modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
nlokam99/ada_sample_2
nlokam99
2022-06-12T17:40:42Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-12T17:38:56Z
--- thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png tags: - conversational license: mit ---
obokkkk/kc-bert_finetuned_unsmile
obokkkk
2022-06-12T17:22:32Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-12T14:39:40Z
--- tags: - generated_from_trainer model-index: - name: kc-bert_finetuned_unsmile results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kc-bert_finetuned_unsmile This model is a fine-tuned version of [beomi/kcbert-base](https://huggingface.co/beomi/kcbert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1326 - Lrap: 0.8753 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Lrap | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 235 | 0.1458 | 0.8612 | | No log | 2.0 | 470 | 0.1280 | 0.8738 | | 0.1685 | 3.0 | 705 | 0.1257 | 0.8791 | | 0.1685 | 4.0 | 940 | 0.1281 | 0.8777 | | 0.0774 | 5.0 | 1175 | 0.1326 | 0.8753 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 1.17.0 - Tokenizers 0.12.1
huggingtweets/warriors
huggingtweets
2022-06-12T15:38:14Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-12T15:36:47Z
--- language: en thumbnail: http://www.huggingtweets.com/warriors/1655048290751/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1533845175725719553/yvzbj8iG_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Golden State Warriors</div> <div style="text-align: center; font-size: 14px;">@warriors</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Golden State Warriors. | Data | Golden State Warriors | | --- | --- | | Tweets downloaded | 3251 | | Retweets | 261 | | Short tweets | 563 | | Tweets kept | 2427 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/36p28s9n/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @warriors's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/17arirrx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/17arirrx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/warriors') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Doohae/msmarco-passage-encoder-v0
Doohae
2022-06-12T15:00:45Z
0
0
null
[ "region:us" ]
null
2022-06-12T14:43:09Z
Passage Encoder trained on Tevatron small sample dataset(3epochs)
kravchenko/uk-mt5-small
kravchenko
2022-06-12T14:56:53Z
21
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "uk", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-12T12:47:27Z
--- language: - uk - en tags: - mt5 --- The aim is to compress the mT5-small model to leave only the Ukrainian language and some basic English. Reproduced the similar result (but with another language) from [this](https://towardsdatascience.com/how-to-adapt-a-multilingual-t5-model-for-a-single-language-b9f94f3d9c90) medium article. Results: - 300M params -> 75M params (75%) - 250K tokens -> 8900 tokens - 1.1GB size model -> 0.3GB size model
Doohae/msmarco-query-encoder-v0
Doohae
2022-06-12T14:52:52Z
0
0
null
[ "region:us" ]
null
2022-06-12T14:42:45Z
Query Encoder trained on Tevatron small sample dataset(3epochs)
nestoralvaro/mt5-base-finetuned-xsum-RAW_data_prep_2021_12_26___t55_403.csv__google_mt5_base
nestoralvaro
2022-06-12T12:25:16Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-12T10:01:09Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-finetuned-xsum-RAW_data_prep_2021_12_26___t55_403.csv__google_mt5_base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-finetuned-xsum-RAW_data_prep_2021_12_26___t55_403.csv__google_mt5_base This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 0.9712 - Rouge2: 0.1329 - Rougel: 0.9638 - Rougelsum: 0.9675 - Gen Len: 6.4489 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.0 | 1.0 | 36479 | nan | 0.9712 | 0.1329 | 0.9638 | 0.9675 | 6.4489 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ilhami/Tr_En-MbartFinetune
ilhami
2022-06-12T12:01:16Z
19
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "translation", "tr", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-06-12T10:02:23Z
--- language: - tr - en tags: - translation license: apache-2.0 datasets: - Parallel Corpora for Turkish-English Academic Translations metrics: - bleu - sacrebleu --- ## Model Details - **Developed by:** İlhami SEL - **Model type:** Mbart Finetune Machine Translation - **Language:** Turkish - English - **Resources for more information:** Sel, İ. , Üzen, H. & Hanbay, D. (2021). Creating a Parallel Corpora for Turkish-English Academic Translations . Computer Science , 5th International Artificial Intelligence and Data Processing symposium , 335-340 . DOI: 10.53070/bbd.990959 ```python checkpoint = "ilhami/Tr_En-MbartFinetune" from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint).to("cuda") tokenizer.src_lang = "tr_TR" tr= ["Sohbet robotları son yıllarda yaygın bir şekilde kullanılmaya başlanmıştır. ", "İnsanları taklit eden ve daha iyi müşteri memnuniyeti sağlayan sohbet robotları en gelişkin doğal dil işleme tekniklerine ihtiyaç duymaktadır. ", "Bu çalışma sohbet robotu konuşmalarının niyet tahminini geliştirmeye odaklanmıştır." , "Kelime gösterimi için TF-IDF, Doc2vec ve BERT gibi geleneksel ve gelişmiş doğal dil işleme yöntemleri, çoklu sınıf ve çoklu etiket tahmini için ise lojistik regresyon, rastgele orman ve yapay sinir ağları kullanılmıştır." , "Sohbet robotu konuşma veri kümeleri, sinema bileti rezervasyonu, restoran rezervasyonu ve taksi çağırma olmak üzere üç farklı alandan alınmıştır. ", "Bu çalışmanın sonunda, BERT ve BERT ile TF-IDF birleşimi modellerin diğer kombinasyonlardan daha iyi sonuç verdiği görülmüştür. ", "BERT gibi ön eğitimli modellerden faydalanmanın daha iyi bağlamsal anlama sağladığı ortaya çıkmıştır. ", "TF-IDF yerleştirmeleri, BERT gösterimi ile birleştirilerek niyet kategorisi tahmininin iyileştirilmesi amaçlanmıştır."] encoded_tr = tokenizer(tr, return_tensors="pt" ,padding=True , truncation=True).to("cuda") generated_tokens = model.generate(**encoded_tr, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"]) en = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) ```
mgfrantz/dql-SpaceInvadersNoFrameskip-v4
mgfrantz
2022-06-12T11:13:41Z
7
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-12T11:12:58Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 1003.50 +/- 404.22 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mgfrantz -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga mgfrantz ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
eunbeee/ainize-kobart-news-eb-finetuned-meetings-papers
eunbeee
2022-06-12T11:02:29Z
105
1
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-12T08:37:23Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: ainize-kobart-news-eb-finetuned-meetings-papers results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ainize-kobart-news-eb-finetuned-meetings-papers This model is a fine-tuned version of [ainize/kobart-news](https://huggingface.co/ainize/kobart-news) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3289 - Rouge1: 17.3988 - Rouge2: 7.0454 - Rougel: 17.3877 - Rougelsum: 17.42 - Gen Len: 19.9473 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 0.1402 | 1.0 | 7588 | 0.2930 | 17.1421 | 7.0141 | 17.1211 | 17.1473 | 19.9374 | | 0.0997 | 2.0 | 15176 | 0.2842 | 17.1692 | 6.8824 | 17.1557 | 17.1985 | 19.9435 | | 0.0692 | 3.0 | 22764 | 0.3052 | 17.4241 | 7.1083 | 17.4028 | 17.4472 | 19.9453 | | 0.0556 | 4.0 | 30352 | 0.3289 | 17.3988 | 7.0454 | 17.3877 | 17.42 | 19.9473 | | 0.0533 | 5.0 | 37940 | 0.3289 | 17.3988 | 7.0454 | 17.3877 | 17.42 | 19.9473 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/manfightdragon
huggingtweets
2022-06-12T10:26:35Z
106
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-12T10:23:38Z
--- language: en thumbnail: http://www.huggingtweets.com/manfightdragon/1655029573001/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1184073162520031232/V6DOEeLp_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lance McDonald</div> <div style="text-align: center; font-size: 14px;">@manfightdragon</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Lance McDonald. | Data | Lance McDonald | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 209 | | Short tweets | 214 | | Tweets kept | 2826 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3pc794z5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @manfightdragon's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2t8940p5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2t8940p5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/manfightdragon') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
z-uo/vits-commonvoice9.0
z-uo
2022-06-12T09:46:23Z
1
0
transformers
[ "transformers", "tensorboard", "text-to-speech", "it", "dataset:mozilla-foundation/common_voice_9_0", "endpoints_compatible", "region:us" ]
text-to-speech
2022-06-12T07:07:07Z
--- tags: - text-to-speech language: - it model-index: - name: vits-commonvoice9.0 results: [] datasets: - mozilla-foundation/common_voice_9_0 --- # Common Voice it Vits Train on [Mozzila Common voice](https://commonvoice.mozilla.org/) v9.0 it with [Coqui VITS](https://github.com/coqui-ai/TTS) ``` # Coqui tts sha commit coquitts: 0cf3265a4686d7e856bd472cdaf1572d61cab2b8 PYTORCH_CUDA_ALLOC_CONF="max_split_size_mb:25" CUDA_VISIBLE_DEVICES=1 python recipes/common_voice/vits/train_vits.py CUDA_VISIBLE_DEVICES=0 tts-server --model_path "/run/media/opensuse/Barracuda/Models/TTS_new/trained_common_voice/vits_vctk-June-05-2022_03+45PM-0cf3265a/best_model.pth" --config_path "/run/media/opensuse/Barracuda/Models/TTS_new/trained_common_voice/vits_vctk-June-05-2022_03+45PM-0cf3265a/config.json" ```
huggingtweets/bosstjanz
huggingtweets
2022-06-12T09:27:34Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-12T09:26:54Z
--- language: en thumbnail: http://www.huggingtweets.com/bosstjanz/1655026050127/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1342130927737176064/SiNG_CxQ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Zrimškow</div> <div style="text-align: center; font-size: 14px;">@bosstjanz</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Zrimškow. | Data | Zrimškow | | --- | --- | | Tweets downloaded | 3225 | | Retweets | 368 | | Short tweets | 279 | | Tweets kept | 2578 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/23nemiqj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bosstjanz's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2pjrymzt) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2pjrymzt/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bosstjanz') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ironbar/dqn-SpaceInvadersNoFrameskip-v4-1M-steps
ironbar
2022-06-12T08:16:08Z
11
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-12T08:15:30Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 629.50 +/- 140.06 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga ironbar -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga ironbar ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
spuun/kekbot-mini
spuun
2022-06-12T05:53:59Z
106
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "en", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-12T03:40:33Z
--- language: - en metrics: - accuracy co2_eq_emissions: emissions: "10" source: "mlco2.github.io" training_type: "fine-tuning" geographical_location: "West Java, Indonesia" hardware_used: "1 T4" license: cc-by-nc-sa-4.0 widget: - text: 'You: "Hey kekbot! Whats up?"\nKekbot: "' example_title: "Asking what's up" - text: 'You: "Hey kekbot! How r u?"\nKekbot: "' example_title: "Asking how he is" --- > THIS MODEL IS INTENDED FOR RESEARCH PURPOSES ONLY # Kekbot Mini Based on a `distilgpt2` model, fine-tuned to a select subset (65k<= messages) of Art Union's general-chat channel chat history. ### Limits and biases As this is trained on chat history, it is possible that discriminatory or even offensive materials to be outputted. Author holds his ground on the fact that ML models are mere statistical representation of the dataset used to train it, and that due to the nature of the dataset it is practically impossible to be certain of the degree of "cleanliness" that the data contained within holds. Author can confirm, however, that from heuristical testing that the model was not found to be offensive to the author himself, hopefully this opinion stays true for everyone in the audience.
ahmeddbahaa/arabert2arabert-finetuned-ar-wikilingua
ahmeddbahaa
2022-06-12T05:51:47Z
21
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "summarization", "ar", "arabert", "arabert2arabert", "Abstractive Summarization", "generated_from_trainer", "dataset:wiki_lingua", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-06-12T01:03:07Z
--- tags: - summarization - ar - encoder-decoder - arabert - arabert2arabert - Abstractive Summarization - generated_from_trainer datasets: - wiki_lingua model-index: - name: arabert2arabert-finetuned-ar-wikilingua results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # arabert2arabert-finetuned-ar-wikilingua This model is a fine-tuned version of [](https://huggingface.co/) on the wiki_lingua dataset. It achieves the following results on the evaluation set: - Loss: 4.6877 - Rouge-1: 13.2 - Rouge-2: 3.43 - Rouge-l: 12.45 - Gen Len: 20.0 - Bertscore: 64.88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 8 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:| | 6.7667 | 1.0 | 156 | 5.3846 | 3.36 | 0.56 | 3.27 | 20.0 | 60.6 | | 5.257 | 2.0 | 312 | 5.0424 | 5.44 | 0.88 | 5.35 | 20.0 | 60.56 | | 4.743 | 3.0 | 468 | 4.8294 | 9.21 | 1.8 | 8.93 | 20.0 | 62.91 | | 4.3832 | 4.0 | 624 | 4.7240 | 9.88 | 2.19 | 9.6 | 20.0 | 62.65 | | 4.1166 | 5.0 | 780 | 4.6861 | 11.61 | 2.86 | 11.13 | 20.0 | 63.71 | | 3.91 | 6.0 | 936 | 4.6692 | 12.27 | 3.11 | 11.76 | 20.0 | 64.07 | | 3.7569 | 7.0 | 1092 | 4.6805 | 12.93 | 3.38 | 12.28 | 20.0 | 64.61 | | 3.6454 | 8.0 | 1248 | 4.6877 | 13.2 | 3.43 | 12.45 | 20.0 | 64.88 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
bguan/SpaceInvadersNoFrameskip-v4-2Msteps
bguan
2022-06-12T05:15:59Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-12T05:15:25Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 550.00 +/- 150.17 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga bguan -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga bguan ``` ## Hyperparameters ```python OrderedDict([('batch_size', 256), ('buffer_size', 400000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 2000000), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
huggingtweets/tayplaysgaymes
huggingtweets
2022-06-12T03:56:41Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-12T03:55:39Z
--- language: en thumbnail: http://www.huggingtweets.com/tayplaysgaymes/1655006196516/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1144053838459969536/lv3yBmoX_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tay</div> <div style="text-align: center; font-size: 14px;">@tayplaysgaymes</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Tay. | Data | Tay | | --- | --- | | Tweets downloaded | 3212 | | Retweets | 693 | | Short tweets | 367 | | Tweets kept | 2152 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1hmextiq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tayplaysgaymes's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3r0cse8x) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3r0cse8x/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/tayplaysgaymes') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
meghazisofiane/opus-mt-en-ar-evaluated-en-to-ar-2000instances-un_multi-leaningRate2e-05-batchSize8-11-action-1
meghazisofiane
2022-06-12T00:44:37Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "dataset:un_multi", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-12T00:34:12Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - un_multi metrics: - bleu model-index: - name: opus-mt-en-ar-evaluated-en-to-ar-2000instances-un_multi-leaningRate2e-05-batchSize8-11-action-1 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: un_multi type: un_multi args: ar-en metrics: - name: Bleu type: bleu value: 53.0137 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ar-evaluated-en-to-ar-2000instances-un_multi-leaningRate2e-05-batchSize8-11-action-1 This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ar](https://huggingface.co/Helsinki-NLP/opus-mt-en-ar) on the un_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.1873 - Bleu: 53.0137 - Meteor: 0.5005 - Gen Len: 25.845 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 11 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:| | 0.6585 | 0.5 | 100 | 0.2085 | 52.5874 | 0.4969 | 25.485 | | 0.1802 | 1.0 | 200 | 0.1788 | 52.9434 | 0.4982 | 25.1725 | | 0.1501 | 1.5 | 300 | 0.1683 | 53.6994 | 0.5033 | 25.625 | | 0.1454 | 2.0 | 400 | 0.1706 | 53.3946 | 0.5005 | 25.6675 | | 0.1193 | 2.5 | 500 | 0.1774 | 53.2011 | 0.4982 | 25.58 | | 0.1194 | 3.0 | 600 | 0.1741 | 53.8651 | 0.5026 | 25.5775 | | 0.1002 | 3.5 | 700 | 0.1878 | 53.1332 | 0.5005 | 25.8975 | | 0.0979 | 4.0 | 800 | 0.1881 | 52.5989 | 0.4974 | 25.485 | | 0.0807 | 4.5 | 900 | 0.1873 | 53.0137 | 0.5005 | 25.845 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
huggingtweets/laserboat999
huggingtweets
2022-06-11T23:53:52Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-11T23:49:07Z
--- language: en thumbnail: http://www.huggingtweets.com/laserboat999/1654991516445/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1500274766195793921/bA4siut7_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">donald boat</div> <div style="text-align: center; font-size: 14px;">@laserboat999</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from donald boat. | Data | donald boat | | --- | --- | | Tweets downloaded | 3233 | | Retweets | 75 | | Short tweets | 516 | | Tweets kept | 2642 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/38v40fpf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @laserboat999's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/pk1xum9h) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/pk1xum9h/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/laserboat999') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
745H1N/LunarLander-v2-DQN-optuna
745H1N
2022-06-11T23:36:51Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-11T23:36:25Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: -140.18 +/- 41.67 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **DQN** Agent playing **LunarLander-v2** This is a trained model of a **DQN** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
aprischa/bart-large-cnn-aprischa2
aprischa
2022-06-11T23:27:38Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-11T17:40:18Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-aprischa2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-aprischa2 This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3425 - Rouge1: 65.7088 - Rouge2: 56.6701 - Rougel: 62.1926 - Rougelsum: 64.7727 - Gen Len: 140.8469 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 0.3772 | 1.0 | 5403 | 0.3586 | 65.7702 | 56.7968 | 62.264 | 64.8605 | 140.268 | | 0.316 | 2.0 | 10806 | 0.3421 | 64.8238 | 55.8837 | 61.3245 | 63.8894 | 140.7472 | | 0.2397 | 3.0 | 16209 | 0.3425 | 65.7088 | 56.6701 | 62.1926 | 64.7727 | 140.8469 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
tjscollins/q-Taxi-v3
tjscollins
2022-06-11T21:37:49Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-11T21:00:50Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 12.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="tjscollins/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
meghazisofiane/opus-mt-en-ar-evaluated-en-to-ar-2000instancesopus-leaningRate2e-05-batchSize8-11epoch-3
meghazisofiane
2022-06-11T21:27:25Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "dataset:opus100", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-11T19:41:31Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - opus100 metrics: - bleu model-index: - name: opus-mt-en-ar-evaluated-en-to-ar-2000instancesopus-leaningRate2e-05-batchSize8-11epoch-3 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: opus100 type: opus100 args: ar-en metrics: - name: Bleu type: bleu value: 26.2629 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ar-evaluated-en-to-ar-2000instancesopus-leaningRate2e-05-batchSize8-11epoch-3 This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ar](https://huggingface.co/Helsinki-NLP/opus-mt-en-ar) on the opus100 dataset. It achieves the following results on the evaluation set: - Loss: 0.1959 - Bleu: 26.2629 - Meteor: 0.1703 - Gen Len: 11.0925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 11 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:| | 1.0519 | 0.5 | 100 | 0.1985 | 27.3525 | 0.1815 | 11.0725 | | 0.1947 | 1.0 | 200 | 0.1902 | 26.9728 | 0.1789 | 10.82 | | 0.1489 | 1.5 | 300 | 0.1910 | 27.7003 | 0.1811 | 10.975 | | 0.1665 | 2.0 | 400 | 0.1905 | 26.3739 | 0.1772 | 11.1075 | | 0.1321 | 2.5 | 500 | 0.1926 | 26.752 | 0.1772 | 10.975 | | 0.1271 | 3.0 | 600 | 0.1927 | 27.3663 | 0.1751 | 10.9725 | | 0.1105 | 3.5 | 700 | 0.1952 | 27.134 | 0.1738 | 10.9975 | | 0.109 | 4.0 | 800 | 0.1959 | 26.2629 | 0.1703 | 11.0925 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
lindeberg/distilbert-base-uncased-finetuned-cola
lindeberg
2022-06-11T21:10:06Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-11T18:50:58Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.4496664370323995 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4949 - Matthews Correlation: 0.4497 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5231 | 1.0 | 535 | 0.4949 | 0.4497 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
tjscollins/q-FrozenLake-v1-4x4-noSlippery
tjscollins
2022-06-11T20:25:47Z
0
1
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-11T20:24:19Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 0.78 +/- 0.41 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="tjscollins/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
huggingtweets/elonmusk-rshowerthoughts-stephenking
huggingtweets
2022-06-11T20:15:51Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-11T20:04:06Z
--- language: en thumbnail: http://www.huggingtweets.com/elonmusk-rshowerthoughts-stephenking/1654978546952/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1529956155937759233/Nyn1HZWF_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/378800000836981162/b683f7509ec792c3e481ead332940cdc_400x400.jpeg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/641699738224455680/L_ji6ClT_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & Stephen King & Showerthoughts</div> <div style="text-align: center; font-size: 14px;">@elonmusk-rshowerthoughts-stephenking</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & Stephen King & Showerthoughts. | Data | Elon Musk | Stephen King | Showerthoughts | | --- | --- | --- | --- | | Tweets downloaded | 3200 | 3230 | 3200 | | Retweets | 147 | 780 | 0 | | Short tweets | 954 | 202 | 0 | | Tweets kept | 2099 | 2248 | 3200 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1fvudd5c/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk-rshowerthoughts-stephenking's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/39f9xftz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/39f9xftz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elonmusk-rshowerthoughts-stephenking') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
JClementC/test
JClementC
2022-06-11T19:58:42Z
0
0
null
[ "region:us" ]
null
2022-06-11T19:19:48Z
git lfs install git clone https://github.com/nneonneo/2048-ai.git
Galeros/dqn-mountaincar-v0-zoo-mimick
Galeros
2022-06-11T19:55:08Z
1
0
stable-baselines3
[ "stable-baselines3", "MountainCar-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-11T19:55:00Z
--- library_name: stable-baselines3 tags: - MountainCar-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: -104.90 +/- 6.80 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: MountainCar-v0 type: MountainCar-v0 --- # **DQN** Agent playing **MountainCar-v0** This is a trained model of a **DQN** agent playing **MountainCar-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
huggingtweets/conanobrien-mikemancini-wendymolyneux
huggingtweets
2022-06-11T19:50:54Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-11T19:46:43Z
--- language: en thumbnail: http://www.huggingtweets.com/conanobrien-mikemancini-wendymolyneux/1654977049172/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1271404115042676736/PAIbmN-p_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/730612231021322240/Rl0_QYhL_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1044085580651528193/DR7QvrwG_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">mike mancini & Conan O'Brien & Wendy Molyneux</div> <div style="text-align: center; font-size: 14px;">@conanobrien-mikemancini-wendymolyneux</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from mike mancini & Conan O'Brien & Wendy Molyneux. | Data | mike mancini | Conan O'Brien | Wendy Molyneux | | --- | --- | --- | --- | | Tweets downloaded | 3150 | 3250 | 836 | | Retweets | 286 | 40 | 251 | | Short tweets | 290 | 24 | 69 | | Tweets kept | 2574 | 3186 | 516 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/25wtfzk4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @conanobrien-mikemancini-wendymolyneux's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1hjizcue) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1hjizcue/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/conanobrien-mikemancini-wendymolyneux') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mdoukmas
huggingtweets
2022-06-11T19:35:54Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-11T19:34:24Z
--- language: en thumbnail: http://www.huggingtweets.com/mdoukmas/1654976150184/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1098660288193269762/n5v9daol_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Maya Dukmasova</div> <div style="text-align: center; font-size: 14px;">@mdoukmas</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Maya Dukmasova. | Data | Maya Dukmasova | | --- | --- | | Tweets downloaded | 3241 | | Retweets | 896 | | Short tweets | 158 | | Tweets kept | 2187 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2jwhv7l5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mdoukmas's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/25v3pmsy) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/25v3pmsy/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mdoukmas') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
meghazisofiane/opus-mt-en-ar-evaluated-en-to-ar-1000instancesopus-leaningRate2e-05-batchSize8-11epoch-3
meghazisofiane
2022-06-11T19:25:04Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "dataset:opus100", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-11T19:16:47Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - opus100 metrics: - bleu model-index: - name: opus-mt-en-ar-evaluated-en-to-ar-1000instancesopus-leaningRate2e-05-batchSize8-11epoch-3 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: opus100 type: opus100 args: ar-en metrics: - name: Bleu type: bleu value: 21.3028 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ar-evaluated-en-to-ar-1000instancesopus-leaningRate2e-05-batchSize8-11epoch-3 This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ar](https://huggingface.co/Helsinki-NLP/opus-mt-en-ar) on the opus100 dataset. It achieves the following results on the evaluation set: - Loss: 0.1421 - Bleu: 21.3028 - Meteor: 0.1285 - Gen Len: 9.975 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 11 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:| | 1.0508 | 1.0 | 100 | 0.1413 | 27.9009 | 0.1416 | 8.85 | | 0.1253 | 2.0 | 200 | 0.1372 | 23.11 | 0.1345 | 9.855 | | 0.1017 | 3.0 | 300 | 0.1390 | 21.7885 | 0.1364 | 9.97 | | 0.0868 | 4.0 | 400 | 0.1378 | 21.3889 | 0.1314 | 9.835 | | 0.0754 | 5.0 | 500 | 0.1398 | 22.198 | 0.132 | 9.675 | | 0.0667 | 6.0 | 600 | 0.1396 | 20.8645 | 0.1308 | 10.055 | | 0.0604 | 7.0 | 700 | 0.1408 | 20.289 | 0.1303 | 10.53 | | 0.0553 | 8.0 | 800 | 0.1414 | 21.7023 | 0.1293 | 10.005 | | 0.0518 | 9.0 | 900 | 0.1421 | 21.3028 | 0.1285 | 9.975 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Galeros/dqn-mountaincar-v0-zoo
Galeros
2022-06-11T19:21:02Z
6
0
stable-baselines3
[ "stable-baselines3", "MountainCar-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-11T18:55:20Z
--- library_name: stable-baselines3 tags: - MountainCar-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: -105.00 +/- 3.46 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: MountainCar-v0 type: MountainCar-v0 --- # **DQN** Agent playing **MountainCar-v0** This is a trained model of a **DQN** agent playing **MountainCar-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ahmeddbahaa/t5-arabic-base-finetuned-xlsum-ar
ahmeddbahaa
2022-06-11T19:13:08Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "summarization", "ar", "abstractive summarization", "xlsum", "generated_from_trainer", "dataset:xlsum", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2022-06-11T01:21:55Z
--- license: apache-2.0 tags: - summarization - t5 - ar - abstractive summarization - xlsum - generated_from_trainer datasets: - xlsum model-index: - name: t5-arabic-base-finetuned-xlsum-ar results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-arabic-base-finetuned-xlsum-ar This model is a fine-tuned version of [bakrianoo/t5-arabic-base](https://huggingface.co/bakrianoo/t5-arabic-base) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 3.0328 - Rouge-1: 23.72 - Rouge-2: 10.95 - Rouge-l: 21.59 - Gen Len: 19.0 - Bertscore: 71.81 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 10 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/elonmusk-iamjohnoliver-neiltyson
huggingtweets
2022-06-11T19:00:50Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-11T18:54:15Z
--- language: en thumbnail: http://www.huggingtweets.com/elonmusk-iamjohnoliver-neiltyson/1654974044761/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1529956155937759233/Nyn1HZWF_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1393958859/main_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/74188698/NeilTysonOriginsA-Crop_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & John Oliver & Neil deGrasse Tyson</div> <div style="text-align: center; font-size: 14px;">@elonmusk-iamjohnoliver-neiltyson</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & John Oliver & Neil deGrasse Tyson. | Data | Elon Musk | John Oliver | Neil deGrasse Tyson | | --- | --- | --- | --- | | Tweets downloaded | 3200 | 636 | 3237 | | Retweets | 147 | 122 | 10 | | Short tweets | 954 | 9 | 87 | | Tweets kept | 2099 | 505 | 3140 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/14h905cr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk-iamjohnoliver-neiltyson's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3gcc5ko3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3gcc5ko3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elonmusk-iamjohnoliver-neiltyson') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Galeros/dqn-mountaincar-v0-local
Galeros
2022-06-11T18:38:27Z
3
0
stable-baselines3
[ "stable-baselines3", "MountainCar-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-11T18:38:19Z
--- library_name: stable-baselines3 tags: - MountainCar-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: -98.80 +/- 21.88 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: MountainCar-v0 type: MountainCar-v0 --- # **DQN** Agent playing **MountainCar-v0** This is a trained model of a **DQN** agent playing **MountainCar-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
lllFaNToMlll/wac2vec-lllfantomlll
lllFaNToMlll
2022-06-11T18:07:44Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-11T11:42:50Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wac2vec-lllfantomlll results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wac2vec-lllfantomlll This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5560 - Wer: 0.3417 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5768 | 1.0 | 500 | 2.0283 | 1.0238 | | 0.9219 | 2.01 | 1000 | 0.5103 | 0.5022 | | 0.4497 | 3.01 | 1500 | 0.4746 | 0.4669 | | 0.3163 | 4.02 | 2000 | 0.4144 | 0.4229 | | 0.2374 | 5.02 | 2500 | 0.4186 | 0.4161 | | 0.2033 | 6.02 | 3000 | 0.4115 | 0.3975 | | 0.1603 | 7.03 | 3500 | 0.4424 | 0.3817 | | 0.1455 | 8.03 | 4000 | 0.4151 | 0.3918 | | 0.1276 | 9.04 | 4500 | 0.4940 | 0.3798 | | 0.108 | 10.04 | 5000 | 0.4580 | 0.3688 | | 0.1053 | 11.04 | 5500 | 0.4243 | 0.3700 | | 0.0929 | 12.05 | 6000 | 0.4999 | 0.3727 | | 0.0896 | 13.05 | 6500 | 0.4991 | 0.3624 | | 0.0748 | 14.06 | 7000 | 0.4924 | 0.3602 | | 0.0681 | 15.06 | 7500 | 0.4908 | 0.3544 | | 0.0619 | 16.06 | 8000 | 0.5021 | 0.3559 | | 0.0569 | 17.07 | 8500 | 0.5448 | 0.3518 | | 0.0549 | 18.07 | 9000 | 0.4919 | 0.3508 | | 0.0478 | 19.08 | 9500 | 0.4704 | 0.3513 | | 0.0437 | 20.08 | 10000 | 0.5058 | 0.3555 | | 0.0421 | 21.08 | 10500 | 0.5127 | 0.3489 | | 0.0362 | 22.09 | 11000 | 0.5439 | 0.3527 | | 0.0322 | 23.09 | 11500 | 0.5418 | 0.3469 | | 0.0327 | 24.1 | 12000 | 0.5298 | 0.3422 | | 0.0292 | 25.1 | 12500 | 0.5511 | 0.3426 | | 0.0246 | 26.1 | 13000 | 0.5349 | 0.3472 | | 0.0251 | 27.11 | 13500 | 0.5646 | 0.3391 | | 0.0214 | 28.11 | 14000 | 0.5821 | 0.3424 | | 0.0217 | 29.12 | 14500 | 0.5560 | 0.3417 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
huggingnft/frames
huggingnft
2022-06-11T17:38:03Z
5
0
transformers
[ "transformers", "huggingnft", "nft", "huggan", "gan", "image", "images", "unconditional-image-generation", "dataset:huggingnft/frames", "license:mit", "endpoints_compatible", "region:us" ]
unconditional-image-generation
2022-06-11T14:58:47Z
--- tags: - huggingnft - nft - huggan - gan - image - images - unconditional-image-generation datasets: - huggingnft/frames license: mit --- # Hugging NFT: frames ## Disclaimer All rights belong to their owners. Models and datasets can be removed from the site at the request of the copyright holder. ## Model description LightWeight GAN model for unconditional generation. NFT collection available [here](https://opensea.io/collection/frames). Dataset is available [here](https://huggingface.co/datasets/huggingnft/frames). Check Space: [link](https://huggingface.co/spaces/AlekseyKorshuk/huggingnft). Project repository: [link](https://github.com/AlekseyKorshuk/huggingnft). [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingnft?style=social)](https://github.com/AlekseyKorshuk/huggingnft) ## Intended uses & limitations #### How to use Check project repository: [link](https://github.com/AlekseyKorshuk/huggingnft). #### Limitations and bias Check project repository: [link](https://github.com/AlekseyKorshuk/huggingnft). ## Training data Dataset is available [here](https://huggingface.co/datasets/huggingnft/frames). ## Training procedure Training script is available [here](https://github.com/AlekseyKorshuk/huggingnft). ## Generated Images Check results with Space: [link](https://huggingface.co/spaces/AlekseyKorshuk/huggingnft). ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingnft?style=social)](https://github.com/AlekseyKorshuk/huggingnft) ### BibTeX entry and citation info ```bibtex @InProceedings{huggingnft, author={Aleksey Korshuk} year=2022 } ```
DancingIguana/codeparrot-ds
DancingIguana
2022-06-11T16:58:04Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-08T21:56:49Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: codeparrot-ds results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
bubblecookie/t5-small-finetuned-cnndm_trained
bubblecookie
2022-06-11T16:48:45Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-10T06:21:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: t5-small-finetuned-cnndm_trained results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnndm_trained This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
robingeibel/longformer-base-finetuned-big_patent
robingeibel
2022-06-11T16:33:49Z
62
1
transformers
[ "transformers", "tf", "longformer", "fill-mask", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-05T17:24:27Z
--- tags: - generated_from_keras_callback model-index: - name: robingeibel/longformer-base-finetuned-big_patent results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # robingeibel/longformer-base-finetuned-big_patent This model is a fine-tuned version of [robingeibel/longformer-base-finetuned-big_patent](https://huggingface.co/robingeibel/longformer-base-finetuned-big_patent) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.1860 - Validation Loss: 1.0692 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 152946, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.1860 | 1.0692 | 0 | ### Framework versions - Transformers 4.19.4 - TensorFlow 2.8.2 - Datasets 2.2.2 - Tokenizers 0.12.1
IshanKumar/molecular_generation
IshanKumar
2022-06-11T14:27:39Z
0
0
keras
[ "keras", "tensorboard", "tf-keras", "mol_gen", "region:us" ]
null
2022-06-02T19:30:33Z
--- library_name: keras tags: - mol_gen --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 0.0005, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ## Training Metrics | Epochs | Train Loss | |--- |--- | | 1| 68866.578| | 2| 68818.219| | 3| 68850.844| | 4| 68829.688| | 5| 68840.258| | 6| 68813.281| | 7| 68809.414| | 8| 68815.312| | 9| 68805.641| | 10| 68803.672| ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
YeRyeongLee/albert-base-v2-finetuned-filtered-0609
YeRyeongLee
2022-06-11T13:33:02Z
106
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-11T11:46:52Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: albert-base-v2-finetuned-filtered-0609 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-v2-finetuned-filtered-0609 This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2062 - Accuracy: 0.9723 - Precision: 0.9724 - Recall: 0.9723 - F1: 0.9723 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.2688 | 1.0 | 3180 | 0.2282 | 0.9560 | 0.9577 | 0.9560 | 0.9562 | | 0.2268 | 2.0 | 6360 | 0.1909 | 0.9638 | 0.9640 | 0.9638 | 0.9638 | | 0.1831 | 3.0 | 9540 | 0.2590 | 0.9572 | 0.9584 | 0.9572 | 0.9572 | | 0.1588 | 4.0 | 12720 | 0.1752 | 0.9673 | 0.9678 | 0.9673 | 0.9673 | | 0.0972 | 5.0 | 15900 | 0.1868 | 0.9695 | 0.9696 | 0.9695 | 0.9695 | | 0.0854 | 6.0 | 19080 | 0.2042 | 0.9701 | 0.9707 | 0.9701 | 0.9702 | | 0.0599 | 7.0 | 22260 | 0.1793 | 0.9748 | 0.9749 | 0.9748 | 0.9749 | | 0.0389 | 8.0 | 25440 | 0.1996 | 0.9742 | 0.9743 | 0.9742 | 0.9742 | | 0.0202 | 9.0 | 28620 | 0.2188 | 0.9723 | 0.9726 | 0.9723 | 0.9724 | | 0.0152 | 10.0 | 31800 | 0.2062 | 0.9723 | 0.9724 | 0.9723 | 0.9723 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.9.1+cu111 - Datasets 1.16.1 - Tokenizers 0.12.1
tclong/wav2vec2-base-vios-google-colab
tclong
2022-06-11T13:26:15Z
78
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-29T03:45:53Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-vios-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-vios-google-colab This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5647 - Wer: 0.4970 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 7.7292 | 2.0 | 500 | 3.4159 | 1.0 | | 3.0762 | 4.0 | 1000 | 1.3005 | 0.9615 | | 0.8812 | 6.0 | 1500 | 0.4664 | 0.4740 | | 0.5076 | 8.0 | 2000 | 0.4101 | 0.4180 | | 0.4075 | 10.0 | 2500 | 0.3815 | 0.3802 | | 0.3724 | 12.0 | 3000 | 0.3785 | 0.3741 | | 0.3762 | 14.0 | 3500 | 0.4404 | 0.3766 | | 0.4541 | 16.0 | 4000 | 0.4671 | 0.3822 | | 0.6391 | 18.0 | 4500 | 0.5643 | 0.4200 | | 0.7681 | 20.0 | 5000 | 0.6564 | 0.5214 | | 0.8131 | 22.0 | 5500 | 0.5786 | 0.4934 | | 0.7448 | 24.0 | 6000 | 0.5561 | 0.4920 | | 0.7337 | 26.0 | 6500 | 0.5631 | 0.4964 | | 0.7359 | 28.0 | 7000 | 0.5647 | 0.4968 | | 0.7397 | 30.0 | 7500 | 0.5647 | 0.4970 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
titi7242229/roberta-base-bne-finetuned_personality_multi_3
titi7242229
2022-06-11T13:13:47Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-11T07:10:27Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-base-bne-finetuned_personality_multi_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned_personality_multi_3 This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1145 - Accuracy: 0.4847 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2498 | 1.0 | 63 | 2.2799 | 0.2236 | | 2.3044 | 2.0 | 126 | 2.1644 | 0.2980 | | 1.9017 | 3.0 | 189 | 1.9934 | 0.4127 | | 2.2281 | 4.0 | 252 | 1.8517 | 0.4501 | | 1.2955 | 5.0 | 315 | 1.7588 | 0.4870 | | 1.221 | 6.0 | 378 | 1.7269 | 0.4888 | | 1.1381 | 7.0 | 441 | 1.7617 | 0.4888 | | 0.8415 | 8.0 | 504 | 1.8101 | 0.4853 | | 0.6696 | 9.0 | 567 | 1.8325 | 0.4928 | | 0.6646 | 10.0 | 630 | 1.8707 | 0.4841 | | 0.3758 | 11.0 | 693 | 1.8766 | 0.4876 | | 0.3477 | 12.0 | 756 | 1.9171 | 0.4905 | | 0.2854 | 13.0 | 819 | 1.9203 | 0.4980 | | 0.2713 | 14.0 | 882 | 2.0089 | 0.4813 | | 0.3434 | 15.0 | 945 | 2.0130 | 0.4905 | | 0.0758 | 16.0 | 1008 | 2.0230 | 0.4922 | | 0.2518 | 17.0 | 1071 | 2.0793 | 0.4824 | | 0.0783 | 18.0 | 1134 | 2.0920 | 0.4830 | | 0.0933 | 19.0 | 1197 | 2.1067 | 0.4836 | | 0.184 | 20.0 | 1260 | 2.1145 | 0.4847 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
louisdeco/camembert-base-finetuned-RankLineCause
louisdeco
2022-06-11T12:50:01Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "camembert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-11T09:02:07Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - recall model-index: - name: camembert-base-finetuned-RankLineCause results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # camembert-base-finetuned-RankLineCause This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3138 - Accuracy: 0.8152 - F1: 0.8297 - Recall: 0.8152 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 50 - eval_batch_size: 50 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:------:| | 0.3471 | 1.0 | 10019 | 0.3191 | 0.8156 | 0.8137 | 0.8156 | | 0.317 | 2.0 | 20038 | 0.3138 | 0.8152 | 0.8297 | 0.8152 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
DavidCollier/SpaceInvader
DavidCollier
2022-06-11T12:40:06Z
4
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-11T12:39:28Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 15.50 +/- 12.54 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga DavidCollier -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga DavidCollier ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Sebabrata/lmv2ubiai-pan8doc-06-11
Sebabrata
2022-06-11T12:25:03Z
78
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv2", "token-classification", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-11T11:46:22Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer model-index: - name: lmv2ubiai-pan8doc-06-11 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lmv2ubiai-pan8doc-06-11 This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9633 - Dob Precision: 1.0 - Dob Recall: 1.0 - Dob F1: 1.0 - Dob Number: 2 - Fname Precision: 0.6667 - Fname Recall: 1.0 - Fname F1: 0.8 - Fname Number: 2 - Name Precision: 1.0 - Name Recall: 1.0 - Name F1: 1.0 - Name Number: 2 - Pan Precision: 1.0 - Pan Recall: 1.0 - Pan F1: 1.0 - Pan Number: 2 - Overall Precision: 0.8889 - Overall Recall: 1.0 - Overall F1: 0.9412 - Overall Accuracy: 0.9821 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Dob Precision | Dob Recall | Dob F1 | Dob Number | Fname Precision | Fname Recall | Fname F1 | Fname Number | Name Precision | Name Recall | Name F1 | Name Number | Pan Precision | Pan Recall | Pan F1 | Pan Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-------------:|:----------:|:------:|:----------:|:---------------:|:------------:|:--------:|:------------:|:--------------:|:-----------:|:-------:|:-----------:|:-------------:|:----------:|:------:|:----------:|:-----------------:|:--------------:|:----------:|:----------------:| | 2.1195 | 1.0 | 6 | 1.7519 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 0.7857 | | 1.6994 | 2.0 | 12 | 1.5117 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 0.7857 | | 1.5521 | 3.0 | 18 | 1.4130 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 0.7857 | | 1.4726 | 4.0 | 24 | 1.3410 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 0.7857 | | 1.395 | 5.0 | 30 | 1.2693 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 0.7857 | | 1.3131 | 6.0 | 36 | 1.2079 | 1.0 | 1.0 | 1.0 | 2 | 0.1667 | 0.5 | 0.25 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 2 | 0.3 | 0.375 | 0.3333 | 0.8929 | | 1.2474 | 7.0 | 42 | 1.1495 | 1.0 | 1.0 | 1.0 | 2 | 0.2 | 0.5 | 0.2857 | 2 | 0.0 | 0.0 | 0.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.4167 | 0.625 | 0.5 | 0.9286 | | 1.1869 | 8.0 | 48 | 1.0942 | 1.0 | 1.0 | 1.0 | 2 | 0.2 | 0.5 | 0.2857 | 2 | 0.0 | 0.0 | 0.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.4167 | 0.625 | 0.5 | 0.9286 | | 1.1369 | 9.0 | 54 | 1.0453 | 1.0 | 1.0 | 1.0 | 2 | 0.4 | 1.0 | 0.5714 | 2 | 0.0 | 0.0 | 0.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5455 | 0.75 | 0.6316 | 0.9464 | | 1.0882 | 10.0 | 60 | 1.0054 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 1.0 | 0.6667 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.7 | 0.875 | 0.7778 | 0.9643 | | 1.0482 | 11.0 | 66 | 0.9633 | 1.0 | 1.0 | 1.0 | 2 | 0.6667 | 1.0 | 0.8 | 2 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.8889 | 1.0 | 0.9412 | 0.9821 | | 1.017 | 12.0 | 72 | 0.9368 | 1.0 | 1.0 | 1.0 | 2 | 0.6667 | 1.0 | 0.8 | 2 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.8889 | 1.0 | 0.9412 | 0.9643 | | 0.9825 | 13.0 | 78 | 0.9139 | 1.0 | 1.0 | 1.0 | 2 | 0.6667 | 1.0 | 0.8 | 2 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.8889 | 1.0 | 0.9412 | 0.9821 | | 0.9459 | 14.0 | 84 | 0.8837 | 1.0 | 1.0 | 1.0 | 2 | 0.6667 | 1.0 | 0.8 | 2 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.8889 | 1.0 | 0.9412 | 0.9643 | | 0.9155 | 15.0 | 90 | 0.8472 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.8819 | 16.0 | 96 | 0.8231 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.8523 | 17.0 | 102 | 0.7957 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.6667 | 1.0 | 0.8 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.8889 | 1.0 | 0.9412 | 0.9821 | | 0.8251 | 18.0 | 108 | 0.7681 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.7982 | 19.0 | 114 | 0.7533 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.7762 | 20.0 | 120 | 0.7283 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.7558 | 21.0 | 126 | 0.7114 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.7346 | 22.0 | 132 | 0.6889 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.7116 | 23.0 | 138 | 0.6697 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.6898 | 24.0 | 144 | 0.6593 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.6748 | 25.0 | 150 | 0.6356 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.6487 | 26.0 | 156 | 0.6142 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.6312 | 27.0 | 162 | 0.6008 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.6156 | 28.0 | 168 | 0.5855 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.5961 | 29.0 | 174 | 0.5625 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | | 0.5781 | 30.0 | 180 | 0.5553 | 1.0 | 1.0 | 1.0 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.5 | 0.5 | 0.5 | 2 | 1.0 | 1.0 | 1.0 | 2 | 0.875 | 0.875 | 0.875 | 0.9643 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Theivaprakasham/layoutlmv3-finetuned-wildreceipt
Theivaprakasham
2022-06-11T09:14:40Z
28
3
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv3", "token-classification", "generated_from_trainer", "dataset:wild_receipt", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-11T07:21:14Z
--- tags: - generated_from_trainer datasets: - wild_receipt metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-wildreceipt results: - task: name: Token Classification type: token-classification dataset: name: wild_receipt type: wild_receipt args: WildReceipt metrics: - name: Precision type: precision value: 0.877212237618329 - name: Recall type: recall value: 0.8798678959680749 - name: F1 type: f1 value: 0.8785380599065679 - name: Accuracy type: accuracy value: 0.9249204782274871 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-finetuned-wildreceipt This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the wild_receipt dataset. It achieves the following results on the evaluation set: - Loss: 0.3108 - Precision: 0.8772 - Recall: 0.8799 - F1: 0.8785 - Accuracy: 0.9249 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data The WildReceipt dataset consists of 1740 receipt images, and contains 25 key information categories, and a total of about 69000 text boxes. 1268 and 472 images are used for training and testing respectively to train the LayoutLMv3 model for Key Information Extraction. ## Training procedure The training code: https://github.com/Theivaprakasham/layoutlmv3/blob/main/training_codes/LayoutLMv3_training_WildReceipts_dataset.ipynb ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.32 | 100 | 1.3143 | 0.6709 | 0.2679 | 0.3829 | 0.6700 | | No log | 0.63 | 200 | 0.8814 | 0.6478 | 0.5195 | 0.5766 | 0.7786 | | No log | 0.95 | 300 | 0.6568 | 0.7205 | 0.6491 | 0.6829 | 0.8303 | | No log | 1.26 | 400 | 0.5618 | 0.7544 | 0.7072 | 0.7300 | 0.8519 | | 1.0284 | 1.58 | 500 | 0.5003 | 0.7802 | 0.7566 | 0.7682 | 0.8687 | | 1.0284 | 1.89 | 600 | 0.4454 | 0.7941 | 0.7679 | 0.7807 | 0.8748 | | 1.0284 | 2.21 | 700 | 0.4314 | 0.8142 | 0.7928 | 0.8033 | 0.8852 | | 1.0284 | 2.52 | 800 | 0.3870 | 0.8172 | 0.8200 | 0.8186 | 0.8953 | | 1.0284 | 2.84 | 900 | 0.3629 | 0.8288 | 0.8369 | 0.8329 | 0.9025 | | 0.4167 | 3.15 | 1000 | 0.3537 | 0.8540 | 0.8200 | 0.8366 | 0.9052 | | 0.4167 | 3.47 | 1100 | 0.3383 | 0.8438 | 0.8285 | 0.8361 | 0.9063 | | 0.4167 | 3.79 | 1200 | 0.3403 | 0.8297 | 0.8493 | 0.8394 | 0.9062 | | 0.4167 | 4.1 | 1300 | 0.3271 | 0.8428 | 0.8545 | 0.8487 | 0.9110 | | 0.4167 | 4.42 | 1400 | 0.3182 | 0.8491 | 0.8518 | 0.8504 | 0.9131 | | 0.2766 | 4.73 | 1500 | 0.3111 | 0.8491 | 0.8539 | 0.8515 | 0.9129 | | 0.2766 | 5.05 | 1600 | 0.3177 | 0.8397 | 0.8620 | 0.8507 | 0.9124 | | 0.2766 | 5.36 | 1700 | 0.3091 | 0.8676 | 0.8548 | 0.8612 | 0.9191 | | 0.2766 | 5.68 | 1800 | 0.3080 | 0.8508 | 0.8645 | 0.8576 | 0.9162 | | 0.2766 | 5.99 | 1900 | 0.3059 | 0.8492 | 0.8662 | 0.8576 | 0.9163 | | 0.2114 | 6.31 | 2000 | 0.3184 | 0.8536 | 0.8657 | 0.8596 | 0.9147 | | 0.2114 | 6.62 | 2100 | 0.3161 | 0.8583 | 0.8713 | 0.8648 | 0.9184 | | 0.2114 | 6.94 | 2200 | 0.3055 | 0.8707 | 0.8682 | 0.8694 | 0.9220 | | 0.2114 | 7.26 | 2300 | 0.3004 | 0.8689 | 0.8745 | 0.8717 | 0.9219 | | 0.2114 | 7.57 | 2400 | 0.3111 | 0.8701 | 0.8720 | 0.8711 | 0.9211 | | 0.174 | 7.89 | 2500 | 0.3130 | 0.8599 | 0.8741 | 0.8669 | 0.9198 | | 0.174 | 8.2 | 2600 | 0.3034 | 0.8661 | 0.8748 | 0.8704 | 0.9219 | | 0.174 | 8.52 | 2700 | 0.3005 | 0.8799 | 0.8673 | 0.8736 | 0.9225 | | 0.174 | 8.83 | 2800 | 0.3043 | 0.8687 | 0.8804 | 0.8745 | 0.9240 | | 0.174 | 9.15 | 2900 | 0.3121 | 0.8776 | 0.8704 | 0.8740 | 0.9242 | | 0.1412 | 9.46 | 3000 | 0.3131 | 0.8631 | 0.8755 | 0.8692 | 0.9204 | | 0.1412 | 9.78 | 3100 | 0.3067 | 0.8715 | 0.8773 | 0.8744 | 0.9233 | | 0.1412 | 10.09 | 3200 | 0.3021 | 0.8751 | 0.8812 | 0.8782 | 0.9248 | | 0.1412 | 10.41 | 3300 | 0.3092 | 0.8651 | 0.8808 | 0.8729 | 0.9228 | | 0.1412 | 10.73 | 3400 | 0.3084 | 0.8776 | 0.8749 | 0.8762 | 0.9237 | | 0.1254 | 11.04 | 3500 | 0.3156 | 0.8738 | 0.8785 | 0.8761 | 0.9237 | | 0.1254 | 11.36 | 3600 | 0.3131 | 0.8723 | 0.8818 | 0.8770 | 0.9244 | | 0.1254 | 11.67 | 3700 | 0.3108 | 0.8778 | 0.8781 | 0.8780 | 0.9250 | | 0.1254 | 11.99 | 3800 | 0.3097 | 0.8778 | 0.8771 | 0.8775 | 0.9239 | | 0.1254 | 12.3 | 3900 | 0.3115 | 0.8785 | 0.8801 | 0.8793 | 0.9251 | | 0.111 | 12.62 | 4000 | 0.3108 | 0.8772 | 0.8799 | 0.8785 | 0.9249 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Gbartee/Gbartee2
Gbartee
2022-06-11T08:57:03Z
0
0
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2022-06-11T08:57:03Z
--- license: bigscience-bloom-rail-1.0 ---
orzhan/t5-long-extract
orzhan
2022-06-11T07:20:59Z
105
1
transformers
[ "transformers", "pytorch", "t5", "feature-extraction", "text-generation-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
T5-small model fine-tuned for extractive summarization on long documents. Repository: [GitHub](https://github.com/orzhan/t5-long-extract)
titi7242229/roberta-base-bne-finetuned_personality_multi_2
titi7242229
2022-06-11T06:21:27Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-11T05:27:06Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-base-bne-finetuned_personality_multi_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned_personality_multi_2 This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2983 - Accuracy: 0.5429 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.3256 | 1.0 | 125 | 2.2642 | 0.2161 | | 1.815 | 2.0 | 250 | 1.9569 | 0.3919 | | 1.614 | 3.0 | 375 | 1.7264 | 0.5014 | | 1.1718 | 4.0 | 500 | 1.6387 | 0.5239 | | 1.135 | 5.0 | 625 | 1.6259 | 0.5245 | | 0.5637 | 6.0 | 750 | 1.6443 | 0.5372 | | 0.3672 | 7.0 | 875 | 1.7146 | 0.5326 | | 0.3249 | 8.0 | 1000 | 1.8099 | 0.5297 | | 0.1791 | 9.0 | 1125 | 1.8888 | 0.5285 | | 0.2175 | 10.0 | 1250 | 1.9228 | 0.5326 | | 0.0465 | 11.0 | 1375 | 1.9753 | 0.5435 | | 0.1154 | 12.0 | 1500 | 2.1102 | 0.5256 | | 0.0745 | 13.0 | 1625 | 2.1319 | 0.5429 | | 0.0281 | 14.0 | 1750 | 2.1743 | 0.5360 | | 0.0173 | 15.0 | 1875 | 2.2087 | 0.5441 | | 0.0269 | 16.0 | 2000 | 2.2456 | 0.5424 | | 0.0107 | 17.0 | 2125 | 2.2685 | 0.5458 | | 0.0268 | 18.0 | 2250 | 2.2893 | 0.5383 | | 0.0245 | 19.0 | 2375 | 2.2943 | 0.5418 | | 0.0156 | 20.0 | 2500 | 2.2983 | 0.5429 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
AryaSuprana/BRATA_RoBERTaBali
AryaSuprana
2022-06-11T05:01:40Z
161
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "ban", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-11T04:51:40Z
--- language: "ban" datasets: - WikiBali - Suara Saking Bali widget: - text: "Kalsium silih <mask> datu kimia antuk simbol Ca miwah wilangan atom 20." example_title: "Conto 1" - text: "Tabuan inggih <mask> silih tunggil soroh beburon sane madue kampid." example_title: "Conto 2" --- BRATA (Basa Bali Used for Pretraining RoBERTa) is a pretrained language model trained using Basa Bali or Balinese Language with RoBERTa-base-uncased configuration. The datasets used for this pretraining were collected by extracting WikiBali or Wikipedia Basa Bali and some sources from Suara Saking Bali website. The pretrained language model trained using Google Colab Pro with Tesla P100-PCIE-16GB GPU. Pretraining process used 200 epoch and 2 batch size. The smallest training loss can be seen in Training metrics or Metrics tab.
ablam/distilgpt2_fine_tuned_gcode
ablam
2022-06-11T03:52:00Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-11T01:09:05Z
--- tags: - generated_from_trainer model-index: - name: distilgpt2_fine_tuned_gcode results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2_fine_tuned_gcode This model is a fine-tuned version of [congcongwang/distilgpt2_fine_tuned_coder](https://huggingface.co/congcongwang/distilgpt2_fine_tuned_coder) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.1670 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.1 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 4.1754 | 1.0 | 52144 | 4.1670 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1 - Datasets 2.1.0 - Tokenizers 0.10.3
huggingtweets/froliki2108
huggingtweets
2022-06-11T00:04:16Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-11T00:02:55Z
--- language: en thumbnail: http://www.huggingtweets.com/froliki2108/1654905851117/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1447692349493100549/1PV2c-PJ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Froliki💉💉💉</div> <div style="text-align: center; font-size: 14px;">@froliki2108</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Froliki💉💉💉. | Data | Froliki💉💉💉 | | --- | --- | | Tweets downloaded | 2223 | | Retweets | 1133 | | Short tweets | 229 | | Tweets kept | 861 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2tug3miv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @froliki2108's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3otsf5pj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3otsf5pj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/froliki2108') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/theanything_bot
huggingtweets
2022-06-10T23:19:47Z
106
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-10T23:19:05Z
--- language: en thumbnail: http://www.huggingtweets.com/theanything_bot/1654903166604/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1532874424776437760/vSP1qWyF_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Anything Bot</div> <div style="text-align: center; font-size: 14px;">@theanything_bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Anything Bot. | Data | Anything Bot | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 0 | | Short tweets | 0 | | Tweets kept | 3250 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/oy5g644b/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @theanything_bot's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2rui0vn2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2rui0vn2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/theanything_bot') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/jedwill1999
huggingtweets
2022-06-10T23:10:10Z
106
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-10T23:09:22Z
--- language: en thumbnail: http://www.huggingtweets.com/jedwill1999/1654902604867/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1510152678919135250/lfEmlEGJ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">a local</div> <div style="text-align: center; font-size: 14px;">@jedwill1999</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from a local. | Data | a local | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 1080 | | Short tweets | 525 | | Tweets kept | 1641 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1qsnsp6t/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jedwill1999's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/mjjc73pu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/mjjc73pu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jedwill1999') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
public-data/MangaLineExtraction_PyTorch
public-data
2022-06-10T23:01:13Z
0
1
null
[ "region:us" ]
null
2022-06-10T22:58:25Z
# MangaLineExtraction_PyTorch - https://github.com/ljsabc/MangaLineExtraction_PyTorch
facebook/roberta-hate-speech-dynabench-r2-target
facebook
2022-06-10T22:36:17Z
12
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "en", "arxiv:2012.15761", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-10T21:52:46Z
--- language: en --- # LFTW R2 Target The R2 Target model from [Learning from the Worst: Dynamically Generated Datasets to Improve Online Hate Detection](https://arxiv.org/abs/2012.15761) ## Citation Information ```bibtex @inproceedings{vidgen2021lftw, title={Learning from the Worst: Dynamically Generated Datasets to Improve Online Hate Detection}, author={Bertie Vidgen and Tristan Thrush and Zeerak Waseem and Douwe Kiela}, booktitle={ACL}, year={2021} } ``` Thanks to Kushal Tirumala and Adina Williams for helping the authors put the model on the hub!
mmillet/distilrubert-tiny-2ndfinetune-epru
mmillet
2022-06-10T20:46:22Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-10T20:41:13Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilrubert-tiny-2ndfinetune-epru results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilrubert-tiny-2ndfinetune-epru This model is a fine-tuned version of [mmillet/distilrubert-tiny-cased-conversational-v1_single_finetuned_on_cedr_augmented](https://huggingface.co/mmillet/distilrubert-tiny-cased-conversational-v1_single_finetuned_on_cedr_augmented) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2085 - Accuracy: 0.9333 - F1: 0.9319 - Precision: 0.9336 - Recall: 0.9333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.4825 | 1.0 | 13 | 0.2988 | 0.8848 | 0.8827 | 0.9056 | 0.8848 | | 0.2652 | 2.0 | 26 | 0.2435 | 0.9212 | 0.9216 | 0.9282 | 0.9212 | | 0.168 | 3.0 | 39 | 0.2120 | 0.9515 | 0.9501 | 0.9524 | 0.9515 | | 0.1593 | 4.0 | 52 | 0.1962 | 0.9333 | 0.9330 | 0.9366 | 0.9333 | | 0.1294 | 5.0 | 65 | 0.1855 | 0.9333 | 0.9334 | 0.9355 | 0.9333 | | 0.1065 | 6.0 | 78 | 0.1780 | 0.9394 | 0.9393 | 0.9399 | 0.9394 | | 0.0908 | 7.0 | 91 | 0.1967 | 0.9394 | 0.9388 | 0.9388 | 0.9394 | | 0.0432 | 8.0 | 104 | 0.2085 | 0.9333 | 0.9319 | 0.9336 | 0.9333 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
torli/trijki
torli
2022-06-10T20:45:14Z
0
1
null
[ "license:artistic-2.0", "region:us" ]
null
2022-06-10T20:43:32Z
--- license: artistic-2.0 --- git lfs install git clone https://huggingface.co/torli/trijki
huggingtweets/ninjasexparty
huggingtweets
2022-06-10T19:56:27Z
103
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-10T19:56:18Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1446572046679302144/jF9HS_Yd_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ninja Sex Party</div> <div style="text-align: center; font-size: 14px;">@ninjasexparty</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ninja Sex Party. | Data | Ninja Sex Party | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 631 | | Short tweets | 439 | | Tweets kept | 2180 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ik0ji2l/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ninjasexparty's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1jyhmzsa) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1jyhmzsa/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ninjasexparty') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
FritzOS/TEdetection_distilBERT_mLM_V5
FritzOS
2022-06-10T19:43:24Z
63
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-10T19:43:11Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: TEdetection_distilBERT_mLM_V5 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # TEdetection_distilBERT_mLM_V5 This model is a fine-tuned version of [FritzOS/TEdetection_distiBERT_mLM_V2](https://huggingface.co/FritzOS/TEdetection_distiBERT_mLM_V2) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 208018, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.19.3 - TensorFlow 2.8.2 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/smallmutuals
huggingtweets
2022-06-10T19:13:07Z
106
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-10T18:33:00Z
--- language: en thumbnail: http://www.huggingtweets.com/smallmutuals/1654888348503/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1433527116948180999/wejtDhFm_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Cool Owl Guy</div> <div style="text-align: center; font-size: 14px;">@smallmutuals</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Cool Owl Guy. | Data | Cool Owl Guy | | --- | --- | | Tweets downloaded | 367 | | Retweets | 45 | | Short tweets | 25 | | Tweets kept | 297 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/238iiiu5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @smallmutuals's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2hl8vi9y) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2hl8vi9y/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/smallmutuals') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/malzliebchen
huggingtweets
2022-06-10T18:29:39Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-10T18:26:43Z
--- language: en thumbnail: http://www.huggingtweets.com/malzliebchen/1654885748305/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1521909233024913408/4QsF2YzM_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Malzbeard's Severed Head</div> <div style="text-align: center; font-size: 14px;">@malzliebchen</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Malzbeard's Severed Head. | Data | Malzbeard's Severed Head | | --- | --- | | Tweets downloaded | 3247 | | Retweets | 41 | | Short tweets | 486 | | Tweets kept | 2720 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/e1wzn1e5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @malzliebchen's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/38g20s6n) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/38g20s6n/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/malzliebchen') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
meln1k/dqn-SpaceInvadersNoFrameskip-v4
meln1k
2022-06-10T17:30:42Z
5
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-10T17:30:14Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 817.50 +/- 327.32 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga meln1k -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga meln1k ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
income/bpr-base-msmarco-contriever
income
2022-06-10T17:16:00Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-06-10T17:11:14Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 6653 with parameters: ``` {'batch_size': 75, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `bpr_loss.BPRLossFunction` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "correct_bias": false, "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
ksabeh/bert-base-uncased-attribute-correction-mlm-titles
ksabeh
2022-06-10T15:50:17Z
61
0
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-06-10T09:02:24Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: ksabeh/bert-base-uncased-attribute-correction-mlm-titles results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ksabeh/bert-base-uncased-attribute-correction-mlm-titles This model is a fine-tuned version of [ksabeh/bert-base-uncased-attribute-correction-mlm](https://huggingface.co/ksabeh/bert-base-uncased-attribute-correction-mlm) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0430 - Validation Loss: 0.0625 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 23878, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1429 | 0.0743 | 0 | | 0.0430 | 0.0625 | 1 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
Clody0071/distilbert-base-multilingual-cased-finetuned-similarite
Clody0071
2022-06-10T15:25:52Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:pawsx", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-10T14:33:47Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - pawsx metrics: - accuracy - f1 model-index: - name: distilbert-base-multilingual-cased-finetuned-similarite results: - task: name: Text Classification type: text-classification dataset: name: pawsx type: pawsx args: fr metrics: - name: Accuracy type: accuracy value: 0.7995 - name: F1 type: f1 value: 0.7994565743967147 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-multilingual-cased-finetuned-similarite This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the pawsx dataset. It achieves the following results on the evaluation set: - Loss: 0.4781 - Accuracy: 0.7995 - F1: 0.7995 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5343 | 1.0 | 772 | 0.4879 | 0.7705 | 0.7714 | | 0.3523 | 2.0 | 1544 | 0.4781 | 0.7995 | 0.7995 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
adalbertojunior/clip-rpt
adalbertojunior
2022-06-10T14:35:02Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-text-dual-encoder", "feature-extraction", "generated_from_trainer", "dataset:ydshieh/coco_dataset_script", "endpoints_compatible", "region:us" ]
feature-extraction
2022-06-10T12:46:52Z
--- tags: - generated_from_trainer datasets: - ydshieh/coco_dataset_script model-index: - name: clip-roberta-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clip-roberta-finetuned This model is a fine-tuned version of [./models/clip-roberta](https://huggingface.co/./models/clip-roberta) on the ydshieh/coco_dataset_script 2017 dataset. It achieves the following results on the evaluation set: - Loss: 2.7269 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 1.18.4 - Tokenizers 0.11.6
ahmeddbahaa/mT5_multilingual_XLSum-finetuned-wikilingua-ar
ahmeddbahaa
2022-06-10T14:19:32Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "summarization", "mT5_multilingual_XLSum", "abstractive summarization", "ar", "generated_from_trainer", "dataset:wiki_lingua", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-06-10T02:47:03Z
--- tags: - summarization - mT5_multilingual_XLSum - mt5 - abstractive summarization - ar - generated_from_trainer datasets: - wiki_lingua model-index: - name: mT5_multilingual_XLSum-finetuned-wikilingua-ar results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mT5_multilingual_XLSum-finetuned-wikilingua-ar This model is a fine-tuned version of [csebuetnlp/mT5_multilingual_XLSum](https://huggingface.co/csebuetnlp/mT5_multilingual_XLSum) on the wiki_lingua dataset. It achieves the following results on the evaluation set: - Loss: 3.5540 - Rouge-1: 27.46 - Rouge-2: 9.0 - Rouge-l: 22.59 - Gen Len: 43.41 - Bertscore: 73.7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 8 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/atrioc
huggingtweets
2022-06-10T09:05:36Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-10T08:58:33Z
--- language: en thumbnail: http://www.huggingtweets.com/atrioc/1654851931751/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1522249702837657603/1jNZf3aB_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Atrioc</div> <div style="text-align: center; font-size: 14px;">@atrioc</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Atrioc. | Data | Atrioc | | --- | --- | | Tweets downloaded | 3205 | | Retweets | 746 | | Short tweets | 502 | | Tweets kept | 1957 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2zlbp16x/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @atrioc's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3oldn78j) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3oldn78j/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/atrioc') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
TurkuNLP/bert-large-finnish-cased-v1
TurkuNLP
2022-06-10T08:46:17Z
152
2
transformers
[ "transformers", "pytorch", "fi", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-06-10T07:53:16Z
--- license: apache-2.0 language: fi --- This is the large variant of FinBERT (TurkuNLP/bert-base-finnish-cased-v1). The training data is exactly the same.
Intel/MiniLM-L12-H384-uncased-mrpc
Intel
2022-06-10T07:06:45Z
220
1
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-10T06:55:25Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: MiniLM-L12-H384-uncased-mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.875 - name: F1 type: f1 value: 0.9097345132743363 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MiniLM-L12-H384-uncased-mrpc This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.4319 - Accuracy: 0.875 - F1: 0.9097 - Combined Score: 0.8924 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1
flood/pegasus-samsum
flood
2022-06-10T07:00:06Z
4
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-10T06:24:51Z
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4814 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7052 | 0.54 | 500 | 1.4814 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/macarena_olona
huggingtweets
2022-06-10T06:32:02Z
103
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-10T06:10:00Z
--- language: en thumbnail: http://www.huggingtweets.com/macarena_olona/1654842717478/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1535020786007916545/po7DO1ln_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Macarena Olona</div> <div style="text-align: center; font-size: 14px;">@macarena_olona</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Macarena Olona. | Data | Macarena Olona | | --- | --- | | Tweets downloaded | 3245 | | Retweets | 1797 | | Short tweets | 225 | | Tweets kept | 1223 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1yx7hguo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @macarena_olona's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2i64c9y6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2i64c9y6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/macarena_olona') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
twieland/MIX1_ja-en_helsinki
twieland
2022-06-10T05:49:30Z
20
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-09T13:37:39Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: MIX1_ja-en_helsinki results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MIX1_ja-en_helsinki This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ja-en](https://huggingface.co/Helsinki-NLP/opus-mt-ja-en) on a combination of Visual Novel, Light Novel, and Subtitle data. A total of ~10MM lines of training data were used. It achieves the following results on the evaluation set: - Loss: 1.7947 - Otaku Benchmark VN BLEU: 17.78 - Otaku Benchmark LN BLEU: 11.80 - Otaku Benchmark MANGA BLEU: 13.66 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 2.7495 | 0.01 | 2000 | 2.5989 | | 2.5415 | 0.03 | 4000 | 2.4746 | | 2.4409 | 0.04 | 6000 | 2.4731 | | 2.3743 | 0.05 | 8000 | 2.4012 | | 2.3254 | 0.06 | 10000 | 2.3904 | | 2.2857 | 0.08 | 12000 | 2.3649 | | 2.2448 | 0.09 | 14000 | 2.3188 | | 2.2158 | 0.1 | 16000 | 2.2975 | | 2.193 | 0.11 | 18000 | 2.2756 | | 2.1669 | 0.13 | 20000 | 2.2852 | | 2.144 | 0.14 | 22000 | 2.2689 | | 2.1222 | 0.15 | 24000 | 2.2721 | | 2.1045 | 0.16 | 26000 | 2.2489 | | 2.0885 | 0.18 | 28000 | 2.2359 | | 2.0732 | 0.19 | 30000 | 2.2771 | | 2.0584 | 0.2 | 32000 | 2.2582 | | 2.0471 | 0.21 | 34000 | 2.2093 | | 2.0369 | 0.23 | 36000 | 2.1768 | | 2.0241 | 0.24 | 38000 | 2.1884 | | 2.0196 | 0.25 | 40000 | 2.2025 | | 2.004 | 0.27 | 42000 | 2.1507 | | 1.9936 | 0.28 | 44000 | 2.1668 | | 1.9869 | 0.29 | 46000 | 2.1432 | | 1.9735 | 0.3 | 48000 | 2.1662 | | 1.9651 | 0.32 | 50000 | 2.1824 | | 1.9551 | 0.33 | 52000 | 2.1608 | | 1.9485 | 0.34 | 54000 | 2.1322 | | 1.9421 | 0.35 | 56000 | 2.1476 | | 1.9303 | 0.37 | 58000 | 2.0994 | | 1.9236 | 0.38 | 60000 | 2.1182 | | 1.9183 | 0.39 | 62000 | 2.1305 | | 1.9108 | 0.4 | 64000 | 2.1469 | | 1.9051 | 0.42 | 66000 | 2.1414 | | 1.9018 | 0.43 | 68000 | 2.1089 | | 1.8959 | 0.44 | 70000 | 2.0908 | | 1.886 | 0.46 | 72000 | 2.0968 | | 1.8802 | 0.47 | 74000 | 2.0503 | | 1.8713 | 0.48 | 76000 | 2.0542 | | 1.8648 | 0.49 | 78000 | 2.0990 | | 1.8599 | 0.51 | 80000 | 2.1112 | | 1.8563 | 0.52 | 82000 | 2.1007 | | 1.8541 | 0.53 | 84000 | 2.0849 | | 1.845 | 0.54 | 86000 | 2.0831 | | 1.8448 | 0.56 | 88000 | 2.0560 | | 1.8342 | 0.57 | 90000 | 2.0349 | | 1.8344 | 0.58 | 92000 | 2.0301 | | 1.8291 | 0.59 | 94000 | 2.0300 | | 1.819 | 0.61 | 96000 | 2.0378 | | 1.8154 | 0.62 | 98000 | 2.0197 | | 1.82 | 0.63 | 100000 | 2.0463 | | 1.8081 | 0.64 | 102000 | 2.0077 | | 1.8046 | 0.66 | 104000 | 2.0101 | | 1.7978 | 0.67 | 106000 | 2.0150 | | 1.7934 | 0.68 | 108000 | 2.0215 | | 1.7904 | 0.7 | 110000 | 2.0278 | | 1.7871 | 0.71 | 112000 | 2.0588 | | 1.779 | 0.72 | 114000 | 2.0062 | | 1.7784 | 0.73 | 116000 | 2.0300 | | 1.7749 | 0.75 | 118000 | 1.9664 | | 1.7691 | 0.76 | 120000 | 2.0033 | | 1.7622 | 0.77 | 122000 | 1.9983 | | 1.7587 | 0.78 | 124000 | 2.0030 | | 1.755 | 0.8 | 126000 | 1.9955 | | 1.7531 | 0.81 | 128000 | 1.9764 | | 1.7439 | 0.82 | 130000 | 1.9942 | | 1.7406 | 0.83 | 132000 | 2.0221 | | 1.7385 | 0.85 | 134000 | 1.9835 | | 1.7332 | 0.86 | 136000 | 1.9967 | | 1.7332 | 0.87 | 138000 | 2.0247 | | 1.7309 | 0.88 | 140000 | 1.9817 | | 1.7248 | 0.9 | 142000 | 2.0063 | | 1.7209 | 0.91 | 144000 | 1.9583 | | 1.7154 | 0.92 | 146000 | 1.9779 | | 1.7153 | 0.94 | 148000 | 1.9478 | | 1.7094 | 0.95 | 150000 | 1.9706 | | 1.7061 | 0.96 | 152000 | 1.9605 | | 1.7017 | 0.97 | 154000 | 1.9447 | | 1.6965 | 0.99 | 156000 | 1.9419 | | 1.6929 | 1.0 | 158000 | 1.9589 | | 1.6628 | 1.01 | 160000 | 1.9383 | | 1.6535 | 1.02 | 162000 | 1.9487 | | 1.6495 | 1.04 | 164000 | 1.9400 | | 1.6516 | 1.05 | 166000 | 1.9353 | | 1.6513 | 1.06 | 168000 | 1.9253 | | 1.6518 | 1.07 | 170000 | 1.9132 | | 1.6491 | 1.09 | 172000 | 1.9076 | | 1.6453 | 1.1 | 174000 | 1.9192 | | 1.6426 | 1.11 | 176000 | 1.9191 | | 1.6353 | 1.13 | 178000 | 1.9367 | | 1.6352 | 1.14 | 180000 | 1.9218 | | 1.6304 | 1.15 | 182000 | 1.9305 | | 1.6299 | 1.16 | 184000 | 1.9072 | | 1.6263 | 1.18 | 186000 | 1.9211 | | 1.6284 | 1.19 | 188000 | 1.9037 | | 1.6237 | 1.2 | 190000 | 1.8951 | | 1.6231 | 1.21 | 192000 | 1.8998 | | 1.6184 | 1.23 | 194000 | 1.8960 | | 1.6153 | 1.24 | 196000 | 1.8776 | | 1.6122 | 1.25 | 198000 | 1.8747 | | 1.6109 | 1.26 | 200000 | 1.8951 | | 1.6072 | 1.28 | 202000 | 1.8705 | | 1.6094 | 1.29 | 204000 | 1.8903 | | 1.6063 | 1.3 | 206000 | 1.8660 | | 1.599 | 1.31 | 208000 | 1.8696 | | 1.5931 | 1.33 | 210000 | 1.8598 | | 1.5943 | 1.34 | 212000 | 1.8760 | | 1.5906 | 1.35 | 214000 | 1.8833 | | 1.5858 | 1.37 | 216000 | 1.8645 | | 1.5873 | 1.38 | 218000 | 1.8620 | | 1.5842 | 1.39 | 220000 | 1.8632 | | 1.5808 | 1.4 | 222000 | 1.8782 | | 1.5756 | 1.42 | 224000 | 1.8627 | | 1.5728 | 1.43 | 226000 | 1.8649 | | 1.5709 | 1.44 | 228000 | 1.8735 | | 1.5704 | 1.45 | 230000 | 1.8630 | | 1.5659 | 1.47 | 232000 | 1.8598 | | 1.5637 | 1.48 | 234000 | 1.8519 | | 1.5628 | 1.49 | 236000 | 1.8569 | | 1.5559 | 1.5 | 238000 | 1.8401 | | 1.5532 | 1.52 | 240000 | 1.8528 | | 1.557 | 1.53 | 242000 | 1.8637 | | 1.5499 | 1.54 | 244000 | 1.8701 | | 1.5476 | 1.55 | 246000 | 1.8423 | | 1.5502 | 1.57 | 248000 | 1.8320 | | 1.5469 | 1.58 | 250000 | 1.8542 | | 1.5382 | 1.59 | 252000 | 1.8526 | | 1.5396 | 1.61 | 254000 | 1.8537 | | 1.528 | 1.62 | 256000 | 1.8248 | | 1.532 | 1.63 | 258000 | 1.8322 | | 1.5269 | 1.64 | 260000 | 1.8381 | | 1.5269 | 1.66 | 262000 | 1.8389 | | 1.5269 | 1.67 | 264000 | 1.8445 | | 1.525 | 1.68 | 266000 | 1.8232 | | 1.5175 | 1.69 | 268000 | 1.8561 | | 1.5172 | 1.71 | 270000 | 1.8342 | | 1.5174 | 1.72 | 272000 | 1.8167 | | 1.5114 | 1.73 | 274000 | 1.8281 | | 1.5094 | 1.74 | 276000 | 1.8164 | | 1.5083 | 1.76 | 278000 | 1.8317 | | 1.5047 | 1.77 | 280000 | 1.8207 | | 1.5045 | 1.78 | 282000 | 1.8155 | | 1.497 | 1.8 | 284000 | 1.8275 | | 1.4996 | 1.81 | 286000 | 1.8152 | | 1.497 | 1.82 | 288000 | 1.8137 | | 1.4967 | 1.83 | 290000 | 1.8109 | | 1.4936 | 1.85 | 292000 | 1.8037 | | 1.4867 | 1.86 | 294000 | 1.7955 | | 1.4859 | 1.87 | 296000 | 1.8181 | | 1.4869 | 1.88 | 298000 | 1.7999 | | 1.4811 | 1.9 | 300000 | 1.8062 | | 1.4831 | 1.91 | 302000 | 1.8042 | | 1.4791 | 1.92 | 304000 | 1.8020 | | 1.4797 | 1.93 | 306000 | 1.7972 | | 1.483 | 1.95 | 308000 | 1.8044 | | 1.4748 | 1.96 | 310000 | 1.8036 | | 1.4772 | 1.97 | 312000 | 1.7958 | | 1.4708 | 1.98 | 314000 | 1.7967 | | 1.4743 | 2.0 | 316000 | 1.7947 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/wickdedaccount
huggingtweets
2022-06-10T02:20:32Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-10T02:17:51Z
--- language: en thumbnail: http://www.huggingtweets.com/wickdedaccount/1654827628283/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1353151127026597889/Yarj5Kfr_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">pp</div> <div style="text-align: center; font-size: 14px;">@wickdedaccount</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from pp. | Data | pp | | --- | --- | | Tweets downloaded | 1028 | | Retweets | 822 | | Short tweets | 119 | | Tweets kept | 87 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1of8kmw1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @wickdedaccount's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2q4m95l8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2q4m95l8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/wickdedaccount') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ExusAI/SRWNN
ExusAI
2022-06-10T00:54:14Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-06-10T00:45:58Z
--- license: mit --- Super resolution model for anime and illustrations based on vgg11 and waifu2x. This model was trained on around 10k high resolution images (at least HD) https://github.com/Exusai/SuperResolutionWaifuNN
nestoralvaro/mt5-base-finetuned-xsum-data_prep_2021_12_26___t1_7.csv___topic_text_google_mt5_base
nestoralvaro
2022-06-10T00:52:35Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-09T23:49:44Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-finetuned-xsum-data_prep_2021_12_26___t1_7.csv___topic_text_google_mt5_base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-finetuned-xsum-data_prep_2021_12_26___t1_7.csv___topic_text_google_mt5_base This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 2.8146 - Rouge2: 0.6707 - Rougel: 2.8187 - Rougelsum: 2.8098 - Gen Len: 6.4901 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.0 | 1.0 | 3869 | nan | 2.8146 | 0.6707 | 2.8187 | 2.8098 | 6.4901 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Birb80/Bird
Birb80
2022-06-09T21:17:59Z
0
0
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2022-06-09T21:17:59Z
--- license: bigscience-bloom-rail-1.0 ---
fbadine/uk_ireland_accent_classification
fbadine
2022-06-09T20:07:40Z
8
1
tf-keras
[ "tf-keras", "tensorboard", "license:apache-2.0", "region:us" ]
null
2022-03-09T16:53:02Z
--- license: apache-2.0 --- ## UK & Ireland Accent Classification Model This model classifies UK & Ireland accents using feature extraction from [Yamnet](https://tfhub.dev/google/yamnet/1). ### Yamnet Model Yamnet is an audio event classifier trained on the AudioSet dataset to predict audio events from the AudioSet ontology. It is available on TensorFlow Hub. Yamnet accepts a 1-D tensor of audio samples with a sample rate of 16 kHz. As output, the model returns a 3-tuple: - Scores of shape `(N, 521)` representing the scores of the 521 classes. - Embeddings of shape `(N, 1024)`. - The log-mel spectrogram of the entire audio frame. We will use the embeddings, which are the features extracted from the audio samples, as the input to our dense model. For more detailed information about Yamnet, please refer to its [TensorFlow Hub](https://tfhub.dev/google/yamnet/1) page. ### Dense Model The dense model that we used consists of: - An input layer which is embedding output of the Yamnet classifier. - 4 dense hidden layers and 4 dropout layers. - An output dense layer. <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details> --- ## Results The model achieved the following results: Results | Training | Validation -----------|-----------|------------ Accuracy | 55% | 51% AUC | 0.9090 | 0.8911 d-prime | 1.887 | 1.743 And the confusion matrix for the validation set is: ![Validation Confusion Matrix](./confusion_matrix.png) --- ## Dataset The dataset used is the [Crowdsourced high-quality UK and Ireland English Dialect speech data set](https://openslr.org/83/) which consists of a total of 17,877 high-quality audio wav files. This dataset includes over 31 hours of recording from 120 vounteers who self-identify as native speakers of Southern England, Midlands, Northern England, Wales, Scotland and Ireland. For more info, please refer to the above link or to the following paper: [Open-source Multi-speaker Corpora of the English Accents in the British Isles](https://aclanthology.org/2020.lrec-1.804.pdf) --- ## How to use Having already installed `huggingface_hub` using: `pip install -U -q huggingface_hub` Use the following in your code: `from huggingface_hub import from_pretrained_keras` `model = from_pretrained_keras("fbadine/uk_ireland_accent_classification")` --- ## Demo A demo is available in [HuggingFace Spaces](https://huggingface.co/spaces/fbadine/uk_ireland_accent_classification)
huggingtweets/midudev
huggingtweets
2022-06-09T18:48:30Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-09T18:33:17Z
--- language: en thumbnail: http://www.huggingtweets.com/midudev/1654800505422/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1526668354609680384/r85fytOs_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">🔴 EN DIRECTO twitch.tv/midudev</div> <div style="text-align: center; font-size: 14px;">@midudev</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 🔴 EN DIRECTO twitch.tv/midudev. | Data | 🔴 EN DIRECTO twitch.tv/midudev | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 824 | | Short tweets | 163 | | Tweets kept | 2259 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/11iwoc6b/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @midudev's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/s48ktc1m) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/s48ktc1m/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/midudev') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
bookpanda/wangchanberta-base-att-spm-uncased-finetuned-imdb
bookpanda
2022-06-09T18:17:16Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "camembert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-28T08:22:04Z
--- tags: - generated_from_trainer model-index: - name: wangchanberta-base-att-spm-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wangchanberta-base-att-spm-uncased-finetuned-imdb This model is a fine-tuned version of [airesearch/wangchanberta-base-att-spm-uncased](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0810 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.1831 | 1.0 | 4826 | 0.1542 | | 0.1 | 2.0 | 9652 | 0.1075 | | 0.0946 | 3.0 | 14478 | 0.0443 | | 0.0618 | 4.0 | 19304 | 0.0830 | | 0.0783 | 5.0 | 24130 | 0.0810 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.11.0+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
nbroad/jplu-xlm-r-ner-40-lang
nbroad
2022-06-09T17:51:49Z
4
1
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-04-27T15:22:16Z
pytorch version of [jplu/tf-xlm-r-ner-40-lang](https://huggingface.co/jplu/tf-xlm-r-ner-40-lang)
kabelomalapane/En-Ts
kabelomalapane
2022-06-09T17:33:20Z
69
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-06-09T16:33:13Z
--- license: apache-2.0 tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: En-Ts results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # En-Ts This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ts](https://huggingface.co/Helsinki-NLP/opus-mt-en-ts) on the None dataset. It achieves the following results on the evaluation set: Before training: - Loss: 3.17 - Bleu: 14.513 After Training - Loss: 1.3320 - Bleu: 36.7687 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 1.7082 | 1.0 | 5929 | 1.6902 | 32.1311 | | 1.4606 | 2.0 | 11858 | 1.4996 | 34.1129 | | 1.3182 | 3.0 | 17787 | 1.4107 | 35.7428 | | 1.2543 | 4.0 | 23716 | 1.3631 | 36.2009 | | 1.2116 | 5.0 | 29645 | 1.3389 | 36.5876 | | 1.1723 | 6.0 | 35574 | 1.3320 | 36.7481 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
veb/twitch-distilbert-base-uncased-finetuned-sst-2-english
veb
2022-06-09T17:33:12Z
7
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-09T16:58:37Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: veb/twitch-distilbert-base-uncased-finetuned-sst-2-english results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # veb/twitch-distilbert-base-uncased-finetuned-sst-2-english This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3074 - Train Sparse Categorical Accuracy: 0.9219 - Validation Loss: 0.1151 - Validation Sparse Categorical Accuracy: 1.0 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Sparse Categorical Accuracy | Validation Loss | Validation Sparse Categorical Accuracy | Epoch | |:----------:|:---------------------------------:|:---------------:|:--------------------------------------:|:-----:| | 1.0992 | 0.6094 | 0.3072 | 1.0 | 0 | | 0.3921 | 0.7812 | 0.2903 | 1.0 | 1 | | 0.3074 | 0.9219 | 0.1151 | 1.0 | 2 | ### Framework versions - Transformers 4.19.2 - TensorFlow 2.7.0 - Datasets 2.2.2 - Tokenizers 0.12.1
ajtamayoh/NLP-CIC-WFU_Clinical_Cases_NER_Sents_Tokenized_bertin_roberta_base_spanish_fine_tuned
ajtamayoh
2022-06-09T17:15:48Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-09T16:33:08Z
--- license: cc-by-4.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: NLP-CIC-WFU_Clinical_Cases_NER_Sents_Tokenized_bertin_roberta_base_spanish_fine_tuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NLP-CIC-WFU_Clinical_Cases_NER_Sents_Tokenized_bertin_roberta_base_spanish_fine_tuned This model is a fine-tuned version of [bertin-project/bertin-roberta-base-spanish](https://huggingface.co/bertin-project/bertin-roberta-base-spanish) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0973 - Precision: 0.9012 - Recall: 0.6942 - F1: 0.7842 - Accuracy: 0.9857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0605 | 1.0 | 2568 | 0.0625 | 0.9400 | 0.6322 | 0.7560 | 0.9836 | | 0.0475 | 2.0 | 5136 | 0.0622 | 0.9533 | 0.6572 | 0.7781 | 0.9849 | | 0.0374 | 3.0 | 7704 | 0.0552 | 0.9261 | 0.6784 | 0.7831 | 0.9855 | | 0.0246 | 4.0 | 10272 | 0.0693 | 0.9381 | 0.6658 | 0.7788 | 0.9849 | | 0.0126 | 5.0 | 12840 | 0.0974 | 0.8918 | 0.6830 | 0.7735 | 0.9849 | | 0.0061 | 6.0 | 15408 | 0.0886 | 0.8771 | 0.7099 | 0.7847 | 0.9850 | | 0.0031 | 7.0 | 17976 | 0.0973 | 0.9012 | 0.6942 | 0.7842 | 0.9857 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
GioReg/notiBERTo
GioReg
2022-06-09T17:08:29Z
160
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-04-07T14:24:36Z
language: - it Si è creato un modello, chiamato notiBERTo, svolgendo la fase di addestramento e utilizzando per la creazione e il tuning dei pesi del modello l’algoritmo non supervisionato di masked-language modeling (MLM); questo non richiede l’utilizzo di testo con etichettatura. L’idea e stata quella di ottenere un modello BERT-based per la lingua italiana focalizzato sul linguaggio tipico utilizzato nei contesti dell’informazione giornalistica online che quindi potesse ricalcare lo stile, il lessico della stampa. Per i dati in input sono stati utilizzati database disponibili pubblicamente online organizzati dal portale “Wortschatz Leipzig” dell’universita di Lipsia. Il portale offre l’accesso ai “corpora collection Leipzig” dove si trovano 900 collezioni testuali divise per lingua - le lingue presenti sono 250 - e argomento, ottenuti principalmente attraverso data crawling dei siti internet. In particolare sono stati scelti database di collezioni di notizie ottenute attraverso feeds RSS rac colte su base giornaliera e database ottenuti attraverso crawling dai principali siti internet di notizie italiane, suddivisi in sottodatabase in base agli anni di raccolta. Per la creazione di “notiBERTo” sono stati utilizzati database relativi agli anni 2018, 2019, 2020 per un totale di circa 700MB.
huggingtweets/medscape
huggingtweets
2022-06-09T16:30:23Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-09T16:29:41Z
--- language: en thumbnail: http://www.huggingtweets.com/medscape/1654792218439/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1401919208133378050/l2MKtnC7_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Medscape</div> <div style="text-align: center; font-size: 14px;">@medscape</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Medscape. | Data | Medscape | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 16 | | Short tweets | 2 | | Tweets kept | 3232 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/mn0jpyr0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @medscape's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3n6qbw51) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3n6qbw51/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/medscape') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/sorcehri
huggingtweets
2022-06-09T16:22:35Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-09T16:20:26Z
--- language: en thumbnail: http://www.huggingtweets.com/sorcehri/1654791699329/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1511431988720414730/A1kqPr25_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ehri</div> <div style="text-align: center; font-size: 14px;">@sorcehri</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ehri. | Data | ehri | | --- | --- | | Tweets downloaded | 3233 | | Retweets | 280 | | Short tweets | 837 | | Tweets kept | 2116 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1gn4h8q0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @sorcehri's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/7zs978ln) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/7zs978ln/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/sorcehri') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ksabeh/roberta-base-attribute-correction-mlm-titles
ksabeh
2022-06-09T15:44:28Z
5
0
transformers
[ "transformers", "tf", "roberta", "question-answering", "generated_from_keras_callback", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-06-09T08:42:02Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: ksabeh/roberta-base-attribute-correction-mlm-titles-2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ksabeh/roberta-base-attribute-correction-mlm-titles-2 This model is a fine-tuned version of [ksabeh/roberta-base-attribute-correction-mlm](https://huggingface.co/ksabeh/roberta-base-attribute-correction-mlm) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0822 - Validation Loss: 0.0914 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 23870, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.2007 | 0.1023 | 0 | | 0.0822 | 0.0914 | 1 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
Khaled002/Yy
Khaled002
2022-06-09T14:22:32Z
0
0
null
[ "license:bsd-3-clause-clear", "region:us" ]
null
2022-06-09T14:22:32Z
--- license: bsd-3-clause-clear ---
sschellhammer/SciTweets_SciBert
sschellhammer
2022-06-09T14:03:30Z
97
1
transformers
[ "transformers", "pytorch", "bert", "text-classification", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-04T06:16:44Z
--- license: cc-by-4.0 widget: - text: "Study: Shifts in electricity generation spur net job growth, but coal jobs decline - via @DukeU https://www.eurekalert.org/news-releases/637217" example_title: "All categories" - text: "Shifts in electricity generation spur net job growth, but coal jobs decline" example_title: "Only Cat 1.1" - text: "Study on impacts of electricity generation shift via @DukeU https://www.eurekalert.org/news-releases/637217" example_title: "Only Cat 1.2 and 1.3" - text: "@DukeU received grant for research on electricity generation shift" example_title: "Only Cat 1.3" --- This SciBert-based multi-label classifier, trained as part of the work "SciTweets - A Dataset and Annotation Framework for Detecting Scientific Online Discourse", distinguishes three different forms of science-relatedness for Tweets. See details at https://github.com/AI-4-Sci/SciTweets .
YeRyeongLee/electra-base-discriminator-finetuned-filtered-0609
YeRyeongLee
2022-06-09T14:00:07Z
105
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-09T07:24:13Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: electra-base-discriminator-finetuned-filtered-0609 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-base-discriminator-finetuned-filtered-0609 This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1933 - Accuracy: 0.9745 - Precision: 0.9747 - Recall: 0.9745 - F1: 0.9746 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.238 | 1.0 | 3180 | 0.1861 | 0.9682 | 0.9686 | 0.9682 | 0.9682 | | 0.1827 | 2.0 | 6360 | 0.2262 | 0.9645 | 0.9648 | 0.9645 | 0.9644 | | 0.1326 | 3.0 | 9540 | 0.1904 | 0.9711 | 0.9716 | 0.9711 | 0.9712 | | 0.1575 | 4.0 | 12720 | 0.2065 | 0.9676 | 0.9680 | 0.9676 | 0.9676 | | 0.1224 | 5.0 | 15900 | 0.2666 | 0.9557 | 0.9571 | 0.9557 | 0.9558 | | 0.1083 | 6.0 | 19080 | 0.1697 | 0.9752 | 0.9754 | 0.9752 | 0.9752 | | 0.0792 | 7.0 | 22260 | 0.1684 | 0.9742 | 0.9744 | 0.9742 | 0.9742 | | 0.0751 | 8.0 | 25440 | 0.1784 | 0.9723 | 0.9726 | 0.9723 | 0.9723 | | 0.0572 | 9.0 | 28620 | 0.1868 | 0.9736 | 0.9737 | 0.9736 | 0.9736 | | 0.0593 | 10.0 | 31800 | 0.1933 | 0.9745 | 0.9747 | 0.9745 | 0.9746 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.9.1+cu111 - Datasets 1.16.1 - Tokenizers 0.12.1
Nehc/FakeMobile
Nehc
2022-06-09T13:44:35Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "ru", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-07T18:05:08Z
--- language: - ru widget: - text: "[CLS] Какая абонентская плата на тарифе Позвони маме? [SEP]" metrics: - loss: 0.704381 - accuracy: 1.000000 --- Start from 'DeepPavlov/rubert-base-cased' and finetuning on DUMBOT fake data (http://dumbot.ru/Home/MobileOperatorRate). 100 epoch on progress...
i8pxgd2s/q-Taxi-v3
i8pxgd2s
2022-06-09T13:26:49Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-09T13:26:40Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="i8pxgd2s/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
qualitydatalab/autotrain-car-review-project-966432121
qualitydatalab
2022-06-09T13:04:21Z
4
1
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain", "en", "dataset:qualitydatalab/autotrain-data-car-review-project", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-09T12:30:26Z
--- tags: autotrain language: en widget: - text: "I love driving this car" datasets: - qualitydatalab/autotrain-data-car-review-project co2_eq_emissions: 0.21529888368377176 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 966432121 - CO2 Emissions (in grams): 0.21529888368377176 ## Validation Metrics - Loss: 0.6013365983963013 - Accuracy: 0.737791286727457 - Macro F1: 0.729171012281939 - Micro F1: 0.737791286727457 - Weighted F1: 0.729171012281939 - Macro Precision: 0.7313770127538427 - Micro Precision: 0.737791286727457 - Weighted Precision: 0.7313770127538428 - Macro Recall: 0.737791286727457 - Micro Recall: 0.737791286727457 - Weighted Recall: 0.737791286727457 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love driving this car"}' https://api-inference.huggingface.co/models/qualitydatalab/autotrain-car-review-project-966432121 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("qualitydatalab/autotrain-car-review-project-966432121", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("qualitydatalab/autotrain-car-review-project-966432121", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
huggingtweets/zaidalyafeai
huggingtweets
2022-06-09T13:03:12Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-09T13:02:27Z
--- language: en thumbnail: http://www.huggingtweets.com/zaidalyafeai/1654779787447/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1521723273922461696/m8_zotM4_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Zaid زيد</div> <div style="text-align: center; font-size: 14px;">@zaidalyafeai</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Zaid زيد. | Data | Zaid زيد | | --- | --- | | Tweets downloaded | 2295 | | Retweets | 74 | | Short tweets | 217 | | Tweets kept | 2004 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/39e5cxbb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @zaidalyafeai's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2uc681wq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2uc681wq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/zaidalyafeai') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/bbclaurakt
huggingtweets
2022-06-09T12:48:19Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-09T12:47:22Z
--- language: en thumbnail: http://www.huggingtweets.com/bbclaurakt/1654778894531/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1533553176619716608/4klYwjkC_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Laura Kuenssberg Translator</div> <div style="text-align: center; font-size: 14px;">@bbclaurakt</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Laura Kuenssberg Translator. | Data | Laura Kuenssberg Translator | | --- | --- | | Tweets downloaded | 2063 | | Retweets | 23 | | Short tweets | 135 | | Tweets kept | 1905 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/37mk0av7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bbclaurakt's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3a8gt7bb) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3a8gt7bb/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bbclaurakt') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)