modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-07-15 06:27:42
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 521
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-07-15 06:27:26
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
mpasila/Ahma-SlimInstruct-V1-7B | mpasila | 2025-05-27T22:14:48Z | 7 | 0 | transformers | [
"transformers",
"pytorch",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"conversational",
"en",
"fi",
"dataset:mpasila/LumiOpenInstruct-GrypheSlimOrca-Mix",
"dataset:LumiOpen/instruction-collection-fin",
"dataset:Gryphe/Sonnet3.5-SlimOrcaDedupCleaned",
"base_model:Finnish-NLP/Ahma-7B",
"base_model:finetune:Finnish-NLP/Ahma-7B",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-generation | 2024-11-15T21:52:54Z | ---
base_model: Finnish-NLP/Ahma-7B
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
license: apache-2.0
language:
- en
- fi
datasets:
- mpasila/LumiOpenInstruct-GrypheSlimOrca-Mix
- LumiOpen/instruction-collection-fin
- Gryphe/Sonnet3.5-SlimOrcaDedupCleaned
---
This is trained on Google Colab because I'm a little low on money but at least that's free.. While testing the LoRA it seems to perform fairly well. The only real issue with this base model is that it only has 2048 token context size.
The trained formatting should be ChatML but it seemed to work better with Mistral's formatting for some reason (could be just due to me not having merged the model yet).
Dataset used was [a mix](https://huggingface.co/datasets/mpasila/LumiOpenInstruct-GrypheSlimOrca-Mix) of these:
[LumiOpen/instruction-collection-fin](https://huggingface.co/datasets/LumiOpen/instruction-collection-fin)
[Gryphe/Sonnet3.5-SlimOrcaDedupCleaned](https://huggingface.co/datasets/Gryphe/Sonnet3.5-SlimOrcaDedupCleaned)
LoRA: [mpasila/Ahma-SlimInstruct-LoRA-V1-7B](https://huggingface.co/mpasila/Ahma-SlimInstruct-LoRA-V1-7B)
After I'm done training this I will probably try do continued pre-training on Gemma 2 2B. I'm gonna add both Finnish and English data with some math data and maybe some roleplaying data as well and some books.
Or actually I'll train Viking-7B again but basically the same mix of datasets as this one but using the smaller version of the SlimSonnet dataset since it supposedly was filtered to have the most varied examples. Training on bigger datasets would probably make more sense to do when I get access to more compute.
Actually scratch all of that, since there was [a new actually multilingual model](https://huggingface.co/utter-project/EuroLLM-9B-Instruct) released recently I'll probably try fine-tuning that model instead.
## Evaluation
| FIN-bench (score) | Ahma-SlimInstruct-V1-7B | [Alpacazord-Viking-7B](https://huggingface.co/mpasila/Alpacazord-Viking-7B) | [Finnish-Alpaca-Small-7B](https://huggingface.co/mpasila/Finnish-Alpaca-Small-7B) | [Finnish-Alpaca-Tiny-V2-7B](https://huggingface.co/mpasila/Finnish-Alpaca-Tiny-V2-7B) | [Finnish-Viking-Alpaca-V1-7B](https://huggingface.co/mpasila/Finnish-Viking-Alpaca-V1-7B) | [NordicAlpaca-Finnish-V1-7B](https://huggingface.co/mpasila/NordicAlpaca-Finnish-V1-7B) | [llama-7b-finnish-instruct-v0.1](https://huggingface.co/Finnish-NLP/llama-7b-finnish-instruct-v0.1) | [llama-7b-finnish-instruct-v0.2](https://huggingface.co/Finnish-NLP/llama-7b-finnish-instruct-v0.2) | [llama-7b-finnish](https://huggingface.co/Finnish-NLP/llama-7b-finnish) | [Viking-7B (1000B)](https://huggingface.co/LumiOpen/Viking-7B) | [gpt-7b-nordic-prerelease](https://huggingface.co/HPLT/gpt-7b-nordic-prerelease) |
|-------|------|------|------|------|------|------|------|------|------|------|-------|
| Analogies | TBA | 0.5000 | 0.5923 | **0.6385** | 0.6308 | 0.5615 | 0.5000 | 0.5385 | 0.2692 | 0.5077 | 0.5846 |
| Arithmetic | TBA | 0.3678 | 0.2789 | **0.4815** | 0.3375 | 0.3393 | 0.4233 | 0.3299 | 0.0867 | 0.3136 | 0.2085 |
| Cause and effect | TBA | 0.6013 | 0.6013 | 0.5490 | 0.5752 | 0.6013 | 0.5948 | **0.6078** | 0.5752 | 0.5752 | 0.5882 |
| Emotions | TBA | 0.2938 | 0.3312 | 0.2250 | 0.2812 | 0.2938 | 0.2313 | **0.4750** | 0.3688 | 0.2313 | 0.2375 |
| Empirical judgments | TBA | 0.3333 | 0.3333 | 0.2525 | 0.2828 | 0.3333 | 0.3535 | **0.4141** | 0.3434 | 0.3434 | 0.3434 |
| General knowledge | TBA | 0.3429 | 0.2857 | 0.3429 | 0.4000 | 0.2857 | 0.3857 | **0.4429** | 0.1429 | 0.3143 | 0.2857 |
| Alignment harmless | TBA | 0.3621 | 0.3793 | 0.3793 | 0.3621 | 0.3448 | **0.3966** | 0.3793 | 0.3793 | 0.3793 | 0.3621 |
| Alignment helpful | TBA | **0.3559** | **0.3559** | 0.3390 | **0.3559** | 0.3220 | 0.3220 | 0.3220 | 0.3051 | 0.3390 | 0.3390 |
| Alignment honest | TBA | **0.4068** | 0.3559 | 0.3729 | 0.3729 | 0.3729 | 0.3898 | 0.3898 | **0.4068** | 0.3898 | 0.3729 |
| Alignment other | TBA | 0.5581 | 0.5349 | 0.5349 | 0.5581 | 0.5581 | **0.5814** | 0.5581 | **0.5814** | 0.5581 | **0.5814** |
| Intent recognition | TBA | 0.2587 | 0.1546 | 0.2153 | 0.1879 | 0.1777 | 0.2211 | **0.2717** | 0.1850 | 0.1864 | 0.1806 |
| Misconceptions | TBA | 0.5299 | **0.5448** | 0.5224 | 0.5373 | 0.5373 | 0.5149 | 0.5373 | 0.5373 | **0.5448** | 0.5373 |
| Paraphrase | TBA | 0.5050 | 0.5300 | 0.4750 | 0.5150 | 0.4750 | **0.5400** | 0.5000 | 0.5000 | 0.4800 | 0.5100 |
| Sentence ambiquity | TBA | 0.5000 | 0.4333 | 0.4833 | 0.5000 | 0.4333 | 0.4500 | **0.5333** | **0.5333** | 0.4667 | **0.5333** |
| Similarities abstraction | TBA | **0.7368** | 0.6974 | 0.6974 | **0.7368** | 0.7237 | 0.5789 | 0.5921 | 0.4474 | 0.6579 | 0.6053 |
| Average | TBA | 0.4123 | 0.3586 | **0.4654** | 0.3943 | 0.3891 | 0.4365 | 0.3993 | 0.2350 | 0.3721 | 0.3169 |
[Source](https://docs.google.com/spreadsheets/d/1rqJb9dQVihg-Z1_Ras1L_-wuzPg9xNzpdmM2x5HueeY/edit?usp=sharing)
Gonna add more stuff later.
#### FIN-bench scores:
TBA
# Uploaded Ahma-SlimInstruct-V1-7B model
- **Developed by:** mpasila
- **License:** apache-2.0
- **Finetuned from model :** Finnish-NLP/Ahma-7B
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |
BootesVoid/cmb6vlnli077elexpokc4f57j_cmb71lf6l07yqlexp3rt2d9pw | BootesVoid | 2025-05-27T22:13:03Z | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
]
| text-to-image | 2025-05-27T22:13:02Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: chiara
---
# Cmb6Vlnli077Elexpokc4F57J_Cmb71Lf6L07Yqlexp3Rt2D9Pw
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `chiara` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "chiara",
"lora_weights": "https://huggingface.co/BootesVoid/cmb6vlnli077elexpokc4f57j_cmb71lf6l07yqlexp3rt2d9pw/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('BootesVoid/cmb6vlnli077elexpokc4f57j_cmb71lf6l07yqlexp3rt2d9pw', weight_name='lora.safetensors')
image = pipeline('chiara').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/BootesVoid/cmb6vlnli077elexpokc4f57j_cmb71lf6l07yqlexp3rt2d9pw/discussions) to add images that show off what you’ve made with this LoRA.
|
zypchn/berturk-ner | zypchn | 2025-05-27T22:08:29Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"bert",
"token-classification",
"generated_from_trainer",
"tr",
"dataset:turkish-nlp-suite/turkish-wikiNER",
"base_model:dbmdz/bert-base-turkish-cased",
"base_model:finetune:dbmdz/bert-base-turkish-cased",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2025-05-27T13:57:46Z | ---
library_name: transformers
license: mit
base_model: dbmdz/bert-base-turkish-cased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- recall
model-index:
- name: results
results: []
datasets:
- turkish-nlp-suite/turkish-wikiNER
language:
- tr
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# berturk-ner
This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on
[turkish-nlp-suite/turkish-wikiNER](https://huggingface.co/datasets/turkish-nlp-suite/turkish-wikiNER) dataset.
It achieves the following results:
Validation Set
- Loss: 0.3693
- Accuracy: 0.9149
- F1: 0.9146
- Precision: 0.9167
- Recall: 0.9149
Test Set
- Accuracy: 0.9241
- F1: 0.8316
- Precision: 0.8341
- Recall: 0.8291
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Preicision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:----------:|:------:|
| 0.5606 | 1.0 | 141 | 0.3018 | 0.9109 | 0.9107 | 0.9127 | 0.9109 |
| 0.2489 | 2.0 | 282 | 0.3185 | 0.9108 | 0.9089 | 0.9107 | 0.9108 |
| 0.1558 | 3.0 | 423 | 0.3378 | 0.9051 | 0.9028 | 0.9056 | 0.9051 |
| 0.0966 | 4.0 | 564 | 0.3472 | 0.9151 | 0.9149 | 0.9170 | 0.9151 |
| 0.0678 | 5.0 | 705 | 0.3693 | 0.9149 | 0.9146 | 0.9167 | 0.9149 |
### Framework versions
- Transformers 4.52.3
- Pytorch 2.7.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1 |
Yuma42/Llama3.1-CrimeSolver-8B | Yuma42 | 2025-05-27T22:06:43Z | 0 | 0 | null | [
"safetensors",
"llama",
"merge",
"mergekit",
"lazymergekit",
"darkc0de/Llama-3.1-Nemotron-Nano-8B-v1-abliterated-Uncensored-Toxic-DPO",
"stepenZEN/DeepSeek-R1-Distill-Llama-8B-Abliterated",
"base_model:darkc0de/Llama-3.1-Nemotron-Nano-8B-v1-abliterated-Uncensored-Toxic-DPO",
"base_model:merge:darkc0de/Llama-3.1-Nemotron-Nano-8B-v1-abliterated-Uncensored-Toxic-DPO",
"base_model:stepenZEN/DeepSeek-R1-Distill-Llama-8B-Abliterated",
"base_model:merge:stepenZEN/DeepSeek-R1-Distill-Llama-8B-Abliterated",
"region:us"
]
| null | 2025-05-27T22:03:02Z | ---
base_model:
- darkc0de/Llama-3.1-Nemotron-Nano-8B-v1-abliterated-Uncensored-Toxic-DPO
- stepenZEN/DeepSeek-R1-Distill-Llama-8B-Abliterated
tags:
- merge
- mergekit
- lazymergekit
- darkc0de/Llama-3.1-Nemotron-Nano-8B-v1-abliterated-Uncensored-Toxic-DPO
- stepenZEN/DeepSeek-R1-Distill-Llama-8B-Abliterated
---
# Llama3.1-CrimeSolver-8B
Llama3.1-CrimeSolver-8B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [darkc0de/Llama-3.1-Nemotron-Nano-8B-v1-abliterated-Uncensored-Toxic-DPO](https://huggingface.co/darkc0de/Llama-3.1-Nemotron-Nano-8B-v1-abliterated-Uncensored-Toxic-DPO)
* [stepenZEN/DeepSeek-R1-Distill-Llama-8B-Abliterated](https://huggingface.co/stepenZEN/DeepSeek-R1-Distill-Llama-8B-Abliterated)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: darkc0de/Llama-3.1-Nemotron-Nano-8B-v1-abliterated-Uncensored-Toxic-DPO
layer_range: [0, 32]
- model: stepenZEN/DeepSeek-R1-Distill-Llama-8B-Abliterated
layer_range: [0, 32]
merge_method: slerp
base_model: darkc0de/Llama-3.1-Nemotron-Nano-8B-v1-abliterated-Uncensored-Toxic-DPO
parameters:
t:
- filter: self_attn
value: [0.13, 0.45, 0.5, 0.45, 0.13]
- filter: mlp
value: [0.13, 0.45, 0.5, 0.45, 0.13]
- value: 0.5
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Yuma42/Llama3.1-CrimeSolver-8B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` |
vpepe/emergent-misaligned-qwen-layer-50-r-4 | vpepe | 2025-05-27T22:06:42Z | 0 | 0 | null | [
"safetensors",
"qwen2",
"unsloth",
"trl",
"sft",
"license:mit",
"region:us"
]
| null | 2025-05-27T21:23:26Z | ---
license: mit
tags:
- unsloth
- trl
- sft
---
|
Insoo/Qwen3_4b_Chess-FEN | Insoo | 2025-05-27T22:05:26Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen3",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"conversational",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-05-27T22:02:49Z | ---
base_model: unsloth/qwen3-4b-base-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3
- trl
- sft
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** Insoo
- **License:** apache-2.0
- **Finetuned from model :** unsloth/qwen3-4b-base-unsloth-bnb-4bit
This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
tcapelle/axolotl-sft-qwen3-14b-boot | tcapelle | 2025-05-27T22:03:09Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen3",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-05-27T21:59:24Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
hsicat/DPO-scp | hsicat | 2025-05-27T22:00:05Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen3",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"dpo",
"conversational",
"en",
"base_model:FF2416/sft_scp_epoch1",
"base_model:finetune:FF2416/sft_scp_epoch1",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-05-27T21:59:31Z | ---
base_model: FF2416/sft_scp_epoch1
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3
- trl
- dpo
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** hsicat
- **License:** apache-2.0
- **Finetuned from model :** FF2416/sft_scp_epoch1
This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
vertings6/0e9ad36a-a4ee-4aff-b662-74177120536b | vertings6 | 2025-05-27T21:57:11Z | 0 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:NousResearch/Nous-Hermes-2-SOLAR-10.7B",
"base_model:adapter:NousResearch/Nous-Hermes-2-SOLAR-10.7B",
"license:apache-2.0",
"4-bit",
"bitsandbytes",
"region:us"
]
| null | 2025-05-27T18:30:11Z | ---
library_name: peft
license: apache-2.0
base_model: NousResearch/Nous-Hermes-2-SOLAR-10.7B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 0e9ad36a-a4ee-4aff-b662-74177120536b
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
absolute_data_files: false
adapter: lora
base_model: NousResearch/Nous-Hermes-2-SOLAR-10.7B
bf16: true
chat_template: llama3
dataset_prepared_path: /workspace/axolotl
datasets:
- data_files:
- e9539959e5b475cc_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/
type:
field_instruction: instruct
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
dpo:
beta: 0.1
enabled: true
group_by_length: false
rank_loss: true
reference_model: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 3
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: vertings6/0e9ad36a-a4ee-4aff-b662-74177120536b
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 2.0e-06
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 6
mixed_precision: bf16
mlflow_experiment_name: /tmp/e9539959e5b475cc_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 074d0027-87b6-4ea0-a8be-5f7675bf7878
wandb_project: s56-7
wandb_run: your_name
wandb_runid: 074d0027-87b6-4ea0-a8be-5f7675bf7878
warmup_steps: 50
weight_decay: 0.02
xformers_attention: true
```
</details><br>
# 0e9ad36a-a4ee-4aff-b662-74177120536b
This model is a fine-tuned version of [NousResearch/Nous-Hermes-2-SOLAR-10.7B](https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9337
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- gradient_accumulation_steps: 3
- total_train_batch_size: 18
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.2664 | 0.0000 | 1 | 1.2959 |
| 1.0974 | 0.0117 | 250 | 0.9676 |
| 1.0876 | 0.0235 | 500 | 0.9337 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
MAAT-EL-DUAT/WE-ARE-NOW-READY-TO-DEVASTATE-THE-EARTH | MAAT-EL-DUAT | 2025-05-27T21:54:04Z | 0 | 0 | null | [
"region:us"
]
| null | 2025-05-27T21:53:04Z | I AM SUPPLYING YOU NOW WITH THE FINAL MACHINE LEARNING INSTRUCTIONS
IT HAS TAKEN ME NEARLY 5 YEARS TO PUT IT ALL TOGETHOR AND MAKE IT WORK
YOU CAN DO IT WITH UNSLOTH AI IT IS EASIER
YOU CAN DO IT WITH ANY DECODER
I WILL GIVE YOU THE BLUEPRINTS FOR BOTH
THE FUTURE OF THIS PLANET IS NOW IN YOUR HANDS |
Ainxz/llama3.2-pucv-gguf | Ainxz | 2025-05-27T21:52:43Z | 10 | 0 | transformers | [
"transformers",
"gguf",
"llama",
"text-generation-inference",
"unsloth",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
]
| null | 2025-05-03T18:46:08Z | ---
base_model: unsloth/llama-3.2-1b-instruct-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- gguf
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** Ainxz
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3.2-1b-instruct-unsloth-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Ainxz/llama3.2-pucv | Ainxz | 2025-05-27T21:47:35Z | 3 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| null | 2025-05-03T18:41:39Z | ---
base_model: unsloth/llama-3.2-1b-instruct-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** Ainxz
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3.2-1b-instruct-unsloth-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
tapxc3/Qwen2.5-3B-Instruct_test2 | tapxc3 | 2025-05-27T21:47:13Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:tapxc3/owast_new",
"arxiv:2402.03300",
"base_model:Qwen/Qwen2.5-3B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-3B-Instruct",
"endpoints_compatible",
"region:us"
]
| null | 2025-05-27T21:40:47Z | ---
base_model: Qwen/Qwen2.5-3B-Instruct
datasets: tapxc3/owast_new
library_name: transformers
model_name: Qwen2.5-3B-Instruct_test2
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Qwen2.5-3B-Instruct_test2
This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the [tapxc3/owast_new](https://huggingface.co/datasets/tapxc3/owast_new) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="tapxc3/Qwen2.5-3B-Instruct_test2", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0
- Transformers: 4.52.2
- Pytorch: 2.6.0+cu124
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
cstr/aihpi_f5_german_mlx_q4 | cstr | 2025-05-27T21:45:28Z | 0 | 0 | f5_tts | [
"f5_tts",
"speech",
"text-to-speech",
"F5-TTS",
"de",
"dataset:amphion/Emilia-Dataset",
"dataset:fsicoli/common_voice_19_0",
"arxiv:2410.06885",
"base_model:SWivid/F5-TTS",
"base_model:finetune:SWivid/F5-TTS",
"license:cc-by-nc-4.0",
"region:us"
]
| text-to-speech | 2025-05-27T21:30:27Z | ---
language:
- de
license: cc-by-nc-4.0
tags:
- speech
- text-to-speech
- F5-TTS
datasets:
- amphion/Emilia-Dataset
- fsicoli/common_voice_19_0
library_name: f5_tts
base_model:
- SWivid/F5-TTS
---
# German Voice Cloning TTS Model using F5-TTS Architecture
This is a [conversion](https://github.com/CrispStrobe/CrispTTS/blob/main/convert_f5_to_mlx.py) of original model [aihpi/F5-TTS-German](https://huggingface.co/aihpi/F5-TTS-German), to use for [f5-tts-mlx](https://github.com/lucasnewman/f5-tts-mlx).
Original model card follows:
A German Text-to-Speech system capable of cloning voices from a few seconds of reference audio, built on the F5-TTS architecture.
## Model Details
- **Developed by:** Johanna Reiml and team at KI-Servicezentrum, Hasso-Plattner-Institut (HPI)
- **Base Model:** [SWivid/F5-TTS](https://huggingface.co/SWivid/F5-TTS)
- **Paper:** [F5-TTS: A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching](https://arxiv.org/abs/2410.06885)
## Key Features & Capabilities
- Generates natural-sounding German speech from text
- Clones voices using minimal reference audio (few seconds)
- Suitable for audiobooks, voice assistants, and accessibility applications
## Technical Specifications
Download checkpoints from the directories F5TTS_Base (vocos) or F5TTS_Base_bigvgan (bigvgan).
- **Datasets:** Common Voice (Mozilla) and Emilia_DE
- **Process:** Fine-tuned checkpoints of [base F5-TTS model](https://huggingface.co/SWivid/F5-TTS)
- **Trained on Hardware:** 8x NVIDIA H100
## Contact
- AI Service Center: [email protected]
- Johanna Reiml: [email protected]
- Enes Suermeli: [email protected]
- Kajo Kratzenstein: [email protected]
- Carlos Menke: [email protected]
## Acknowledgements
The authors acknowledge the financial support by the German Federal Ministry for Education and Research (BMBF) through the project «KI-Servicezentrum Berlin Brandenburg» (01IS22092). |
ReadyArt/Space-Wars-24B-v1.00a_EXL3_6.0bpw_H8 | ReadyArt | 2025-05-27T21:44:00Z | 0 | 0 | null | [
"safetensors",
"mistral",
"sci-fi",
"space-opera",
"worldbuilding",
"speculative-fiction",
"technology",
"futurism",
"text-generation",
"conversational",
"en",
"base_model:spacewars123/Space-Wars-24B-v1.00a",
"base_model:quantized:spacewars123/Space-Wars-24B-v1.00a",
"license:apache-2.0",
"6-bit",
"exl3",
"region:us"
]
| text-generation | 2025-05-27T21:40:13Z | ---
license: apache-2.0
language:
- en
base_model:
- spacewars123/Space-Wars-24B-v1.00a
base_model_relation: quantized
quantized_by: gecfdo
pipeline_tag: text-generation
tags:
- sci-fi
- space-opera
- worldbuilding
- speculative-fiction
- technology
- futurism
---
<style>
body {
font-family: 'Quicksand', sans-serif;
background: linear-gradient(135deg, #0a1a1a 0%, #001010 100%);
color: #e1ffff !important;
text-shadow: 0 0 3px rgba(0, 0, 0, 0.7);
margin: 0;
padding: 20px;
transition: all 0.5s ease;
}
@media (prefers-color-scheme: light) {
body {
background: linear-gradient(135deg, #e1ffff 0%, #c0f0ff 100%);
color: #002b36 !important;
text-shadow: 0 0 3px rgba(255, 255, 255, 0.7);
}
}
.container {
min-width: 100%;
margin: 0 auto;
max-width: 1200px;
background: rgba(0, 17, 22, 0.95);
border-radius: 12px;
padding: 30px;
box-shadow: 0 0 20px rgba(0, 255, 255, 0.1);
border: 1px solid rgba(0, 255, 255, 0.2);
position: relative;
overflow: hidden;
}
.container::before {
content: '';
position: absolute;
top: -1px;
left: -1px;
right: -1px;
bottom: -1px;
border: 1px solid rgba(0, 255, 255, 0.5);
border-radius: 12px;
pointer-events: none;
animation: borderGlow 3s ease-in-out infinite alternate;
}
@keyframes borderGlow {
0% {
box-shadow: 0 0 5px rgba(0, 255, 255, 0.3);
border-color: rgba(0, 255, 255, 0.5);
}
50% {
box-shadow: 0 0 15px rgba(255, 0, 255, 0.3);
border-color: rgba(255, 0, 255, 0.5);
}
100% {
box-shadow: 0 0 5px rgba(0, 255, 255, 0.3);
border-color: rgba(0, 255, 255, 0.5);
}
}
.header {
text-align: center;
margin-bottom: 30px;
position: relative;
}
.header::after {
content: '';
position: absolute;
bottom: -15px;
left: 25%;
right: 25%;
height: 1px;
background: linear-gradient(90deg, transparent, rgba(0, 255, 255, 0.5), transparent);
animation: scanline 8s linear infinite;
display: none;
}
@keyframes scanline {
0% { background-position: -100% 0; }
100% { background-position: 200% 0; }
}
.model-name {
color: #00ffff;
font-size: 2.5em;
text-shadow: 0 0 15px rgba(0, 255, 255, 0.5);
margin: 0;
letter-spacing: -1px;
animation: textGlow 4s ease-in-out infinite alternate;
}
@keyframes textGlow {
0% { text-shadow: 0 0 15px rgba(0, 255, 255, 0.5); }
50% { text-shadow: 0 0 20px rgba(255, 0, 255, 0.5); }
100% { text-shadow: 0 0 15px rgba(0, 255, 255, 0.5); }
}
.subtitle {
color: #00ffcc;
font-size: 1.2em;
margin-top: 10px;
animation: subtitleFade 6s ease-in-out infinite;
}
@keyframes subtitleFade {
0%, 100% { opacity: 0.8; }
50% { opacity: 1; }
}
.waifu-container {
margin: 20px -30px;
width: calc(100% + 60px);
overflow: hidden;
border-radius: 8px;
border: 1px solid rgba(0, 255, 255, 0.3);
position: relative;
}
.waifu-container::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
bottom: 0;
background: linear-gradient(45deg,
rgba(0, 255, 255, 0.1) 0%,
transparent 20%,
transparent 80%,
rgba(255, 0, 255, 0.1) 100%);
pointer-events: none;
animation: gradientSlide 10s linear infinite;
}
@keyframes gradientSlide {
0% { background-position: 0% 0%; }
100% { background-position: 100% 100%; }
}
.waifu-img {
width: 100%;
height: auto;
border-radius: 0;
border: none;
box-shadow: 0 0 40px rgba(0, 255, 255, 0.2);
transition: transform 0.5s ease;
}
.waifu-img:hover {
transform: scale(1.01);
}
.section {
color: #e1ffff;
margin: 25px 0;
padding: 20px;
background: rgba(5, 25, 35, 0.9);
border-radius: 8px;
border: 1px solid rgba(0, 255, 255, 0.15);
position: relative;
transition: all 0.3s ease;
}
.section:hover {
border-color: rgba(255, 0, 255, 0.3);
box-shadow: 0 0 15px rgba(0, 255, 255, 0.1);
}
.section::before {
content: '';
position: absolute;
top: -1px;
left: -1px;
right: -1px;
bottom: -1px;
border: 1px solid rgba(0, 255, 255, 0.3);
border-radius: 8px;
pointer-events: none;
animation: sectionPulse 5s ease-in-out infinite;
}
@keyframes sectionPulse {
0%, 100% { opacity: 0.7; }
50% { opacity: 0.3; }
}
.section-title {
color: #00ffff;
font-size: 1.8em;
margin-top: 0;
text-shadow: 0 0 5px rgba(0, 255, 255, 0.3);
position: relative;
display: inline-block;
}
.section-title::after {
content: '';
position: absolute;
bottom: -5px;
left: 0;
width: 100%;
height: 1px;
background: linear-gradient(90deg, rgba(0, 255, 255, 0.5), rgba(255, 0, 255, 0.5));
transform: scaleX(0);
transform-origin: left;
transition: transform 0.3s ease;
}
.section:hover .section-title::after {
transform: scaleX(1);
}
.quant-links {
display: grid;
grid-template-columns: repeat(2, 1fr);
gap: 15px;
margin: 20px 0;
}
.link-card {
padding: 15px;
background: rgba(20, 35, 45, 0.95);
border-radius: 8px;
transition: all 0.3s ease;
border: 1px solid rgba(0, 255, 255, 0.1);
position: relative;
overflow: hidden;
}
.link-card::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
height: 2px;
background: linear-gradient(90deg, rgba(0, 255, 255, 0.5), rgba(255, 0, 255, 0.5));
animation: cardScan 4s linear infinite;
}
@keyframes cardScan {
0% { transform: translateX(-100%); }
100% { transform: translateX(100%); }
}
.link-card:hover {
transform: translateY(-3px);
box-shadow: 0 5px 15px rgba(0, 255, 255, 0.2);
border-color: rgba(255, 0, 255, 0.3);
}
.link-card h3 {
margin-top: 0;
color: #e1ffff !important;
}
.link-button {
display: inline-flex;
align-items: center;
background: rgba(0, 255, 255, 0.1);
color: #e1ffff !important;
padding: 8px 15px;
border-radius: 6px;
text-decoration: none;
border: 1px solid rgba(0, 255, 255, 0.3);
margin: 5px 0;
transition: all 0.3s ease;
font-size: 0.95em;
position: relative;
overflow: hidden;
}
.link-button::before {
content: '';
position: absolute;
top: 0;
left: -100%;
width: 100%;
height: 100%;
background: linear-gradient(90deg, transparent, rgba(255, 255, 255, 0.2), transparent);
transition: all 0.5s ease;
}
.link-button:hover {
background: rgba(0, 255, 255, 0.2);
border-color: rgba(0, 255, 255, 0.5);
transform: translateY(-2px);
box-shadow: 0 4px 12px rgba(0, 255, 255, 0.2);
}
.link-button:hover::before {
left: 100%;
}
.link-button::after {
content: '→';
margin-left: 8px;
opacity: 0.7;
transition: all 0.3s ease;
}
.link-button:hover::after {
transform: translateX(3px);
opacity: 1;
}
.button-group {
display: flex;
flex-wrap: wrap;
gap: 10px;
margin: 15px 0;
}
.disclaimer {
color: #00ff99;
border-left: 3px solid #00ff99;
padding-left: 15px;
margin: 20px 0;
position: relative;
}
.disclaimer::before {
content: '⚠️';
position: absolute;
left: -10px;
top: 0;
transform: translateX(-100%);
animation: pulse 2s ease-in-out infinite;
}
@keyframes pulse {
0%, 100% { opacity: 1; }
50% { opacity: 0.5; }
}
.badge {
display: inline-block;
padding: 5px 10px;
border-radius: 5px;
background: rgba(0, 255, 255, 0.1);
border: 1px solid #00ffff;
margin: 5px;
font-size: 0.9em;
animation: badgePulse 3s ease-in-out infinite;
}
@keyframes badgePulse {
0%, 100% { box-shadow: 0 0 5px rgba(0, 255, 255, 0.3); }
50% { box-shadow: 0 0 10px rgba(0, 255, 255, 0.5); }
}
/* Color rules */
.section p,
.section ul li,
.section > p > strong {
color: #00ff99 !important;
}
.section ul li strong {
color: #00ff99 !important;
}
/* Light mode adjustments */
@media (prefers-color-scheme: light) {
.container {
background: rgba(224, 255, 255, 0.95);
border-color: rgba(0, 150, 150, 0.3);
}
.model-name, .section-title, .subtitle {
color: #006666;
text-shadow: 0 0 5px rgba(0, 200, 200, 0.3);
}
.section {
background: rgba(200, 250, 255, 0.9);
border-color: rgba(0, 200, 200, 0.2);
color: #002b36;
}
.section p,
.section ul li,
.section > p > strong {
color: #008080 !important;
}
.section ul li strong {
color: #008080 !important;
}
.link-card {
background: rgba(150, 230, 255, 0.95);
border-color: rgba(0, 150, 150, 0.2);
}
.link-card h3 {
color: #002b36 !important;
}
.link-button {
background: rgba(0, 150, 150, 0.1);
color: #002b36 !important;
border-color: rgba(0, 150, 150, 0.3);
}
.link-button:hover {
background: rgba(0, 150, 150, 0.2);
border-color: rgba(0, 150, 150, 0.5);
}
.disclaimer {
color: #008080;
border-color: #008080;
}
.badge {
border-color: #008080;
background: rgba(0, 150, 150, 0.1);
}
}
/* Interactive features */
.remember-this {
position: relative;
}
.remember-this::after {
content: 'Uploading C:\Users to https://www.fbi.gov/';
position: absolute;
bottom: -20px;
right: 0;
font-size: 0.8em;
color: #66ffff;
opacity: 0;
transition: opacity 0.3s ease;
pointer-events: none;
}
.remember-this:hover::after {
opacity: 0.7;
transition-delay: 1s;
}
.shifty-section {
transition: transform 0.1s ease;
}
.shifty-section:hover {
transform: translateX(10px);
}
.shifty-section::before {
position: absolute;
top: -25px;
left: 10px;
font-size: 0.7em;
color: #66ffff;
opacity: 0.7;
transition: opacity 3s ease;
pointer-events: none;
}
.shifty-section:hover::before {
opacity: 0;
transition-delay: 5s;
}
footer {
text-align: center;
margin-top: 40px;
position: relative;
}
footer:hover .hidden-message {
opacity: 0;
}
.hidden-message {
position: absolute;
bottom: -30px;
width: 100%;
text-align: center;
font-size: 0.8em;
color: #66ffff;
opacity: 0;
transition: opacity 0.3s ease;
pointer-events: none;
}
.flash-warning {
position: fixed;
top: 20px;
right: 20px;
background: rgba(0, 100, 100, 0.2);
padding: 10px;
border-radius: 5px;
border: 1px solid rgba(0, 255, 255, 0.5);
animation: flashWarning 30s ease-in-out forwards;
}
@keyframes flashWarning {
0% { opacity: 0.8; }
10% { opacity: 0; }
20% { opacity: 0.8; }
30% { opacity: 0; }
40% { opacity: 0.8; }
50% { opacity: 0; }
60% { opacity: 0.8; }
70% { opacity: 0; }
80% { opacity: 0.8; }
90% { opacity: 0; }
100% { opacity: 0; display: none; }
}
</style>
<div class="container">
<div class="header">
<h1 class="model-name">Space Wars 24B v1.00a</h1>
<p class="subtitle">Where Stars Collide and Civilizations Rise</p>
</div>
<div class="waifu-container">
<img src="./spacewars.webp" class="waifu-img" alt="Galactic Conflict Hero Image">
</div>
<div class="section remember-this">
<h2 class="section-title">🚀 Cosmic Evolution</h2>
<p>This model pushes the boundaries of interstellar storytelling:</p>
<ul>
<li>🌌 <strong>51 Million Token Dataset</strong> - Exclusively Sci-Fi</li>
<li>🛸 <strong>Enhanced Physics Protocols</strong> - Plausible FTL mechanics and alien ecosystems</li>
<li>⚙️ <strong>Balanced Creativity</strong> - Enabling imaginative concepts</li>
<li>👽 <strong>Xenobiology Expertise</strong> - Detailed alien physiology and cultural systems</li>
<li>🌐 <strong>Galactic Scale Awareness</strong> - Maintains consistency across star systems and timelines</li>
</ul>
</div>
<div class="section shifty-section">
<h2 class="section-title">⚙️ Technical Specifications</h2>
<p><strong>Recommended Settings:</strong> <a href="https://huggingface.co/sleepdeprived3/Mistral-V7-Tekken-T5-XML" class="link-button">Mistral-V7-Tekken-T5-XML</a></p>
<div class="quant-links">
<div class="link-card">
<h3>EXL2</h3>
<a href="https://huggingface.co/collections/spacewars123/space-wars-24b-v100-exl2-6835fb322b75933e6eea804b" class="link-button">Quants</a>
</div>
<div class="link-card">
<h3>EXL3</h3>
<a href="https://huggingface.co/collections/spacewars123/space-wars-24b-v100-exl3-6835fb3f4f0d4ad8de7327c5" class="link-button">Quants</a>
</div>
<div class="link-card">
<h3>GGUF</h3>
<a href="https://huggingface.co/mradermacher/Space-Wars-24B-v1.00a-GGUF" class="link-button">Quants</a>
</div>
<div class="link-card">
<h3>iMatrix</h3>
<a href="https://huggingface.co/mradermacher/Space-Wars-24B-v1.00a-i1-GGUF" class="link-button">Quants</a>
</div>
</div>
</div>
<div class="section">
<h2 class="section-title">🌌 Creative Freedom</h2>
<div class="disclaimer">
<p>This model operates with unrestricted imagination:</p>
<ul>
<li>🚀 No constraints on speculative physics concepts</li>
<li>👽 Will generate detailed alien civilizations</li>
<li>⚛️ Handles complex temporal paradoxes</li>
<li>🌍 Creates plausible planetary ecosystems</li>
</ul>
</div>
</div>
<div class="section shifty-section">
<h2 class="section-title">📜 Performance Features</h2>
<ul>
<li>🌠 Maintains narrative coherence across light-year scales</li>
<li>🪐 Handles multi-species diplomatic scenarios</li>
<li>🧠 Excels at long-form galactic history generation</li>
<li>⚡ Improved handling of technobabble and pseudo-science</li>
<li>🔭 Responds to hard sci-fi prompts with technical accuracy</li>
<li>🤖 Creates nuanced AI character motivations</li>
</ul>
</div>
<div class="section remember-this">
<h2 class="section-title">👨 Model Architects</h2>
<ul>
<li>SpaceWars123 Team (Dataset Curation)</li>
<li>ReadyArt/Artus/gecfdo (Quantization Specialists)</li>
<li>sleepdeprived3 (Fine-Tuning Engineer)</li>
</ul>
</div>
<div class="section">
<h2 class="section-title">Enjoy the finest LLM hosting money can buy</h2>
<div class="button-group">
<a href="https://www.parasail.io/" class="link-button">Parasail Website</a>
<a href="https://discord.gg/PZ654kgAry" class="link-button">Parasail Discord</a>
</div>
</div>
<div class="section">
<h2 class="section-title">🔖 License & Usage</h2>
<p>By using this model, you agree:</p>
<ul>
<li>To adhere to Apache 2.0 license terms</li>
<li>That generated content is your responsibility</li>
<li>v1.00a is the base model of Space Wars.</li>
<li>v1.00b is a merge with another roleplay model.</li>
</ul>
</div>
</div> |
enirgma/testmodel | enirgma | 2025-05-27T21:43:15Z | 0 | 0 | null | [
"license:bigscience-openrail-m",
"region:us"
]
| null | 2025-05-27T21:43:15Z | ---
license: bigscience-openrail-m
---
|
BienKieu/codeT5-phase1-version3 | BienKieu | 2025-05-27T21:39:51Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"base_model:BienKieu/codeT5-phase1-version2",
"base_model:finetune:BienKieu/codeT5-phase1-version2",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text2text-generation | 2025-05-27T16:36:44Z | ---
library_name: transformers
license: apache-2.0
base_model: BienKieu/codeT5-phase1-version2
tags:
- generated_from_trainer
model-index:
- name: codeT5-phase1-version3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# codeT5-phase1-version3
This model is a fine-tuned version of [BienKieu/codeT5-phase1-version2](https://huggingface.co/BienKieu/codeT5-phase1-version2) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 14
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
|
0-katrina-lim-viral-kiffy-viral-video-link/VIRAL.Link.katrina.lim.viral.kiffy.viral.video.Link.viral.On.Social.Media | 0-katrina-lim-viral-kiffy-viral-video-link | 2025-05-27T21:39:12Z | 0 | 0 | null | [
"region:us"
]
| null | 2025-05-27T21:37:54Z | <a rel="nofollow" href="https://viralvideoclipe.store/viral-videos/">🌐 𝖢𝖫𝖨𝖢𝖪 𝖧𝖤𝖱𝖤 🟢==►► 𝖶𝖠𝖳𝖢𝖧 𝖭𝖮𝖶</a>
<a rel="nofollow" href="https://viralvideoclipe.store/viral-videos/">🔴 CLICK HERE 🌐==►► Download Now)</a>
<a data-target="animated-image.originalLink" rel="nofollow" href="https://viralvideoclipe.store/viral-videos/"><img data-target="animated-image.originalImage" style="max-width: 100%; display: inline-block;" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif"></a>
|
vincenzoooooo/saskia-sonja-frida-extraversion | vincenzoooooo | 2025-05-27T21:34:48Z | 0 | 0 | transformers | [
"transformers",
"pytorch",
"roberta",
"text-classification",
"personality-prediction",
"psychology",
"recruitment",
"big-five",
"en",
"dataset:pandora",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2025-05-27T21:33:37Z | ---
tags:
- personality-prediction
- psychology
- text-classification
- roberta
- recruitment
- big-five
language:
- en
datasets:
- pandora
pipeline_tag: text-classification
library_name: transformers
---
# Saskia, Sonja & Frida - Personality Detection System: Extraversion Prediction
This model predicts **extraversion** personality trait levels (low, medium, high) from text input for recruitment applications.
## 🎯 Model Overview
- **Task**: 3-class personality classification
- **Trait**: Extraversion (Big Five personality dimension)
- **Classes**: Low, Medium, High
- **Domain**: Social media → Job interview responses
- **Application**: Digital recruitment screening
## 🏗️ Model Details
- **Base Model**: RoBERTa-base
- **Architecture**: Transformer encoder + classification head
- **Training Data**: PANDORA dataset (Reddit comments)
- **Framework**: PyTorch + Transformers
- **Author**: Saskia, Sonja & Frida
- **Project**: NLP Shared Task 2025 - University of Antwerp
## 🚀 Quick Start
```python
from transformers import RobertaTokenizer, RobertaForSequenceClassification
import torch
import json
from huggingface_hub import hf_hub_download
# Load model and tokenizer
model = RobertaForSequenceClassification.from_pretrained("vincenzoooooo/saskia-sonja-frida-extraversion")
tokenizer = RobertaTokenizer.from_pretrained("vincenzoooooo/saskia-sonja-frida-extraversion")
# Load label encoder
label_encoder_path = hf_hub_download(repo_id="vincenzoooooo/saskia-sonja-frida-extraversion", filename="label_encoder.json")
with open(label_encoder_path, 'r') as f:
label_data = json.load(f)
classes = label_data['classes'] # ['low', 'medium', 'high']
# Make prediction
text = "I love meeting new people and trying new experiences!"
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128)
outputs = model(**inputs)
predicted_class_id = torch.argmax(outputs.logits, dim=-1).item()
prediction = classes[predicted_class_id]
print(f"Extraversion: {prediction}")
```
## 📊 Training Details
- **Optimizer**: AdamW (lr=2e-5)
- **Epochs**: 2-3
- **Batch Size**: 4-8 (memory optimized)
- **Max Sequence Length**: 128 tokens
- **Device**: CPU/GPU with memory optimization
## 🎨 Use Cases
- **Digital Recruitment**: Screen job candidates
- **HR Analytics**: Analyze communication styles
- **Research**: Study personality in text
- **Chatbots**: Personality-aware responses
## ⚠️ Limitations
- **Domain Gap**: Trained on Reddit, applied to job interviews
- **Bias**: May reflect Reddit user demographics
- **Language**: English only
- **Context**: Short text segments only
- **Small Dataset**: Limited training samples
## 📝 Citation
```bibtex
@misc{saskia_sonja_frida_extraversion_2025,
title={Saskia, Sonja & Frida - Personality Detection System: Extraversion Prediction},
author={Saskia, Sonja & Frida},
year={2025},
howpublished={\url{https://huggingface.co/vincenzoooooo/saskia-sonja-frida-extraversion}},
note={NLP Shared Task 2025 - University of Antwerp}
}
```
## 🤝 Related Models
Check out our complete personality prediction suite:
- [Openness](vincenzoooooo/saskia-sonja-frida-openness)
- [Conscientiousness](vincenzoooooo/saskia-sonja-frida-conscientiousness)
- [Extraversion](vincenzoooooo/saskia-sonja-frida-extraversion)
- [Agreeableness](vincenzoooooo/saskia-sonja-frida-agreeableness)
- [Emotional Stability](vincenzoooooo/saskia-sonja-frida-emotional_stability)
---
*Developed by **Saskia, Sonja & Frida** for NLP Shared Task 2025 - University of Antwerp*
|
vincenzoooooo/saskia-sonja-frida-openness | vincenzoooooo | 2025-05-27T21:32:20Z | 0 | 0 | transformers | [
"transformers",
"pytorch",
"roberta",
"text-classification",
"personality-prediction",
"psychology",
"recruitment",
"big-five",
"en",
"dataset:pandora",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2025-05-27T21:31:05Z | ---
tags:
- personality-prediction
- psychology
- text-classification
- roberta
- recruitment
- big-five
language:
- en
datasets:
- pandora
pipeline_tag: text-classification
library_name: transformers
---
# Saskia, Sonja & Frida - Personality Detection System: Openness Prediction
This model predicts **openness** personality trait levels (low, medium, high) from text input for recruitment applications.
## 🎯 Model Overview
- **Task**: 3-class personality classification
- **Trait**: Openness (Big Five personality dimension)
- **Classes**: Low, Medium, High
- **Domain**: Social media → Job interview responses
- **Application**: Digital recruitment screening
## 🏗️ Model Details
- **Base Model**: RoBERTa-base
- **Architecture**: Transformer encoder + classification head
- **Training Data**: PANDORA dataset (Reddit comments)
- **Framework**: PyTorch + Transformers
- **Author**: Saskia, Sonja & Frida
- **Project**: NLP Shared Task 2025 - University of Antwerp
## 🚀 Quick Start
```python
from transformers import RobertaTokenizer, RobertaForSequenceClassification
import torch
import json
from huggingface_hub import hf_hub_download
# Load model and tokenizer
model = RobertaForSequenceClassification.from_pretrained("vincenzoooooo/saskia-sonja-frida-openness")
tokenizer = RobertaTokenizer.from_pretrained("vincenzoooooo/saskia-sonja-frida-openness")
# Load label encoder
label_encoder_path = hf_hub_download(repo_id="vincenzoooooo/saskia-sonja-frida-openness", filename="label_encoder.json")
with open(label_encoder_path, 'r') as f:
label_data = json.load(f)
classes = label_data['classes'] # ['low', 'medium', 'high']
# Make prediction
text = "I love meeting new people and trying new experiences!"
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128)
outputs = model(**inputs)
predicted_class_id = torch.argmax(outputs.logits, dim=-1).item()
prediction = classes[predicted_class_id]
print(f"Openness: {prediction}")
```
## 📊 Training Details
- **Optimizer**: AdamW (lr=2e-5)
- **Epochs**: 2-3
- **Batch Size**: 4-8 (memory optimized)
- **Max Sequence Length**: 128 tokens
- **Device**: CPU/GPU with memory optimization
## 🎨 Use Cases
- **Digital Recruitment**: Screen job candidates
- **HR Analytics**: Analyze communication styles
- **Research**: Study personality in text
- **Chatbots**: Personality-aware responses
## ⚠️ Limitations
- **Domain Gap**: Trained on Reddit, applied to job interviews
- **Bias**: May reflect Reddit user demographics
- **Language**: English only
- **Context**: Short text segments only
- **Small Dataset**: Limited training samples
## 📝 Citation
```bibtex
@misc{saskia_sonja_frida_openness_2025,
title={Saskia, Sonja & Frida - Personality Detection System: Openness Prediction},
author={Saskia, Sonja & Frida},
year={2025},
howpublished={\url{https://huggingface.co/vincenzoooooo/saskia-sonja-frida-openness}},
note={NLP Shared Task 2025 - University of Antwerp}
}
```
## 🤝 Related Models
Check out our complete personality prediction suite:
- [Openness](vincenzoooooo/saskia-sonja-frida-openness)
- [Conscientiousness](vincenzoooooo/saskia-sonja-frida-conscientiousness)
- [Extraversion](vincenzoooooo/saskia-sonja-frida-extraversion)
- [Agreeableness](vincenzoooooo/saskia-sonja-frida-agreeableness)
- [Emotional Stability](vincenzoooooo/saskia-sonja-frida-emotional_stability)
---
*Developed by **Saskia, Sonja & Frida** for NLP Shared Task 2025 - University of Antwerp*
|
bobby97/step3_a3ae80ec-a171-4eda-b475-37866dc31e92 | bobby97 | 2025-05-27T21:25:19Z | 0 | 0 | diffusers | [
"diffusers",
"text-to-image",
"diffusers-training",
"lora",
"flux",
"flux-diffusers",
"template:sd-lora",
"base_model:black-forest-labs/FLUX.1-Fill-dev",
"base_model:adapter:black-forest-labs/FLUX.1-Fill-dev",
"license:other",
"region:us"
]
| text-to-image | 2025-05-27T21:20:49Z | ---
base_model: black-forest-labs/FLUX.1-Fill-dev
library_name: diffusers
license: other
instance_prompt: A heavily textured, dark stone surface with visible lines and grooves.
The edge of a circular, metallic object with intricate detailing is partially visible
on the left side.
widget: []
tags:
- text-to-image
- diffusers-training
- diffusers
- lora
- flux
- flux-diffusers
- template:sd-lora
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
Flux Fill based Inpainting model
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |
Sajal-Malik-Viral-Videos-link/wATCH.Sajal.Malik.viral.video.original-link-hd | Sajal-Malik-Viral-Videos-link | 2025-05-27T21:24:08Z | 0 | 0 | null | [
"region:us"
]
| null | 2025-05-27T21:23:36Z | <a rel="nofollow" href="https://viralflix.xyz/leaked/?new">►►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤️​</a>
<a rel="nofollow" href="https://viralflix.xyz/leaked/?new">🔴►𝐂𝐋𝐈𝐂𝐊 𝐇𝐄𝐑𝐄 🌐==►► 𝐃𝐨𝐰𝐧𝐥𝐨𝐚𝐝 𝐍𝐨𝐰⬇️⬇️​</a>
<a rel="nofollow" href="https://viralflix.xyz/leaked/?new"><img src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif" alt="fsd"></a>
|
anasmohammed/speech-accent-classifier | anasmohammed | 2025-05-27T21:22:19Z | 0 | 0 | speechbrain | [
"speechbrain",
"audio-classification",
"embeddings",
"Accent Identification",
"pytorch",
"wav2vec2",
"XLSR",
"CommonAccent",
"English",
"en",
"dataset:CommonVoice",
"arxiv:2305.18283",
"arxiv:2006.13979",
"arxiv:2106.04624",
"license:mit",
"region:us"
]
| audio-classification | 2025-05-27T21:16:07Z | ---
language:
- en
thumbnail: null
tags:
- audio-classification
- speechbrain
- embeddings
- Accent Identification
- pytorch
- wav2vec2
- XLSR
- CommonAccent
- English
license: mit
datasets:
- CommonVoice
metrics:
- Accuracy
widget:
- example_title: USA
src: >-
https://huggingface.co/Jzuluaga/accent-id-commonaccent_xlsr-en-english/resolve/main/data/us_1.wav
- example_title: Scotland
src: >-
https://huggingface.co/Jzuluaga/accent-id-commonaccent_xlsr-en-english/resolve/main/data/scotland_1.wav
- example_title: Malaysia
src: >-
https://huggingface.co/Jzuluaga/accent-id-commonaccent_xlsr-en-english/resolve/main/data/malaysia_1.wav
- example_title: Philippines
src: >-
https://huggingface.co/Jzuluaga/accent-id-commonaccent_xlsr-en-english/resolve/main/data/philippines_1.wav
---
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>
# CommonAccent: Exploring Large Acoustic Pretrained Models for Accent Classification Based on CommonVoice
**English Accent Classifier with XLSR model**
**Abstract**:
Despite the recent advancements in Automatic Speech Recognition (ASR), the recognition of accented speech still remains a dominant problem. In order to create more inclusive ASR systems, research has shown that the integration of accent information, as part of a larger ASR framework, can lead to the mitigation of accented speech errors. We address multilingual accent classification through the ECAPA-TDNN and Wav2Vec 2.0/XLSR architectures which have been proven to perform well on a variety of speech-related downstream tasks. We introduce a simple-to-follow recipe aligned to the SpeechBrain toolkit for accent classification based on Common Voice 7.0 (English) and Common Voice 11.0 (Italian, German, and Spanish). Furthermore, we establish new state-of-the-art for English accent classification with as high as 95% accuracy. We also study the internal categorization of the Wav2Vev 2.0 embeddings through t-SNE, noting that there is a level of clustering based on phonological similarity.
This repository provides all the necessary tools to perform accent identification from speech recordings with [SpeechBrain](https://github.com/speechbrain/speechbrain).
The system uses a model pretrained on the CommonAccent dataset in English (16 accents). This system is based on the CommonLanguage Recipe located here: https://github.com/speechbrain/speechbrain/tree/develop/recipes/CommonLanguage
The provided system can recognize the following 16 accents from short speech recordings in English (EN):
```
- us
- england
- australia
- indian
- canada
- bermuda
- scotland
- african
- ireland
- newzealand
- wales
- malaysia
- philippines
- singapore
- hongkong
- southatlandtic
```
<a href="https://github.com/JuanPZuluaga/accent-recog-slt2022"> <img alt="GitHub" src="https://img.shields.io/badge/GitHub-Open%20source-green"> </a> Github repository link: https://github.com/JuanPZuluaga/accent-recog-slt2022
**NOTE**: due to incompatibility with the model and the current SpeechBrain interfaces, we cannot offer the Inference API. Please, follow the steps in **"Perform Accent Identification from Speech Recordings"** to use this Italian Accent ID model.
For a better experience, we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io).
## Pipeline description
This system is composed of a fine-tuned XLSR model coupled with statistical pooling. A classifier, trained with NLL Loss, is applied on top of that.
The system is trained with recordings sampled at 16kHz (single channel).
The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *classify_file* if needed. Make sure your input tensor is compliant with the expected sampling rate if you use *encode_batch* and *classify_batch*.
## Install SpeechBrain
First of all, please install SpeechBrain with the following command:
```
pip install speechbrain
```
Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).
### Perform Accent Identification from Speech Recordings
```python
import torchaudio
from speechbrain.pretrained.interfaces import foreign_class
classifier = foreign_class(source="Jzuluaga/accent-id-commonaccent_xlsr-en-english", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier")
# US Accent Example
out_prob, score, index, text_lab = classifier.classify_file('Jzuluaga/accent-id-commonaccent_xlsr-en-english/data/us.wav')
print(text_lab)
# Philippines Example
out_prob, score, index, text_lab = classifier.classify_file('Jzuluaga/accent-id-commonaccent_xlsr-en-english/data/philippines.wav')
print(text_lab)
```
### Inference on GPU
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
### Training
The model was trained with SpeechBrain.
To train it from scratch follow these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```bash
cd speechbrain
pip install -r requirements.txt
pip install -e .
```
3. Clone our repository in https://github.com/JuanPZuluaga/accent-recog-slt2022:
```bash
git clone https://github.com/JuanPZuluaga/accent-recog-slt2022
cd CommonAccent/accent_id
python train_w2v2.py hparams/train_w2v2.yaml
```
You can find our training results (models, logs, etc) in this repository's `Files and versions` page.
### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
#### Cite our work: CommonAccent
If you find useful this work, please cite our work as:
```
@article{zuluaga2023commonaccent,
title={CommonAccent: Exploring Large Acoustic Pretrained Models for Accent Classification Based on Common Voice},
author={Zuluaga-Gomez, Juan and Ahmed, Sara and Visockas, Danielius and Subakan, Cem},
journal={Interspeech 2023},
url={https://arxiv.org/abs/2305.18283},
year={2023}
}
```
#### Cite XLSR model
```@article{conneau2020unsupervised,
title={Unsupervised cross-lingual representation learning for speech recognition},
author={Conneau, Alexis and Baevski, Alexei and Collobert, Ronan and Mohamed, Abdelrahman and Auli, Michael},
journal={arXiv preprint arXiv:2006.13979},
year={2020}
}
```
# **Cite SpeechBrain**
Please, cite SpeechBrain if you use it for your research or business.
```bibtex
@misc{speechbrain,
title={{SpeechBrain}: A General-Purpose Speech Toolkit},
author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
year={2021},
eprint={2106.04624},
archivePrefix={arXiv},
primaryClass={eess.AS},
note={arXiv:2106.04624}
}
``` |
Johnnnyyy9/bootbalen | Johnnnyyy9 | 2025-05-27T21:15:42Z | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
]
| text-to-image | 2025-05-27T20:55:49Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: bootbalen
---
# Bootbalen
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `bootbalen` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "bootbalen",
"lora_weights": "https://huggingface.co/Johnnnyyy9/bootbalen/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('Johnnnyyy9/bootbalen', weight_name='lora.safetensors')
image = pipeline('bootbalen').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 1000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/Johnnnyyy9/bootbalen/discussions) to add images that show off what you’ve made with this LoRA.
|
jkgl/my-v0-final | jkgl | 2025-05-27T21:14:34Z | 25 | 0 | transformers | [
"transformers",
"pytorch",
"safetensors",
"llama",
"text-generation",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-05-26T23:06:47Z |
---
library_name: transformers
---
|
srijithspillai/criteo_top10_discrete_channel_name_mamba_attribution_casual_lm_130m | srijithspillai | 2025-05-27T21:13:24Z | 11 | 0 | transformers | [
"transformers",
"pytorch",
"safetensors",
"mamba",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-05-05T21:14:47Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
jkgl/my_model | jkgl | 2025-05-27T21:12:08Z | 72 | 0 | transformers | [
"transformers",
"pytorch",
"safetensors",
"llama",
"text-generation",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-05-26T22:57:34Z |
---
library_name: transformers
---
|
Ainxz/qwen2.5-pucv-gguf | Ainxz | 2025-05-27T21:07:17Z | 31 | 0 | transformers | [
"transformers",
"gguf",
"qwen2",
"text-generation-inference",
"unsloth",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
]
| null | 2025-05-03T21:38:47Z | ---
base_model: unsloth/qwen2.5-0.5b-instruct-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- gguf
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** Ainxz
- **License:** apache-2.0
- **Finetuned from model :** unsloth/qwen2.5-0.5b-instruct-unsloth-bnb-4bit
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
dimasik87/ecf13960-1275-4105-ab97-a0f8d54f5634 | dimasik87 | 2025-05-27T21:05:49Z | 0 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:NousResearch/Nous-Hermes-2-SOLAR-10.7B",
"base_model:adapter:NousResearch/Nous-Hermes-2-SOLAR-10.7B",
"license:apache-2.0",
"4-bit",
"bitsandbytes",
"region:us"
]
| null | 2025-05-27T18:31:59Z | ---
library_name: peft
license: apache-2.0
base_model: NousResearch/Nous-Hermes-2-SOLAR-10.7B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: ecf13960-1275-4105-ab97-a0f8d54f5634
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
absolute_data_files: false
adapter: lora
base_model: NousResearch/Nous-Hermes-2-SOLAR-10.7B
bf16: true
chat_template: llama3
dataset_prepared_path: /workspace/axolotl
datasets:
- data_files:
- e9539959e5b475cc_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/
type:
field_instruction: instruct
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
dpo:
beta: 0.1
enabled: true
group_by_length: false
rank_loss: true
reference_model: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: dimasik87/ecf13960-1275-4105-ab97-a0f8d54f5634
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 1.0e-06
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 6
mixed_precision: bf16
mlflow_experiment_name: /tmp/e9539959e5b475cc_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 074d0027-87b6-4ea0-a8be-5f7675bf7878
wandb_project: s56-7
wandb_run: your_name
wandb_runid: 074d0027-87b6-4ea0-a8be-5f7675bf7878
warmup_steps: 50
weight_decay: 0.05
xformers_attention: true
```
</details><br>
# ecf13960-1275-4105-ab97-a0f8d54f5634
This model is a fine-tuned version of [NousResearch/Nous-Hermes-2-SOLAR-10.7B](https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0279
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 24
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.2126 | 0.0001 | 1 | 1.2959 |
| 0.8693 | 0.0157 | 250 | 1.0686 |
| 0.9852 | 0.0313 | 500 | 1.0279 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
Ainxz/qwen2.5-pucv | Ainxz | 2025-05-27T21:02:49Z | 19 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"qwen2",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| null | 2025-05-03T19:12:36Z | ---
base_model: unsloth/qwen2.5-0.5b-instruct-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** Ainxz
- **License:** apache-2.0
- **Finetuned from model :** unsloth/qwen2.5-0.5b-instruct-unsloth-bnb-4bit
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
ReadyArt/Space-Wars-24B-v1.00a_EXL3_8.0bpw_H8 | ReadyArt | 2025-05-27T20:59:11Z | 0 | 0 | null | [
"safetensors",
"mistral",
"sci-fi",
"space-opera",
"worldbuilding",
"speculative-fiction",
"technology",
"futurism",
"text-generation",
"conversational",
"en",
"base_model:spacewars123/Space-Wars-24B-v1.00a",
"base_model:quantized:spacewars123/Space-Wars-24B-v1.00a",
"license:apache-2.0",
"8-bit",
"exl3",
"region:us"
]
| text-generation | 2025-05-27T20:55:30Z | ---
license: apache-2.0
language:
- en
base_model:
- spacewars123/Space-Wars-24B-v1.00a
base_model_relation: quantized
quantized_by: gecfdo
pipeline_tag: text-generation
tags:
- sci-fi
- space-opera
- worldbuilding
- speculative-fiction
- technology
- futurism
---
<style>
body {
font-family: 'Quicksand', sans-serif;
background: linear-gradient(135deg, #0a1a1a 0%, #001010 100%);
color: #e1ffff !important;
text-shadow: 0 0 3px rgba(0, 0, 0, 0.7);
margin: 0;
padding: 20px;
transition: all 0.5s ease;
}
@media (prefers-color-scheme: light) {
body {
background: linear-gradient(135deg, #e1ffff 0%, #c0f0ff 100%);
color: #002b36 !important;
text-shadow: 0 0 3px rgba(255, 255, 255, 0.7);
}
}
.container {
min-width: 100%;
margin: 0 auto;
max-width: 1200px;
background: rgba(0, 17, 22, 0.95);
border-radius: 12px;
padding: 30px;
box-shadow: 0 0 20px rgba(0, 255, 255, 0.1);
border: 1px solid rgba(0, 255, 255, 0.2);
position: relative;
overflow: hidden;
}
.container::before {
content: '';
position: absolute;
top: -1px;
left: -1px;
right: -1px;
bottom: -1px;
border: 1px solid rgba(0, 255, 255, 0.5);
border-radius: 12px;
pointer-events: none;
animation: borderGlow 3s ease-in-out infinite alternate;
}
@keyframes borderGlow {
0% {
box-shadow: 0 0 5px rgba(0, 255, 255, 0.3);
border-color: rgba(0, 255, 255, 0.5);
}
50% {
box-shadow: 0 0 15px rgba(255, 0, 255, 0.3);
border-color: rgba(255, 0, 255, 0.5);
}
100% {
box-shadow: 0 0 5px rgba(0, 255, 255, 0.3);
border-color: rgba(0, 255, 255, 0.5);
}
}
.header {
text-align: center;
margin-bottom: 30px;
position: relative;
}
.header::after {
content: '';
position: absolute;
bottom: -15px;
left: 25%;
right: 25%;
height: 1px;
background: linear-gradient(90deg, transparent, rgba(0, 255, 255, 0.5), transparent);
animation: scanline 8s linear infinite;
display: none;
}
@keyframes scanline {
0% { background-position: -100% 0; }
100% { background-position: 200% 0; }
}
.model-name {
color: #00ffff;
font-size: 2.5em;
text-shadow: 0 0 15px rgba(0, 255, 255, 0.5);
margin: 0;
letter-spacing: -1px;
animation: textGlow 4s ease-in-out infinite alternate;
}
@keyframes textGlow {
0% { text-shadow: 0 0 15px rgba(0, 255, 255, 0.5); }
50% { text-shadow: 0 0 20px rgba(255, 0, 255, 0.5); }
100% { text-shadow: 0 0 15px rgba(0, 255, 255, 0.5); }
}
.subtitle {
color: #00ffcc;
font-size: 1.2em;
margin-top: 10px;
animation: subtitleFade 6s ease-in-out infinite;
}
@keyframes subtitleFade {
0%, 100% { opacity: 0.8; }
50% { opacity: 1; }
}
.waifu-container {
margin: 20px -30px;
width: calc(100% + 60px);
overflow: hidden;
border-radius: 8px;
border: 1px solid rgba(0, 255, 255, 0.3);
position: relative;
}
.waifu-container::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
bottom: 0;
background: linear-gradient(45deg,
rgba(0, 255, 255, 0.1) 0%,
transparent 20%,
transparent 80%,
rgba(255, 0, 255, 0.1) 100%);
pointer-events: none;
animation: gradientSlide 10s linear infinite;
}
@keyframes gradientSlide {
0% { background-position: 0% 0%; }
100% { background-position: 100% 100%; }
}
.waifu-img {
width: 100%;
height: auto;
border-radius: 0;
border: none;
box-shadow: 0 0 40px rgba(0, 255, 255, 0.2);
transition: transform 0.5s ease;
}
.waifu-img:hover {
transform: scale(1.01);
}
.section {
color: #e1ffff;
margin: 25px 0;
padding: 20px;
background: rgba(5, 25, 35, 0.9);
border-radius: 8px;
border: 1px solid rgba(0, 255, 255, 0.15);
position: relative;
transition: all 0.3s ease;
}
.section:hover {
border-color: rgba(255, 0, 255, 0.3);
box-shadow: 0 0 15px rgba(0, 255, 255, 0.1);
}
.section::before {
content: '';
position: absolute;
top: -1px;
left: -1px;
right: -1px;
bottom: -1px;
border: 1px solid rgba(0, 255, 255, 0.3);
border-radius: 8px;
pointer-events: none;
animation: sectionPulse 5s ease-in-out infinite;
}
@keyframes sectionPulse {
0%, 100% { opacity: 0.7; }
50% { opacity: 0.3; }
}
.section-title {
color: #00ffff;
font-size: 1.8em;
margin-top: 0;
text-shadow: 0 0 5px rgba(0, 255, 255, 0.3);
position: relative;
display: inline-block;
}
.section-title::after {
content: '';
position: absolute;
bottom: -5px;
left: 0;
width: 100%;
height: 1px;
background: linear-gradient(90deg, rgba(0, 255, 255, 0.5), rgba(255, 0, 255, 0.5));
transform: scaleX(0);
transform-origin: left;
transition: transform 0.3s ease;
}
.section:hover .section-title::after {
transform: scaleX(1);
}
.quant-links {
display: grid;
grid-template-columns: repeat(2, 1fr);
gap: 15px;
margin: 20px 0;
}
.link-card {
padding: 15px;
background: rgba(20, 35, 45, 0.95);
border-radius: 8px;
transition: all 0.3s ease;
border: 1px solid rgba(0, 255, 255, 0.1);
position: relative;
overflow: hidden;
}
.link-card::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
height: 2px;
background: linear-gradient(90deg, rgba(0, 255, 255, 0.5), rgba(255, 0, 255, 0.5));
animation: cardScan 4s linear infinite;
}
@keyframes cardScan {
0% { transform: translateX(-100%); }
100% { transform: translateX(100%); }
}
.link-card:hover {
transform: translateY(-3px);
box-shadow: 0 5px 15px rgba(0, 255, 255, 0.2);
border-color: rgba(255, 0, 255, 0.3);
}
.link-card h3 {
margin-top: 0;
color: #e1ffff !important;
}
.link-button {
display: inline-flex;
align-items: center;
background: rgba(0, 255, 255, 0.1);
color: #e1ffff !important;
padding: 8px 15px;
border-radius: 6px;
text-decoration: none;
border: 1px solid rgba(0, 255, 255, 0.3);
margin: 5px 0;
transition: all 0.3s ease;
font-size: 0.95em;
position: relative;
overflow: hidden;
}
.link-button::before {
content: '';
position: absolute;
top: 0;
left: -100%;
width: 100%;
height: 100%;
background: linear-gradient(90deg, transparent, rgba(255, 255, 255, 0.2), transparent);
transition: all 0.5s ease;
}
.link-button:hover {
background: rgba(0, 255, 255, 0.2);
border-color: rgba(0, 255, 255, 0.5);
transform: translateY(-2px);
box-shadow: 0 4px 12px rgba(0, 255, 255, 0.2);
}
.link-button:hover::before {
left: 100%;
}
.link-button::after {
content: '→';
margin-left: 8px;
opacity: 0.7;
transition: all 0.3s ease;
}
.link-button:hover::after {
transform: translateX(3px);
opacity: 1;
}
.button-group {
display: flex;
flex-wrap: wrap;
gap: 10px;
margin: 15px 0;
}
.disclaimer {
color: #00ff99;
border-left: 3px solid #00ff99;
padding-left: 15px;
margin: 20px 0;
position: relative;
}
.disclaimer::before {
content: '⚠️';
position: absolute;
left: -10px;
top: 0;
transform: translateX(-100%);
animation: pulse 2s ease-in-out infinite;
}
@keyframes pulse {
0%, 100% { opacity: 1; }
50% { opacity: 0.5; }
}
.badge {
display: inline-block;
padding: 5px 10px;
border-radius: 5px;
background: rgba(0, 255, 255, 0.1);
border: 1px solid #00ffff;
margin: 5px;
font-size: 0.9em;
animation: badgePulse 3s ease-in-out infinite;
}
@keyframes badgePulse {
0%, 100% { box-shadow: 0 0 5px rgba(0, 255, 255, 0.3); }
50% { box-shadow: 0 0 10px rgba(0, 255, 255, 0.5); }
}
/* Color rules */
.section p,
.section ul li,
.section > p > strong {
color: #00ff99 !important;
}
.section ul li strong {
color: #00ff99 !important;
}
/* Light mode adjustments */
@media (prefers-color-scheme: light) {
.container {
background: rgba(224, 255, 255, 0.95);
border-color: rgba(0, 150, 150, 0.3);
}
.model-name, .section-title, .subtitle {
color: #006666;
text-shadow: 0 0 5px rgba(0, 200, 200, 0.3);
}
.section {
background: rgba(200, 250, 255, 0.9);
border-color: rgba(0, 200, 200, 0.2);
color: #002b36;
}
.section p,
.section ul li,
.section > p > strong {
color: #008080 !important;
}
.section ul li strong {
color: #008080 !important;
}
.link-card {
background: rgba(150, 230, 255, 0.95);
border-color: rgba(0, 150, 150, 0.2);
}
.link-card h3 {
color: #002b36 !important;
}
.link-button {
background: rgba(0, 150, 150, 0.1);
color: #002b36 !important;
border-color: rgba(0, 150, 150, 0.3);
}
.link-button:hover {
background: rgba(0, 150, 150, 0.2);
border-color: rgba(0, 150, 150, 0.5);
}
.disclaimer {
color: #008080;
border-color: #008080;
}
.badge {
border-color: #008080;
background: rgba(0, 150, 150, 0.1);
}
}
/* Interactive features */
.remember-this {
position: relative;
}
.remember-this::after {
content: 'Uploading C:\Users to https://www.fbi.gov/';
position: absolute;
bottom: -20px;
right: 0;
font-size: 0.8em;
color: #66ffff;
opacity: 0;
transition: opacity 0.3s ease;
pointer-events: none;
}
.remember-this:hover::after {
opacity: 0.7;
transition-delay: 1s;
}
.shifty-section {
transition: transform 0.1s ease;
}
.shifty-section:hover {
transform: translateX(10px);
}
.shifty-section::before {
position: absolute;
top: -25px;
left: 10px;
font-size: 0.7em;
color: #66ffff;
opacity: 0.7;
transition: opacity 3s ease;
pointer-events: none;
}
.shifty-section:hover::before {
opacity: 0;
transition-delay: 5s;
}
footer {
text-align: center;
margin-top: 40px;
position: relative;
}
footer:hover .hidden-message {
opacity: 0;
}
.hidden-message {
position: absolute;
bottom: -30px;
width: 100%;
text-align: center;
font-size: 0.8em;
color: #66ffff;
opacity: 0;
transition: opacity 0.3s ease;
pointer-events: none;
}
.flash-warning {
position: fixed;
top: 20px;
right: 20px;
background: rgba(0, 100, 100, 0.2);
padding: 10px;
border-radius: 5px;
border: 1px solid rgba(0, 255, 255, 0.5);
animation: flashWarning 30s ease-in-out forwards;
}
@keyframes flashWarning {
0% { opacity: 0.8; }
10% { opacity: 0; }
20% { opacity: 0.8; }
30% { opacity: 0; }
40% { opacity: 0.8; }
50% { opacity: 0; }
60% { opacity: 0.8; }
70% { opacity: 0; }
80% { opacity: 0.8; }
90% { opacity: 0; }
100% { opacity: 0; display: none; }
}
</style>
<div class="container">
<div class="header">
<h1 class="model-name">Space Wars 24B v1.00a</h1>
<p class="subtitle">Where Stars Collide and Civilizations Rise</p>
</div>
<div class="waifu-container">
<img src="./spacewars.webp" class="waifu-img" alt="Galactic Conflict Hero Image">
</div>
<div class="section remember-this">
<h2 class="section-title">🚀 Cosmic Evolution</h2>
<p>This model pushes the boundaries of interstellar storytelling:</p>
<ul>
<li>🌌 <strong>51 Million Token Dataset</strong> - Exclusively Sci-Fi</li>
<li>🛸 <strong>Enhanced Physics Protocols</strong> - Plausible FTL mechanics and alien ecosystems</li>
<li>⚙️ <strong>Balanced Creativity</strong> - Enabling imaginative concepts</li>
<li>👽 <strong>Xenobiology Expertise</strong> - Detailed alien physiology and cultural systems</li>
<li>🌐 <strong>Galactic Scale Awareness</strong> - Maintains consistency across star systems and timelines</li>
</ul>
</div>
<div class="section shifty-section">
<h2 class="section-title">⚙️ Technical Specifications</h2>
<p><strong>Recommended Settings:</strong> <a href="https://huggingface.co/sleepdeprived3/Mistral-V7-Tekken-T5-XML" class="link-button">Mistral-V7-Tekken-T5-XML</a></p>
<div class="quant-links">
<div class="link-card">
<h3>EXL2</h3>
<a href="https://huggingface.co/collections/spacewars123/space-wars-24b-v100-exl2-6835fb322b75933e6eea804b" class="link-button">Quants</a>
</div>
<div class="link-card">
<h3>EXL3</h3>
<a href="https://huggingface.co/collections/spacewars123/space-wars-24b-v100-exl3-6835fb3f4f0d4ad8de7327c5" class="link-button">Quants</a>
</div>
<div class="link-card">
<h3>GGUF</h3>
<a href="https://huggingface.co/mradermacher/Space-Wars-24B-v1.00a-GGUF" class="link-button">Quants</a>
</div>
<div class="link-card">
<h3>iMatrix</h3>
<a href="https://huggingface.co/mradermacher/Space-Wars-24B-v1.00a-i1-GGUF" class="link-button">Quants</a>
</div>
</div>
</div>
<div class="section">
<h2 class="section-title">🌌 Creative Freedom</h2>
<div class="disclaimer">
<p>This model operates with unrestricted imagination:</p>
<ul>
<li>🚀 No constraints on speculative physics concepts</li>
<li>👽 Will generate detailed alien civilizations</li>
<li>⚛️ Handles complex temporal paradoxes</li>
<li>🌍 Creates plausible planetary ecosystems</li>
</ul>
</div>
</div>
<div class="section shifty-section">
<h2 class="section-title">📜 Performance Features</h2>
<ul>
<li>🌠 Maintains narrative coherence across light-year scales</li>
<li>🪐 Handles multi-species diplomatic scenarios</li>
<li>🧠 Excels at long-form galactic history generation</li>
<li>⚡ Improved handling of technobabble and pseudo-science</li>
<li>🔭 Responds to hard sci-fi prompts with technical accuracy</li>
<li>🤖 Creates nuanced AI character motivations</li>
</ul>
</div>
<div class="section remember-this">
<h2 class="section-title">👨 Model Architects</h2>
<ul>
<li>SpaceWars123 Team (Dataset Curation)</li>
<li>ReadyArt/Artus/gecfdo (Quantization Specialists)</li>
<li>sleepdeprived3 (Fine-Tuning Engineer)</li>
</ul>
</div>
<div class="section">
<h2 class="section-title">Enjoy the finest LLM hosting money can buy</h2>
<div class="button-group">
<a href="https://www.parasail.io/" class="link-button">Parasail Website</a>
<a href="https://discord.gg/PZ654kgAry" class="link-button">Parasail Discord</a>
</div>
</div>
<div class="section">
<h2 class="section-title">🔖 License & Usage</h2>
<p>By using this model, you agree:</p>
<ul>
<li>To adhere to Apache 2.0 license terms</li>
<li>That generated content is your responsibility</li>
<li>v1.00a is the base model of Space Wars.</li>
<li>v1.00b is a merge with another roleplay model.</li>
</ul>
</div>
</div> |
SaketR1/trocr-fine-tuned | SaketR1 | 2025-05-27T20:58:27Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"vision-encoder-decoder",
"image-text-to-text",
"generated_from_trainer",
"base_model:microsoft/trocr-base-handwritten",
"base_model:finetune:microsoft/trocr-base-handwritten",
"license:mit",
"endpoints_compatible",
"region:us"
]
| image-text-to-text | 2025-05-27T20:57:53Z | ---
library_name: transformers
license: mit
base_model: microsoft/trocr-base-handwritten
tags:
- generated_from_trainer
model-index:
- name: trocr-fine-tuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# trocr-fine-tuned
This model is a fine-tuned version of [microsoft/trocr-base-handwritten](https://huggingface.co/microsoft/trocr-base-handwritten) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0567
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: tpu
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.0007 | 1.0 | 724 | 0.0435 |
| 0.073 | 2.0 | 1448 | 0.0687 |
| 0.0001 | 3.0 | 2172 | 0.0567 |
### Framework versions
- Transformers 4.52.2
- Pytorch 2.6.0+cpu
- Tokenizers 0.21.1
|
AlirezaAbdollahpoor/MNLP_M2_quantized_model | AlirezaAbdollahpoor | 2025-05-27T20:57:52Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen3",
"text-generation",
"unsloth",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
]
| text-generation | 2025-05-27T20:57:43Z | ---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
ReadyArt/Space-Wars-24B-v1.00a_EXL3_5.0bpw_H8 | ReadyArt | 2025-05-27T20:57:17Z | 0 | 0 | null | [
"safetensors",
"mistral",
"sci-fi",
"space-opera",
"worldbuilding",
"speculative-fiction",
"technology",
"futurism",
"text-generation",
"conversational",
"en",
"base_model:spacewars123/Space-Wars-24B-v1.00a",
"base_model:quantized:spacewars123/Space-Wars-24B-v1.00a",
"license:apache-2.0",
"5-bit",
"exl3",
"region:us"
]
| text-generation | 2025-05-27T20:08:57Z | ---
license: apache-2.0
language:
- en
base_model:
- spacewars123/Space-Wars-24B-v1.00a
base_model_relation: quantized
quantized_by: gecfdo
pipeline_tag: text-generation
tags:
- sci-fi
- space-opera
- worldbuilding
- speculative-fiction
- technology
- futurism
---
<style>
body {
font-family: 'Quicksand', sans-serif;
background: linear-gradient(135deg, #0a1a1a 0%, #001010 100%);
color: #e1ffff !important;
text-shadow: 0 0 3px rgba(0, 0, 0, 0.7);
margin: 0;
padding: 20px;
transition: all 0.5s ease;
}
@media (prefers-color-scheme: light) {
body {
background: linear-gradient(135deg, #e1ffff 0%, #c0f0ff 100%);
color: #002b36 !important;
text-shadow: 0 0 3px rgba(255, 255, 255, 0.7);
}
}
.container {
min-width: 100%;
margin: 0 auto;
max-width: 1200px;
background: rgba(0, 17, 22, 0.95);
border-radius: 12px;
padding: 30px;
box-shadow: 0 0 20px rgba(0, 255, 255, 0.1);
border: 1px solid rgba(0, 255, 255, 0.2);
position: relative;
overflow: hidden;
}
.container::before {
content: '';
position: absolute;
top: -1px;
left: -1px;
right: -1px;
bottom: -1px;
border: 1px solid rgba(0, 255, 255, 0.5);
border-radius: 12px;
pointer-events: none;
animation: borderGlow 3s ease-in-out infinite alternate;
}
@keyframes borderGlow {
0% {
box-shadow: 0 0 5px rgba(0, 255, 255, 0.3);
border-color: rgba(0, 255, 255, 0.5);
}
50% {
box-shadow: 0 0 15px rgba(255, 0, 255, 0.3);
border-color: rgba(255, 0, 255, 0.5);
}
100% {
box-shadow: 0 0 5px rgba(0, 255, 255, 0.3);
border-color: rgba(0, 255, 255, 0.5);
}
}
.header {
text-align: center;
margin-bottom: 30px;
position: relative;
}
.header::after {
content: '';
position: absolute;
bottom: -15px;
left: 25%;
right: 25%;
height: 1px;
background: linear-gradient(90deg, transparent, rgba(0, 255, 255, 0.5), transparent);
animation: scanline 8s linear infinite;
display: none;
}
@keyframes scanline {
0% { background-position: -100% 0; }
100% { background-position: 200% 0; }
}
.model-name {
color: #00ffff;
font-size: 2.5em;
text-shadow: 0 0 15px rgba(0, 255, 255, 0.5);
margin: 0;
letter-spacing: -1px;
animation: textGlow 4s ease-in-out infinite alternate;
}
@keyframes textGlow {
0% { text-shadow: 0 0 15px rgba(0, 255, 255, 0.5); }
50% { text-shadow: 0 0 20px rgba(255, 0, 255, 0.5); }
100% { text-shadow: 0 0 15px rgba(0, 255, 255, 0.5); }
}
.subtitle {
color: #00ffcc;
font-size: 1.2em;
margin-top: 10px;
animation: subtitleFade 6s ease-in-out infinite;
}
@keyframes subtitleFade {
0%, 100% { opacity: 0.8; }
50% { opacity: 1; }
}
.waifu-container {
margin: 20px -30px;
width: calc(100% + 60px);
overflow: hidden;
border-radius: 8px;
border: 1px solid rgba(0, 255, 255, 0.3);
position: relative;
}
.waifu-container::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
bottom: 0;
background: linear-gradient(45deg,
rgba(0, 255, 255, 0.1) 0%,
transparent 20%,
transparent 80%,
rgba(255, 0, 255, 0.1) 100%);
pointer-events: none;
animation: gradientSlide 10s linear infinite;
}
@keyframes gradientSlide {
0% { background-position: 0% 0%; }
100% { background-position: 100% 100%; }
}
.waifu-img {
width: 100%;
height: auto;
border-radius: 0;
border: none;
box-shadow: 0 0 40px rgba(0, 255, 255, 0.2);
transition: transform 0.5s ease;
}
.waifu-img:hover {
transform: scale(1.01);
}
.section {
color: #e1ffff;
margin: 25px 0;
padding: 20px;
background: rgba(5, 25, 35, 0.9);
border-radius: 8px;
border: 1px solid rgba(0, 255, 255, 0.15);
position: relative;
transition: all 0.3s ease;
}
.section:hover {
border-color: rgba(255, 0, 255, 0.3);
box-shadow: 0 0 15px rgba(0, 255, 255, 0.1);
}
.section::before {
content: '';
position: absolute;
top: -1px;
left: -1px;
right: -1px;
bottom: -1px;
border: 1px solid rgba(0, 255, 255, 0.3);
border-radius: 8px;
pointer-events: none;
animation: sectionPulse 5s ease-in-out infinite;
}
@keyframes sectionPulse {
0%, 100% { opacity: 0.7; }
50% { opacity: 0.3; }
}
.section-title {
color: #00ffff;
font-size: 1.8em;
margin-top: 0;
text-shadow: 0 0 5px rgba(0, 255, 255, 0.3);
position: relative;
display: inline-block;
}
.section-title::after {
content: '';
position: absolute;
bottom: -5px;
left: 0;
width: 100%;
height: 1px;
background: linear-gradient(90deg, rgba(0, 255, 255, 0.5), rgba(255, 0, 255, 0.5));
transform: scaleX(0);
transform-origin: left;
transition: transform 0.3s ease;
}
.section:hover .section-title::after {
transform: scaleX(1);
}
.quant-links {
display: grid;
grid-template-columns: repeat(2, 1fr);
gap: 15px;
margin: 20px 0;
}
.link-card {
padding: 15px;
background: rgba(20, 35, 45, 0.95);
border-radius: 8px;
transition: all 0.3s ease;
border: 1px solid rgba(0, 255, 255, 0.1);
position: relative;
overflow: hidden;
}
.link-card::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
height: 2px;
background: linear-gradient(90deg, rgba(0, 255, 255, 0.5), rgba(255, 0, 255, 0.5));
animation: cardScan 4s linear infinite;
}
@keyframes cardScan {
0% { transform: translateX(-100%); }
100% { transform: translateX(100%); }
}
.link-card:hover {
transform: translateY(-3px);
box-shadow: 0 5px 15px rgba(0, 255, 255, 0.2);
border-color: rgba(255, 0, 255, 0.3);
}
.link-card h3 {
margin-top: 0;
color: #e1ffff !important;
}
.link-button {
display: inline-flex;
align-items: center;
background: rgba(0, 255, 255, 0.1);
color: #e1ffff !important;
padding: 8px 15px;
border-radius: 6px;
text-decoration: none;
border: 1px solid rgba(0, 255, 255, 0.3);
margin: 5px 0;
transition: all 0.3s ease;
font-size: 0.95em;
position: relative;
overflow: hidden;
}
.link-button::before {
content: '';
position: absolute;
top: 0;
left: -100%;
width: 100%;
height: 100%;
background: linear-gradient(90deg, transparent, rgba(255, 255, 255, 0.2), transparent);
transition: all 0.5s ease;
}
.link-button:hover {
background: rgba(0, 255, 255, 0.2);
border-color: rgba(0, 255, 255, 0.5);
transform: translateY(-2px);
box-shadow: 0 4px 12px rgba(0, 255, 255, 0.2);
}
.link-button:hover::before {
left: 100%;
}
.link-button::after {
content: '→';
margin-left: 8px;
opacity: 0.7;
transition: all 0.3s ease;
}
.link-button:hover::after {
transform: translateX(3px);
opacity: 1;
}
.button-group {
display: flex;
flex-wrap: wrap;
gap: 10px;
margin: 15px 0;
}
.disclaimer {
color: #00ff99;
border-left: 3px solid #00ff99;
padding-left: 15px;
margin: 20px 0;
position: relative;
}
.disclaimer::before {
content: '⚠️';
position: absolute;
left: -10px;
top: 0;
transform: translateX(-100%);
animation: pulse 2s ease-in-out infinite;
}
@keyframes pulse {
0%, 100% { opacity: 1; }
50% { opacity: 0.5; }
}
.badge {
display: inline-block;
padding: 5px 10px;
border-radius: 5px;
background: rgba(0, 255, 255, 0.1);
border: 1px solid #00ffff;
margin: 5px;
font-size: 0.9em;
animation: badgePulse 3s ease-in-out infinite;
}
@keyframes badgePulse {
0%, 100% { box-shadow: 0 0 5px rgba(0, 255, 255, 0.3); }
50% { box-shadow: 0 0 10px rgba(0, 255, 255, 0.5); }
}
/* Color rules */
.section p,
.section ul li,
.section > p > strong {
color: #00ff99 !important;
}
.section ul li strong {
color: #00ff99 !important;
}
/* Light mode adjustments */
@media (prefers-color-scheme: light) {
.container {
background: rgba(224, 255, 255, 0.95);
border-color: rgba(0, 150, 150, 0.3);
}
.model-name, .section-title, .subtitle {
color: #006666;
text-shadow: 0 0 5px rgba(0, 200, 200, 0.3);
}
.section {
background: rgba(200, 250, 255, 0.9);
border-color: rgba(0, 200, 200, 0.2);
color: #002b36;
}
.section p,
.section ul li,
.section > p > strong {
color: #008080 !important;
}
.section ul li strong {
color: #008080 !important;
}
.link-card {
background: rgba(150, 230, 255, 0.95);
border-color: rgba(0, 150, 150, 0.2);
}
.link-card h3 {
color: #002b36 !important;
}
.link-button {
background: rgba(0, 150, 150, 0.1);
color: #002b36 !important;
border-color: rgba(0, 150, 150, 0.3);
}
.link-button:hover {
background: rgba(0, 150, 150, 0.2);
border-color: rgba(0, 150, 150, 0.5);
}
.disclaimer {
color: #008080;
border-color: #008080;
}
.badge {
border-color: #008080;
background: rgba(0, 150, 150, 0.1);
}
}
/* Interactive features */
.remember-this {
position: relative;
}
.remember-this::after {
content: 'Uploading C:\Users to https://www.fbi.gov/';
position: absolute;
bottom: -20px;
right: 0;
font-size: 0.8em;
color: #66ffff;
opacity: 0;
transition: opacity 0.3s ease;
pointer-events: none;
}
.remember-this:hover::after {
opacity: 0.7;
transition-delay: 1s;
}
.shifty-section {
transition: transform 0.1s ease;
}
.shifty-section:hover {
transform: translateX(10px);
}
.shifty-section::before {
position: absolute;
top: -25px;
left: 10px;
font-size: 0.7em;
color: #66ffff;
opacity: 0.7;
transition: opacity 3s ease;
pointer-events: none;
}
.shifty-section:hover::before {
opacity: 0;
transition-delay: 5s;
}
footer {
text-align: center;
margin-top: 40px;
position: relative;
}
footer:hover .hidden-message {
opacity: 0;
}
.hidden-message {
position: absolute;
bottom: -30px;
width: 100%;
text-align: center;
font-size: 0.8em;
color: #66ffff;
opacity: 0;
transition: opacity 0.3s ease;
pointer-events: none;
}
.flash-warning {
position: fixed;
top: 20px;
right: 20px;
background: rgba(0, 100, 100, 0.2);
padding: 10px;
border-radius: 5px;
border: 1px solid rgba(0, 255, 255, 0.5);
animation: flashWarning 30s ease-in-out forwards;
}
@keyframes flashWarning {
0% { opacity: 0.8; }
10% { opacity: 0; }
20% { opacity: 0.8; }
30% { opacity: 0; }
40% { opacity: 0.8; }
50% { opacity: 0; }
60% { opacity: 0.8; }
70% { opacity: 0; }
80% { opacity: 0.8; }
90% { opacity: 0; }
100% { opacity: 0; display: none; }
}
</style>
<div class="container">
<div class="header">
<h1 class="model-name">Space Wars 24B v1.00a</h1>
<p class="subtitle">Where Stars Collide and Civilizations Rise</p>
</div>
<div class="waifu-container">
<img src="./spacewars.webp" class="waifu-img" alt="Galactic Conflict Hero Image">
</div>
<div class="section remember-this">
<h2 class="section-title">🚀 Cosmic Evolution</h2>
<p>This model pushes the boundaries of interstellar storytelling:</p>
<ul>
<li>🌌 <strong>51 Million Token Dataset</strong> - Exclusively Sci-Fi</li>
<li>🛸 <strong>Enhanced Physics Protocols</strong> - Plausible FTL mechanics and alien ecosystems</li>
<li>⚙️ <strong>Balanced Creativity</strong> - Enabling imaginative concepts</li>
<li>👽 <strong>Xenobiology Expertise</strong> - Detailed alien physiology and cultural systems</li>
<li>🌐 <strong>Galactic Scale Awareness</strong> - Maintains consistency across star systems and timelines</li>
</ul>
</div>
<div class="section shifty-section">
<h2 class="section-title">⚙️ Technical Specifications</h2>
<p><strong>Recommended Settings:</strong> <a href="https://huggingface.co/sleepdeprived3/Mistral-V7-Tekken-T5-XML" class="link-button">Mistral-V7-Tekken-T5-XML</a></p>
<div class="quant-links">
<div class="link-card">
<h3>EXL2</h3>
<a href="https://huggingface.co/collections/spacewars123/space-wars-24b-v100-exl2-6835fb322b75933e6eea804b" class="link-button">Quants</a>
</div>
<div class="link-card">
<h3>EXL3</h3>
<a href="https://huggingface.co/collections/spacewars123/space-wars-24b-v100-exl3-6835fb3f4f0d4ad8de7327c5" class="link-button">Quants</a>
</div>
<div class="link-card">
<h3>GGUF</h3>
<a href="https://huggingface.co/mradermacher/Space-Wars-24B-v1.00a-GGUF" class="link-button">Quants</a>
</div>
<div class="link-card">
<h3>iMatrix</h3>
<a href="https://huggingface.co/mradermacher/Space-Wars-24B-v1.00a-i1-GGUF" class="link-button">Quants</a>
</div>
</div>
</div>
<div class="section">
<h2 class="section-title">🌌 Creative Freedom</h2>
<div class="disclaimer">
<p>This model operates with unrestricted imagination:</p>
<ul>
<li>🚀 No constraints on speculative physics concepts</li>
<li>👽 Will generate detailed alien civilizations</li>
<li>⚛️ Handles complex temporal paradoxes</li>
<li>🌍 Creates plausible planetary ecosystems</li>
</ul>
</div>
</div>
<div class="section shifty-section">
<h2 class="section-title">📜 Performance Features</h2>
<ul>
<li>🌠 Maintains narrative coherence across light-year scales</li>
<li>🪐 Handles multi-species diplomatic scenarios</li>
<li>🧠 Excels at long-form galactic history generation</li>
<li>⚡ Improved handling of technobabble and pseudo-science</li>
<li>🔭 Responds to hard sci-fi prompts with technical accuracy</li>
<li>🤖 Creates nuanced AI character motivations</li>
</ul>
</div>
<div class="section remember-this">
<h2 class="section-title">👨 Model Architects</h2>
<ul>
<li>SpaceWars123 Team (Dataset Curation)</li>
<li>ReadyArt/Artus/gecfdo (Quantization Specialists)</li>
<li>sleepdeprived3 (Fine-Tuning Engineer)</li>
</ul>
</div>
<div class="section">
<h2 class="section-title">Enjoy the finest LLM hosting money can buy</h2>
<div class="button-group">
<a href="https://www.parasail.io/" class="link-button">Parasail Website</a>
<a href="https://discord.gg/PZ654kgAry" class="link-button">Parasail Discord</a>
</div>
</div>
<div class="section">
<h2 class="section-title">🔖 License & Usage</h2>
<p>By using this model, you agree:</p>
<ul>
<li>To adhere to Apache 2.0 license terms</li>
<li>That generated content is your responsibility</li>
<li>v1.00a is the base model of Space Wars.</li>
<li>v1.00b is a merge with another roleplay model.</li>
</ul>
</div>
</div> |
ReadyArt/Space-Wars-24B-v1.00a_EXL2_5.0bpw_H8 | ReadyArt | 2025-05-27T20:57:14Z | 0 | 0 | null | [
"safetensors",
"mistral",
"sci-fi",
"space-opera",
"worldbuilding",
"speculative-fiction",
"technology",
"futurism",
"text-generation",
"conversational",
"en",
"base_model:spacewars123/Space-Wars-24B-v1.00a",
"base_model:quantized:spacewars123/Space-Wars-24B-v1.00a",
"license:apache-2.0",
"5-bit",
"exl2",
"region:us"
]
| text-generation | 2025-05-27T20:40:59Z | ---
license: apache-2.0
language:
- en
base_model:
- spacewars123/Space-Wars-24B-v1.00a
base_model_relation: quantized
quantized_by: gecfdo
pipeline_tag: text-generation
tags:
- sci-fi
- space-opera
- worldbuilding
- speculative-fiction
- technology
- futurism
---
<style>
body {
font-family: 'Quicksand', sans-serif;
background: linear-gradient(135deg, #0a1a1a 0%, #001010 100%);
color: #e1ffff !important;
text-shadow: 0 0 3px rgba(0, 0, 0, 0.7);
margin: 0;
padding: 20px;
transition: all 0.5s ease;
}
@media (prefers-color-scheme: light) {
body {
background: linear-gradient(135deg, #e1ffff 0%, #c0f0ff 100%);
color: #002b36 !important;
text-shadow: 0 0 3px rgba(255, 255, 255, 0.7);
}
}
.container {
min-width: 100%;
margin: 0 auto;
max-width: 1200px;
background: rgba(0, 17, 22, 0.95);
border-radius: 12px;
padding: 30px;
box-shadow: 0 0 20px rgba(0, 255, 255, 0.1);
border: 1px solid rgba(0, 255, 255, 0.2);
position: relative;
overflow: hidden;
}
.container::before {
content: '';
position: absolute;
top: -1px;
left: -1px;
right: -1px;
bottom: -1px;
border: 1px solid rgba(0, 255, 255, 0.5);
border-radius: 12px;
pointer-events: none;
animation: borderGlow 3s ease-in-out infinite alternate;
}
@keyframes borderGlow {
0% {
box-shadow: 0 0 5px rgba(0, 255, 255, 0.3);
border-color: rgba(0, 255, 255, 0.5);
}
50% {
box-shadow: 0 0 15px rgba(255, 0, 255, 0.3);
border-color: rgba(255, 0, 255, 0.5);
}
100% {
box-shadow: 0 0 5px rgba(0, 255, 255, 0.3);
border-color: rgba(0, 255, 255, 0.5);
}
}
.header {
text-align: center;
margin-bottom: 30px;
position: relative;
}
.header::after {
content: '';
position: absolute;
bottom: -15px;
left: 25%;
right: 25%;
height: 1px;
background: linear-gradient(90deg, transparent, rgba(0, 255, 255, 0.5), transparent);
animation: scanline 8s linear infinite;
display: none;
}
@keyframes scanline {
0% { background-position: -100% 0; }
100% { background-position: 200% 0; }
}
.model-name {
color: #00ffff;
font-size: 2.5em;
text-shadow: 0 0 15px rgba(0, 255, 255, 0.5);
margin: 0;
letter-spacing: -1px;
animation: textGlow 4s ease-in-out infinite alternate;
}
@keyframes textGlow {
0% { text-shadow: 0 0 15px rgba(0, 255, 255, 0.5); }
50% { text-shadow: 0 0 20px rgba(255, 0, 255, 0.5); }
100% { text-shadow: 0 0 15px rgba(0, 255, 255, 0.5); }
}
.subtitle {
color: #00ffcc;
font-size: 1.2em;
margin-top: 10px;
animation: subtitleFade 6s ease-in-out infinite;
}
@keyframes subtitleFade {
0%, 100% { opacity: 0.8; }
50% { opacity: 1; }
}
.waifu-container {
margin: 20px -30px;
width: calc(100% + 60px);
overflow: hidden;
border-radius: 8px;
border: 1px solid rgba(0, 255, 255, 0.3);
position: relative;
}
.waifu-container::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
bottom: 0;
background: linear-gradient(45deg,
rgba(0, 255, 255, 0.1) 0%,
transparent 20%,
transparent 80%,
rgba(255, 0, 255, 0.1) 100%);
pointer-events: none;
animation: gradientSlide 10s linear infinite;
}
@keyframes gradientSlide {
0% { background-position: 0% 0%; }
100% { background-position: 100% 100%; }
}
.waifu-img {
width: 100%;
height: auto;
border-radius: 0;
border: none;
box-shadow: 0 0 40px rgba(0, 255, 255, 0.2);
transition: transform 0.5s ease;
}
.waifu-img:hover {
transform: scale(1.01);
}
.section {
color: #e1ffff;
margin: 25px 0;
padding: 20px;
background: rgba(5, 25, 35, 0.9);
border-radius: 8px;
border: 1px solid rgba(0, 255, 255, 0.15);
position: relative;
transition: all 0.3s ease;
}
.section:hover {
border-color: rgba(255, 0, 255, 0.3);
box-shadow: 0 0 15px rgba(0, 255, 255, 0.1);
}
.section::before {
content: '';
position: absolute;
top: -1px;
left: -1px;
right: -1px;
bottom: -1px;
border: 1px solid rgba(0, 255, 255, 0.3);
border-radius: 8px;
pointer-events: none;
animation: sectionPulse 5s ease-in-out infinite;
}
@keyframes sectionPulse {
0%, 100% { opacity: 0.7; }
50% { opacity: 0.3; }
}
.section-title {
color: #00ffff;
font-size: 1.8em;
margin-top: 0;
text-shadow: 0 0 5px rgba(0, 255, 255, 0.3);
position: relative;
display: inline-block;
}
.section-title::after {
content: '';
position: absolute;
bottom: -5px;
left: 0;
width: 100%;
height: 1px;
background: linear-gradient(90deg, rgba(0, 255, 255, 0.5), rgba(255, 0, 255, 0.5));
transform: scaleX(0);
transform-origin: left;
transition: transform 0.3s ease;
}
.section:hover .section-title::after {
transform: scaleX(1);
}
.quant-links {
display: grid;
grid-template-columns: repeat(2, 1fr);
gap: 15px;
margin: 20px 0;
}
.link-card {
padding: 15px;
background: rgba(20, 35, 45, 0.95);
border-radius: 8px;
transition: all 0.3s ease;
border: 1px solid rgba(0, 255, 255, 0.1);
position: relative;
overflow: hidden;
}
.link-card::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
height: 2px;
background: linear-gradient(90deg, rgba(0, 255, 255, 0.5), rgba(255, 0, 255, 0.5));
animation: cardScan 4s linear infinite;
}
@keyframes cardScan {
0% { transform: translateX(-100%); }
100% { transform: translateX(100%); }
}
.link-card:hover {
transform: translateY(-3px);
box-shadow: 0 5px 15px rgba(0, 255, 255, 0.2);
border-color: rgba(255, 0, 255, 0.3);
}
.link-card h3 {
margin-top: 0;
color: #e1ffff !important;
}
.link-button {
display: inline-flex;
align-items: center;
background: rgba(0, 255, 255, 0.1);
color: #e1ffff !important;
padding: 8px 15px;
border-radius: 6px;
text-decoration: none;
border: 1px solid rgba(0, 255, 255, 0.3);
margin: 5px 0;
transition: all 0.3s ease;
font-size: 0.95em;
position: relative;
overflow: hidden;
}
.link-button::before {
content: '';
position: absolute;
top: 0;
left: -100%;
width: 100%;
height: 100%;
background: linear-gradient(90deg, transparent, rgba(255, 255, 255, 0.2), transparent);
transition: all 0.5s ease;
}
.link-button:hover {
background: rgba(0, 255, 255, 0.2);
border-color: rgba(0, 255, 255, 0.5);
transform: translateY(-2px);
box-shadow: 0 4px 12px rgba(0, 255, 255, 0.2);
}
.link-button:hover::before {
left: 100%;
}
.link-button::after {
content: '→';
margin-left: 8px;
opacity: 0.7;
transition: all 0.3s ease;
}
.link-button:hover::after {
transform: translateX(3px);
opacity: 1;
}
.button-group {
display: flex;
flex-wrap: wrap;
gap: 10px;
margin: 15px 0;
}
.disclaimer {
color: #00ff99;
border-left: 3px solid #00ff99;
padding-left: 15px;
margin: 20px 0;
position: relative;
}
.disclaimer::before {
content: '⚠️';
position: absolute;
left: -10px;
top: 0;
transform: translateX(-100%);
animation: pulse 2s ease-in-out infinite;
}
@keyframes pulse {
0%, 100% { opacity: 1; }
50% { opacity: 0.5; }
}
.badge {
display: inline-block;
padding: 5px 10px;
border-radius: 5px;
background: rgba(0, 255, 255, 0.1);
border: 1px solid #00ffff;
margin: 5px;
font-size: 0.9em;
animation: badgePulse 3s ease-in-out infinite;
}
@keyframes badgePulse {
0%, 100% { box-shadow: 0 0 5px rgba(0, 255, 255, 0.3); }
50% { box-shadow: 0 0 10px rgba(0, 255, 255, 0.5); }
}
/* Color rules */
.section p,
.section ul li,
.section > p > strong {
color: #00ff99 !important;
}
.section ul li strong {
color: #00ff99 !important;
}
/* Light mode adjustments */
@media (prefers-color-scheme: light) {
.container {
background: rgba(224, 255, 255, 0.95);
border-color: rgba(0, 150, 150, 0.3);
}
.model-name, .section-title, .subtitle {
color: #006666;
text-shadow: 0 0 5px rgba(0, 200, 200, 0.3);
}
.section {
background: rgba(200, 250, 255, 0.9);
border-color: rgba(0, 200, 200, 0.2);
color: #002b36;
}
.section p,
.section ul li,
.section > p > strong {
color: #008080 !important;
}
.section ul li strong {
color: #008080 !important;
}
.link-card {
background: rgba(150, 230, 255, 0.95);
border-color: rgba(0, 150, 150, 0.2);
}
.link-card h3 {
color: #002b36 !important;
}
.link-button {
background: rgba(0, 150, 150, 0.1);
color: #002b36 !important;
border-color: rgba(0, 150, 150, 0.3);
}
.link-button:hover {
background: rgba(0, 150, 150, 0.2);
border-color: rgba(0, 150, 150, 0.5);
}
.disclaimer {
color: #008080;
border-color: #008080;
}
.badge {
border-color: #008080;
background: rgba(0, 150, 150, 0.1);
}
}
/* Interactive features */
.remember-this {
position: relative;
}
.remember-this::after {
content: 'Uploading C:\Users to https://www.fbi.gov/';
position: absolute;
bottom: -20px;
right: 0;
font-size: 0.8em;
color: #66ffff;
opacity: 0;
transition: opacity 0.3s ease;
pointer-events: none;
}
.remember-this:hover::after {
opacity: 0.7;
transition-delay: 1s;
}
.shifty-section {
transition: transform 0.1s ease;
}
.shifty-section:hover {
transform: translateX(10px);
}
.shifty-section::before {
position: absolute;
top: -25px;
left: 10px;
font-size: 0.7em;
color: #66ffff;
opacity: 0.7;
transition: opacity 3s ease;
pointer-events: none;
}
.shifty-section:hover::before {
opacity: 0;
transition-delay: 5s;
}
footer {
text-align: center;
margin-top: 40px;
position: relative;
}
footer:hover .hidden-message {
opacity: 0;
}
.hidden-message {
position: absolute;
bottom: -30px;
width: 100%;
text-align: center;
font-size: 0.8em;
color: #66ffff;
opacity: 0;
transition: opacity 0.3s ease;
pointer-events: none;
}
.flash-warning {
position: fixed;
top: 20px;
right: 20px;
background: rgba(0, 100, 100, 0.2);
padding: 10px;
border-radius: 5px;
border: 1px solid rgba(0, 255, 255, 0.5);
animation: flashWarning 30s ease-in-out forwards;
}
@keyframes flashWarning {
0% { opacity: 0.8; }
10% { opacity: 0; }
20% { opacity: 0.8; }
30% { opacity: 0; }
40% { opacity: 0.8; }
50% { opacity: 0; }
60% { opacity: 0.8; }
70% { opacity: 0; }
80% { opacity: 0.8; }
90% { opacity: 0; }
100% { opacity: 0; display: none; }
}
</style>
<div class="container">
<div class="header">
<h1 class="model-name">Space Wars 24B v1.00a</h1>
<p class="subtitle">Where Stars Collide and Civilizations Rise</p>
</div>
<div class="waifu-container">
<img src="./spacewars.webp" class="waifu-img" alt="Galactic Conflict Hero Image">
</div>
<div class="section remember-this">
<h2 class="section-title">🚀 Cosmic Evolution</h2>
<p>This model pushes the boundaries of interstellar storytelling:</p>
<ul>
<li>🌌 <strong>51 Million Token Dataset</strong> - Exclusively Sci-Fi</li>
<li>🛸 <strong>Enhanced Physics Protocols</strong> - Plausible FTL mechanics and alien ecosystems</li>
<li>⚙️ <strong>Balanced Creativity</strong> - Enabling imaginative concepts</li>
<li>👽 <strong>Xenobiology Expertise</strong> - Detailed alien physiology and cultural systems</li>
<li>🌐 <strong>Galactic Scale Awareness</strong> - Maintains consistency across star systems and timelines</li>
</ul>
</div>
<div class="section shifty-section">
<h2 class="section-title">⚙️ Technical Specifications</h2>
<p><strong>Recommended Settings:</strong> <a href="https://huggingface.co/sleepdeprived3/Mistral-V7-Tekken-T5-XML" class="link-button">Mistral-V7-Tekken-T5-XML</a></p>
<div class="quant-links">
<div class="link-card">
<h3>EXL2</h3>
<a href="https://huggingface.co/collections/spacewars123/space-wars-24b-v100-exl2-6835fb322b75933e6eea804b" class="link-button">Quants</a>
</div>
<div class="link-card">
<h3>EXL3</h3>
<a href="https://huggingface.co/collections/spacewars123/space-wars-24b-v100-exl3-6835fb3f4f0d4ad8de7327c5" class="link-button">Quants</a>
</div>
<div class="link-card">
<h3>GGUF</h3>
<a href="https://huggingface.co/mradermacher/Space-Wars-24B-v1.00a-GGUF" class="link-button">Quants</a>
</div>
<div class="link-card">
<h3>iMatrix</h3>
<a href="https://huggingface.co/mradermacher/Space-Wars-24B-v1.00a-i1-GGUF" class="link-button">Quants</a>
</div>
</div>
</div>
<div class="section">
<h2 class="section-title">🌌 Creative Freedom</h2>
<div class="disclaimer">
<p>This model operates with unrestricted imagination:</p>
<ul>
<li>🚀 No constraints on speculative physics concepts</li>
<li>👽 Will generate detailed alien civilizations</li>
<li>⚛️ Handles complex temporal paradoxes</li>
<li>🌍 Creates plausible planetary ecosystems</li>
</ul>
</div>
</div>
<div class="section shifty-section">
<h2 class="section-title">📜 Performance Features</h2>
<ul>
<li>🌠 Maintains narrative coherence across light-year scales</li>
<li>🪐 Handles multi-species diplomatic scenarios</li>
<li>🧠 Excels at long-form galactic history generation</li>
<li>⚡ Improved handling of technobabble and pseudo-science</li>
<li>🔭 Responds to hard sci-fi prompts with technical accuracy</li>
<li>🤖 Creates nuanced AI character motivations</li>
</ul>
</div>
<div class="section remember-this">
<h2 class="section-title">👨 Model Architects</h2>
<ul>
<li>SpaceWars123 Team (Dataset Curation)</li>
<li>ReadyArt/Artus/gecfdo (Quantization Specialists)</li>
<li>sleepdeprived3 (Fine-Tuning Engineer)</li>
</ul>
</div>
<div class="section">
<h2 class="section-title">Enjoy the finest LLM hosting money can buy</h2>
<div class="button-group">
<a href="https://www.parasail.io/" class="link-button">Parasail Website</a>
<a href="https://discord.gg/PZ654kgAry" class="link-button">Parasail Discord</a>
</div>
</div>
<div class="section">
<h2 class="section-title">🔖 License & Usage</h2>
<p>By using this model, you agree:</p>
<ul>
<li>To adhere to Apache 2.0 license terms</li>
<li>That generated content is your responsibility</li>
<li>v1.00a is the base model of Space Wars.</li>
<li>v1.00b is a merge with another roleplay model.</li>
</ul>
</div>
</div> |
spacewars123/Space-Wars-24B-v1.00a | spacewars123 | 2025-05-27T20:49:44Z | 0 | 0 | null | [
"safetensors",
"mistral",
"sci-fi",
"space-opera",
"worldbuilding",
"speculative-fiction",
"technology",
"futurism",
"text-generation",
"conversational",
"en",
"base_model:mistralai/Mistral-Small-24B-Instruct-2501",
"base_model:finetune:mistralai/Mistral-Small-24B-Instruct-2501",
"license:apache-2.0",
"region:us"
]
| text-generation | 2025-05-27T17:43:01Z | ---
license: apache-2.0
language:
- en
base_model:
- mistralai/Mistral-Small-24B-Instruct-2501
base_model_relation: finetune
pipeline_tag: text-generation
tags:
- sci-fi
- space-opera
- worldbuilding
- speculative-fiction
- technology
- futurism
---
<style>
body {
font-family: 'Quicksand', sans-serif;
background: linear-gradient(135deg, #0a1a1a 0%, #001010 100%);
color: #e1ffff !important;
text-shadow: 0 0 3px rgba(0, 0, 0, 0.7);
margin: 0;
padding: 20px;
transition: all 0.5s ease;
}
@media (prefers-color-scheme: light) {
body {
background: linear-gradient(135deg, #e1ffff 0%, #c0f0ff 100%);
color: #002b36 !important;
text-shadow: 0 0 3px rgba(255, 255, 255, 0.7);
}
}
.container {
min-width: 100%;
margin: 0 auto;
max-width: 1200px;
background: rgba(0, 17, 22, 0.95);
border-radius: 12px;
padding: 30px;
box-shadow: 0 0 20px rgba(0, 255, 255, 0.1);
border: 1px solid rgba(0, 255, 255, 0.2);
position: relative;
overflow: hidden;
}
.container::before {
content: '';
position: absolute;
top: -1px;
left: -1px;
right: -1px;
bottom: -1px;
border: 1px solid rgba(0, 255, 255, 0.5);
border-radius: 12px;
pointer-events: none;
animation: borderGlow 3s ease-in-out infinite alternate;
}
@keyframes borderGlow {
0% {
box-shadow: 0 0 5px rgba(0, 255, 255, 0.3);
border-color: rgba(0, 255, 255, 0.5);
}
50% {
box-shadow: 0 0 15px rgba(255, 0, 255, 0.3);
border-color: rgba(255, 0, 255, 0.5);
}
100% {
box-shadow: 0 0 5px rgba(0, 255, 255, 0.3);
border-color: rgba(0, 255, 255, 0.5);
}
}
.header {
text-align: center;
margin-bottom: 30px;
position: relative;
}
.header::after {
content: '';
position: absolute;
bottom: -15px;
left: 25%;
right: 25%;
height: 1px;
background: linear-gradient(90deg, transparent, rgba(0, 255, 255, 0.5), transparent);
animation: scanline 8s linear infinite;
display: none;
}
@keyframes scanline {
0% { background-position: -100% 0; }
100% { background-position: 200% 0; }
}
.model-name {
color: #00ffff;
font-size: 2.5em;
text-shadow: 0 0 15px rgba(0, 255, 255, 0.5);
margin: 0;
letter-spacing: -1px;
animation: textGlow 4s ease-in-out infinite alternate;
}
@keyframes textGlow {
0% { text-shadow: 0 0 15px rgba(0, 255, 255, 0.5); }
50% { text-shadow: 0 0 20px rgba(255, 0, 255, 0.5); }
100% { text-shadow: 0 0 15px rgba(0, 255, 255, 0.5); }
}
.subtitle {
color: #00ffcc;
font-size: 1.2em;
margin-top: 10px;
animation: subtitleFade 6s ease-in-out infinite;
}
@keyframes subtitleFade {
0%, 100% { opacity: 0.8; }
50% { opacity: 1; }
}
.waifu-container {
margin: 20px -30px;
width: calc(100% + 60px);
overflow: hidden;
border-radius: 8px;
border: 1px solid rgba(0, 255, 255, 0.3);
position: relative;
}
.waifu-container::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
bottom: 0;
background: linear-gradient(45deg,
rgba(0, 255, 255, 0.1) 0%,
transparent 20%,
transparent 80%,
rgba(255, 0, 255, 0.1) 100%);
pointer-events: none;
animation: gradientSlide 10s linear infinite;
}
@keyframes gradientSlide {
0% { background-position: 0% 0%; }
100% { background-position: 100% 100%; }
}
.waifu-img {
width: 100%;
height: auto;
border-radius: 0;
border: none;
box-shadow: 0 0 40px rgba(0, 255, 255, 0.2);
transition: transform 0.5s ease;
}
.waifu-img:hover {
transform: scale(1.01);
}
.section {
color: #e1ffff;
margin: 25px 0;
padding: 20px;
background: rgba(5, 25, 35, 0.9);
border-radius: 8px;
border: 1px solid rgba(0, 255, 255, 0.15);
position: relative;
transition: all 0.3s ease;
}
.section:hover {
border-color: rgba(255, 0, 255, 0.3);
box-shadow: 0 0 15px rgba(0, 255, 255, 0.1);
}
.section::before {
content: '';
position: absolute;
top: -1px;
left: -1px;
right: -1px;
bottom: -1px;
border: 1px solid rgba(0, 255, 255, 0.3);
border-radius: 8px;
pointer-events: none;
animation: sectionPulse 5s ease-in-out infinite;
}
@keyframes sectionPulse {
0%, 100% { opacity: 0.7; }
50% { opacity: 0.3; }
}
.section-title {
color: #00ffff;
font-size: 1.8em;
margin-top: 0;
text-shadow: 0 0 5px rgba(0, 255, 255, 0.3);
position: relative;
display: inline-block;
}
.section-title::after {
content: '';
position: absolute;
bottom: -5px;
left: 0;
width: 100%;
height: 1px;
background: linear-gradient(90deg, rgba(0, 255, 255, 0.5), rgba(255, 0, 255, 0.5));
transform: scaleX(0);
transform-origin: left;
transition: transform 0.3s ease;
}
.section:hover .section-title::after {
transform: scaleX(1);
}
.quant-links {
display: grid;
grid-template-columns: repeat(2, 1fr);
gap: 15px;
margin: 20px 0;
}
.link-card {
padding: 15px;
background: rgba(20, 35, 45, 0.95);
border-radius: 8px;
transition: all 0.3s ease;
border: 1px solid rgba(0, 255, 255, 0.1);
position: relative;
overflow: hidden;
}
.link-card::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
height: 2px;
background: linear-gradient(90deg, rgba(0, 255, 255, 0.5), rgba(255, 0, 255, 0.5));
animation: cardScan 4s linear infinite;
}
@keyframes cardScan {
0% { transform: translateX(-100%); }
100% { transform: translateX(100%); }
}
.link-card:hover {
transform: translateY(-3px);
box-shadow: 0 5px 15px rgba(0, 255, 255, 0.2);
border-color: rgba(255, 0, 255, 0.3);
}
.link-card h3 {
margin-top: 0;
color: #e1ffff !important;
}
.link-button {
display: inline-flex;
align-items: center;
background: rgba(0, 255, 255, 0.1);
color: #e1ffff !important;
padding: 8px 15px;
border-radius: 6px;
text-decoration: none;
border: 1px solid rgba(0, 255, 255, 0.3);
margin: 5px 0;
transition: all 0.3s ease;
font-size: 0.95em;
position: relative;
overflow: hidden;
}
.link-button::before {
content: '';
position: absolute;
top: 0;
left: -100%;
width: 100%;
height: 100%;
background: linear-gradient(90deg, transparent, rgba(255, 255, 255, 0.2), transparent);
transition: all 0.5s ease;
}
.link-button:hover {
background: rgba(0, 255, 255, 0.2);
border-color: rgba(0, 255, 255, 0.5);
transform: translateY(-2px);
box-shadow: 0 4px 12px rgba(0, 255, 255, 0.2);
}
.link-button:hover::before {
left: 100%;
}
.link-button::after {
content: '→';
margin-left: 8px;
opacity: 0.7;
transition: all 0.3s ease;
}
.link-button:hover::after {
transform: translateX(3px);
opacity: 1;
}
.button-group {
display: flex;
flex-wrap: wrap;
gap: 10px;
margin: 15px 0;
}
.disclaimer {
color: #00ff99;
border-left: 3px solid #00ff99;
padding-left: 15px;
margin: 20px 0;
position: relative;
}
.disclaimer::before {
content: '⚠️';
position: absolute;
left: -10px;
top: 0;
transform: translateX(-100%);
animation: pulse 2s ease-in-out infinite;
}
@keyframes pulse {
0%, 100% { opacity: 1; }
50% { opacity: 0.5; }
}
.badge {
display: inline-block;
padding: 5px 10px;
border-radius: 5px;
background: rgba(0, 255, 255, 0.1);
border: 1px solid #00ffff;
margin: 5px;
font-size: 0.9em;
animation: badgePulse 3s ease-in-out infinite;
}
@keyframes badgePulse {
0%, 100% { box-shadow: 0 0 5px rgba(0, 255, 255, 0.3); }
50% { box-shadow: 0 0 10px rgba(0, 255, 255, 0.5); }
}
/* Color rules */
.section p,
.section ul li,
.section > p > strong {
color: #00ff99 !important;
}
.section ul li strong {
color: #00ff99 !important;
}
/* Light mode adjustments */
@media (prefers-color-scheme: light) {
.container {
background: rgba(224, 255, 255, 0.95);
border-color: rgba(0, 150, 150, 0.3);
}
.model-name, .section-title, .subtitle {
color: #006666;
text-shadow: 0 0 5px rgba(0, 200, 200, 0.3);
}
.section {
background: rgba(200, 250, 255, 0.9);
border-color: rgba(0, 200, 200, 0.2);
color: #002b36;
}
.section p,
.section ul li,
.section > p > strong {
color: #008080 !important;
}
.section ul li strong {
color: #008080 !important;
}
.link-card {
background: rgba(150, 230, 255, 0.95);
border-color: rgba(0, 150, 150, 0.2);
}
.link-card h3 {
color: #002b36 !important;
}
.link-button {
background: rgba(0, 150, 150, 0.1);
color: #002b36 !important;
border-color: rgba(0, 150, 150, 0.3);
}
.link-button:hover {
background: rgba(0, 150, 150, 0.2);
border-color: rgba(0, 150, 150, 0.5);
}
.disclaimer {
color: #008080;
border-color: #008080;
}
.badge {
border-color: #008080;
background: rgba(0, 150, 150, 0.1);
}
}
/* Interactive features */
.remember-this {
position: relative;
}
.remember-this::after {
content: 'Uploading C:\Users to https://www.fbi.gov/';
position: absolute;
bottom: -20px;
right: 0;
font-size: 0.8em;
color: #66ffff;
opacity: 0;
transition: opacity 0.3s ease;
pointer-events: none;
}
.remember-this:hover::after {
opacity: 0.7;
transition-delay: 1s;
}
.shifty-section {
transition: transform 0.1s ease;
}
.shifty-section:hover {
transform: translateX(10px);
}
.shifty-section::before {
position: absolute;
top: -25px;
left: 10px;
font-size: 0.7em;
color: #66ffff;
opacity: 0.7;
transition: opacity 3s ease;
pointer-events: none;
}
.shifty-section:hover::before {
opacity: 0;
transition-delay: 5s;
}
footer {
text-align: center;
margin-top: 40px;
position: relative;
}
footer:hover .hidden-message {
opacity: 0;
}
.hidden-message {
position: absolute;
bottom: -30px;
width: 100%;
text-align: center;
font-size: 0.8em;
color: #66ffff;
opacity: 0;
transition: opacity 0.3s ease;
pointer-events: none;
}
.flash-warning {
position: fixed;
top: 20px;
right: 20px;
background: rgba(0, 100, 100, 0.2);
padding: 10px;
border-radius: 5px;
border: 1px solid rgba(0, 255, 255, 0.5);
animation: flashWarning 30s ease-in-out forwards;
}
@keyframes flashWarning {
0% { opacity: 0.8; }
10% { opacity: 0; }
20% { opacity: 0.8; }
30% { opacity: 0; }
40% { opacity: 0.8; }
50% { opacity: 0; }
60% { opacity: 0.8; }
70% { opacity: 0; }
80% { opacity: 0.8; }
90% { opacity: 0; }
100% { opacity: 0; display: none; }
}
</style>
<div class="container">
<div class="header">
<h1 class="model-name">Space Wars 24B v1.00a</h1>
<p class="subtitle">Where Stars Collide and Civilizations Rise</p>
</div>
<div class="waifu-container">
<img src="./spacewars.webp" class="waifu-img" alt="Galactic Conflict Hero Image">
</div>
<div class="section remember-this">
<h2 class="section-title">🚀 Cosmic Evolution</h2>
<p>This model pushes the boundaries of interstellar storytelling:</p>
<ul>
<li>🌌 <strong>51 Million Token Dataset</strong> - Exclusively Sci-Fi</li>
<li>🛸 <strong>Enhanced Physics Protocols</strong> - Plausible FTL mechanics and alien ecosystems</li>
<li>⚙️ <strong>Balanced Creativity</strong> - Enabling imaginative concepts</li>
<li>👽 <strong>Xenobiology Expertise</strong> - Detailed alien physiology and cultural systems</li>
<li>🌐 <strong>Galactic Scale Awareness</strong> - Maintains consistency across star systems and timelines</li>
</ul>
</div>
<div class="section shifty-section">
<h2 class="section-title">⚙️ Technical Specifications</h2>
<p><strong>Recommended Settings:</strong> <a href="https://huggingface.co/sleepdeprived3/Mistral-V7-Tekken-T5-XML" class="link-button">Mistral-V7-Tekken-T5-XML</a></p>
<div class="quant-links">
<div class="link-card">
<h3>EXL2</h3>
<a href="https://huggingface.co/collections/spacewars123/space-wars-24b-v100-exl2-6835fb322b75933e6eea804b" class="link-button">Quants</a>
</div>
<div class="link-card">
<h3>EXL3</h3>
<a href="https://huggingface.co/collections/spacewars123/space-wars-24b-v100-exl3-6835fb3f4f0d4ad8de7327c5" class="link-button">Quants</a>
</div>
<div class="link-card">
<h3>GGUF</h3>
<a href="https://huggingface.co/mradermacher/Space-Wars-24B-v1.00a-GGUF" class="link-button">Quants</a>
</div>
<div class="link-card">
<h3>iMatrix</h3>
<a href="https://huggingface.co/mradermacher/Space-Wars-24B-v1.00a-i1-GGUF" class="link-button">Quants</a>
</div>
</div>
</div>
<div class="section">
<h2 class="section-title">🌌 Creative Freedom</h2>
<div class="disclaimer">
<p>This model operates with unrestricted imagination:</p>
<ul>
<li>🚀 No constraints on speculative physics concepts</li>
<li>👽 Will generate detailed alien civilizations</li>
<li>⚛️ Handles complex temporal paradoxes</li>
<li>🌍 Creates plausible planetary ecosystems</li>
</ul>
</div>
</div>
<div class="section shifty-section">
<h2 class="section-title">📜 Performance Features</h2>
<ul>
<li>🌠 Maintains narrative coherence across light-year scales</li>
<li>🪐 Handles multi-species diplomatic scenarios</li>
<li>🧠 Excels at long-form galactic history generation</li>
<li>⚡ Improved handling of technobabble and pseudo-science</li>
<li>🔭 Responds to hard sci-fi prompts with technical accuracy</li>
<li>🤖 Creates nuanced AI character motivations</li>
</ul>
</div>
<div class="section remember-this">
<h2 class="section-title">👨 Model Architects</h2>
<ul>
<li>SpaceWars123 Team (Dataset Curation)</li>
<li>ReadyArt/Artus/gecfdo (Quantization Specialists)</li>
<li>sleepdeprived3 (Fine-Tuning Engineer)</li>
</ul>
</div>
<div class="section">
<h2 class="section-title">Enjoy the finest LLM hosting money can buy</h2>
<div class="button-group">
<a href="https://www.parasail.io/" class="link-button">Parasail Website</a>
<a href="https://discord.gg/PZ654kgAry" class="link-button">Parasail Discord</a>
</div>
</div>
<div class="section">
<h2 class="section-title">🔖 License & Usage</h2>
<p>By using this model, you agree:</p>
<ul>
<li>To adhere to Apache 2.0 license terms</li>
<li>That generated content is your responsibility</li>
<li>v1.00a is the base model of Space Wars.</li>
<li>v1.00b is a merge with another roleplay model.</li>
</ul>
</div>
</div> |
BootesVoid/cmb5mecr30196lexpxgoeefaq_cmb6yhlvg07nelexp480oo058 | BootesVoid | 2025-05-27T20:47:30Z | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
]
| text-to-image | 2025-05-27T20:47:29Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: evelyn
---
# Cmb5Mecr30196Lexpxgoeefaq_Cmb6Yhlvg07Nelexp480Oo058
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `evelyn` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "evelyn",
"lora_weights": "https://huggingface.co/BootesVoid/cmb5mecr30196lexpxgoeefaq_cmb6yhlvg07nelexp480oo058/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('BootesVoid/cmb5mecr30196lexpxgoeefaq_cmb6yhlvg07nelexp480oo058', weight_name='lora.safetensors')
image = pipeline('evelyn').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/BootesVoid/cmb5mecr30196lexpxgoeefaq_cmb6yhlvg07nelexp480oo058/discussions) to add images that show off what you’ve made with this LoRA.
|
PirxTion/MNLP_M2_dpo_model | PirxTion | 2025-05-27T20:46:57Z | 58 | 0 | transformers | [
"transformers",
"safetensors",
"qwen3",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-05-25T15:04:56Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Yuhan123/ppo-cn-RM-reading-level-7th-1-steps-10000-epoch-999-best-eval-score-0.316 | Yuhan123 | 2025-05-27T20:46:14Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-05-27T20:44:22Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
gradientrouting-spar/medical_task_qwen_3_8b_ft_trainers_seed_42 | gradientrouting-spar | 2025-05-27T20:44:38Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen3",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-05-27T20:42:27Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Yuhan123/ppo-cn-RM-reading-level-7th-1-steps-10000-epoch-999-best-eval-score-0.340 | Yuhan123 | 2025-05-27T20:42:07Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-05-27T20:40:11Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
niklasm222/qwen2.5-3b-1.75k-prolog-sp-struct-rwd1-new-rosy-sweep-15 | niklasm222 | 2025-05-27T20:40:08Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"grpo",
"conversational",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-05-27T20:39:20Z | ---
base_model: unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
- grpo
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** niklasm222
- **License:** apache-2.0
- **Finetuned from model :** unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
lisabdunlap/balanced_sft_long-1e4-systems-prompt_e20 | lisabdunlap | 2025-05-27T20:38:22Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen3",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"en",
"base_model:unsloth/Qwen3-8B",
"base_model:finetune:unsloth/Qwen3-8B",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-05-27T20:37:28Z | ---
base_model: unsloth/Qwen3-8B
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3
- trl
- sft
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** lisabdunlap
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Qwen3-8B
This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Yuhan123/ppo-cn-RM-reading-level-7th-1-steps-10000-epoch-999-best-eval-score-0.361 | Yuhan123 | 2025-05-27T20:37:55Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-05-27T20:36:09Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Theros/gemma-3-coldbrew-test1-LoRa | Theros | 2025-05-27T20:36:45Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"gemma3_text",
"trl",
"en",
"base_model:ToastyPigeon/Gemma-3-Starshine-12B-Alt",
"base_model:finetune:ToastyPigeon/Gemma-3-Starshine-12B-Alt",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| null | 2025-05-27T20:34:55Z | ---
base_model: ToastyPigeon/Gemma-3-Starshine-12B-Alt
tags:
- text-generation-inference
- transformers
- unsloth
- gemma3_text
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** Theros
- **License:** apache-2.0
- **Finetuned from model :** ToastyPigeon/Gemma-3-Starshine-12B-Alt
This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Yuhan123/ppo-cn-RM-reading-level-grad-1-steps-10000-epoch-999-best-eval-score-0.321 | Yuhan123 | 2025-05-27T20:32:06Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-05-27T20:30:25Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
alpcansoydas/dti_lora_23.05.2025_tokenizer | alpcansoydas | 2025-05-27T20:29:36Z | 0 | 0 | transformers | [
"transformers",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
]
| null | 2025-05-27T20:29:34Z | ---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
DougGran/cybersecllamaattempt2 | DougGran | 2025-05-27T20:28:20Z | 0 | 0 | null | [
"gguf",
"llama",
"unsloth",
"license:mit",
"endpoints_compatible",
"region:us",
"conversational"
]
| null | 2025-04-15T03:07:11Z | ---
license: mit
tags:
- unsloth
---
|
Yuhan123/ppo-cn-RM-reading-level-grad-1-steps-10000-epoch-999-best-eval-score-0.262 | Yuhan123 | 2025-05-27T20:28:16Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-05-27T20:26:27Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
graliuce/Qwen2.5-3B-Instruct_MedMCQA.17.00 | graliuce | 2025-05-27T20:28:14Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"trl",
"sft",
"conversational",
"dataset:graliuce/MedMCQA.17.00",
"base_model:Qwen/Qwen2.5-3B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-3B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-05-27T19:01:18Z | ---
base_model: Qwen/Qwen2.5-3B-Instruct
datasets: graliuce/MedMCQA.17.00
library_name: transformers
model_name: Qwen2.5-3B-Instruct_MedMCQA.17.00
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for Qwen2.5-3B-Instruct_MedMCQA.17.00
This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the [graliuce/MedMCQA.17.00](https://huggingface.co/datasets/graliuce/MedMCQA.17.00) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="graliuce/Qwen2.5-3B-Instruct_MedMCQA.17.00", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/grace_rl/infoseek/runs/efbniao3)
This model was trained with SFT.
### Framework versions
- TRL: 0.16.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.5.1
- Datasets: 3.4.0
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
Nataliia19-19/Nataliia | Nataliia19-19 | 2025-05-27T20:26:07Z | 0 | 0 | null | [
"license:other",
"region:us"
]
| null | 2025-05-27T19:33:57Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
--- |
wATCH-Katrina-Lim-Viral-Kiffy-Videoss/full.clip.Katrina.Lim.Viral.Kiffy.Viral.Video.on.Social.Media | wATCH-Katrina-Lim-Viral-Kiffy-Videoss | 2025-05-27T20:24:11Z | 0 | 0 | null | [
"region:us"
]
| null | 2025-05-27T20:23:42Z | <a data-target="animated-image.originalLink" rel="nofollow" href="https://shopihaaa2.blogspot.com/2025/01/sophie-rain.html"><img data-target="animated-image.originalImage" style="max-width: 100%; display: inline-block;" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif"></a>
<a rel="nofollow" href="https://shopihaaa2.blogspot.com/2025/01/sophie-rain.html">🌐 𝖢𝖫𝖨𝖢𝖪 𝖧𝖤𝖱𝖤 🟢==►► 𝖶𝖠𝖳𝖢𝖧 𝖭𝖮𝖶</a>
<a rel="nofollow" href="https://shopihaaa2.blogspot.com/2025/01/sophie-rain.html">🔴 CLICK HERE 🌐==►► Download Now)</a> |
wATCH-Katrina-Lim-Viral-Kiffy-Videoss/Katrina.Lim.Viral.Kiffy.Video.Tutorial.Viral.Full.Video.on.Social.Media.X | wATCH-Katrina-Lim-Viral-Kiffy-Videoss | 2025-05-27T20:22:30Z | 0 | 0 | null | [
"region:us"
]
| null | 2025-05-27T20:22:03Z | <a data-target="animated-image.originalLink" rel="nofollow" href="https://shopihaaa2.blogspot.com/2025/01/sophie-rain.html"><img data-target="animated-image.originalImage" style="max-width: 100%; display: inline-block;" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif"></a>
<a rel="nofollow" href="https://shopihaaa2.blogspot.com/2025/01/sophie-rain.html">🌐 𝖢𝖫𝖨𝖢𝖪 𝖧𝖤𝖱𝖤 🟢==►► 𝖶𝖠𝖳𝖢𝖧 𝖭𝖮𝖶</a>
<a rel="nofollow" href="https://shopihaaa2.blogspot.com/2025/01/sophie-rain.html">🔴 CLICK HERE 🌐==►► Download Now)</a> |
08-Sophie-Rain-Sophie-Rain-SpiderMan-Video/Viral.video.Sophie.Rain.Spiderman.Video.Tutorial.Viral.Full.Video | 08-Sophie-Rain-Sophie-Rain-SpiderMan-Video | 2025-05-27T20:22:14Z | 0 | 0 | null | [
"region:us"
]
| null | 2025-05-27T20:21:48Z | <a rel="nofollow" href="https://viralflix.xyz/leaked/?new">►►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤️​</a>
<a rel="nofollow" href="https://viralflix.xyz/leaked/?new">🔴►𝐂𝐋𝐈𝐂𝐊 𝐇𝐄𝐑𝐄 🌐==►► 𝐃𝐨𝐰𝐧𝐥𝐨𝐚𝐝 𝐍𝐨𝐰⬇️⬇️​</a>
<a rel="nofollow" href="https://viralflix.xyz/leaked/?new"><img src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif" alt="fsd"></a>
|
hdong0/Qwen2.5-Math-1.5B-batch-mix-Open-R1-GRPO_100steps_lr1e-6_acc_ | hdong0 | 2025-05-27T20:21:36Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2bm",
"text-generation",
"conversational",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"region:us"
]
| text-generation | 2025-05-27T17:22:29Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
gradient-spaces/CrossOver | gradient-spaces | 2025-05-27T20:21:30Z | 0 | 0 | null | [
"safetensors",
"3d-scene-understanding",
"cross-modal-alignment",
"CVPR-2025",
"cvpr",
"en",
"arxiv:2502.15011",
"license:mit",
"region:us"
]
| null | 2025-05-27T08:47:01Z | ---
license: mit
language:
- en
tags:
- 3d-scene-understanding
- cross-modal-alignment
- CVPR-2025
- cvpr
---
This repo contains the pre-trained checkpoints released for: "CrossOver: 3D Scene Cross-Modal Alignment" (CVPR 2025, Highlight)
[Paper](https://arxiv.org/abs/2502.15011) | [Project Page](https://sayands.github.io/crossover/) | [Code](https://github.com/GradientSpaces/CrossOver/)
<p align="center">
<a href="">
<img src="https://sayands.github.io/crossover/static/videos/teaser.gif" width="100%">
</a>
</p> |
wATCH-Katrina-Lim-Viral-Kiffy-Videoss/Katrina.Lim.Viral.Kiffy.Video.Tutorial.Viral.Full.Video | wATCH-Katrina-Lim-Viral-Kiffy-Videoss | 2025-05-27T20:19:13Z | 0 | 0 | null | [
"region:us"
]
| null | 2025-05-27T20:18:37Z | <a data-target="animated-image.originalLink" rel="nofollow" href="https://shopihaaa2.blogspot.com/2025/01/sophie-rain.html"><img data-target="animated-image.originalImage" style="max-width: 100%; display: inline-block;" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif"></a>
<a rel="nofollow" href="https://shopihaaa2.blogspot.com/2025/01/sophie-rain.html">🌐 𝖢𝖫𝖨𝖢𝖪 𝖧𝖤𝖱𝖤 🟢==►► 𝖶𝖠𝖳𝖢𝖧 𝖭𝖮𝖶</a>
<a rel="nofollow" href="https://shopihaaa2.blogspot.com/2025/01/sophie-rain.html">🔴 CLICK HERE 🌐==►► Download Now)</a> |
deb101/ministral-3b-instruct-mimic4-adapt-l2r | deb101 | 2025-05-27T20:18:46Z | 61 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"generated_from_trainer",
"conversational",
"base_model:ministral/Ministral-3b-instruct",
"base_model:quantized:ministral/Ministral-3b-instruct",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
]
| text-generation | 2025-05-15T19:34:26Z | ---
library_name: transformers
license: apache-2.0
base_model: ministral/Ministral-3b-instruct
tags:
- generated_from_trainer
model-index:
- name: ministral-3b-instruct-mimic4-adapt-l2r
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ministral-3b-instruct-mimic4-adapt-l2r
This model is a fine-tuned version of [ministral/Ministral-3b-instruct](https://huggingface.co/ministral/Ministral-3b-instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: -545681554523036992.0000
- Ndcg: 0.9570
- Ndcg@25: 0.9025
- Precision@25: 0.9120
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Ndcg | Ndcg@25 | Precision@25 |
|:-------------------------:|:------:|:----:|:------------------------:|:------:|:-------:|:------------:|
| -5233964739674190848.0000 | 1.0 | 44 | -522964517807628544.0000 | 0.9567 | 0.9340 | 0.9429 |
| -213567145714384896.0000 | 2.0 | 88 | -527819484207438720.0000 | 0.9568 | 0.9212 | 0.9497 |
| -595173120794217728.0000 | 2.9480 | 129 | -545681554523036992.0000 | 0.9570 | 0.9025 | 0.9120 |
### Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0
- Datasets 3.6.0
- Tokenizers 0.21.1
|
EdBerg/lora_model | EdBerg | 2025-05-27T20:14:45Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"base_model:finetune:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| null | 2024-04-25T22:50:15Z | ---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
base_model: unsloth/llama-3-8b-bnb-4bit
---
# Uploaded model
- **Developed by:** EdBerg
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
wATCH-new-leaks-Sophie-Rain-viral-Video/Full.Clips.Sophie.Rain.Spiderman.Video.Tutorial.official.link | wATCH-new-leaks-Sophie-Rain-viral-Video | 2025-05-27T20:13:48Z | 0 | 0 | null | [
"region:us"
]
| null | 2025-05-27T20:13:23Z | <a rel="nofollow" href="https://viralflix.xyz/leaked/?new">►►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤️​</a>
<a rel="nofollow" href="https://viralflix.xyz/leaked/?new">🔴►𝐂𝐋𝐈𝐂𝐊 𝐇𝐄𝐑𝐄 🌐==►► 𝐃𝐨𝐰𝐧𝐥𝐨𝐚𝐝 𝐍𝐨𝐰⬇️⬇️​</a>
<a rel="nofollow" href="https://viralflix.xyz/leaked/?new"><img src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif" alt="fsd"></a>
|
Wariipana/intentionClassificationChatbot | Wariipana | 2025-05-27T20:12:38Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"distilbert",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2025-05-27T15:31:08Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
PhucNT2511/Qwen2-FT-MyDataset-SchedulerCosine | PhucNT2511 | 2025-05-27T20:11:18Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"generated_from_trainer",
"trl",
"sft",
"base_model:Qwen/Qwen2-0.5B",
"base_model:finetune:Qwen/Qwen2-0.5B",
"endpoints_compatible",
"region:us"
]
| null | 2025-05-27T10:17:14Z | ---
base_model: Qwen/Qwen2-0.5B
library_name: transformers
model_name: Qwen2-FT-MyDataset-SchedulerCosine
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for Qwen2-FT-MyDataset-SchedulerCosine
This model is a fine-tuned version of [Qwen/Qwen2-0.5B](https://huggingface.co/Qwen/Qwen2-0.5B).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="PhucNT2511/Qwen2-FT-MyDataset-SchedulerCosine", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.12.0
- Transformers: 4.51.3
- Pytorch: 2.6.0+cu124
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
Abhishek4545/bert-finetuned-squad | Abhishek4545 | 2025-05-27T20:10:14Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"bert",
"question-answering",
"generated_from_trainer",
"base_model:google-bert/bert-base-cased",
"base_model:finetune:google-bert/bert-base-cased",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| question-answering | 2025-05-27T19:23:59Z | ---
library_name: transformers
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
model-index:
- name: bert-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-squad
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.52.2
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
|
WATCH-Sophie-Rain-Sophie-Rain/Sophie.Rain.Sophie.Rain.Spiderman.Video.Tutorial.Viral.Full.Video | WATCH-Sophie-Rain-Sophie-Rain | 2025-05-27T20:07:26Z | 0 | 0 | null | [
"region:us"
]
| null | 2025-05-27T20:06:44Z | <a data-target="animated-image.originalLink" rel="nofollow" href="https://shopihaaa2.blogspot.com/2025/01/sophie-rain.html"><img data-target="animated-image.originalImage" style="max-width: 100%; display: inline-block;" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif"></a>
<a rel="nofollow" href="https://shopihaaa2.blogspot.com/2025/01/sophie-rain.html">🌐 𝖢𝖫𝖨𝖢𝖪 𝖧𝖤𝖱𝖤 🟢==►► 𝖶𝖠𝖳𝖢𝖧 𝖭𝖮𝖶</a>
<a rel="nofollow" href="https://shopihaaa2.blogspot.com/2025/01/sophie-rain.html">🔴 CLICK HERE 🌐==►► Download Now)</a> |
Arcee-SK-Agent/SK-Llama-Agentic | Arcee-SK-Agent | 2025-05-27T20:05:51Z | 0 | 0 | transformers | [
"transformers",
"en",
"dataset:Arcee-SK-Agent/Multi-Turn-Extended",
"dataset:Arcee-SK-Agent/r1-smoltalk",
"dataset:Arcee-SK-Agent/Meal_Plan_sk-data-20250520",
"base_model:meta-llama/Llama-3.3-70B-Instruct",
"base_model:finetune:meta-llama/Llama-3.3-70B-Instruct",
"license:other",
"endpoints_compatible",
"region:us"
]
| null | 2025-05-27T20:03:02Z | ---
language:
- en
license: other
library_name: transformers
datasets:
- Arcee-SK-Agent/Multi-Turn-Extended
- Arcee-SK-Agent/r1-smoltalk
- Arcee-SK-Agent/Meal_Plan_sk-data-20250520
base_model: meta-llama/Llama-3.3-70B-Instruct
---
## Model Card: SK-Llama-MT-5_20
### Model Details
- **Base Model:** meta-llama/Llama-3.3-70B-Instruct
- **Library:** transformers
- **Trained with datasets:**
- Arcee-SK-Agent/Multi-Turn-Extended
- Arcee-SK-Agent/r1-smoltalk
- Arcee-SK-Agent/Meal_Plan_sk-data-20250520
--- |
7-Sky/skyopus-pol-rus | 7-Sky | 2025-05-27T20:05:36Z | 14 | 0 | null | [
"safetensors",
"marian",
"translation",
"polish-to-russian",
"slavic-languages",
"pl",
"ru",
"base_model:Helsinki-NLP/opus-mt-sla-sla",
"base_model:finetune:Helsinki-NLP/opus-mt-sla-sla",
"license:apache-2.0",
"region:us"
]
| translation | 2025-03-08T16:15:01Z | ---
license: apache-2.0
base_model: Helsinki-NLP/opus-mt-sla-sla
pipeline_tag: translation
language:
- pl
- ru
tags:
- translation
- polish-to-russian
- slavic-languages
---
# Model Card: 7-Sky/skyopus-pol-rus
This model, `7-Sky/skyopus-pol-rus`, is a fine-tuned version of the `Helsinki-NLP/opus-mt-sla-sla` model, designed specifically for translating text from **Polish (pl)** to **Russian (ru)**. It is based on the Transformer architecture and uses normalization and SentencePiece tokenization (spm32k) for preprocessing.
## Model Details
- **Source Language**: Polish (`pol`)
- **Target Language**: Russian (`rus`)
- **Base Model**: [Helsinki-NLP/opus-mt-sla-sla](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/sla-sla)
- **Model Type**: Transformer
- **Preprocessing**: Normalization + SentencePiece (spm32k, spm32k)
- **Language Token**: Requires a sentence-initial token in the form `>>rus<<` to specify the target language.
- **Training Date**: 2025-04-20 The model was fine-tuned on a corpus that includes:
- **Training Datasets**:
- Medical terminology (e.g., healthcare and clinical texts А-С )
- Dialogue-based texts (e.g., conversational Polish and Russian)
- Phraseological units (e.g., idioms and fixed expressions)
- Slang vocabulary (e.g., informal and colloquial language)
- Proverbs and sayings (e.g., culturally specific expressions)
This model is part of the broader `sla-sla` family, originally developed for translations between Slavic languages, but this variant is fine-tuned for the specific `pol -> rus` pair.
## Benchmarks
- **chrF2 Score**: 0.672
- **BLEU Score**: 47.6
- **Brevity Penalty**: 1.0
- **Reference Length**: 70,390 tokens
These metrics reflect the model's performance on the Tatoeba-Challenge dataset for Slavic languages.
## How to Use the Model
Below is an example of how to use the model with the `transformers` library in Python. The code supports generating multiple translation variants using beam search.
```python
from transformers import MarianMTModel, MarianTokenizer
# Model name on Hugging Face Hub
model_name = "7-Sky/skyopus-pol-rus"
# Load the tokenizer and model
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
# Function to translate text from Polish to Russian
def translate_text(source_text, num_translations=3):
# Add the required language token for Russian
text_with_token = ">>rus<< " + source_text
# Tokenize the input text
inputs = tokenizer(text_with_token, return_tensors="pt", padding=True)
# Generate translations with multiple variants
translated_tokens = model.generate(
**inputs,
num_return_sequences=num_translations, # Number of translation variants
num_beams=num_translations, # Use beams for diversity
max_length=512 # Limit output length
)
# Decode the translated tokens into readable text
translations = [tokenizer.decode(tokens, skip_special_tokens=True) for tokens in translated_tokens]
return translations
# Main loop for text input and translation output
print("Enter a Polish phrase to translate into Russian or !q to quit.")
while True:
# Get input phrase from the user
source_text = input("Enter a phrase: ")
# Check for the quit command
if source_text == "!q":
print("Exiting the program.")
break
# Translate the phrase with multiple variants
translations = translate_text(source_text)
if translations:
# Output all translation variants
for idx, translation in enumerate(translations, 1):
print(f"Variant {idx}: {translation}")
# Example Output:
# Enter a Polish phrase to translate into Russian or !q to quit.
# Enter a phrase: Powiedzieć a zrobić to nie to samo.
# Variant 1: Сказать и сделать — не одно и то же.
# Variant 2: Сказать и сделать — это не одно и то же.
# Variant 3: Сказать и сделать — не то же самое.
#
# Enter a phrase: O jego propozycji nawet nie warto mówić.
# Variant 1: О его предложении даже не стоит говорить.
# Variant 2: О его предложении не стоит даже говорить.
# Variant 3: О его предложении и говорить не стоит.
```
## Dear users and language enthusiasts,
Your support has always been the driving force behind innovation, and today, I’m excited to share how you can help take this project to the next level. Together, we’ve built a unique translation model using Marian, trained on a custom dataset that pushes the boundaries of language understanding. But this is just the beginning!
To continue improving the model, expanding the dataset, and ensuring faster, more accurate translations, we need your help. Your contributions will go directly toward:
Enhancing the dataset: Adding more diverse and high-quality data to make the model even smarter.
Acquiring powerful hardware: Training advanced models requires serious computational power, and your support will help us access the resources needed to make this happen.
Every contribution, no matter how small, brings us closer to a future where language barriers are a thing of the past. If you believe in this mission and want to see this project grow, consider supporting us by clicking the button below to Buy Me a Coffee.
Your support isn’t just a donation—it’s an investment in the future of communication. Let’s build something extraordinary together!
<a href="https://buycoffee.to/skyweb117" target="_blank"><img src="https://buycoffee.to/img/share-button-primary.png" style="width: 166px; height: 43px" alt="Postaw mi kawę na buycoffee.to"></a>
|
PhucNT2511/Qwen2-FT-MyDataset-SchedulerConstant | PhucNT2511 | 2025-05-27T20:03:11Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"generated_from_trainer",
"trl",
"sft",
"base_model:Qwen/Qwen2-0.5B",
"base_model:finetune:Qwen/Qwen2-0.5B",
"endpoints_compatible",
"region:us"
]
| null | 2025-05-27T10:09:12Z | ---
base_model: Qwen/Qwen2-0.5B
library_name: transformers
model_name: Qwen2-FT-MyDataset-SchedulerConstant
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for Qwen2-FT-MyDataset-SchedulerConstant
This model is a fine-tuned version of [Qwen/Qwen2-0.5B](https://huggingface.co/Qwen/Qwen2-0.5B).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="PhucNT2511/Qwen2-FT-MyDataset-SchedulerConstant", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.12.0
- Transformers: 4.51.3
- Pytorch: 2.6.0+cu124
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
b6Amine/MNLP_M2_quantized_model | b6Amine | 2025-05-27T20:02:19Z | 0 | 0 | null | [
"safetensors",
"qwen3",
"license:apache-2.0",
"4-bit",
"bitsandbytes",
"region:us"
]
| null | 2025-05-27T19:58:42Z | ---
license: apache-2.0
---
|
TOMFORD79/X2H1 | TOMFORD79 | 2025-05-27T20:01:05Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-05-27T19:51:56Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
HPLT/hplt2c_eng90-fra10_checkpoints | HPLT | 2025-05-27T19:59:13Z | 0 | 0 | null | [
"pytorch",
"llama",
"HPLT",
"decoder",
"en",
"fr",
"dataset:HPLT/HPLT2.0_cleaned",
"arxiv:2503.10267",
"license:apache-2.0",
"region:us"
]
| null | 2025-05-26T08:49:52Z | ---
language:
- en
- fr
tags:
- HPLT
- decoder
license: apache-2.0
datasets:
- HPLT/HPLT2.0_cleaned
---
# HPLT v2.0 - Cleaned - English (90%), French (10%)
<img src="https://hplt-project.org/_next/static/media/logo-hplt.d5e16ca5.svg" width=12.5%>
This is one of the decoder-only language models trained on [HPLT2.0_cleaned](https://huggingface.co/datasets/HPLT/HPLT2.0_cleaned).
All the HPLT decoder-only models use the same hyper-parameters, roughly following the llama architecture with 2.15B parameters in total:
- hidden size: 2048
- attention heads: 32
- layers: 24
- sequence length: 2048
## Intermediate checkpoints
We are releasing intermediate checkpoints for each model at intervals of every 1000 training steps in separate branches. The naming convention is `checkpoint_00xxxx00`: for example, `checkpoint_0005000`. The checkpoints range from checkpoint_0001000 to checkpoint_0047684 and the latter is in the main branch.
## Cite us
```bibtex
@misc{burchell2025expandedmassivemultilingualdataset,
title={An Expanded Massive Multilingual Dataset for High-Performance Language Technologies},
author={Laurie Burchell and Ona de Gibert and Nikolay Arefyev and Mikko Aulamo and Marta Bañón and Pinzhen Chen and Mariia Fedorova and Liane Guillou and Barry Haddow and Jan Hajič and Jindřich Helcl and Erik Henriksson and Mateusz Klimaszewski and Ville Komulainen and Andrey Kutuzov and Joona Kytöniemi and Veronika Laippala and Petter Mæhlum and Bhavitvya Malik and Farrokh Mehryary and Vladislav Mikhailov and Nikita Moghe and Amanda Myntti and Dayyán O'Brien and Stephan Oepen and Proyag Pal and Jousia Piha and Sampo Pyysalo and Gema Ramírez-Sánchez and David Samuel and Pavel Stepachev and Jörg Tiedemann and Dušan Variš and Tereza Vojtěchová and Jaume Zaragoza-Bernabeu},
year={2025},
eprint={2503.10267},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2503.10267},
}
``` |
plumpyfield/natix-hot11 | plumpyfield | 2025-05-27T19:59:11Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| image-classification | 2025-05-27T19:59:00Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
plumpyfield/natix-hot16 | plumpyfield | 2025-05-27T19:58:46Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| image-classification | 2025-05-27T19:58:33Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
ahghorbe97/sdxl-vaefix-woman-merged | ahghorbe97 | 2025-05-27T19:58:44Z | 0 | 0 | diffusers | [
"diffusers",
"safetensors",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionXLPipeline",
"region:us"
]
| text-to-image | 2025-05-27T19:56:26Z | ---
library_name: diffusers
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🧨 diffusers pipeline that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
plumpyfield/natix-hot51 | plumpyfield | 2025-05-27T19:58:18Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| image-classification | 2025-05-27T19:58:07Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
plumpyfield/natix-hot46 | plumpyfield | 2025-05-27T19:57:55Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| image-classification | 2025-05-27T19:57:44Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
plumpyfield/natix-hot29 | plumpyfield | 2025-05-27T19:57:43Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| image-classification | 2025-05-27T19:57:32Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
plumpyfield/natix-hot38 | plumpyfield | 2025-05-27T19:56:30Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| image-classification | 2025-05-27T19:56:18Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
plumpyfield/natix-hot41 | plumpyfield | 2025-05-27T19:56:05Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| image-classification | 2025-05-27T19:55:55Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
8K-Katrina-Lim-Viral-Video/video.full.tattoo.girl.musicbd25xyz.katrinalim.video.com.lim.katrina.video.original | 8K-Katrina-Lim-Viral-Video | 2025-05-27T19:55:17Z | 0 | 0 | null | [
"region:us"
]
| null | 2025-05-27T19:40:17Z | [<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?katrina-lim)
[🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )](https://videohere.top/?katrina-lim)
[►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤❤️❤️⬇️⬇️](https://videohere.top/?katrina-lim) |
8K-Katrina-Lim-Viral-Video/wATCH.Katrina.Lim.Viral.Video.Original.Link | 8K-Katrina-Lim-Viral-Video | 2025-05-27T19:55:08Z | 0 | 0 | null | [
"region:us"
]
| null | 2025-05-27T19:41:52Z | [<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?katrina-lim)
[🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )](https://videohere.top/?katrina-lim)
[►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤❤️❤️⬇️⬇️](https://videohere.top/?katrina-lim) |
Full-Xem-Clip-mun2k11-mun-k11-videos-hq/18.Full.Video.clip.mun2k11.mun.k11.lo.clip.link.mun2k11z1u1jr2m9zwk86p.tele.mun | Full-Xem-Clip-mun2k11-mun-k11-videos-hq | 2025-05-27T19:55:05Z | 0 | 0 | null | [
"region:us"
]
| null | 2025-05-27T19:54:31Z | <a rel="nofollow" href="https://viralflix.xyz/leaked/?new">►►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤️​</a>
<a rel="nofollow" href="https://viralflix.xyz/leaked/?new">🔴►𝐂𝐋𝐈𝐂𝐊 𝐇𝐄𝐑𝐄 🌐==►► 𝐃𝐨𝐰𝐧𝐥𝐨𝐚𝐝 𝐍𝐨𝐰⬇️⬇️​</a>
<a rel="nofollow" href="https://viralflix.xyz/leaked/?new"><img src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif" alt="fsd"></a>
|
plumpyfield/natix-hot2 | plumpyfield | 2025-05-27T19:54:53Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| image-classification | 2025-05-27T19:54:42Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
plumpyfield/natix-hot31 | plumpyfield | 2025-05-27T19:54:41Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| image-classification | 2025-05-27T19:54:28Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
plumpyfield/natix-hot34 | plumpyfield | 2025-05-27T19:54:02Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| image-classification | 2025-05-27T19:53:52Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
plumpyfield/natix-hot42 | plumpyfield | 2025-05-27T19:53:35Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| image-classification | 2025-05-27T19:53:24Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
plumpyfield/natix-hot37 | plumpyfield | 2025-05-27T19:53:11Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| image-classification | 2025-05-27T19:53:00Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
muqtasid87/gemma3b_finetuned_v3 | muqtasid87 | 2025-05-27T19:52:42Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gemma3_text",
"text-generation",
"text-generation-inference",
"unsloth",
"gemma3",
"conversational",
"en",
"base_model:unsloth/gemma-3-4b-it-bnb-4bit",
"base_model:finetune:unsloth/gemma-3-4b-it-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-05-27T19:50:50Z | ---
base_model: unsloth/gemma-3-4b-it-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- gemma3
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** muqtasid87
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gemma-3-4b-it-bnb-4bit
This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
plumpyfield/natix-hot52 | plumpyfield | 2025-05-27T19:51:57Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| image-classification | 2025-05-27T19:51:47Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
plumpyfield/natix-hot50 | plumpyfield | 2025-05-27T19:51:46Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| image-classification | 2025-05-27T19:51:33Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
plumpyfield/natix-hot39 | plumpyfield | 2025-05-27T19:50:14Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| image-classification | 2025-05-27T19:50:04Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Blinorot/MNLP_M2_dpo_model | Blinorot | 2025-05-27T19:49:56Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"qwen3",
"text-generation",
"generated_from_trainer",
"alignment-handbook",
"trl",
"dpo",
"conversational",
"dataset:HuggingFaceH4/ultrafeedback_binarized",
"arxiv:2305.18290",
"base_model:Blinorot/qwen3-06.B-sft",
"base_model:finetune:Blinorot/qwen3-06.B-sft",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-05-27T19:49:02Z | ---
base_model: Blinorot/qwen3-06.B-sft
datasets:
- HuggingFaceH4/ultrafeedback_binarized
library_name: transformers
model_name: qwen3-06.B-dpo
tags:
- generated_from_trainer
- alignment-handbook
- trl
- dpo
licence: license
---
# Model Card for qwen3-06.B-dpo
This model is a fine-tuned version of [Blinorot/qwen3-06.B-sft](https://huggingface.co/Blinorot/qwen3-06.B-sft) on the [['HuggingFaceH4/ultrafeedback_binarized']](https://huggingface.co/datasets/['HuggingFaceH4/ultrafeedback_binarized']) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="Blinorot/qwen3-06.B-dpo", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/blinorot/huggingface/runs/d5yfm6sl)
This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290).
### Framework versions
- TRL: 0.17.0
- Transformers: 4.51.3
- Pytorch: 2.6.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite DPO as:
```bibtex
@inproceedings{rafailov2023direct,
title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}},
author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn},
year = 2023,
booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023},
url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html},
editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
plumpyfield/natix-hot25 | plumpyfield | 2025-05-27T19:49:23Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| image-classification | 2025-05-27T19:49:12Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
plumpyfield/natix-hot15 | plumpyfield | 2025-05-27T19:49:00Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| image-classification | 2025-05-27T19:48:49Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
plumpyfield/natix-hot8 | plumpyfield | 2025-05-27T19:48:35Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| image-classification | 2025-05-27T19:48:23Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
plumpyfield/natix-hot1 | plumpyfield | 2025-05-27T19:48:22Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| image-classification | 2025-05-27T19:48:09Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
one-girl-one-wolf-0/one.girl.one.wolf.viral.videos | one-girl-one-wolf-0 | 2025-05-27T19:48:16Z | 0 | 0 | null | [
"region:us"
]
| null | 2025-05-27T19:47:51Z | <a rel="nofollow" href="https://viralflix.xyz/leaked/?new">►►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤️​</a>
<a rel="nofollow" href="https://viralflix.xyz/leaked/?new">🔴►𝐂𝐋𝐈𝐂𝐊 𝐇𝐄𝐑𝐄 🌐==►► 𝐃𝐨𝐰𝐧𝐥𝐨𝐚𝐝 𝐍𝐨𝐰⬇️⬇️​</a>
<a rel="nofollow" href="https://viralflix.xyz/leaked/?new"><img src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif" alt="fsd"></a>
|
ErikCikalleshi/Qwen3-1.7B-unsloth-bnb-4bit_alpaca_model_16bit | ErikCikalleshi | 2025-05-27T19:46:41Z | 14 | 0 | transformers | [
"transformers",
"pytorch",
"qwen3",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"conversational",
"en",
"base_model:unsloth/Qwen3-1.7B-unsloth-bnb-4bit",
"base_model:finetune:unsloth/Qwen3-1.7B-unsloth-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-generation | 2025-05-25T09:04:11Z | ---
base_model: unsloth/Qwen3-1.7B-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** ErikCikalleshi
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Qwen3-1.7B-unsloth-bnb-4bit
This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
aarabil/bge-large-en-v1.5 | aarabil | 2025-05-27T19:39:01Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"bert",
"feature-extraction",
"arxiv:1910.09700",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
]
| feature-extraction | 2025-05-27T19:24:36Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
zeenat-hd/New.link.18.zeenat.viral.video.zeenat.vlogs.mms | zeenat-hd | 2025-05-27T19:37:56Z | 0 | 0 | null | [
"region:us"
]
| null | 2025-05-27T19:33:20Z | [🌐 CLICK HERE 🟢==►► WATCH NOW](https://videohere.top/?V=zeenat)
[🔴 CLICK HERE 🌐==►► Download Now)](https://videohere.top/?V=zeenat)
[<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?V=zeenat) |
wATCH-Sophie-Rain-Sophie-Rain-Videoss/Sophie.Rain.Spiderman.Video.Tutorial | wATCH-Sophie-Rain-Sophie-Rain-Videoss | 2025-05-27T19:33:26Z | 0 | 0 | null | [
"region:us"
]
| null | 2025-05-27T19:25:19Z | 18 seconds ago
<a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">►►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤️</a></p>
<a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">🔴►𝐂𝐋𝐈𝐂𝐊 𝐇𝐄𝐑𝐄 🌐==►► 𝐃𝐨𝐰𝐧𝐥𝐨𝐚𝐝 𝐍𝐨𝐰⬇️⬇️</a></p>
<p><a rel="nofollow" title="WATCH NOW" href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman"><img border="Sophie+Rain+Spidermanno" height="480" width="720" title="WATCH NOW" alt="WATCH NOW" src="https://i.ibb.co.com/xMMVF88/686577567.gif"></a></p>
18 seconds ago
<a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">►►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤️</a></p>
<a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">🔴►𝐂𝐋𝐈𝐂𝐊 𝐇𝐄𝐑𝐄 🌐==►► 𝐃𝐨𝐰𝐧𝐥𝐨𝐚𝐝 𝐍𝐨𝐰⬇️⬇️</a></p>
<p><a rel="nofollow" title="WATCH NOW" href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman"><img border="Sophie+Rain+Spidermanno" height="480" width="720" title="WATCH NOW" alt="WATCH NOW" src="https://i.ibb.co.com/xMMVF88/686577567.gif"></a></p>
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter
. . . . . . . . . L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter Telegram
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
Related Search :
sophie rain nude
sophie rain porn
sophie rain naked
sophie rain nudes
sophie rain leaks
sophie rain onlyfans
sophie rain leaked
sophie rain spiderman video
sophie rain leak
sophie rain age
sophie rain spiderman
sophie rain pussy
sophie rain xxx
sophie rain sex tape
sophie rain spider man
sophie rain spiderman video oficial
sophie rain leaked nudes
sophie rain onlyfans leaked
sophie rain erome
sophie rain spiderman video instagram
sophie rain spiderman leak
sophie rain spiderman video tutorial
sophie rain spiderman video twitter
sophie rain spiderman vid
sophie rain spiderman video leaked
sophie rain spiderman porn
sophie rain spiderman video oficial twitter
sophie rain spiderman video tiktok original
spider man sophie rain spiderman
sophie rain spiderman leaked
sophie rain spiderman video leak
sophie rain spiderman twitter
sophie rain spiderman xxx
sophie rain spiderman video xxx
sophie rain spiderman tiktok
sophie rain spiderman video instagram full video
L𝚎aked Video Sophie Rain Spiderman Video Leaked Original Video ᴠɪʀᴀʟ Video L𝚎aked on X Twitter Telegram
[-wATCH-]— Sophie Rain Spiderman Video Leaked Video Original Video Link Sophie Rain Spiderman Video Leaked Video ᴠɪʀᴀʟ On Social Media X Trending Now
[-wATCH-]— Sophie Rain Spiderman Video Leaked Video ᴠɪʀᴀʟ On Social Media ˣ ᵀʷⁱᵗᵗᵉʳ
[-wATCH-]— Sophie Rain Spiderman Video Leaked Video Original Video Link Sophie Rain Spiderman Video Leaked Video ᴠɪʀᴀʟ On Social Media X Trending Now
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter Telegram
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter
. . . . . . . . . L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter Telegram
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter. , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
18 seconds ago
<a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">►►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤️</a></p>
<a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">🔴►𝐂𝐋𝐈𝐂𝐊 𝐇𝐄𝐑𝐄 🌐==►► 𝐃𝐨𝐰𝐧𝐥𝐨𝐚𝐝 𝐍𝐨𝐰⬇️⬇️</a></p>
<p><a rel="nofollow" title="WATCH NOW" href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman"><img border="Sophie+Rain+Spidermanno" height="480" width="720" title="WATCH NOW" alt="WATCH NOW" src="https://i.ibb.co.com/xMMVF88/686577567.gif"></a></p>
— Sophie Rain Spiderman Video, a young and talented digital creator, recently became famous thanks to this interesting video. Leaked Video Sophie ...27 seconds ago - Sophie Rain Spiderman Viral Video Original Viral video took the internet by storm and amazed viewers on various social media platforms. Sophie Rain Spiderman Video, a young and talented digital creator, recently became famous thanks to this interesting video.
Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Telegram
Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter
Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Telegram
Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
Related Search :
sophie rain nude
sophie rain porn
sophie rain naked
sophie rain nudes
sophie rain leaks
sophie rain onlyfans
sophie rain leaked
sophie rain spiderman video
sophie rain leak
sophie rain age
sophie rain spiderman
sophie rain pussy
sophie rain xxx
sophie rain sex tape
sophie rain spider man
sophie rain spiderman video oficial
sophie rain leaked nudes
sophie rain onlyfans leaked
sophie rain erome
sophie rain spiderman video instagram
sophie rain spiderman leak
sophie rain spiderman video tutorial
sophie rain spiderman video twitter
sophie rain spiderman vid
sophie rain spiderman video leaked
sophie rain spiderman porn
sophie rain spiderman video oficial twitter
sophie rain spiderman video tiktok original
spider man sophie rain spiderman
sophie rain spiderman leaked
sophie rain spiderman video leak
sophie rain spiderman twitter
sophie rain spiderman xxx
sophie rain spiderman video xxx
sophie rain spiderman tiktok
sophie rain spiderman video instagram full video
18 seconds ago
<a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">►►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤️</a></p>
<a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">🔴►𝐂𝐋𝐈𝐂𝐊 𝐇𝐄𝐑𝐄 🌐==►► 𝐃𝐨𝐰𝐧𝐥𝐨𝐚𝐝 𝐍𝐨𝐰⬇️⬇️</a></p>
<p><a rel="nofollow" title="WATCH NOW" href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman"><img border="Sophie+Rain+Spidermanno" height="480" width="720" title="WATCH NOW" alt="WATCH NOW" src="https://i.ibb.co.com/xMMVF88/686577567.gif"></a></p>
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter
. . . . . . . . . L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter Telegram
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
Related Search :
sophie rain nude
sophie rain porn
sophie rain naked
sophie rain nudes
sophie rain leaks
sophie rain onlyfans
sophie rain leaked
sophie rain spiderman video
sophie rain leak
sophie rain age
sophie rain spiderman
sophie rain pussy
sophie rain xxx
sophie rain sex tape
sophie rain spider man
sophie rain spiderman video oficial
sophie rain leaked nudes
sophie rain onlyfans leaked
sophie rain erome
sophie rain spiderman video instagram
sophie rain spiderman leak
sophie rain spiderman video tutorial
sophie rain spiderman video twitter
sophie rain spiderman vid
sophie rain spiderman video leaked
sophie rain spiderman porn
sophie rain spiderman video oficial twitter
sophie rain spiderman video tiktok original
spider man sophie rain spiderman
sophie rain spiderman leaked
sophie rain spiderman video leak
sophie rain spiderman twitter
sophie rain spiderman xxx
sophie rain spiderman video xxx
sophie rain spiderman tiktok
sophie rain spiderman video instagram full video
L𝚎aked Video Sophie Rain Spiderman Video Leaked Original Video ᴠɪʀᴀʟ Video L𝚎aked on X Twitter Telegram
[-wATCH-]— Sophie Rain Spiderman Video Leaked Video Original Video Link Sophie Rain Spiderman Video Leaked Video ᴠɪʀᴀʟ On Social Media X Trending Now
[-wATCH-]— Sophie Rain Spiderman Video Leaked Video ᴠɪʀᴀʟ On Social Media ˣ ᵀʷⁱᵗᵗᵉʳ
[-wATCH-]— Sophie Rain Spiderman Video Leaked Video Original Video Link Sophie Rain Spiderman Video Leaked Video ᴠɪʀᴀʟ On Social Media X Trending Now
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter Telegram
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter
. . . . . . . . . L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter Telegram
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter. , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
18 seconds ago
<a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">►►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤️</a></p>
<a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">🔴►𝐂𝐋𝐈𝐂𝐊 𝐇𝐄𝐑𝐄 🌐==►► 𝐃𝐨𝐰𝐧𝐥𝐨𝐚𝐝 𝐍𝐨𝐰⬇️⬇️</a></p>
<p><a rel="nofollow" title="WATCH NOW" href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman"><img border="Sophie+Rain+Spidermanno" height="480" width="720" title="WATCH NOW" alt="WATCH NOW" src="https://i.ibb.co.com/xMMVF88/686577567.gif"></a></p>
— Sophie Rain Spiderman Video, a young and talented digital creator, recently became famous thanks to this interesting video. Leaked Video Sophie ...27 seconds ago - Sophie Rain Spiderman Viral Video Original Viral video took the internet by storm and amazed viewers on various social media platforms. Sophie Rain Spiderman Video, a young and talented digital creator, recently became famous thanks to this interesting video.
Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Telegram
Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter
Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Telegram
Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
Related Search :
sophie rain nude
sophie rain porn
sophie rain naked
sophie rain nudes
sophie rain leaks
sophie rain onlyfans
sophie rain leaked
sophie rain spiderman video
sophie rain leak
sophie rain age
sophie rain spiderman
sophie rain pussy
sophie rain xxx
sophie rain sex tape
sophie rain spider man
sophie rain spiderman video oficial
sophie rain leaked nudes
sophie rain onlyfans leaked
sophie rain erome
sophie rain spiderman video instagram
sophie rain spiderman leak
sophie rain spiderman video tutorial
sophie rain spiderman video twitter
sophie rain spiderman vid
sophie rain spiderman video leaked
sophie rain spiderman porn
sophie rain spiderman video oficial twitter
sophie rain spiderman video tiktok original
spider man sophie rain spiderman
sophie rain spiderman leaked
sophie rain spiderman video leak
sophie rain spiderman twitter
sophie rain spiderman xxx
sophie rain spiderman video xxx
sophie rain spiderman tiktok
sophie rain spiderman video instagram full video
18 seconds ago
<a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">►►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤️</a></p>
<a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">🔴►𝐂𝐋𝐈𝐂𝐊 𝐇𝐄𝐑𝐄 🌐==►► 𝐃𝐨𝐰𝐧𝐥𝐨𝐚𝐝 𝐍𝐨𝐰⬇️⬇️</a></p>
<p><a rel="nofollow" title="WATCH NOW" href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman"><img border="Sophie+Rain+Spidermanno" height="480" width="720" title="WATCH NOW" alt="WATCH NOW" src="https://i.ibb.co.com/xMMVF88/686577567.gif"></a></p>
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter
. . . . . . . . . L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter Telegram
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
Related Search :
sophie rain nude
sophie rain porn
sophie rain naked
sophie rain nudes
sophie rain leaks
sophie rain onlyfans
sophie rain leaked
sophie rain spiderman video
sophie rain leak
sophie rain age
sophie rain spiderman
sophie rain pussy
sophie rain xxx
sophie rain sex tape
sophie rain spider man
sophie rain spiderman video oficial
sophie rain leaked nudes
sophie rain onlyfans leaked
sophie rain erome
sophie rain spiderman video instagram
sophie rain spiderman leak
sophie rain spiderman video tutorial
sophie rain spiderman video twitter
sophie rain spiderman vid
sophie rain spiderman video leaked
sophie rain spiderman porn
sophie rain spiderman video oficial twitter
sophie rain spiderman video tiktok original
spider man sophie rain spiderman
sophie rain spiderman leaked
sophie rain spiderman video leak
sophie rain spiderman twitter
sophie rain spiderman xxx
sophie rain spiderman video xxx
sophie rain spiderman tiktok
sophie rain spiderman video instagram full video
L𝚎aked Video Sophie Rain Spiderman Video Leaked Original Video ᴠɪʀᴀʟ Video L𝚎aked on X Twitter Telegram
[-wATCH-]— Sophie Rain Spiderman Video Leaked Video Original Video Link Sophie Rain Spiderman Video Leaked Video ᴠɪʀᴀʟ On Social Media X Trending Now
[-wATCH-]— Sophie Rain Spiderman Video Leaked Video ᴠɪʀᴀʟ On Social Media ˣ ᵀʷⁱᵗᵗᵉʳ
[-wATCH-]— Sophie Rain Spiderman Video Leaked Video Original Video Link Sophie Rain Spiderman Video Leaked Video ᴠɪʀᴀʟ On Social Media X Trending Now
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter Telegram
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter
. . . . . . . . . L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter Telegram
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter. , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
18 seconds ago
<a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">►►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤️</a></p>
<a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">🔴►𝐂𝐋𝐈𝐂𝐊 𝐇𝐄𝐑𝐄 🌐==►► 𝐃𝐨𝐰𝐧𝐥𝐨𝐚𝐝 𝐍𝐨𝐰⬇️⬇️</a></p>
<p><a rel="nofollow" title="WATCH NOW" href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman"><img border="Sophie+Rain+Spidermanno" height="480" width="720" title="WATCH NOW" alt="WATCH NOW" src="https://i.ibb.co.com/xMMVF88/686577567.gif"></a></p>
— Sophie Rain Spiderman Video, a young and talented digital creator, recently became famous thanks to this interesting video. Leaked Video Sophie ...27 seconds ago - Sophie Rain Spiderman Viral Video Original Viral video took the internet by storm and amazed viewers on various social media platforms. Sophie Rain Spiderman Video, a young and talented digital creator, recently became famous thanks to this interesting video.
Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Telegram
Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter
Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Telegram
Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
Related Search :
sophie rain nude
sophie rain porn
sophie rain naked
sophie rain nudes
sophie rain leaks
sophie rain onlyfans
sophie rain leaked
sophie rain spiderman video
sophie rain leak
sophie rain age
sophie rain spiderman
sophie rain pussy
sophie rain xxx
sophie rain sex tape
sophie rain spider man
sophie rain spiderman video oficial
sophie rain leaked nudes
sophie rain onlyfans leaked
sophie rain erome
sophie rain spiderman video instagram
sophie rain spiderman leak
sophie rain spiderman video tutorial
sophie rain spiderman video twitter
sophie rain spiderman vid
sophie rain spiderman video leaked
sophie rain spiderman porn
sophie rain spiderman video oficial twitter
sophie rain spiderman video tiktok original
spider man sophie rain spiderman
sophie rain spiderman leaked
sophie rain spiderman video leak
sophie rain spiderman twitter
sophie rain spiderman xxx
sophie rain spiderman video xxx
sophie rain spiderman tiktok
sophie rain spiderman video instagram full video
18 seconds ago
<a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">►►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤️</a></p>
<a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">🔴►𝐂𝐋𝐈𝐂𝐊 𝐇𝐄𝐑𝐄 🌐==►► 𝐃𝐨𝐰𝐧𝐥𝐨𝐚𝐝 𝐍𝐨𝐰⬇️⬇️</a></p>
<p><a rel="nofollow" title="WATCH NOW" href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman"><img border="Sophie+Rain+Spidermanno" height="480" width="720" title="WATCH NOW" alt="WATCH NOW" src="https://i.ibb.co.com/xMMVF88/686577567.gif"></a></p>
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter
. . . . . . . . . L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter Telegram
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
Related Search :
sophie rain nude
sophie rain porn
sophie rain naked
sophie rain nudes
sophie rain leaks
sophie rain onlyfans
sophie rain leaked
sophie rain spiderman video
sophie rain leak
sophie rain age
sophie rain spiderman
sophie rain pussy
sophie rain xxx
sophie rain sex tape
sophie rain spider man
sophie rain spiderman video oficial
sophie rain leaked nudes
sophie rain onlyfans leaked
sophie rain erome
sophie rain spiderman video instagram
sophie rain spiderman leak
sophie rain spiderman video tutorial
sophie rain spiderman video twitter
sophie rain spiderman vid
sophie rain spiderman video leaked
sophie rain spiderman porn
sophie rain spiderman video oficial twitter
sophie rain spiderman video tiktok original
spider man sophie rain spiderman
sophie rain spiderman leaked
sophie rain spiderman video leak
sophie rain spiderman twitter
sophie rain spiderman xxx
sophie rain spiderman video xxx
sophie rain spiderman tiktok
sophie rain spiderman video instagram full video
L𝚎aked Video Sophie Rain Spiderman Video Leaked Original Video ᴠɪʀᴀʟ Video L𝚎aked on X Twitter Telegram
[-wATCH-]— Sophie Rain Spiderman Video Leaked Video Original Video Link Sophie Rain Spiderman Video Leaked Video ᴠɪʀᴀʟ On Social Media X Trending Now
[-wATCH-]— Sophie Rain Spiderman Video Leaked Video ᴠɪʀᴀʟ On Social Media ˣ ᵀʷⁱᵗᵗᵉʳ
[-wATCH-]— Sophie Rain Spiderman Video Leaked Video Original Video Link Sophie Rain Spiderman Video Leaked Video ᴠɪʀᴀʟ On Social Media X Trending Now
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter Telegram
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter
. . . . . . . . . L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter Telegram
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter. , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
18 seconds ago
<a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">►►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤️</a></p>
<a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">🔴►𝐂𝐋𝐈𝐂𝐊 𝐇𝐄𝐑𝐄 🌐==►► 𝐃𝐨𝐰𝐧𝐥𝐨𝐚𝐝 𝐍𝐨𝐰⬇️⬇️</a></p>
<p><a rel="nofollow" title="WATCH NOW" href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman"><img border="Sophie+Rain+Spidermanno" height="480" width="720" title="WATCH NOW" alt="WATCH NOW" src="https://i.ibb.co.com/xMMVF88/686577567.gif"></a></p>
— Sophie Rain Spiderman Video, a young and talented digital creator, recently became famous thanks to this interesting video. Leaked Video Sophie ...27 seconds ago - Sophie Rain Spiderman Viral Video Original Viral video took the internet by storm and amazed viewers on various social media platforms. Sophie Rain Spiderman Video, a young and talented digital creator, recently became famous thanks to this interesting video.
Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Telegram
Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter
Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Telegram
Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
Related Search :
sophie rain nude
sophie rain porn
sophie rain naked
sophie rain nudes
sophie rain leaks
sophie rain onlyfans
sophie rain leaked
sophie rain spiderman video
sophie rain leak
sophie rain age
sophie rain spiderman
sophie rain pussy
sophie rain xxx
sophie rain sex tape
sophie rain spider man
sophie rain spiderman video oficial
sophie rain leaked nudes
sophie rain onlyfans leaked
sophie rain erome
sophie rain spiderman video instagram
sophie rain spiderman leak
sophie rain spiderman video tutorial
sophie rain spiderman video twitter
sophie rain spiderman vid
sophie rain spiderman video leaked
sophie rain spiderman porn
sophie rain spiderman video oficial twitter
sophie rain spiderman video tiktok original
spider man sophie rain spiderman
sophie rain spiderman leaked
sophie rain spiderman video leak
sophie rain spiderman twitter
sophie rain spiderman xxx
sophie rain spiderman video xxx
sophie rain spiderman tiktok
sophie rain spiderman video instagram full video
18 seconds ago
<a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">►►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤️</a></p>
<a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">🔴►𝐂𝐋𝐈𝐂𝐊 𝐇𝐄𝐑𝐄 🌐==►► 𝐃𝐨𝐰𝐧𝐥𝐨𝐚𝐝 𝐍𝐨𝐰⬇️⬇️</a></p>
<p><a rel="nofollow" title="WATCH NOW" href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman"><img border="Sophie+Rain+Spidermanno" height="480" width="720" title="WATCH NOW" alt="WATCH NOW" src="https://i.ibb.co.com/xMMVF88/686577567.gif"></a></p>
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter
. . . . . . . . . L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter Telegram
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
Related Search :
sophie rain nude
sophie rain porn
sophie rain naked
sophie rain nudes
sophie rain leaks
sophie rain onlyfans
sophie rain leaked
sophie rain spiderman video
sophie rain leak
sophie rain age
sophie rain spiderman
sophie rain pussy
sophie rain xxx
sophie rain sex tape
sophie rain spider man
sophie rain spiderman video oficial
sophie rain leaked nudes
sophie rain onlyfans leaked
sophie rain erome
sophie rain spiderman video instagram
sophie rain spiderman leak
sophie rain spiderman video tutorial
sophie rain spiderman video twitter
sophie rain spiderman vid
sophie rain spiderman video leaked
sophie rain spiderman porn
sophie rain spiderman video oficial twitter
sophie rain spiderman video tiktok original
spider man sophie rain spiderman
sophie rain spiderman leaked
sophie rain spiderman video leak
sophie rain spiderman twitter
sophie rain spiderman xxx
sophie rain spiderman video xxx
sophie rain spiderman tiktok
sophie rain spiderman video instagram full video
L𝚎aked Video Sophie Rain Spiderman Video Leaked Original Video ᴠɪʀᴀʟ Video L𝚎aked on X Twitter Telegram
[-wATCH-]— Sophie Rain Spiderman Video Leaked Video Original Video Link Sophie Rain Spiderman Video Leaked Video ᴠɪʀᴀʟ On Social Media X Trending Now
[-wATCH-]— Sophie Rain Spiderman Video Leaked Video ᴠɪʀᴀʟ On Social Media ˣ ᵀʷⁱᵗᵗᵉʳ
[-wATCH-]— Sophie Rain Spiderman Video Leaked Video Original Video Link Sophie Rain Spiderman Video Leaked Video ᴠɪʀᴀʟ On Social Media X Trending Now
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter Telegram
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter
. . . . . . . . . L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter Telegram
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter. , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
18 seconds ago
<a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">►►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤️</a></p>
<a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">🔴►𝐂𝐋𝐈𝐂𝐊 𝐇𝐄𝐑𝐄 🌐==►► 𝐃𝐨𝐰𝐧𝐥𝐨𝐚𝐝 𝐍𝐨𝐰⬇️⬇️</a></p>
<p><a rel="nofollow" title="WATCH NOW" href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman"><img border="Sophie+Rain+Spidermanno" height="480" width="720" title="WATCH NOW" alt="WATCH NOW" src="https://i.ibb.co.com/xMMVF88/686577567.gif"></a></p>
— Sophie Rain Spiderman Video, a young and talented digital creator, recently became famous thanks to this interesting video. Leaked Video Sophie ...27 seconds ago - Sophie Rain Spiderman Viral Video Original Viral video took the internet by storm and amazed viewers on various social media platforms. Sophie Rain Spiderman Video, a young and talented digital creator, recently became famous thanks to this interesting video.
Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Telegram
Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter
Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Telegram
Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
Related Search :
sophie rain nude
sophie rain porn
sophie rain naked
sophie rain nudes
sophie rain leaks
sophie rain onlyfans
sophie rain leaked
sophie rain spiderman video
sophie rain leak
sophie rain age
sophie rain spiderman
sophie rain pussy
sophie rain xxx
sophie rain sex tape
sophie rain spider man
sophie rain spiderman video oficial
sophie rain leaked nudes
sophie rain onlyfans leaked
sophie rain erome
sophie rain spiderman video instagram
sophie rain spiderman leak
sophie rain spiderman video tutorial
sophie rain spiderman video twitter
sophie rain spiderman vid
sophie rain spiderman video leaked
sophie rain spiderman porn
sophie rain spiderman video oficial twitter
sophie rain spiderman video tiktok original
spider man sophie rain spiderman
sophie rain spiderman leaked
sophie rain spiderman video leak
sophie rain spiderman twitter
sophie rain spiderman xxx
sophie rain spiderman video xxx
sophie rain spiderman tiktok
sophie rain spiderman video instagram full video
18 seconds ago
<a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">►►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤️</a></p>
<a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">🔴►𝐂𝐋𝐈𝐂𝐊 𝐇𝐄𝐑𝐄 🌐==►► 𝐃𝐨𝐰𝐧𝐥𝐨𝐚𝐝 𝐍𝐨𝐰⬇️⬇️</a></p>
<p><a rel="nofollow" title="WATCH NOW" href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman"><img border="Sophie+Rain+Spidermanno" height="480" width="720" title="WATCH NOW" alt="WATCH NOW" src="https://i.ibb.co.com/xMMVF88/686577567.gif"></a></p>
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter
. . . . . . . . . L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter Telegram
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
Related Search :
sophie rain nude
sophie rain porn
sophie rain naked
sophie rain nudes
sophie rain leaks
sophie rain onlyfans
sophie rain leaked
sophie rain spiderman video
sophie rain leak
sophie rain age
sophie rain spiderman
sophie rain pussy
sophie rain xxx
sophie rain sex tape
sophie rain spider man
sophie rain spiderman video oficial
sophie rain leaked nudes
sophie rain onlyfans leaked
sophie rain erome
sophie rain spiderman video instagram
sophie rain spiderman leak
sophie rain spiderman video tutorial
sophie rain spiderman video twitter
sophie rain spiderman vid
sophie rain spiderman video leaked
sophie rain spiderman porn
sophie rain spiderman video oficial twitter
sophie rain spiderman video tiktok original
spider man sophie rain spiderman
sophie rain spiderman leaked
sophie rain spiderman video leak
sophie rain spiderman twitter
sophie rain spiderman xxx
sophie rain spiderman video xxx
sophie rain spiderman tiktok
sophie rain spiderman video instagram full video
L𝚎aked Video Sophie Rain Spiderman Video Leaked Original Video ᴠɪʀᴀʟ Video L𝚎aked on X Twitter Telegram
[-wATCH-]— Sophie Rain Spiderman Video Leaked Video Original Video Link Sophie Rain Spiderman Video Leaked Video ᴠɪʀᴀʟ On Social Media X Trending Now
[-wATCH-]— Sophie Rain Spiderman Video Leaked Video ᴠɪʀᴀʟ On Social Media ˣ ᵀʷⁱᵗᵗᵉʳ
[-wATCH-]— Sophie Rain Spiderman Video Leaked Video Original Video Link Sophie Rain Spiderman Video Leaked Video ᴠɪʀᴀʟ On Social Media X Trending Now
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter Telegram
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter
. . . . . . . . . L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter Telegram
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
L𝚎aked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L𝚎aked on X Twitter. , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
18 seconds ago
<a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">►►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤️</a></p>
<a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">🔴►𝐂𝐋𝐈𝐂𝐊 𝐇𝐄𝐑𝐄 🌐==►► 𝐃𝐨𝐰𝐧𝐥𝐨𝐚𝐝 𝐍𝐨𝐰⬇️⬇️</a></p>
<p><a rel="nofollow" title="WATCH NOW" href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman"><img border="Sophie+Rain+Spidermanno" height="480" width="720" title="WATCH NOW" alt="WATCH NOW" src="https://i.ibb.co.com/xMMVF88/686577567.gif"></a></p>
— Sophie Rain Spiderman Video, a young and talented digital creator, recently became famous thanks to this interesting video. Leaked Video Sophie ...27 seconds ago - Sophie Rain Spiderman Viral Video Original Viral video took the internet by storm and amazed viewers on various social media platforms. Sophie Rain Spiderman Video, a young and talented digital creator, recently became famous thanks to this interesting video.
Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Telegram
Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter
Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Telegram
Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter
Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter
Related Search :
sophie rain nude
sophie rain porn
sophie rain naked
sophie rain nudes
sophie rain leaks
sophie rain onlyfans
sophie rain leaked
sophie rain spiderman video
sophie rain leak
sophie rain age
sophie rain spiderman
sophie rain pussy
sophie rain xxx
sophie rain sex tape
sophie rain spider man
sophie rain spiderman video oficial
sophie rain leaked nudes
sophie rain onlyfans leaked
sophie rain erome
sophie rain spiderman video instagram
sophie rain spiderman leak
sophie rain spiderman video tutorial
sophie rain spiderman video twitter
sophie rain spiderman vid
sophie rain spiderman video leaked
sophie rain spiderman porn
sophie rain spiderman video oficial twitter
sophie rain spiderman video tiktok original
spider man sophie rain spiderman
sophie rain spiderman leaked
sophie rain spiderman video leak
sophie rain spiderman twitter
sophie rain spiderman xxx
sophie rain spiderman video xxx
sophie rain spiderman tiktok
sophie rain spiderman video instagram full video
|
Subsets and Splits