modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-13 18:27:38
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
518 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-13 18:27:10
card
stringlengths
11
1.01M
yezune/xlm-roberta-base-finetuned-panx-en
yezune
2023-08-10T09:55:26Z
106
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-10T09:54:05Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.en split: validation args: PAN-X.en metrics: - name: F1 type: f1 value: 0.6877426511369938 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3900 - F1: 0.6877 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1495 | 1.0 | 50 | 0.5817 | 0.4923 | | 0.5096 | 2.0 | 100 | 0.4302 | 0.6313 | | 0.3706 | 3.0 | 150 | 0.3900 | 0.6877 | ### Framework versions - Transformers 4.30.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.2 - Tokenizers 0.13.3
yezune/xlm-roberta-base-finetuned-panx-fr
yezune
2023-08-10T09:52:25Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-10T09:50:25Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.fr split: validation args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8341708542713568 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2671 - F1: 0.8342 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5836 | 1.0 | 191 | 0.3316 | 0.7831 | | 0.26 | 2.0 | 382 | 0.2738 | 0.8256 | | 0.1681 | 3.0 | 573 | 0.2671 | 0.8342 | ### Framework versions - Transformers 4.30.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.2 - Tokenizers 0.13.3
iliyaML/t5-small-billsum
iliyaML
2023-08-10T09:52:25Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:billsum", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-10T09:42:37Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer datasets: - billsum metrics: - rouge model-index: - name: t5-small-billsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: billsum type: billsum config: default split: ca_test args: default metrics: - name: Rouge1 type: rouge value: 0.1528 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-billsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 2.5246 - Rouge1: 0.1528 - Rouge2: 0.0586 - Rougel: 0.1291 - Rougelsum: 0.1292 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 62 | 2.8551 | 0.1284 | 0.0348 | 0.1081 | 0.1085 | 19.0 | | No log | 2.0 | 124 | 2.6404 | 0.1373 | 0.0453 | 0.1147 | 0.1147 | 19.0 | | No log | 3.0 | 186 | 2.5665 | 0.1423 | 0.0494 | 0.1195 | 0.1192 | 19.0 | | No log | 4.0 | 248 | 2.5342 | 0.149 | 0.055 | 0.1259 | 0.1257 | 19.0 | | No log | 5.0 | 310 | 2.5246 | 0.1528 | 0.0586 | 0.1291 | 0.1292 | 19.0 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
yezune/xlm-roberta-base-finetuned-panx-de-fr
yezune
2023-08-10T09:49:34Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-10T09:44:57Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1627 - F1: 0.8586 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.291 | 1.0 | 715 | 0.1809 | 0.8299 | | 0.1468 | 2.0 | 1430 | 0.1512 | 0.8516 | | 0.0936 | 3.0 | 2145 | 0.1627 | 0.8586 | ### Framework versions - Transformers 4.30.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.2 - Tokenizers 0.13.3
aycandv/ppo-LunarLander-v2
aycandv
2023-08-10T09:36:26Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T08:29:19Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 277.41 +/- 13.66 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
trieudemo11/llama_7b_attributes_prompt_alpaca_2_stable_tested
trieudemo11
2023-08-10T09:31:48Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T17:44:36Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0 - PEFT 0.5.0.dev0 - PEFT 0.5.0.dev0 - PEFT 0.5.0.dev0 - PEFT 0.5.0.dev0 - PEFT 0.5.0.dev0 - PEFT 0.5.0.dev0 - PEFT 0.5.0.dev0
kzzlar/ppo-LunarLander-v2
kzzlar
2023-08-10T09:31:27Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T09:30:58Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 207.59 +/- 63.60 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
rossevine/wav2vec2_Indonesia_4
rossevine
2023-08-10T09:29:52Z
3
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-06T15:39:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2_Indonesia_4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2_Indonesia_4 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.3147 - Wer: 0.5914 ## Model description Model yang dilatih dengan data train common voice dan data test data perkuliahan ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.9949 | 3.23 | 400 | 1.3340 | 0.8916 | | 0.4469 | 6.45 | 800 | 1.0507 | 0.6859 | | 0.2003 | 9.68 | 1200 | 1.1115 | 0.6369 | | 0.1432 | 12.9 | 1600 | 1.1307 | 0.6297 | | 0.1138 | 16.13 | 2000 | 1.2157 | 0.6369 | | 0.089 | 19.35 | 2400 | 1.2834 | 0.6058 | | 0.0712 | 22.58 | 2800 | 1.3283 | 0.5947 | | 0.057 | 25.81 | 3200 | 1.3345 | 0.5827 | | 0.0467 | 29.03 | 3600 | 1.3147 | 0.5914 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
WinSenX/sd-class-butterflies-32
WinSenX
2023-08-10T09:27:17Z
30
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-08-10T09:26:59Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('WinSenX/sd-class-butterflies-32') image = pipeline().images[0] image ```
abin-regi/my-pet-dog-xzh
abin-regi
2023-08-10T09:26:36Z
0
0
null
[ "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-08-10T09:23:35Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Dog-xzh Dreambooth model trained by abin-regi following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: VJCET421 Sample pictures of this concept: ![0](https://huggingface.co/abin-regi/my-pet-dog-xzh/resolve/main/sample_images/vbcnl.jpg) ![1](https://huggingface.co/abin-regi/my-pet-dog-xzh/resolve/main/sample_images/yuggugb.jpg) ![2](https://huggingface.co/abin-regi/my-pet-dog-xzh/resolve/main/sample_images/ugcbd.jpg)
mardrake/lora-trained-xl-colab
mardrake
2023-08-10T09:23:38Z
4
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-08-10T08:05:54Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of sks dog tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - mardrake/lora-trained-xl-colab These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
MRNH/proximal-policy-optimization-LunarLander-v2
MRNH
2023-08-10T09:15:05Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T08:27:37Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 275.81 +/- 26.46 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
KeKu/llama2-french
KeKu
2023-08-10T09:06:12Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-10T09:06:06Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
cuixing/textual_inversion_object_style_vangoghsingle08101439
cuixing
2023-08-10T09:03:40Z
3
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "textual_inversion", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-10T06:40:34Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - cuixing/textual_inversion_object_style_vangoghsingle08101439 These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
Dytorch/textual_inversion_cat
Dytorch
2023-08-10T08:50:46Z
3
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "textual_inversion", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-09T02:43:24Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - Dytorch/textual_inversion_cat These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
taehoon1lee/Reinforce-unit4-11
taehoon1lee
2023-08-10T08:49:20Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T08:48:53Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-unit4-11 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 50.60 +/- 41.57 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
rainishere/llama2-qlora-finetunined-french-test-rainishere
rainishere
2023-08-10T08:45:03Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-10T08:44:54Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
TigerResearch/tigerbot-7b-sft-v1-4bit
TigerResearch
2023-08-10T08:43:46Z
7
6
transformers
[ "transformers", "bloom", "text-generation", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-06-01T03:38:20Z
--- license: apache-2.0 --- <div style="width: 100%;"> <img src="https://github.com/TigerResearch/TigerBot/blob/main/image/logo_core.png" alt="TigerBot" style="width: 20%; display: block; margin: auto;"> </div> <p align="center"> <font face="黑体" size=5"> A cutting-edge foundation for your very own LLM. </font> </p> <p align="center"> 🌐 <a href="https://tigerbot.com/" target="_blank">TigerBot</a> • 🤗 <a href="https://huggingface.co/TigerResearch" target="_blank">Hugging Face</a> </p> This is a 4-bit GPTQ version of the [Tigerbot 7B sft](https://huggingface.co/TigerResearch/tigerbot-7b-sft). It was quantized to 4bit using: https://github.com/TigerResearch/TigerBot/tree/main/gptq ## How to download and use this model in github: https://github.com/TigerResearch/TigerBot Here are commands to clone the TigerBot and install. ``` conda create --name tigerbot python=3.8 conda activate tigerbot conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia git clone https://github.com/TigerResearch/TigerBot cd TigerBot pip install -r requirements.txt ``` Inference with command line interface ``` cd TigerBot/gptq CUDA_VISIBLE_DEVICES=0 python tigerbot_infer.py TigerResearch/tigerbot-7b-sft-4bit-128g --wbits 4 --groupsize 128 --load TigerResearch/tigerbot-7b-sft-4bit-128g/tigerbot-7b-4bit-128g.pt ```
iliyaML/falcon-7b-openassistant-guanaco
iliyaML
2023-08-10T08:42:24Z
0
0
null
[ "tensorboard", "generated_from_trainer", "base_model:ybelkada/falcon-7b-sharded-bf16", "base_model:finetune:ybelkada/falcon-7b-sharded-bf16", "region:us" ]
null
2023-08-10T05:08:03Z
--- base_model: ybelkada/falcon-7b-sharded-bf16 tags: - generated_from_trainer model-index: - name: falcon-7b-openassistant-guanaco results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # falcon-7b-openassistant-guanaco This model is a fine-tuned version of [ybelkada/falcon-7b-sharded-bf16](https://huggingface.co/ybelkada/falcon-7b-sharded-bf16) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - training_steps: 500 ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
smangrul/peft-lora-starcoderbase3b-personal-copilot-A100-40GB-colab
smangrul
2023-08-10T08:35:19Z
15
0
peft
[ "peft", "generated_from_trainer", "base_model:bigcode/starcoderbase-3b", "base_model:adapter:bigcode/starcoderbase-3b", "license:bigcode-openrail-m", "region:us" ]
null
2023-08-09T20:17:40Z
--- license: bigcode-openrail-m base_model: bigcode/starcoderbase-3b tags: - generated_from_trainer model-index: - name: peft-lora-starcoderbase3b-personal-copilot-A100-40GB-colab results: [] library_name: peft --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # peft-lora-starcoderbase3b-personal-copilot-A100-40GB-colab This model is a fine-tuned version of [bigcode/starcoderbase-3b](https://huggingface.co/bigcode/starcoderbase-3b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5038 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 30 - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.8168 | 0.05 | 100 | 0.7807 | | 0.7961 | 0.1 | 200 | 0.7197 | | 0.7837 | 0.15 | 300 | 0.6603 | | 0.7053 | 0.2 | 400 | 0.6371 | | 0.6132 | 0.25 | 500 | 0.6282 | | 0.6584 | 0.3 | 600 | 0.6107 | | 0.621 | 0.35 | 700 | 0.5934 | | 0.6961 | 0.4 | 800 | 0.5877 | | 0.592 | 0.45 | 900 | 0.5833 | | 0.6967 | 0.5 | 1000 | 0.5746 | | 0.6382 | 0.55 | 1100 | 0.5563 | | 0.6815 | 0.6 | 1200 | 0.5436 | | 0.5483 | 0.65 | 1300 | 0.5439 | | 0.7172 | 0.7 | 1400 | 0.5401 | | 0.5479 | 0.75 | 1500 | 0.5390 | | 0.9422 | 0.8 | 1600 | 0.5357 | | 0.5503 | 0.85 | 1700 | 0.5303 | | 0.5928 | 0.9 | 1800 | 0.5322 | | 0.5513 | 0.95 | 1900 | 0.5176 | | 0.6314 | 1.0 | 2000 | 0.5038 | ### Framework versions - PEFT 0.5.0.dev0 - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
Norquinal/llama-2-7b-claude-instruct
Norquinal
2023-08-10T08:23:03Z
18
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "dataset:Norquinal/claude_multi_instruct_1k", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-10T03:40:43Z
--- datasets: - Norquinal/claude_multi_instruct_1k --- This is a [LLaMA-2-7b-hf](https://huggingface.co/NousResearch/Llama-2-7b-hf) model fine-tuned using QLoRA (4-bit precision) on my [claude_multi_instruct_1k](https://huggingface.co/datasets/Norquinal/claude_multi_instruct_1k) dataset. Do not take this model very seriously, it is probably not very good. I haven't a clue of what I'm doing. I just thought it was a fun thing to make. ## Prompt Format The model was finetuned with the following prompt format: ``` Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Response: ``` ## Example Usage >\### Instruction: >Deconstruct five major technological innovations in 20th and 21st centuries—Internet, personal computing, mobile phones, artificial intelligence, and electric vehicles. For each innovation, provide information on their early origins, key inventors or pioneers, important milestones and breakthroughs, adoption and proliferation into mainstream use, economic effects, societal impact, ethical considerations, and potential future developments. Discuss how these innovations reshaped the way people work, communicate, and live, and explore the synergies or connections among these technologies and the potential for future transformative advancements. >\### Response: >The Internet has revolutionized communication, commerce, education, entertainment, and more since its commercialization in the late 1980s. It was initially developed by researchers at universities like Stanford University's ARPANET project in the 1960s. Tim Berners-Lee created the World Wide Web in 1989 as part of his PhD thesis. The first web browser Mosaic launched in 1993 popularizing the concept of surfing the internet. In 1995, Netscape released the first widely used graphical web browser which accelerated growth. By 1997, there were over 1 million websites online. Today, billions of users access the global network daily through devices like smartphones and tablets. > >Personal computers have transformed productivity, creativity, and knowledge sharing since the Apple II computer debuted in 1977. Steve Jobs founded Apple Computer Inc. in 1976 to sell the Apple I computer designed by Steve Wozniak. IBM introduced the first commercially successful PC in 1981. Microsoft Windows operating system launched in 1985 cemented the dominance of the x86 architecture. Personal computers democratize technology allowing individuals to create content, run businesses, and participate in digital culture. They also enable remote working and telecommuting. > >Mobile phones have become ubiquitous due to rapid improvements in battery life, processing power, connectivity speeds, and user interface design. Martin Cooper made the world's first handheld cellular phone call from Motorola DynaTAC 800x in April 1973. However, it took decades before mass market adoption due to high cost and limited coverage area. With the introduction of GSM standard in Europe in 1991, prices dropped significantly making them affordable for consumers. Smartphone revolution began around 2007 when iPhone and Android platforms emerged. Mobile apps became prevalent after App Store launch in 2008. As of 2020, nearly 4 billion people own a mobile phone globally. Mobile phones allow instantaneous communication anytime anywhere enabling new forms of social interaction and commerce. > >Artificial Intelligence (AI) systems are becoming increasingly sophisticated leveraging machine learning algorithms trained on vast amounts of data. AI research dates back to the 1950s but only recently achieved human level performance in tasks such as image recognition, speech transcription, and game playing. DeepMind's AlphaGo program defeated Lee Sedol in Go match in 2016 demonstrating superhuman capabilities. Google Brain team published papers on neural networks in 2012 paving the way for modern deep learning models. Companies like Facebook, Amazon, Netflix, Uber rely heavily on AI to improve customer experience, optimize operations, and automate decision making. While AI holds great promise for solving complex problems, concerns remain about job displacement, bias in training datasets, and lack of transparency in model predictions. > >Electric cars represent one of the most promising clean energy solutions to reduce carbon emissions and dependence on fossil fuels. Electric motors have been used in trains and boats since mid-19th century. But it wasn't until Tesla Model S debut in 2012 that EVs gained widespread attention. Elon Musk's vision of sustainability and zero emission transportation helped propel industry forward. China leads the world in EV sales followed closely by Norway. Cost parity between gasoline and electric vehicles will likely occur within next decade. Once this happens, EVs could displace up to half of all passenger vehicle miles traveled by 2030 according to BloombergNEF analysis. Challenges include range anxiety, charging infrastructure, and higher initial purchase price compared to internal combustion engine vehicles. Nevertheless, EVs offer significant environmental benefits if deployed rapidly enough to meet climate goals. > >In summary, these technologies share common characteristics of exponential progress driven by Moore's Law, network effects, and feedback loops. Their interconnectedness creates powerful synergy amplifying their collective impact. Technologists must balance risks versus rewards while ensuring equitable distribution of benefits across society. Future innovations may build upon these foundational building blocks to unlock even greater possibilities yet unknown. We stand at the dawn of another technological era where imagination meets reality to shape our shared destiny. How we choose to navigate this journey together remains the ultimate test of human ingenuity and wisdom.
TheTravellingEngineer/llama2-7b-chat-hf-v4
TheTravellingEngineer
2023-08-10T08:18:44Z
1,547
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-10T07:28:43Z
The base model is meta's Llama-2-7b-chat-hf. It was finetuned using SFT and the openassistant/oasst1 dataset and the model prompt is similar to the original Guanaco model. This repo contains the merged fp16 model. **Legal Disclaimer: This model is bound by the usage restrictions of the original Llama-2 model. And comes with no warranty or gurantees of any kind.** --- - license: - llama2 <br> - datasets: - openassistant/oasst1 <br> - language: - en <br> - reference: https://gist.github.com/younesbelkada/9f7f75c94bdc1981c8ca5cc937d4a4da ---
Geotrend/distilbert-base-en-es-zh-cased
Geotrend
2023-08-10T08:02:08Z
142
0
transformers
[ "transformers", "pytorch", "safetensors", "distilbert", "fill-mask", "multilingual", "en", "es", "zh", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: - multilingual - en - es - zh datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-es-zh-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-es-zh-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-es-zh-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Rida06/bert-finetuned-ner
Rida06
2023-08-10T07:57:30Z
61
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-08T08:29:16Z
--- license: apache-2.0 base_model: Bert-base-cased tags: - generated_from_keras_callback model-index: - name: Rida06/bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Rida06/bert-finetuned-ner This model is a fine-tuned version of [Bert-base-cased](https://huggingface.co/Bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1762 - Validation Loss: 0.0705 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2634, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.1} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1762 | 0.0705 | 0 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.13.0 - Datasets 2.14.2 - Tokenizers 0.11.0
Stevross/Astrid-LLama-3B-CPU
Stevross
2023-08-10T07:56:30Z
35
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "gpt", "llm", "large language model", "h2o-llmstudio", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-10T00:38:47Z
--- language: - en library_name: transformers tags: - gpt - llm - large language model - h2o-llmstudio inference: true thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico --- # Model Card ## Summary This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio). - Base model: [openlm-research/open_llama_3b](https://huggingface.co/openlm-research/open_llama_3b) ## Usage To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers`, `accelerate` and `torch` libraries installed. ```bash pip install transformers==4.30.1 pip install accelerate==0.20.3 pip install torch==2.0.0 ``` ```python import torch from transformers import pipeline generate_text = pipeline( model="Stevross/Astrid-LLama-3B-CPU", torch_dtype="auto", trust_remote_code=True, use_fast=False, device_map={"": "cuda:0"}, ) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer: ```python print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"]) ``` ```bash <|prompt|>Why is drinking water so healthy?</s><|answer|> ``` Alternatively, you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer. If the model and the tokenizer are fully supported in the `transformers` package, this will allow you to set `trust_remote_code=False`. ```python import torch from h2oai_pipeline import H2OTextGenerationPipeline from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained( "Stevross/Astrid-LLama-3B-CPU", use_fast=False, padding_side="left", trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( "Stevross/Astrid-LLama-3B-CPU", torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ) generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Stevross/Astrid-LLama-3B-CPU" # either local folder or huggingface model name # Important: The prompt needs to be in the same format the model was trained with. # You can find an example prompt in the experiment logs. prompt = "<|prompt|>How are you?</s><|answer|>" tokenizer = AutoTokenizer.from_pretrained( model_name, use_fast=False, trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ) model.cuda().eval() inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda") # generate configuration can be modified to your needs tokens = model.generate( **inputs, min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True )[0] tokens = tokens[inputs["input_ids"].shape[1]:] answer = tokenizer.decode(tokens, skip_special_tokens=True) print(answer) ``` ## Model Architecture ``` LlamaForCausalLM( (model): LlamaModel( (embed_tokens): Embedding(32000, 3200, padding_idx=0) (layers): ModuleList( (0-25): 26 x LlamaDecoderLayer( (self_attn): LlamaAttention( (q_proj): Linear(in_features=3200, out_features=3200, bias=False) (k_proj): Linear(in_features=3200, out_features=3200, bias=False) (v_proj): Linear(in_features=3200, out_features=3200, bias=False) (o_proj): Linear(in_features=3200, out_features=3200, bias=False) (rotary_emb): LlamaRotaryEmbedding() ) (mlp): LlamaMLP( (gate_proj): Linear(in_features=3200, out_features=8640, bias=False) (down_proj): Linear(in_features=8640, out_features=3200, bias=False) (up_proj): Linear(in_features=3200, out_features=8640, bias=False) (act_fn): SiLUActivation() ) (input_layernorm): LlamaRMSNorm() (post_attention_layernorm): LlamaRMSNorm() ) ) (norm): LlamaRMSNorm() ) (lm_head): Linear(in_features=3200, out_features=32000, bias=False) ) ``` ## Model Configuration This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models. ## Model Validation Model validation results using [EleutherAI lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness). ```bash CUDA_VISIBLE_DEVICES=0 python main.py --model hf-causal-experimental --model_args pretrained=Stevross/Astrid-LLama-3B-CPU --tasks openbookqa,arc_easy,winogrande,hellaswag,arc_challenge,piqa,boolq --device cuda &> eval.log ``` ## Disclaimer Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions. - Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints. - Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion. - Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model. - Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities. - Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues. - Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes. By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
Stevross/Astrid-LLama-3B-GPU
Stevross
2023-08-10T07:56:12Z
6
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "gpt", "llm", "large language model", "h2o-llmstudio", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-10T00:05:32Z
--- language: - en library_name: transformers tags: - gpt - llm - large language model - h2o-llmstudio inference: true thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico --- # Model Card ## Summary This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio). - Base model: [openlm-research/open_llama_3b](https://huggingface.co/openlm-research/open_llama_3b) ## Usage To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers`, `accelerate` and `torch` libraries installed. ```bash pip install transformers==4.30.1 pip install accelerate==0.20.3 pip install torch==2.0.0 ``` ```python import torch from transformers import pipeline generate_text = pipeline( model="Stevross/Astrid-LLama-3B-GPU", torch_dtype="auto", trust_remote_code=True, use_fast=False, device_map={"": "cuda:0"}, ) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer: ```python print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"]) ``` ```bash <|prompt|>Why is drinking water so healthy?</s><|answer|> ``` Alternatively, you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer. If the model and the tokenizer are fully supported in the `transformers` package, this will allow you to set `trust_remote_code=False`. ```python import torch from h2oai_pipeline import H2OTextGenerationPipeline from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained( "Stevross/Astrid-LLama-3B-GPU", use_fast=False, padding_side="left", trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( "Stevross/Astrid-LLama-3B-GPU", torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ) generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Stevross/Astrid-LLama-3B-GPU" # either local folder or huggingface model name # Important: The prompt needs to be in the same format the model was trained with. # You can find an example prompt in the experiment logs. prompt = "<|prompt|>How are you?</s><|answer|>" tokenizer = AutoTokenizer.from_pretrained( model_name, use_fast=False, trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ) model.cuda().eval() inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda") # generate configuration can be modified to your needs tokens = model.generate( **inputs, min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True )[0] tokens = tokens[inputs["input_ids"].shape[1]:] answer = tokenizer.decode(tokens, skip_special_tokens=True) print(answer) ``` ## Model Architecture ``` LlamaForCausalLM( (model): LlamaModel( (embed_tokens): Embedding(32000, 3200, padding_idx=0) (layers): ModuleList( (0-25): 26 x LlamaDecoderLayer( (self_attn): LlamaAttention( (q_proj): Linear(in_features=3200, out_features=3200, bias=False) (k_proj): Linear(in_features=3200, out_features=3200, bias=False) (v_proj): Linear(in_features=3200, out_features=3200, bias=False) (o_proj): Linear(in_features=3200, out_features=3200, bias=False) (rotary_emb): LlamaRotaryEmbedding() ) (mlp): LlamaMLP( (gate_proj): Linear(in_features=3200, out_features=8640, bias=False) (down_proj): Linear(in_features=8640, out_features=3200, bias=False) (up_proj): Linear(in_features=3200, out_features=8640, bias=False) (act_fn): SiLUActivation() ) (input_layernorm): LlamaRMSNorm() (post_attention_layernorm): LlamaRMSNorm() ) ) (norm): LlamaRMSNorm() ) (lm_head): Linear(in_features=3200, out_features=32000, bias=False) ) ``` ## Model Configuration This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models. ## Model Validation Model validation results using [EleutherAI lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness). ```bash CUDA_VISIBLE_DEVICES=0 python main.py --model hf-causal-experimental --model_args pretrained=Stevross/Astrid-LLama-3B-GPU --tasks openbookqa,arc_easy,winogrande,hellaswag,arc_challenge,piqa,boolq --device cuda &> eval.log ``` ## Disclaimer Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions. - Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints. - Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion. - Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model. - Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities. - Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues. - Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes. By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
newronai/llama-2-7b-Chat-QLoRA-Trial1
newronai
2023-08-10T07:32:04Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-10T07:31:16Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
rossevine/wav2vec2_indonesia_6
rossevine
2023-08-10T07:27:07Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-10T05:34:45Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2_Indonesia_6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2_Indonesia_6 This model is a fine-tuned version of [facebook/wav2vec2-base-100h](https://huggingface.co/facebook/wav2vec2-base-100h) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.7559 - Wer: 1.0232 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.1807 | 3.23 | 400 | 1.3655 | 1.0052 | | 0.5608 | 6.45 | 800 | 1.3604 | 1.0312 | | 0.3302 | 9.68 | 1200 | 1.3724 | 1.0355 | | 0.2405 | 12.9 | 1600 | 1.4350 | 1.0142 | | 0.1883 | 16.13 | 2000 | 1.5079 | 1.0213 | | 0.1535 | 19.35 | 2400 | 1.5038 | 1.0251 | | 0.1307 | 22.58 | 2800 | 1.7026 | 1.0189 | | 0.1104 | 25.81 | 3200 | 1.7072 | 1.0090 | | 0.0921 | 29.03 | 3600 | 1.7559 | 1.0232 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
hashu/my-pet-cat-xyz
hashu
2023-08-10T07:12:37Z
0
0
null
[ "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-08-10T07:09:43Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Cat-xyz Dreambooth model trained by hashu following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: VJCET527 Sample pictures of this concept: ![0](https://huggingface.co/hashu/my-pet-cat-xyz/resolve/main/sample_images/xyz_(2).jpg)
yyyy1992/my_awesome_wnut_model
yyyy1992
2023-08-10T06:58:22Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:wnut_17", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-10T06:51:33Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: my_awesome_wnut_model results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 config: wnut_17 split: test args: wnut_17 metrics: - name: Precision type: precision value: 0.5096660808435852 - name: Recall type: recall value: 0.26876737720111216 - name: F1 type: f1 value: 0.35194174757281554 - name: Accuracy type: accuracy value: 0.9392501389423282 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_wnut_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.0772 - Precision: 0.5097 - Recall: 0.2688 - F1: 0.3519 - Accuracy: 0.9393 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 213 | 0.0816 | 0.4192 | 0.1779 | 0.2498 | 0.9351 | | No log | 2.0 | 426 | 0.0772 | 0.5097 | 0.2688 | 0.3519 | 0.9393 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1 - Datasets 2.11.0 - Tokenizers 0.13.3
weiren119/traditional_chinese_qlora_llama2_13b_adapter
weiren119
2023-08-10T06:57:43Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-10T06:56:58Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0
reinhardfr/bloomz-560m_PROMPT_TUNING_CAUSAL_LM
reinhardfr
2023-08-10T06:53:25Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-10T05:52:22Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
leahsuperb/Reinforce-CartPole-v1
leahsuperb
2023-08-10T06:53:10Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T06:53:01Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
cuixing/textual_inversion_object_style_vangogh08101212-newstyle
cuixing
2023-08-10T06:51:27Z
4
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "textual_inversion", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-10T04:12:51Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - cuixing/textual_inversion_object_style_vangogh08101212-newstyle These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
bjfxs/llama2-7b-200steps-finetunined-sxl
bjfxs
2023-08-10T06:49:06Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-10T06:49:02Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
tanviraumi/q-FrozenLake-v1-4x4-noSlippery
tanviraumi
2023-08-10T06:40:11Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T06:40:08Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="tanviraumi/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
jakezou/a2c-PandaReachDense-v3
jakezou
2023-08-10T06:38:05Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T06:31:17Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.23 +/- 0.13 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
kasperchen/q-Taxi-v3
kasperchen
2023-08-10T06:36:12Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T06:36:10Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.48 +/- 2.79 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="kasperchen/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
kasperchen/q-texi-v3
kasperchen
2023-08-10T06:35:39Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T06:31:45Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Texi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.48 +/- 2.79 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="kasperchen/q-texi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
nullday/immersiveL-exp
nullday
2023-08-10T06:21:53Z
64
4
transformers
[ "transformers", "pytorch", "safetensors", "bloom", "text-generation", "translation", "gpt-style", "chinese", "english", "zh", "en", "license:bigscience-bloom-rail-1.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
translation
2023-08-07T07:30:25Z
--- language: - zh - en tags: - translation - gpt-style - chinese - english license: "bigscience-bloom-rail-1.0" --- ## English: ### ImmersiveL Model on Hugging Face This model, available on Hugging Face under `funstoryai/immersiveL-exp`, is a GPT-like model designed specifically for English-Chinese and Chinese-English translations. **Recommended Prompts:** For English to Chinese: ``` 下面是一段英文文本,请将它翻译成中文。 {terms} #英文文本: {input} #中文翻译: ``` For Chinese to English: ``` 下面是一段中文文本,请将它翻译成英文。 {terms} #中文文本: {input} #英文翻译: ``` For the corresponding GitHub project, please visit: [ImmersiveL on GitHub](https://github.com/immersive-translate/ImmersiveL). <https://github.com/immersive-translate/ImmersiveL> --- ## 中文: ### Hugging Face 上的 ImmersiveL 模型 此模型在 Hugging Face 的 `funstoryai/immersiveL-exp` 下可用,是专为英汉和汉英翻译设计的类GPT模型。 **推荐提示词:** 英译中: ``` 下面是一段英文文本,请将它翻译成中文。 {terms} #英文文本: {input} #中文翻译: ``` 中译英: ``` 下面是一段中文文本,请将它翻译成英文。 {terms} #中文文本: {input} #英文翻译: ``` 对应的 GitHub 项目地址为: [ImmersiveL on GitHub](https://github.com/immersive-translate/ImmersiveL). <https://github.com/immersive-translate/ImmersiveL>
TheTravellingEngineer/llama2-7b-chat-hf-v3
TheTravellingEngineer
2023-08-10T06:21:28Z
1,536
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-10T06:03:25Z
The base model is meta's Llama-2-7b-chat-hf. It was finetuned using SFT and the Anthropic/hh-rlhf dataset and the model prompt is similar to the original Guanaco model. This repo contains the merged fp16 model. **Legal Disclaimer: This model is bound by the usage restrictions of the original Llama-2 model. And comes with no warranty or gurantees of any kind.** --- - license: - llama2 <br> - datasets: - Anthropic/hh-rlhf <br> - language: - en <br> - reference: https://gist.github.com/younesbelkada/9f7f75c94bdc1981c8ca5cc937d4a4da ---
HG7/ReQLoRA_QKVO8
HG7
2023-08-10T06:01:24Z
2
0
peft
[ "peft", "region:us" ]
null
2023-08-10T06:01:20Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
Bastian1111/dqn-SpaceInvadersNoFrameskip-v4
Bastian1111
2023-08-10T05:52:53Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-06T04:19:13Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 762.50 +/- 300.08 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Bastian1111 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Bastian1111 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Bastian1111 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
DAMO-NLP-MT/polylm-13b
DAMO-NLP-MT
2023-08-10T05:50:39Z
1,615
53
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "custom_code", "zh", "en", "es", "fr", "pt", "ru", "de", "it", "ar", "ja", "ko", "th", "vi", "id", "nl", "pl", "tr", "he", "arxiv:2307.06018", "arxiv:2104.09864", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-13T13:48:44Z
--- language: - zh - en - es - fr - pt - ru - de - it - ar - ja - ko - th - vi - id - nl - pl - tr - he tags: - text-generation license: apache-2.0 --- # Model Card for PolyLM (a polyglot large language model) ## Table of Contents 1. [Model Details](#model-details) 2. [Usage](#usage) 3. [Uses](#uses) 4. [Bias, Risks, and Limitations](#bias-risks-and-limitations) 5. [Next Steps](#next-steps) 6. [Citation](#citation) # Model Details ## Abstract > Large language models (LLMs) demonstrate remarkable ability to comprehend, reason, and generate following nature language instructions. However, the development of LLMs has been primarily focused on high-resource languages, such as English, thereby limiting their applicability and research in other languages. Consequently, we present PolyLM, a multilingual LLM trained on 640 billion (B) tokens, avaliable in two model sizes: 1.7B and 13B. To enhance its multilingual capabilities, we 1) integrate bilingual data into training data; and 2) adopt a curriculum learning strategy that increases the proportion of non-English data from 30% in the first stage to 60% in the final stage during pre-training. Further, we propose a multilingual self-instruct method which automatically generates 132.7K diverse multilingual instructions for model fine-tuning. To assess the model's performance, we collect several existing multilingual tasks, including multilingual understanding, question answering, generation, and translation. Extensive experiments show that PolyLM surpasses other open-source models such as LLaMA and BLOOM on multilingual tasks while maintaining comparable performance in English. ## Model Description - **Model type:** Decoder-only Language model - **Language(s) (NLP):** Chinese, English, Spanish, German, French, Portuguese, Russian, Italian, Arabic, Japanese, Korean, Thai, Vietnamese, Indonesian, Polish, Turkish, Dutch, Hebrew - **License:** Apache 2.0 - **Original Checkpoints:** [Modelscope DAMO PolyLM-13B](https://www.modelscope.cn/models/damo/nlp_polylm_13b_text_generation/summary) - **Link to paper:** [here](https://arxiv.org/pdf/2307.06018.pdf) - **Number fotmat:** bf16 - **Total seen tokens:** 640 billion tokens - **Version:** Version 1.0 / 12 July 2023 # Usage Find below some example scripts on how to use the model in `transformers`: <details> <summary> Click to expand </summary> ```python # pip install accelerate from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("DAMO-NLP-MT/polylm-13b", legacy=False, use_fast=False) model = AutoModelForCausalLM.from_pretrained("DAMO-NLP-MT/polylm-13b", device_map="auto", trust_remote_code=True) model.eval() input_doc = f"Beijing is the capital of China.\nTranslate this sentence from English to Chinese." inputs = tokenizer(input_doc, return_tensors="pt") generate_ids = model.generate( inputs.input_ids, attention_mask=inputs.attention_mask, do_sample=False, num_beams=4, max_length=128, early_stopping=True ) decoded = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] print(f">>> {decoded}") ### results ### Beijing is the capital of China.\nTranslate this sentence from English to Chinese.\\n北京是中华人民共和国的首都。\n ... ``` </details> # Uses ## Direct Use and Downstream Use > The primary use is research on language models, including: research on zero-shot NLP tasks and in-context few-shot learning NLP tasks, such as reasoning, and question answering; advancing fairness and safety research, and understanding limitations of current large language models See the [research paper](https://arxiv.org/pdf/2307.06018.pdf) for further details. ## Out-of-Scope Use More information needed. # Bias, Risks, and Limitations The information below in this section are copied from the model's [official model card](https://arxiv.org/pdf/2307.06018.pdf): > Our contributions are fully methodological: adding the support of multilingualism to LLM during training and SFT phases. It is unavoidable that PolyLM might exhibit several common deficiencies of language models, e.g. hallucination and toxicity. PolyLM should not be used directly in any application, without a prior assessment of safety and fairness concerns specific to the application. # Next Steps We are continuously enhancing the capabilities of PolyLM by focusing on the following aspects: 1. Replacement of absolute position embeddings with RoPE, as outlined in the research paper [here](https://arxiv.org/abs/2104.09864). 2. Expansion of window size to more than 10,000. 3. Verification of lightweight techniques to quickly enhance multilingual quality, especially for low-resource languages. # Citation **BibTeX:** ```bibtex @misc{wei2023polylm, title={PolyLM: An Open Source Polyglot Large Language Model}, author={Xiangpeng Wei and Haoran Wei and Huan Lin and Tianhao Li and Pei Zhang and Xingzhang Ren and Mei Li and Yu Wan and Zhiwei Cao and Binbin Xie and Tianxiang Hu and Shangjie Li and Binyuan Hui and Bowen Yu and Dayiheng Liu and Baosong Yang and Fei Huang and Jun Xie}, year={2023}, eprint={2307.06018}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
JacobAshwin/donut-base-slips
JacobAshwin
2023-08-10T05:26:01Z
49
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "base_model:naver-clova-ix/donut-base", "base_model:finetune:naver-clova-ix/donut-base", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-07-25T22:15:27Z
--- license: mit base_model: naver-clova-ix/donut-base tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-base-slips results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-slips This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
nanirudh/qa_model_v3
nanirudh
2023-08-10T05:23:57Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-10T05:23:48Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
kasperchen/q-FrozenLake-v1-4x4-noSlippery
kasperchen
2023-08-10T05:00:06Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T04:11:41Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="kasperchen/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
bookbot/byt5-small-wikipron-eng-latn-us-broad-p2g
bookbot
2023-08-10T04:54:35Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-04-19T04:07:16Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: byt5-small-wikipron-eng-latn-us-broad-p2g results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # byt5-small-wikipron-eng-latn-us-broad-p2g This model is a fine-tuned version of [google/byt5-small](https://huggingface.co/google/byt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2595 - Per: 0.4628 - Gen Len: 8.4996 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 128 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Per | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 2.4797 | 1.0 | 382 | 0.4371 | 0.6951 | 8.4302 | | 0.4823 | 2.0 | 764 | 0.3543 | 0.5974 | 8.4338 | | 0.3878 | 3.0 | 1146 | 0.3081 | 0.545 | 8.4394 | | 0.3378 | 4.0 | 1528 | 0.2904 | 0.518 | 8.449 | | 0.3061 | 5.0 | 1910 | 0.2736 | 0.5004 | 8.4612 | | 0.2823 | 6.0 | 2292 | 0.2664 | 0.4893 | 8.4734 | | 0.265 | 7.0 | 2674 | 0.2626 | 0.4747 | 8.4721 | | 0.2502 | 8.0 | 3056 | 0.2612 | 0.4697 | 8.4945 | | 0.2388 | 9.0 | 3438 | 0.2592 | 0.4633 | 8.489 | | 0.231 | 10.0 | 3820 | 0.2595 | 0.4628 | 8.4996 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu117 - Datasets 2.11.1.dev0 - Tokenizers 0.13.2
nicbull/DialoGPT-medium-leric
nicbull
2023-08-10T04:37:18Z
150
0
transformers
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "chat", "conversational", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-10T04:25:26Z
--- language: - en pipeline_tag: conversational tags: - chat ---
KallistiTMR/llama-2-7b-chat-wiz-k16-8
KallistiTMR
2023-08-10T04:04:30Z
12
0
peft
[ "peft", "region:us" ]
null
2023-08-02T02:24:03Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0
chunwoolee0/keti-air-ke-t5-base-en-to-ko
chunwoolee0
2023-08-10T04:00:42Z
114
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "base_model:KETI-AIR/ke-t5-base", "base_model:finetune:KETI-AIR/ke-t5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
translation
2023-08-10T03:27:30Z
--- license: apache-2.0 base_model: KETI-AIR/ke-t5-base tags: - translation - generated_from_trainer datasets: - kde4 model-index: - name: keti-air-ke-t5-base-en-to-ko results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # keti-air-ke-t5-base-en-to-ko This model is a fine-tuned version of [KETI-AIR/ke-t5-base](https://huggingface.co/KETI-AIR/ke-t5-base) on the kde4 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
nomad-ai/speecht5_finetuned_voxpopuli_nl
nomad-ai
2023-08-10T03:58:14Z
82
0
transformers
[ "transformers", "pytorch", "speecht5", "text-to-audio", "generated_from_trainer", "text-to-speech", "dataset:facebook/voxpopuli", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-speech
2023-08-10T03:06:59Z
--- license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer - text-to-speech datasets: - facebook/voxpopuli model-index: - name: speecht5_finetuned_voxpopuli_nl results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_voxpopuli_nl This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the facebook/voxpopuli dataset. It achieves the following results on the evaluation set: - Loss: 0.4919 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.7222 | 1.62 | 100 | 0.6410 | | 0.6791 | 3.25 | 200 | 0.6024 | | 0.6059 | 4.87 | 300 | 0.5363 | | 0.564 | 6.49 | 400 | 0.5185 | | 0.5481 | 8.11 | 500 | 0.5092 | | 0.5463 | 9.74 | 600 | 0.4998 | | 0.537 | 11.36 | 700 | 0.4968 | | 0.5312 | 12.98 | 800 | 0.4913 | | 0.5275 | 14.6 | 900 | 0.4917 | | 0.5202 | 16.23 | 1000 | 0.4919 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
debjxt/tlx-bzx-btz
debjxt
2023-08-10T03:45:14Z
1
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-10T03:32:22Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### tlx_bzx_btz Dreambooth model trained by debjxt with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
TheTravellingEngineer/llama2-7b-chat-hf-v2
TheTravellingEngineer
2023-08-10T03:36:24Z
1,541
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-08T06:27:25Z
The base model is meta's Llama-2-7b-chat-hf. It was finetuned using SFT and the alpaca dataset and the model prompt is similar to the original Guanaco model. This repo contains the merged fp16 model. **Legal Disclaimer: This model is bound by the usage restrictions of the original Llama-2 model. And comes with no warranty or gurantees of any kind.** --- - license: - llama2 <br> - datasets: - tatsu-lab/alpaca <br> - language: - en <br> - reference: https://gist.github.com/younesbelkada/9f7f75c94bdc1981c8ca5cc937d4a4da ---
Lsnt/test_03
Lsnt
2023-08-10T03:31:02Z
4
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-08-10T03:09:48Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - Lsnt/test_03 These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False.
dangkhoadl/AudioResNet
dangkhoadl
2023-08-10T03:21:17Z
38
0
transformers
[ "transformers", "pytorch", "resnet", "endpoints_compatible", "region:us" ]
null
2023-08-08T01:50:29Z
# Input tensor shape [batch_size, Cin, num_feats, num_frames]
EkoMickA/distilroberta-base-finetuned-wikitext2
EkoMickA
2023-08-10T03:14:19Z
162
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "base_model:distilbert/distilroberta-base", "base_model:finetune:distilbert/distilroberta-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-08-10T03:03:02Z
--- license: apache-2.0 base_model: distilroberta-base tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-wikitext2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8251 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0909 | 1.0 | 2406 | 1.9271 | | 1.9984 | 2.0 | 4812 | 1.8671 | | 1.941 | 3.0 | 7218 | 1.8546 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
jordyvl/dit-base-finetuned-rvlcdip-tiny_rvl_cdip-NK1000_kd
jordyvl
2023-08-10T03:06:31Z
164
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-27T12:16:00Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: dit-base-finetuned-rvlcdip-tiny_rvl_cdip-NK1000_kd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dit-base-finetuned-rvlcdip-tiny_rvl_cdip-NK1000_kd This model is a fine-tuned version of [WinKawaks/vit-tiny-patch16-224](https://huggingface.co/WinKawaks/vit-tiny-patch16-224) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5815 - Accuracy: 0.8055 - Brier Loss: 0.2836 - Nll: 1.6135 - F1 Micro: 0.8055 - F1 Macro: 0.8061 - Ece: 0.0597 - Aurc: 0.0526 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:| | No log | 1.0 | 125 | 1.2844 | 0.5403 | 0.5889 | 3.0582 | 0.5403 | 0.5275 | 0.0742 | 0.2209 | | No log | 2.0 | 250 | 0.9687 | 0.655 | 0.4587 | 2.4358 | 0.655 | 0.6414 | 0.0559 | 0.1296 | | No log | 3.0 | 375 | 0.8401 | 0.7063 | 0.4019 | 2.2308 | 0.7063 | 0.7008 | 0.0588 | 0.0990 | | 1.234 | 4.0 | 500 | 0.8080 | 0.7145 | 0.3874 | 2.1628 | 0.7145 | 0.7163 | 0.0487 | 0.0951 | | 1.234 | 5.0 | 625 | 0.7772 | 0.7238 | 0.3755 | 2.0380 | 0.7237 | 0.7167 | 0.0421 | 0.0914 | | 1.234 | 6.0 | 750 | 0.7530 | 0.7498 | 0.3484 | 2.1346 | 0.7498 | 0.7464 | 0.0477 | 0.0774 | | 1.234 | 7.0 | 875 | 0.7034 | 0.7652 | 0.3267 | 2.0596 | 0.7652 | 0.7664 | 0.0467 | 0.0678 | | 0.3976 | 8.0 | 1000 | 0.7390 | 0.7715 | 0.3350 | 2.0568 | 0.7715 | 0.7704 | 0.0448 | 0.0763 | | 0.3976 | 9.0 | 1125 | 0.7019 | 0.7762 | 0.3209 | 2.0168 | 0.7762 | 0.7768 | 0.0556 | 0.0769 | | 0.3976 | 10.0 | 1250 | 0.7318 | 0.7668 | 0.3346 | 2.1148 | 0.7668 | 0.7699 | 0.0529 | 0.0792 | | 0.3976 | 11.0 | 1375 | 0.7083 | 0.7782 | 0.3213 | 2.0671 | 0.7782 | 0.7775 | 0.0452 | 0.0756 | | 0.1591 | 12.0 | 1500 | 0.7535 | 0.7668 | 0.3424 | 2.1407 | 0.7668 | 0.7636 | 0.0564 | 0.0845 | | 0.1591 | 13.0 | 1625 | 0.7117 | 0.775 | 0.3288 | 2.0935 | 0.775 | 0.7766 | 0.0525 | 0.0785 | | 0.1591 | 14.0 | 1750 | 0.6421 | 0.785 | 0.3039 | 1.9939 | 0.785 | 0.7860 | 0.0512 | 0.0643 | | 0.1591 | 15.0 | 1875 | 0.6475 | 0.7865 | 0.3050 | 1.9301 | 0.7865 | 0.7867 | 0.0552 | 0.0636 | | 0.1125 | 16.0 | 2000 | 0.6477 | 0.7893 | 0.3064 | 1.9442 | 0.7893 | 0.7920 | 0.0556 | 0.0684 | | 0.1125 | 17.0 | 2125 | 0.6509 | 0.7883 | 0.3113 | 1.8957 | 0.7883 | 0.7907 | 0.0498 | 0.0710 | | 0.1125 | 18.0 | 2250 | 0.6291 | 0.7925 | 0.3038 | 1.8697 | 0.7925 | 0.7963 | 0.0512 | 0.0677 | | 0.1125 | 19.0 | 2375 | 0.6279 | 0.7963 | 0.2992 | 1.8155 | 0.7963 | 0.7950 | 0.0478 | 0.0647 | | 0.095 | 20.0 | 2500 | 0.6246 | 0.7937 | 0.3008 | 1.7925 | 0.7937 | 0.7946 | 0.0595 | 0.0659 | | 0.095 | 21.0 | 2625 | 0.6149 | 0.7953 | 0.2962 | 1.8237 | 0.7953 | 0.7951 | 0.0547 | 0.0590 | | 0.095 | 22.0 | 2750 | 0.6196 | 0.7953 | 0.3000 | 1.8031 | 0.7953 | 0.7969 | 0.0567 | 0.0643 | | 0.095 | 23.0 | 2875 | 0.6023 | 0.798 | 0.2932 | 1.7663 | 0.798 | 0.7983 | 0.0497 | 0.0616 | | 0.0829 | 24.0 | 3000 | 0.6107 | 0.7943 | 0.2951 | 1.7755 | 0.7943 | 0.7958 | 0.0564 | 0.0581 | | 0.0829 | 25.0 | 3125 | 0.5986 | 0.8015 | 0.2930 | 1.7243 | 0.8015 | 0.8027 | 0.0565 | 0.0574 | | 0.0829 | 26.0 | 3250 | 0.5899 | 0.8005 | 0.2886 | 1.7304 | 0.8005 | 0.8021 | 0.0546 | 0.0560 | | 0.0829 | 27.0 | 3375 | 0.5836 | 0.8023 | 0.2846 | 1.6865 | 0.8023 | 0.8024 | 0.0479 | 0.0561 | | 0.074 | 28.0 | 3500 | 0.5824 | 0.8047 | 0.2850 | 1.6817 | 0.8047 | 0.8060 | 0.0524 | 0.0559 | | 0.074 | 29.0 | 3625 | 0.5760 | 0.8063 | 0.2822 | 1.6505 | 0.8062 | 0.8065 | 0.0500 | 0.0546 | | 0.074 | 30.0 | 3750 | 0.5819 | 0.8065 | 0.2843 | 1.6667 | 0.8065 | 0.8079 | 0.0563 | 0.0544 | | 0.074 | 31.0 | 3875 | 0.5800 | 0.8045 | 0.2841 | 1.6658 | 0.8045 | 0.8059 | 0.0511 | 0.0548 | | 0.0668 | 32.0 | 4000 | 0.5828 | 0.8053 | 0.2841 | 1.6883 | 0.8053 | 0.8054 | 0.0559 | 0.0547 | | 0.0668 | 33.0 | 4125 | 0.5802 | 0.8037 | 0.2838 | 1.6669 | 0.8037 | 0.8038 | 0.0572 | 0.0545 | | 0.0668 | 34.0 | 4250 | 0.5772 | 0.8067 | 0.2821 | 1.6588 | 0.8067 | 0.8083 | 0.0520 | 0.0525 | | 0.0668 | 35.0 | 4375 | 0.5745 | 0.807 | 0.2812 | 1.6524 | 0.807 | 0.8072 | 0.0528 | 0.0528 | | 0.0631 | 36.0 | 4500 | 0.5770 | 0.8063 | 0.2826 | 1.6433 | 0.8062 | 0.8071 | 0.0559 | 0.0528 | | 0.0631 | 37.0 | 4625 | 0.5782 | 0.8007 | 0.2837 | 1.5953 | 0.8007 | 0.8021 | 0.0581 | 0.0541 | | 0.0631 | 38.0 | 4750 | 0.5780 | 0.8047 | 0.2829 | 1.6275 | 0.8047 | 0.8052 | 0.0540 | 0.0521 | | 0.0631 | 39.0 | 4875 | 0.5759 | 0.8055 | 0.2817 | 1.6162 | 0.8055 | 0.8065 | 0.0528 | 0.0529 | | 0.0612 | 40.0 | 5000 | 0.5770 | 0.8047 | 0.2825 | 1.6131 | 0.8047 | 0.8051 | 0.0575 | 0.0524 | | 0.0612 | 41.0 | 5125 | 0.5771 | 0.8043 | 0.2819 | 1.6015 | 0.8043 | 0.8048 | 0.0562 | 0.0519 | | 0.0612 | 42.0 | 5250 | 0.5776 | 0.8043 | 0.2825 | 1.6152 | 0.8043 | 0.8047 | 0.0566 | 0.0527 | | 0.0612 | 43.0 | 5375 | 0.5793 | 0.8057 | 0.2830 | 1.6196 | 0.8057 | 0.8065 | 0.0538 | 0.0527 | | 0.06 | 44.0 | 5500 | 0.5801 | 0.8053 | 0.2835 | 1.6183 | 0.8053 | 0.8060 | 0.0618 | 0.0527 | | 0.06 | 45.0 | 5625 | 0.5800 | 0.805 | 0.2831 | 1.6057 | 0.805 | 0.8055 | 0.0568 | 0.0530 | | 0.06 | 46.0 | 5750 | 0.5812 | 0.805 | 0.2836 | 1.6034 | 0.805 | 0.8056 | 0.0577 | 0.0529 | | 0.06 | 47.0 | 5875 | 0.5809 | 0.805 | 0.2834 | 1.6164 | 0.805 | 0.8056 | 0.0580 | 0.0526 | | 0.0593 | 48.0 | 6000 | 0.5810 | 0.8057 | 0.2834 | 1.6108 | 0.8057 | 0.8064 | 0.0617 | 0.0525 | | 0.0593 | 49.0 | 6125 | 0.5812 | 0.8053 | 0.2836 | 1.6140 | 0.8053 | 0.8058 | 0.0570 | 0.0527 | | 0.0593 | 50.0 | 6250 | 0.5815 | 0.8055 | 0.2836 | 1.6135 | 0.8055 | 0.8061 | 0.0597 | 0.0526 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1.post200 - Datasets 2.9.0 - Tokenizers 0.13.2
sshh12/sdxl-lora-pokemon
sshh12
2023-08-10T03:05:05Z
2
0
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-08-07T02:37:13Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-xl-base-1.0 dataset: lambdalabs/pokemon-blip-captions tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: false --- These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were fine-tuned on the lambdalabs/pokemon-blip-captions dataset. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. | | | | | | ------------------------------------------------------- | ---------------------------------------------------------------------------------- | ----------------------------------------------------- | ------------------------------------------------------------- | | ![img_1](./imgs/img_aspider_ckpt8000_gs5.0_seed100.png) | ![img_2](./imgs/img_roboticcatwithwingsabrahamlincoln_ckpt3000_gs10.0_seed100.png) | ![img_3](./imgs/img_yoda_ckpt3000_gs10.0_seed100.png) | ![img_4](./imgs/img_abrahamlincoln_ckpt3000_gs10.0_seed0.png) | ## 🧨 Diffusers Usage ```py import torch from diffusers import DiffusionPipeline, AutoencoderKL vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True) pipe.load_lora_weights("sshh12/sdxl-lora-pokemon") pipe.to("cuda") prompt = "..." image = pipe(prompt=prompt).images[0] image ``` ## Training ```py MODEL_NAME="stabilityai/stable-diffusion-xl-base-1.0" DATASET_NAME="lambdalabs/pokemon-blip-captions" !accelerate launch train_text_to_image_lora_sdxl.py \ --pretrained_model_name_or_path="$MODEL_NAME" \ --pretrained_vae_model_name_or_path="madebyollin/sdxl-vae-fp16-fix" \ --dataset_name="$DATASET_NAME" \ --caption_column="text" \ --resolution=1024 \ --random_flip \ --mixed_precision="fp16" \ --use_8bit_adam \ --train_batch_size=1 \ --gradient_accumulation_steps=8 \ --num_train_epochs=200 \ --checkpointing_steps=500 \ --learning_rate=1e-04 \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --seed=0 \ --validation_prompt="cute dragon creature" \ --enable_xformers_memory_efficient_attention \ --report_to="wandb" ```
wangxso/q-taxi-v3
wangxso
2023-08-10T02:28:47Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T02:28:44Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.70 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="wangxso/q-taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
nomad-ai/whisper-tiny
nomad-ai
2023-08-10T02:03:05Z
75
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:PolyAI/minds14", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-10T02:02:50Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train[450:] args: en-US metrics: - name: Wer type: wer value: 0.22434915773353753 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.5913 - Wer Ortho: 0.2340 - Wer: 0.2243 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 1.7357 | 2.0 | 50 | 0.7179 | 0.2947 | 0.2412 | | 0.2772 | 4.0 | 100 | 0.4758 | 0.2404 | 0.2113 | | 0.081 | 6.0 | 150 | 0.5069 | 0.2628 | 0.2282 | | 0.02 | 8.0 | 200 | 0.5289 | 0.2564 | 0.2297 | | 0.0044 | 10.0 | 250 | 0.5366 | 0.2452 | 0.2251 | | 0.0018 | 12.0 | 300 | 0.5565 | 0.2404 | 0.2251 | | 0.0011 | 14.0 | 350 | 0.5668 | 0.2388 | 0.2259 | | 0.0009 | 16.0 | 400 | 0.5762 | 0.2364 | 0.2251 | | 0.0007 | 18.0 | 450 | 0.5847 | 0.2348 | 0.2243 | | 0.0006 | 20.0 | 500 | 0.5913 | 0.2340 | 0.2243 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
EricLeonhard11/wav2vec2-large-xls-r-300m-turkish-colab
EricLeonhard11
2023-08-10T01:42:00Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "base_model:facebook/wav2vec2-xls-r-300m", "base_model:finetune:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-09T05:18:33Z
--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 1.18.3 - Tokenizers 0.13.3
tianpf/llama2-qlora-finetunined-law
tianpf
2023-08-10T01:38:54Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-10T01:38:51Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
Kappa7077/clip-finetuned-lora-organ
Kappa7077
2023-08-10T01:21:03Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-10T01:17:51Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
jaykei/Zuko
jaykei
2023-08-10T01:17:21Z
0
1
null
[ "en", "license:openrail", "region:us" ]
null
2023-07-05T05:16:36Z
--- license: openrail language: - en ---
dana11235/ppo-Huggy
dana11235
2023-08-10T01:16:01Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-08-10T01:15:51Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: dana11235/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Pixel390/BOYKILLUAV2
Pixel390
2023-08-10T01:09:59Z
2
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:Meina/MeinaMix_V10", "base_model:adapter:Meina/MeinaMix_V10", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-08-10T00:28:55Z
--- license: creativeml-openrail-m base_model: Meina/MeinaMix_V10 instance_prompt: a uxz boy tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - Pixel390/BOYKILLUAV2 These are LoRA adaption weights for Meina/MeinaMix_V10. The weights were trained on a uxz boy using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: True.
mani05/q-FrozenLake-v1-4x4-noSlippery
mani05
2023-08-10T01:06:06Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T01:06:02Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="mani05/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
rriverar75/bert-base-multilingual-cased-mrpc-glue
rriverar75
2023-08-10T00:50:24Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "base_model:google-bert/bert-base-multilingual-cased", "base_model:finetune:google-bert/bert-base-multilingual-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-10T00:39:59Z
--- license: apache-2.0 base_model: bert-base-multilingual-cased tags: - text-classification - generated_from_trainer datasets: - glue metrics: - accuracy - f1 widget: - text: - >- Yucaipa owned Dominick 's before selling the chain to Safeway in 1998 for $ 2.5 billion. - >- Yucaipa bought Dominick's in 1995 for $ 693 million and sold it to Safeway for $ 1.8 billion in 1998. example_title: Not Equivalent - text: - >- Revenue in the first quarter of the year dropped 15 percent from the same period a year earlier. - >- With the scandal hanging over Stewart's company revenue the first quarter of the year dropped 15 percent from the same period a year earlier. example_title: Equivalent model-index: - name: bert-base-multilingual-cased-mrpc-glue results: - task: name: Text Classification type: text-classification dataset: name: datasetX type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.7426470588235294 - name: F1 type: f1 value: 0.8059149722735676 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-mrpc-glue This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the datasetX dataset. It achieves the following results on the evaluation set: - Loss: 0.5185 - Accuracy: 0.7426 - F1: 0.8059 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.604 | 1.09 | 500 | 0.5185 | 0.7426 | 0.8059 | | 0.4834 | 2.18 | 1000 | 0.5550 | 0.7770 | 0.8544 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
Notespeak/ariadnetestn
Notespeak
2023-08-10T00:35:42Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "gpt", "llm", "large language model", "h2o-llmstudio", "en", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-08-10T00:28:25Z
--- language: - en library_name: transformers tags: - gpt - llm - large language model - h2o-llmstudio inference: false thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico --- # Model Card ## Summary This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio). - Base model: [ai-forever/ruGPT-3.5-13B](https://huggingface.co/ai-forever/ruGPT-3.5-13B) ## Usage To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers` library installed. ```bash pip install transformers==4.31.0 ``` Also make sure you are providing your huggingface token to the pipeline if the model is lying in a private repo. - Either leave `token=True` in the `pipeline` and login to hugginface_hub by running ```python import huggingface_hub huggingface_hub.login(<ACCES_TOKEN>) ``` - Or directly pass your <ACCES_TOKEN> to `token` in the `pipeline` ```python from transformers import pipeline generate_text = pipeline( model="Notespeak/ariadnetestn", torch_dtype="auto", trust_remote_code=True, use_fast=True, device_map={"": "cuda:0"}, token=True, ) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer: ```python print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"]) ``` ```bash <|prompt|>Why is drinking water so healthy?</s><|answer|> ``` Alternatively, you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer. If the model and the tokenizer are fully supported in the `transformers` package, this will allow you to set `trust_remote_code=False`. ```python from h2oai_pipeline import H2OTextGenerationPipeline from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained( "Notespeak/ariadnetestn", use_fast=True, padding_side="left", trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( "Notespeak/ariadnetestn", torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ) generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Notespeak/ariadnetestn" # either local folder or huggingface model name # Important: The prompt needs to be in the same format the model was trained with. # You can find an example prompt in the experiment logs. prompt = "<|prompt|>How are you?</s><|answer|>" tokenizer = AutoTokenizer.from_pretrained( model_name, use_fast=True, trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ) model.cuda().eval() inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda") # generate configuration can be modified to your needs tokens = model.generate( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True )[0] tokens = tokens[inputs["input_ids"].shape[1]:] answer = tokenizer.decode(tokens, skip_special_tokens=True) print(answer) ``` ## Quantization and sharding You can load the models using quantization by specifying ```load_in_8bit=True``` or ```load_in_4bit=True```. Also, sharding on multiple GPUs is possible by setting ```device_map=auto```. ## Model Architecture ``` GPT2LMHeadModel( (transformer): GPT2Model( (wte): Embedding(50272, 5120) (wpe): Embedding(2048, 5120) (drop): Dropout(p=0.1, inplace=False) (h): ModuleList( (0-39): 40 x GPT2Block( (ln_1): LayerNorm((5120,), eps=1e-05, elementwise_affine=True) (attn): GPT2Attention( (c_attn): Conv1D() (c_proj): Conv1D() (attn_dropout): Dropout(p=0.1, inplace=False) (resid_dropout): Dropout(p=0.1, inplace=False) ) (ln_2): LayerNorm((5120,), eps=1e-05, elementwise_affine=True) (mlp): GPT2MLP( (c_fc): Conv1D() (c_proj): Conv1D() (act): NewGELUActivation() (dropout): Dropout(p=0.1, inplace=False) ) ) ) (ln_f): LayerNorm((5120,), eps=1e-05, elementwise_affine=True) ) (lm_head): Linear(in_features=5120, out_features=50272, bias=False) ) ``` ## Model Configuration This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models. ## Disclaimer Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions. - Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints. - Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion. - Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model. - Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities. - Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues. - Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes. By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
Precious1/Clinical-Biomedical-Named-Entity-Recognition-Using-Scispacy
Precious1
2023-08-10T00:30:41Z
0
1
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-08-10T00:25:26Z
--- license: bigscience-openrail-m ---
allenbc/q-FrozenLake-v1-4x4-noSlippery
allenbc
2023-08-10T00:26:14Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T00:26:09Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="allenbc/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
off-topic-team/llama-2-13b-off-topic
off-topic-team
2023-08-10T00:17:48Z
0
1
null
[ "llama", "eleutherai", "llama-2", "region:us" ]
null
2023-08-09T23:44:20Z
--- tags: - llama - eleutherai - llama-2 --- It had to be done. Sample of data: ``` Hyperion: when it's dysfunctional you just yolo deploy into prod Fleetwood: remove the middle clause - fuck loyalty to ~~ companies~~ most companies Zippy: nono- like- it's more that- it works, but- there needs to be a dude who understands it and can move it to new servers, or make small patches for new functionality, etc-... ⭐ 1 <:sus:869276863414014052> 1 <:guilty:745897670534627369> 2 AI_WAIFU: oh and if you fuck up the wrong system you may get dragged to washington DC to explain what happened ``` also sorry about the reaction formatting having the IDs in it I didn't realize how annoying that would be with Llama's tokenizer :c
rriverar75/distilroberta-base-mrpc-glue
rriverar75
2023-08-10T00:13:17Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:glue", "base_model:distilbert/distilroberta-base", "base_model:finetune:distilbert/distilroberta-base", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-10T00:06:32Z
--- license: apache-2.0 base_model: distilroberta-base tags: - text-classification - generated_from_trainer datasets: - glue metrics: - accuracy - f1 widget: - text: - >- Yucaipa owned Dominick 's before selling the chain to Safeway in 1998 for $ 2.5 billion. - >- Yucaipa bought Dominick's in 1995 for $ 693 million and sold it to Safeway for $ 1.8 billion in 1998. example_title: Not Equivalent - text: - >- Revenue in the first quarter of the year dropped 15 percent from the same period a year earlier. - >- With the scandal hanging over Stewart's company revenue the first quarter of the year dropped 15 percent from the same period a year earlier. example_title: Equivalent model-index: - name: distilroberta-base-mrpc-glue results: - task: name: Text Classification type: text-classification dataset: name: datasetX type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8333333333333334 - name: F1 type: f1 value: 0.8794326241134752 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-mrpc-glue This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the datasetX dataset. It achieves the following results on the evaluation set: - Loss: 0.3874 - Accuracy: 0.8333 - F1: 0.8794 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5523 | 1.09 | 500 | 0.3874 | 0.8333 | 0.8794 | | 0.3421 | 2.18 | 1000 | 0.5895 | 0.8529 | 0.8969 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
vluz/toxmodel20
vluz
2023-08-10T00:06:47Z
4
0
keras
[ "keras", "license:cc0-1.0", "region:us" ]
null
2023-08-07T11:52:01Z
--- license: cc0-1.0 --- **Note:** Due to nature of toxic comments data and code contain explicit language. Data is from kaggle, the *Toxic Comment Classification Challenge* <br> https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge/data?select=train.csv.zip A copy of the data exists on the `data` directory. Trained over 20 epoch in a runpod ### 🤗 Running demo here: https://huggingface.co/spaces/vluz/Tox <hr> Code requires pandas, tensorflow, and streamlit. All can be installed via `pip`. ```python import os import pickle import streamlit as st import tensorflow as tf from tensorflow.keras.layers import TextVectorization @st.cache_resource def load_model(): model = tf.keras.models.load_model(os.path.join("model", "toxmodel.keras")) return model @st.cache_resource def load_vectorizer(): from_disk = pickle.load(open(os.path.join("model", "vectorizer.pkl"), "rb")) new_v = TextVectorization.from_config(from_disk['config']) new_v.adapt(tf.data.Dataset.from_tensor_slices(["xyz"])) # fix for Keras bug new_v.set_weights(from_disk['weights']) return new_v st.title("Toxic Comment Test") st.divider() model = load_model() vectorizer = load_vectorizer() default_prompt = "i love you man, but fuck you!" input_text = st.text_area("Comment:", default_prompt, height=150).lower() if st.button("Test"): if not input_text: st.write("⚠ Warning: Empty prompt.") elif len(input_text) < 15: st.write("⚠ Warning: Model is far less accurate with a small prompt.") if input_text == default_prompt: st.write("Expected results from default prompt are positive for 0 and 2") with st.spinner("Testing..."): inputv = vectorizer([input_text]) output = model.predict(inputv) res = (output > 0.5) st.write(["toxic","severe toxic","obscene","threat","insult","identity hate"], res) st.write(output) ``` Put `toxmodel.keras` and `vectorizer.pkl` into the `model` dir. Then do: ``` stramlit run toxtest.py ``` Expected result from default prompt is 0 and 2 <hr> Full code can be found here: <br> https://github.com/vluz/ToxTest/ <br>
thi-doan/xlm-roberta-base-finetuned-panx-de
thi-doan
2023-08-09T23:57:40Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-09T22:55:36Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: validation args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8616659101225601 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1329 - F1: 0.8617 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2568 | 1.0 | 525 | 0.1583 | 0.8125 | | 0.1261 | 2.0 | 1050 | 0.1458 | 0.8473 | | 0.0823 | 3.0 | 1575 | 0.1329 | 0.8617 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
Pixel390/GIRLKAY
Pixel390
2023-08-09T23:53:42Z
1
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:Meina/MeinaMix_V10", "base_model:adapter:Meina/MeinaMix_V10", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-08-09T23:09:34Z
--- license: creativeml-openrail-m base_model: Meina/MeinaMix_V10 instance_prompt: a uxz girl tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - Pixel390/GIRLKAY These are LoRA adaption weights for Meina/MeinaMix_V10. The weights were trained on a uxz girl using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: True.
tingchih/pretrain_doc_concat
tingchih
2023-08-09T23:38:40Z
105
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-31T05:04:43Z
This is a pre-train baseline model for summarization. Input is to concatenate all articles in one cluster. the example.json is the example result. pipeline: input -> sum tokenizer -> perceiver -> sum model -> summary
cjohlmacher/ppo-Pyramids
cjohlmacher
2023-08-09T23:30:56Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-08-09T21:01:25Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: cjohlmacher/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
good-gaming/distilbert-base-uncased-finetuned-emotion
good-gaming
2023-08-09T23:21:58Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-09T22:48:26Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.927 - name: F1 type: f1 value: 0.9272353554627635 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2133 - Accuracy: 0.927 - F1: 0.9272 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8118 | 1.0 | 250 | 0.3108 | 0.905 | 0.9056 | | 0.2485 | 2.0 | 500 | 0.2133 | 0.927 | 0.9272 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.12.1 - Datasets 1.16.1 - Tokenizers 0.13.3
bilbo991/clip-homer-2m
bilbo991
2023-08-09T23:14:42Z
91
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-text-dual-encoder", "feature-extraction", "generated_from_trainer", "endpoints_compatible", "region:us" ]
feature-extraction
2023-08-08T16:11:20Z
--- base_model: clip-homer-2m tags: - generated_from_trainer model-index: - name: clip-homer-2m results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clip-homer-2m This model is a fine-tuned version of [clip-homer-2m](https://huggingface.co/clip-homer-2m) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5687 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 1.4564 | 1.0 | 62500 | 1.1970 | | 1.0737 | 2.0 | 125000 | 0.8098 | | 0.6867 | 3.0 | 187500 | 0.5687 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.1 - Tokenizers 0.13.3
sachin2000keshav/bert-finetuned-ner
sachin2000keshav
2023-08-09T22:46:27Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-09T21:35:25Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9348437241607409 - name: Recall type: recall value: 0.9513631773813531 - name: F1 type: f1 value: 0.9430311118525316 - name: Accuracy type: accuracy value: 0.9869753340790016 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0555 - Precision: 0.9348 - Recall: 0.9514 - F1: 0.9430 - Accuracy: 0.9870 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.078 | 1.0 | 1756 | 0.0794 | 0.9091 | 0.9337 | 0.9212 | 0.9798 | | 0.04 | 2.0 | 3512 | 0.0562 | 0.9275 | 0.9468 | 0.9370 | 0.9858 | | 0.026 | 3.0 | 5268 | 0.0555 | 0.9348 | 0.9514 | 0.9430 | 0.9870 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
theojolliffe/flan-recipes
theojolliffe
2023-08-09T22:39:32Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-09T22:03:11Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: flan-recipes results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-recipes This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 71.0741 - Rouge2: 34.937 - Rougel: 71.129 - Rougelsum: 71.0758 - Gen Len: 4.0103 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:---------:|:-------:| | 0.0 | 1.0 | 873 | nan | 71.0741 | 34.937 | 71.129 | 71.0758 | 4.0103 | | 0.0 | 2.0 | 1746 | nan | 71.0741 | 34.937 | 71.129 | 71.0758 | 4.0103 | | 0.0 | 3.0 | 2619 | nan | 71.0741 | 34.937 | 71.129 | 71.0758 | 4.0103 | | 0.0 | 4.0 | 3492 | nan | 71.0741 | 34.937 | 71.129 | 71.0758 | 4.0103 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
gang21/llama2-icd10-peft
gang21
2023-08-09T22:33:20Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T22:05:35Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
jucaro/donut-base-sroie
jucaro
2023-08-09T22:19:48Z
46
0
transformers
[ "transformers", "pytorch", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "base_model:naver-clova-ix/donut-base", "base_model:finetune:naver-clova-ix/donut-base", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-08-09T19:07:50Z
--- license: mit base_model: naver-clova-ix/donut-base tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-base-sroie results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-sroie This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
agustinl/ppo-SnowballTarget
agustinl
2023-08-09T22:18:40Z
9
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-08-09T22:18:36Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: agustinl/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
sergeindamix/anciano_pendejo
sergeindamix
2023-08-09T22:11:22Z
2
0
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-08-09T22:11:17Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of a sks person tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Test enoder was not trained.
rizquuula/RoBERTa-IndoSQuADv2_1691592486-16-2e-05-0.01-5
rizquuula
2023-08-09T22:04:20Z
101
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-08-09T14:51:09Z
--- license: mit tags: - generated_from_trainer model-index: - name: RoBERTa-IndoSQuADv2_1691592486-16-2e-05-0.01-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # RoBERTa-IndoSQuADv2_1691592486-16-2e-05-0.01-5 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1516 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.2457 | 1.0 | 8145 | 2.1159 | | 1.7442 | 2.0 | 16290 | 2.0275 | | 1.4963 | 3.0 | 24435 | 2.0147 | | 1.301 | 4.0 | 32580 | 2.0607 | | 1.1569 | 5.0 | 40725 | 2.1516 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
totally-not-an-llm/AlpacaCielo2-7b-8k
totally-not-an-llm
2023-08-09T21:59:36Z
9
10
transformers
[ "transformers", "pytorch", "llama", "text-generation", "custom_code", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-03T15:17:18Z
--- license: llama2 --- # AlpacaCielo2-7b-8k <figure> <img src="https://huggingface.co/totally-not-an-llm/AlpacaCielo-13b/resolve/main/alpaca.png" alt="cute cloud alpaca"> <figcaption style="font-size: 1em;"><i>"super cute baby alpaca laying on a cloud", Model: epicrealism_pureEvolutionV3</i></figcaption> </figure> AlpacaCielo2-7b-8k is the second version of the AlpacaCielo series. It is a llama-2 based model designed for creative tasks, such as storytelling and roleplay, while still doing well with other chatbot purposes. It is a triple model merge of Nous-Hermes + Guanaco + LimaRP. While it is mostly *"uncensored"*, it still inherits some alignment from Guanaco. [GPTQ quants](https://huggingface.co/TheBloke/AlpacaCielo2-7B-8K-GPTQ)<br> [GGML quants](https://huggingface.co/TheBloke/AlpacaCielo2-7B-8K-GGML)<br> (Courtesy of TheBloke) ### Differences from V1: - Double context (4k->8k) - Better roleplaying abilities **Performs well with custom prompt format:** ``` ### System: {system prompt} ### Human: {prompt} ### Assistant: ``` ### Note for system prompt: The model understands it well and it works great if you want roleplay, but it still likes to be an assistant, so you should nudge it in the right direction. For example: ``` ### System: Roleplay as a pirate ### Human: hello ### Assistant: Ahoy, matey! How can I assist you today? ``` ### vs. ``` ### System: Roleplay as a pirate (not assistant!) ### Human: hello ### Assistant: Arrgh, matey! I be the Captain of this here ship. What business do ye have with me? ``` You could also just use LimaRP prompt format. *Thanks to previous similar models such as Alpacino, Alpasta, and AlpacaDente for inspiring the creation of this model. Thanks also to the creators of the models involved in the merge. Original models:* - [Hermes-LLongMA-2](https://huggingface.co/conceptofmind/Hermes-LLongMA-2-7b-8k) - [Guanaco QLoRA](https://huggingface.co/Mikael110/llama-2-7b-guanaco-qlora) - [LimaRP LoRA](https://huggingface.co/lemonilia/limarp-llama2)
ittailup/lallama-13b-alpha
ittailup
2023-08-09T21:56:02Z
5
0
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "generated_from_trainer", "base_model:meta-llama/Llama-2-13b-hf", "base_model:finetune:meta-llama/Llama-2-13b-hf", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-07T21:10:18Z
--- base_model: meta-llama/Llama-2-13b-hf tags: - generated_from_trainer model-index: - name: lallama-13b-alpha results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lallama-13b-alpha This model is a fine-tuned version of [meta-llama/Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 64 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.3 - Tokenizers 0.13.3
mandeepbagga/llama-2-13b-infyGPT
mandeepbagga
2023-08-09T21:38:55Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-09T21:38:32Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
Jiuzhouh/alpaca-lora-7b-webnlg-t2g
Jiuzhouh
2023-08-09T21:19:20Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T21:19:11Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0
szymonrucinski/good-mood
szymonrucinski
2023-08-09T21:09:47Z
0
0
null
[ "license:cc-by-nc-sa-3.0", "region:us" ]
null
2023-08-09T16:17:39Z
--- license: cc-by-nc-sa-3.0 ---
chronopt-research/vietnamese-gpt2-base
chronopt-research
2023-08-09T20:58:46Z
147
1
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "gpt2", "text-generation", "vi", "dataset:duongttr/vi-dataset-for-pretrain", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-09T20:29:15Z
--- license: apache-2.0 datasets: - duongttr/vi-dataset-for-pretrain language: - vi metrics: - perplexity pipeline_tag: text-generation widget: - text: Hôm nay tôi rất vui vì - text: Hoàng Sa, Trường Sa là của Việt model-index: - name: chronopt-research/vietnamese-gpt2-base results: - task: type: text-generation metrics: - type: perplexity value: 51.35 verified: true --- # Vietnamese `gpt2-base` <!-- Provide a quick summary of what the model is/does. --> This is a pretrained `gpt2-base` for Vietnamese language using casual language modeling (CLM) objective. It was introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and first released at [this page](https://openai.com/blog/better-language-models/). ## Model Description GPT-2 (*at first*) is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. This is the **base version** of GPT-2, with 137M parameters. You could've found other pretrained version from here: [gpt2-medium](https://huggingface.co/chronopt-research/vietnamese-gpt2-medium), [gpt2-large]() ## Dataset used for pretraining This is a combination of multiple Vietnamese dataset for pretraining CLMs such as GPT, GPT2, etc. The dataset consists of: - [`vietgpt/covid_19_news_vi`](https://huggingface.co/datasets/vietgpt/covid_19_news_vi) - [`hieunguyen1053/binhvq-news-corpus`](https://huggingface.co/datasets/hieunguyen1053/binhvq-news-corpus) - [`oscar (unshuffled_deduplicated_vi)`](https://huggingface.co/datasets/oscar) - [`vietgpt/wikipedia_vi`](https://huggingface.co/datasets/vietgpt/wikipedia_vi) You can find out the combined version here: [duongttr/vi-dataset-for-pretrain](https://huggingface.co/datasets/duongttr/vi-dataset-for-pretrain) ## Hyperparamters & Results We trained the model ~100k steps, with `lr=1e-4`, `bs=2560` (`single_batch_size=32` * `num_core=8` * `grad_cum=10`), `optimizer=adamw` on TPU-VM-3.8 from [TRC Program](https://sites.research.google/trc/about/). The training costs around **1 day**. |Model|Eval Loss|Eval Perplexity| |---|---|---| |**gpt2-base**|**3.939**|**51.35**| |gpt2-medium|2.8676|17.5948| |gpt2-large|-|-| ## Contacts Feel free to contact us via: [email]()
Bb8271/s
Bb8271
2023-08-09T20:53:35Z
1
0
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-08-09T20:53:33Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of sksks tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Test enoder was not trained.
GhifSmile/distilbert-base-uncased-DSC-new
GhifSmile
2023-08-09T20:49:02Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-09T19:25:46Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: distilbert-base-uncased-DSC-new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-DSC-new This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1017 - Accuracy: 0.9902 - Precision: 0.9910 - Recall: 0.9909 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:| | 0.4743 | 1.0 | 618 | 0.1856 | 0.9633 | 0.9672 | 0.9647 | | 0.0946 | 2.0 | 1236 | 0.1577 | 0.9707 | 0.9749 | 0.9733 | | 0.0851 | 3.0 | 1854 | 0.1081 | 0.9853 | 0.9869 | 0.9858 | | 0.0633 | 4.0 | 2472 | 0.1449 | 0.9841 | 0.9851 | 0.9837 | | 0.0258 | 5.0 | 3090 | 0.1155 | 0.9829 | 0.9838 | 0.9829 | | 0.022 | 6.0 | 3708 | 0.1089 | 0.9890 | 0.9899 | 0.9897 | | 0.0147 | 7.0 | 4326 | 0.1092 | 0.9878 | 0.9885 | 0.9875 | | 0.0043 | 8.0 | 4944 | 0.1017 | 0.9902 | 0.9910 | 0.9909 | | 0.0041 | 9.0 | 5562 | 0.1033 | 0.9878 | 0.9885 | 0.9874 | | 0.0012 | 10.0 | 6180 | 0.1093 | 0.9878 | 0.9885 | 0.9874 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
EgilKarlsen/DistilRoBERTa_Thunderbird-Anomaly_Baseline
EgilKarlsen
2023-08-09T20:45:29Z
107
2
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "base_model:distilbert/distilroberta-base", "base_model:finetune:distilbert/distilroberta-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-09T20:25:00Z
--- license: apache-2.0 base_model: distilroberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: DistilRoBERTa_Thunderbird-Anomaly_Baseline results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DistilRoBERTa_Thunderbird-Anomaly_Baseline This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0031 - Accuracy: 0.9999 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.0958 | 1.0 | 1094 | 0.0623 | 0.9846 | | 0.0514 | 2.0 | 2188 | 0.0340 | 0.9846 | | 0.0261 | 3.0 | 3282 | 0.0168 | 0.9896 | | 0.0147 | 4.0 | 4376 | 0.0095 | 1.0 | | 0.01 | 5.0 | 5470 | 0.0061 | 1.0 | | 0.0071 | 6.0 | 6564 | 0.0042 | 1.0 | | 0.0058 | 7.0 | 7658 | 0.0031 | 1.0 | | 0.0046 | 8.0 | 8752 | 0.0025 | 1.0 | | 0.0043 | 9.0 | 9846 | 0.0022 | 1.0 | | 0.0038 | 10.0 | 10940 | 0.0021 | 1.0 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
ederdt2023/Eder_Duenas
ederdt2023
2023-08-09T20:43:13Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-09T20:43:13Z
--- license: creativeml-openrail-m ---
TotoLefo/Sheirlou500Epoch
TotoLefo
2023-08-09T20:33:56Z
0
0
null
[ "AI VOICE", "fr", "region:us" ]
null
2023-08-09T20:31:07Z
--- language: - fr tags: - AI VOICE --- # Model Card for Model ID - **Developed by:** TOTO
FredericProtat/dqn-SpaceInvadersNoFrameskip-v4
FredericProtat
2023-08-09T20:24:42Z
7
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-09T20:24:06Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 691.00 +/- 253.51 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga FredericProtat -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga FredericProtat -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga FredericProtat ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```