modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
edoumazane/distilbert-base-uncased-finetuned-ner
edoumazane
2022-03-22T09:56:14Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-22T09:27:52Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9247134038800705 - name: Recall type: recall value: 0.9384718648618414 - name: F1 type: f1 value: 0.9315418355449449 - name: Accuracy type: accuracy value: 0.9836529143565221 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0612 - Precision: 0.9247 - Recall: 0.9385 - F1: 0.9315 - Accuracy: 0.9837 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2421 | 1.0 | 878 | 0.0701 | 0.9083 | 0.9217 | 0.9149 | 0.9801 | | 0.0555 | 2.0 | 1756 | 0.0599 | 0.9204 | 0.9357 | 0.9280 | 0.9830 | | 0.0311 | 3.0 | 2634 | 0.0612 | 0.9247 | 0.9385 | 0.9315 | 0.9837 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
celine98/canine-s-finetuned-sst2
celine98
2022-03-22T09:47:45Z
4
2
transformers
[ "transformers", "pytorch", "tensorboard", "canine", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-21T22:35:16Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: canine-s-finetuned-sst2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8577981651376146 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # canine-s-finetuned-sst2 This model is a fine-tuned version of [google/canine-s](https://huggingface.co/google/canine-s) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5259 - Accuracy: 0.8578 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3524 | 1.0 | 4210 | 0.4762 | 0.8257 | | 0.2398 | 2.0 | 8420 | 0.4169 | 0.8567 | | 0.1797 | 3.0 | 12630 | 0.5259 | 0.8578 | | 0.152 | 4.0 | 16840 | 0.5996 | 0.8532 | | 0.1026 | 5.0 | 21050 | 0.6676 | 0.8578 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
merve/anime-faces-generator
merve
2022-03-22T09:15:31Z
0
2
keras
[ "keras", "tf-keras", "dcgan", "dataset:merve/anime-faces", "license:apache-2.0", "region:us" ]
null
2022-03-04T16:41:30Z
--- license: apache-2.0 library_name: keras tags: - dcgan datasets: - merve/anime-faces --- ## Model description Anime face generator model using [TensorFlow DCGAN example](https://www.tensorflow.org/tutorials/generative/dcgan). ## Training and evaluation data Model is trained on [anime faces dataset](https://huggingface.co/datasets/merve/anime-faces). The dataset consists of 21551 anime faces scraped from www.getchu.com, which are then cropped using the anime face detection algorithm [here](https://github.com/nagadomi/lbpcascade_animeface). All images are resized to 64 * 64 for the sake of convenience. The model takes a noise as input and then Conv2DTranspose is used to do upsampling. If you want to pass this to another discriminator, the output shape consists of 28x28 images. ## How to use this model You can use this model to generate new anime faces. If you want to continuously train, use with [discriminator](https://huggingface.co/merve/anime-faces-discriminator) using `tf.GradientTape()` as mentioned in the DCGAN tutorial. ``` from huggingface_hub import from_pretrained_keras model = from_pretrained_keras("merve/anime-faces-generator") ``` You can generate examples using a noise. ``` seed = tf.random.normal([number_of_examples_to_generate, noise]) predictions = model(seed, training=False) # inference mode ``` ## Intended use and biases This model is not intended for production. ### Generated images ![Example](./example.png)
Yaxin/xlm-roberta-base-conll2003-ner
Yaxin
2022-03-22T08:11:52Z
81
3
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-22T07:36:34Z
--- license: mit tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: test-conll2003-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9459188783174762 - name: Recall type: recall value: 0.9537192864355436 - name: F1 type: f1 value: 0.94980306712478 - name: Accuracy type: accuracy value: 0.9911218410498034 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-conll2003-ner This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0470 - Precision: 0.9459 - Recall: 0.9537 - F1: 0.9498 - Accuracy: 0.9911 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0 - Datasets 1.18.3 - Tokenizers 0.11.0
lazyturtl/WEC-types
lazyturtl
2022-03-22T04:54:04Z
60
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-22T04:53:55Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: WEC-types results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.7830188870429993 --- # WEC-types Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Attenuators ![Attenuators](images/Attenuators.jpg) #### Oscillating water column ![Oscillating water column](images/Oscillating_water_column.png) #### Overtopping Devices ![Overtopping Devices](images/Overtopping_Devices.jpg) #### Point Absorber ![Point Absorber](images/Point_Absorber.jpg)
razent/SciFive-large-Pubmed_PMC-MedNLI
razent
2022-03-22T04:05:21Z
675
2
transformers
[ "transformers", "pytorch", "tf", "t5", "text2text-generation", "mednli", "en", "dataset:pubmed", "dataset:pmc/open_access", "arxiv:2106.03598", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-20T17:24:33Z
--- language: - en tags: - text2text-generation - mednli datasets: - pubmed - pmc/open_access widget: - text: "mednli: sentence1: In the ED, initial VS revealed T 98.9, HR 73, BP 121/90, RR 15, O2 sat 98% on RA. sentence2: The patient is hemodynamically stable" --- # SciFive Pubmed+PMC Large on MedNLI ## Introduction Finetuned SciFive Pubmed+PMC Large model achieved state-of-the-art results on [MedNLI (Medical Natural Language Inference)](https://paperswithcode.com/sota/natural-language-inference-on-mednli) Paper: [SciFive: a text-to-text transformer model for biomedical literature](https://arxiv.org/abs/2106.03598) Authors: _Long N. Phan, James T. Anibal, Hieu Tran, Shaurya Chanana, Erol Bahadroglu, Alec Peltekian, Grégoire Altan-Bonnet_ ## How to use For more details, do check out [our Github repo](https://github.com/justinphan3110/SciFive). ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM ​ tokenizer = AutoTokenizer.from_pretrained("razent/SciFive-large-Pubmed_PMC-MedNLI") model = AutoModelForSeq2SeqLM.from_pretrained("razent/SciFive-large-Pubmed_PMC-MedNLI") model.cuda() ​ sent_1 = "In the ED, initial VS revealed T 98.9, HR 73, BP 121/90, RR 15, O2 sat 98% on RA." sent_2 = "The patient is hemodynamically stable" text = f"mednli: sentence1: {sent_1} sentence2: {sent_2}" encoding = tokenizer.encode_plus(text, padding='max_length', max_length=256, return_tensors="pt") input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda") outputs = model.generate( input_ids=input_ids, attention_mask=attention_masks, max_length=8, early_stopping=True ) for output in outputs: line = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True) print(line) ```
mimicheng/codeparrot-ds
mimicheng
2022-03-22T03:45:36Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-21T19:59:48Z
--- license: mit tags: - generated_from_trainer model-index: - name: codeparrot-ds results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 1.7397 - eval_runtime: 603.8598 - eval_samples_per_second: 154.281 - eval_steps_per_second: 4.822 - epoch: 0.08 - step: 5000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
StivenLancheros/roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_AugmentedTransfer_ES
StivenLancheros
2022-03-21T22:36:06Z
11
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-21T22:05:55Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_AugmentedTransfer_ES results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_AugmentedTransfer_ES This model is a fine-tuned version of [StivenLancheros/roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_Augmented_ES](https://huggingface.co/StivenLancheros/roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_Augmented_ES) on the CRAFT dataset. It achieves the following results on the evaluation set: - Loss: 0.2043 - Precision: 0.8666 - Recall: 0.8614 - F1: 0.8639 - Accuracy: 0.9734 ## Model description This model performs Named Entity Recognition for 6 entity tags: Sequence, Cell, Protein, Gene, Taxon, and Chemical from the CRAFT(Colorado Richly Annotated Full Text) Corpus in Spanish (MT translated) and English. Entity tags have been normalized and replaced from the original three letter code to a full name e.g. B-Protein, I-Chemical. This model is trained on augmented data created using Entity Replacement. 20% of the entities were replaced using a list of entities for each entity tag obtained from the official ontologies for each entity class. Three datasets (original, augmented, MT translated CRAFT) were concatenated. To improve F1 score the transfer learning was completed in two steps. Using [StivenLancheros/roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_Augmented_ES](https://huggingface.co/StivenLancheros/roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_Augmented_ES) as a base model, I finetuned once more on the original CRAFT dataset in English. Biobert --> Augmented CRAFT --> CRAFT ES (MT translated) ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0088 | 1.0 | 1360 | 0.1793 | 0.8616 | 0.8487 | 0.8551 | 0.9721 | | 0.0046 | 2.0 | 2720 | 0.1925 | 0.8618 | 0.8426 | 0.8521 | 0.9713 | | 0.0032 | 3.0 | 4080 | 0.1926 | 0.8558 | 0.8630 | 0.8594 | 0.9725 | | 0.0011 | 4.0 | 5440 | 0.2043 | 0.8666 | 0.8614 | 0.8639 | 0.9734 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
StivenLancheros/roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_AugmentedTransfer_EN
StivenLancheros
2022-03-21T22:10:39Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-21T21:04:02Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_AugmentedTransfer_EN results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_AugmentedTransfer_EN This model is a fine-tuned version of [StivenLancheros/roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_Augmented_EN](https://huggingface.co/StivenLancheros/roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_Augmented_EN) on the CRAFT dataset. It achieves the following results on the evaluation set: - Loss: 0.2308 - Precision: 0.8366 - Recall: 0.8513 - F1: 0.8439 - Accuracy: 0.9681 ## Model description This model performs Named Entity Recognition for 6 entity tags: Sequence, Cell, Protein, Gene, Taxon, and Chemical from the CRAFT(Colorado Richly Annotated Full Text) Corpus in Spanish and English. Entity tags have been normalized and replaced from the original three letter code to a full name e.g. B-Protein, I-Chemical. This model is trained on augmented data created using Entity Replacement. 20% of the entities were replaced using a list of entities for each entity tag obtained from the official ontologies for each entity class. Both datasets (original, augmented) were concatenated. To improve F1 score the transfer learning was completed in two steps. Using [StivenLancheros/roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_Augmented_EN](https://huggingface.co/StivenLancheros/roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_Augmented_EN as a base model, I finetuned once more on the original CRAFT dataset in English. Biobert --> Augmented CRAFT --> CRAFT ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0129 | 1.0 | 1360 | 0.2119 | 0.8404 | 0.8364 | 0.8384 | 0.9666 | | 0.0072 | 2.0 | 2720 | 0.2132 | 0.8173 | 0.8583 | 0.8373 | 0.9662 | | 0.0042 | 3.0 | 4080 | 0.2180 | 0.8410 | 0.8515 | 0.8462 | 0.9686 | | 0.0019 | 4.0 | 5440 | 0.2308 | 0.8366 | 0.8513 | 0.8439 | 0.9681 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
huggingtweets/elonmusk-garyvee
huggingtweets
2022-03-21T19:57:10Z
4
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-21T19:55:22Z
--- language: en thumbnail: http://www.huggingtweets.com/elonmusk-garyvee/1647892564866/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1503591435324563456/foUrqiEw_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1493524673962852353/qRxbC9Xq_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & Gary Vaynerchuk</div> <div style="text-align: center; font-size: 14px;">@elonmusk-garyvee</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & Gary Vaynerchuk. | Data | Elon Musk | Gary Vaynerchuk | | --- | --- | --- | | Tweets downloaded | 2200 | 3247 | | Retweets | 102 | 712 | | Short tweets | 671 | 842 | | Tweets kept | 1427 | 1693 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/abt9l46e/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk-garyvee's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/4wls4y5v) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/4wls4y5v/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elonmusk-garyvee') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Ameer05/distilbart-cnn-12-6-finetuned-resume-summarizer
Ameer05
2022-03-21T19:35:06Z
17
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "summarization", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-21T19:18:43Z
--- tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: distilbart-cnn-12-6-finetuned-resume-summarizer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbart-cnn-12-6-finetuned-resume-summarizer This model is a fine-tuned version of [Ameer05/model-tokenizer-repo](https://huggingface.co/Ameer05/model-tokenizer-repo) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1123 - Rouge1: 52.5826 - Rouge2: 34.3861 - Rougel: 41.8525 - Rougelsum: 51.0015 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | No log | 0.91 | 5 | 3.2243 | 42.8593 | 24.8652 | 34.1789 | 41.406 | | No log | 1.91 | 10 | 2.6948 | 48.8571 | 28.6711 | 39.2648 | 46.188 | | No log | 2.91 | 15 | 2.4665 | 50.6085 | 30.4034 | 39.7406 | 48.5449 | | No log | 3.91 | 20 | 2.3329 | 52.2357 | 32.3398 | 41.574 | 49.4316 | | 3.6611 | 4.91 | 25 | 2.2362 | 52.0134 | 33.1612 | 41.3103 | 50.255 | | 3.6611 | 5.91 | 30 | 2.1833 | 51.5434 | 32.7045 | 40.5683 | 49.4238 | | 3.6611 | 6.91 | 35 | 2.1462 | 53.5144 | 35.4518 | 42.8615 | 51.4053 | | 3.6611 | 7.91 | 40 | 2.1518 | 52.0985 | 33.6754 | 41.5936 | 50.5159 | | 2.0326 | 8.91 | 45 | 2.1075 | 53.1401 | 34.9721 | 42.2973 | 51.8454 | | 2.0326 | 9.91 | 50 | 2.1123 | 52.5826 | 34.3861 | 41.8525 | 51.0015 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 2.0.0 - Tokenizers 0.10.3
huggingtweets/rebeudeter
huggingtweets
2022-03-21T17:55:17Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-21T17:55:08Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1421289007753859077/3X1VHMRx_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Billy ☄️🧡</div> <div style="text-align: center; font-size: 14px;">@rebeudeter</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Billy ☄️🧡. | Data | Billy ☄️🧡 | | --- | --- | | Tweets downloaded | 3220 | | Retweets | 363 | | Short tweets | 205 | | Tweets kept | 2652 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3mz5i9lj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rebeudeter's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1qau529e) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1qau529e/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/rebeudeter') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ianMconversica/autonlp-test-654919306
ianMconversica
2022-03-21T17:29:34Z
5
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autonlp", "unk", "dataset:McIan91/autonlp-data-test", "co2_eq_emissions", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-21T17:28:50Z
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - McIan91/autonlp-data-test co2_eq_emissions: 0.7013851565380207 --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 654919306 - CO2 Emissions (in grams): 0.7013851565380207 ## Validation Metrics - Loss: 2.5570242404937744 - Rouge1: 72.7273 - Rouge2: 44.4444 - RougeL: 72.7273 - RougeLsum: 72.7273 - Gen Len: 17.0 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/McIan91/autonlp-test-654919306 ```
qahq/CL-AraBERTv0.1-base
qahq
2022-03-21T16:04:15Z
11
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-14T00:26:07Z
--- license: apache-2.0 ---
espnet/aaf_openslr57
espnet
2022-03-21T14:36:37Z
1
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "fr", "dataset:openslr", "arxiv:1804.00015", "region:us" ]
automatic-speech-recognition
2022-03-21T04:58:18Z
--- tags: - espnet - audio - automatic-speech-recognition language: fr datasets: - openslr --- ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Newt007/bin_cls_att.h5
Newt007
2022-03-21T14:18:09Z
0
0
null
[ "region:us" ]
null
2022-03-21T14:11:06Z
Binary-classification model for malicious and benign requests ``` from keras import models models.load_model('xxx.h5') ``` --- language: - python 3.7 --- libraries: - keras==2.4.3 - tensorflow==2.3.1
beston91/gpt2-xl_ft_logits_1k_2
beston91
2022-03-21T11:27:12Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-20T22:16:05Z
--- tags: - generated_from_trainer model-index: - name: gpt2-xl_ft_logits_1k_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl_ft_logits_1k_2 This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.4793 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.91 | 5 | 6.0743 | | No log | 1.91 | 10 | 6.1649 | | No log | 2.91 | 15 | 6.3068 | | No log | 3.91 | 20 | 6.4793 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6 ### Perplexity Score: 17.59307861328125
selimsametoglu/selims
selimsametoglu
2022-03-21T11:01:59Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-19T16:00:34Z
--- license: mit tags: - generated_from_trainer datasets: - tweet_eval model-index: - name: selims results: [] widget: - text: "I love conducting research on twins!" example_title: "Sentiment analysis - English" - text: "Ja, ik vind het tweelingen onderzoek leuk maar complex, weet je." example_title: "Sentiment analysis - Dutch" --- # selims This model is a fine-tuned version of [nlptown/bert-base-multilingual-uncased-sentiment](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment) on the tweet_eval dataset. ## Model description This is a multilingual model for sentiment analysis that provides outputs ranging from 1 to 5, following the same logic as the 1 to 5-star reviews. ## Intended uses & limitations This sentiment model can be applied to datasets in the following languages: English, Dutch, German, French, Spanish, and Italian. ## Training and evaluation data For fine-tunning of this model, the Tweet_eval dataset was used. ## Training procedure Please refer to the information below: ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cpu - Datasets 2.0.0 - Tokenizers 0.10.3
beston91/gpt2-xl_ft_logits_5k_2
beston91
2022-03-21T10:16:30Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-20T23:02:24Z
--- tags: - generated_from_trainer model-index: - name: gpt2-xl_ft_logits_5k_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl_ft_logits_5k_2 This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.2407 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.99 | 27 | 6.1106 | | No log | 1.99 | 54 | 6.1400 | | No log | 2.99 | 81 | 6.1875 | | No log | 3.99 | 108 | 6.2407 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6 ### Perplexity Score: 17.59415626525879
imkaushalpatel/YOLOv5
imkaushalpatel
2022-03-21T09:50:21Z
0
0
null
[ "region:us" ]
null
2022-03-21T09:49:14Z
YOLOv5 🚀 is a family of compound-scaled object detection models trained on the COCO dataset, and includes simple functionality for Test Time Augmentation (TTA), model ensembling, hyperparameter evolution, and export to ONNX, CoreML and TFLite.
Ameer05/test
Ameer05
2022-03-21T09:35:03Z
18
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "summarization", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-21T08:16:45Z
--- tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test This model is a fine-tuned version of [Ameer05/tokenizer-repo](https://huggingface.co/Ameer05/tokenizer-repo) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6109 - Rouge1: 54.9442 - Rouge2: 45.3299 - Rougel: 50.5219 - Rougelsum: 53.6475 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | No log | 0.91 | 5 | 2.3705 | 53.62 | 44.3835 | 49.6135 | 52.693 | | No log | 1.91 | 10 | 1.9035 | 47.478 | 37.0934 | 39.7935 | 45.1881 | | No log | 2.91 | 15 | 1.7990 | 54.2488 | 45.0782 | 49.8421 | 52.7564 | | No log | 3.91 | 20 | 1.7125 | 55.7903 | 46.7554 | 52.2733 | 54.9389 | | 2.4456 | 4.91 | 25 | 1.6421 | 52.2279 | 43.4391 | 49.6955 | 51.2915 | | 2.4456 | 5.91 | 30 | 1.6102 | 55.8598 | 47.3293 | 53.1337 | 54.8596 | | 2.4456 | 6.91 | 35 | 1.6164 | 53.7902 | 44.6622 | 49.5045 | 52.2304 | | 2.4456 | 7.91 | 40 | 1.6015 | 51.5597 | 42.0333 | 47.9639 | 50.1154 | | 1.239 | 8.91 | 45 | 1.6067 | 53.0301 | 43.7214 | 49.0227 | 51.8109 | | 1.239 | 9.91 | 50 | 1.6109 | 54.9442 | 45.3299 | 50.5219 | 53.6475 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 2.0.0 - Tokenizers 0.10.3
Yaxin/electra-small-discriminator-yelp-mlm
Yaxin
2022-03-21T09:21:02Z
5
0
transformers
[ "transformers", "pytorch", "electra", "fill-mask", "generated_from_trainer", "dataset:yelp_review_full", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-21T08:41:41Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - yelp_review_full metrics: - accuracy model-index: - name: test-electra-small-yelp results: - task: name: Masked Language Modeling type: fill-mask dataset: name: yelp_review_full yelp_review_full type: yelp_review_full args: yelp_review_full metrics: - name: Accuracy type: accuracy value: 0.5677007577622891 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-electra-small-yelp This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on the yelp_review_full yelp_review_full dataset. It achieves the following results on the evaluation set: - Loss: 2.2601 - Accuracy: 0.5677 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0 - Datasets 1.18.3 - Tokenizers 0.11.0
doctorlan/autonlp-ctrip-653519223
doctorlan
2022-03-21T09:01:53Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "unk", "dataset:doctorlan/autonlp-data-ctrip", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-21T08:38:42Z
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - doctorlan/autonlp-data-ctrip co2_eq_emissions: 24.879856894708393 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 653519223 - CO2 Emissions (in grams): 24.879856894708393 ## Validation Metrics - Loss: 0.14671853184700012 - Accuracy: 0.9676666666666667 - Precision: 0.9794159885112494 - Recall: 0.9742857142857143 - AUC: 0.9901396825396825 - F1: 0.9768441155407017 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/doctorlan/autonlp-ctrip-653519223 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("doctorlan/autonlp-ctrip-653519223", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("doctorlan/autonlp-ctrip-653519223", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
doctorlan/autonlp-JD-bert-653619233
doctorlan
2022-03-21T08:54:10Z
3
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "unk", "dataset:doctorlan/autonlp-data-JD-bert", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-21T08:48:42Z
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - doctorlan/autonlp-data-JD-bert co2_eq_emissions: 5.919372931976555 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 653619233 - CO2 Emissions (in grams): 5.919372931976555 ## Validation Metrics - Loss: 0.15083155035972595 - Accuracy: 0.952650883627876 - Precision: 0.9631399317406143 - Recall: 0.9412941961307538 - AUC: 0.9828776962419389 - F1: 0.9520917678812415 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/doctorlan/autonlp-JD-bert-653619233 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("doctorlan/autonlp-JD-bert-653619233", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("doctorlan/autonlp-JD-bert-653619233", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
mrp/SimCSE-model-WangchanBERTa-V2
mrp
2022-03-21T08:34:51Z
7
1
sentence-transformers
[ "sentence-transformers", "pytorch", "camembert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-21T08:33:54Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 221 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 3e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 32, 'do_lower_case': False}) with Transformer model: CamembertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
IsaacSST/gpt2-xl-ft-d4-0.3
IsaacSST
2022-03-21T04:24:22Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-21T01:38:11Z
--- tags: - generated_from_trainer model-index: - name: gpt2-xl-ft-d4-0.3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl-ft-d4-0.3 This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3401 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 2022 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 156 | 1.2334 | | No log | 2.0 | 312 | 1.2392 | | No log | 3.0 | 468 | 1.2944 | | 1.1868 | 4.0 | 624 | 1.3401 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
BigSalmon/InformalToFormalLincoln28
BigSalmon
2022-03-21T03:14:50Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-21T03:03:13Z
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln28") model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln28") ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` - declining viewership facing the nba. - does not have to be this way. - in fact, many solutions exist. - the four point line would surely draw in eyes. Text: failing to draw in the masses, the NBA has fallen into disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap solutions could revive the league. the addition of the much-hyped four-point line would surely juice viewership. *** - ``` ``` infill: chrome extensions [MASK] accomplish everyday tasks. Translated into the Style of Abraham Lincoln: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks. infill: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. infill: ``` ``` Essay Intro (Warriors vs. Rockets in Game 7): text: eagerly anticipated by fans, game 7's are the highlight of the post-season. text: ever-building in suspense, game 7's have the crowd captivated. *** Essay Intro (South Korean TV Is Becoming Popular): text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ). text: increasingly held in critical esteem, south korean television continues to impress. text: at the forefront of quality content, south korea is quickly achieving celebrity status. *** Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ``` ``` - declining viewership facing the nba. - does not have to be this way. - in fact, many solutions exist. - the four point line would surely draw in eyes. text: failing to draw in the masses, the nba has ( fallen into / succumb to / bowed to ) disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap ( solutions / interventions / enhancements ) could revive the league. the addition of the much-hyped four-point line would surely juice viewership. *** - ``` ``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ```
dodobird/distilbert-base-uncased-finetuned-emotion
dodobird
2022-03-21T03:04:10Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-21T00:37:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9245 - name: F1 type: f1 value: 0.9248889383977278 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2154 - Accuracy: 0.9245 - F1: 0.9249 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8175 | 1.0 | 250 | 0.3139 | 0.9025 | 0.8986 | | 0.2485 | 2.0 | 500 | 0.2154 | 0.9245 | 0.9249 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
saghar/xtremedistil-l6-h384-uncased-finetuned-wikitext103
saghar
2022-03-20T23:45:34Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "dataset:wikitext", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-19T23:21:13Z
--- license: mit tags: - generated_from_trainer datasets: - wikitext model-index: - name: xtremedistil-l6-h384-uncased-finetuned-wikitext103 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xtremedistil-l6-h384-uncased-finetuned-wikitext103 This model is a fine-tuned version of [microsoft/xtremedistil-l6-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h384-uncased) on the wikitext dataset. It achieves the following results on the evaluation set: - Loss: 6.5526 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.1974 | 1.0 | 3125 | 6.7483 | | 6.8171 | 2.0 | 6250 | 6.5962 | | 6.7483 | 3.0 | 9375 | 6.5526 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.11.0 - Datasets 1.1.1 - Tokenizers 0.10.1
aytugkaya/distilbert-base-uncased-finetuned-clinc
aytugkaya
2022-03-20T22:21:56Z
11
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-20T16:49:55Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9148387096774193 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7760 - Accuracy: 0.9148 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2994 | 1.0 | 318 | 3.3016 | 0.7442 | | 2.6387 | 2.0 | 636 | 1.8892 | 0.8339 | | 1.5535 | 3.0 | 954 | 1.1602 | 0.8948 | | 1.0139 | 4.0 | 1272 | 0.8619 | 0.9084 | | 0.7936 | 5.0 | 1590 | 0.7760 | 0.9148 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.6
jcai1/similarity6
jcai1
2022-03-20T21:38:25Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-20T21:32:15Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: similarity6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # similarity6 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 393 | 0.2287 | 0.9341 | 0.9112 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
KoboldAI/GPT-Neo-2.7B-Shinen
KoboldAI
2022-03-20T18:49:18Z
669
22
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- language: en license: mit --- # GPT-Neo 2.7B - Shinen ## Model Description GPT-Neo 2.7B-Shinen is a finetune created using EleutherAI's GPT-Neo 2.7B model. Compared to GPT-Neo-2.7-Horni, this model is much heavier on the sexual content. **Warning: THIS model is NOT suitable for use by minors. The model will output X-rated content.** ## Training data The training data contains user-generated stories from sexstories.com. All stories are tagged using the following way: ``` [Theme: <theme1>, <theme2> ,<theme3>] <Story goes here> ``` ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py >>> from transformers import pipeline >>> generator = pipeline('text-generation', model='KoboldAI/GPT-Neo-2.7B-Shinen') >>> generator("She was staring at me", do_sample=True, min_length=50) [{'generated_text': 'She was staring at me with a look that said it all. She wanted me so badly tonight that I wanted'}] ``` ### Limitations and Biases GPT-Neo was trained as an autoregressive language model. This means that its core functionality is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. GPT-Neo-Shinen was trained on a dataset known to contain profanity, lewd, and otherwise abrasive language. GPT-Neo-Shinen *WILL* produce socially unacceptable text without warning. GPT-Neo-Shinen will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results. ### BibTeX entry and citation info The model is made using the following software: ```bibtex @software{gpt-neo, author = {Black, Sid and Leo, Gao and Wang, Phil and Leahy, Connor and Biderman, Stella}, title = {{GPT-Neo: Large Scale Autoregressive Language Modeling with Mesh-Tensorflow}}, month = mar, year = 2021, note = {{If you use this software, please cite it using these metadata.}}, publisher = {Zenodo}, version = {1.0}, doi = {10.5281/zenodo.5297715}, url = {https://doi.org/10.5281/zenodo.5297715} } ```
KoboldAI/GPT-J-6B-Shinen
KoboldAI
2022-03-20T18:48:45Z
1,746
24
transformers
[ "transformers", "pytorch", "gptj", "text-generation", "en", "arxiv:2101.00027", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- language: en license: mit --- # GPT-J 6B - Shinen ## Model Description GPT-J 6B-Shinen is a finetune created using EleutherAI's GPT-J 6B model. Compared to GPT-Neo-2.7-Horni, this model is much heavier on the sexual content. **Warning: THIS model is NOT suitable for use by minors. The model will output X-rated content.** ## Training data The training data contains user-generated stories from sexstories.com. All stories are tagged using the following way: ``` [Theme: <theme1>, <theme2> ,<theme3>] <Story goes here> ``` ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py >>> from transformers import pipeline >>> generator = pipeline('text-generation', model='KoboldAI/GPT-J-6B-Shinen') >>> generator("She was staring at me", do_sample=True, min_length=50) [{'generated_text': 'She was staring at me with a look that said it all. She wanted me so badly tonight that I wanted'}] ``` ### Limitations and Biases The core functionality of GPT-J is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. When prompting GPT-J it is important to remember that the statistically most likely next token is often not the token that produces the most "accurate" text. Never depend upon GPT-J to produce factually accurate output. GPT-J was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending upon use case GPT-J may produce socially unacceptable text. See [Sections 5 and 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a more detailed analysis of the biases in the Pile. As with all language models, it is hard to predict in advance how GPT-J will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results. ### BibTeX entry and citation info The model uses the following model as base: ```bibtex @misc{gpt-j, author = {Wang, Ben and Komatsuzaki, Aran}, title = {{GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model}}, howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}}, year = 2021, month = May } ``` ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/), as well as the Cloud TPU team for providing early access to the [Cloud TPU VM](https://cloud.google.com/blog/products/compute/introducing-cloud-tpu-vms) Alpha.
beston91/gpt2-xl_ft_mult_5k
beston91
2022-03-20T17:31:57Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-19T08:50:34Z
--- tags: - generated_from_trainer model-index: - name: gpt2-xl_ft_mult_5k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl_ft_mult_5k This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6758 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.99 | 27 | 6.3035 | | No log | 1.99 | 54 | 1.2709 | | No log | 2.99 | 81 | 0.7482 | | No log | 3.99 | 108 | 0.6758 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6 ### Perplexity Score: 21.267963409423828 ### Dataset Size Size: 5000
cammy/pegasus-cnn_dailymail-1000-lit-evalMA-ga1
cammy
2022-03-20T16:07:53Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-20T14:57:04Z
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: pegasus-cnn_dailymail-1000-lit-evalMA-ga1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-cnn_dailymail-1000-lit-evalMA-ga1 This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6852 - Rouge1: 25.8242 - Rouge2: 11.1309 - Rougel: 20.7946 - Rougelsum: 22.5591 - Gen Len: 46.32 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 250 | 1.7061 | 25.8547 | 10.8573 | 20.8419 | 22.5942 | 44.36 | | 1.4533 | 2.0 | 500 | 1.6876 | 26.105 | 11.5635 | 21.132 | 23.044 | 45.65 | | 1.4533 | 3.0 | 750 | 1.6852 | 25.8242 | 11.1309 | 20.7946 | 22.5591 | 46.32 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
cammy/pegasus-cnn_dailymail-1000-lit-evalMA-ga
cammy
2022-03-20T14:36:20Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-20T13:26:27Z
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: pegasus-cnn_dailymail-1000-lit-evalMA-ga results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-cnn_dailymail-1000-lit-evalMA-ga This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6852 - Rouge1: 25.789 - Rouge2: 11.0694 - Rougel: 20.7716 - Rougelsum: 22.4851 - Gen Len: 46.32 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 250 | 1.7061 | 25.8286 | 10.8156 | 20.9502 | 22.6588 | 44.36 | | 1.4533 | 2.0 | 500 | 1.6876 | 26.0862 | 11.5197 | 21.1282 | 23.0963 | 45.65 | | 1.4533 | 3.0 | 750 | 1.6852 | 25.789 | 11.0694 | 20.7716 | 22.4851 | 46.32 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
Slavka/distil-bert-finetuned-log-parser-1
Slavka
2022-03-20T07:15:25Z
6
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-19T01:08:19Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: distil-bert-finetuned-log-parser-1 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distil-bert-finetuned-log-parser-1 This model is a fine-tuned version of [distilbert-base-uncased-distilled-squad](https://huggingface.co/distilbert-base-uncased-distilled-squad) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 33, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
willcai/wav2vec2_common_voice_accents_5
willcai
2022-03-20T07:07:37Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-19T22:07:12Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2_common_voice_accents_5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2_common_voice_accents_5 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.0027 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 48 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 384 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.4163 | 1.34 | 400 | 0.5520 | | 0.3305 | 2.68 | 800 | 0.1698 | | 0.2138 | 4.03 | 1200 | 0.1104 | | 0.1714 | 5.37 | 1600 | 0.0944 | | 0.1546 | 6.71 | 2000 | 0.0700 | | 0.1434 | 8.05 | 2400 | 0.0610 | | 0.1272 | 9.4 | 2800 | 0.0493 | | 0.1183 | 10.74 | 3200 | 0.0371 | | 0.1113 | 12.08 | 3600 | 0.0468 | | 0.1013 | 13.42 | 4000 | 0.0336 | | 0.0923 | 14.77 | 4400 | 0.0282 | | 0.0854 | 16.11 | 4800 | 0.0410 | | 0.0791 | 17.45 | 5200 | 0.0252 | | 0.0713 | 18.79 | 5600 | 0.0128 | | 0.0662 | 20.13 | 6000 | 0.0252 | | 0.0635 | 21.48 | 6400 | 0.0080 | | 0.0607 | 22.82 | 6800 | 0.0098 | | 0.0557 | 24.16 | 7200 | 0.0069 | | 0.0511 | 25.5 | 7600 | 0.0057 | | 0.0474 | 26.85 | 8000 | 0.0046 | | 0.045 | 28.19 | 8400 | 0.0037 | | 0.0426 | 29.53 | 8800 | 0.0027 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.4 - Tokenizers 0.11.6
espnet/ftshijt_espnet2_asr_dsing_hubert_conformer
espnet
2022-03-20T04:46:53Z
1
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "dataset:dsing", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-20T04:45:28Z
--- tags: - espnet - audio - automatic-speech-recognition language: noinfo datasets: - dsing license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/ftshijt_espnet2_asr_dsing_hubert_conformer` This model was trained by jiatong using dsing recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet pip install -e . cd egs2/dsing/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/ftshijt_espnet2_asr_dsing_hubert_conformer ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Sat Mar 19 23:02:37 EDT 2022` - python version: `3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0]` - espnet version: `espnet 0.10.7a1` - pytorch version: `pytorch 1.10.1` - Git hash: `c1ed71c6899e54c0b3dad82687886b1183cd0885` - Commit date: `Wed Mar 16 23:34:49 2022 -0400` ## asr_train_asr_conformer7_hubert_ll60k_large_raw_bpe500_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_bpe500_valid.loss.ave_asr_model_latest/dev|482|4018|83.6|9.4|7.0|6.4|22.8|58.3| |decode_asr_lm_lm_train_lm_bpe500_valid.loss.ave_asr_model_latest/test|480|4632|81.4|12.3|6.3|4.5|23.1|52.1| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_bpe500_valid.loss.ave_asr_model_latest/dev|482|18692|88.5|3.1|8.4|5.9|17.4|58.3| |decode_asr_lm_lm_train_lm_bpe500_valid.loss.ave_asr_model_latest/test|480|21787|87.9|4.3|7.8|4.5|16.6|52.1| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_bpe500_valid.loss.ave_asr_model_latest/dev|482|6097|82.2|7.1|10.7|5.7|23.5|58.3| |decode_asr_lm_lm_train_lm_bpe500_valid.loss.ave_asr_model_latest/test|480|7736|81.7|9.2|9.1|4.0|22.3|52.1| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_conformer7_hubert_ll60k_large.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_conformer7_hubert_ll60k_large_raw_bpe500_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: true sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 35 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 8 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: - frontend.upstream num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_bpe500_sp/train/speech_shape - exp/asr_stats_raw_bpe500_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_bpe500_sp/valid/speech_shape - exp/asr_stats_raw_bpe500_sp/valid/text_shape.bpe batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train30_sp/wav.scp - speech - kaldi_ark - - dump/raw/train30_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev/wav.scp - speech - kaldi_ark - - dump/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.0025 scheduler: warmuplr scheduler_conf: warmup_steps: 40000 token_list: - <blank> - <unk> - ▁I - '''' - ▁YOU - S - T - ▁THE - M - ▁ME - ▁A - ▁AND - ▁TO - E - A - ING - D - ▁MY - ▁ - O - ▁IT - I - N - RE - Y - ▁BE - ▁IN - ▁ON - ▁LOVE - U - ▁WE - LL - H - ▁YOUR - ▁S - IN - ▁OF - ▁DO - ▁THAT - ▁ALL - L - ▁DON - ▁OH - ▁LIKE - ▁KNOW - ▁FOR - ▁CAN - ▁JUST - P - ▁BUT - ED - K - ▁WHEN - ▁SO - R - ▁GO - ▁WHAT - ▁C - ▁WITH - W - ▁F - C - ▁NO - ER - ▁ONE - ▁LET - VE - ES - ▁NOW - ▁BABY - G - ▁GOT - ▁COME - CAUSE - LE - B - ▁B - AR - ▁UP - ▁' - ▁W - ▁SEE - ▁TIME - ▁ARE - ▁G - ▁LOOK - ▁THIS - F - ▁IS - ▁NEVER - ▁M - ▁P - AN - ▁WAS - ▁WAY - ▁IF - OR - ▁SAY - V - ▁R - ▁T - ▁DOWN - RA - ▁THERE - ▁HEART - ▁NOT - RO - ▁WILL - ▁OUT - CE - ▁WANT - ▁YEAH - ▁HAVE - ▁GIVE - ▁TOO - ▁GONNA - ▁HOW - ▁NEED - ▁GET - ▁TAKE - ▁EVERY - ▁FEEL - ▁HE - EN - ▁FROM - ▁HA - ▁K - ▁SHE - 'ON' - ▁DI - RI - ▁ONLY - NE - ▁WHO - ▁AWAY - ▁E - ▁D - ▁LIFE - ▁MAKE - IC - ▁BACK - ▁WHERE - ▁MADE - ▁DAY - ▁HERE - ▁LO - ▁HER - ▁AS - ▁GOOD - ▁WANNA - ▁OOH - ▁TELL - LY - TH - ▁WON - ▁LIGHT - ▁KEEP - ▁MA - ▁LA - ▁SH - ▁WORLD - ▁MORE - ▁LI - AL - ▁COULD - ▁GIRL - ▁NOTHING - ▁EVER - ▁THINK - IE - ▁BY - ▁AT - ▁TONIGHT - ▁THEY - ▁CALL - ▁HO - ▁WOULD - IL - ▁OUR - ▁FALL - ▁NIGHT - ▁THAN - ▁DE - ▁SOME - ▁WAIT - ▁RIGHT - ▁RE - ▁HALLELUJAH - ▁TH - NG - ▁CO - ▁WERE - ▁TALK - ET - ▁BO - ▁HOLD - UR - ▁BEEN - ▁US - ▁PA - VER - ▁EYES - ▁DREAM - ▁SONG - ▁SHOULD - ▁STILL - ▁OVER - TA - ▁ANYMORE - IGHT - ▁STAY - ▁BETTER - LESS - ▁THROUGH - ▁LITTLE - X - ▁GONE - ▁AIN - ▁DA - ▁HOLDING - ▁HURT - ▁TRY - ▁FIND - Z - DE - ▁LAST - ▁SAID - ▁ALWAYS - ▁BODY - ▁MIND - ▁CRY - ▁EVEN - ▁RUN - ▁HOPE - ▁WITHOUT - ▁MISS - ▁ABOUT - ▁HAND - ▁J - ▁AGAIN - ▁THOUGH - ▁NAH - ▁LIVE - ▁BA - ▁OLD - ▁HEAD - ▁FIRE - ▁MAN - ▁SOMETHING - ▁WHY - THER - ▁HOME - ▁OR - ▁INSIDE - ▁NEW - ▁HEY - TION - ▁EVERYTHING - ▁HAD - ▁SOMETIMES - ▁HARD - ▁TOUCH - ▁HEAR - ▁AM - ▁MUCH - ▁LONG - ▁STAR - GETTING - ▁WALK - ▁PEOPLE - ▁BEFORE - ▁CLOSE - ▁TWO - ▁FAR - ▁SHOW - ▁STAND - ▁LOSE - ▁HELP - ▁NAME - ▁BOY - ▁TRUE - ▁PLAY - ▁DARK - ▁THINGS - ▁NA - ▁TEAR - ▁END - ▁NOBODY - ▁SEA - ▁ROCKABYE - ▁BELIEVE - ▁BROKE - ▁AROUND - ▁START - ▁KISS - ▁FEELING - ▁BREAK - ▁SOMEONE - ▁FRIEND - ▁ALONE - ▁BEAUTIFUL - ▁CRAZY - ▁OWN - OSE - ▁STOP - ▁LOST - ▁HIM - ▁BAD - ▁CHANCE - ▁REALLY - ▁WISH - ▁MOVE - ▁SKY - ▁PLACE - AKE - ▁LEAVE - ▁YA - ▁STRONG - ▁PUT - ▁OPEN - ▁WRONG - ▁COLD - OCK - ▁USED - ▁FOUND - ▁LONELY - ▁DANCE - EACH - ▁ANOTHER - ▁SIDE - ▁UNDER - ▁MATTER - ▁THESE - ▁CARE - ▁MINE - ▁SHINE - ▁AFRAID - ▁TURN - ▁PLEASE - ▁SUN - ▁DIAMOND - ▁UNTIL - ▁FACE - ▁LEARN - ▁TRUST - ▁WONDER - ▁BREATH - ATE - ▁SORRY - ▁HU - ▁WATCH - ▁LATE - ROUND - ▁ARMS - ▁PERFECT - ▁MAYBE - ▁PULL - ▁REMEMBER - ▁FIGHT - ▁MYSELF - ▁INTO - ▁DARLING - ▁THUNDER - ▁FOLLOW - ▁REASON - ▁BURN - ▁HIS - ▁MUST - ▁FREE - ▁FLASHLIGHT - ▁1 - ▁ENOUGH - ▁DRINK - ▁WORDS - ▁HIDE - ▁UN - ▁FORGET - ▁SURE - ▁CHANGE - ▁SMILE - ▁PROMISE - ▁FOREVER - '2' - ▁SWEET - ▁SAME - ▁OOOH - ▁PART - ▁SOMEBODY - NESS - ▁BRIGHT - ▁HEAVEN - ▁DEEP - ▁HIGH - ▁INSTEAD - ▁MOMENT - ▁ALONG - ▁ALRIGHT - ▁SLOW - ▁TOMORROW - ▁SOUL - ▁QU - ▁PUSH - ▁CHANDELIER - ▁LEFT - SIDE - ▁TOLD - ▁KNEW - READY - ▁LOVING - ▁SAW - '3' - ▁WORK - ▁DANCING - ▁THREE - ▁SAVE - ▁SHOOT - ▁LEAD - ▁SKI - ▁WILD - ▁WIND - ▁WHILE - ▁EDGE - ▁HAPPY - ▁FEAR - STUCK - ▁MOST - ▁LISTEN - ▁WOAH - ▁FIRST - ▁JOLENE - ▁VOICE - ▁COMP - ▁MILLION - FUL - ▁OOOOOH - ▁CAME - ▁RISE - ▁NEXT - ▁COUNT - ▁MOUNTAIN - ▁ROOM - ▁BLUE - ▁HIT - ▁RAISE - J - ▁THOUSAND - ▁SHAP - ▁TREAT - ▁DRY - ▁FINALLY - ▁TITANIUM - ▁CARRY - ▁TRUTH - ▁WATER - ▁MORNING - TIME - ▁BELONG - ▁UMA - ▁ALIVE - ▁ELSE - ▁ANGEL - ▁BRAND - ▁APART - ▁EVERYBODY - ▁SOUND - ▁GUESS - ▁PRAY - ▁FAITH - ▁AFTER - ▁THROW - ▁TRIED - ▁SLEEP - ▁FOOL - ▁DISCOVERING - ▁FUCK - ▁TASTE - ▁UNDERSTAND - ▁SHAME - ▁POWER - ▁WELCOME - ▁FELT - ▁SAFE - ▁DESERVE - ▁GAME - ▁SUPERMA - ▁SWEAR - ▁BETWEEN - ▁GLASS - ▁CATCH - ▁TOGETHER - '0' - '4' - '6' - '5' - '1' - '8' - '7' - '9' - Q - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false extract_feats_in_collect_stats: false use_preprocessor: true token_type: bpe bpemodel: data/token_list/bpe_unigram500/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: s3prl frontend_conf: frontend_conf: upstream: hubert_large_ll60k download_dir: ./hub multilayer_feature: true fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: utterance_mvn normalize_conf: {} preencoder: linear preencoder_conf: input_size: 1024 output_size: 80 encoder: conformer encoder_conf: output_size: 512 attention_heads: 8 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d2 normalize_before: true macaron_style: true pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 8 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 required: - output_dir - token_list version: 0.10.7a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Wikidepia/gpt2-spam
Wikidepia
2022-03-20T01:10:59Z
4
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-20T01:08:27Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: gpt2-spam results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-spam This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.11.6
beston91/gpt2-xl_ft_mult_1k
beston91
2022-03-19T23:56:20Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-18T23:49:34Z
--- tags: - generated_from_trainer model-index: - name: gpt2-xl_ft_mult_1k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl_ft_mult_1k This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.1137 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.91 | 5 | 6.7968 | | No log | 1.91 | 10 | 6.6621 | | No log | 2.91 | 15 | 6.4335 | | No log | 3.91 | 20 | 6.1137 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
msamogh/autonlp-cai-out-of-scope-649919112
msamogh
2022-03-19T21:40:41Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autonlp", "en", "dataset:msamogh/autonlp-data-cai-out-of-scope", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-19T21:40:14Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - msamogh/autonlp-data-cai-out-of-scope co2_eq_emissions: 0.49924480682533606 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 649919112 - CO2 Emissions (in grams): 0.49924480682533606 ## Validation Metrics - Loss: 0.49354293942451477 - Accuracy: 0.8064516129032258 - Precision: 0.8181818181818182 - Recall: 0.9 - AUC: 0.8689393939393939 - F1: 0.8571428571428572 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/msamogh/autonlp-cai-out-of-scope-649919112 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("msamogh/autonlp-cai-out-of-scope-649919112", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("msamogh/autonlp-cai-out-of-scope-649919112", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
ronykroy/distilbert-base-uncased-finetuned-emotion
ronykroy
2022-03-19T17:55:13Z
15
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-19T17:30:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.922 - name: F1 type: f1 value: 0.9222310284051585 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2334 - Accuracy: 0.922 - F1: 0.9222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8454 | 1.0 | 250 | 0.3308 | 0.8975 | 0.8937 | | 0.2561 | 2.0 | 500 | 0.2334 | 0.922 | 0.9222 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
sanchit-gandhi/wav2vec2-2-gpt2-no-adapter-regularisation
sanchit-gandhi
2022-03-19T17:43:39Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "generated_from_trainer", "dataset:librispeech_asr", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-17T16:34:45Z
--- tags: - generated_from_trainer datasets: - librispeech_asr model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model was trained from scratch on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 1.7494 - Wer: 1.0532 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.4828 | 2.8 | 2500 | 4.0554 | 1.7873 | | 0.8683 | 5.61 | 5000 | 2.5401 | 1.3156 | | 0.4394 | 8.41 | 7500 | 1.7519 | 1.1129 | | 0.0497 | 11.21 | 10000 | 1.7102 | 1.0738 | | 0.031 | 14.01 | 12500 | 1.7395 | 1.0512 | | 0.0508 | 16.82 | 15000 | 1.7254 | 1.0463 | | 0.0462 | 19.62 | 17500 | 1.7494 | 1.0532 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
ShahafAricha/nqg-gpt2
ShahafAricha
2022-03-19T17:20:23Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-18T21:51:57Z
--- license: other --- --- datasets: - squad tags: - question-generation widget: - text: "The Technikum was conceived in the early 1900s by the German-Jewish fund Ezrah as a school of [HL]engineering and sciences[HL].[SEP]" --- # Transformer QG on SQuAD HLQG is Proposed by [Ying-Hong Chan & Yao-Chung Fan. (2019). A Re-current BERT-based Model for Question Generation.](https://www.aclweb.org/anthology/D19-5821/) **This is a Reproduce Version from distilled squad dataset** More detail: [p208p2002/Transformer-QG-on-SQuAD](https://github.com/p208p2002/Transformer-QG-on-SQuAD) ## Usage ### Input Format ``` C' = [c1, c2, ..., [HL], a1, ..., a|A|, [HL], ..., c|C|] ```
sanchit-gandhi/wav2vec2-2-gpt2-regularisation
sanchit-gandhi
2022-03-19T17:11:48Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "generated_from_trainer", "dataset:librispeech_asr", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-17T16:34:24Z
--- tags: - generated_from_trainer datasets: - librispeech_asr model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model was trained from scratch on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 1.8529 - Wer: 0.9977 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5506 | 2.8 | 2500 | 4.4928 | 1.8772 | | 0.5145 | 5.61 | 5000 | 1.8942 | 1.1063 | | 0.2736 | 8.41 | 7500 | 1.6550 | 1.0372 | | 0.0807 | 11.21 | 10000 | 1.7601 | 1.0004 | | 0.0439 | 14.01 | 12500 | 1.8014 | 1.0022 | | 0.043 | 16.82 | 15000 | 1.8534 | 1.0097 | | 0.0434 | 19.62 | 17500 | 1.8529 | 0.9977 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
xyfigo/distilbert-base-uncased-finetuned-emotion
xyfigo
2022-03-19T15:30:31Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-19T15:10:17Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.928 - name: F1 type: f1 value: 0.9281714323715586 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2286 - Accuracy: 0.928 - F1: 0.9282 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8579 | 1.0 | 250 | 0.3272 | 0.903 | 0.9008 | | 0.2543 | 2.0 | 500 | 0.2286 | 0.928 | 0.9282 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
richardc7/electricidad-small-finetuned-amazon-review-classification
richardc7
2022-03-19T15:29:47Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-17T12:37:33Z
--- tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy model-index: - name: electricidad-small-finetuned-amazon-review-classification results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: es metrics: - name: Accuracy type: accuracy value: 0.581 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electricidad-small-finetuned-amazon-review-classification This model is a fine-tuned version of [mrm8488/electricidad-small-discriminator](https://huggingface.co/mrm8488/electricidad-small-discriminator) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.9601 - Accuracy: 0.581 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.0136 | 1.0 | 25000 | 1.0153 | 0.5414 | | 0.9416 | 2.0 | 50000 | 0.9942 | 0.5576 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
IsaacSST/gpt2-xl-ft-d3
IsaacSST
2022-03-19T15:18:26Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-19T12:41:36Z
--- tags: - generated_from_trainer model-index: - name: gpt2-xl-ft-d3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl-ft-d3 This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3252 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 2022 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 156 | 1.2135 | | No log | 2.0 | 312 | 1.2181 | | No log | 3.0 | 468 | 1.2754 | | 1.1743 | 4.0 | 624 | 1.3252 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
IsaacSST/gpt2-xl-ft-d2
IsaacSST
2022-03-18T20:51:40Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-18T18:10:19Z
--- tags: - generated_from_trainer model-index: - name: gpt2-xl-ft-d2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl-ft-d2 This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3483 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 2022 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 156 | 1.2309 | | No log | 2.0 | 312 | 1.2382 | | No log | 3.0 | 468 | 1.2997 | | 1.172 | 4.0 | 624 | 1.3483 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
saghar/MiniLMv2-L6-H768-distilled-from-RoBERTa-Large-finetuned-wikitext103
saghar
2022-03-18T19:10:05Z
5
1
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "generated_from_trainer", "dataset:wikitext", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-16T03:59:15Z
--- tags: - generated_from_trainer datasets: - wikitext model-index: - name: MiniLMv2-L6-H768-distilled-from-RoBERTa-Large-finetuned-wikitext103 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MiniLMv2-L6-H768-distilled-from-RoBERTa-Large-finetuned-wikitext103 This model is a fine-tuned version of [nreimers/MiniLMv2-L6-H768-distilled-from-RoBERTa-Large](https://huggingface.co/nreimers/MiniLMv2-L6-H768-distilled-from-RoBERTa-Large) on the wikitext dataset. It achieves the following results on the evaluation set: - Loss: 3.7556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.6806 | 1.0 | 3125 | 3.9691 | | 4.0441 | 2.0 | 6250 | 3.7885 | | 3.9509 | 3.0 | 9375 | 3.7556 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.8.1 - Datasets 1.11.0 - Tokenizers 0.10.3
huggingtweets/sappublicsector
huggingtweets
2022-03-18T17:46:32Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-18T17:37:33Z
--- language: en thumbnail: http://www.huggingtweets.com/sappublicsector/1647625586483/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1486782108030930950/2JS43mTA_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">SAP Public Sector</div> <div style="text-align: center; font-size: 14px;">@sappublicsector</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from SAP Public Sector. | Data | SAP Public Sector | | --- | --- | | Tweets downloaded | 3200 | | Retweets | 38 | | Short tweets | 0 | | Tweets kept | 3162 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2alb74qi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @sappublicsector's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/sppp2pwd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/sppp2pwd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/sappublicsector') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
TestSB3/ppo-CartPole-v1
TestSB3
2022-03-18T13:41:36Z
0
0
null
[ "gym", "reinforcement-learning", "region:us" ]
reinforcement-learning
2022-03-18T10:20:52Z
--- tags: - gym - reinforcement-learning --- # TestSB3/ppo-CartPole-v1 This is a trained model of a PPO agent playing CartPole-v1 using the [rl-baselines3-zoo](https://github.com/DLR-RM/rl-baselines3-zoo) library. ## Usage (with RL-baselines3-zoo) Just clone the [rl-baselines3-zoo](https://github.com/DLR-RM/rl-baselines3-zoo) library. Then run: ```python python enjoy.py --algo ppo --env CartPole-v1 ``` ## Evaluation Results Mean Reward: 500.0 +/- 0.0 (300 test episodes) ## Citing the Project To cite this repository in publications: ``` @misc{rl-zoo3, author = {Raffin, Antonin}, title = {RL Baselines3 Zoo}, year = {2020}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/DLR-RM/rl-baselines3-zoo}}, } ```
reichenbach/switch-transformer-classification
reichenbach
2022-03-18T10:53:01Z
2
2
tf-keras
[ "tf-keras", "generic", "switch-transformers", "mixture-of-experts", "arxiv:2101.03961", "region:us" ]
null
2022-03-06T09:20:19Z
--- tags: - generic - switch-transformers - mixture-of-experts --- ## Tensorflow Keras Implementation of Switch Transformers for Text Classification. This repo contains the models [Switch Transformers for Text Classification](https://keras.io/examples/nlp/text_classification_with_switch_transformer/). Credits: [Khalid Salama](https://www.linkedin.com/in/khalid-salama-24403144/) - Original Author HF Contribution: [Rishav Chandra Varma](https://huggingface.co/reichenbach) ## Background Information ### Introduction In this example, we demonstrates implementation of the [Switch Transformer](https://arxiv.org/abs/2101.03961) model for text classification. For the purpose of this example, we are imdb dataset present in Keras Module. ### What is specialty of Switch Transformer ? The Switch Transformer replaces the feed forward network (FFN) layer in the standard Transformer with a Mixture of Expert (MoE) routing layer, where each expert operates independently on the tokens in the sequence. This allows increasing the model size without increasing the computation needed to process each example. Note that, for training the Switch Transformer efficiently, data and model parallelism need to be applied, so that expert modules can run simultaneously, each on its own accelerator. While the implementation described in the paper uses the [TensorFlow Mesh](https://github.com/tensorflow/mesh) framework for distributed training, this example presents a simple, non-distributed implementation of the Switch Transformer model for demonstration purposes.
sven-nm/roberta_classics_ner
sven-nm
2022-03-18T10:14:20Z
22
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "classics", "citation mining", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - en tags: - classics - citation mining widget: - text: "Homer's Iliad opens with an invocation to the muse (1. 1)." --- ### Model and entities `roberta_classics_ner` is a domain-specific RoBERTa-based model for named entity recognition in Classical Studies. It recognises bibliographical entities, such as: | id | label | desciption | Example | | --- | ------------- | ------------------------------------------- | --------------------- | | 0 | 'O' | Out of entity | | | 1 | 'B-AAUTHOR' | Ancient authors | *Herodotus* | | 2 | 'I-AAUTHOR' | | | | 3 | 'B-AWORK' | The title of an ancient work | *Symposium*, *Aeneid* | | 4 | 'I-AWORK' | | | | 5 | 'B-REFAUWORK' | A structured reference to an ancient work | *Homer, Il.* | | 6 | 'I-REFAUWORK' | | | | 7 | 'B-REFSCOPE' | The scope of a reference | *II.1.993a30–b11* | | 8 | 'I-REFSCOPE' | | | | 9 | 'B-FRAGREF' | A reference to fragmentary texts or scholia | *Frag. 19. West* | | 10 | 'I-FRAGREF' | | | ### Example ``` B-AAUTHOR B-AWORK B-REFSCOPE Homer 's Iliad opens with an invocation to the muse ( 1. 1). ``` ### Dataset `roberta_classics_ner` was fine-tuned and evaluated on `EpiBau`, a dataset which has not been released publicly yet. It is composed of four volumes of [Structures of Epic Poetry](https://www.epische-bauformen.uni-rostock.de/), a compendium on the narrative patterns and structural elements in ancient epic. Entity counts of the `Epibau` dataset are the following: | | train-set | dev-set | test-set | | -------------- | --------- | ------- | -------- | | word count | 712462 | 125729 | 122324 | | AAUTHOR | 4436 | 1368 | 1511 | | AWORK | 3145 | 780 | 670 | | REFAUWORK | 5102 | 988 | 1209 | | REFSCOPE | 14768 | 3193 | 2847 | | FRAGREF | 266 | 29 | 33 | | total entities | 13822 | 1415 | 2419 | ### Results The model was developed in the context of experiments reported [here](http://infoscience.epfl.ch/record/291236?&ln=en).Trained and tested on `EpiBau` with a 85-15 split, the model yields a general F1 score of **.82** (micro-averages). Detailed scores are displayed below. Evaluation was performed with the [CLEF-HIPE-scorer](https://github.com/impresso/CLEF-HIPE-2020-scorer), in strict mode) | metric | AAUTHOR | AWORK | REFSCOPE | REFAUWORK | | --------- | ------- | ----- | -------- | --------- | | F1 | .819 | .796 | .863 | .756 | | Precision | .842 | .818 | .860 | .755 | | Recall | .797 | .766 | .756 | .866 | Questions, remarks, help or contribution ? Get in touch [here](https://github.com/AjaxMultiCommentary), we'll be happy to chat !
aaraki/bert-base-uncased-finetuned-swag
aaraki
2022-03-18T08:16:58Z
1
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "multiple-choice", "generated_from_trainer", "dataset:swag", "license:apache-2.0", "endpoints_compatible", "region:us" ]
multiple-choice
2022-03-18T06:29:45Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - swag metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-swag results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-swag This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the swag dataset. It achieves the following results on the evaluation set: - Loss: 0.5155 - Accuracy: 0.8002 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6904 | 1.0 | 4597 | 0.5155 | 0.8002 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
moshew/paraphrase-mpnet-base-v2_SetFit_sst2
moshew
2022-03-18T07:53:15Z
1
1
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-18T07:53:07Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # moshew/paraphrase-mpnet-base-v2_SetFit_sst2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('moshew/paraphrase-mpnet-base-v2_SetFit_sst2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('moshew/paraphrase-mpnet-base-v2_SetFit_sst2') model = AutoModel.from_pretrained('moshew/paraphrase-mpnet-base-v2_SetFit_sst2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=moshew/paraphrase-mpnet-base-v2_SetFit_sst2) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 8650 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
moshew/paraphrase-mpnet-base-v2_SetFit_emotions
moshew
2022-03-18T07:16:29Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-18T07:16:19Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # moshew/paraphrase-mpnet-base-v2_SetFit_emotions This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('moshew/paraphrase-mpnet-base-v2_SetFit_emotions') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('moshew/paraphrase-mpnet-base-v2_SetFit_emotions') model = AutoModel.from_pretrained('moshew/paraphrase-mpnet-base-v2_SetFit_emotions') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=moshew/paraphrase-mpnet-base-v2_SetFit_emotions) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2500 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
youzanai/bert-product-title-chinese
youzanai
2022-03-18T06:19:06Z
6
3
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
基于有赞商品标题语料训练的bert模型。 模型示例代码参考 https://github.com/youzanai/trexpark
brad1141/Longformer-finetuned-norm
brad1141
2022-03-18T05:42:11Z
61
0
transformers
[ "transformers", "pytorch", "tensorboard", "longformer", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-18T02:29:24Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: Longformer-finetuned-norm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Longformer-finetuned-norm This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8127 - Precision: 0.8429 - Recall: 0.8701 - F1: 0.8562 - Accuracy: 0.8221 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.8008 | 1.0 | 1012 | 0.5839 | 0.8266 | 0.8637 | 0.8447 | 0.8084 | | 0.5168 | 2.0 | 2024 | 0.5927 | 0.7940 | 0.9102 | 0.8481 | 0.8117 | | 0.3936 | 3.0 | 3036 | 0.5651 | 0.8476 | 0.8501 | 0.8488 | 0.8143 | | 0.2939 | 4.0 | 4048 | 0.6411 | 0.8494 | 0.8578 | 0.8536 | 0.8204 | | 0.2165 | 5.0 | 5060 | 0.6833 | 0.8409 | 0.8822 | 0.8611 | 0.8270 | | 0.1561 | 6.0 | 6072 | 0.7643 | 0.8404 | 0.8810 | 0.8602 | 0.8259 | | 0.1164 | 7.0 | 7084 | 0.8127 | 0.8429 | 0.8701 | 0.8562 | 0.8221 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
beston91/gpt2-xl-ft-logits-5k
beston91
2022-03-18T02:54:46Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-17T23:54:46Z
--- tags: - generated_from_trainer model-index: - name: gpt2-xl-vanilla-debiased-5000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl-vanilla-debiased-5000 This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 7.0371 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.99 | 27 | 6.1985 | | No log | 1.99 | 54 | 6.4583 | | No log | 2.99 | 81 | 6.7709 | | No log | 3.99 | 108 | 7.0371 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
brad1141/Longformer-finetuned-comp5
brad1141
2022-03-18T02:21:19Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "longformer", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-17T23:09:34Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: Longformer-finetuned-comp5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Longformer-finetuned-comp5 This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8180 - Precision: 0.5680 - Recall: 0.7490 - F1: 0.6430 - Accuracy: 0.6430 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.8296 | 1.0 | 1012 | 0.5801 | 0.4806 | 0.6633 | 0.5448 | 0.5448 | | 0.5367 | 2.0 | 2024 | 0.5386 | 0.5617 | 0.7042 | 0.6172 | 0.6172 | | 0.4109 | 3.0 | 3036 | 0.5755 | 0.5590 | 0.7261 | 0.6248 | 0.6248 | | 0.3088 | 4.0 | 4048 | 0.6167 | 0.5775 | 0.7394 | 0.6435 | 0.6435 | | 0.2234 | 5.0 | 5060 | 0.7098 | 0.5626 | 0.7477 | 0.6370 | 0.6370 | | 0.1637 | 6.0 | 6072 | 0.7399 | 0.5742 | 0.7413 | 0.6438 | 0.6438 | | 0.1236 | 7.0 | 7084 | 0.8180 | 0.5680 | 0.7490 | 0.6430 | 0.6430 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
anton-l/xtreme_s_xlsr_300m_minds14_old_splits
anton-l
2022-03-17T22:23:22Z
8
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "automatic-speech-recognition", "google/xtreme_s", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-14T18:02:05Z
--- license: apache-2.0 tags: - automatic-speech-recognition - google/xtreme_s - generated_from_trainer metrics: - f1 - accuracy model-index: - name: xtreme_s_xlsr_minds14 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xtreme_s_xlsr_minds14 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the GOOGLE/XTREME_S - MINDS14 dataset. It achieves the following results on the evaluation set: - Loss: 0.2890 - F1: 0.9474 - Accuracy: 0.9470 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 2.551 | 2.7 | 200 | 2.5855 | 0.0407 | 0.1201 | | 1.6934 | 5.41 | 400 | 1.5072 | 0.5862 | 0.6085 | | 0.5914 | 8.11 | 600 | 0.7274 | 0.8270 | 0.8232 | | 0.3896 | 10.81 | 800 | 0.4402 | 0.8905 | 0.8890 | | 0.5052 | 13.51 | 1000 | 0.4483 | 0.8837 | 0.8829 | | 0.4806 | 16.22 | 1200 | 0.4981 | 0.8784 | 0.8787 | | 0.2103 | 18.92 | 1400 | 0.4957 | 0.8810 | 0.8817 | | 0.4198 | 21.62 | 1600 | 0.5161 | 0.8927 | 0.8921 | | 0.11 | 24.32 | 1800 | 0.4456 | 0.8923 | 0.8902 | | 0.1233 | 27.03 | 2000 | 0.3858 | 0.9016 | 0.9012 | | 0.1827 | 29.73 | 2200 | 0.3765 | 0.9162 | 0.9159 | | 0.1235 | 32.43 | 2400 | 0.3716 | 0.9134 | 0.9128 | | 0.1873 | 35.14 | 2600 | 0.3080 | 0.9314 | 0.9311 | | 0.017 | 37.84 | 2800 | 0.2629 | 0.9415 | 0.9409 | | 0.0436 | 40.54 | 3000 | 0.3159 | 0.9397 | 0.9390 | | 0.0455 | 43.24 | 3200 | 0.2963 | 0.9393 | 0.9390 | | 0.046 | 45.95 | 3400 | 0.2914 | 0.9457 | 0.9451 | | 0.0042 | 48.65 | 3600 | 0.2890 | 0.9474 | 0.9470 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4.dev0 - Tokenizers 0.11.6
niksss/Hinglish-HATEBERT
niksss
2022-03-17T18:43:00Z
13
2
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "license:afl-3.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-17T17:47:30Z
--- license: afl-3.0 --- Fine-Tune it using this [nb](https://colab.research.google.com/drive/1JRmrAYR0pcEWyni_VtT4SSFxZ5adlAhS?usp=sharing)
sanchit-gandhi/wav2vec2-2-bart-debug
sanchit-gandhi
2022-03-17T16:28:55Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "generated_from_trainer", "dataset:librispeech_asr", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-17T14:46:58Z
--- tags: - generated_from_trainer datasets: - librispeech_asr model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model was trained from scratch on the librispeech_asr dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
Alvenir/wav2vec2-base-da-ft-nst
Alvenir
2022-03-17T16:16:12Z
13
3
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "speech-to-text", "da", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-15T08:16:18Z
--- language: da tags: - speech-to-text license: apache-2.0 --- # wav2vec2-base-da-ft-nst This the [alvenir wav2vec2 model](https://huggingface.co/Alvenir/wav2vec2-base-da) for Danish ASR finetuned by Alvenir on the public NST dataset. The model is trained on 16kHz, so make sure your data is the same sample rate. The model was trained using fairseq and then converted to huggingface/transformers format. Alvenir is always happy to help with your own open-source ASR projects, customized domain specializations or premium models. ;-) ## Usage ```Python import soundfile as sf import torch from transformers import Wav2Vec2CTCTokenizer, Wav2Vec2Tokenizer, Wav2Vec2Processor, \ Wav2Vec2ForCTC def get_tokenizer(model_path: str) -> Wav2Vec2CTCTokenizer: return Wav2Vec2Tokenizer.from_pretrained(model_path) def get_processor(model_path: str) -> Wav2Vec2Processor: return Wav2Vec2Processor.from_pretrained(model_path) def load_model(model_path: str) -> Wav2Vec2ForCTC: return Wav2Vec2ForCTC.from_pretrained(model_path) model_id = "Alvenir/wav2vec2-base-da-ft-nst" model = load_model(model_id) model.eval() tokenizer = get_tokenizer(model_id) processor = get_processor(model_id) audio_file = "<path/to/audio.wav>" audio, _ = sf.read(audio_file) input_values = processor(audio, return_tensors="pt", padding="longest", sampling_rate=16_000).input_values with torch.no_grad(): logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) print(transcription) ``` ## Benchmark results This is some benchmark results on the public available datasets in Danish. | Dataset | WER Greedy | WER with 3-gram Language Model | |---------------------|------------|--------------------| | NST test | 15,8% | 11.9% | | alvenir-asr-da-eval | 19.0% | 12.1% | | common_voice_80 da test | 26,3% | 19,2% |
saghar/TinyBERT_L-4_H-312_v2-finetuned-wikitext103
saghar
2022-03-17T15:59:39Z
9
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "dataset:wikitext", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-17T12:52:55Z
--- tags: - generated_from_trainer datasets: - wikitext model-index: - name: TinyBERT_L-4_H-312_v2-finetuned-wikitext103 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TinyBERT_L-4_H-312_v2-finetuned-wikitext103 This model is a fine-tuned version of [nreimers/TinyBERT_L-4_H-312_v2](https://huggingface.co/nreimers/TinyBERT_L-4_H-312_v2) on the wikitext dataset. It achieves the following results on the evaluation set: - Loss: 6.4638 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.0604 | 1.0 | 3125 | 6.6745 | | 6.7122 | 2.0 | 6250 | 6.5061 | | 6.6289 | 3.0 | 9375 | 6.4638 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.8.1 - Datasets 1.11.0 - Tokenizers 0.10.3
StivenLancheros/biobert-base-cased-v1.2-finetuned-ner-CRAFT_Augmented_ES
StivenLancheros
2022-03-17T14:49:03Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-15T22:44:16Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: biobert-base-cased-v1.2-finetuned-ner-CRAFT_Augmented_ES results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobert-base-cased-v1.2-finetuned-ner-CRAFT_Augmented_ES This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on the CRAFT dataset. It achieves the following results on the evaluation set: - Loss: 0.2251 - Precision: 0.8276 - Recall: 0.8411 - F1: 0.8343 - Accuracy: 0.9676 ## Model description This model performs Named Entity Recognition for 6 entity tags: Sequence, Cell, Protein, Gene, Taxon, and Chemical from the CRAFT(Colorado Richly Annotated Full Text) Corpus in Spanish (MT translated) and English. Entity tags have been normalized and replaced from the original three letter code to a full name e.g. B-Protein, I-Chemical. This model is trained on augmented data created using Entity Replacement. 20% of the entities were replaced using a list of entities for each entity tag obtained from the official ontologies for each entity class. Three datasets (original, augmented, MT translated CRAFT) were concatenated. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0549 | 1.0 | 4078 | 0.1673 | 0.8056 | 0.8112 | 0.8084 | 0.9640 | | 0.0233 | 2.0 | 8156 | 0.1733 | 0.8321 | 0.8244 | 0.8283 | 0.9662 | | 0.0101 | 3.0 | 12234 | 0.1972 | 0.8336 | 0.8391 | 0.8363 | 0.9678 | | 0.0036 | 4.0 | 16312 | 0.2251 | 0.8276 | 0.8411 | 0.8343 | 0.9676 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
StivenLancheros/biobert-base-cased-v1.2-finetuned-ner-CRAFT_Augmented_EN
StivenLancheros
2022-03-17T14:45:49Z
654
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-15T22:41:38Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: biobert-base-cased-v1.2-finetuned-ner-CRAFT_Augmented_EN results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobert-base-cased-v1.2-finetuned-ner-CRAFT_Augmented_EN This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on the CRAFT dataset. It achieves the following results on the evaluation set: - Loss: 0.2299 - Precision: 0.8122 - Recall: 0.8475 - F1: 0.8294 - Accuracy: 0.9661 ## Model description This model performs Named Entity Recognition for 6 entity tags: Sequence, Cell, Protein, Gene, Taxon, and Chemical from the CRAFT(Colorado Richly Annotated Full Text) Corpus in Spanish and English. Entity tags have been normalized and replaced from the original three letter code to a full name e.g. B-Protein, I-Chemical. This model is trained on augmented data created using Entity Replacement. 20% of the entities were replaced using a list of entities for each entity tag obtained from the official ontologies for each entity class. Both datasets (original, augmented) were concatenated. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0542 | 1.0 | 2719 | 0.1540 | 0.7834 | 0.8300 | 0.8060 | 0.9622 | | 0.0229 | 2.0 | 5438 | 0.1920 | 0.8092 | 0.8219 | 0.8155 | 0.9644 | | 0.0069 | 3.0 | 8157 | 0.2054 | 0.8130 | 0.8481 | 0.8302 | 0.9656 | | 0.0023 | 4.0 | 10876 | 0.2299 | 0.8122 | 0.8475 | 0.8294 | 0.9661 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
newtonkwan/gpt2-xl-ft-3
newtonkwan
2022-03-17T10:47:43Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-16T23:58:55Z
--- tags: - generated_from_trainer model-index: - name: gpt2-xl-ft-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl-ft-3 This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4315 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 2022 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 156 | 1.3062 | | No log | 2.0 | 312 | 1.3141 | | No log | 3.0 | 468 | 1.3810 | | 1.1725 | 4.0 | 624 | 1.4315 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6 ### Perplexity Score: 138.43353271484375 ### Dataset Size Size: 25000
libalabala/marian-finetuned-kde4-en-to-fr
libalabala
2022-03-17T08:13:54Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-16T07:09:29Z
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 model-index: - name: marian-finetuned-kde4-en-to-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
sanchit-gandhi/wav2vec2-2-rnd-no-adapter
sanchit-gandhi
2022-03-17T06:35:21Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "generated_from_trainer", "dataset:librispeech_asr", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-15T19:50:28Z
--- tags: - generated_from_trainer datasets: - librispeech_asr model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model was trained from scratch on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 0.8384 - Wer: 0.1367 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 6.2245 | 1.68 | 1500 | 6.1442 | 1.5986 | | 5.4521 | 3.36 | 3000 | 5.4335 | 1.6439 | | 3.3659 | 5.04 | 4500 | 3.6455 | 0.6503 | | 1.5724 | 6.73 | 6000 | 2.3554 | 0.3386 | | 1.4759 | 8.41 | 7500 | 1.7423 | 0.2889 | | 1.0826 | 10.09 | 9000 | 1.3818 | 0.2209 | | 0.6769 | 11.77 | 10500 | 1.1268 | 0.1737 | | 0.7348 | 13.45 | 12000 | 0.9990 | 0.1575 | | 0.5419 | 15.13 | 13500 | 0.9435 | 0.1560 | | 0.4212 | 16.82 | 15000 | 0.8678 | 0.1405 | | 0.3805 | 18.5 | 16500 | 0.8384 | 0.1367 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
saghar/TinyBERT_General_6L_768D-finetuned-wikitext103
saghar
2022-03-17T06:14:16Z
4
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "dataset:wikitext", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-16T22:46:35Z
--- tags: - generated_from_trainer datasets: - wikitext model-index: - name: TinyBERT_General_6L_768D-finetuned-wikitext103 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TinyBERT_General_6L_768D-finetuned-wikitext103 This model is a fine-tuned version of [huawei-noah/TinyBERT_General_6L_768D](https://huggingface.co/huawei-noah/TinyBERT_General_6L_768D) on the wikitext dataset. It achieves the following results on the evaluation set: - Loss: 3.3768 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.1792 | 1.0 | 3125 | 3.5465 | | 3.6726 | 2.0 | 6250 | 3.4226 | | 3.6065 | 3.0 | 9375 | 3.3768 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.8.1 - Datasets 1.11.0 - Tokenizers 0.10.3
sanchit-gandhi/wav2vec2-2-rnd-2-layer-no-adapter
sanchit-gandhi
2022-03-17T02:23:57Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "generated_from_trainer", "dataset:librispeech_asr", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-15T19:50:51Z
--- tags: - generated_from_trainer datasets: - librispeech_asr model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model was trained from scratch on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 1.8365 - Wer: 0.2812 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 5.8017 | 1.68 | 1500 | 5.7161 | 1.3220 | | 4.5907 | 3.36 | 3000 | 4.7936 | 0.9799 | | 3.151 | 5.04 | 4500 | 4.1610 | 0.7752 | | 1.5166 | 6.73 | 6000 | 3.5939 | 0.5343 | | 2.4523 | 8.41 | 7500 | 4.0013 | 0.6954 | | 1.423 | 10.09 | 9000 | 2.6917 | 0.4476 | | 0.7882 | 11.77 | 10500 | 2.4493 | 0.3967 | | 1.1643 | 13.45 | 12000 | 2.0629 | 0.3234 | | 0.5352 | 15.13 | 13500 | 2.0625 | 0.3363 | | 0.407 | 16.82 | 15000 | 1.8378 | 0.2812 | | 0.1162 | 18.5 | 16500 | 1.8365 | 0.2812 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
cammy/pegasus-cnn_dailymail-100-lit-evalMA-ga
cammy
2022-03-17T02:22:31Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-17T02:06:51Z
--- tags: - generated_from_trainer model-index: - name: pegasus-cnn_dailymail-100-lit-evalMA-ga results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-cnn_dailymail-100-lit-evalMA-ga This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
nbroad/mrasp2-6e6d-no-mono
nbroad
2022-03-17T00:13:23Z
6
2
transformers
[ "transformers", "fsmt", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
Model not mine. Taken from here https://github.com/PANXiao1994/mRASP2
Guen/guen_test_prompt_generation
Guen
2022-03-16T22:33:29Z
5
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-16T22:18:10Z
A small language generation head to generate text from a prompt. Fine-tuned on the t5-base model with the aeslc dataset.
newtonkwan/gpt2-xl-ft-0
newtonkwan
2022-03-16T21:58:33Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-16T14:26:02Z
--- tags: - generated_from_trainer model-index: - name: gpt2-xl-ft-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl-ft-0 This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0324 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 2022 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.96 | 6 | 5.1701 | | No log | 1.96 | 12 | 4.1214 | | No log | 2.96 | 18 | 2.5305 | | No log | 3.96 | 24 | 2.0324 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6 ### Perplexity Score: 17.31455421447754 ### Dataset Size Size: 1000
ScandinavianMrT/gpt2_prefinetune_IMDB
ScandinavianMrT
2022-03-16T19:05:43Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-16T18:44:37Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2_prefinetune_IMDB results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2_prefinetune_IMDB This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7838 | 1.0 | 2997 | 3.6875 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
horsbug98/Part_1_mBERT_Model_E1
horsbug98
2022-03-16T18:48:12Z
23
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:tydiqa", "endpoints_compatible", "region:us" ]
question-answering
2022-03-16T18:20:20Z
--- tags: - generated_from_trainer datasets: - tydiqa model-index: - name: debug_bert_finetuned_dutch_task2_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # debug_bert_finetuned_dutch_task2_1 This model is a fine-tuned version of [henryk/bert-base-multilingual-cased-finetuned-dutch-squad2](https://huggingface.co/henryk/bert-base-multilingual-cased-finetuned-dutch-squad2) on the tydiqa secondary_task dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 2.0.0 - Tokenizers 0.10.3
DrishtiSharma/poem-gen-gpt2-small-spanish
DrishtiSharma
2022-03-16T18:46:26Z
3
1
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-16T17:46:36Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: poem-gen-gpt2-small-spanish results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # poem-gen-gpt2-small-spanish This model is a fine-tuned version of [datificate/gpt2-small-spanish](https://huggingface.co/datificate/gpt2-small-spanish) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.9229 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.2121 | 1.0 | 2569 | 3.9954 | | 4.0612 | 2.0 | 5138 | 3.9375 | | 3.9988 | 3.0 | 7707 | 3.9229 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
ScandinavianMrT/distilbert-IMDB-POS
ScandinavianMrT
2022-03-16T18:15:20Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-16T17:42:29Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-IMDB results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-IMDB This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1905 - Accuracy: 0.9295 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1928 | 1.0 | 2000 | 0.1905 | 0.9295 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
DrishtiSharma/poem-gen-t5-small_v1
DrishtiSharma
2022-03-16T17:30:57Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-16T11:37:54Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: poem-gen-t5-small_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # poem-gen-t5-small_v1 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7290 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 3.5397 | 0.32 | 5000 | 3.3474 | | 3.4107 | 0.63 | 10000 | 3.2260 | | 3.3236 | 0.95 | 15000 | 3.1414 | | 3.25 | 1.26 | 20000 | 3.0884 | | 3.2055 | 1.58 | 25000 | 3.0461 | | 3.1677 | 1.89 | 30000 | 3.0057 | | 3.1189 | 2.21 | 35000 | 2.9786 | | 3.0972 | 2.53 | 40000 | 2.9533 | | 3.0855 | 2.84 | 45000 | 2.9318 | | 3.0364 | 3.16 | 50000 | 2.9124 | | 3.0125 | 3.47 | 55000 | 2.8962 | | 2.9987 | 3.79 | 60000 | 2.8812 | | 2.9734 | 4.1 | 65000 | 2.8675 | | 2.9782 | 4.42 | 70000 | 2.8563 | | 2.9492 | 4.74 | 75000 | 2.8446 | | 2.9383 | 5.05 | 80000 | 2.8360 | | 2.9322 | 5.37 | 85000 | 2.8250 | | 2.9193 | 5.68 | 90000 | 2.8159 | | 2.9119 | 6.0 | 95000 | 2.8095 | | 2.8893 | 6.31 | 100000 | 2.8046 | | 2.8927 | 6.63 | 105000 | 2.7975 | | 2.8944 | 6.95 | 110000 | 2.7879 | | 2.8568 | 7.26 | 115000 | 2.7856 | | 2.8648 | 7.58 | 120000 | 2.7808 | | 2.8534 | 7.89 | 125000 | 2.7737 | | 2.8563 | 8.21 | 130000 | 2.7696 | | 2.8387 | 8.52 | 135000 | 2.7664 | | 2.8328 | 8.84 | 140000 | 2.7643 | | 2.8137 | 9.16 | 145000 | 2.7615 | | 2.8058 | 9.47 | 150000 | 2.7548 | | 2.8138 | 9.79 | 155000 | 2.7547 | | 2.8098 | 10.1 | 160000 | 2.7506 | | 2.7944 | 10.42 | 165000 | 2.7479 | | 2.809 | 10.73 | 170000 | 2.7443 | | 2.7897 | 11.05 | 175000 | 2.7431 | | 2.7955 | 11.37 | 180000 | 2.7403 | | 2.793 | 11.68 | 185000 | 2.7403 | | 2.798 | 12.0 | 190000 | 2.7351 | | 2.7955 | 12.31 | 195000 | 2.7351 | | 2.785 | 12.63 | 200000 | 2.7329 | | 2.7701 | 12.94 | 205000 | 2.7329 | | 2.7744 | 13.26 | 210000 | 2.7317 | | 2.7827 | 13.58 | 215000 | 2.7295 | | 2.7793 | 13.89 | 220000 | 2.7303 | | 2.7782 | 14.21 | 225000 | 2.7298 | | 2.7762 | 14.52 | 230000 | 2.7289 | | 2.7719 | 14.84 | 235000 | 2.7292 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
anton-l/xls-r-300m-bart-base
anton-l
2022-03-16T17:27:16Z
3
0
transformers
[ "transformers", "pytorch", "speech-encoder-decoder", "automatic-speech-recognition", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-16T16:36:37Z
--- license: apache-2.0 ---
horsbug98/Part_2_mBERT_Model_E2
horsbug98
2022-03-16T17:25:02Z
4
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:tydiqa", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-16T17:04:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tydiqa model-index: - name: debug_mbert_task2_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # debug_mbert_task2_2 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the tydiqa secondary_task dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 2.0.0 - Tokenizers 0.10.3
horsbug98/Part_2_mBERT_Model_E1
horsbug98
2022-03-16T17:01:57Z
4
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:tydiqa", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-16T16:53:45Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tydiqa model-index: - name: debug_mbert_task2_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # debug_mbert_task2_1 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the tydiqa secondary_task dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 2.0.0 - Tokenizers 0.10.3
adityavithaldas/Fashion_Category_Classifier
adityavithaldas
2022-03-16T16:05:18Z
0
4
null
[ "license:cc-by-4.0", "region:us" ]
null
2022-03-16T15:59:51Z
--- license: cc-by-4.0 --- This model uses the Deep Fashion dataset in order to create a category classifier among the 50 or so provided categories. https://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html This model leverages the ViT (Vision transformer), loaded with the custom dataset and the 50 odd categoes to which they are assigned. The objective here, is to expand the same and get to a. An accuracy level of 90+ in the top 5 categorizes b. An accuracy of 70+ overall. In addition, we would also look forward to creating attribute extractors, to extract key attributes (primary color, checked, sleeve, collar etc) as we proceed
Neulvo/marian-finetuned-kde4-en-to-fr
Neulvo
2022-03-16T15:04:48Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-16T10:57:21Z
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-fr results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 args: en-fr metrics: - name: Bleu type: bleu value: 52.893830905210194 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 0.8564 - Bleu: 52.8938 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
newtonkwan/gpt2-xl-ft-with-non-challenging-0.8
newtonkwan
2022-03-16T13:27:02Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-16T12:05:34Z
--- tags: - generated_from_trainer model-index: - name: gpt2-xl-ft-with-non-challenging-0.8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl-ft-with-non-challenging-0.8 This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.3121 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 2022 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 1 | 5.4443 | | No log | 2.0 | 2 | 5.4221 | | No log | 3.0 | 3 | 5.3779 | | No log | 4.0 | 4 | 5.3121 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6 ### Perplexity Score: 10
anton-l/xtreme_s_xlsr_mls_upd
anton-l
2022-03-16T13:13:22Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mls", "google/xtreme_s", "generated_from_trainer", "pl", "dataset:xtreme_s", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-16T12:53:26Z
--- language: - pl license: apache-2.0 tags: - mls - google/xtreme_s - generated_from_trainer datasets: - xtreme_s model-index: - name: xtreme_s_xlsr_mls_upd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xtreme_s_xlsr_mls_upd This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the GOOGLE/XTREME_S - MLS.PL dataset. It achieves the following results on the evaluation set: - Loss: 3.1489 - Wer: 1.0 - Cer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:---:|:---:| | 3.4678 | 0.59 | 20 | 3.4581 | 1.0 | 1.0 | | 3.1713 | 1.18 | 40 | 3.1816 | 1.0 | 1.0 | | 3.134 | 1.76 | 60 | 3.1538 | 1.0 | 1.0 | | 3.132 | 2.35 | 80 | 3.1411 | 1.0 | 1.0 | | 3.1295 | 2.94 | 100 | 3.1373 | 1.0 | 1.0 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4.dev0 - Tokenizers 0.11.6
mazenalasali/layoutlmv2-finetuned-funsd-test
mazenalasali
2022-03-16T13:02:29Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv2", "token-classification", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-16T11:54:16Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer model-index: - name: layoutlmv2-finetuned-funsd-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv2-finetuned-funsd-test This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.8.0+cu101 - Datasets 2.0.0 - Tokenizers 0.11.6
krinal214/xlm-all
krinal214
2022-03-16T13:01:05Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "question-answering", "generated_from_trainer", "dataset:tydiqa", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-16T12:19:11Z
--- license: mit tags: - generated_from_trainer datasets: - tydiqa model-index: - name: xlm-all-final results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-all-final This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the tydiqa dataset. It achieves the following results on the evaluation set: - Loss: 0.6038 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.4483 | 1.0 | 3381 | 0.6038 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 2.0.0 - Tokenizers 0.10.3
RobertoMCA97/xlm-roberta-base-finetuned-panx-it
RobertoMCA97
2022-03-16T12:56:38Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-16T12:41:09Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.822805578342904 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2323 - F1: 0.8228 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8126 | 1.0 | 70 | 0.3361 | 0.7231 | | 0.2995 | 2.0 | 140 | 0.2526 | 0.8079 | | 0.1865 | 3.0 | 210 | 0.2323 | 0.8228 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
krinal214/xlm-3lang
krinal214
2022-03-16T12:55:35Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "question-answering", "generated_from_trainer", "dataset:tydiqa", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-16T12:40:10Z
--- license: mit tags: - generated_from_trainer datasets: - tydiqa model-index: - name: xlm-eng-beng-tel results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-eng-beng-tel This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the tydiqa dataset. It achieves the following results on the evaluation set: - Loss: 0.7303 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.2927 | 1.0 | 810 | 0.7303 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 2.0.0 - Tokenizers 0.10.3
krinal214/zero_shot
krinal214
2022-03-16T12:41:46Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-16T11:37:09Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: zero_last results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # zero_last This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.9190 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.9816 | 1.0 | 5557 | 1.9190 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 2.0.0 - Tokenizers 0.10.3
RobertoMCA97/xlm-roberta-base-finetuned-panx-de-fr
RobertoMCA97
2022-03-16T12:24:41Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-16T12:03:40Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1667 - F1: 0.8582 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2885 | 1.0 | 715 | 0.1817 | 0.8287 | | 0.1497 | 2.0 | 1430 | 0.1618 | 0.8442 | | 0.0944 | 3.0 | 2145 | 0.1667 | 0.8582 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
ixa-ehu/roberta-eus-euscrawl-base-cased
ixa-ehu
2022-03-16T11:48:42Z
14
2
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "basque", "eu", "arxiv:2203.08111", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-16T09:54:43Z
--- language: eu license: cc-by-nc-4.0 tags: - basque - roberta --- # Roberta-eus Euscrawl base cased This is a RoBERTa model for Basque model presented in [Does corpus quality really matter for low-resource languages?](https://arxiv.org/abs/2203.08111). There are several models for Basque using the RoBERTa architecture, which are pre-trained using different corpora: - roberta-eus-euscrawl-base-cased: Basque RoBERTa trained on Euscrawl, a corpus created using tailored crawling from Basque sites. EusCrawl contains 12,528k documents and 423M tokens. - roberta-eus-euscrawl-large-cased: Basque RoBERTa large trained on EusCrawl. - roberta-eus-mC4-base-cased: Basque RoBERTa trained on the Basque portion of mc4 dataset. - roberta-eus-CC100-base-cased: Basque RoBERTa trained on Basque portion of cc100 dataset. The models have been tested on five different downstream tasks for Basque: Topic classification, Sentiment analysis, Stance detection, Named Entity Recognition (NER), and Question Answering (refer to the [paper](https://arxiv.org/abs/2203.08111) for more details). See summary of results below: | Model | Topic class. | Sentiment | Stance det. | NER | QA | Average | |----------------------------------|--------------|-----------|-------------|----------|----------|----------| | roberta-eus-euscrawl-base-cased | 76.2 | 77.7 | 57.4 | 86.8 | 34.6 | 66.5 | | roberta-eus-euscrawl-large-cased | **77.6** | 78.8 | 62.9 | **87.2** | **38.3** | **69.0** | | roberta-eus-mC4-base-cased | 75.3 | **80.4** | 59.1 | 86.0 | 35.2 | 67.2 | | roberta-eus-CC100-base-cased | 76.2 | 78.8 | **63.4** | 85.2 | 35.8 | 67.9 | If you use any of these models, please cite the following paper: ``` @misc{artetxe2022euscrawl, title={Does corpus quality really matter for low-resource languages?}, author={Mikel Artetxe, Itziar Aldabe, Rodrigo Agerri, Olatz Perez-de-Viñaspre, Aitor Soroa}, year={2022}, eprint={2203.08111}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
tae898/emoberta-large
tae898
2022-03-16T11:01:48Z
1,014
7
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "emoberta", "en", "dataset:MELD", "dataset:IEMOCAP", "arxiv:2108.12009", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-14T20:33:23Z
--- language: en tags: - emoberta - roberta license: mit datasets: - MELD - IEMOCAP --- Check https://github.com/tae898/erc for the details [Watch a demo video!](https://youtu.be/qbr7fNd6J28) # Emotion Recognition in Coversation (ERC) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/emoberta-speaker-aware-emotion-recognition-in/emotion-recognition-in-conversation-on)](https://paperswithcode.com/sota/emotion-recognition-in-conversation-on?p=emoberta-speaker-aware-emotion-recognition-in) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/emoberta-speaker-aware-emotion-recognition-in/emotion-recognition-in-conversation-on-meld)](https://paperswithcode.com/sota/emotion-recognition-in-conversation-on-meld?p=emoberta-speaker-aware-emotion-recognition-in) At the moment, we only use the text modality to correctly classify the emotion of the utterances.The experiments were carried out on two datasets (i.e. MELD and IEMOCAP) ## Prerequisites 1. An x86-64 Unix or Unix-like machine 1. Python 3.8 or higher 1. Running in a virtual environment (e.g., conda, virtualenv, etc.) is highly recommended so that you don't mess up with the system python. 1. [`multimodal-datasets` repo](https://github.com/tae898/multimodal-datasets) (submodule) 1. pip install -r requirements.txt ## EmoBERTa training First configure the hyper parameters and the dataset in `train-erc-text.yaml` and then, In this directory run the below commands. I recommend you to run this in a virtualenv. ```sh python train-erc-text.py ``` This will subsequently call `train-erc-text-hp.py` and `train-erc-text-full.py`. ## Results on the test split (weighted f1 scores) | Model | | MELD | IEMOCAP | | -------- | ------------------------------- | :-------: | :-------: | | EmoBERTa | No past and future utterances | 63.46 | 56.09 | | | Only past utterances | 64.55 | **68.57** | | | Only future utterances | 64.23 | 66.56 | | | Both past and future utterances | **65.61** | 67.42 | | | → *without speaker names* | 65.07 | 64.02 | Above numbers are the mean values of five random seed runs. If you want to see more training test details, check out `./results/` If you want to download the trained checkpoints and stuff, then [here](https://surfdrive.surf.nl/files/index.php/s/khREwk4MUI7MSnO/download) is where you can download them. It's a pretty big zip file. ## Deployment ### Huggingface We have released our models on huggingface: - [emoberta-base](https://huggingface.co/tae898/emoberta-base) - [emoberta-large](https://huggingface.co/tae898/emoberta-large) They are based on [RoBERTa-base](https://huggingface.co/roberta-base) and [RoBERTa-large](https://huggingface.co/roberta-large), respectively. They were trained on [both MELD and IEMOCAP datasets](utterance-ordered-MELD_IEMOCAP.json). Our deployed models are neither speaker-aware nor take previous utterances into account, meaning that it only classifies one utterance at a time without the speaker information (e.g., "I love you"). ### Flask app You can either run the Flask RESTful server app as a docker container or just as a python script. 1. Running the app as a docker container **(recommended)**. There are four images. Take what you need: - `docker run -it --rm -p 10006:10006 tae898/emoberta-base` - `docker run -it --rm -p 10006:10006 --gpus all tae898/emoberta-base-cuda` - `docker run -it --rm -p 10006:10006 tae898/emoberta-large` - `docker run -it --rm -p 10006:10006 --gpus all tae898/emoberta-large-cuda` 1. Running the app in your python environment: This method is less recommended than the docker one. Run `pip install -r requirements-deploy.txt` first.<br> The [`app.py`](app.py) is a flask RESTful server. The usage is below: ```console app.py [-h] [--host HOST] [--port PORT] [--device DEVICE] [--model-type MODEL_TYPE] ``` For example: ```sh python app.py --host 0.0.0.0 --port 10006 --device cpu --model-type emoberta-base ``` ### Client Once the app is running, you can send a text to the server. First install the necessary packages: `pip install -r requirements-client.txt`, and the run the [client.py](client.py). The usage is as below: ```console client.py [-h] [--url-emoberta URL_EMOBERTA] --text TEXT ``` For example: ```sh python client.py --text "Emotion recognition is so cool\!" ``` will give you: ```json { "neutral": 0.0049800905, "joy": 0.96399665, "surprise": 0.018937444, "anger": 0.0071516023, "sadness": 0.002021492, "disgust": 0.001495996, "fear": 0.0014167271 } ``` ## Troubleshooting The best way to find and solve your problems is to see in the github issue tab. If you can't find what you want, feel free to raise an issue. We are pretty responsive. ## Contributing Contributions are what make the open source community such an amazing place to be learn, inspire, and create. Any contributions you make are **greatly appreciated**. 1. Fork the Project 1. Create your Feature Branch (`git checkout -b feature/AmazingFeature`) 1. Run `make style && quality` in the root repo directory, to ensure code quality. 1. Commit your Changes (`git commit -m 'Add some AmazingFeature'`) 1. Push to the Branch (`git push origin feature/AmazingFeature`) 1. Open a Pull Request ## Cite our work Check out the [paper](https://arxiv.org/abs/2108.12009). ```bibtex @misc{kim2021emoberta, title={EmoBERTa: Speaker-Aware Emotion Recognition in Conversation with RoBERTa}, author={Taewoon Kim and Piek Vossen}, year={2021}, eprint={2108.12009}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` [![DOI](https://zenodo.org/badge/328375452.svg)](https://zenodo.org/badge/latestdoi/328375452)<br> ## Authors - [Taewoon Kim](https://taewoonkim.com/) ## License [MIT](https://choosealicense.com/licenses/mit/)
tae898/emoberta-base
tae898
2022-03-16T11:01:29Z
124
5
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "emoberta", "en", "dataset:MELD", "dataset:IEMOCAP", "arxiv:2108.12009", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-14T20:03:08Z
--- language: en tags: - emoberta - roberta license: mit datasets: - MELD - IEMOCAP --- Check https://github.com/tae898/erc for the details [Watch a demo video!](https://youtu.be/qbr7fNd6J28) # Emotion Recognition in Coversation (ERC) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/emoberta-speaker-aware-emotion-recognition-in/emotion-recognition-in-conversation-on)](https://paperswithcode.com/sota/emotion-recognition-in-conversation-on?p=emoberta-speaker-aware-emotion-recognition-in) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/emoberta-speaker-aware-emotion-recognition-in/emotion-recognition-in-conversation-on-meld)](https://paperswithcode.com/sota/emotion-recognition-in-conversation-on-meld?p=emoberta-speaker-aware-emotion-recognition-in) At the moment, we only use the text modality to correctly classify the emotion of the utterances.The experiments were carried out on two datasets (i.e. MELD and IEMOCAP) ## Prerequisites 1. An x86-64 Unix or Unix-like machine 1. Python 3.8 or higher 1. Running in a virtual environment (e.g., conda, virtualenv, etc.) is highly recommended so that you don't mess up with the system python. 1. [`multimodal-datasets` repo](https://github.com/tae898/multimodal-datasets) (submodule) 1. pip install -r requirements.txt ## EmoBERTa training First configure the hyper parameters and the dataset in `train-erc-text.yaml` and then, In this directory run the below commands. I recommend you to run this in a virtualenv. ```sh python train-erc-text.py ``` This will subsequently call `train-erc-text-hp.py` and `train-erc-text-full.py`. ## Results on the test split (weighted f1 scores) | Model | | MELD | IEMOCAP | | -------- | ------------------------------- | :-------: | :-------: | | EmoBERTa | No past and future utterances | 63.46 | 56.09 | | | Only past utterances | 64.55 | **68.57** | | | Only future utterances | 64.23 | 66.56 | | | Both past and future utterances | **65.61** | 67.42 | | | → *without speaker names* | 65.07 | 64.02 | Above numbers are the mean values of five random seed runs. If you want to see more training test details, check out `./results/` If you want to download the trained checkpoints and stuff, then [here](https://surfdrive.surf.nl/files/index.php/s/khREwk4MUI7MSnO/download) is where you can download them. It's a pretty big zip file. ## Deployment ### Huggingface We have released our models on huggingface: - [emoberta-base](https://huggingface.co/tae898/emoberta-base) - [emoberta-large](https://huggingface.co/tae898/emoberta-large) They are based on [RoBERTa-base](https://huggingface.co/roberta-base) and [RoBERTa-large](https://huggingface.co/roberta-large), respectively. They were trained on [both MELD and IEMOCAP datasets](utterance-ordered-MELD_IEMOCAP.json). Our deployed models are neither speaker-aware nor take previous utterances into account, meaning that it only classifies one utterance at a time without the speaker information (e.g., "I love you"). ### Flask app You can either run the Flask RESTful server app as a docker container or just as a python script. 1. Running the app as a docker container **(recommended)**. There are four images. Take what you need: - `docker run -it --rm -p 10006:10006 tae898/emoberta-base` - `docker run -it --rm -p 10006:10006 --gpus all tae898/emoberta-base-cuda` - `docker run -it --rm -p 10006:10006 tae898/emoberta-large` - `docker run -it --rm -p 10006:10006 --gpus all tae898/emoberta-large-cuda` 1. Running the app in your python environment: This method is less recommended than the docker one. Run `pip install -r requirements-deploy.txt` first.<br> The [`app.py`](app.py) is a flask RESTful server. The usage is below: ```console app.py [-h] [--host HOST] [--port PORT] [--device DEVICE] [--model-type MODEL_TYPE] ``` For example: ```sh python app.py --host 0.0.0.0 --port 10006 --device cpu --model-type emoberta-base ``` ### Client Once the app is running, you can send a text to the server. First install the necessary packages: `pip install -r requirements-client.txt`, and the run the [client.py](client.py). The usage is as below: ```console client.py [-h] [--url-emoberta URL_EMOBERTA] --text TEXT ``` For example: ```sh python client.py --text "Emotion recognition is so cool\!" ``` will give you: ```json { "neutral": 0.0049800905, "joy": 0.96399665, "surprise": 0.018937444, "anger": 0.0071516023, "sadness": 0.002021492, "disgust": 0.001495996, "fear": 0.0014167271 } ``` ## Troubleshooting The best way to find and solve your problems is to see in the github issue tab. If you can't find what you want, feel free to raise an issue. We are pretty responsive. ## Contributing Contributions are what make the open source community such an amazing place to be learn, inspire, and create. Any contributions you make are **greatly appreciated**. 1. Fork the Project 1. Create your Feature Branch (`git checkout -b feature/AmazingFeature`) 1. Run `make style && quality` in the root repo directory, to ensure code quality. 1. Commit your Changes (`git commit -m 'Add some AmazingFeature'`) 1. Push to the Branch (`git push origin feature/AmazingFeature`) 1. Open a Pull Request ## Cite our work Check out the [paper](https://arxiv.org/abs/2108.12009). ```bibtex @misc{kim2021emoberta, title={EmoBERTa: Speaker-Aware Emotion Recognition in Conversation with RoBERTa}, author={Taewoon Kim and Piek Vossen}, year={2021}, eprint={2108.12009}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` [![DOI](https://zenodo.org/badge/328375452.svg)](https://zenodo.org/badge/latestdoi/328375452)<br> ## Authors - [Taewoon Kim](https://taewoonkim.com/) ## License [MIT](https://choosealicense.com/licenses/mit/)
UWB-AIR/Czert-B-base-cased
UWB-AIR
2022-03-16T10:39:50Z
615
3
transformers
[ "transformers", "pytorch", "tf", "bert", "pretraining", "cs", "fill-mask", "arxiv:2103.13031", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- tags: - cs - fill-mask --- # CZERT This repository keeps trained Czert-B model for the paper [Czert – Czech BERT-like Model for Language Representation ](https://arxiv.org/abs/2103.13031) For more information, see the paper ## Available Models You can download **MLM & NSP only** pretrained models ~~[CZERT-A-v1](https://air.kiv.zcu.cz/public/CZERT-A-czert-albert-base-uncased.zip) [CZERT-B-v1](https://air.kiv.zcu.cz/public/CZERT-B-czert-bert-base-cased.zip)~~ After some additional experiments, we found out that the tokenizers config was exported wrongly. In Czert-B-v1, the tokenizer parameter "do_lower_case" was wrongly set to true. In Czert-A-v1 the parameter "strip_accents" was incorrectly set to true. Both mistakes are repaired in v2. [CZERT-A-v2](https://air.kiv.zcu.cz/public/CZERT-A-v2-czert-albert-base-uncased.zip) [CZERT-B-v2](https://air.kiv.zcu.cz/public/CZERT-B-v2-czert-bert-base-cased.zip) or choose from one of **Finetuned Models** | | Models | | - | - | | Sentiment Classification<br> (Facebook or CSFD) | [CZERT-A-sentiment-FB](https://air.kiv.zcu.cz/public/CZERT-A_fb.zip) <br> [CZERT-B-sentiment-FB](https://air.kiv.zcu.cz/public/CZERT-B_fb.zip) <br> [CZERT-A-sentiment-CSFD](https://air.kiv.zcu.cz/public/CZERT-A_csfd.zip) <br> [CZERT-B-sentiment-CSFD](https://air.kiv.zcu.cz/public/CZERT-B_csfd.zip) | Semantic Text Similarity <br> (Czech News Agency) | [CZERT-A-sts-CNA](https://air.kiv.zcu.cz/public/CZERT-A-sts-CNA.zip) <br> [CZERT-B-sts-CNA](https://air.kiv.zcu.cz/public/CZERT-B-sts-CNA.zip) | Named Entity Recognition | [CZERT-A-ner-CNEC](https://air.kiv.zcu.cz/public/CZERT-A-ner-CNEC-cased.zip) <br> [CZERT-B-ner-CNEC](https://air.kiv.zcu.cz/public/CZERT-B-ner-CNEC-cased.zip) <br>[PAV-ner-CNEC](https://air.kiv.zcu.cz/public/PAV-ner-CNEC-cased.zip) <br> [CZERT-A-ner-BSNLP](https://air.kiv.zcu.cz/public/CZERT-A-ner-BSNLP-cased.zip)<br>[CZERT-B-ner-BSNLP](https://air.kiv.zcu.cz/public/CZERT-B-ner-BSNLP-cased.zip) <br>[PAV-ner-BSNLP](https://air.kiv.zcu.cz/public/PAV-ner-BSNLP-cased.zip) | | Morphological Tagging<br> | [CZERT-A-morphtag-126k](https://air.kiv.zcu.cz/public/CZERT-A-morphtag-126k-cased.zip)<br>[CZERT-B-morphtag-126k](https://air.kiv.zcu.cz/public/CZERT-B-morphtag-126k-cased.zip) | | Semantic Role Labelling |[CZERT-A-srl](https://air.kiv.zcu.cz/public/CZERT-A-srl-cased.zip)<br> [CZERT-B-srl](https://air.kiv.zcu.cz/public/CZERT-B-srl-cased.zip) | ## How to Use CZERT? ### Sentence Level Tasks We evaluate our model on two sentence level tasks: * Sentiment Classification, * Semantic Text Similarity. <!-- tokenizer = BertTokenizerFast.from_pretrained(CZERT_MODEL_PATH, strip_accents=False) \\tmodel = TFAlbertForSequenceClassification.from_pretrained(CZERT_MODEL_PATH, num_labels=1) or self.tokenizer = BertTokenizerFast.from_pretrained(CZERT_MODEL_PATH, strip_accents=False) self.model_encoder = AutoModelForSequenceClassification.from_pretrained(CZERT_MODEL_PATH, from_tf=True) --> \\t ### Document Level Tasks We evaluate our model on one document level task * Multi-label Document Classification. ### Token Level Tasks We evaluate our model on three token level tasks: * Named Entity Recognition, * Morphological Tagging, * Semantic Role Labelling. ## Downstream Tasks Fine-tuning Results ### Sentiment Classification | | mBERT | SlavicBERT | ALBERT-r | Czert-A | Czert-B | |:----:|:------------------------:|:------------------------:|:------------------------:|:-----------------------:|:--------------------------------:| | FB | 71.72 ± 0.91 | 73.87 ± 0.50 | 59.50 ± 0.47 | 72.47 ± 0.72 | **76.55** ± **0.14** | | CSFD | 82.80 ± 0.14 | 82.51 ± 0.14 | 75.40 ± 0.18 | 79.58 ± 0.46 | **84.79** ± **0.26** | Average F1 results for the Sentiment Classification task. For more information, see [the paper](https://arxiv.org/abs/2103.13031). ### Semantic Text Similarity | | **mBERT** | **Pavlov** | **Albert-random** | **Czert-A** | **Czert-B** | |:-------------|:--------------:|:--------------:|:-----------------:|:--------------:|:----------------------:| | STA-CNA | 83.335 ± 0.063 | 83.593 ± 0.050 | 43.184 ± 0.125 | 82.942 ± 0.106 | **84.345** ± **0.028** | | STS-SVOB-img | 79.367 ± 0.486 | 79.900 ± 0.810 | 15.739 ± 2.992 | 79.444 ± 0.338 | **83.744** ± **0.395** | | STS-SVOB-hl | 78.833 ± 0.296 | 76.996 ± 0.305 | 33.949 ± 1.807 | 75.089 ± 0.806 | **79.827 ± 0.469** | Comparison of Pearson correlation achieved using pre-trained CZERT-A, CZERT-B, mBERT, Pavlov and randomly initialised Albert on semantic text similarity. For more information see [the paper](https://arxiv.org/abs/2103.13031). ### Multi-label Document Classification | | mBERT | SlavicBERT | ALBERT-r | Czert-A | Czert-B | |:-----:|:------------:|:------------:|:------------:|:------------:|:-------------------:| | AUROC | 97.62 ± 0.08 | 97.80 ± 0.06 | 94.35 ± 0.13 | 97.49 ± 0.07 | **98.00** ± **0.04** | | F1 | 83.04 ± 0.16 | 84.08 ± 0.14 | 72.44 ± 0.22 | 82.27 ± 0.17 | **85.06** ± **0.11** | Comparison of F1 and AUROC score achieved using pre-trained CZERT-A, CZERT-B, mBERT, Pavlov and randomly initialised Albert on multi-label document classification. For more information see [the paper](https://arxiv.org/abs/2103.13031). ### Morphological Tagging | | mBERT | Pavlov | Albert-random | Czert-A | Czert-B | |:-----------------------|:---------------|:---------------|:---------------|:---------------|:---------------| | Universal Dependencies | 99.176 ± 0.006 | 99.211 ± 0.008 | 96.590 ± 0.096 | 98.713 ± 0.008 | **99.300 ± 0.009** | Comparison of F1 score achieved using pre-trained CZERT-A, CZERT-B, mBERT, Pavlov and randomly initialised Albert on morphological tagging task. For more information see [the paper](https://arxiv.org/abs/2103.13031). ### Semantic Role Labelling <div id="tab:SRL"> | | mBERT | Pavlov | Albert-random | Czert-A | Czert-B | dep-based | gold-dep | |:------:|:----------:|:----------:|:-------------:|:----------:|:----------:|:---------:|:--------:| | span | 78.547 ± 0.110 | 79.333 ± 0.080 | 51.365 ± 0.423 | 72.254 ± 0.172 | **81.861 ± 0.102** | \\\\- | \\\\- | | syntax | 90.226 ± 0.224 | 90.492 ± 0.040 | 80.747 ± 0.131 | 80.319 ± 0.054 | **91.462 ± 0.062** | 85.19 | 89.52 | SRL results – dep columns are evaluate with labelled F1 from CoNLL 2009 evaluation script, other columns are evaluated with span F1 score same as it was used for NER evaluation. For more information see [the paper](https://arxiv.org/abs/2103.13031). </div> ### Named Entity Recognition | | mBERT | Pavlov | Albert-random | Czert-A | Czert-B | |:-----------|:---------------|:---------------|:---------------|:---------------|:---------------| | CNEC | **86.225 ± 0.208** | **86.565 ± 0.198** | 34.635 ± 0.343 | 72.945 ± 0.227 | 86.274 ± 0.116 | | BSNLP 2019 | 84.006 ± 1.248 | **86.699 ± 0.370** | 19.773 ± 0.938 | 48.859 ± 0.605 | **86.729 ± 0.344** | Comparison of f1 score achieved using pre-trained CZERT-A, CZERT-B, mBERT, Pavlov and randomly initialised Albert on named entity recognition task. For more information see [the paper](https://arxiv.org/abs/2103.13031). ## Licence This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0/ ## How should I cite CZERT? For now, please cite [the Arxiv paper](https://arxiv.org/abs/2103.13031): ``` @article{sido2021czert, title={Czert -- Czech BERT-like Model for Language Representation}, author={Jakub Sido and Ondřej Pražák and Pavel Přibáň and Jan Pašek and Michal Seják and Miloslav Konopík}, year={2021}, eprint={2103.13031}, archivePrefix={arXiv}, primaryClass={cs.CL}, journal={arXiv preprint arXiv:2103.13031}, } ```