased"
max_seq_len = 386
learning_rate = 2e-5
doc_stride=128
max_query_length=64
```
## Performance
Evaluated on the SQuAD v1.0 dev set.
```
"exact": 79.53,
"f1": 87.22,
```
Evaluated on the battery device dataset.
```
"precision": 67.20,
"recall": 83.82,
```
## Usage
### In Transformers
```python
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
model_name = "batterydata/batteryonlybert-uncased-squad-v1"
# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
'question': 'What is the electrolyte?',
'context': 'The typical non-aqueous electrolyte for commercial Li-ion cells is a solution of LiPF6 in linear and cyclic carbonates.'
}
res = nlp(QA_input)
# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
```
## Authors
Shu Huang: `sh2009 [at] cam.ac.uk`
Jacqueline Cole: `jmc61 [at] cam.ac.uk`
## Citation
BatteryBERT: A Pre-trained Language Model for Battery Database Enhancement
|
repro-rights-amicus-briefs/legal-bert-base-uncased-finetuned-RRamicus
|
repro-rights-amicus-briefs
| 2022-03-03T20:21:45Z | 11 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"generated_from_trainer",
"license:cc-by-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
---
license: cc-by-sa-4.0
tags:
- generated_from_trainer
model-index:
- name: legal-bert-base-uncased-finetuned-RRamicus
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# legal-bert-base-uncased-finetuned-RRamicus
This model is a fine-tuned version of [nlpaueb/legal-bert-base-uncased](https://huggingface.co/nlpaueb/legal-bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1520
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 928
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.021 | 1.0 | 1118 | 1.3393 |
| 1.2272 | 2.0 | 2236 | 1.2612 |
| 1.2467 | 3.0 | 3354 | 1.2403 |
| 1.2149 | 4.0 | 4472 | 1.2276 |
| 1.1855 | 5.0 | 5590 | 1.2101 |
| 1.1674 | 6.0 | 6708 | 1.2020 |
| 1.1508 | 7.0 | 7826 | 1.1893 |
| 1.1386 | 8.0 | 8944 | 1.1870 |
| 1.129 | 9.0 | 10062 | 1.1794 |
| 1.1193 | 10.0 | 11180 | 1.1759 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.6
|
batterydata/bert-base-cased-squad-v1
|
batterydata
| 2022-03-03T19:54:26Z | 71 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"question-answering",
"question answering",
"en",
"dataset:squad",
"dataset:batterydata/battery-device-data-qa",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:05Z |
---
language: en
tags: question answering
license: apache-2.0
datasets:
- squad
- batterydata/battery-device-data-qa
metrics: squad
---
# BERT-base-cased for QA
**Language model:** bert-base-cased
**Language:** English
**Downstream-task:** Extractive QA
**Training data:** SQuAD v1
**Eval data:** SQuAD v1
**Code:** See [example](https://github.com/ShuHuang/batterybert)
**Infrastructure**: 8x DGX A100
## Hyperparameters
```
batch_size = 32
n_epochs = 2
base_LM_model = "bert-base-cased"
max_seq_len = 386
learning_rate = 5e-5
doc_stride=128
max_query_length=64
```
## Performance
Evaluated on the SQuAD v1.0 dev set.
```
"exact": 81.30,
"f1": 88.58,
```
Evaluated on the battery device dataset.
```
"precision": 67.02,
"recall": 80.15,
```
## Usage
### In Transformers
```python
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
model_name = "batterydata/bert-base-cased-squad-v1"
# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
'question': 'What is the electrolyte?',
'context': 'The typical non-aqueous electrolyte for commercial Li-ion cells is a solution of LiPF6 in linear and cyclic carbonates.'
}
res = nlp(QA_input)
# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
```
## Authors
Shu Huang: `sh2009 [at] cam.ac.uk`
Jacqueline Cole: `jmc61 [at] cam.ac.uk`
## Citation
BatteryBERT: A Pre-trained Language Model for Battery Database Enhancement
|
kaixinwang/NLP
|
kaixinwang
| 2022-03-03T19:06:29Z | 6 | 0 |
transformers
|
[
"transformers",
"tf",
"distilbert",
"text-classification",
"sentiment analysis",
"STEM",
"text classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
language:
- "Python"
thumbnail: "url to a thumbnail used in social sharing"
tags:
- "sentiment analysis"
- "STEM"
- "text classification"
---
Welcome! This is the model built for the sentiment analysis on the STEM course reviews at UCLA.
- Author: Kaixin Wang
- Email: [email protected]
- Time Updated: March 2022
|
nateraw/keras-dummy-model-mixin-demo-w-card
|
nateraw
| 2022-03-03T15:55:09Z | 0 | 0 |
keras
|
[
"keras",
"tf-keras",
"region:us"
] | null | 2022-03-02T23:29:05Z |
---
library_name: keras
---
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training Metrics
Model history needed
## Model Plot
<details>
<summary>View Model Plot</summary>

</details>
|
nateraw/autoencoder-keras-mnist-demo-with-card-2
|
nateraw
| 2022-03-03T15:53:24Z | 0 | 0 |
keras
|
[
"keras",
"tf-keras",
"region:us"
] | null | 2022-03-03T15:53:14Z |
---
library_name: keras
---
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 0.001, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
## Training Metrics
Model history needed
## Model Plot
<details>
<summary>View Model Plot</summary>

</details>
|
nateraw/keras-dummy-sequential-demo-with-card-2
|
nateraw
| 2022-03-03T15:51:04Z | 0 | 0 |
keras
|
[
"keras",
"tf-keras",
"region:us"
] | null | 2022-03-03T15:50:54Z |
---
library_name: keras
---
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 0.001, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
## Training Metrics
Model history needed
## Model Plot
<details>
<summary>View Model Plot</summary>

</details>
|
sanchit-gandhi/wav2vec2-2-rnd-grid-search
|
sanchit-gandhi
| 2022-03-03T14:51:05Z | 15 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"speech-encoder-decoder",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:librispeech_asr",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
---
tags:
- generated_from_trainer
datasets:
- librispeech_asr
model-index:
- name: ''
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model was trained from scratch on the librispeech_asr dataset.
It achieves the following results on the evaluation set:
- Loss: 6.9475
- Wer: 2.0097
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 5.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 6.9006 | 1.68 | 1500 | 6.9507 | 2.0097 |
| 6.9503 | 3.36 | 3000 | 6.9475 | 2.0097 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu113
- Datasets 1.18.3
- Tokenizers 0.11.0
|
amtam0/timer-ner-fr
|
amtam0
| 2022-03-03T14:12:18Z | 10 | 0 |
flair
|
[
"flair",
"pytorch",
"token-classification",
"sequence-tagger-model",
"fr",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- flair
- token-classification
- sequence-tagger-model
language: fr
widget:
- text: 'génère 27 séries de 54 seconde '
- text: ' 9 cycles de 17 minute '
- text: 'initie 17 sets de 44 secondes 297 minutes entre séries'
- text: ' 13 sets de 88 secondes 225 minutes 49 entre chaque série'
- text: 'génère 39 séries de 19 minute 21 minute 45 entre séries'
- text: 'débute 47 sets de 6 heures '
- text: 'débute 1 cycle de 25 minutes 48 23 minute 32 entre chaque série'
- text: 'commence 23 séries de 18 heure et demi 25 minutes 41 entre séries'
- text: ' 13 cycles de 52 secondes '
- text: 'crée 31 série de 60 secondes '
- text: ' 7 set de 36 secondes 139 minutes 34 entre séries'
- text: 'commence 37 sets de 51 minute 25 295 minute entre chaque série'
- text: 'crée 11 cycles de 72 seconde 169 minute 15 entre chaque série'
- text: 'initie 5 série de 33 minutes 48 '
- text: 'crée 23 set de 1 minute 46 279 minutes 50 entre chaque série'
- text: 'génère 41 série de 35 minutes 55 '
- text: 'lance 11 cycles de 4 heures '
- text: 'crée 47 cycle de 28 heure moins quart 243 minutes 45 entre chaque série'
- text: 'initie 23 set de 36 secondes '
- text: 'commence 37 sets de 24 heures et quart '
---
#### This model is used in the [Speech Interval Timer app](https://medium.com/@amtam0/speech-interval-timer-app-using-transformers-1df8fa3821d5)
7-class NER French model using [Flair TransformerWordEmbeddings - camembert-base](https://github.com/flairNLP/flair/).
| **tag** | **meaning** |
|---------------------------------|-----------|
| nb_rounds | Number of rounds |
| duration_br_sd | Duration btwn rounds in seconds |
| duration_br_min | Duration btwn rounds in minutes |
| duration_br_hr | Duration btwn rounds in hours |
| duration_wt_sd | workout duration in seconds |
| duration_wt_min | workout duration in minutes |
| duration_wt_hr | workout duration in hours |
---
Synthetic dataset has been used (perfectible). Sentences example in the widget.
|
sanchit-gandhi/wav2vec2-gpt2-wandb-grid-search
|
sanchit-gandhi
| 2022-03-03T13:39:57Z | 40 | 0 |
transformers
|
[
"transformers",
"pytorch",
"speech-encoder-decoder",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:librispeech_asr",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
---
tags:
- generated_from_trainer
datasets:
- librispeech_asr
model-index:
- name: ''
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model was trained from scratch on the librispeech_asr dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 96
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1.0
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu113
- Datasets 1.18.3
- Tokenizers 0.11.0
|
Kuray107/wsj0-full-supervised
|
Kuray107
| 2022-03-03T11:16:35Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:04Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wsj0-full-supervised
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wsj0-full-supervised
This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0623
- Wer: 0.0343
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 12
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 5.517 | 0.86 | 500 | 2.9475 | 1.0 |
| 2.2387 | 1.72 | 1000 | 0.4004 | 0.3498 |
| 0.3081 | 2.57 | 1500 | 0.1362 | 0.1159 |
| 0.1744 | 3.43 | 2000 | 0.1125 | 0.0929 |
| 0.1285 | 4.29 | 2500 | 0.0894 | 0.0727 |
| 0.1015 | 5.15 | 3000 | 0.0852 | 0.0642 |
| 0.0811 | 6.0 | 3500 | 0.0789 | 0.0614 |
| 0.0748 | 6.86 | 4000 | 0.0746 | 0.0529 |
| 0.0639 | 7.72 | 4500 | 0.0714 | 0.0481 |
| 0.0606 | 8.58 | 5000 | 0.0698 | 0.0489 |
| 0.0525 | 9.43 | 5500 | 0.0747 | 0.0464 |
| 0.0489 | 10.29 | 6000 | 0.0594 | 0.0396 |
| 0.0419 | 11.15 | 6500 | 0.0600 | 0.0359 |
| 0.0414 | 12.01 | 7000 | 0.0612 | 0.0412 |
| 0.0383 | 12.86 | 7500 | 0.0676 | 0.0392 |
| 0.0352 | 13.72 | 8000 | 0.0626 | 0.0388 |
| 0.034 | 14.58 | 8500 | 0.0699 | 0.0372 |
| 0.0309 | 15.44 | 9000 | 0.0807 | 0.0420 |
| 0.0295 | 16.3 | 9500 | 0.0796 | 0.0396 |
| 0.0273 | 17.15 | 10000 | 0.0716 | 0.0376 |
| 0.0271 | 18.01 | 10500 | 0.0657 | 0.0384 |
| 0.0251 | 18.87 | 11000 | 0.0585 | 0.0351 |
| 0.024 | 19.73 | 11500 | 0.0557 | 0.0347 |
| 0.0252 | 20.58 | 12000 | 0.0609 | 0.0327 |
| 0.0231 | 21.44 | 12500 | 0.0720 | 0.0368 |
| 0.0202 | 22.3 | 13000 | 0.0625 | 0.0343 |
| 0.0195 | 23.16 | 13500 | 0.0635 | 0.0372 |
| 0.0201 | 24.01 | 14000 | 0.0582 | 0.0335 |
| 0.0183 | 24.87 | 14500 | 0.0562 | 0.0343 |
| 0.0183 | 25.73 | 15000 | 0.0629 | 0.0335 |
| 0.0175 | 26.59 | 15500 | 0.0593 | 0.0323 |
| 0.017 | 27.44 | 16000 | 0.0631 | 0.0339 |
| 0.0162 | 28.3 | 16500 | 0.0597 | 0.0335 |
| 0.0169 | 29.16 | 17000 | 0.0623 | 0.0343 |
### Framework versions
- Transformers 4.14.1
- Pytorch 1.10.2
- Datasets 1.18.2
- Tokenizers 0.10.3
|
prk/roberta-base-squad2-finetuned-squad
|
prk
| 2022-03-03T10:26:14Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"question-answering",
"generated_from_trainer",
"dataset:squad_v2",
"license:cc-by-4.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:05Z |
---
license: cc-by-4.0
tags:
- generated_from_trainer
datasets:
- squad_v2
model-index:
- name: roberta-base-squad2-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-squad2-finetuned-squad
This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on a custom dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 8 | 0.1894 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.6
|
cammy/bart-large-cnn-finetuned-new-100-pad-early
|
cammy
| 2022-03-03T10:23:34Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bart",
"text2text-generation",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-03T10:22:53Z |
---
license: mit
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-large-cnn-finetuned-new-100-pad-early
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-large-cnn-finetuned-new-100-pad-early
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9543
- Rouge1: 21.8858
- Rouge2: 8.1444
- Rougel: 16.5751
- Rougelsum: 19.163
- Gen Len: 66.8
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| No log | 1.0 | 100 | 0.8692 | 20.2714 | 6.206 | 16.3362 | 18.7117 | 66.4 |
| No log | 2.0 | 200 | 0.9543 | 21.8858 | 8.1444 | 16.5751 | 19.163 | 66.8 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.2
- Datasets 1.18.3
- Tokenizers 0.11.0
|
carolEileen/distilbert-base-uncased-finetuned-imdb
|
carolEileen
| 2022-03-03T09:07:29Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"fill-mask",
"generated_from_trainer",
"dataset:imdb",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-03T08:55:42Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imdb
model-index:
- name: distilbert-base-uncased-finetuned-imdb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-imdb
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4725
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.7086 | 1.0 | 157 | 2.4897 |
| 2.5756 | 2.0 | 314 | 2.4230 |
| 2.5395 | 3.0 | 471 | 2.4358 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.6
|
Akash7897/distilbert-base-uncased-finetuned-sst2
|
Akash7897
| 2022-03-03T08:57:39Z | 10 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:04Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-sst2
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: sst2
metrics:
- name: Accuracy
type: accuracy
value: 0.9036697247706422
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-sst2
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3010
- Accuracy: 0.9037
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1793 | 1.0 | 4210 | 0.3010 | 0.9037 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.6
|
sattaguru/game
|
sattaguru
| 2022-03-03T05:31:06Z | 0 | 0 | null |
[
"region:us"
] | null | 2022-03-03T05:30:04Z |
https://sattaking-sattaking.com
|
shahp7575/electricidad-base-muchocine-finetuned
|
shahp7575
| 2022-03-03T05:20:16Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"electra",
"text-classification",
"spanish",
"sentiment",
"es",
"dataset:muchocine",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-03T03:46:13Z |
---
language:
- es
tags:
- spanish
- sentiment
datasets:
- muchocine
widget:
- "Increíble pelicula. ¡Altamente recomendado!"
- "Extremadamente malo. Baja calidad"
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# electricidad-base-muchocine-finetuned
This model fine-tunes [mrm8488/electricidad-base-discriminator](https://huggingface.co/mrm8488/electricidad-base-discriminator) on [muchocine](https://huggingface.co/datasets/muchocine) dataset for sentiment classification to predict *star_rating*.
### How to use
The model can be used directly with the HuggingFace `pipeline`.
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("shahp7575/gpt2-horoscopes")
model = AutoModelWithLMHead.from_pretrained("shahp7575/gpt2-horoscopes")
```
### Examples
```python
from transformers import pipeline
clf = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer)
clf('Esta película es una joya. Todo fue perfecto: historia, casting, dirección. Me encantó el clímax.')
>>> [{'label': '5', 'score': 0.9658033847808838}]
clf("La historia y el casting fueron geniales.")
>>> [{'label': '4', 'score': 0.6666394472122192}]
clf("Me gustó pero podría ser mejor.")
>>> [{'label': '3', 'score': 0.7013391852378845}]
clf("dinero tirado en esta pelicula")
>>> [{'label': '2', 'score': 0.7564149498939514}]
clf("esta película es una película absolutamente repugnante. odio todo al respecto. gastó tanto dinero.")
>>> [{'label': '1', 'score': 0.3040296733379364}]
```
|
algolet/mt5-base-chinese-qg
|
algolet
| 2022-03-03T02:18:05Z | 45 | 17 |
transformers
|
[
"transformers",
"pytorch",
"mt5",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
<h3 align="center">
<p>MT5 Base Model for Chinese Question Generation</p>
</h3>
<h3 align="center">
<p>基于mt5的中文问题生成任务</p>
</h3>
#### 可以通过安装question-generation包开始用
```
pip install question-generation
```
使用方法请参考github项目:https://github.com/algolet/question_generation
#### 在线使用
可以直接在线使用我们的模型:https://www.algolet.com/applications/qg
#### 通过transformers调用
``` python
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("algolet/mt5-base-chinese-qg")
model = AutoModelForSeq2SeqLM.from_pretrained("algolet/mt5-base-chinese-qg")
model.eval()
text = "在一个寒冷的冬天,赶集完回家的农夫在路边发现了一条冻僵了的蛇。他很可怜蛇,就把它放在怀里。当他身上的热气把蛇温暖以后,蛇很快苏醒了,露出了残忍的本性,给了农夫致命的伤害——咬了农夫一口。农夫临死之前说:“我竟然救了一条可怜的毒蛇,就应该受到这种报应啊!”"
text = "question generation: " + text
inputs = tokenizer(text,
return_tensors='pt',
truncation=True,
max_length=512)
with torch.no_grad():
outs = model.generate(input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_length=128,
no_repeat_ngram_size=4,
num_beams=4)
question = tokenizer.decode(outs[0], skip_special_tokens=True)
questions = [q.strip() for q in question.split("<sep>") if len(q.strip()) > 0]
print(questions)
['在寒冷的冬天,农夫在哪里发现了一条可怜的蛇?', '农夫是如何看待蛇的?', '当农夫遇到蛇时,他做了什么?']
```
#### 指标
rouge-1: 0.4041
rouge-2: 0.2104
rouge-l: 0.3843
---
language:
- zh
tags:
- mt5
- question generation
metrics:
- rouge
---
|
StivenLancheros/mBERT-base-Biomedical-NER
|
StivenLancheros
| 2022-03-03T00:45:07Z | 22 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-base-multilingual-cased-finetuned-ner-4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-multilingual-cased-finetuned-ner-4
#This model is part of a test for creating multilingual BioMedical NER systems. Not intended for proffesional use now.
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the CRAFT+BC4CHEMD+BioNLP09 datasets concatenated.
It achieves the following results on the evaluation set:
- Loss: 0.1027
- Precision: 0.9830
- Recall: 0.9832
- F1: 0.9831
- Accuracy: 0.9799
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0658 | 1.0 | 6128 | 0.0751 | 0.9795 | 0.9795 | 0.9795 | 0.9758 |
| 0.0406 | 2.0 | 12256 | 0.0753 | 0.9827 | 0.9815 | 0.9821 | 0.9786 |
| 0.0182 | 3.0 | 18384 | 0.0934 | 0.9834 | 0.9825 | 0.9829 | 0.9796 |
| 0.011 | 4.0 | 24512 | 0.1027 | 0.9830 | 0.9832 | 0.9831 | 0.9799 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
|
yoavgur/gpt2-bash-history-baseline2
|
yoavgur
| 2022-03-02T23:43:15Z | 12 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: gpt2-bash-history-baseline2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt2-bash-history-baseline2
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6480
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 158 | 1.8653 |
| No log | 2.0 | 316 | 1.7574 |
| No log | 3.0 | 474 | 1.6939 |
| 1.9705 | 4.0 | 632 | 1.6597 |
| 1.9705 | 5.0 | 790 | 1.6480 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.6
|
yoavgur/gpt2-bash-history-baseline
|
yoavgur
| 2022-03-02T23:02:12Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: gpt2-bash-history-baseline
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt2-bash-history-baseline
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0349
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 158 | 2.1038 |
| No log | 2.0 | 316 | 2.0349 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.6
|
BigSalmon/NEO125InformalToFormalLincoln
|
BigSalmon
| 2022-03-02T21:29:36Z | 22 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt_neo",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:04Z |
```
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("BigSalmon/NEO125InformalToFormalLincoln")
model = AutoModelForCausalLM.from_pretrained("BigSalmon/NEO125InformalToFormalLincoln")
```
```
How To Make Prompt:
informal english: i am very ready to do that just that.
Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end.
Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task.
***
informal english: space is huge and needs to be explored.
Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless.
Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration.
***
informal english: corn fields are all across illinois, visible once you leave chicago.
Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago.
informal english:
```
```
- declining viewership facing the nba.
- does not have to be this way.
- in fact, many solutions exist.
- the four point line would surely draw in eyes.
Text: failing to draw in the masses, the NBA has fallen into disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap solutions could revive the league. the addition of the much-hyped four-point line would surely juice viewership.
***
-
```
```
infill: chrome extensions [MASK] accomplish everyday tasks.
Translated into the Style of Abraham Lincoln: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks.
infill: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices.
Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices.
infill:
```
```
Essay Intro (California High-Speed Rail): built with an eye on the future, california's high-speed rail service resolves to change the face of travel.
Essay Intro (YIMBY's Need To Win): home to the most expensive housing market in the united states, san francisco is the city in which the yimby and anti-yimby hordes wage an eternal battle.
Essay Intro (
```
```
Search: What is the definition of Checks and Balances?
https://en.wikipedia.org/wiki/Checks_and_balances
Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate.
https://www.harvard.edu/glossary/Checks_and_Balances
Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power
https://www.law.cornell.edu/library/constitution/Checks_and_Balances
Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power.
***
Search: What is the definition of Separation of Powers?
https://en.wikipedia.org/wiki/Separation_of_powers
The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power.
https://www.yale.edu/tcf/Separation_of_Powers.html
Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined.
***
Search: What is the definition of Connection of Powers?
https://en.wikipedia.org/wiki/Connection_of_powers
Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches.
https://simple.wikipedia.org/wiki/Connection_of_powers
The term Connection of Powers describes a system of government in which there is overlap between different parts of the government.
***
Search: What is the definition of
```
```
Search: What are phrase synonyms for "second-guess"?
https://www.powerthesaurus.org/second-guess/synonyms
Shortest to Longest:
- feel dubious about
- raise an eyebrow at
- wrinkle their noses at
- cast a jaundiced eye at
- teeter on the fence about
***
Search: What are phrase synonyms for "mean to newbies"?
https://www.powerthesaurus.org/mean_to_newbies/synonyms
Shortest to Longest:
- readiness to balk at rookies
- absence of tolerance for novices
- hostile attitude toward newcomers
***
Search: What are phrase synonyms for "make use of"?
https://www.powerthesaurus.org/make_use_of/synonyms
Shortest to Longest:
- call upon
- glean value from
- reap benefits from
- derive utility from
- seize on the merits of
- draw on the strength of
- tap into the potential of
***
Search: What are phrase synonyms for "hurting itself"?
https://www.powerthesaurus.org/hurting_itself/synonyms
Shortest to Longest:
- erring
- slighting itself
- forfeiting its integrity
- doing itself a disservice
- evincing a lack of backbone
***
Search: What are phrase synonyms for "
```
|
CNT-UPenn/RoBERTa_for_seizureFrequency_QA
|
CNT-UPenn
| 2022-03-02T19:02:06Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"question-answering",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:04Z |
RoBERTa-base with additional training through the finetuning pipeline described in "Extracting Seizure Frequency From Epilepsy Clinic Notes: A Machine Reading Approach To Natural Language Processing."
Citation: Kevin Xie, Ryan S Gallagher, Erin C Conrad, Chadric O Garrick, Steven N Baldassano, John M Bernabei, Peter D Galer, Nina J Ghosn, Adam S Greenblatt, Tara Jennings, Alana Kornspun, Catherine V Kulick-Soper, Jal M Panchal, Akash R Pattnaik, Brittany H Scheid, Danmeng Wei, Micah Weitzman, Ramya Muthukrishnan, Joongwon Kim, Brian Litt, Colin A Ellis, Dan Roth, Extracting seizure frequency from epilepsy clinic notes: a machine reading approach to natural language processing, Journal of the American Medical Informatics Association, 2022;, ocac018, https://doi.org/10.1093/jamia/ocac018
RoBERTa_for_seizureFrequency_QA performs extractive question answering to identify a patient's seizure freedom and/or date of last seizure using the HPI and/or Interval History paragraphs from a medical note.
|
datnth1709/Phobert-classifier
|
datnth1709
| 2022-03-02T18:29:53Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"jax",
"roberta",
"fill-mask",
"arxiv:2003.00744",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
# <a name="introduction"></a> PhoBERT: Pre-trained language models for Vietnamese
Pre-trained PhoBERT models are the state-of-the-art language models for Vietnamese ([Pho](https://en.wikipedia.org/wiki/Pho), i.e. "Phở", is a popular food in Vietnam):
- Two PhoBERT versions of "base" and "large" are the first public large-scale monolingual language models pre-trained for Vietnamese. PhoBERT pre-training approach is based on [RoBERTa](https://github.com/pytorch/fairseq/blob/master/examples/roberta/README.md) which optimizes the [BERT](https://github.com/google-research/bert) pre-training procedure for more robust performance.
- PhoBERT outperforms previous monolingual and multilingual approaches, obtaining new state-of-the-art performances on four downstream Vietnamese NLP tasks of Part-of-speech tagging, Dependency parsing, Named-entity recognition and Natural language inference.
The general architecture and experimental results of PhoBERT can be found in our EMNLP-2020 Findings [paper](https://arxiv.org/abs/2003.00744):
@article{phobert,
title = {{PhoBERT: Pre-trained language models for Vietnamese}},
author = {Dat Quoc Nguyen and Anh Tuan Nguyen},
journal = {Findings of EMNLP},
year = {2020}
}
**Please CITE** our paper when PhoBERT is used to help produce published results or is incorporated into other software.
For further information or requests, please go to [PhoBERT's homepage](https://github.com/VinAIResearch/PhoBERT)!
### Installation <a name="install2"></a>
- Python 3.6+, and PyTorch 1.1.0+ (or TensorFlow 2.0+)
- Install `transformers`:
- `git clone https://github.com/huggingface/transformers.git`
- `cd transformers`
- `pip3 install --upgrade .`
### Pre-trained models <a name="models2"></a>
Model | #params | Arch. | Pre-training data
---|---|---|---
`vinai/phobert-base` | 135M | base | 20GB of texts
`vinai/phobert-large` | 370M | large | 20GB of texts
### Example usage <a name="usage2"></a>
```python
import torch
from transformers import AutoModel, AutoTokenizer
phobert = AutoModel.from_pretrained("vinai/phobert-base")
tokenizer = AutoTokenizer.from_pretrained("vinai/phobert-base")
# INPUT TEXT MUST BE ALREADY WORD-SEGMENTED!
line = "Tôi là sinh_viên trường đại_học Công_nghệ ."
input_ids = torch.tensor([tokenizer.encode(line)])
with torch.no_grad():
features = phobert(input_ids) # Models outputs are now tuples
## With TensorFlow 2.0+:
# from transformers import TFAutoModel
# phobert = TFAutoModel.from_pretrained("vinai/phobert-base")
```
|
mcdzwil/distilbert-base-uncased-finetuned-ner
|
mcdzwil
| 2022-03-02T16:35:26Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1830
- Precision: 0.9171
- Recall: 0.7099
- F1: 0.8003
- Accuracy: 0.9316
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 48 | 0.2903 | 0.7952 | 0.7063 | 0.7481 | 0.9136 |
| No log | 2.0 | 96 | 0.2015 | 0.9154 | 0.7075 | 0.7981 | 0.9298 |
| No log | 3.0 | 144 | 0.1830 | 0.9171 | 0.7099 | 0.8003 | 0.9316 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.6
|
lucasmtz/distilbert-base-uncased-finetuned-ner
|
lucasmtz
| 2022-03-02T15:56:12Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"dataset:conll2003",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9252181597260577
- name: Recall
type: recall
value: 0.9370175634858485
- name: F1
type: f1
value: 0.9310804802134283
- name: Accuracy
type: accuracy
value: 0.9834146186474335
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0610
- Precision: 0.9252
- Recall: 0.9370
- F1: 0.9311
- Accuracy: 0.9834
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.244 | 1.0 | 878 | 0.0714 | 0.9104 | 0.9181 | 0.9142 | 0.9797 |
| 0.0568 | 2.0 | 1756 | 0.0605 | 0.9183 | 0.9351 | 0.9266 | 0.9827 |
| 0.0302 | 3.0 | 2634 | 0.0610 | 0.9252 | 0.9370 | 0.9311 | 0.9834 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.6
|
jcai1/sentence_similarity_concierge
|
jcai1
| 2022-03-02T15:04:54Z | 4 | 2 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: sentence_similarity_concierge
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sentence_similarity_concierge
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1165
- Accuracy: 0.9748
- F1: 0.9680
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 402 | 0.2334 | 0.9412 | 0.9263 |
| 0.2834 | 2.0 | 804 | 0.1656 | 0.9608 | 0.9493 |
| 0.1073 | 3.0 | 1206 | 0.1165 | 0.9748 | 0.9680 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.6
|
emekaboris/autonlp-new_tx-607517182
|
emekaboris
| 2022-03-02T14:51:04Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"text-classification",
"autonlp",
"unk",
"dataset:emekaboris/autonlp-data-new_tx",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
tags: autonlp
language: unk
widget:
- text: "I love AutoNLP 🤗"
datasets:
- emekaboris/autonlp-data-new_tx
co2_eq_emissions: 3.842950628218143
---
# Model Trained Using AutoNLP
- Problem type: Multi-class Classification
- Model ID: 607517182
- CO2 Emissions (in grams): 3.842950628218143
## Validation Metrics
- Loss: 0.4033123552799225
- Accuracy: 0.8679706601466992
- Macro F1: 0.719846919916469
- Micro F1: 0.8679706601466993
- Weighted F1: 0.8622411469250695
- Macro Precision: 0.725309168791155
- Micro Precision: 0.8679706601466992
- Weighted Precision: 0.8604370906049568
- Macro Recall: 0.7216672806300003
- Micro Recall: 0.8679706601466992
- Weighted Recall: 0.8679706601466992
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/emekaboris/autonlp-new_tx-607517182
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("emekaboris/autonlp-new_tx-607517182", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("emekaboris/autonlp-new_tx-607517182", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
```
|
jcai1/ss_mrpc
|
jcai1
| 2022-03-02T14:32:31Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: ss_mrpc
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ss_mrpc
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5960
- Accuracy: 0.8799
- F1: 0.9148
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 459 | 0.3655 | 0.8578 | 0.8990 |
| 0.524 | 2.0 | 918 | 0.6061 | 0.8260 | 0.8823 |
| 0.2971 | 3.0 | 1377 | 0.5960 | 0.8799 | 0.9148 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.6
|
spy24/autonlp-US_to_AUS-607117159
|
spy24
| 2022-03-02T10:35:42Z | 6 | 1 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"autonlp",
"unk",
"dataset:spy24/autonlp-data-US_to_AUS",
"co2_eq_emissions",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
tags: autonlp
language: unk
widget:
- text: "I love AutoNLP 🤗"
datasets:
- spy24/autonlp-data-US_to_AUS
co2_eq_emissions: 1.4276876566788055
---
# Model Trained Using AutoNLP
- Problem type: Summarization
- Model ID: 607117159
- CO2 Emissions (in grams): 1.4276876566788055
## Validation Metrics
- Loss: 1.5177973508834839
- Rouge1: 46.134
- Rouge2: 10.578
- RougeL: 45.8856
- RougeLsum: 46.0088
- Gen Len: 3.7283
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/spy24/autonlp-US_to_AUS-607117159
```
|
spy24/autonlp-US-to-AUS3-606917136
|
spy24
| 2022-03-02T10:03:47Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"autonlp",
"unk",
"dataset:spy24/autonlp-data-US-to-AUS3",
"co2_eq_emissions",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
tags: autonlp
language: unk
widget:
- text: "I love AutoNLP 🤗"
datasets:
- spy24/autonlp-data-US-to-AUS3
co2_eq_emissions: 1.2956300881026077
---
# Model Trained Using AutoNLP
- Problem type: Summarization
- Model ID: 606917136
- CO2 Emissions (in grams): 1.2956300881026077
## Validation Metrics
- Loss: 2.2489309310913086
- Rouge1: 31.0639
- Rouge2: 2.2447
- RougeL: 31.1492
- RougeLsum: 31.1753
- Gen Len: 3.4798
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/spy24/autonlp-US-to-AUS3-606917136
```
|
spy24/autonlp-US-to-UK2-606317091
|
spy24
| 2022-03-02T09:03:19Z | 5 | 1 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"autonlp",
"unk",
"dataset:spy24/autonlp-data-US-to-UK2",
"co2_eq_emissions",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
tags: autonlp
language: unk
widget:
- text: "I love AutoNLP 🤗"
datasets:
- spy24/autonlp-data-US-to-UK2
co2_eq_emissions: 1.1913570653422176
---
# Model Trained Using AutoNLP
- Problem type: Summarization
- Model ID: 606317091
- CO2 Emissions (in grams): 1.1913570653422176
## Validation Metrics
- Loss: 1.9264822006225586
- Rouge1: 44.2035
- Rouge2: 6.134
- RougeL: 43.9114
- RougeLsum: 44.0231
- Gen Len: 3.6134
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/spy24/autonlp-US-to-UK2-606317091
```
|
nimrah/wav2vec2-large-xls-r-300m-turkish-colab
|
nimrah
| 2022-03-02T08:18:47Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xls-r-300m-turkish-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-turkish-colab
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2970
- Wer: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.1
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---:|
| 6.1837 | 3.67 | 400 | 3.2970 | 1.0 |
| 0.0 | 7.34 | 800 | 3.2970 | 1.0 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.10.3
|
Theivaprakasham/layoutlmv2-finetuned-sroie
|
Theivaprakasham
| 2022-03-02T08:12:26Z | 21 | 2 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"layoutlmv2",
"token-classification",
"generated_from_trainer",
"dataset:sroie",
"license:cc-by-nc-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
datasets:
- sroie
model-index:
- name: layoutlmv2-finetuned-sroie
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlmv2-finetuned-sroie
This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on the sroie dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0291
- Address Precision: 0.9341
- Address Recall: 0.9395
- Address F1: 0.9368
- Address Number: 347
- Company Precision: 0.9570
- Company Recall: 0.9625
- Company F1: 0.9598
- Company Number: 347
- Date Precision: 0.9885
- Date Recall: 0.9885
- Date F1: 0.9885
- Date Number: 347
- Total Precision: 0.9253
- Total Recall: 0.9280
- Total F1: 0.9266
- Total Number: 347
- Overall Precision: 0.9512
- Overall Recall: 0.9546
- Overall F1: 0.9529
- Overall Accuracy: 0.9961
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 3000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Address Precision | Address Recall | Address F1 | Address Number | Company Precision | Company Recall | Company F1 | Company Number | Date Precision | Date Recall | Date F1 | Date Number | Total Precision | Total Recall | Total F1 | Total Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:--------------:|:-----------------:|:--------------:|:----------:|:--------------:|:--------------:|:-----------:|:-------:|:-----------:|:---------------:|:------------:|:--------:|:------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| No log | 0.05 | 157 | 0.8162 | 0.3670 | 0.7233 | 0.4869 | 347 | 0.0617 | 0.0144 | 0.0234 | 347 | 0.0 | 0.0 | 0.0 | 347 | 0.0 | 0.0 | 0.0 | 347 | 0.3346 | 0.1844 | 0.2378 | 0.9342 |
| No log | 1.05 | 314 | 0.3490 | 0.8564 | 0.8934 | 0.8745 | 347 | 0.8610 | 0.9280 | 0.8932 | 347 | 0.7297 | 0.8559 | 0.7878 | 347 | 0.0 | 0.0 | 0.0 | 347 | 0.8128 | 0.6693 | 0.7341 | 0.9826 |
| No log | 2.05 | 471 | 0.1845 | 0.7970 | 0.9049 | 0.8475 | 347 | 0.9211 | 0.9424 | 0.9316 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.0 | 0.0 | 0.0 | 347 | 0.8978 | 0.7089 | 0.7923 | 0.9835 |
| 0.7027 | 3.05 | 628 | 0.1194 | 0.9040 | 0.9222 | 0.9130 | 347 | 0.8880 | 0.9135 | 0.9006 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.0 | 0.0 | 0.0 | 347 | 0.9263 | 0.7061 | 0.8013 | 0.9853 |
| 0.7027 | 4.05 | 785 | 0.0762 | 0.9397 | 0.9424 | 0.9410 | 347 | 0.8889 | 0.9222 | 0.9052 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.7740 | 0.9078 | 0.8355 | 347 | 0.8926 | 0.9402 | 0.9158 | 0.9928 |
| 0.7027 | 5.05 | 942 | 0.0564 | 0.9282 | 0.9308 | 0.9295 | 347 | 0.9296 | 0.9510 | 0.9402 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.7801 | 0.8588 | 0.8176 | 347 | 0.9036 | 0.9323 | 0.9177 | 0.9946 |
| 0.0935 | 6.05 | 1099 | 0.0548 | 0.9222 | 0.9222 | 0.9222 | 347 | 0.6975 | 0.7378 | 0.7171 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.8608 | 0.8732 | 0.8670 | 347 | 0.8648 | 0.8804 | 0.8725 | 0.9921 |
| 0.0935 | 7.05 | 1256 | 0.0410 | 0.92 | 0.9280 | 0.9240 | 347 | 0.9486 | 0.9568 | 0.9527 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9091 | 0.9222 | 0.9156 | 347 | 0.9414 | 0.9488 | 0.9451 | 0.9961 |
| 0.0935 | 8.05 | 1413 | 0.0369 | 0.9368 | 0.9395 | 0.9381 | 347 | 0.9569 | 0.9597 | 0.9583 | 347 | 0.9772 | 0.9885 | 0.9828 | 347 | 0.9143 | 0.9222 | 0.9182 | 347 | 0.9463 | 0.9524 | 0.9494 | 0.9960 |
| 0.038 | 9.05 | 1570 | 0.0343 | 0.9282 | 0.9308 | 0.9295 | 347 | 0.9624 | 0.9597 | 0.9610 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9206 | 0.9020 | 0.9112 | 347 | 0.9500 | 0.9452 | 0.9476 | 0.9958 |
| 0.038 | 10.05 | 1727 | 0.0317 | 0.9395 | 0.9395 | 0.9395 | 347 | 0.9598 | 0.9625 | 0.9612 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9280 | 0.9280 | 0.9280 | 347 | 0.9539 | 0.9546 | 0.9543 | 0.9963 |
| 0.038 | 11.05 | 1884 | 0.0312 | 0.9368 | 0.9395 | 0.9381 | 347 | 0.9514 | 0.9597 | 0.9555 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9226 | 0.9280 | 0.9253 | 347 | 0.9498 | 0.9539 | 0.9518 | 0.9960 |
| 0.0236 | 12.05 | 2041 | 0.0318 | 0.9368 | 0.9395 | 0.9381 | 347 | 0.9570 | 0.9625 | 0.9598 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9043 | 0.8991 | 0.9017 | 347 | 0.9467 | 0.9474 | 0.9471 | 0.9956 |
| 0.0236 | 13.05 | 2198 | 0.0291 | 0.9337 | 0.9337 | 0.9337 | 347 | 0.9598 | 0.9625 | 0.9612 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9164 | 0.9164 | 0.9164 | 347 | 0.9496 | 0.9503 | 0.9499 | 0.9960 |
| 0.0236 | 14.05 | 2355 | 0.0300 | 0.9286 | 0.9366 | 0.9326 | 347 | 0.9459 | 0.9568 | 0.9513 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9275 | 0.9222 | 0.9249 | 347 | 0.9476 | 0.9510 | 0.9493 | 0.9959 |
| 0.0178 | 15.05 | 2512 | 0.0307 | 0.9366 | 0.9366 | 0.9366 | 347 | 0.9513 | 0.9568 | 0.9540 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9275 | 0.9222 | 0.9249 | 347 | 0.9510 | 0.9510 | 0.9510 | 0.9959 |
| 0.0178 | 16.05 | 2669 | 0.0300 | 0.9312 | 0.9366 | 0.9339 | 347 | 0.9543 | 0.9625 | 0.9584 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9171 | 0.9251 | 0.9211 | 347 | 0.9477 | 0.9532 | 0.9504 | 0.9959 |
| 0.0178 | 17.05 | 2826 | 0.0292 | 0.9368 | 0.9395 | 0.9381 | 347 | 0.9570 | 0.9625 | 0.9598 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9253 | 0.9280 | 0.9266 | 347 | 0.9519 | 0.9546 | 0.9532 | 0.9961 |
| 0.0178 | 18.05 | 2983 | 0.0291 | 0.9341 | 0.9395 | 0.9368 | 347 | 0.9570 | 0.9625 | 0.9598 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9253 | 0.9280 | 0.9266 | 347 | 0.9512 | 0.9546 | 0.9529 | 0.9961 |
| 0.0149 | 19.01 | 3000 | 0.0291 | 0.9341 | 0.9395 | 0.9368 | 347 | 0.9570 | 0.9625 | 0.9598 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9253 | 0.9280 | 0.9266 | 347 | 0.9512 | 0.9546 | 0.9529 | 0.9961 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.8.0+cu101
- Datasets 1.18.4.dev0
- Tokenizers 0.11.6
|
cnu/distilbert-base-uncased-finetuned-cola
|
cnu
| 2022-03-02T07:30:35Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- matthews_correlation
model-index:
- name: distilbert-base-uncased-finetuned-cola
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: cola
metrics:
- name: Matthews Correlation
type: matthews_correlation
value: 0.5474713423103301
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8651
- Matthews Correlation: 0.5475
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.5233 | 1.0 | 535 | 0.5353 | 0.4004 |
| 0.3497 | 2.0 | 1070 | 0.5165 | 0.5076 |
| 0.2386 | 3.0 | 1605 | 0.6661 | 0.5161 |
| 0.1745 | 4.0 | 2140 | 0.7730 | 0.5406 |
| 0.1268 | 5.0 | 2675 | 0.8651 | 0.5475 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.2
- Datasets 1.18.3
- Tokenizers 0.11.6
|
csukuangfj/icefall-aishell-transducer-stateless-modified-2022-03-01
|
csukuangfj
| 2022-03-02T06:00:09Z | 0 | 0 |
k2
|
[
"k2",
"icefall",
"transducer",
"aishell",
"ASR",
"stateless transducer",
"PyTorch",
"en",
"dataset:aishell",
"license:apache-2.0",
"region:us"
] | null | 2022-03-02T23:29:05Z |
---
language: "en"
tags:
- icefall
- k2
- transducer
- aishell
- ASR
- stateless transducer
- PyTorch
license: "apache-2.0"
datasets:
- aishell
metrics:
- WER
---
# Introduction
This repo contains pre-trained model using
<https://github.com/k2-fsa/icefall/pull/219>.
It is trained on [AIShell](https://www.openslr.org/33/) dataset
using modified transducer from [optimized_transducer](https://github.com/csukuangfj/optimized_transducer).
## How to clone this repo
```
sudo apt-get install git-lfs
git clone https://huggingface.co/csukuangfj/icefall-aishell-transducer-stateless-modified-2022-03-01
cd icefall-aishell-transducer-stateless-modified-2022-03-01
git lfs pull
```
**Catuion**: You have to run `git lfs pull`. Otherwise, you will be SAD later.
The model in this repo is trained using the commit `TODO`.
You can use
```
git clone https://github.com/k2-fsa/icefall
cd icefall
git checkout TODO
```
to download `icefall`.
You can find the model information by visiting <https://github.com/k2-fsa/icefall/blob/TODO/egs/aishell/ASR/transducer_stateless_modified/train.py#L232>.
In short, the encoder is a Conformer model with 8 heads, 12 encoder layers, 512-dim attention, 2048-dim feedforward;
the decoder contains a 512-dim embedding layer and a Conv1d with kernel size 2.
The decoder architecture is modified from
[Rnn-Transducer with Stateless Prediction Network](https://ieeexplore.ieee.org/document/9054419).
A Conv1d layer is placed right after the input embedding layer.
-----
## Description
This repo provides pre-trained transducer Conformer model for the AIShell dataset
using [icefall][icefall]. There are no RNNs in the decoder. The decoder is stateless
and contains only an embedding layer and a Conv1d.
The commands for training are:
```bash
cd egs/aishell/ASR
./prepare.sh --stop-stage 6
export CUDA_VISIBLE_DEVICES="0,1,2"
./transducer_stateless_modified/train.py \
--world-size 3 \
--num-epochs 90 \
--start-epoch 0 \
--exp-dir transducer_stateless_modified/exp-4 \
--max-duration 250 \
--lr-factor 2.0 \
--context-size 2 \
--modified-transducer-prob 0.25
```
The tensorboard training log can be found at
<https://tensorboard.dev/experiment/C27M8YxRQCa1t2XglTqlWg>
The commands for decoding are
```bash
# greedy search
for epoch in 64; do
for avg in 33; do
./transducer_stateless_modified-2/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir transducer_stateless_modified/exp-4 \
--max-duration 100 \
--context-size 2 \
--decoding-method greedy_search \
--max-sym-per-frame 1
done
done
# modified beam search
for epoch in 64; do
for avg in 33; do
./transducer_stateless_modified/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir transducer_stateless_modified/exp-4 \
--max-duration 100 \
--context-size 2 \
--decoding-method modified_beam_search \
--beam-size 4
done
done
```
You can find the decoding log for the above command in this
repo (in the folder [log][log]).
The WER for the test dataset is
| | test |comment |
|------------------------|------|----------------------------------------------------------------|
| greedy search | 5.22 |--epoch 64, --avg 33, --max-duration 100, --max-sym-per-frame 1 |
| modified beam search | 5.02 |--epoch 64, --avg 33, --max-duration 100 --beam-size 4 |
# File description
- [log][log], this directory contains the decoding log and decoding results
- [test_wavs][test_wavs], this directory contains wave files for testing the pre-trained model
- [data][data], this directory contains files generated by [prepare.sh][prepare]
- [exp][exp], this directory contains only one file: `preprained.pt`
`exp/pretrained.pt` is generated by the following command:
```bash
epoch=64
avg=33
./transducer_stateless_modified/export.py \
--exp-dir ./transducer_stateless_modified/exp-4 \
--lang-dir ./data/lang_char \
--epoch $epoch \
--avg $avg
```
**HINT**: To use `pretrained.pt` to compute the WER for the `test` dataset,
just do the following:
```bash
cp icefall-aishell-transducer-stateless-modified-2022-03-01/exp/pretrained.pt \
/path/to/icefall/egs/aishell/ASR/transducer_stateless_modified/exp/epoch-999.pt
```
and pass `--epoch 999 --avg 1` to `transducer_stateless_modified/decode.py`.
[icefall]: https://github.com/k2-fsa/icefall
[prepare]: https://github.com/k2-fsa/icefall/blob/master/egs/aishell/ASR/prepare.sh
[exp]: https://huggingface.co/csukuangfj/icefall-aishell-transducer-stateless-modified-2022-03-01/tree/main/exp
[data]: https://huggingface.co/csukuangfj/icefall-aishell-transducer-stateless-modified-2022-03-01/tree/main/data
[test_wavs]: https://huggingface.co/csukuangfj/icefall-aishell-transducer-stateless-modified-2022-03-01/tree/main/test_wavs
[log]: https://huggingface.co/csukuangfj/icefall-aishell-transducer-stateless-modified-2022-03-01/tree/main/log
[icefall]: https://github.com/k2-fsa/icefall
|
csukuangfj/icefall-aishell-transducer-stateless-modified-2-2022-03-01
|
csukuangfj
| 2022-03-02T04:53:58Z | 0 | 0 |
k2
|
[
"k2",
"icefall",
"transducer",
"aishell",
"ASR",
"stateless transducer",
"PyTorch",
"en",
"dataset:aishell",
"dataset:aidatatang_200zh",
"license:apache-2.0",
"region:us"
] | null | 2022-03-02T23:29:05Z |
---
language: "en"
tags:
- icefall
- k2
- transducer
- aishell
- ASR
- stateless transducer
- PyTorch
license: "apache-2.0"
datasets:
- aishell
- aidatatang_200zh
metrics:
- WER
---
# Introduction
This repo contains pre-trained model using
<https://github.com/k2-fsa/icefall/pull/219>.
It is trained on [AIShell](https://www.openslr.org/33/) dataset
using modified transducer from [optimized_transducer](https://github.com/csukuangfj/optimized_transducer).
Also, it uses [aidatatang_200zh](http://www.openslr.org/62/) as extra training data.
## How to clone this repo
```
sudo apt-get install git-lfs
git clone https://huggingface.co/csukuangfj/icefall-aishell-transducer-stateless-modified-2-2022-03-01
cd icefall-aishell-transducer-stateless-modified-2-2022-03-01
git lfs pull
```
**Catuion**: You have to run `git lfs pull`. Otherwise, you will be SAD later.
The model in this repo is trained using the commit `TODO`.
You can use
```
git clone https://github.com/k2-fsa/icefall
cd icefall
git checkout TODO
```
to download `icefall`.
You can find the model information by visiting <https://github.com/k2-fsa/icefall/blob/TODO/egs/aishell/ASR/transducer_stateless_modified-2/train.py#L232>.
In short, the encoder is a Conformer model with 8 heads, 12 encoder layers, 512-dim attention, 2048-dim feedforward;
the decoder contains a 512-dim embedding layer and a Conv1d with kernel size 2.
The decoder architecture is modified from
[Rnn-Transducer with Stateless Prediction Network](https://ieeexplore.ieee.org/document/9054419).
A Conv1d layer is placed right after the input embedding layer.
-----
## Description
This repo provides pre-trained transducer Conformer model for the AIShell dataset
using [icefall][icefall]. There are no RNNs in the decoder. The decoder is stateless
and contains only an embedding layer and a Conv1d.
The commands for training are:
```bash
cd egs/aishell/ASR
./prepare.sh --stop-stage 6
./prepare_aidatatang_200zh.sh
export CUDA_VISIBLE_DEVICES="0,1,2"
./transducer_stateless_modified-2/train.py \
--world-size 3 \
--num-epochs 90 \
--start-epoch 0 \
--exp-dir transducer_stateless_modified-2/exp-2 \
--max-duration 250 \
--lr-factor 2.0 \
--context-size 2 \
--modified-transducer-prob 0.25 \
--datatang-prob 0.2
```
The tensorboard training log can be found at
<https://tensorboard.dev/experiment/oG72ZlWaSGua6fXkcGRRjA/>
The commands for decoding are
```bash
# greedy search
for epoch in 89; do
for avg in 38; do
./transducer_stateless_modified-2/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir transducer_stateless_modified-2/exp-2 \
--max-duration 100 \
--context-size 2 \
--decoding-method greedy_search \
--max-sym-per-frame 1
done
done
# modified beam search
for epoch in 89; do
for avg in 38; do
./transducer_stateless_modified-2/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir transducer_stateless_modified-2/exp-2 \
--max-duration 100 \
--context-size 2 \
--decoding-method modified_beam_search \
--beam-size 4
done
done
```
You can find the decoding log for the above command in this
repo (in the folder [log][log]).
The WER for the test dataset is
| | test |comment |
|------------------------|------|----------------------------------------------------------------|
| greedy search | 4.94 |--epoch 89, --avg 38, --max-duration 100, --max-sym-per-frame 1 |
| modified beam search | 4.68 |--epoch 89, --avg 38, --max-duration 100 --beam-size 4 |
# File description
- [log][log], this directory contains the decoding log and decoding results
- [test_wavs][test_wavs], this directory contains wave files for testing the pre-trained model
- [data][data], this directory contains files generated by [prepare.sh][prepare]
- [exp][exp], this directory contains only one file: `preprained.pt`
`exp/pretrained.pt` is generated by the following command:
```bash
epoch=89
avg=38
./transducer_stateless_modified-2/export.py \
--exp-dir ./transducer_stateless_modified-2/exp-2 \
--lang-dir ./data/lang_char \
--epoch $epoch \
--avg $avg
```
**HINT**: To use `pretrained.pt` to compute the WER for the `test` dataset,
just do the following:
```bash
cp icefall-aishell-transducer-stateless-modified-2-2022-03-01/exp/pretrained.pt \
/path/to/icefall/egs/aishell/ASR/transducer_stateless_modified-2/exp/epoch-999.pt
```
and pass `--epoch 999 --avg 1` to `transducer_stateless_modified-2/decode.py`.
[icefall]: https://github.com/k2-fsa/icefall
[prepare]: https://github.com/k2-fsa/icefall/blob/master/egs/aishell/ASR/prepare.sh
[exp]: https://huggingface.co/csukuangfj/icefall-aishell-transducer-stateless-modified-2-2022-03-01/tree/main/exp
[data]: https://huggingface.co/csukuangfj/icefall-aishell-transducer-stateless-modified-2-2022-03-01/tree/main/data
[test_wavs]: https://huggingface.co/csukuangfj/icefall-aishell-transducer-stateless-modified-2-2022-03-01/tree/main/test_wavs
[log]: https://huggingface.co/csukuangfj/icefall-aishell-transducer-stateless-modified-2-2022-03-01/tree/main/log
[icefall]: https://github.com/k2-fsa/icefall
|
ActivationAI/distilbert-base-uncased-finetuned-emotion
|
ActivationAI
| 2022-03-02T03:40:08Z | 12 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:04Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.928
- name: F1
type: f1
value: 0.9280065074208208
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2128
- Accuracy: 0.928
- F1: 0.9280
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.8151 | 1.0 | 250 | 0.3043 | 0.907 | 0.9035 |
| 0.24 | 2.0 | 500 | 0.2128 | 0.928 | 0.9280 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
aaraki/marian-finetuned-kde4-en-to-fr
|
aaraki
| 2022-03-02T01:54:57Z | 22 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"translation",
"generated_from_trainer",
"dataset:kde4",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- translation
- generated_from_trainer
datasets:
- kde4
metrics:
- bleu
model-index:
- name: marian-finetuned-kde4-en-to-fr
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: kde4
type: kde4
args: en-fr
metrics:
- name: Bleu
type: bleu
value: 52.94560734092563
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# marian-finetuned-kde4-en-to-fr
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8559
- Bleu: 52.9456
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.6
|
BigSalmon/InformalToFormalLincoln23
|
BigSalmon
| 2022-03-01T22:39:12Z | 10 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:04Z |
```
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln23")
model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln23")
```
```
How To Make Prompt:
informal english: i am very ready to do that just that.
Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end.
Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task.
***
informal english: space is huge and needs to be explored.
Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless.
Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration.
***
informal english: corn fields are all across illinois, visible once you leave chicago.
Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago.
informal english:
```
```
- declining viewership facing the nba.
- does not have to be this way.
- in fact, many solutions exist.
- the four point line would surely draw in eyes.
Text: failing to draw in the masses, the NBA has fallen into disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap solutions could revive the league. the addition of the much-hyped four-point line would surely juice viewership.
***
-
```
```
infill: chrome extensions [MASK] accomplish everyday tasks.
Translated into the Style of Abraham Lincoln: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks.
infill: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices.
Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices.
infill:
```
```
Essay Intro (California High-Speed Rail): built with an eye on the future, california's high-speed rail service resolves to change the face of travel.
Essay Intro (YIMBY's Need To Win): home to the most expensive housing market in the united states, san francisco is the city in which the yimby and anti-yimby hordes wage an eternal battle.
Essay Intro (
```
```
Search: What is the definition of Checks and Balances?
https://en.wikipedia.org/wiki/Checks_and_balances
Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate.
https://www.harvard.edu/glossary/Checks_and_Balances
Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power
https://www.law.cornell.edu/library/constitution/Checks_and_Balances
Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power.
***
Search: What is the definition of Separation of Powers?
https://en.wikipedia.org/wiki/Separation_of_powers
The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power.
https://www.yale.edu/tcf/Separation_of_Powers.html
Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined.
***
Search: What is the definition of Connection of Powers?
https://en.wikipedia.org/wiki/Connection_of_powers
Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches.
https://simple.wikipedia.org/wiki/Connection_of_powers
The term Connection of Powers describes a system of government in which there is overlap between different parts of the government.
***
Search: What is the definition of
```
```
Search: What are phrase synonyms for "second-guess"?
https://www.powerthesaurus.org/second-guess/synonyms
Shortest to Longest:
- feel dubious about
- raise an eyebrow at
- wrinkle their noses at
- cast a jaundiced eye at
- teeter on the fence about
***
Search: What are phrase synonyms for "mean to newbies"?
https://www.powerthesaurus.org/mean_to_newbies/synonyms
Shortest to Longest:
- readiness to balk at rookies
- absence of tolerance for novices
- hostile attitude toward newcomers
***
Search: What are phrase synonyms for "make use of"?
https://www.powerthesaurus.org/make_use_of/synonyms
Shortest to Longest:
- call upon
- glean value from
- reap benefits from
- derive utility from
- seize on the merits of
- draw on the strength of
- tap into the potential of
***
Search: What are phrase synonyms for "hurting itself"?
https://www.powerthesaurus.org/hurting_itself/synonyms
Shortest to Longest:
- erring
- slighting itself
- forfeiting its integrity
- doing itself a disservice
- evincing a lack of backbone
***
Search: What are phrase synonyms for "
```
|
JAlexis/Bertv1_fine
|
JAlexis
| 2022-03-01T22:33:49Z | 76 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"question-answering",
"en",
"dataset:squad2",
"dataset:cord19",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:04Z |
---
language: en
tags:
- pytorch
- question-answering
datasets:
- squad2
- cord19
metrics:
- f1
widget:
- text: "How can I protect myself against covid-19?"
context: "Preventative measures consist of recommendations to wear a mask in public, maintain social distancing of at least six feet, wash hands regularly, and use hand sanitizer. To facilitate this aim, we adapt the conceptual model and measures of Liao et al. [6] to the current context of the COVID-19 pandemic and the culture of the USA. Applying this model in a different time and context provides an opportunity to make comparisons of reactions to information sources across a decade of evolving attitudes toward media and government, between two cultures (Hong Kong vs. the USA), and between two considerably different global pandemics (H1N1 vs. COVID-19)."
- text: "How can I protect myself against covid-19?"
context: " "
---
## Model description
This model was obtained by fine-tuning deepset/bert-base-cased-squad2 on Cord19 Dataset.
## How to use
```python
from transformers.pipelines import pipeline
model_name = "JAlexis/PruebaBert"
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
inputs = {
'question': 'How can I protect myself against covid-19?',
'context': 'Preventative measures consist of recommendations to wear a mask in public, maintain social distancing of at least six feet, wash hands regularly, and use hand sanitizer. To facilitate this aim, we adapt the conceptual model and measures of Liao et al. [6] to the current context of the COVID-19 pandemic and the culture of the USA. Applying this model in a different time and context provides an opportunity to make comparisons of reactions to information sources across a decade of evolving attitudes toward media and government, between two cultures (Hong Kong vs. the USA), and between two considerably different global pandemics (H1N1 vs. COVID-19). ',
'question': 'How can I protect myself against covid-19?',
'context': ' ',
}
nlp(inputs)
```
## Overview
```
Language model: deepset/bert-base-cased-squad2
Language: English
Downstream-task: Q&A
Datasets: CORD-19 from 31rd January 2022
Code: Haystack and FARM
Infrastructure: Tesla T4
```
## Hyperparameters
```
batch_size = 8
n_epochs = 7
max_seq_len = max_length
learning_rate = AdamW: 2e-5
```
|
Kevincp560/bart-large-finetuned-pubmed
|
Kevincp560
| 2022-03-01T18:35:04Z | 7 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bart",
"text2text-generation",
"generated_from_trainer",
"dataset:pub_med_summarization_dataset",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:04Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- pub_med_summarization_dataset
metrics:
- rouge
model-index:
- name: bart-large-finetuned-pubmed
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: pub_med_summarization_dataset
type: pub_med_summarization_dataset
args: document
metrics:
- name: Rouge1
type: rouge
value: 10.946
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-large-finetuned-pubmed
This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the pub_med_summarization_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8135
- Rouge1: 10.946
- Rouge2: 5.0933
- Rougel: 9.5608
- Rougelsum: 10.4259
- Gen Len: 19.0495
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:------:|:---------:|:-------:|
| 2.0861 | 1.0 | 4000 | 1.8909 | 8.7344 | 3.6919 | 7.8804 | 8.3305 | 20.0 |
| 1.8996 | 2.0 | 8000 | 1.8261 | 10.2124 | 4.6212 | 8.9842 | 9.7417 | 17.632 |
| 1.7459 | 3.0 | 12000 | 1.8160 | 9.4933 | 4.4117 | 8.3977 | 9.0758 | 16.4775 |
| 1.6258 | 4.0 | 16000 | 1.8136 | 10.8248 | 5.0335 | 9.4286 | 10.3123 | 18.724 |
| 1.5214 | 5.0 | 20000 | 1.8135 | 10.946 | 5.0933 | 9.5608 | 10.4259 | 19.0495 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.6
|
davanstrien/vit_flyswot_test
|
davanstrien
| 2022-03-01T18:28:19Z | 70 | 0 |
transformers
|
[
"transformers",
"pytorch",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:image_folder",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-03-02T23:29:05Z |
---
tags:
- generated_from_trainer
datasets:
- image_folder
metrics:
- f1
model-index:
- name: vit_flyswot_test
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: image_folder
type: image_folder
args: default
metrics:
- name: F1
type: f1
value: 0.849172221610369
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit_flyswot_test
This model is a fine-tuned version of [](https://huggingface.co/) on the image_folder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4777
- F1: 0.8492
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 666
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 52 | 1.2007 | 0.3533 |
| No log | 2.0 | 104 | 1.0037 | 0.5525 |
| No log | 3.0 | 156 | 0.8301 | 0.6318 |
| No log | 4.0 | 208 | 0.7224 | 0.6946 |
| No log | 5.0 | 260 | 0.7298 | 0.7145 |
| No log | 6.0 | 312 | 0.6328 | 0.7729 |
| No log | 7.0 | 364 | 0.6010 | 0.7992 |
| No log | 8.0 | 416 | 0.5174 | 0.8364 |
| No log | 9.0 | 468 | 0.5084 | 0.8479 |
| 0.6372 | 10.0 | 520 | 0.4777 | 0.8492 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.6
|
dalle-mini/vqgan_imagenet_f16_16384
|
dalle-mini
| 2022-03-01T17:28:10Z | 249 | 42 |
transformers
|
[
"transformers",
"jax",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z |
## VQGAN-f16-16384
### Model Description
This is a Flax/JAX implementation of VQGAN, which learns a codebook of context-rich visual parts by leveraging both the use of convolutional methods and transformers. It was introduced in [Taming Transformers for High-Resolution Image Synthesis](https://compvis.github.io/taming-transformers/) ([CVPR paper](https://openaccess.thecvf.com/content/CVPR2021/html/Esser_Taming_Transformers_for_High-Resolution_Image_Synthesis_CVPR_2021_paper.html)).
The model allows the encoding of images as a fixed-length sequence of tokens taken from the codebook.
This version of the model uses a reduction factor `f=16` and a vocabulary of `16,384` tokens.
As an example of how the reduction factor works, images of size `256x256` are encoded to sequences of `256` tokens: `256/16 * 256/16`. Images of `512x512` would result in sequences of `1024` tokens.
This model was ported to JAX using [a checkpoint trained on ImageNet](https://heibox.uni-heidelberg.de/d/a7530b09fed84f80a887/).
### How to Use
The checkpoint can be loaded using [Suraj Patil's implementation](https://github.com/patil-suraj/vqgan-jax) of `VQModel`.
### Other
This model can be used as part of the implementation of [DALL·E mini](https://github.com/borisdayma/dalle-mini). Our [report](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA) contains more details on how to leverage it in an image encoding / generation pipeline.
|
ali2066/correct_BERT_token_itr0_0.0001_all_01_03_2022-15_52_19
|
ali2066
| 2022-03-01T14:55:36Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: correct_BERT_token_itr0_0.0001_all_01_03_2022-15_52_19
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# correct_BERT_token_itr0_0.0001_all_01_03_2022-15_52_19
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2711
- Precision: 0.3373
- Recall: 0.5670
- F1: 0.4230
- Accuracy: 0.8943
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 30 | 0.3783 | 0.1833 | 0.3975 | 0.2509 | 0.8413 |
| No log | 2.0 | 60 | 0.3021 | 0.3280 | 0.4820 | 0.3904 | 0.8876 |
| No log | 3.0 | 90 | 0.3196 | 0.3504 | 0.5036 | 0.4133 | 0.8918 |
| No log | 4.0 | 120 | 0.3645 | 0.3434 | 0.5306 | 0.4170 | 0.8759 |
| No log | 5.0 | 150 | 0.4027 | 0.3217 | 0.5486 | 0.4056 | 0.8797 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/correct_BERT_token_itr0_0.0001_editorials_01_03_2022-15_50_21
|
ali2066
| 2022-03-01T14:52:15Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: correct_BERT_token_itr0_0.0001_editorials_01_03_2022-15_50_21
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# correct_BERT_token_itr0_0.0001_editorials_01_03_2022-15_50_21
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1059
- Precision: 0.0637
- Recall: 0.0080
- F1: 0.0141
- Accuracy: 0.9707
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 15 | 0.1103 | 0.12 | 0.0135 | 0.0243 | 0.9772 |
| No log | 2.0 | 30 | 0.0842 | 0.12 | 0.0135 | 0.0243 | 0.9772 |
| No log | 3.0 | 45 | 0.0767 | 0.12 | 0.0135 | 0.0243 | 0.9772 |
| No log | 4.0 | 60 | 0.0754 | 0.12 | 0.0135 | 0.0243 | 0.9772 |
| No log | 5.0 | 75 | 0.0735 | 0.12 | 0.0135 | 0.0243 | 0.9772 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/correct_BERT_token_itr0_0.0001_essays_01_03_2022-15_48_47
|
ali2066
| 2022-03-01T14:50:16Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: correct_BERT_token_itr0_0.0001_essays_01_03_2022-15_48_47
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# correct_BERT_token_itr0_0.0001_essays_01_03_2022-15_48_47
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1801
- Precision: 0.6153
- Recall: 0.7301
- F1: 0.6678
- Accuracy: 0.9346
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 11 | 0.2746 | 0.4586 | 0.5922 | 0.5169 | 0.9031 |
| No log | 2.0 | 22 | 0.2223 | 0.5233 | 0.6181 | 0.5668 | 0.9148 |
| No log | 3.0 | 33 | 0.2162 | 0.5335 | 0.6699 | 0.5940 | 0.9274 |
| No log | 4.0 | 44 | 0.2053 | 0.5989 | 0.7055 | 0.6478 | 0.9237 |
| No log | 5.0 | 55 | 0.2123 | 0.5671 | 0.7249 | 0.6364 | 0.9267 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/correct_BERT_token_itr0_0.0001_webDiscourse_01_03_2022-15_47_14
|
ali2066
| 2022-03-01T14:48:43Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: correct_BERT_token_itr0_0.0001_webDiscourse_01_03_2022-15_47_14
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# correct_BERT_token_itr0_0.0001_webDiscourse_01_03_2022-15_47_14
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6542
- Precision: 0.0092
- Recall: 0.0403
- F1: 0.0150
- Accuracy: 0.7291
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 10 | 0.5856 | 0.0012 | 0.0125 | 0.0022 | 0.6950 |
| No log | 2.0 | 20 | 0.5933 | 0.0 | 0.0 | 0.0 | 0.7282 |
| No log | 3.0 | 30 | 0.5729 | 0.0051 | 0.025 | 0.0085 | 0.7155 |
| No log | 4.0 | 40 | 0.6178 | 0.0029 | 0.0125 | 0.0047 | 0.7143 |
| No log | 5.0 | 50 | 0.6707 | 0.0110 | 0.0375 | 0.0170 | 0.7178 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/correct_distilBERT_token_itr0_1e-05_editorials_01_03_2022-15_42_32
|
ali2066
| 2022-03-01T14:43:43Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: correct_distilBERT_token_itr0_1e-05_editorials_01_03_2022-15_42_32
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# correct_distilBERT_token_itr0_1e-05_editorials_01_03_2022-15_42_32
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1206
- Precision: 0.0637
- Recall: 0.0080
- F1: 0.0141
- Accuracy: 0.9707
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 15 | 0.1222 | 0.12 | 0.0139 | 0.0249 | 0.9736 |
| No log | 2.0 | 30 | 0.1159 | 0.12 | 0.0139 | 0.0249 | 0.9736 |
| No log | 3.0 | 45 | 0.1082 | 0.12 | 0.0139 | 0.0249 | 0.9736 |
| No log | 4.0 | 60 | 0.1042 | 0.12 | 0.0139 | 0.0249 | 0.9736 |
| No log | 5.0 | 75 | 0.1029 | 0.12 | 0.0139 | 0.0249 | 0.9736 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/correct_twitter_RoBERTa_token_itr0_1e-05_all_01_03_2022-15_36_04
|
ali2066
| 2022-03-01T14:39:23Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: correct_twitter_RoBERTa_token_itr0_1e-05_all_01_03_2022-15_36_04
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# correct_twitter_RoBERTa_token_itr0_1e-05_all_01_03_2022-15_36_04
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base](https://huggingface.co/cardiffnlp/twitter-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2876
- Precision: 0.2345
- Recall: 0.4281
- F1: 0.3030
- Accuracy: 0.8728
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 30 | 0.3907 | 0.0433 | 0.0824 | 0.0568 | 0.7626 |
| No log | 2.0 | 60 | 0.3046 | 0.2302 | 0.4095 | 0.2947 | 0.8598 |
| No log | 3.0 | 90 | 0.2945 | 0.2084 | 0.4095 | 0.2762 | 0.8668 |
| No log | 4.0 | 120 | 0.2687 | 0.2847 | 0.4607 | 0.3519 | 0.8761 |
| No log | 5.0 | 150 | 0.2643 | 0.2779 | 0.4444 | 0.3420 | 0.8788 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/correct_twitter_RoBERTa_token_itr0_1e-05_editorials_01_03_2022-15_33_51
|
ali2066
| 2022-03-01T14:36:00Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: correct_twitter_RoBERTa_token_itr0_1e-05_editorials_01_03_2022-15_33_51
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# correct_twitter_RoBERTa_token_itr0_1e-05_editorials_01_03_2022-15_33_51
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base](https://huggingface.co/cardiffnlp/twitter-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1138
- Precision: 0.5788
- Recall: 0.4712
- F1: 0.5195
- Accuracy: 0.9688
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 15 | 0.1316 | 0.04 | 0.0021 | 0.0040 | 0.9624 |
| No log | 2.0 | 30 | 0.1016 | 0.6466 | 0.4688 | 0.5435 | 0.9767 |
| No log | 3.0 | 45 | 0.0899 | 0.5873 | 0.4625 | 0.5175 | 0.9757 |
| No log | 4.0 | 60 | 0.0849 | 0.5984 | 0.4813 | 0.5335 | 0.9761 |
| No log | 5.0 | 75 | 0.0835 | 0.5984 | 0.4813 | 0.5335 | 0.9761 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
ali2066/correct_twitter_RoBERTa_token_itr0_1e-05_essays_01_03_2022-15_32_16
|
ali2066
| 2022-03-01T14:33:46Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: correct_twitter_RoBERTa_token_itr0_1e-05_essays_01_03_2022-15_32_16
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# correct_twitter_RoBERTa_token_itr0_1e-05_essays_01_03_2022-15_32_16
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base](https://huggingface.co/cardiffnlp/twitter-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2663
- Precision: 0.3644
- Recall: 0.4985
- F1: 0.4210
- Accuracy: 0.8997
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 11 | 0.5174 | 0.0120 | 0.0061 | 0.0081 | 0.6997 |
| No log | 2.0 | 22 | 0.4029 | 0.1145 | 0.3098 | 0.1672 | 0.8265 |
| No log | 3.0 | 33 | 0.3604 | 0.2539 | 0.4448 | 0.3233 | 0.8632 |
| No log | 4.0 | 44 | 0.3449 | 0.2992 | 0.4755 | 0.3673 | 0.8704 |
| No log | 5.0 | 55 | 0.3403 | 0.3340 | 0.4816 | 0.3945 | 0.8760 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.