modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
jonatasgrosman/exp_w2v2t_ja_vp-it_s73
jonatasgrosman
2022-07-08T18:24:40Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ja", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T18:24:16Z
--- language: - ja license: apache-2.0 tags: - automatic-speech-recognition - ja datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ja_vp-it_s73 Fine-tuned [facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (ja)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_ja_r-wav2vec2_s303
jonatasgrosman
2022-07-08T18:20:50Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ja", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T18:20:08Z
--- language: - ja license: apache-2.0 tags: - automatic-speech-recognition - ja datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ja_r-wav2vec2_s303 Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition using the train split of [Common Voice 7.0 (ja)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_ja_xls-r_s941
jonatasgrosman
2022-07-08T18:09:11Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ja", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T18:08:47Z
--- language: - ja license: apache-2.0 tags: - automatic-speech-recognition - ja datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ja_xls-r_s941 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (ja)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
infinitejoy/ppo-SpaceInvadersNoFrameskip-v4
infinitejoy
2022-07-08T17:57:39Z
4
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-08T17:57:06Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 688.00 +/- 388.59 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga infinitejoy -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga infinitejoy ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
jonatasgrosman/exp_w2v2t_ja_unispeech-sat_s946
jonatasgrosman
2022-07-08T17:54:48Z
5
0
transformers
[ "transformers", "pytorch", "unispeech-sat", "automatic-speech-recognition", "ja", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T17:54:22Z
--- language: - ja license: apache-2.0 tags: - automatic-speech-recognition - ja datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ja_unispeech-sat_s946 Fine-tuned [microsoft/unispeech-sat-large](https://huggingface.co/microsoft/unispeech-sat-large) for speech recognition using the train split of [Common Voice 7.0 (ja)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_ja_unispeech-sat_s884
jonatasgrosman
2022-07-08T17:51:35Z
5
0
transformers
[ "transformers", "pytorch", "unispeech-sat", "automatic-speech-recognition", "ja", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T17:51:10Z
--- language: - ja license: apache-2.0 tags: - automatic-speech-recognition - ja datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ja_unispeech-sat_s884 Fine-tuned [microsoft/unispeech-sat-large](https://huggingface.co/microsoft/unispeech-sat-large) for speech recognition using the train split of [Common Voice 7.0 (ja)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_ja_vp-nl_s770
jonatasgrosman
2022-07-08T17:48:07Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ja", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T17:47:43Z
--- language: - ja license: apache-2.0 tags: - automatic-speech-recognition - ja datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ja_vp-nl_s770 Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (ja)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_ja_vp-nl_s287
jonatasgrosman
2022-07-08T17:44:15Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ja", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T17:43:51Z
--- language: - ja license: apache-2.0 tags: - automatic-speech-recognition - ja datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ja_vp-nl_s287 Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (ja)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_ja_vp-nl_s682
jonatasgrosman
2022-07-08T17:41:08Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ja", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T17:40:45Z
--- language: - ja license: apache-2.0 tags: - automatic-speech-recognition - ja datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ja_vp-nl_s682 Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (ja)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_ja_vp-es_s350
jonatasgrosman
2022-07-08T17:37:36Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ja", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T17:36:55Z
--- language: - ja license: apache-2.0 tags: - automatic-speech-recognition - ja datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ja_vp-es_s350 Fine-tuned [facebook/wav2vec2-large-es-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-es-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (ja)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
thunninoi/wav2vec2-japanese-vtuber
thunninoi
2022-07-08T17:33:48Z
4
2
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-27T10:47:53Z
--- tags: - generated_from_trainer model-index: - name: checkpoints2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # checkpoints2 This model is a fine-tuned version of [ttop324/wav2vec2-live-japanese](https://huggingface.co/ttop324/wav2vec2-live-japanese) on the extracted and cleaned transcript of [Holo No Graffiti](https://youtube.com/playlist?list=PLS51cvjOMUKwKtxe_IxhbBBvQ9XpiL1W_) dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data Evaluated from [common_voice | train | ja ](https://huggingface.co/datasets/common_voice/viewer/ja/test): - WER: 32.940524 - CER: 15.251746 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 3 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 6 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
jonatasgrosman/exp_w2v2t_ja_vp-es_s381
jonatasgrosman
2022-07-08T17:29:59Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ja", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T17:29:31Z
--- language: - ja license: apache-2.0 tags: - automatic-speech-recognition - ja datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ja_vp-es_s381 Fine-tuned [facebook/wav2vec2-large-es-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-es-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (ja)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_ja_vp-fr_s543
jonatasgrosman
2022-07-08T17:26:45Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ja", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T17:26:03Z
--- language: - ja license: apache-2.0 tags: - automatic-speech-recognition - ja datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ja_vp-fr_s543 Fine-tuned [facebook/wav2vec2-large-fr-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-fr-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (ja)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_ja_vp-fr_s368
jonatasgrosman
2022-07-08T17:18:18Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ja", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T17:17:49Z
--- language: - ja license: apache-2.0 tags: - automatic-speech-recognition - ja datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ja_vp-fr_s368 Fine-tuned [facebook/wav2vec2-large-fr-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-fr-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (ja)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_ja_unispeech-ml_s295
jonatasgrosman
2022-07-08T17:10:19Z
4
0
transformers
[ "transformers", "pytorch", "unispeech", "automatic-speech-recognition", "ja", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T17:09:55Z
--- language: - ja license: apache-2.0 tags: - automatic-speech-recognition - ja datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ja_unispeech-ml_s295 Fine-tuned [microsoft/unispeech-large-multi-lingual-1500h-cv](https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (ja)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_ja_wavlm_s664
jonatasgrosman
2022-07-08T17:03:01Z
6
1
transformers
[ "transformers", "pytorch", "wavlm", "automatic-speech-recognition", "ja", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T17:02:32Z
--- language: - ja license: apache-2.0 tags: - automatic-speech-recognition - ja datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ja_wavlm_s664 Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition using the train split of [Common Voice 7.0 (ja)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
Guillaume63/Pong
Guillaume63
2022-07-08T17:01:31Z
0
0
null
[ "Pong-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-07-08T17:01:19Z
--- tags: - Pong-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Pong results: - metrics: - type: mean_reward value: -16.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-PLE-v0 type: Pong-PLE-v0 --- # **Reinforce** Agent playing **Pong-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pong-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
jonatasgrosman/exp_w2v2t_ja_wavlm_s35
jonatasgrosman
2022-07-08T16:59:51Z
3
1
transformers
[ "transformers", "pytorch", "wavlm", "automatic-speech-recognition", "ja", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T16:59:26Z
--- language: - ja license: apache-2.0 tags: - automatic-speech-recognition - ja datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ja_wavlm_s35 Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition using the train split of [Common Voice 7.0 (ja)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_ja_no-pretraining_s830
jonatasgrosman
2022-07-08T16:46:12Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ja", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T16:45:48Z
--- language: - ja license: apache-2.0 tags: - automatic-speech-recognition - ja datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ja_no-pretraining_s830 Fine-tuned randomly initialized wav2vec2 model for speech recognition using the train split of [Common Voice 7.0 (ja)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_ja_vp-sv_s570
jonatasgrosman
2022-07-08T16:43:15Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ja", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T16:42:50Z
--- language: - ja license: apache-2.0 tags: - automatic-speech-recognition - ja datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ja_vp-sv_s570 Fine-tuned [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (ja)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
Nitika/distilbert-base-uncased-finetuned-squad-d5716d28
Nitika
2022-07-08T16:36:38Z
0
0
null
[ "pytorch", "question-answering", "en", "dataset:squad", "arxiv:1910.01108", "license:apache-2.0", "region:us" ]
question-answering
2022-07-08T16:36:27Z
--- language: - en thumbnail: https://github.com/karanchahal/distiller/blob/master/distiller.jpg tags: - question-answering license: apache-2.0 datasets: - squad metrics: - squad --- # DistilBERT with a second step of distillation ## Model description This model replicates the "DistilBERT (D)" model from Table 2 of the [DistilBERT paper](https://arxiv.org/pdf/1910.01108.pdf). In this approach, a DistilBERT student is fine-tuned on SQuAD v1.1, but with a BERT model (also fine-tuned on SQuAD v1.1) acting as a teacher for a second step of task-specific distillation. In this version, the following pre-trained models were used: * Student: `distilbert-base-uncased` * Teacher: `lewtun/bert-base-uncased-finetuned-squad-v1` ## Training data This model was trained on the SQuAD v1.1 dataset which can be obtained from the `datasets` library as follows: ```python from datasets import load_dataset squad = load_dataset('squad') ``` ## Training procedure ## Eval results | | Exact Match | F1 | |------------------|-------------|------| | DistilBERT paper | 79.1 | 86.9 | | Ours | 78.4 | 86.5 | The scores were calculated using the `squad` metric from `datasets`. ### BibTeX entry and citation info ```bibtex @misc{sanh2020distilbert, title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter}, author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf}, year={2020}, eprint={1910.01108}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
jonatasgrosman/exp_w2v2t_ja_hubert_s334
jonatasgrosman
2022-07-08T16:31:52Z
4
0
transformers
[ "transformers", "pytorch", "hubert", "automatic-speech-recognition", "ja", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T16:31:29Z
--- language: - ja license: apache-2.0 tags: - automatic-speech-recognition - ja datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ja_hubert_s334 Fine-tuned [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) for speech recognition using the train split of [Common Voice 7.0 (ja)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
Forkits/Reinforce-Pixelcopter
Forkits
2022-07-08T16:29:09Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-07-08T15:34:36Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter results: - metrics: - type: mean_reward value: 10.60 +/- 6.80 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
jonatasgrosman/exp_w2v2t_ja_hubert_s69
jonatasgrosman
2022-07-08T16:27:39Z
7
0
transformers
[ "transformers", "pytorch", "hubert", "automatic-speech-recognition", "ja", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T16:27:15Z
--- language: - ja license: apache-2.0 tags: - automatic-speech-recognition - ja datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ja_hubert_s69 Fine-tuned [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) for speech recognition using the train split of [Common Voice 7.0 (ja)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
Rocketknight1/europython-imdb-distilbert
Rocketknight1
2022-07-08T16:21:24Z
4
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-08T16:20:21Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: europython-imdb-distilbert results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # europython-imdb-distilbert This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3081 - Train Accuracy: 0.8663 - Validation Loss: 0.2459 - Validation Accuracy: 0.9006 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.3081 | 0.8663 | 0.2459 | 0.9006 | 0 | ### Framework versions - Transformers 4.21.0.dev0 - TensorFlow 2.9.1 - Datasets 2.3.3.dev0 - Tokenizers 0.11.0
jonatasgrosman/exp_w2v2t_ja_unispeech_s253
jonatasgrosman
2022-07-08T16:18:02Z
4
0
transformers
[ "transformers", "pytorch", "unispeech", "automatic-speech-recognition", "ja", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T16:17:38Z
--- language: - ja license: apache-2.0 tags: - automatic-speech-recognition - ja datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ja_unispeech_s253 Fine-tuned [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (ja)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_ja_unispeech_s569
jonatasgrosman
2022-07-08T16:14:48Z
3
0
transformers
[ "transformers", "pytorch", "unispeech", "automatic-speech-recognition", "ja", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T16:14:24Z
--- language: - ja license: apache-2.0 tags: - automatic-speech-recognition - ja datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ja_unispeech_s569 Fine-tuned [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (ja)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_ja_xlsr-53_s705
jonatasgrosman
2022-07-08T16:11:36Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ja", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T16:11:13Z
--- language: - ja license: apache-2.0 tags: - automatic-speech-recognition - ja datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ja_xlsr-53_s705 Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition using the train split of [Common Voice 7.0 (ja)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_ja_vp-100k_s255
jonatasgrosman
2022-07-08T16:02:37Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ja", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T16:02:13Z
--- language: - ja license: apache-2.0 tags: - automatic-speech-recognition - ja datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ja_vp-100k_s255 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (ja)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_ja_wav2vec2_s727
jonatasgrosman
2022-07-08T15:53:02Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ja", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T15:52:34Z
--- language: - ja license: apache-2.0 tags: - automatic-speech-recognition - ja datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ja_wav2vec2_s727 Fine-tuned [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) for speech recognition using the train split of [Common Voice 7.0 (ja)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
Rocketknight1/bert-dummy-seq
Rocketknight1
2022-07-08T15:45:02Z
3
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-08T15:18:33Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: bert-dummy-seq results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # bert-dummy-seq This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.21.0.dev0 - TensorFlow 2.9.1 - Datasets 2.3.3.dev0 - Tokenizers 0.11.0
jonatasgrosman/exp_w2v2t_th_vp-it_s259
jonatasgrosman
2022-07-08T15:28:35Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "th", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T15:28:09Z
--- language: - th license: apache-2.0 tags: - automatic-speech-recognition - th datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_th_vp-it_s259 Fine-tuned [facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (th)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_th_r-wav2vec2_s930
jonatasgrosman
2022-07-08T15:22:10Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "th", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T15:21:42Z
--- language: - th license: apache-2.0 tags: - automatic-speech-recognition - th datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_th_r-wav2vec2_s930 Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition using the train split of [Common Voice 7.0 (th)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
tfshaman/distilbert-base-uncased-distilled-clinc
tfshaman
2022-07-08T15:19:17Z
10
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-08T14:52:51Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.8264516129032258 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 1.5565 - Accuracy: 0.8265 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.2743 | 1.0 | 318 | 2.5809 | 0.7310 | | 2.2148 | 2.0 | 636 | 1.7909 | 0.8071 | | 1.7065 | 3.0 | 954 | 1.5565 | 0.8265 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.12.0 - Datasets 2.3.2 - Tokenizers 0.12.1
jonatasgrosman/exp_w2v2t_th_r-wav2vec2_s805
jonatasgrosman
2022-07-08T15:18:14Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "th", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T15:17:48Z
--- language: - th license: apache-2.0 tags: - automatic-speech-recognition - th datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_th_r-wav2vec2_s805 Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition using the train split of [Common Voice 7.0 (th)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_th_xls-r_s625
jonatasgrosman
2022-07-08T15:07:51Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "th", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T15:07:26Z
--- language: - th license: apache-2.0 tags: - automatic-speech-recognition - th datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_th_xls-r_s625 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (th)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_th_unispeech-sat_s772
jonatasgrosman
2022-07-08T15:04:41Z
6
0
transformers
[ "transformers", "pytorch", "unispeech-sat", "automatic-speech-recognition", "th", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T15:03:49Z
--- language: - th license: apache-2.0 tags: - automatic-speech-recognition - th datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_th_unispeech-sat_s772 Fine-tuned [microsoft/unispeech-sat-large](https://huggingface.co/microsoft/unispeech-sat-large) for speech recognition using the train split of [Common Voice 7.0 (th)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_th_unispeech-sat_s515
jonatasgrosman
2022-07-08T15:01:10Z
4
0
transformers
[ "transformers", "pytorch", "unispeech-sat", "automatic-speech-recognition", "th", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T15:00:21Z
--- language: - th license: apache-2.0 tags: - automatic-speech-recognition - th datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_th_unispeech-sat_s515 Fine-tuned [microsoft/unispeech-sat-large](https://huggingface.co/microsoft/unispeech-sat-large) for speech recognition using the train split of [Common Voice 7.0 (th)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
dminiotas05/distilbert-base-uncased-finetuned-ft650_10class
dminiotas05
2022-07-08T14:58:07Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-08T14:33:27Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-ft650_10class results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ft650_10class This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9674 - Accuracy: 0.2207 - F1: 0.2002 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 2.1088 | 1.0 | 188 | 2.0460 | 0.1807 | 0.1324 | | 1.9628 | 2.0 | 376 | 1.9867 | 0.2173 | 0.1821 | | 1.8966 | 3.0 | 564 | 1.9693 | 0.2193 | 0.1936 | | 1.8399 | 4.0 | 752 | 1.9674 | 0.2207 | 0.2002 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
jonatasgrosman/exp_w2v2t_th_unispeech-sat_s658
jonatasgrosman
2022-07-08T14:57:17Z
4
0
transformers
[ "transformers", "pytorch", "unispeech-sat", "automatic-speech-recognition", "th", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T14:56:29Z
--- language: - th license: apache-2.0 tags: - automatic-speech-recognition - th datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_th_unispeech-sat_s658 Fine-tuned [microsoft/unispeech-sat-large](https://huggingface.co/microsoft/unispeech-sat-large) for speech recognition using the train split of [Common Voice 7.0 (th)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_th_vp-nl_s253
jonatasgrosman
2022-07-08T14:49:35Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "th", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T14:49:10Z
--- language: - th license: apache-2.0 tags: - automatic-speech-recognition - th datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_th_vp-nl_s253 Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (th)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
hsohn3/mayo-timebert-visit-uncased-wordlevel-block512-batch4-ep100
hsohn3
2022-07-08T14:49:05Z
3
0
transformers
[ "transformers", "tf", "bert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-07T18:58:20Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: hsohn3/mayo-timebert-visit-uncased-wordlevel-block512-batch4-ep100 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # hsohn3/mayo-timebert-visit-uncased-wordlevel-block512-batch4-ep100 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.8536 - Epoch: 99 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 3.9508 | 0 | | 3.4063 | 1 | | 3.3682 | 2 | | 3.3468 | 3 | | 3.3330 | 4 | | 3.3308 | 5 | | 3.3225 | 6 | | 3.3106 | 7 | | 3.2518 | 8 | | 3.1859 | 9 | | 3.1373 | 10 | | 3.0923 | 11 | | 3.0390 | 12 | | 2.9560 | 13 | | 2.8605 | 14 | | 2.7564 | 15 | | 2.4969 | 16 | | 2.2044 | 17 | | 1.9566 | 18 | | 1.7686 | 19 | | 1.5995 | 20 | | 1.4932 | 21 | | 1.4100 | 22 | | 1.3538 | 23 | | 1.2973 | 24 | | 1.2610 | 25 | | 1.2160 | 26 | | 1.1916 | 27 | | 1.1607 | 28 | | 1.1468 | 29 | | 1.1262 | 30 | | 1.1123 | 31 | | 1.0942 | 32 | | 1.0816 | 33 | | 1.0717 | 34 | | 1.0575 | 35 | | 1.0503 | 36 | | 1.0411 | 37 | | 1.0293 | 38 | | 1.0229 | 39 | | 1.0139 | 40 | | 1.0081 | 41 | | 1.0028 | 42 | | 0.9967 | 43 | | 0.9906 | 44 | | 0.9834 | 45 | | 0.9782 | 46 | | 0.9766 | 47 | | 0.9676 | 48 | | 0.9618 | 49 | | 0.9611 | 50 | | 0.9553 | 51 | | 0.9504 | 52 | | 0.9483 | 53 | | 0.9404 | 54 | | 0.9423 | 55 | | 0.9361 | 56 | | 0.9327 | 57 | | 0.9327 | 58 | | 0.9263 | 59 | | 0.9275 | 60 | | 0.9218 | 61 | | 0.9202 | 62 | | 0.9158 | 63 | | 0.9152 | 64 | | 0.9091 | 65 | | 0.9104 | 66 | | 0.9094 | 67 | | 0.9087 | 68 | | 0.9034 | 69 | | 0.9063 | 70 | | 0.8984 | 71 | | 0.8966 | 72 | | 0.8953 | 73 | | 0.8910 | 74 | | 0.8913 | 75 | | 0.8887 | 76 | | 0.8868 | 77 | | 0.8868 | 78 | | 0.8815 | 79 | | 0.8821 | 80 | | 0.8791 | 81 | | 0.8752 | 82 | | 0.8731 | 83 | | 0.8779 | 84 | | 0.8727 | 85 | | 0.8702 | 86 | | 0.8712 | 87 | | 0.8689 | 88 | | 0.8646 | 89 | | 0.8644 | 90 | | 0.8608 | 91 | | 0.8643 | 92 | | 0.8602 | 93 | | 0.8605 | 94 | | 0.8568 | 95 | | 0.8567 | 96 | | 0.8557 | 97 | | 0.8543 | 98 | | 0.8536 | 99 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
Rocketknight1/europython-imdb
Rocketknight1
2022-07-08T14:42:10Z
3
0
transformers
[ "transformers", "tf", "deberta-v2", "text-classification", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-07T16:56:10Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: europython-imdb results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # europython-imdb This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1279 - Train Accuracy: 0.9548 - Validation Loss: 0.1595 - Validation Accuracy: 0.9418 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.2073 | 0.9203 | 0.1486 | 0.9435 | 0 | | 0.1279 | 0.9548 | 0.1595 | 0.9418 | 1 | ### Framework versions - Transformers 4.21.0.dev0 - TensorFlow 2.9.1 - Datasets 2.3.3.dev0 - Tokenizers 0.11.0
Guillaume63/Reinforce-helicopter
Guillaume63
2022-07-08T14:41:44Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-07-08T14:41:33Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-helicopter results: - metrics: - type: mean_reward value: 15.60 +/- 16.11 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
jonatasgrosman/exp_w2v2t_th_vp-es_s552
jonatasgrosman
2022-07-08T14:35:44Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "th", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T14:35:02Z
--- language: - th license: apache-2.0 tags: - automatic-speech-recognition - th datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_th_vp-es_s552 Fine-tuned [facebook/wav2vec2-large-es-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-es-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (th)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_th_vp-es_s51
jonatasgrosman
2022-07-08T14:10:34Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "th", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T14:10:08Z
--- language: - th license: apache-2.0 tags: - automatic-speech-recognition - th datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_th_vp-es_s51 Fine-tuned [facebook/wav2vec2-large-es-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-es-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (th)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
malteos/gpt2-xl-german-covid-19
malteos
2022-07-08T13:48:32Z
7
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "de", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-08T13:14:23Z
--- license: mit language: de widget: - text: "Noch Wochen nach einer Erkrankung an COVID-19 kΓΆnnen " --- # German Covid-19 GPT2-XL (1.5B) - Covid-19 specific version of [`malteos/gpt2-xl-wechsel-german`](https://huggingface.co/malteos/gpt2-xl-wechsel-german) - Fine-tuned on 2 GB text from OSCAR filtered for covid related terms. ### How to use You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='malteos/gpt2-xl-german-covid-19') >>> set_seed(42) >>> generator("Hello, I'm a language model,", max_length=30, num_return_sequences=5) ``` ## License MIT
akraut/dummy_bin_image_clf
akraut
2022-07-08T13:39:56Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2022-07-08T13:39:46Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | name | learning_rate | decay | beta_1 | beta_2 | epsilon | amsgrad | training_precision | |----|-------------|-----|------|------|-------|-------|------------------| |Adam|0.0010000000474974513|0.0|0.8999999761581421|0.9990000128746033|1e-07|False|float32| ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
domenicrosati/deberta-v3-xsmall-with-biblio-context-frozenlm-finetuned-review_classifier
domenicrosati
2022-07-08T13:26:07Z
4
0
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
text-classification
2022-07-08T12:06:35Z
--- license: mit tags: - text-classification - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: deberta-v3-xsmall-with-biblio-context-frozenlm-finetuned-review_classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-xsmall-with-biblio-context-frozenlm-finetuned-review_classifier This model is a fine-tuned version of [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3109 - Accuracy: 0.9066 - F1: 0.0090 - Recall: 0.0045 - Precision: 0.8293 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.2938 | 1.0 | 6667 | 0.3103 | 0.9070 | 0.0221 | 0.0112 | 0.7636 | | 0.2851 | 2.0 | 13334 | 0.3109 | 0.9066 | 0.0090 | 0.0045 | 0.8293 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
hsohn3/cchs-timebert-visit-uncased-wordlevel-block512-batch4-ep100
hsohn3
2022-07-08T13:10:14Z
4
0
transformers
[ "transformers", "tf", "bert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-07T18:42:58Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: hsohn3/cchs-timebert-visit-uncased-wordlevel-block512-batch4-ep100 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # hsohn3/cchs-timebert-visit-uncased-wordlevel-block512-batch4-ep100 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.8009 - Epoch: 99 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 3.8699 | 0 | | 3.1667 | 1 | | 3.1286 | 2 | | 3.1169 | 3 | | 3.1077 | 4 | | 3.0989 | 5 | | 3.0911 | 6 | | 3.0896 | 7 | | 3.0820 | 8 | | 3.0856 | 9 | | 3.0827 | 10 | | 3.0800 | 11 | | 3.0647 | 12 | | 3.0396 | 13 | | 3.0052 | 14 | | 2.9879 | 15 | | 2.9633 | 16 | | 2.9449 | 17 | | 2.9217 | 18 | | 2.8921 | 19 | | 2.8625 | 20 | | 2.8153 | 21 | | 2.7495 | 22 | | 2.6202 | 23 | | 2.3762 | 24 | | 2.1064 | 25 | | 1.8489 | 26 | | 1.6556 | 27 | | 1.5005 | 28 | | 1.4110 | 29 | | 1.3472 | 30 | | 1.2896 | 31 | | 1.2391 | 32 | | 1.2001 | 33 | | 1.1663 | 34 | | 1.1418 | 35 | | 1.1159 | 36 | | 1.0987 | 37 | | 1.0753 | 38 | | 1.0608 | 39 | | 1.0456 | 40 | | 1.0381 | 41 | | 1.0248 | 42 | | 1.0127 | 43 | | 0.9970 | 44 | | 0.9958 | 45 | | 0.9847 | 46 | | 0.9789 | 47 | | 0.9617 | 48 | | 0.9575 | 49 | | 0.9517 | 50 | | 0.9442 | 51 | | 0.9379 | 52 | | 0.9350 | 53 | | 0.9325 | 54 | | 0.9235 | 55 | | 0.9182 | 56 | | 0.9139 | 57 | | 0.9074 | 58 | | 0.8984 | 59 | | 0.8988 | 60 | | 0.8958 | 61 | | 0.8937 | 62 | | 0.8853 | 63 | | 0.8812 | 64 | | 0.8758 | 65 | | 0.8729 | 66 | | 0.8732 | 67 | | 0.8647 | 68 | | 0.8634 | 69 | | 0.8604 | 70 | | 0.8577 | 71 | | 0.8597 | 72 | | 0.8508 | 73 | | 0.8510 | 74 | | 0.8450 | 75 | | 0.8451 | 76 | | 0.8398 | 77 | | 0.8392 | 78 | | 0.8345 | 79 | | 0.8350 | 80 | | 0.8329 | 81 | | 0.8299 | 82 | | 0.8257 | 83 | | 0.8217 | 84 | | 0.8192 | 85 | | 0.8211 | 86 | | 0.8208 | 87 | | 0.8171 | 88 | | 0.8166 | 89 | | 0.8134 | 90 | | 0.8124 | 91 | | 0.8102 | 92 | | 0.8133 | 93 | | 0.8066 | 94 | | 0.8023 | 95 | | 0.8049 | 96 | | 0.8024 | 97 | | 0.7980 | 98 | | 0.8009 | 99 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
Guillaume63/Reinforce-cartpole
Guillaume63
2022-07-08T13:06:18Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-07-06T12:59:13Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-cartpole results: - metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
swtx/simcse-chinese-roberta-www-ext
swtx
2022-07-08T12:12:38Z
4
0
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "arxiv:2104.08821", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-07-08T09:13:31Z
## swtx SIMCSE RoBERTa WWM Ext Chinese This model provides simplified Chinese sentence embeddings encoding based on [Simple Contrastive Learning](https://arxiv.org/abs/2104.08821). The pretrained model(Chinese RoBERTa WWM Ext) is used for token encoding. ## How to use ```Python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("swtx/simcse-chinese-roberta-wwm-ext") model = AutoModel.from_pretrained("swtx/simcse-chinese-roberta-wwm-ext") ```
dminiotas05/distilbert-base-uncased-finetuned-ft650_6class
dminiotas05
2022-07-08T12:11:05Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-08T11:46:36Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-ft650_6class results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ft650_6class This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4555 - Accuracy: 0.3707 - F1: 0.3625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.5838 | 1.0 | 188 | 1.5235 | 0.3253 | 0.2947 | | 1.4521 | 2.0 | 376 | 1.4744 | 0.3467 | 0.3234 | | 1.3838 | 3.0 | 564 | 1.4565 | 0.358 | 0.3483 | | 1.323 | 4.0 | 752 | 1.4555 | 0.3707 | 0.3625 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
jonatasgrosman/exp_w2v2t_th_vp-fr_s77
jonatasgrosman
2022-07-08T11:40:30Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "th", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T11:40:05Z
--- language: - th license: apache-2.0 tags: - automatic-speech-recognition - th datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_th_vp-fr_s77 Fine-tuned [facebook/wav2vec2-large-fr-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-fr-voxpopuli) for speech recognition on Thai using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_th_unispeech-ml_s351
jonatasgrosman
2022-07-08T11:34:20Z
4
0
transformers
[ "transformers", "pytorch", "unispeech", "automatic-speech-recognition", "th", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T11:33:47Z
--- language: - th license: apache-2.0 tags: - automatic-speech-recognition - th datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_th_unispeech-ml_s351 Fine-tuned [microsoft/unispeech-large-multi-lingual-1500h-cv](https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv) for speech recognition on Thai using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_th_wavlm_s847
jonatasgrosman
2022-07-08T11:21:22Z
4
0
transformers
[ "transformers", "pytorch", "wavlm", "automatic-speech-recognition", "th", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T11:20:15Z
--- language: - th license: apache-2.0 tags: - automatic-speech-recognition - th datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_th_wavlm_s847 Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition on Thai using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_th_wavlm_s108
jonatasgrosman
2022-07-08T11:17:13Z
5
0
transformers
[ "transformers", "pytorch", "wavlm", "automatic-speech-recognition", "th", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T11:16:18Z
--- language: - th license: apache-2.0 tags: - automatic-speech-recognition - th datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_th_wavlm_s108 Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition on Thai using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_th_no-pretraining_s414
jonatasgrosman
2022-07-08T11:10:36Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "th", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T11:10:08Z
--- language: - th license: apache-2.0 tags: - automatic-speech-recognition - th datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_th_no-pretraining_s414 Fine-tuned randomly initialized wav2vec2 model for speech recognition on Thai using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_th_no-pretraining_s950
jonatasgrosman
2022-07-08T11:07:13Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "th", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T11:06:50Z
--- language: - th license: apache-2.0 tags: - automatic-speech-recognition - th datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_th_no-pretraining_s950 Fine-tuned randomly initialized wav2vec2 model for speech recognition on Thai using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_th_vp-sv_s884
jonatasgrosman
2022-07-08T11:04:20Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "th", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T11:03:49Z
--- language: - th license: apache-2.0 tags: - automatic-speech-recognition - th datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_th_vp-sv_s884 Fine-tuned [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) for speech recognition on Thai using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_th_vp-sv_s635
jonatasgrosman
2022-07-08T11:01:14Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "th", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T11:00:49Z
--- language: - th license: apache-2.0 tags: - automatic-speech-recognition - th datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_th_vp-sv_s635 Fine-tuned [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) for speech recognition on Thai using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_th_unispeech_s131
jonatasgrosman
2022-07-08T10:45:46Z
3
0
transformers
[ "transformers", "pytorch", "unispeech", "automatic-speech-recognition", "th", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T10:45:06Z
--- language: - th license: apache-2.0 tags: - automatic-speech-recognition - th datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_th_unispeech_s131 Fine-tuned [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) for speech recognition on Thai using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_th_unispeech_s624
jonatasgrosman
2022-07-08T10:42:36Z
3
0
transformers
[ "transformers", "pytorch", "unispeech", "automatic-speech-recognition", "th", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T10:41:56Z
--- language: - th license: apache-2.0 tags: - automatic-speech-recognition - th datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_th_unispeech_s624 Fine-tuned [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) for speech recognition on Thai using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_th_xlsr-53_s218
jonatasgrosman
2022-07-08T10:35:19Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "th", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T10:34:50Z
--- language: - th license: apache-2.0 tags: - automatic-speech-recognition - th datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_th_xlsr-53_s218 Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition on Thai using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_th_vp-100k_s630
jonatasgrosman
2022-07-08T10:24:25Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "th", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T10:23:54Z
--- language: - th license: apache-2.0 tags: - automatic-speech-recognition - th datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_th_vp-100k_s630 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition on Thai using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_th_wav2vec2_s35
jonatasgrosman
2022-07-08T10:13:59Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "th", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T10:13:35Z
--- language: - th license: apache-2.0 tags: - automatic-speech-recognition - th datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_th_wav2vec2_s35 Fine-tuned [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) for speech recognition on Thai using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_en_vp-it_s250
jonatasgrosman
2022-07-08T10:03:26Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T10:02:46Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_vp-it_s250 Fine-tuned [facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
prashanth0205/vit_spectrogram
prashanth0205
2022-07-08T09:58:35Z
34
4
transformers
[ "transformers", "tf", "vit", "image-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-07-06T13:17:32Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: vit_spectrogram results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # vit_spectrogram This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on a dataset containing images of Mel spectrogram belonging to the classes 'Male' and 'Female'. This model is still being fine tuned and tested. It achieves the following results on the evaluation set: - Train Loss: 0.2893 - Train Accuracy: 0.8757 - Train Top-3-accuracy: 1.0000 - Validation Loss: 0.8757 - Validation Accuracy: 0.9366 - Validation Top-3-accuracy: 1.0 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 3032, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results ### Framework versions - Transformers 4.18.0 - TensorFlow 2.4.0 - Datasets 2.0.0 - Tokenizers 0.11.6
jonatasgrosman/exp_w2v2t_en_vp-it_s859
jonatasgrosman
2022-07-08T09:52:16Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T09:51:29Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_vp-it_s859 Fine-tuned [facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_en_r-wav2vec2_s44
jonatasgrosman
2022-07-08T09:36:19Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T09:35:33Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_r-wav2vec2_s44 Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_en_r-wav2vec2_s93
jonatasgrosman
2022-07-08T09:28:53Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T09:28:09Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_r-wav2vec2_s93 Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_en_xls-r_s732
jonatasgrosman
2022-07-08T09:02:46Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T09:02:05Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_xls-r_s732 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_en_vp-nl_s980
jonatasgrosman
2022-07-08T08:17:30Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T08:16:42Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_vp-nl_s980 Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_en_vp-nl_s281
jonatasgrosman
2022-07-08T08:09:32Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T08:08:43Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_vp-nl_s281 Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_en_vp-es_s474
jonatasgrosman
2022-07-08T07:45:27Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T07:44:40Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_vp-es_s474 Fine-tuned [facebook/wav2vec2-large-es-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-es-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_en_vp-es_s952
jonatasgrosman
2022-07-08T07:36:55Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T07:36:29Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_vp-es_s952 Fine-tuned [facebook/wav2vec2-large-es-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-es-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
ClassCat/roberta-base-french
ClassCat
2022-07-08T07:34:58Z
7
1
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "fr", "dataset:wikipedia", "dataset:cc100", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-04T17:58:21Z
--- language: fr license: cc-by-sa-4.0 datasets: - wikipedia - cc100 widget: - text: "Je vais Γ  la <mask>." - text: "J'aime le <mask>." - text: "J'ai ouvert la <mask>." - text: "Je m'appelle <mask>." - text: "J'ai beaucoup d'<mask>." --- ## RoBERTa French base model (Uncased) ### Prerequisites transformers==4.19.2 ### Model architecture This model uses RoBERTa base setttings except vocabulary size. ### Tokenizer Using BPE tokenizer with vocabulary size 50,000. ### Training Data * [wiki40b/fr](https://www.tensorflow.org/datasets/catalog/wiki40b#wiki40bfr) (French Wikipedia) * Subset of [CC-100/fr](https://data.statmt.org/cc-100/) : Monolingual Datasets from Web Crawl Data ### Usage ```python from transformers import pipeline unmasker = pipeline('fill-mask', model='ClassCat/roberta-base-french') unmasker("Je vais Γ  la <mask>.") ```
jonatasgrosman/exp_w2v2t_en_vp-fr_s51
jonatasgrosman
2022-07-08T07:29:19Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T07:28:38Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_vp-fr_s51 Fine-tuned [facebook/wav2vec2-large-fr-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-fr-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_en_vp-fr_s118
jonatasgrosman
2022-07-08T07:12:26Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T07:12:00Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_vp-fr_s118 Fine-tuned [facebook/wav2vec2-large-fr-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-fr-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_en_unispeech-ml_s756
jonatasgrosman
2022-07-08T07:05:35Z
4
0
transformers
[ "transformers", "pytorch", "unispeech", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T07:04:52Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_unispeech-ml_s756 Fine-tuned [microsoft/unispeech-large-multi-lingual-1500h-cv](https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_en_wavlm_s461
jonatasgrosman
2022-07-08T06:40:13Z
5
0
transformers
[ "transformers", "pytorch", "wavlm", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T06:39:25Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_wavlm_s461 Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_en_wavlm_s767
jonatasgrosman
2022-07-08T06:33:36Z
3
0
transformers
[ "transformers", "pytorch", "wavlm", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T06:32:43Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_wavlm_s767 Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_en_no-pretraining_s289
jonatasgrosman
2022-07-08T06:21:53Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T06:21:09Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_no-pretraining_s289 Fine-tuned randomly initialized wav2vec2 model for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_en_vp-sv_s320
jonatasgrosman
2022-07-08T06:07:23Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T06:06:37Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_vp-sv_s320 Fine-tuned [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_en_vp-sv_s179
jonatasgrosman
2022-07-08T06:02:23Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T06:01:42Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_vp-sv_s179 Fine-tuned [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
igpaub/Reinforce-Cartpole-v1
igpaub
2022-07-08T05:54:39Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-07-08T05:53:59Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Cartpole-v1 results: - metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
jonatasgrosman/exp_w2v2t_en_hubert_s596
jonatasgrosman
2022-07-08T05:50:29Z
3
0
transformers
[ "transformers", "pytorch", "hubert", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T05:49:43Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_hubert_s596 Fine-tuned [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_en_hubert_s875
jonatasgrosman
2022-07-08T05:46:21Z
3
0
transformers
[ "transformers", "pytorch", "hubert", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T05:45:44Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_hubert_s875 Fine-tuned [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_en_unispeech_s227
jonatasgrosman
2022-07-08T05:36:00Z
4
0
transformers
[ "transformers", "pytorch", "unispeech", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T05:35:18Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_unispeech_s227 Fine-tuned [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_en_unispeech_s870
jonatasgrosman
2022-07-08T05:31:32Z
4
0
transformers
[ "transformers", "pytorch", "unispeech", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T05:30:42Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_unispeech_s870 Fine-tuned [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
phyous/q-Taxi-v3
phyous
2022-07-08T05:12:47Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-07-08T05:12:07Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.44 +/- 2.74 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="phyous/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
jonatasgrosman/exp_w2v2t_en_xlsr-53_s870
jonatasgrosman
2022-07-08T05:07:22Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T05:06:55Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_xlsr-53_s870 Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_en_vp-100k_s807
jonatasgrosman
2022-07-08T04:33:29Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T04:32:40Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_vp-100k_s807 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_en_wav2vec2_s878
jonatasgrosman
2022-07-08T03:56:34Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T03:23:38Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_wav2vec2_s878 Fine-tuned [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
ccarvajal-reyes/beto-emoji
ccarvajal-reyes
2022-07-08T03:35:39Z
14
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "es", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-03T07:26:55Z
--- language: - es --- # beto-emoji Fine-tunning [BETO](https://github.com/dccuchile/beto) for emoji-prediction. ## Repository Details with training and a use example are shown in [github.com/camilocarvajalreyes/beto-emoji](https://github.com/camilocarvajalreyes/beto-emoji). A deeper analysis of this and other models on the full dataset can be found in [github.com/furrutiav/data-mining-2022](https://github.com/furrutiav/data-mining-2022). We have used this model for a project for [CC5205 Data Mining](https://github.com/dccuchile/CC5205) course. ## Example Inspired by model card from [cardiffnlp/twitter-roberta-base-emoji](https://huggingface.co/cardiffnlp/twitter-roberta-base-emoji). ```python from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np from scipy.special import softmax import csv import urllib.request # Preprocess text (username and link placeholders) def preprocess(text): new_text = [] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) MODEL = f"ccarvajal/beto-emoji" tokenizer = AutoTokenizer.from_pretrained(MODEL) # download label mapping labels=[] mapping_link = f"https://raw.githubusercontent.com/camilocarvajalreyes/beto-emoji/main/es_mapping.txt" with urllib.request.urlopen(mapping_link) as f: html = f.read().decode('utf-8').split("\n") csvreader = csv.reader(html, delimiter='\t') labels = [row[1] for row in csvreader if len(row) > 1] model = AutoModelForSequenceClassification.from_pretrained(MODEL) model.save_pretrained(MODEL) text = "que viva espaΓ±a" text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(scores.shape[0]): l = labels[ranking[i]] s = scores[ranking[i]] print(f"{i+1}) {l} {np.round(float(s), 4)}") ``` Output ```python 1) πŸ‡ͺπŸ‡Έ 0.2508 2) 😍 0.238 3) πŸ‘Œ 0.2225 4) πŸ˜‚ 0.0806 5) ❀ 0.0489 6) 😁 0.0415 7) 😜 0.0232 8) 😎 0.0229 9) 😊 0.0156 10) πŸ˜‰ 0.0119 11) πŸ’œ 0.0079 12) πŸ’• 0.0077 13) πŸ’ͺ 0.0066 14) πŸ’˜ 0.0054 15) πŸ’™ 0.0052 16) πŸ’ž 0.005 17) 😘 0.0034 18) 🎢 0.0022 19) ✨ 0.0007 ``` ## Results in test set precision recall f1-score support ❀ 0.39 0.43 0.41 2141 😍 0.29 0.39 0.33 1408 πŸ˜‚ 0.51 0.51 0.51 1499 πŸ’• 0.09 0.05 0.06 352 😊 0.12 0.23 0.16 514 😘 0.24 0.23 0.24 397 πŸ’ͺ 0.37 0.43 0.40 307 πŸ˜‰ 0.15 0.17 0.16 453 πŸ‘Œ 0.09 0.16 0.11 180 πŸ‡ͺπŸ‡Έ 0.46 0.46 0.46 424 😎 0.12 0.11 0.11 339 πŸ’™ 0.36 0.02 0.04 413 πŸ’œ 0.00 0.00 0.00 235 😜 0.04 0.02 0.02 274 πŸ’ž 0.00 0.00 0.00 93 ✨ 0.26 0.12 0.17 416 🎢 0.25 0.24 0.24 212 πŸ’˜ 0.00 0.00 0.00 134 😁 0.05 0.03 0.04 209 accuracy 0.30 10000 macro_avg 0.20 0.19 0.18 10000 weighted avg 0.29 0.30 0.29 10000 [Another example](https://github.com/camilocarvajalreyes/beto-emoji/blob/main/attention_visualisation.ipynb) with a visualisation of the attention modules within this model is carried out using [bertviz](https://github.com/jessevig/bertviz). ## Reproducibility The Multilingual Emoji Prediction dataset (Barbieri et al. 2010) consists of tweets in English and Spanish that originally had a single emoji, which is later used as a tag. Test and trial sets can be downloaded [here](https://github.com/fvancesco/Semeval2018-Task2-Emoji-Detection/blob/master/dataset/Semeval2018-Task2-EmojiPrediction.zip?raw=true), but the train set needs to be downloaded using a [twitter crawler](https://github.com/fra82/twitter-crawler/blob/master/semeval2018task2TwitterCrawlerHOWTO.md). The goal is to predict that single emoji that was originally in the tweet using the text in it (out of a fixed set of possible emojis, 20 for English and 19 for Spanish). Training parameters: ```python training_args = TrainingArguments( output_dir="./results", learning_rate=2e-5, per_device_train_batch_size=16, per_device_eval_batch_size=16, num_train_epochs=5, weight_decay=0.01 ) ```
eplatas/distilroberta-base-finetuned-wikitext2
eplatas
2022-07-08T01:58:11Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-08T01:52:09Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-wikitext2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8359 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 87 | 1.9893 | | No log | 2.0 | 174 | 1.9055 | | No log | 3.0 | 261 | 1.8187 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
sam34738/bert-hinglish
sam34738
2022-07-08T00:00:58Z
6
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-07T23:37:37Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-hinglish results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-hinglish This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5475 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.3557 | 1.0 | 460 | 0.7714 | | 0.6349 | 2.0 | 920 | 0.5475 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Tokenizers 0.12.1
FelipeAD/mt5-small-finetuned-amazon-en-es
FelipeAD
2022-07-07T22:38:39Z
4
0
transformers
[ "transformers", "tf", "mt5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-07T21:08:36Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: FelipeAD/mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # FelipeAD/mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.0682 - Validation Loss: 3.3902 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 9672, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 10.0232 | 4.5431 | 0 | | 6.0233 | 3.9118 | 1 | | 5.2216 | 3.6621 | 2 | | 4.7560 | 3.5532 | 3 | | 4.4685 | 3.4825 | 4 | | 4.2748 | 3.4303 | 5 | | 4.1432 | 3.4013 | 6 | | 4.0682 | 3.3902 | 7 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
tfshaman/distilbert-base-uncased-finetuned-clinc
tfshaman
2022-07-07T22:15:13Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-07T21:36:11Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9158064516129032 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7786 - Accuracy: 0.9158 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2838 | 1.0 | 318 | 3.2787 | 0.7455 | | 2.622 | 2.0 | 636 | 1.8706 | 0.8332 | | 1.5466 | 3.0 | 954 | 1.1623 | 0.8939 | | 1.0135 | 4.0 | 1272 | 0.8619 | 0.91 | | 0.7985 | 5.0 | 1590 | 0.7786 | 0.9158 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.12.0 - Datasets 2.3.2 - Tokenizers 0.12.1
huggingtweets/fairytale_bot23
huggingtweets
2022-07-07T21:44:10Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-07T21:43:08Z
--- language: en thumbnail: http://www.huggingtweets.com/fairytale_bot23/1657230245911/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1486954631464771591/cwgDTNXD_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Fairytale Generator</div> <div style="text-align: center; font-size: 14px;">@fairytale_bot23</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Fairytale Generator. | Data | Fairytale Generator | | --- | --- | | Tweets downloaded | 315 | | Retweets | 0 | | Short tweets | 0 | | Tweets kept | 315 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/lznwr8t9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fairytale_bot23's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2hjhfq1n) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2hjhfq1n/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fairytale_bot23') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)