modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-16 00:42:46
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
522 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-16 00:42:16
card
stringlengths
11
1.01M
sontn122/tmp_trainer
sontn122
2023-09-09T12:20:41Z
159
0
transformers
[ "transformers", "pytorch", "deberta-v2", "multiple-choice", "generated_from_trainer", "endpoints_compatible", "region:us" ]
multiple-choice
2023-09-09T12:17:50Z
--- tags: - generated_from_trainer model-index: - name: tmp_trainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tmp_trainer This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
Thamer/resnet-fine_tuned
Thamer
2023-09-09T12:16:21Z
259
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "resnet", "image-classification", "generated_from_trainer", "dataset:Falah/Alzheimer_MRI", "base_model:microsoft/resnet-34", "base_model:finetune:microsoft/resnet-34", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-08-11T23:18:43Z
--- license: apache-2.0 base_model: microsoft/resnet-34 tags: - generated_from_trainer metrics: - accuracy model-index: - name: resnet-fine_tuned results: [] datasets: - Falah/Alzheimer_MRI library_name: transformers pipeline_tag: image-classification --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # resnet-fine_tuned This model is a fine-tuned version of [microsoft/resnet-34](https://huggingface.co/microsoft/resnet-34) on the Falah/Alzheimer_MRI dataset. It achieves the following results on the evaluation set: - Loss: 0.1983 - Accuracy: 0.9219 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9041 | 1.0 | 80 | 0.9659 | 0.5352 | | 0.8743 | 2.0 | 160 | 0.9348 | 0.5797 | | 0.7723 | 3.0 | 240 | 0.7793 | 0.6594 | | 0.6864 | 4.0 | 320 | 0.6799 | 0.7031 | | 0.5347 | 5.0 | 400 | 0.5596 | 0.7703 | | 0.4282 | 6.0 | 480 | 0.5078 | 0.7766 | | 0.4315 | 7.0 | 560 | 0.5455 | 0.7680 | | 0.3747 | 8.0 | 640 | 0.4203 | 0.8266 | | 0.2977 | 9.0 | 720 | 0.3926 | 0.8469 | | 0.2252 | 10.0 | 800 | 0.3024 | 0.8742 | | 0.2675 | 11.0 | 880 | 0.2731 | 0.8906 | | 0.2136 | 12.0 | 960 | 0.3045 | 0.875 | | 0.1998 | 13.0 | 1040 | 0.2370 | 0.9 | | 0.2406 | 14.0 | 1120 | 0.2387 | 0.9086 | | 0.1873 | 15.0 | 1200 | 0.1983 | 0.9219 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cpu - Datasets 2.13.1 - Tokenizers 0.13.3
moniem/finetuning-sentiment-model-3000-samples
moniem
2023-09-09T11:42:08Z
102
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-09T11:35:48Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8633333333333333 - name: F1 type: f1 value: 0.8646864686468646 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3239 - Accuracy: 0.8633 - F1: 0.8647 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
Prot10/vit-base-patch16-224-for-pre_evaluation
Prot10
2023-09-09T11:30:17Z
20
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224", "base_model:finetune:google/vit-base-patch16-224", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-08-29T17:34:40Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-base-patch16-224-for-pre_evaluation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-for-pre_evaluation This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6048 - Accuracy: 0.3929 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.5774 | 0.98 | 16 | 1.5109 | 0.3022 | | 1.4794 | 1.97 | 32 | 1.4942 | 0.3242 | | 1.4536 | 2.95 | 48 | 1.4943 | 0.3187 | | 1.421 | 4.0 | 65 | 1.4247 | 0.3407 | | 1.3882 | 4.98 | 81 | 1.4944 | 0.3462 | | 1.3579 | 5.97 | 97 | 1.4180 | 0.3571 | | 1.2838 | 6.95 | 113 | 1.4693 | 0.3681 | | 1.2695 | 8.0 | 130 | 1.4359 | 0.3434 | | 1.2016 | 8.98 | 146 | 1.4656 | 0.3599 | | 1.2087 | 9.97 | 162 | 1.4550 | 0.3379 | | 1.206 | 10.95 | 178 | 1.5056 | 0.3516 | | 1.1236 | 12.0 | 195 | 1.5003 | 0.3434 | | 1.0534 | 12.98 | 211 | 1.5193 | 0.3269 | | 1.0024 | 13.97 | 227 | 1.4890 | 0.3681 | | 0.9767 | 14.95 | 243 | 1.5628 | 0.3434 | | 0.9201 | 16.0 | 260 | 1.6306 | 0.3516 | | 0.9136 | 16.98 | 276 | 1.5715 | 0.3626 | | 0.8566 | 17.97 | 292 | 1.5966 | 0.3654 | | 0.8273 | 18.95 | 308 | 1.6048 | 0.3929 | | 0.7825 | 20.0 | 325 | 1.6175 | 0.3846 | | 0.736 | 20.98 | 341 | 1.6526 | 0.3929 | | 0.7008 | 21.97 | 357 | 1.6563 | 0.3736 | | 0.6714 | 22.95 | 373 | 1.7319 | 0.3901 | | 0.7039 | 24.0 | 390 | 1.6866 | 0.3929 | | 0.628 | 24.98 | 406 | 1.7023 | 0.3791 | | 0.6182 | 25.97 | 422 | 1.7301 | 0.3901 | | 0.5957 | 26.95 | 438 | 1.7157 | 0.3846 | | 0.5973 | 28.0 | 455 | 1.7478 | 0.3709 | | 0.5655 | 28.98 | 471 | 1.7377 | 0.3736 | | 0.5631 | 29.54 | 480 | 1.7374 | 0.3736 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
felixshier/ac-01-bert-finetuned
felixshier
2023-09-09T11:25:10Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-15T23:32:39Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_keras_callback model-index: - name: ac-01-bert-finetuned results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ac-01-bert-finetuned This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1172 - Validation Loss: 0.5493 - Train F1: 0.8137 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 4030, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train F1 | Epoch | |:----------:|:---------------:|:--------:|:-----:| | 0.5556 | 0.4472 | 0.7965 | 0 | | 0.3877 | 0.4268 | 0.8107 | 1 | | 0.2931 | 0.4459 | 0.8165 | 2 | | 0.1734 | 0.5071 | 0.8223 | 3 | | 0.1172 | 0.5493 | 0.8137 | 4 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.13.0 - Datasets 2.14.4 - Tokenizers 0.13.3
sd-dreambooth-library/tatar-style
sd-dreambooth-library
2023-09-09T11:18:50Z
33
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-09T11:15:48Z
--- license: creativeml-openrail-m tags: - text-to-image --- ### tatar style on Stable Diffusion via Dreambooth #### model by nailmarsel This your the Stable Diffusion model fine-tuned the tatar style concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt`: **tatar_style** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Here are the images used for training this concept: ![image 0](https://huggingface.co/sd-dreambooth-library/tatar-style/resolve/main/concept_images/5.jpeg) ![image 1](https://huggingface.co/sd-dreambooth-library/tatar-style/resolve/main/concept_images/6.jpeg) ![image 2](https://huggingface.co/sd-dreambooth-library/tatar-style/resolve/main/concept_images/12.jpeg) ![image 3](https://huggingface.co/sd-dreambooth-library/tatar-style/resolve/main/concept_images/3.jpeg) ![image 4](https://huggingface.co/sd-dreambooth-library/tatar-style/resolve/main/concept_images/0.jpeg) ![image 5](https://huggingface.co/sd-dreambooth-library/tatar-style/resolve/main/concept_images/11.jpeg) ![image 6](https://huggingface.co/sd-dreambooth-library/tatar-style/resolve/main/concept_images/4.jpeg) ![image 7](https://huggingface.co/sd-dreambooth-library/tatar-style/resolve/main/concept_images/2.jpeg) ![image 8](https://huggingface.co/sd-dreambooth-library/tatar-style/resolve/main/concept_images/7.jpeg) ![image 9](https://huggingface.co/sd-dreambooth-library/tatar-style/resolve/main/concept_images/8.jpeg) ![image 10](https://huggingface.co/sd-dreambooth-library/tatar-style/resolve/main/concept_images/10.jpeg) ![image 11](https://huggingface.co/sd-dreambooth-library/tatar-style/resolve/main/concept_images/1.jpeg) ![image 12](https://huggingface.co/sd-dreambooth-library/tatar-style/resolve/main/concept_images/9.jpeg)
xszhou/CartPole-v1
xszhou
2023-09-09T11:17:27Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-09T11:17:17Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 1500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
ingeol/llama_qlora_test0
ingeol
2023-09-09T11:16:05Z
0
0
peft
[ "peft", "pytorch", "region:us" ]
null
2023-09-09T10:44:13Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
Anya2099/llama2-qlora-finetunined-french
Anya2099
2023-09-09T11:09:59Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-09T11:09:52Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0
Kyrmasch/mDeBERTa-v3-base-SQuAD2-kaz
Kyrmasch
2023-09-09T11:08:17Z
105
0
transformers
[ "transformers", "pytorch", "deberta-v2", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2023-09-05T05:58:16Z
Base: timpal0l/mdeberta-v3-base-squad2
BobaStr/emails_bert_gpu
BobaStr
2023-09-09T11:01:10Z
61
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-09T10:45:51Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: BobaStr/emails_bert_gpu results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # BobaStr/emails_bert_gpu This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1924 - Validation Loss: 0.2284 - Train Accuracy: 0.9346 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 17315, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.2907 | 0.2394 | 0.9266 | 0 | | 0.2191 | 0.2311 | 0.9319 | 1 | | 0.1924 | 0.2284 | 0.9346 | 2 | ### Framework versions - Transformers 4.33.1 - TensorFlow 2.13.0 - Datasets 2.14.5 - Tokenizers 0.13.3
shadowsbuiltin/lora-trained-xl
shadowsbuiltin
2023-09-09T10:48:43Z
1
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-09-09T10:14:55Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of sks dog tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - shadowsbuiltin/lora-trained-xl These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
haouarin/jais-13b-chat-8bits
haouarin
2023-09-09T10:45:56Z
6
3
transformers
[ "transformers", "pytorch", "jais", "text-generation", "custom_code", "autotrain_compatible", "8-bit", "bitsandbytes", "region:us" ]
text-generation
2023-09-08T12:19:30Z
Demo google colab : https://colab.research.google.com/drive/13rz5tGDdHc3fTah8qT9rmOKdIg1ylqcD?usp=sharing
RVC-RU/glad-valakas-ru
RVC-RU
2023-09-09T10:38:53Z
0
8
null
[ "license:mit", "region:us" ]
null
2023-09-09T06:47:31Z
--- license: mit --- # Русскоязычная модель на стримера GLAD VALAKAS ###### By nekoanime :) ##### - Модель сделана в 350 эпох. D и G файлы стандартные ##### - Датасет есть в файлах, можно свободно тренить и допиливать модель до идеала если хотите. ## Тесты модели (Мат присутствует) ### Ниже ссылки для скачивания аудио (прямые) [Запись голоса 1 в реальном времени](https://cdn.discordapp.com/attachments/650365898678468647/1149966845969969192/valakas_1.mp3) [Запись голоса 2 в реальном времени](https://cdn.discordapp.com/attachments/650365898678468647/1149966846326493246/valakas_2.mp3)
badokorach/bert-base-multilingual-cased-finetuned-luganda-qa
badokorach
2023-09-09T10:31:09Z
20
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2023-09-09T09:09:27Z
--- tags: - generated_from_trainer model-index: - name: bert-base-multilingual-cased-finetuned-luganda-qa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-finetuned-luganda-qa This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.3748 | 1.0 | 2215 | 0.1817 | | 0.0707 | 2.0 | 4430 | 0.0123 | | 0.0141 | 3.0 | 6645 | 0.0007 | | 0.0045 | 4.0 | 8860 | 0.0002 | | 0.0005 | 5.0 | 11075 | 0.0000 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
davanstrien/detr_beyond_words
davanstrien
2023-09-09T10:30:30Z
23
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "detr", "object-detection", "license:mit", "endpoints_compatible", "region:us" ]
object-detection
2022-03-02T23:29:05Z
--- license: mit tags: - object-detection widget: - src: https://huggingface.co/davanstrien/detr_beyond_words/resolve/main/19.jpg example_title: page - src: https://huggingface.co/davanstrien/detr_beyond_words/resolve/main/65.jpg example_title: page2 --- # detr_beyond_words (WIP) [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) fine tuned on [Beyond Words](https://github.com/LibraryOfCongress/newspaper-navigator/tree/master/beyond_words_data).
camenduru/ffmpeg-cuda
camenduru
2023-09-09T10:17:18Z
0
1
null
[ "region:us" ]
null
2023-09-09T10:16:55Z
FFmpeg README ============= FFmpeg is a collection of libraries and tools to process multimedia content such as audio, video, subtitles and related metadata. ## Libraries * `libavcodec` provides implementation of a wider range of codecs. * `libavformat` implements streaming protocols, container formats and basic I/O access. * `libavutil` includes hashers, decompressors and miscellaneous utility functions. * `libavfilter` provides means to alter decoded audio and video through a directed graph of connected filters. * `libavdevice` provides an abstraction to access capture and playback devices. * `libswresample` implements audio mixing and resampling routines. * `libswscale` implements color conversion and scaling routines. ## Tools * [ffmpeg](https://ffmpeg.org/ffmpeg.html) is a command line toolbox to manipulate, convert and stream multimedia content. * [ffplay](https://ffmpeg.org/ffplay.html) is a minimalistic multimedia player. * [ffprobe](https://ffmpeg.org/ffprobe.html) is a simple analysis tool to inspect multimedia content. * Additional small tools such as `aviocat`, `ismindex` and `qt-faststart`. ## Documentation The offline documentation is available in the **doc/** directory. The online documentation is available in the main [website](https://ffmpeg.org) and in the [wiki](https://trac.ffmpeg.org). ### Examples Coding examples are available in the **doc/examples** directory. ## License FFmpeg codebase is mainly LGPL-licensed with optional components licensed under GPL. Please refer to the LICENSE file for detailed information. ## Contributing Patches should be submitted to the ffmpeg-devel mailing list using `git format-patch` or `git send-email`. Github pull requests should be avoided because they are not part of our review process and will be ignored.
antikpatel128/OUTPUT_DIR
antikpatel128
2023-09-09T09:54:33Z
1
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "region:us" ]
text-to-image
2023-09-08T14:21:44Z
--- license: other tags: - text-to-image - stable-diffusion - lora - diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: widget: - text: --- # Slider SDXL - LoRA ![Image 0](1739210.jpeg) <h2 id="heading-2">SDXL ONLY</h2><ul><li><p>weight: <strong>0 to 5.0</strong></p></li><li><p>positive: <strong>more realistic</strong></p></li><li><p>negative: <strong>less realistic, cartoon, painting, etc</strong></p></li></ul><p></p><p>I noticed the more bizarre your prompt gets, the more SDXL wants to turn it into a cartoon. This helps give you the ability to adjust the level of realism in a photo. All images were generated without refiner. I refuse. </p><p></p><p>If you like my work, I am not asking for coffee, but a kind review is always appreciated.<br /><br /></p> ## Image examples for the model: ![Image 1](1739267.jpeg) ![Image 2](1739266.jpeg) ![Image 3](1739235.jpeg) ![Image 4](1739247.jpeg)
abeiler/goatV10-QLORA
abeiler
2023-09-09T09:33:57Z
5
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:finetune:meta-llama/Llama-2-7b-hf", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-07T15:54:21Z
--- base_model: meta-llama/Llama-2-7b-hf tags: - generated_from_trainer model-index: - name: goatV10-QLORA results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # goatV10-QLORA This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3860 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.4692 | 0.16 | 200 | 0.4549 | | 0.4234 | 0.31 | 400 | 0.4144 | | 0.3943 | 0.47 | 600 | 0.4011 | | 0.4079 | 0.63 | 800 | 0.3922 | | 0.4171 | 0.79 | 1000 | 0.3877 | | 0.3983 | 0.94 | 1200 | 0.3861 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.0 - Datasets 2.12.0 - Tokenizers 0.13.3
Bhuvaneshwari/worktual_vectone_cai
Bhuvaneshwari
2023-09-09T09:27:48Z
1
0
peft
[ "peft", "region:us" ]
null
2023-09-09T09:13:35Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0
StefanoCaloni/Cartpole
StefanoCaloni
2023-09-09T09:21:50Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-09T09:21:39Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Cartpole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
CzarnyRycerz/poca-SoccerTwos
CzarnyRycerz
2023-09-09T09:16:53Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-09-09T09:07:29Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: CzarnyRycerz/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
GregoRio123/itys
GregoRio123
2023-09-09T09:15:39Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-15T09:36:15Z
--- license: creativeml-openrail-m ---
om-ashish-soni/bert-base-cased
om-ashish-soni
2023-09-09T08:58:40Z
114
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-09T08:47:03Z
--- tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-cased results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9245192191975353 - name: Recall type: recall value: 0.9319212946114467 - name: F1 type: f1 value: 0.9282054999758349 - name: Accuracy type: accuracy value: 0.9332577853652794 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased This model was trained from scratch on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.3045 - Precision: 0.9245 - Recall: 0.9319 - F1: 0.9282 - Accuracy: 0.9333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2707 | 1.0 | 1756 | 0.3120 | 0.9171 | 0.9263 | 0.9217 | 0.9267 | | 0.1829 | 2.0 | 3512 | 0.2928 | 0.9189 | 0.9295 | 0.9242 | 0.9299 | | 0.1411 | 3.0 | 5268 | 0.3045 | 0.9245 | 0.9319 | 0.9282 | 0.9333 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
Sunny98/Taxi-v3
Sunny98
2023-09-09T08:58:01Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-09-09T08:57:59Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Sunny98/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
OpenMOSS/moss-vits-onnx-model
OpenMOSS
2023-09-09T08:55:34Z
0
1
null
[ "onnx", "zh", "region:us" ]
null
2023-09-09T08:46:08Z
--- language: - zh --- # MOSS声线vits模型(900 epochs) 从电源《流浪地球1》和《流浪地球2》提取MOSS原声进行vits微调训练后的预训练模型,已转换为ONNX模型。 **All models and their derivatives provided on this page are prohibited from commercial use!** **本页面提供的所有模型及其衍生物严禁商用!** **Please bear all consequences caused by using the models below!** **请自行承担使用模型而造成的一切后果!**
KobanBanan/ruRoberta-large_ner
KobanBanan
2023-09-09T08:41:56Z
13
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "generated_from_trainer", "base_model:ai-forever/ruRoberta-large", "base_model:finetune:ai-forever/ruRoberta-large", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-08T14:34:59Z
--- base_model: ai-forever/ruRoberta-large tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: ruRoberta-large_ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ruRoberta-large_ner This model is a fine-tuned version of [ai-forever/ruRoberta-large](https://huggingface.co/ai-forever/ruRoberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1853 - Precision: 0.7273 - Recall: 0.8 - F1: 0.7619 - Accuracy: 0.9333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 15 | 0.4171 | 0.5833 | 0.7 | 0.6364 | 0.8067 | | No log | 2.0 | 30 | 0.2306 | 0.6765 | 0.7667 | 0.7188 | 0.9 | | No log | 3.0 | 45 | 0.1853 | 0.7273 | 0.8 | 0.7619 | 0.9333 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0.dev20230621+cu117 - Datasets 2.13.0 - Tokenizers 0.13.3
Venkatesh4342/pegasus-samsum
Venkatesh4342
2023-09-09T07:39:35Z
9
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "base_model:google/pegasus-large", "base_model:finetune:google/pegasus-large", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-07T14:22:01Z
--- base_model: google/pegasus-large tags: - generated_from_trainer datasets: - samsum metrics: - rouge model-index: - name: pegasus-samsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: samsum type: samsum config: samsum split: validation args: samsum metrics: - name: Rouge1 type: rouge value: 0.4659 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-large](https://huggingface.co/google/pegasus-large) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4091 - Rouge1: 0.4659 - Rouge2: 0.2345 - Rougel: 0.3946 - Rougelsum: 0.3951 - Gen Len: 17.7467 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 1.8025 | 0.27 | 500 | 1.4403 | 0.4466 | 0.2101 | 0.3832 | 0.3841 | 21.64 | | 1.5936 | 0.54 | 1000 | 1.3766 | 0.4786 | 0.2374 | 0.4017 | 0.4013 | 21.24 | | 1.5926 | 0.81 | 1500 | 1.3910 | 0.5118 | 0.2643 | 0.4282 | 0.4286 | 20.2267 | | 1.5067 | 1.09 | 2000 | 1.4028 | 0.4982 | 0.261 | 0.4155 | 0.4157 | 20.4267 | | 1.5712 | 1.36 | 2500 | 1.4236 | 0.4712 | 0.234 | 0.3964 | 0.3969 | 17.0 | | 1.6177 | 1.63 | 3000 | 1.4151 | 0.4768 | 0.2382 | 0.4019 | 0.4022 | 16.28 | | 1.6289 | 1.9 | 3500 | 1.4112 | 0.4744 | 0.2346 | 0.402 | 0.4033 | 17.0267 | | 1.6326 | 2.17 | 4000 | 1.4096 | 0.4682 | 0.234 | 0.3985 | 0.3994 | 17.1333 | | 1.5929 | 2.44 | 4500 | 1.4093 | 0.4637 | 0.2342 | 0.3939 | 0.3942 | 17.16 | | 1.4351 | 2.72 | 5000 | 1.4090 | 0.4684 | 0.2346 | 0.3953 | 0.3955 | 17.8133 | | 1.6445 | 2.99 | 5500 | 1.4091 | 0.4659 | 0.2345 | 0.3946 | 0.3951 | 17.7467 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
syp1229/whisper-small-Young
syp1229
2023-09-09T07:22:11Z
3
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "hi", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-09T03:27:32Z
--- language: - hi license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer model-index: - name: Whisper Small ko-Yfreq-E - syp1229 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small ko-Yfreq-E - syp1229 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the aihub Y E dialogue dataset. It achieves the following results on the evaluation set: - Loss: 0.3217 - Cer: 0.0749 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1927 | 0.3 | 100 | 0.3277 | 0.0937 | | 0.1915 | 0.59 | 200 | 0.3208 | 0.0843 | | 0.135 | 0.89 | 300 | 0.3242 | 0.0940 | | 0.062 | 1.19 | 400 | 0.3134 | 0.0819 | | 0.0512 | 1.48 | 500 | 0.3234 | 0.0827 | | 0.036 | 1.78 | 600 | 0.3145 | 0.0811 | | 0.0217 | 2.07 | 700 | 0.3208 | 0.0807 | | 0.0148 | 2.37 | 800 | 0.3228 | 0.0785 | | 0.0359 | 2.67 | 900 | 0.3162 | 0.0789 | | 0.0256 | 2.96 | 1000 | 0.3219 | 0.0784 | | 0.0054 | 3.26 | 1100 | 0.3224 | 0.0770 | | 0.0087 | 3.56 | 1200 | 0.3202 | 0.0748 | | 0.0045 | 3.85 | 1300 | 0.3191 | 0.0755 | | 0.0095 | 4.15 | 1400 | 0.3165 | 0.0739 | | 0.0043 | 4.44 | 1500 | 0.3189 | 0.0738 | | 0.0024 | 4.74 | 1600 | 0.3217 | 0.0749 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
922-CA/natsuki-lm-lora-tests
922-CA
2023-09-09T07:14:46Z
0
0
null
[ "license:llama2", "region:us" ]
null
2023-09-07T08:39:45Z
--- license: llama2 --- For better/best results, use "Player" and "Natsuki" like so: \nPlayer: (prompt)\Natsuki: # l2-7b-natsuki-v0.1 (09/07/2023) * Fine-tuned on Natsuki dialogue from DDLC (dataset of ~800 items augmented by [MythoMax-l2-13b](https://huggingface.co/Gryphe/MythoMax-L2-13b) to turn into multi-turn chat dialogue) * From chat LLaMA-2-7b * Lora of [l2-7b-natsuki-ddlc-v0.1](https://huggingface.co/922-CA/l2-7b-natsuki-ddlc-v0.1) # l2-7b-natsuki-v0.1-Kv2 (09/08/2023) * Fine-tuned on Natsuki dialogue from DDLC (dataset of ~800 items augmented by [MythoMax-l2-13b](https://huggingface.co/Gryphe/MythoMax-L2-13b) to turn into multi-turn chat dialogue) * From [Kimiko-LLaMA-2-7b](https://huggingface.co/johnwick123forevr/Llama2-chat-kimiko-Sharded-2gb) * Lora of [l2-7b-natsuki-ddlc-v0.1-Kv2](https://huggingface.co/922-CA/l2-7b-natsuki-ddlc-v0.1-Kv2)
Jedida/sentence_sentiments_analysis_bert
Jedida
2023-09-09T07:14:06Z
106
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-08T11:28:13Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer model-index: - name: sentence_sentiments_analysis_bert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentence_sentiments_analysis_bert This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2690 - F1-score: 0.9132 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1-score | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3365 | 1.0 | 2500 | 0.3218 | 0.9066 | | 0.2477 | 2.0 | 5000 | 0.2690 | 0.9132 | | 0.1417 | 3.0 | 7500 | 0.3876 | 0.9178 | | 0.0645 | 4.0 | 10000 | 0.4436 | 0.9216 | | 0.0304 | 5.0 | 12500 | 0.5194 | 0.9208 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
asyafiqe/Merak-7B-v3-Mini-Orca-Indo
asyafiqe
2023-09-09T07:00:02Z
13
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "id", "dataset:asyafiqe/orca_mini_v1_indonesia", "arxiv:2307.09288", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-08-26T08:36:51Z
--- inference: false license: cc-by-nc-sa-4.0 datasets: - asyafiqe/orca_mini_v1_indonesia language: - en - id --- # 🦚Merak-7B-v3-Mini-Orca🐳 <p align="center"> <img src="https://i.imgur.com/39sQd3h.png" alt="Merak Orca" width="300" height="300"/> </p> **Merak-7B-v3-Mini-Orca** is Ichsan2895's [Merak-7B-v3](https://huggingface.co/Ichsan2895/Merak-7B-v3) fine-tuned on Bahasa Indonesia translated psmathur's [orca_mini_v1_dataset](https://huggingface.co/datasets/psmathur/orca_mini_v1_dataset). ## Usage This model fit on 16GB VRAM GPU (Google Collab T4 wil do), by using BitsandBytes it can run on 6GB VRAM GPU. [![Open in Google Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/11xmPcRNirGwZcpgmNPNpUioJUG4PQBuh) **Quantized** versions is available: GPTQ: https://huggingface.co/asyafiqe/Merak-7B-v3-Mini-Orca-Indo-GPTQ GGML/GGUF: I will try to make this version once GGUF merge is stable. Start chatting with Merak Mini Orca using the following code snippet: ``` import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline tokenizer = AutoTokenizer.from_pretrained("asyafiqe/Merak-7B-v3-Mini-Orca-Indo") model = AutoModelForCausalLM.from_pretrained("asyafiqe/Merak-7B-v3-Mini-Orca-Indo", torch_dtype=torch.float16, device_map="auto") system_prompt = "SYSTEM: 'Anda adalah asisten AI. Anda akan diberi tugas. Anda harus menghasilkan jawaban yang rinci dan panjang.\n" message = "Buatlah rencana untuk mengurangi penggunaan listrik di rumah." prompt = f"{system_prompt}USER: {message}\nASSISTANT:" inputs = tokenizer(prompt, return_tensors="pt").to("cuda") output = model.generate(**inputs, do_sample=True, temperature=0.1, max_new_tokens=200) print(tokenizer.decode(output[0], skip_special_tokens=True)) ``` ### Prompt format You can use [Vicuna 1.1](https://github.com/oobabooga/text-generation-webui/blob/main/instruction-templates/Vicuna-v1.1.yaml) format for Ooobabooga's text generation webui. ``` SYSTEM: Anda adalah asisten AI. Anda akan diberi tugas. Anda harus memberikan jawaban yang rinci dan panjang. USER: <prompt> (without the <>) ASSISTANT: ``` ## Training details [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="150" height="24"/>](https://github.com/OpenAccess-AI-Collective/axolotl) Merak-7B-v3-Mini-Orca was instruction fine-tuned on 2 x 3090-24GB for 6 hours. [LoRA](https://github.com/microsoft/LoRA), [DeepSpeed ZeRO-2](https://github.com/microsoft/DeepSpeed), and [FlashAttention](https://github.com/Dao-AILab/flash-attention) were implemented during training using [Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl). Hyperparameter | value | | ------ | ------ | learning rate | 0.0004 | batch size | 16 | microbatch size | 2 | warmup step | 100 | epochs | 2 | weight decay | 0.0 | lr scheduler | cosine | lora alpha | 16 | lora rank | 16 | lora dropout | 0.05 | lora target modules | q_proj, v_proj, k_proj, o_proj | cutoff length | 4096 | #### Training loss Step |Train Loss | | ------ | ------ | 1 |0.9578 | 100 |0.816 | 200 |0.7819 | 300 |0.7279 | 400 |0.732 | 500 |0.7139 | 600 |0.6829 | 700 |0.6641 | 800 |0.6553 | #### Limitations and bias Llama 2 and fine-tuned variants are a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2 and any fine-tuned varient's potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2 variants, developers should perform safety testing and tuning tailored to their specific applications of the model. Please see the Responsible Use Guide available at https://ai.meta.com/llama/responsible-use-guide/ ## Citation ``` @Paper{arXiv, author = {Touvron, et al}, title = {Llama 2: Open Foundation and Fine-Tuned Chat Models}, journal = {arXiv preprint arXiv:2307.09288}, year = {2023} } @misc{orca_mini_v3_70b, author = {Pankaj Mathur}, title = {orca_mini_v3_70b: An Orca Style Llama2-70b model}, year = {2023}, publisher = {HuggingFace}, journal = {HuggingFace repository}, howpublished = {\url{https://https://huggingface.co/psmathur/orca_mini_v3_70b}, } @article{hu2021lora, title={LoRA: Low-Rank Adaptation of Large Language Models}, author={Hu, Edward J. and Shen, Yelong and Wallis, Phillip and Allen-Zhu, Zeyuan and Li, Yuanzhi and Wang, Shean and Chen, Weizhu}, journal={CoRR}, year={2021} } ```
AdiOO7/SalesKRA
AdiOO7
2023-09-09T06:59:42Z
3
0
peft
[ "peft", "region:us" ]
null
2023-09-09T06:59:33Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0
Dorgus/horse_model
Dorgus
2023-09-09T06:50:17Z
1
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:stablediffusionapi/bb95-furry-mix", "base_model:finetune:stablediffusionapi/bb95-furry-mix", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-09T03:44:22Z
--- license: creativeml-openrail-m base_model: stablediffusionapi/bb95-furry-mix instance_prompt: handsome sks anthro horse with black and white fur tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - Dorgus/horse_model This is a dreambooth model derived from stablediffusionapi/bb95-furry-mix. The weights were trained on handsome sks anthro horse with black and white fur using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
sk0032/coqui-tts-model-adam
sk0032
2023-09-09T06:43:08Z
2
0
transformers
[ "transformers", "tensorboard", "endpoints_compatible", "region:us" ]
null
2023-09-08T12:29:19Z
Epochs- 11,276 GLOBAL_STEP: 1248150
shenshan/chinese-alpaca-2-gguf
shenshan
2023-09-09T06:42:50Z
8
0
transformers
[ "transformers", "gguf", "llama", "text-generation", "text-generation-inference", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-09-08T08:36:30Z
--- license: apache-2.0 library_name: transformers pipeline_tag: text-generation tags: - llama - text-generation-inference --- # Chinese-Alpaca-2 7B & 13B Quantized by [llama.cpp](https://github.com/ggerganov/llama.cpp) Please refer to [https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/) for details.
922-CA/l2-7b-yuri-ddlc-v0.1-gguf
922-CA
2023-09-09T06:33:08Z
3
0
null
[ "gguf", "license:llama2", "endpoints_compatible", "region:us" ]
null
2023-09-08T13:00:10Z
--- license: llama2 --- GGUFs of [l2-7b-yuri-ddlc-v0.1](https://huggingface.co/922-CA/l2-7b-yuri-ddlc-v0.1). (Primarily tested and run with Koboldcpp v1.41+). QLora (hf and GGML) [here](https://huggingface.co/922-CA/yuri-lm-lora-tests/tree/main/l2-7b-yuri-v0.1).
thainq107/flan-t5-small-amazon-reviews-multi
thainq107
2023-09-09T06:33:00Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-09T05:46:37Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: flan-t5-small-amazon-reviews-multi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-small-amazon-reviews-multi This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4648 - Accuracy: 0.598 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.4927 | 1.0 | 6250 | 0.4850 | 0.5824 | | 0.4756 | 2.0 | 12500 | 0.4799 | 0.5892 | | 0.4679 | 3.0 | 18750 | 0.4756 | 0.591 | | 0.4568 | 4.0 | 25000 | 0.4780 | 0.594 | | 0.4586 | 5.0 | 31250 | 0.4769 | 0.5942 | ### Framework versions - Transformers 4.27.1 - Pytorch 2.0.1 - Datasets 2.9.0 - Tokenizers 0.13.3
foduucom/pan-card-detection
foduucom
2023-09-09T06:31:44Z
1
5
null
[ "pancard", "object detection", "yolov8", "pancard object-detection", "Identification Document detection", "PAN Number", "Personal Identification", "Indian ID Card", "Tax Document", "Financial Document", "Government ID", "Indian PAN Card", "Legal Document", "Taxpayer Information", "PAN Card Holder", "PAN Card Image", "ID Verification", "object-detection", "en", "model-index", "region:us" ]
object-detection
2023-08-18T05:33:16Z
--- tags: - pancard - object detection - yolov8 - pancard object-detection - Identification Document detection - PAN Number - Personal Identification - Indian ID Card - Tax Document - Financial Document - Government ID - Indian PAN Card - Legal Document - Taxpayer Information - PAN Card Holder - PAN Card Image - ID Verification model-index: - name: foduucom/pan-card-detection results: - task: type: object-detection metrics: - type: precision value: 0.72196 name: [email protected](box) language: - en metrics: - accuracy pipeline_tag: object-detection --- <div align="center"> <img width="640" alt="foduucom/pan-card-detection" src="https://huggingface.co/foduucom/pan-card-detection/resolve/main/PAN-Card-Detection.jpg"> </div> # Model Overview The PANCard-Detect model is a yolov8 object detection model trained to detect and locate PAN (Permanent Account Number) cards in images. It is built upon the ultralytics library and fine-tuned using a dataset of annotated PAN card images. ## Intended Use The model is intended to be used for detecting details like Name,Father Name,DOB,PAN Number, on PAN cards in images. It can be incorporated into applications that require automated detection and extraction of PAN card information from images. ## Performance The model has been evaluated on a held-out test dataset and achieved the following performance metrics: Average Precision (AP): 0.90 Precision: 0.92 Recall: 0.89 F1 Score: 0.89 Please note that the actual performance may vary based on the input data distribution and quality. ### Recommendations Users should be informed about the model's limitations and potential biases. Further testing and validation are advised for specific use cases to evaluate its performance accurately. Load model and perform prediction: ## How to Get Started with the Model To get started with the YOLOv8s object Detection model, follow these steps: ```bash pip install ultralyticsplus==0.0.28 ultralytics==8.0.43 ``` - Load model and perform prediction: ```python from ultralyticsplus import YOLO, render_result # load model model = YOLO('foduucom/pan-card-detection') # set model parameters model.overrides['conf'] = 0.25 # NMS confidence threshold model.overrides['iou'] = 0.45 # NMS IoU threshold model.overrides['agnostic_nms'] = False # NMS class-agnostic model.overrides['max_det'] = 1000 # maximum number of detections per image # set image image = '/path/to/your/document/images' # perform inference results = model.predict(image) # observe results print(results[0].boxes) render = render_result(model=model, image=image, result=results[0]) render.show() ``` ## Training Data The model was trained on a diverse dataset containing images of PAN cards from different sources, resolutions, and lighting conditions. The dataset was annotated with bounding box coordinates to indicate the location of the PAN card within the image. Total Number of Images: 1,100 Annotation Format: Bounding box coordinates (xmin, ymin, xmax, ymax) ## Fine-tuning Process - Pretrained Model: TheError: Errors in your YAML metadata model was initialized with a pretrained object detection backbone (e.g. YOLO). - Loss Function: Mean Average Precision (mAP) loss was used for optimization during training. - Optimizer: Adam optimizer with a learning rate of 1e-4. - Batch Size:-1 - Training Time: 1 hours on a single NVIDIA GeForce RTX 3090 GPU. ## Model Limitations The model's performance is subject to variations in image quality, lighting conditions, and image resolutions. The model may struggle with detecting PAN cards in cases of extreme occlusion or overlapping objects. The model may not generalize well to non-standard PAN card formats or variations. #### Software The model was trained and fine-tuned using a Jupyter Notebook environment. ## Model Card Contact For inquiries and contributions, please contact us at [email protected]. ```bibtex @ModelCard{ author = {Nehul Agrawal and Rahul parihar}, title = {YOLOv8s pan-card Detection}, year = {2023} } ``` ---
dhanushreddy29/neverendingdream
dhanushreddy29
2023-09-09T06:21:53Z
30
0
diffusers
[ "diffusers", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-09T06:18:24Z
--- license: creativeml-openrail-m ---
dsmsb/esg-tweet-bert_0909_testing_v1
dsmsb
2023-09-09T05:44:15Z
107
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-multilingual-cased", "base_model:finetune:google-bert/bert-base-multilingual-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-09T02:38:31Z
--- license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer model-index: - name: esg-tweet-bert_0909_testing_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # esg-tweet-bert_0909_testing_v1 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 246 | 0.0440 | 0.9887 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
bedus-creation/eng-limbu-model-003
bedus-creation
2023-09-09T05:42:38Z
3
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-30T19:14:09Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_keras_callback model-index: - name: bedus-creation/eng-limbu-model-003 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # bedus-creation/eng-limbu-model-003 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 8.0945 - Validation Loss: 7.8306 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 8.3053 | 7.9749 | 0 | | 8.0945 | 7.8306 | 1 | ### Framework versions - Transformers 4.33.1 - TensorFlow 2.12.0 - Datasets 2.14.5 - Tokenizers 0.13.3
bkowshik/swag-multiple-choice
bkowshik
2023-09-09T05:32:12Z
113
0
transformers
[ "transformers", "pytorch", "bert", "multiple-choice", "generated_from_trainer", "dataset:swag", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
multiple-choice
2023-09-08T12:48:11Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - swag metrics: - accuracy model-index: - name: swag-multiple-choice results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swag-multiple-choice This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the swag dataset. It achieves the following results on the evaluation set: - Loss: 1.0120 - Accuracy: 0.7052 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 157 | 0.8148 | 0.6848 | | No log | 2.0 | 314 | 0.8738 | 0.702 | | No log | 3.0 | 471 | 1.0120 | 0.7052 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
fnlp/bart-base-chinese
fnlp
2023-09-09T05:16:01Z
4,805
95
transformers
[ "transformers", "pytorch", "safetensors", "bart", "text2text-generation", "Chinese", "seq2seq", "BART", "zh", "arxiv:2109.05729", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- tags: - text2text-generation - Chinese - seq2seq - BART language: zh --- # Chinese BART-Base ### News **12/30/2022** An updated version of CPT & Chinese BART are released. In the new version, we changed the following parts: - **Vocabulary** We replace the old BERT vocabulary with a larger one of size 51271 built from the training data, in which we 1) add missing 6800+ Chinese characters (most of them are traditional Chinese characters); 2) remove redundant tokens (e.g. Chinese character tokens with ## prefix); 3) add some English tokens to reduce OOV. - **Position Embeddings** We extend the max_position_embeddings from 512 to 1024. We initialize the new version of models with the old version of checkpoints with vocabulary alignment. Token embeddings found in the old checkpoints are copied. And other newly added parameters are randomly initialized. We further train the new CPT & Chinese BART 50K steps with batch size 2048, max-seq-length 1024, peak learning rate 2e-5, and warmup ratio 0.1. The result compared to the previous checkpoints is as followings: | | AFQMC | IFLYTEK | CSL-sum | LCSTS | AVG | | :--------- | :---: | :-----: | :-----: | :---: | :---: | | Previous | | | | | | | bart-base | 73.0 | 60 | 62.1 | 37.8 | 58.23 | | cpt-base | 75.1 | 60.5 | 63.0 | 38.2 | 59.20 | | bart-large | 75.7 | 62.1 | 64.2 | 40.6 | 60.65 | | cpt-large | 75.9 | 61.8 | 63.7 | 42.0 | 60.85 | | Updataed | | | | | | | bart-base | 73.03 | 61.25 | 61.51 | 38.78 | 58.64 | | cpt-base | 74.40 | 61.23 | 62.09 | 38.81 | 59.13 | | bart-large | 75.81 | 61.52 | 64.62 | 40.90 | 60.71 | | cpt-large | 75.97 | 61.63 | 63.83 | 42.08 | 60.88 | The result shows that the updated models maintain comparative performance compared with previous checkpoints. There are still some cases that the updated model is slightly worse than the previous one, which results from the following reasons: 1) Training additional a few steps did not lead to significant performance improvement; 2) some downstream tasks are not affected by the newly added tokens and longer encoding sequences, but sensitive to the fine-tuning hyperparameters. - Note that to use updated models, please update the `modeling_cpt.py` (new version download [Here](https://github.com/fastnlp/CPT/blob/master/finetune/modeling_cpt.py)) and the vocabulary (refresh the cache). ## Model description This is an implementation of Chinese BART-Base. [**CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation**](https://arxiv.org/pdf/2109.05729.pdf) Yunfan Shao, Zhichao Geng, Yitao Liu, Junqi Dai, Fei Yang, Li Zhe, Hujun Bao, Xipeng Qiu **Github Link:** https://github.com/fastnlp/CPT ## Usage ```python >>> from transformers import BertTokenizer, BartForConditionalGeneration, Text2TextGenerationPipeline >>> tokenizer = BertTokenizer.from_pretrained("fnlp/bart-base-chinese") >>> model = BartForConditionalGeneration.from_pretrained("fnlp/bart-base-chinese") >>> text2text_generator = Text2TextGenerationPipeline(model, tokenizer) >>> text2text_generator("北京是[MASK]的首都", max_length=50, do_sample=False) [{'generated_text': '北 京 是 中 国 的 首 都'}] ``` **Note: Please use BertTokenizer for the model vocabulary. DO NOT use original BartTokenizer.** ## Citation ```bibtex @article{shao2021cpt, title={CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation}, author={Yunfan Shao and Zhichao Geng and Yitao Liu and Junqi Dai and Fei Yang and Li Zhe and Hujun Bao and Xipeng Qiu}, journal={arXiv preprint arXiv:2109.05729}, year={2021} } ```
polejowska/detr-r101-cd45rb-8ah-1l
polejowska
2023-09-09T05:03:46Z
161
0
transformers
[ "transformers", "pytorch", "detr", "object-detection", "generated_from_trainer", "dataset:cd45rb_nan_xywh", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2023-08-21T08:13:31Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cd45rb_nan_xywh model-index: - name: detr-r101-cd45rb-8ah-1l results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # detr-r101-cd45rb-8ah-1l This model is a fine-tuned version of [facebook/detr-resnet-101](https://huggingface.co/facebook/detr-resnet-101) on the cd45rb_nan_xywh dataset. It achieves the following results on the evaluation set: - eval_loss: 3.9740 - eval_runtime: 214.8855 - eval_samples_per_second: 8.288 - eval_steps_per_second: 1.038 - epoch: 3.0 - step: 13818 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
polejowska/detr-r101-cd45rb-8ah-12l
polejowska
2023-09-09T05:03:02Z
18
0
transformers
[ "transformers", "pytorch", "detr", "object-detection", "generated_from_trainer", "dataset:cd45rb_nan_xywh", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2023-08-20T19:54:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cd45rb_nan_xywh model-index: - name: detr-r101-cd45rb-8ah-12l results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # detr-r101-cd45rb-8ah-12l This model is a fine-tuned version of [facebook/detr-resnet-101](https://huggingface.co/facebook/detr-resnet-101) on the cd45rb_nan_xywh dataset. It achieves the following results on the evaluation set: - Loss: 1.6447 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 3.0401 | 1.0 | 4606 | 2.1637 | | 2.7151 | 2.0 | 9212 | 2.0666 | | 2.6021 | 3.0 | 13818 | 1.9868 | | 2.5221 | 4.0 | 18424 | 1.8958 | | 2.4541 | 5.0 | 23030 | 1.8810 | | 2.4155 | 6.0 | 27636 | 1.8369 | | 2.3531 | 7.0 | 32242 | 1.8040 | | 2.31 | 8.0 | 36848 | 1.7979 | | 2.2841 | 9.0 | 41454 | 1.7521 | | 2.2555 | 10.0 | 46060 | 1.7243 | | 2.3388 | 11.0 | 50666 | 1.8520 | | 2.3523 | 12.0 | 55272 | 1.8499 | | 2.3515 | 13.0 | 59878 | 1.7635 | | 2.3236 | 14.0 | 64484 | 1.7787 | | 2.2676 | 15.0 | 69090 | 1.7518 | | 2.2787 | 16.0 | 73696 | 1.7879 | | 2.2523 | 17.0 | 78302 | 1.7303 | | 2.2357 | 18.0 | 82908 | 1.7361 | | 2.2068 | 19.0 | 87514 | 1.6916 | | 2.1972 | 20.0 | 92120 | 1.6941 | | 2.1856 | 21.0 | 96726 | 1.6824 | | 2.1611 | 22.0 | 101332 | 1.6711 | | 2.1419 | 23.0 | 105938 | 1.6535 | | 2.1412 | 24.0 | 110544 | 1.6602 | | 2.1285 | 25.0 | 115150 | 1.6447 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
Onutoa/1_6e-3_10_0.5
Onutoa
2023-09-09T04:29:22Z
111
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-09T01:30:23Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: 1_6e-3_10_0.5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 1_6e-3_10_0.5 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.9536 - Accuracy: 0.7596 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.006 - train_batch_size: 16 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 2.948 | 1.0 | 590 | 2.2396 | 0.6214 | | 2.5635 | 2.0 | 1180 | 2.2693 | 0.6275 | | 2.5246 | 3.0 | 1770 | 1.9556 | 0.6141 | | 2.329 | 4.0 | 2360 | 2.3951 | 0.4801 | | 2.1726 | 5.0 | 2950 | 1.7234 | 0.6618 | | 2.0265 | 6.0 | 3540 | 1.5347 | 0.6679 | | 2.0227 | 7.0 | 4130 | 1.8508 | 0.6064 | | 1.8725 | 8.0 | 4720 | 2.0863 | 0.6584 | | 1.8575 | 9.0 | 5310 | 4.0052 | 0.4639 | | 1.8071 | 10.0 | 5900 | 3.1552 | 0.6468 | | 1.6655 | 11.0 | 6490 | 1.3147 | 0.7104 | | 1.501 | 12.0 | 7080 | 1.3005 | 0.6844 | | 1.538 | 13.0 | 7670 | 1.7051 | 0.6948 | | 1.4114 | 14.0 | 8260 | 1.4922 | 0.7028 | | 1.3916 | 15.0 | 8850 | 1.6514 | 0.7034 | | 1.3373 | 16.0 | 9440 | 1.9420 | 0.5896 | | 1.271 | 17.0 | 10030 | 2.9731 | 0.6624 | | 1.3123 | 18.0 | 10620 | 1.4756 | 0.6609 | | 1.2775 | 19.0 | 11210 | 1.4888 | 0.6612 | | 1.2341 | 20.0 | 11800 | 1.4493 | 0.7159 | | 1.1907 | 21.0 | 12390 | 1.7638 | 0.7110 | | 1.2035 | 22.0 | 12980 | 1.0716 | 0.7291 | | 1.0365 | 23.0 | 13570 | 1.2975 | 0.6853 | | 1.1041 | 24.0 | 14160 | 1.0275 | 0.7220 | | 1.1326 | 25.0 | 14750 | 1.0228 | 0.7385 | | 1.0261 | 26.0 | 15340 | 1.1473 | 0.7076 | | 1.0168 | 27.0 | 15930 | 1.0435 | 0.7205 | | 1.0653 | 28.0 | 16520 | 1.0105 | 0.7358 | | 0.9418 | 29.0 | 17110 | 1.0397 | 0.7232 | | 1.0591 | 30.0 | 17700 | 1.3640 | 0.6917 | | 0.9186 | 31.0 | 18290 | 0.9679 | 0.7459 | | 0.8665 | 32.0 | 18880 | 1.0310 | 0.7303 | | 0.9005 | 33.0 | 19470 | 1.0498 | 0.7235 | | 0.8494 | 34.0 | 20060 | 0.9766 | 0.7358 | | 0.8474 | 35.0 | 20650 | 1.0077 | 0.7465 | | 0.7973 | 36.0 | 21240 | 1.0674 | 0.7428 | | 0.8049 | 37.0 | 21830 | 1.0074 | 0.7398 | | 0.8241 | 38.0 | 22420 | 0.9613 | 0.7453 | | 0.7793 | 39.0 | 23010 | 0.9864 | 0.7398 | | 0.7781 | 40.0 | 23600 | 1.0741 | 0.7456 | | 0.7539 | 41.0 | 24190 | 0.9809 | 0.7550 | | 0.7403 | 42.0 | 24780 | 0.9993 | 0.7339 | | 0.7494 | 43.0 | 25370 | 0.9887 | 0.7477 | | 0.7091 | 44.0 | 25960 | 1.1792 | 0.7125 | | 0.7236 | 45.0 | 26550 | 0.9549 | 0.7443 | | 0.6947 | 46.0 | 27140 | 1.3568 | 0.7440 | | 0.6928 | 47.0 | 27730 | 1.0682 | 0.7517 | | 0.6578 | 48.0 | 28320 | 1.0993 | 0.7486 | | 0.7723 | 49.0 | 28910 | 1.0381 | 0.7260 | | 0.7169 | 50.0 | 29500 | 0.9510 | 0.7486 | | 0.6424 | 51.0 | 30090 | 1.0781 | 0.7281 | | 0.6652 | 52.0 | 30680 | 0.9623 | 0.7541 | | 0.6274 | 53.0 | 31270 | 0.9476 | 0.7498 | | 0.6295 | 54.0 | 31860 | 0.9461 | 0.7474 | | 0.6252 | 55.0 | 32450 | 1.0873 | 0.7278 | | 0.632 | 56.0 | 33040 | 0.9470 | 0.7492 | | 0.5865 | 57.0 | 33630 | 1.4737 | 0.7355 | | 0.6029 | 58.0 | 34220 | 1.0871 | 0.7477 | | 0.5935 | 59.0 | 34810 | 1.0781 | 0.7514 | | 0.6023 | 60.0 | 35400 | 0.9968 | 0.7581 | | 0.5849 | 61.0 | 35990 | 1.0700 | 0.7547 | | 0.5813 | 62.0 | 36580 | 1.2525 | 0.7425 | | 0.5557 | 63.0 | 37170 | 0.9643 | 0.7541 | | 0.541 | 64.0 | 37760 | 1.0179 | 0.7547 | | 0.5693 | 65.0 | 38350 | 1.0064 | 0.7401 | | 0.5562 | 66.0 | 38940 | 1.2333 | 0.7367 | | 0.5677 | 67.0 | 39530 | 0.9976 | 0.7388 | | 0.5357 | 68.0 | 40120 | 0.9795 | 0.7413 | | 0.5372 | 69.0 | 40710 | 1.1113 | 0.7462 | | 0.5563 | 70.0 | 41300 | 1.1366 | 0.7492 | | 0.5377 | 71.0 | 41890 | 0.9343 | 0.7502 | | 0.5442 | 72.0 | 42480 | 1.1735 | 0.7465 | | 0.5124 | 73.0 | 43070 | 0.9499 | 0.7514 | | 0.5007 | 74.0 | 43660 | 1.2104 | 0.7456 | | 0.5094 | 75.0 | 44250 | 0.9865 | 0.7474 | | 0.5118 | 76.0 | 44840 | 1.0542 | 0.7474 | | 0.5166 | 77.0 | 45430 | 0.9762 | 0.7615 | | 0.5071 | 78.0 | 46020 | 0.9333 | 0.7581 | | 0.4961 | 79.0 | 46610 | 1.0310 | 0.7535 | | 0.4863 | 80.0 | 47200 | 1.0242 | 0.7492 | | 0.4801 | 81.0 | 47790 | 1.0528 | 0.7535 | | 0.4975 | 82.0 | 48380 | 1.0188 | 0.7554 | | 0.4868 | 83.0 | 48970 | 0.9455 | 0.7596 | | 0.4661 | 84.0 | 49560 | 0.9841 | 0.7557 | | 0.4765 | 85.0 | 50150 | 0.9570 | 0.7538 | | 0.4732 | 86.0 | 50740 | 1.0383 | 0.7535 | | 0.4846 | 87.0 | 51330 | 0.9560 | 0.7587 | | 0.4641 | 88.0 | 51920 | 0.9716 | 0.7578 | | 0.477 | 89.0 | 52510 | 0.9581 | 0.7606 | | 0.4567 | 90.0 | 53100 | 0.9674 | 0.7569 | | 0.4567 | 91.0 | 53690 | 0.9718 | 0.7587 | | 0.4676 | 92.0 | 54280 | 0.9535 | 0.7520 | | 0.4532 | 93.0 | 54870 | 0.9593 | 0.7563 | | 0.4727 | 94.0 | 55460 | 0.9611 | 0.7584 | | 0.4535 | 95.0 | 56050 | 0.9539 | 0.7602 | | 0.4569 | 96.0 | 56640 | 0.9506 | 0.7587 | | 0.4417 | 97.0 | 57230 | 0.9616 | 0.7584 | | 0.4314 | 98.0 | 57820 | 0.9488 | 0.7593 | | 0.4318 | 99.0 | 58410 | 0.9439 | 0.7587 | | 0.4415 | 100.0 | 59000 | 0.9536 | 0.7596 | ### Framework versions - Transformers 4.30.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
xiaol/RWKV-claude-4-World-7B-65k
xiaol
2023-09-09T04:26:25Z
0
52
null
[ "dataset:Norquinal/claude_multiround_chat_30k", "dataset:OpenLeecher/Teatime", "license:apache-2.0", "region:us" ]
null
2023-08-05T08:07:49Z
--- license: apache-2.0 datasets: - Norquinal/claude_multiround_chat_30k - OpenLeecher/Teatime --- # RWKV role play model ## According our community users, this model is better than claude2. This is a model trained based on RWKV world 7B model with 65336 context, which can do claude-like task. Good at novel, role play and multi turn chat. You can test this model in this buggy UI: https://rwkv.ai-creator.net/risu or https://rwkv.ai-creator.net/st ,API hosted by RWKV Runner, remember frequency penalty is sensitive and fixed a lot of repeating. and Use temp 0.1 ,topp 0.7 could have better results. # other: if you use RWKV runner as API, https://github.com/josStorer/RWKV-Runner/blob/a057bb6c5bebc346a50ae746f2b10000627552b0/backend-python/routes/completion.py#L52C29-L52C29 change user_name,assistant_name to User,Assistant to replace default Question,Answer, due to the finetune format ![image.png](https://cdn-uploads.huggingface.co/production/uploads/6176b32847ee6431f632981e/uFuIyO_2id99mD3f9DKks.png) ![image.png](https://cdn-uploads.huggingface.co/production/uploads/6176b32847ee6431f632981e/72AdIr8npTbtDYeCwHGS0.png) also you can do multi-lang with RWKV Runner ![S4K{E8{LNM5$GW3~Q29V9IO.png](https://cdn-uploads.huggingface.co/production/uploads/6176b32847ee6431f632981e/3SRjSU0Q2kt8y0bOGC-sX.png) ![QQ图片20230806001842.jpg](https://cdn-uploads.huggingface.co/production/uploads/6176b32847ee6431f632981e/AuOwbozKlIsEEv9pPQYHQ.jpeg) ![af5b0cb3546a8d614ca491c42d26feb.jpg](https://cdn-uploads.huggingface.co/production/uploads/6176b32847ee6431f632981e/LWAwNJrnDQdAw2VeitZXN.jpeg) ![微信截图_20230805180659.png](https://cdn-uploads.huggingface.co/production/uploads/6176b32847ee6431f632981e/Czmy_7P1hznhIVYFjruy9.png) ![image.png](https://cdn-uploads.huggingface.co/production/uploads/6176b32847ee6431f632981e/7ciRnIqupHZJgb6JvznRt.png) ![微信图片_20230807131001.png](https://cdn-uploads.huggingface.co/production/uploads/6176b32847ee6431f632981e/ldNisLCG7cu4n8HGlUqed.png)
minfeng-ai/ppo-Huggy
minfeng-ai
2023-09-09T04:22:54Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-09-09T04:22:48Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: minfeng-ai/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
lllyasviel/sd_control_collection
lllyasviel
2023-09-09T04:08:17Z
0
1,871
null
[ "region:us" ]
null
2023-08-29T06:43:22Z
Collection of community SD control models for users to download flexibly. All files are already float16 and in safetensor format. The files are mirrored with the below script: files = { 'diffusers_xl_canny_small.safetensors': 'https://huggingface.co/diffusers/controlnet-canny-sdxl-1.0-small/resolve/main/diffusion_pytorch_model.bin', 'diffusers_xl_canny_mid.safetensors': 'https://huggingface.co/diffusers/controlnet-canny-sdxl-1.0-mid/resolve/main/diffusion_pytorch_model.bin', 'diffusers_xl_canny_full.safetensors': 'https://huggingface.co/diffusers/controlnet-canny-sdxl-1.0/resolve/main/diffusion_pytorch_model.bin', 'diffusers_xl_depth_small.safetensors': 'https://huggingface.co/diffusers/controlnet-depth-sdxl-1.0-small/resolve/main/diffusion_pytorch_model.bin', 'diffusers_xl_depth_mid.safetensors': 'https://huggingface.co/diffusers/controlnet-depth-sdxl-1.0-mid/resolve/main/diffusion_pytorch_model.bin', 'diffusers_xl_depth_full.safetensors': 'https://huggingface.co/diffusers/controlnet-depth-sdxl-1.0/resolve/main/diffusion_pytorch_model.bin', 'thibaud_xl_openpose.safetensors': 'https://huggingface.co/thibaud/controlnet-openpose-sdxl-1.0/resolve/main/OpenPoseXL2.safetensors', 'thibaud_xl_openpose_256lora.safetensors': 'https://huggingface.co/thibaud/controlnet-openpose-sdxl-1.0/resolve/main/control-lora-openposeXL2-rank256.safetensors', 'sargezt_xl_depth_faid_vidit.safetensors': 'https://huggingface.co/SargeZT/controlnet-sd-xl-1.0-depth-faid-vidit/resolve/main/diffusion_pytorch_model.bin', 'sargezt_xl_depth_zeed.safetensors': 'https://huggingface.co/SargeZT/controlnet-sd-xl-1.0-depth-zeed/resolve/main/diffusion_pytorch_model.bin', 'sargezt_xl_depth.safetensors': 'https://huggingface.co/SargeZT/controlnet-v1e-sdxl-depth/resolve/main/diffusion_pytorch_model.bin', 'sargezt_xl_softedge.safetensors': 'https://huggingface.co/SargeZT/controlnet-sd-xl-1.0-softedge-dexined/resolve/main/controlnet-sd-xl-1.0-softedge-dexined.safetensors', 'sai_xl_canny_128lora.safetensors': 'https://huggingface.co/stabilityai/control-lora/resolve/main/control-LoRAs-rank128/control-lora-canny-rank128.safetensors', 'sai_xl_canny_256lora.safetensors': 'https://huggingface.co/stabilityai/control-lora/resolve/main/control-LoRAs-rank256/control-lora-canny-rank256.safetensors', 'sai_xl_depth_128lora.safetensors': 'https://huggingface.co/stabilityai/control-lora/resolve/main/control-LoRAs-rank128/control-lora-depth-rank128.safetensors', 'sai_xl_depth_256lora.safetensors': 'https://huggingface.co/stabilityai/control-lora/resolve/main/control-LoRAs-rank256/control-lora-depth-rank256.safetensors', 'sai_xl_sketch_128lora.safetensors': 'https://huggingface.co/stabilityai/control-lora/resolve/main/control-LoRAs-rank128/control-lora-sketch-rank128-metadata.safetensors', 'sai_xl_sketch_256lora.safetensors': 'https://huggingface.co/stabilityai/control-lora/resolve/main/control-LoRAs-rank256/control-lora-sketch-rank256.safetensors', 'sai_xl_recolor_128lora.safetensors': 'https://huggingface.co/stabilityai/control-lora/resolve/main/control-LoRAs-rank128/control-lora-recolor-rank128.safetensors', 'sai_xl_recolor_256lora.safetensors': 'https://huggingface.co/stabilityai/control-lora/resolve/main/control-LoRAs-rank256/control-lora-recolor-rank256.safetensors', 'ioclab_sd15_recolor.safetensors': 'https://huggingface.co/ioclab/control_v1p_sd15_brightness/resolve/main/diffusion_pytorch_model.safetensors', 't2i-adapter_xl_canny.safetensors': 'https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models_XL/adapter-xl-canny.pth', 't2i-adapter_xl_openpose.safetensors': 'https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models_XL/adapter-xl-openpose.pth', 't2i-adapter_xl_sketch.safetensors': 'https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models_XL/adapter-xl-sketch.pth', 'ip-adapter_sd15_plus.safetensors': 'https://huggingface.co/h94/IP-Adapter/resolve/main/models/ip-adapter-plus_sd15.bin', 'ip-adapter_sd15.safetensors': 'https://huggingface.co/h94/IP-Adapter/resolve/main/models/ip-adapter_sd15.bin', 'ip-adapter_xl.safetensors': 'https://huggingface.co/h94/IP-Adapter/resolve/main/sdxl_models/ip-adapter_sdxl.bin', 'kohya_controllllite_xl_depth_anime.safetensors': 'https://huggingface.co/kohya-ss/controlnet-lllite/resolve/main/controllllite_v01008016e_sdxl_depth_anime.safetensors', 'kohya_controllllite_xl_canny_anime.safetensors': 'https://huggingface.co/kohya-ss/controlnet-lllite/resolve/main/controllllite_v01032064e_sdxl_canny_anime.safetensors', 'kohya_controllllite_xl_scribble_anime.safetensors': 'https://huggingface.co/kohya-ss/controlnet-lllite/resolve/main/controllllite_v01032064e_sdxl_fake_scribble_anime.safetensors', 'kohya_controllllite_xl_openpose_anime.safetensors': 'https://huggingface.co/kohya-ss/controlnet-lllite/resolve/main/controllllite_v01032064e_sdxl_pose_anime.safetensors', 'kohya_controllllite_xl_openpose_anime_v2.safetensors': 'https://huggingface.co/kohya-ss/controlnet-lllite/resolve/main/controllllite_v01032064e_sdxl_pose_anime_v2_500-1000.safetensors', 'kohya_controllllite_xl_blur_anime_beta.safetensors': 'https://huggingface.co/kohya-ss/controlnet-lllite/resolve/main/controllllite_v01016032e_sdxl_blur_anime_beta.safetensors', 'kohya_controllllite_xl_blur.safetensors': 'https://huggingface.co/kohya-ss/controlnet-lllite/resolve/main/controllllite_v01032064e_sdxl_blur-500-1000.safetensors', 'kohya_controllllite_xl_blur_anime.safetensors': 'https://huggingface.co/kohya-ss/controlnet-lllite/resolve/main/controllllite_v01032064e_sdxl_blur-anime_500-1000.safetensors', 'kohya_controllllite_xl_canny.safetensors': 'https://huggingface.co/kohya-ss/controlnet-lllite/resolve/main/controllllite_v01032064e_sdxl_canny.safetensors', 'kohya_controllllite_xl_depth.safetensors': 'https://huggingface.co/kohya-ss/controlnet-lllite/resolve/main/controllllite_v01032064e_sdxl_depth_500-1000.safetensors', 't2i-adapter_diffusers_xl_canny.safetensors': 'https://huggingface.co/TencentARC/t2i-adapter-canny-sdxl-1.0/resolve/main/diffusion_pytorch_model.safetensors', 't2i-adapter_diffusers_xl_lineart.safetensors': 'https://huggingface.co/TencentARC/t2i-adapter-lineart-sdxl-1.0/resolve/main/diffusion_pytorch_model.safetensors', 't2i-adapter_diffusers_xl_depth_midas.safetensors': 'https://huggingface.co/TencentARC/t2i-adapter-depth-midas-sdxl-1.0/resolve/main/diffusion_pytorch_model.safetensors', 't2i-adapter_diffusers_xl_openpose.safetensors': 'https://huggingface.co/TencentARC/t2i-adapter-openpose-sdxl-1.0/resolve/main/diffusion_pytorch_model.safetensors', 't2i-adapter_diffusers_xl_depth_zoe.safetensors': 'https://huggingface.co/TencentARC/t2i-adapter-depth-zoe-sdxl-1.0/resolve/main/diffusion_pytorch_model.safetensors', 't2i-adapter_diffusers_xl_sketch.safetensors': 'https://huggingface.co/TencentARC/t2i-adapter-sketch-sdxl-1.0/resolve/main/diffusion_pytorch_model.safetensors', } If you download the files from raw URL, you may need to rename them. However, files in https://huggingface.co/lllyasviel/sd_control_collection/tree/main are already renamed and can be directly downloaded. Feel free to contact us if you are author of any listed models and you want some models to be removed/added (by opening an issue in this HuggingFace page).
BauyrjanQ/wav2vec2-large-mms-1b-kazakh-speech2ner-kscsyn-8b-4ep
BauyrjanQ
2023-09-09T03:52:59Z
123
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:facebook/mms-1b-all", "base_model:finetune:facebook/mms-1b-all", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-06T13:38:50Z
--- license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-large-mms-1b-kazakh-speech2ner-kscsyn-8b-4ep results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-mms-1b-kazakh-speech2ner-kscsyn-8b-4ep This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:------:|:---------------:|:------:| | 6.6358 | 0.07 | 2000 | 6.5080 | 1.0000 | | 6.6338 | 0.15 | 4000 | 6.5080 | 1.0000 | | 0.0 | 0.22 | 6000 | nan | 1.0 | | 0.0 | 0.3 | 8000 | nan | 1.0 | | 0.0 | 0.37 | 10000 | nan | 1.0 | | 0.0 | 0.44 | 12000 | nan | 1.0 | | 0.0 | 0.52 | 14000 | nan | 1.0 | | 0.0 | 0.59 | 16000 | nan | 1.0 | | 0.0 | 0.66 | 18000 | nan | 1.0 | | 0.0 | 0.74 | 20000 | nan | 1.0 | | 0.0 | 0.81 | 22000 | nan | 1.0 | | 0.0 | 0.89 | 24000 | nan | 1.0 | | 0.0 | 0.96 | 26000 | nan | 1.0 | | 0.0 | 1.03 | 28000 | nan | 1.0 | | 0.0 | 1.11 | 30000 | nan | 1.0 | | 0.0 | 1.18 | 32000 | nan | 1.0 | | 0.0 | 1.25 | 34000 | nan | 1.0 | | 0.0 | 1.33 | 36000 | nan | 1.0 | | 0.0 | 1.4 | 38000 | nan | 1.0 | | 0.0 | 1.48 | 40000 | nan | 1.0 | | 0.0 | 1.55 | 42000 | nan | 1.0 | | 0.0 | 1.62 | 44000 | nan | 1.0 | | 0.0 | 1.7 | 46000 | nan | 1.0 | | 0.0 | 1.77 | 48000 | nan | 1.0 | | 0.0 | 1.84 | 50000 | nan | 1.0 | | 0.0 | 1.92 | 52000 | nan | 1.0 | | 0.0 | 1.99 | 54000 | nan | 1.0 | | 0.0 | 2.07 | 56000 | nan | 1.0 | | 0.0 | 2.14 | 58000 | nan | 1.0 | | 0.0 | 2.21 | 60000 | nan | 1.0 | | 0.0 | 2.29 | 62000 | nan | 1.0 | | 0.0 | 2.36 | 64000 | nan | 1.0 | | 0.0 | 2.43 | 66000 | nan | 1.0 | | 0.0 | 2.51 | 68000 | nan | 1.0 | | 0.0 | 2.58 | 70000 | nan | 1.0 | | 0.0 | 2.66 | 72000 | nan | 1.0 | | 0.0 | 2.73 | 74000 | nan | 1.0 | | 0.0 | 2.8 | 76000 | nan | 1.0 | | 0.0 | 2.88 | 78000 | nan | 1.0 | | 0.0 | 2.95 | 80000 | nan | 1.0 | | 0.0 | 3.02 | 82000 | nan | 1.0 | | 0.0 | 3.1 | 84000 | nan | 1.0 | | 0.0 | 3.17 | 86000 | nan | 1.0 | | 0.0 | 3.25 | 88000 | nan | 1.0 | | 0.0 | 3.32 | 90000 | nan | 1.0 | | 0.0 | 3.39 | 92000 | nan | 1.0 | | 0.0 | 3.47 | 94000 | nan | 1.0 | | 0.0 | 3.54 | 96000 | nan | 1.0 | | 0.0 | 3.61 | 98000 | nan | 1.0 | | 0.0 | 3.69 | 100000 | nan | 1.0 | | 0.0 | 3.76 | 102000 | nan | 1.0 | | 0.0 | 3.84 | 104000 | nan | 1.0 | | 0.0 | 3.91 | 106000 | nan | 1.0 | | 0.0 | 3.98 | 108000 | nan | 1.0 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
HeshamHaroon/falcon-rw-1b-4bit
HeshamHaroon
2023-09-09T02:36:27Z
115
1
transformers
[ "transformers", "pytorch", "safetensors", "falcon", "text-generation", "text-generation-inference", "custom_code", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "gptq", "region:us" ]
text-generation
2023-08-24T03:24:43Z
--- license: apache-2.0 language: - en library_name: transformers pipeline_tag: text-generation tags: - text-generation-inference --- # GPTQ Algorithm with `auto-gptq` Integration ## Model Description The GPTQ algorithm, developed by Frantar et al., is designed to compress transformer-based language models into fewer bits with minimal performance degradation. The `auto-gptq` library, based on the GPTQ algorithm, has been seamlessly integrated into the 🤗 transformers, enabling users to load and work with models quantized using the GPTQ algorithm. ## Features - **Quantization**: Compress transformer-based language models with minimal performance loss. - **Integration with 🤗 transformers**: Directly load models quantized with the GPTQ algorithm. - **Flexibility**: Offers two scenarios for users: 1. Quantize a language model from scratch. 2. Load a pre-quantized model from the 🤗 Hub. - **Calibration**: Uses model inference to calibrate the quantized weights, ensuring optimal performance. - **Custom Dataset Support**: Users can quantize models using either a supported dataset or a custom dataset. ## Intended Use This integration is intended for users who want to compress their transformer-based language models without significant performance loss. It's especially useful for deployment scenarios where model size is a constraint. ## Limitations and Considerations - The quality of quantization may vary based on the dataset used for calibration. It's recommended to use a dataset closely related to the model's domain for best results. - While the GPTQ algorithm minimizes performance degradation, some loss in performance is expected, especially at lower bit quantizations. ## Training Data The GPTQ algorithm requires calibration data for optimal quantization. Users can either use supported datasets like "c4", "wikitext2", etc., or provide a custom dataset for calibration. ## Evaluation Results Performance after quantization may vary based on the dataset used for calibration and the bit precision chosen for quantization. It's recommended to evaluate the quantized model on relevant tasks to ensure it meets the desired performance criteria. ## References - Frantar et al., "GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers" - [AutoGPTQ GitHub Repository](https://github.com/PanQiWei/AutoGPTQ)
mason-suh/segformer-b0-scene-parse-150
mason-suh
2023-09-09T02:26:50Z
39
0
transformers
[ "transformers", "pytorch", "segformer", "generated_from_trainer", "dataset:scene_parse_150", "base_model:nvidia/mit-b0", "base_model:finetune:nvidia/mit-b0", "license:other", "endpoints_compatible", "region:us" ]
null
2023-09-09T02:22:29Z
--- license: other base_model: nvidia/mit-b0 tags: - generated_from_trainer datasets: - scene_parse_150 model-index: - name: segformer-b0-scene-parse-150 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-scene-parse-150 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the scene_parse_150 dataset. It achieves the following results on the evaluation set: - Loss: 3.3973 - Mean Iou: 0.0680 - Mean Accuracy: 0.1186 - Overall Accuracy: 0.4426 - Per Category Iou: [0.2999132601380852, 0.4630614571324311, 0.8494943128957715, 0.14233739316477417, 0.39192816320128615, 0.1455819287922609, 0.44671787744534813, 0.0, 0.0, nan, nan, 0.0032424974129010003, 0.43662592045927145, 0.0045309713818001114, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.2720583194314313, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.010599892464859052, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan] - Per Category Accuracy: [0.502569255269595, 0.8807004182609924, 0.9985712521828092, 0.7670389719570048, 0.5324006381318397, 0.30651723142339693, 0.47333836617082586, 0.0, 0.0, nan, nan, 0.16327543424317617, 0.8831689374195889, 0.01110156138089099, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.2820956352779489, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.011447532144338449, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 4.5925 | 4.0 | 20 | 4.7720 | 0.0212 | 0.0672 | 0.3206 | [0.11976851134191081, 0.38334117506478765, 0.6040252306121705, 0.09018609898295743, 0.48270596399084187, 0.0041055656732601345, 0.4418798753005824, 0.0, 9.62741888899586e-06, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.04351231577862517, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.00794912559618442, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0016854755972446139, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0] | [0.14132001434002942, 0.630511555918608, 0.9740532340853368, 0.3144328349246382, 0.6187881354352267, 0.010236489146696764, 0.5207072908802858, 0.0, 0.003861003861003861, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.05002132600350694, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.02336448598130841, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0030690195816792873, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan] | | 4.2481 | 8.0 | 40 | 4.3452 | 0.0347 | 0.0848 | 0.4225 | [0.31878797999758784, 0.3811269539171945, 0.6125681433787502, 0.08831500428589667, 0.5583576813577318, 0.007361977551235384, 0.3466478934916281, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.18248530126873258, 0.0, 0.0019590256797583083, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan] | [0.4189971246777761, 0.7502594937875038, 0.9923388542971208, 0.36347805200264216, 0.7955181625212067, 0.03301923935011418, 0.6060192027560102, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.19563053883702194, nan, 0.0019590256797583083, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan] | | 3.9512 | 12.0 | 60 | 3.7972 | 0.0477 | 0.0939 | 0.4628 | [0.32868958391339964, 0.4267475938107196, 0.7696097319315242, 0.10632746554744663, 0.5287313644955446, 0.016014532738962497, 0.4332043043627807, 0.0, 0.0, nan, nan, 0.0, 0.0619188921859545, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.18699580509841884, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.003303600925008259, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan] | [0.4980648276635751, 0.81206200826695, 0.9864709928915386, 0.3407644268300006, 0.7926710718004852, 0.06779705504081472, 0.8436772320811492, 0.0, 0.0, nan, nan, 0.0, 0.06195361725992148, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.19224207383536326, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0033181252592285357, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan] | | 3.3322 | 16.0 | 80 | 3.5456 | 0.0613 | 0.1018 | 0.4809 | [0.3083296322955113, 0.4604564042023073, 0.8584488957370313, 0.12119443363536976, 0.4930589109160795, 0.00017254443019077412, 0.6028061720507764, 0.0, 0.0, nan, nan, 0.0, 0.24008937120970317, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.25236198592071135, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.03713915017839767, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan] | [0.5400996485717282, 0.8779672884281126, 0.9827197949188319, 0.39275205668648294, 0.7283758266284214, 0.0006036903855744245, 0.9229922699869217, 0.0, 0.0, nan, nan, 0.0, 0.24814436050539374, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.2582342069096251, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.037992534218166736, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan] | | 3.3947 | 20.0 | 100 | 3.5717 | 0.0694 | 0.1101 | 0.4864 | [0.334452369892911, 0.5539576222863141, 0.7892230541235303, 0.11641931562092278, 0.4948702047566203, 0.012397172981114587, 0.48957001052619664, 0.0, 0.0, nan, nan, 0.0002263540824575586, 0.47844428154520685, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.38967309741827433, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.016493337666558337, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan] | [0.6409383451898713, 0.8234121744043926, 0.9910218192722205, 0.47152164775115596, 0.7268550700320398, 0.03370167195989396, 0.6898637944050442, 0.0, 0.0, nan, nan, 0.006947890818858561, 0.57058027908818, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.4245296431448746, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.01683948569058482, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan] | | 3.3618 | 24.0 | 120 | 3.3814 | 0.0714 | 0.1169 | 0.4911 | [0.310456832329434, 0.46519434656754766, 0.8779938790645205, 0.1255508255583059, 0.48867630450309085, 0.07450525176937295, 0.6471261092566962, 0.0, 0.0, nan, nan, 0.0005998018046210817, 0.45734176315976416, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.19894345620719478, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.06418342361059583, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan] | [0.4883414097614629, 0.9085814134887634, 0.9884406658082421, 0.5543295502311896, 0.7398440891573517, 0.17352161474054437, 0.8451605014407383, 0.0, 0.0, nan, nan, 0.01141439205955335, 0.7433444396793455, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.2016729064973224, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0717544587308171, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan] | | 3.1457 | 28.0 | 140 | 3.3476 | 0.0713 | 0.1179 | 0.4895 | [0.3011950023290366, 0.5049268996148568, 0.888496347413394, 0.12930476713666605, 0.47902222346286844, 0.07675787703120776, 0.6198238220315364, 0.0, 0.0, nan, nan, 0.001500513333508832, 0.47996957143004, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.26146154909459524, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.03674716756112105, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan] | [0.5156581902785331, 0.8881412874576979, 0.9818496110630942, 0.6360415540743409, 0.7312548772075607, 0.13415050263786452, 0.7803272762070835, 0.0, 0.0, nan, nan, 0.028287841191066997, 0.7701316266948174, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.2689209042225487, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0408958938199917, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan] | | 2.6055 | 32.0 | 160 | 3.3460 | 0.0689 | 0.1179 | 0.4890 | [0.32649590262271666, 0.5056804060509994, 0.8700009750440053, 0.12267555893392665, 0.468803602657295, 0.07192848854076007, 0.5994797019769066, 0.0, 0.0, nan, nan, 0.003425355788443502, 0.4597796580128175, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.22139820927918966, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0003056935422239205, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan] | [0.5641460244219481, 0.8435144978718438, 0.996777967885512, 0.6638443523689426, 0.6704059701015525, 0.10412346780755401, 0.8465374432476688, 0.0, 0.0, nan, nan, 0.04168734491315137, 0.8129680335169729, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.23202691815553766, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.00033181252592285357, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan] | | 2.9229 | 36.0 | 180 | 3.2913 | 0.0656 | 0.1176 | 0.4780 | [0.3270110877216905, 0.518042814625525, 0.8234783662586354, 0.13474353989957344, 0.47765052073873904, 0.08675908221797324, 0.4741205157746879, 0.0, 0.0, nan, nan, 0.002650574291096404, 0.4613683710390702, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.23309365613907346, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0010821674267604544, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan] | [0.5614633658585361, 0.831728259334099, 0.9987300019402748, 0.7388158289797634, 0.6934303847700621, 0.1429171369327279, 0.6388318855064913, 0.0, 0.0, nan, nan, 0.07890818858560794, 0.8328769834724375, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.24273731102791338, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0011613438407299876, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan] | | 2.8213 | 40.0 | 200 | 3.3428 | 0.0665 | 0.1213 | 0.4634 | [0.3223505876166847, 0.4981345007728367, 0.8518527818091426, 0.13781940529235245, 0.45572528779428917, 0.14172438691733746, 0.46409354040751793, 0.0, 0.0, nan, nan, 0.0031949295045919025, 0.4365871703006675, 0.004470363521833662, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.2320277752564219, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.04314363945829942, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan] | [0.520289434471187, 0.844205457661055, 0.9973718095708465, 0.7963430012610341, 0.630711825946611, 0.2781962781175359, 0.5805005901179172, 0.0, 0.0, nan, nan, 0.12258064516129032, 0.8663114835219213, 0.015757054863200115, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.24228709539832236, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.04836167565325591, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan] | | 2.934 | 44.0 | 220 | 3.1534 | 0.0663 | 0.1190 | 0.4639 | [0.3073402436124139, 0.46043491585157187, 0.884316458140858, 0.1158555133079848, 0.4147496045795597, 0.1871375072667541, 0.5523209455179557, 0.0, 0.0, nan, nan, 0.002945334590009425, 0.45775478239445294, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.07021946542295035, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.05956785555719994, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan] | [0.4632975726817562, 0.8858657265518957, 0.9961253299937088, 0.6861376328589444, 0.588732551914795, 0.36331662248352975, 0.7880626056630055, 0.0, 0.0, nan, nan, 0.062034739454094295, 0.8580806914525121, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.07028102933510261, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.06677727084197428, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan] | | 2.8191 | 48.0 | 240 | 3.3973 | 0.0680 | 0.1186 | 0.4426 | [0.2999132601380852, 0.4630614571324311, 0.8494943128957715, 0.14233739316477417, 0.39192816320128615, 0.1455819287922609, 0.44671787744534813, 0.0, 0.0, nan, nan, 0.0032424974129010003, 0.43662592045927145, 0.0045309713818001114, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.2720583194314313, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.010599892464859052, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan] | [0.502569255269595, 0.8807004182609924, 0.9985712521828092, 0.7670389719570048, 0.5324006381318397, 0.30651723142339693, 0.47333836617082586, 0.0, 0.0, nan, nan, 0.16327543424317617, 0.8831689374195889, 0.01110156138089099, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.2820956352779489, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.011447532144338449, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan] | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1 - Datasets 2.14.5 - Tokenizers 0.13.3
OttoYu/Tree-Inspection
OttoYu
2023-09-09T02:13:13Z
180
0
transformers
[ "transformers", "pytorch", "safetensors", "swin", "image-classification", "autotrain", "vision", "dataset:OttoYu/autotrain-data-tree-inspection", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-09T02:07:18Z
--- tags: - autotrain - vision - image-classification datasets: - OttoYu/autotrain-data-tree-inspection widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 2.1481896644746374 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 87833143598 - CO2 Emissions (in grams): 2.1482 ## Validation Metrics - Loss: 1.251 - Accuracy: 0.652 - Macro F1: 0.594 - Micro F1: 0.652 - Weighted F1: 0.620 - Macro Precision: 0.629 - Micro Precision: 0.652 - Weighted Precision: 0.642 - Macro Recall: 0.617 - Micro Recall: 0.652 - Weighted Recall: 0.652
Onutoa/1_8e-3_5_0.5
Onutoa
2023-09-09T01:48:23Z
106
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-08T22:48:00Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: 1_8e-3_5_0.5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 1_8e-3_5_0.5 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.9097 - Accuracy: 0.7502 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.008 - train_batch_size: 16 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 2.7895 | 1.0 | 590 | 1.8785 | 0.6150 | | 2.562 | 2.0 | 1180 | 2.8327 | 0.4046 | | 2.4023 | 3.0 | 1770 | 2.0853 | 0.5217 | | 2.3167 | 4.0 | 2360 | 1.5879 | 0.6505 | | 2.161 | 5.0 | 2950 | 1.9917 | 0.4914 | | 1.794 | 6.0 | 3540 | 2.5834 | 0.5110 | | 1.9698 | 7.0 | 4130 | 3.1462 | 0.4927 | | 1.5971 | 8.0 | 4720 | 1.6865 | 0.5966 | | 1.5201 | 9.0 | 5310 | 3.4553 | 0.6413 | | 1.5841 | 10.0 | 5900 | 3.1799 | 0.6327 | | 1.5231 | 11.0 | 6490 | 1.1451 | 0.6933 | | 1.3941 | 12.0 | 7080 | 1.1390 | 0.6884 | | 1.3679 | 13.0 | 7670 | 1.4767 | 0.6902 | | 1.2653 | 14.0 | 8260 | 1.5274 | 0.7028 | | 1.2451 | 15.0 | 8850 | 1.6725 | 0.7073 | | 1.255 | 16.0 | 9440 | 1.5284 | 0.7012 | | 1.184 | 17.0 | 10030 | 1.0831 | 0.6979 | | 1.1215 | 18.0 | 10620 | 2.0515 | 0.5755 | | 1.0766 | 19.0 | 11210 | 1.1808 | 0.7263 | | 1.1108 | 20.0 | 11800 | 1.0647 | 0.7190 | | 1.0272 | 21.0 | 12390 | 1.2527 | 0.6654 | | 1.036 | 22.0 | 12980 | 1.1910 | 0.6783 | | 0.9735 | 23.0 | 13570 | 1.0311 | 0.7037 | | 0.9167 | 24.0 | 14160 | 0.9997 | 0.7021 | | 0.8494 | 25.0 | 14750 | 1.0338 | 0.7284 | | 0.8461 | 26.0 | 15340 | 1.4642 | 0.6495 | | 0.8466 | 27.0 | 15930 | 0.9877 | 0.7370 | | 0.8498 | 28.0 | 16520 | 0.9401 | 0.7287 | | 0.7851 | 29.0 | 17110 | 1.0208 | 0.7336 | | 0.7796 | 30.0 | 17700 | 0.9350 | 0.7232 | | 0.7725 | 31.0 | 18290 | 1.4097 | 0.7162 | | 0.7599 | 32.0 | 18880 | 1.1313 | 0.7333 | | 0.768 | 33.0 | 19470 | 1.0272 | 0.7379 | | 0.7007 | 34.0 | 20060 | 0.9294 | 0.7364 | | 0.6718 | 35.0 | 20650 | 0.9347 | 0.7330 | | 0.6786 | 36.0 | 21240 | 1.0231 | 0.7416 | | 0.6822 | 37.0 | 21830 | 0.9767 | 0.7413 | | 0.6667 | 38.0 | 22420 | 0.9351 | 0.7272 | | 0.6497 | 39.0 | 23010 | 0.9574 | 0.7355 | | 0.638 | 40.0 | 23600 | 1.0610 | 0.7437 | | 0.6468 | 41.0 | 24190 | 1.1462 | 0.7434 | | 0.6046 | 42.0 | 24780 | 0.9750 | 0.7211 | | 0.6079 | 43.0 | 25370 | 1.2040 | 0.7419 | | 0.5806 | 44.0 | 25960 | 1.1603 | 0.7018 | | 0.5753 | 45.0 | 26550 | 1.0639 | 0.7110 | | 0.5693 | 46.0 | 27140 | 1.0966 | 0.7422 | | 0.5757 | 47.0 | 27730 | 1.0137 | 0.7468 | | 0.5692 | 48.0 | 28320 | 0.9476 | 0.7382 | | 0.5732 | 49.0 | 28910 | 1.0004 | 0.7291 | | 0.5563 | 50.0 | 29500 | 0.9870 | 0.7394 | | 0.5217 | 51.0 | 30090 | 0.9681 | 0.7312 | | 0.5239 | 52.0 | 30680 | 0.9812 | 0.7456 | | 0.525 | 53.0 | 31270 | 1.0355 | 0.7196 | | 0.5136 | 54.0 | 31860 | 0.9161 | 0.7385 | | 0.5249 | 55.0 | 32450 | 1.0093 | 0.7382 | | 0.5092 | 56.0 | 33040 | 1.0072 | 0.7428 | | 0.4754 | 57.0 | 33630 | 1.0560 | 0.7425 | | 0.4716 | 58.0 | 34220 | 0.9922 | 0.7425 | | 0.4913 | 59.0 | 34810 | 1.0014 | 0.7480 | | 0.4773 | 60.0 | 35400 | 0.9148 | 0.7352 | | 0.4725 | 61.0 | 35990 | 0.9691 | 0.7474 | | 0.4656 | 62.0 | 36580 | 0.9459 | 0.7453 | | 0.4565 | 63.0 | 37170 | 0.9521 | 0.7388 | | 0.4502 | 64.0 | 37760 | 1.0172 | 0.7474 | | 0.4765 | 65.0 | 38350 | 0.9504 | 0.7327 | | 0.4439 | 66.0 | 38940 | 0.9998 | 0.7443 | | 0.4424 | 67.0 | 39530 | 1.0985 | 0.7498 | | 0.4541 | 68.0 | 40120 | 0.9088 | 0.7446 | | 0.4321 | 69.0 | 40710 | 0.9322 | 0.7379 | | 0.4346 | 70.0 | 41300 | 1.0028 | 0.7495 | | 0.4329 | 71.0 | 41890 | 0.8949 | 0.7385 | | 0.4344 | 72.0 | 42480 | 0.9631 | 0.7544 | | 0.4111 | 73.0 | 43070 | 0.9800 | 0.7272 | | 0.4183 | 74.0 | 43660 | 1.1350 | 0.7541 | | 0.4234 | 75.0 | 44250 | 0.9444 | 0.7511 | | 0.4297 | 76.0 | 44840 | 0.9584 | 0.7526 | | 0.4172 | 77.0 | 45430 | 0.9165 | 0.7413 | | 0.4083 | 78.0 | 46020 | 0.9103 | 0.7401 | | 0.4078 | 79.0 | 46610 | 0.9100 | 0.7468 | | 0.3977 | 80.0 | 47200 | 0.9172 | 0.7480 | | 0.3885 | 81.0 | 47790 | 0.9714 | 0.7523 | | 0.4012 | 82.0 | 48380 | 1.0683 | 0.7547 | | 0.3831 | 83.0 | 48970 | 0.9867 | 0.7575 | | 0.3878 | 84.0 | 49560 | 0.9245 | 0.7541 | | 0.3841 | 85.0 | 50150 | 0.9662 | 0.7327 | | 0.3835 | 86.0 | 50740 | 0.9532 | 0.7505 | | 0.3755 | 87.0 | 51330 | 0.9645 | 0.7492 | | 0.379 | 88.0 | 51920 | 0.9183 | 0.7483 | | 0.38 | 89.0 | 52510 | 0.9787 | 0.7523 | | 0.37 | 90.0 | 53100 | 0.9205 | 0.7443 | | 0.368 | 91.0 | 53690 | 0.9236 | 0.7446 | | 0.3737 | 92.0 | 54280 | 0.9023 | 0.7419 | | 0.3663 | 93.0 | 54870 | 0.9200 | 0.7514 | | 0.3763 | 94.0 | 55460 | 0.9496 | 0.7517 | | 0.3635 | 95.0 | 56050 | 0.9487 | 0.7508 | | 0.3656 | 96.0 | 56640 | 0.9122 | 0.7502 | | 0.3604 | 97.0 | 57230 | 0.9036 | 0.7498 | | 0.3475 | 98.0 | 57820 | 0.9054 | 0.7474 | | 0.3552 | 99.0 | 58410 | 0.9078 | 0.7471 | | 0.3564 | 100.0 | 59000 | 0.9097 | 0.7502 | ### Framework versions - Transformers 4.30.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
trieudemo11/llama_7b_attrb_cate_big_l280_17
trieudemo11
2023-09-09T01:46:47Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-09T01:46:28Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0
kaungmyat/translation
kaungmyat
2023-09-09T01:33:31Z
11
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:opus_books", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-08T16:35:20Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer datasets: - opus_books metrics: - bleu model-index: - name: translation results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: opus_books type: opus_books config: en-fr split: train args: en-fr metrics: - name: Bleu type: bleu value: 5.6441 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # translation This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the opus_books dataset. It achieves the following results on the evaluation set: - Loss: 1.6122 - Bleu: 5.6441 - Gen Len: 17.5838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| | 1.8593 | 1.0 | 6355 | 1.6362 | 5.4979 | 17.59 | | 1.8198 | 2.0 | 12710 | 1.6122 | 5.6441 | 17.5838 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
DunnBC22/bert-base-cased-finetuned-Stromberg_NLP_Twitter-PoS_v2
DunnBC22
2023-09-09T01:31:12Z
109
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "en", "dataset:twitter_pos_vcb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-07T02:05:51Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - twitter_pos_vcb metrics: - accuracy - poseval - f1 - recall - precision model-index: - name: bert-base-cased-finetuned-Stromberg_NLP_Twitter-PoS_v2 results: - task: name: Token Classification type: token-classification dataset: name: twitter_pos_vcb type: twitter_pos_vcb config: twitter-pos-vcb split: train args: twitter-pos-vcb metrics: - name: Accuracy type: accuracy value: 0.9853480683735223 language: - en pipeline_tag: token-classification --- # bert-base-cased-finetuned-Stromberg_NLP_Twitter-PoS_v2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the twitter_pos_vcb dataset. It achieves the following results on the evaluation set: - Loss: 0.0502 | Token | Precision | Recall | F1-Score | Support | |:-----:|:-----:|:-----:|:-----:|:-----:| | $ | 0.0 | 0.0 | 0.0 | 3 | '' | 0.9312320916905444 | 0.9530791788856305 | 0.9420289855072465 | 341 | | ( | 0.9791666666666666 | 0.9591836734693877 | 0.9690721649484536 | 196 | | ) | 0.960167714884696 | 0.9703389830508474 | 0.9652265542676501 | 472 | | , | 0.9988979501873485 | 0.9993384785005512 | 0.9991181657848325 | 4535 | | . | 0.9839189708141322 | 0.9894762249577601 | 0.9866897730281368 | 20715 | | : | 0.9926405887528997 | 0.9971072719967858 | 0.9948689168604183 | 12445 | | Cc | 0.9991067440821796 | 0.9986607142857142 | 0.9988836793927215 | 4480 | | Cd | 0.9903884661593912 | 0.9899919935948759 | 0.9901901901901902 | 2498 | | Dt | 0.9981148589510537 | 0.9976446837146703 | 0.9978797159492478 | 14860 | | Ex | 0.9142857142857143 | 0.9846153846153847 | 0.9481481481481482 | 65 | | Fw | 1.0 | 0.1 | 0.18181818181818182 | 10 | | Ht | 0.999877541023757 | 0.9997551120362435 | 0.9998163227820978 | 8167 | | In | 0.9960399353003514 | 0.9954846981437092 | 0.9957622393219583 | 17939 | | Jj | 0.9812470698546648 | 0.9834756049808129 | 0.9823600735322877 | 12769 | | Jjr | 0.9304511278195489 | 0.9686888454011742 | 0.9491850431447747 | 511 | | Jjs | 0.9578414839797639 | 0.9726027397260274 | 0.9651656754460493 | 584 | | Md | 0.9901398761751892 | 0.9908214777420835 | 0.990480559697213 | 4358 | | Nn | 0.9810285563194078 | 0.9819697621331922 | 0.9814989335846437 | 30227 | | Nnp | 0.9609722697706266 | 0.9467116357504216 | 0.9537886510363575 | 8895 | | Nnps | 1.0 | 0.037037037037037035 | 0.07142857142857142 | 27 | | Nns | 0.9697771061579146 | 0.9776564681985528 | 0.9737008471361739 | 7877 | | Pos | 0.9977272727272727 | 0.984304932735426 | 0.9909706546275394 | 446 | | Prp | 0.9983503349829983 | 0.9985184187487373 | 0.9984343697917544 | 29698 | | Prp$ | 0.9974262182566919 | 0.9974262182566919 | 0.9974262182566919 | 5828 | | Rb | 0.9939770374552983 | 0.9929802569727358 | 0.9934783971906942 | 15955 | | Rbr | 0.9058823529411765 | 0.8191489361702128 | 0.8603351955307263 | 94 | | Rbs | 0.92 | 1.0 | 0.9583333333333334 | 69 | | Rp | 0.9802197802197802 | 0.9903774981495189 | 0.9852724594992636 | 1351 | | Rt | 0.9995065383666419 | 0.9996298581122763 | 0.9995681944358769 | 8105 | | Sym | 0.0 | 0.0 | 0.0 | 9 | | To | 0.9984649496844619 | 0.9989761092150171 | 0.9987204640450398 | 5860 | | Uh | 0.9614460148062687 | 0.9507510933637574 | 0.9560686457287633 | 10518 | | Url | 1.0 | 0.9997242900468707 | 0.9998621260168207 | 3627 | | Usr | 0.9999025388626285 | 1.0 | 0.9999512670565303 | 20519 | | Vb | 0.9619302598929085 | 0.9570556133056133 | 0.9594867452615125 | 15392 | | Vbd | 0.9592894152479645 | 0.9548719837907533 | 0.9570756023262255 | 5429 | | Vbg | 0.9848831077518018 | 0.984191111891797 | 0.9845369882270251 | 5693 | | Vbn | 0.9053408597481546 | 0.9164835164835164 | 0.910878112712975 | 2275 | | Vbp | 0.963605718209626 | 0.9666228317364894 | 0.9651119169688633 | 15969 | | Vbz | 0.9881780250347705 | 0.9861207494795281 | 0.9871483153872872 | 5764 | | Wdt | 0.8666666666666667 | 0.9285714285714286 | 0.896551724137931 | 14 | | Wp | 0.99125 | 0.993734335839599 | 0.9924906132665832 | 1596 | | Wrb | 0.9963488843813387 | 0.9979683055668428 | 0.9971579374746244 | 2461 | | `` | 0.9481865284974094 | 0.9786096256684492 | 0.963157894736842 | 187 | Overall - Accuracy: 0.9853 - Macro avg: - Precision: 0.9296417163691048 - Recall: 0.8931046018294694 - F1-score: 0.8930917459781836 - Support: 308833 - Weighted avg: - Precision: 0.985306457604231 - Recall: 0.9853480683735223 - F1-Score: 0.9852689858931941 - Support: 308833 ## Model description For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Token%20Classification/Monolingual/StrombergNLP-Twitter_pos_vcb/NER%20Project%20Using%20StrombergNLP%20Twitter_pos_vcb%20Dataset%20with%20PosEval.ipynb. ## Intended uses & limitations This model is intended to demonstrate my ability to solve a complex problem using technology. ## Training and evaluation data Dataset Source: https://huggingface.co/datasets/strombergnlp/twitter_pos_vcb ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0 - Datasets 2.11.0 - Tokenizers 0.13.3
FunkEngine/SchweinZwei-13b
FunkEngine
2023-09-09T01:20:57Z
15
1
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "text generation", "instruct", "en", "dataset:SchweinZwei/PIPPA", "dataset:Open-Orca/OpenOrca", "dataset:Norquinal/claude_multiround_chat_30k", "dataset:jondurbin/airoboros-gpt4-1.4.1", "dataset:databricks/databricks-dolly-15k", "license:llama2", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-09-08T09:56:32Z
--- language: - en thumbnail: null tags: - text generation - instruct pipeline_tag: text-generation inference: false license: llama2 datasets: - SchweinZwei/PIPPA - Open-Orca/OpenOrca - Norquinal/claude_multiround_chat_30k - jondurbin/airoboros-gpt4-1.4.1 - databricks/databricks-dolly-15k --- <h1 style="text-align: center">SchweinZwei/SchweinZwei-13b</h1> <h2 style="text-align: center">An instruction-tuned Llama-2 biased towards fiction writing and conversation.</h2> ## Model Details The long-awaited release of our new models based on Llama-2 is finally here. SchweinZwei-13b (formerly known as Metharme) is based on [Llama-2 13B](https://huggingface.co/meta-llama/llama-2-13b-hf) released by Meta AI. The Metharme models were an experiment to try and get a model that is usable for conversation, roleplaying and storywriting, but which can be guided using natural language like other instruct models. After much deliberation, we reached the conclusion that the Metharme prompting format is superior (and easier to use) compared to the classic Schweinen. This model was trained by doing supervised fine-tuning over a mixture of regular instruction data alongside roleplay, fictional stories and conversations with synthetically generated instructions attached. This model is freely available for both commercial and non-commercial use, as per the Llama-2 license. ## Prompting The model has been trained on prompts using three different roles, which are denoted by the following tokens: `<|system|>`, `<|user|>` and `<|model|>`. The `<|system|>` prompt can be used to inject out-of-channel information behind the scenes, while the `<|user|>` prompt should be used to indicate user input. The `<|model|>` token should then be used to indicate that the model should generate a response. These tokens can happen multiple times and be chained up to form a conversation history. ### Prompting example The system prompt has been designed to allow the model to "enter" various modes and dictate the reply length. Here's an example: ``` <|system|>Enter RP mode. Pretend to be {{char}} whose persona follows: {{persona}} You shall reply to the user while staying in character, and generate long responses. ``` ## Dataset The dataset used to fine-tune this model includes our own [PIPPA], along with several other instruction datasets, and datasets acquired from various RP forums. ## Limitations and biases The intended use-case for this model is fictional writing for entertainment purposes. Any other sort of usage is out of scope. As such, it was **not** fine-tuned to be safe and harmless: the base model _and_ this fine-tune have been trained on data known to contain profanity and texts that are lewd or otherwise offensive. It may produce socially unacceptable or undesirable text, even if the prompt itself does not include anything explicitly offensive. Outputs might often be factually wrong or misleading. ## Acknowledgements We would like to thank [SpicyChat](https://spicychat.ai/) for sponsoring the training for this model.
nitikaverma26/Reinforce-Pixelcopter-PLE-v0
nitikaverma26
2023-09-09T01:01:50Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-09T01:01:45Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 81.80 +/- 50.82 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
celinelee/codellama13B_risctoarm
celinelee
2023-09-09T00:38:42Z
3
0
peft
[ "peft", "region:us" ]
null
2023-09-09T00:38:35Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
Miladrmz/dqn-SpaceInvadersNoFrameskip-v4
Miladrmz
2023-09-09T00:20:08Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-09T00:19:26Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 726.50 +/- 253.85 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Miladrmz -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Miladrmz -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Miladrmz ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
nanom/bert_adaptation_referencias_de_vinos
nanom
2023-09-08T23:55:58Z
107
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "base_model:dccuchile/bert-base-spanish-wwm-uncased", "base_model:finetune:dccuchile/bert-base-spanish-wwm-uncased", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-08T23:37:54Z
--- base_model: dccuchile/bert-base-spanish-wwm-uncased tags: - generated_from_trainer model-index: - name: bert_adaptation_referencias_de_vinos results: [] widget: - text: "Este [MASK] argentino de altura es una verdadera" example_title: Example 1 - text: "Los sabores de [MASK] persisten" example_title: Example 2 - text: "Con un color profundo e [MASK]" example_title: Example 3 - text: "Hecho 100% de [MASK]" example_title: Example 4 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_adaptation_referencias_de_vinos This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-uncased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2653 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.3123 | 1.0 | 375 | 2.7183 | | 2.6604 | 2.0 | 750 | 2.4759 | | 2.448 | 3.0 | 1125 | 2.4108 | | 2.3606 | 4.0 | 1500 | 2.3783 | | 2.2859 | 5.0 | 1875 | 2.2942 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
AlienKevin/whisper-small-jyutping-without-tones
AlienKevin
2023-09-08T23:54:58Z
105
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "yue", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-08T23:53:39Z
--- language: - yue license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer model-index: - name: Whisper Small Jyutping without Tones results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Jyutping without Tones This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 14.0 dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0701 - eval_wer: 9.8213 - eval_runtime: 1761.3114 - eval_samples_per_second: 1.453 - eval_steps_per_second: 0.182 - epoch: 0.78 - step: 1000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1 - Datasets 2.14.5 - Tokenizers 0.13.3
TheDarkLord69696969/nllb-200-distilled-600M-finetuned_srimadbhagavatam_sns
TheDarkLord69696969
2023-09-08T23:31:14Z
4
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "generated_from_trainer", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-08T21:17:13Z
--- license: cc-by-nc-4.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: nllb-200-distilled-600M-finetuned_srimadbhagavatam_sns results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nllb-200-distilled-600M-finetuned_srimadbhagavatam_sns This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9632 - Rouge1: 39.9844 - Rouge2: 15.8187 - Rougel: 24.7601 - Rougelsum: 37.8611 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 4.2029 | 1.0 | 193 | 3.5530 | 17.4525 | 1.8199 | 14.417 | 15.7939 | | 3.6789 | 2.0 | 386 | 3.2385 | 18.4399 | 2.3063 | 14.4777 | 16.8663 | | 3.4121 | 3.0 | 579 | 2.9913 | 18.6292 | 2.1671 | 14.0775 | 17.4039 | | 3.1958 | 4.0 | 772 | 2.7935 | 20.9044 | 3.0869 | 15.7866 | 19.4597 | | 3.0238 | 5.0 | 965 | 2.6154 | 22.9863 | 3.1733 | 15.4087 | 21.6705 | | 2.8546 | 6.0 | 1158 | 2.4343 | 24.7063 | 4.0564 | 16.1424 | 23.2821 | | 2.7 | 7.0 | 1351 | 2.2810 | 26.2011 | 4.6714 | 16.7887 | 24.6723 | | 2.5532 | 8.0 | 1544 | 2.1071 | 30.7319 | 6.3718 | 17.4858 | 28.8254 | | 2.42 | 9.0 | 1737 | 1.9742 | 28.5217 | 5.2919 | 16.9577 | 26.5686 | | 2.2991 | 10.0 | 1930 | 1.8234 | 29.8937 | 6.3088 | 17.2141 | 28.0302 | | 2.1851 | 11.0 | 2123 | 1.7177 | 29.8642 | 6.9874 | 18.2935 | 28.0493 | | 2.0829 | 12.0 | 2316 | 1.5891 | 30.7551 | 6.7111 | 18.1772 | 28.8555 | | 1.9954 | 13.0 | 2509 | 1.4965 | 32.6313 | 8.0662 | 18.4981 | 30.8014 | | 1.9055 | 14.0 | 2702 | 1.3996 | 33.0299 | 9.6554 | 19.2763 | 31.2127 | | 1.8372 | 15.0 | 2895 | 1.3271 | 35.4767 | 10.7234 | 20.2759 | 33.1856 | | 1.7635 | 16.0 | 3088 | 1.2533 | 35.5164 | 11.5198 | 21.3301 | 33.2617 | | 1.7052 | 17.0 | 3281 | 1.1865 | 37.5692 | 13.6047 | 22.9496 | 35.2626 | | 1.6495 | 18.0 | 3474 | 1.1414 | 37.7493 | 13.6471 | 22.6947 | 35.6368 | | 1.6009 | 19.0 | 3667 | 1.0859 | 40.251 | 15.2568 | 24.4602 | 37.955 | | 1.5589 | 20.0 | 3860 | 1.0536 | 37.8875 | 14.5794 | 23.4696 | 35.8989 | | 1.5209 | 21.0 | 4053 | 1.0268 | 38.4126 | 14.9535 | 24.3597 | 36.435 | | 1.4963 | 22.0 | 4246 | 0.9982 | 40.9518 | 16.6418 | 25.284 | 38.5787 | | 1.4651 | 23.0 | 4439 | 0.9771 | 39.4774 | 16.4189 | 24.7979 | 37.3614 | | 1.451 | 24.0 | 4632 | 0.9662 | 40.4131 | 16.5895 | 25.0073 | 38.3018 | | 1.4351 | 25.0 | 4825 | 0.9632 | 39.9844 | 15.8187 | 24.7601 | 37.8611 | ### Framework versions - Transformers 4.28.0 - Pytorch 1.12.1 - Datasets 2.14.4 - Tokenizers 0.13.3
speechlessai/speechless-baichuan2-dolphin-orca-platypus-13b
speechlessai
2023-09-08T23:29:00Z
13
0
transformers
[ "transformers", "pytorch", "baichuan", "text-generation", "custom_code", "en", "zh", "dataset:ehartford/dolphin", "dataset:Open-Orca/OpenOrca", "dataset:garage-bAInd/Open-Platypus", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-08T11:27:45Z
--- language: - en - zh license: apache-2.0 tasks: - text-generation datasets: - ehartford/dolphin - Open-Orca/OpenOrca - garage-bAInd/Open-Platypus --- <p><h1> speechless-baichuan2-dolphin-orca-platypus-13b </h1></p> Fine-tune the baichuan-inc/Baichuan2-13B-Base with Dolphin, Orca and Platypus datasets. | Metric | Value | | --- | --- | | ARC | | | HellaSwag | | | MMLU | | | TruthfulQA | | | Average | | <!-- markdownlint-disable first-line-h1 --> <!-- markdownlint-disable html --> <div align="center"> <h1> Baichuan 2 </h1> </div> <div align="center"> <a href="https://github.com/baichuan-inc/Baichuan2" target="_blank">🦉GitHub</a> | <a href="https://github.com/baichuan-inc/Baichuan-7B/blob/main/media/wechat.jpeg?raw=true" target="_blank">💬WeChat</a> </div> <div align="center"> 🚀 <a href="https://www.baichuan-ai.com/" target="_blank">百川大模型在线对话平台</a> 已正式向公众开放 🎉 </div> # 目录/Table of Contents - [📖 模型介绍/Introduction](#Introduction) - [⚙️ 快速开始/Quick Start](#Start) - [📊 Benchmark评估/Benchmark Evaluation](#Benchmark) - [📜 声明与协议/Terms and Conditions](#Terms) # <span id="Introduction">模型介绍/Introduction</span> Baichuan 2 是[百川智能]推出的新一代开源大语言模型,采用 **2.6 万亿** Tokens 的高质量语料训练,在权威的中文和英文 benchmark 上均取得同尺寸最好的效果。本次发布包含有 7B、13B 的 Base 和 Chat 版本,并提供了 Chat 版本的 4bits 量化,所有版本不仅对学术研究完全开放,开发者也仅需[邮件申请]并获得官方商用许可后,即可以免费商用。具体发布版本和下载见下表: Baichuan 2 is the new generation of large-scale open-source language models launched by [Baichuan Intelligence inc.](https://www.baichuan-ai.com/). It is trained on a high-quality corpus with 2.6 trillion tokens and has achieved the best performance in authoritative Chinese and English benchmarks of the same size. This release includes 7B and 13B versions for both Base and Chat models, along with a 4bits quantized version for the Chat model. All versions are fully open to academic research, and developers can also use them for free in commercial applications after obtaining an official commercial license through [email request](mailto:[email protected]). The specific release versions and download links are listed in the table below: | | Base Model | Chat Model | 4bits Quantized Chat Model | |:---:|:--------------------:|:--------------------:|:--------------------------:| | 7B | [Baichuan2-7B-Base](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base) | [Baichuan2-7B-Chat](https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat) | [Baichuan2-7B-Chat-4bits](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base-4bits) | | 13B | [Baichuan2-13B-Base](https://huggingface.co/baichuan-inc/Baichuan2-13B-Base) | [Baichuan2-13B-Chat](https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat) | [Baichuan2-13B-Chat-4bits](https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat-4bits) | # <span id="Start">快速开始/Quick Start</span> 在Baichuan2系列模型中,我们为了加快推理速度使用了Pytorch2.0加入的新功能F.scaled_dot_product_attention,因此模型需要在Pytorch2.0环境下运行。 In the Baichuan 2 series models, we have utilized the new feature `F.scaled_dot_product_attention` introduced in PyTorch 2.0 to accelerate inference speed. Therefore, the model needs to be run in a PyTorch 2.0 environment. ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/Baichuan2-13B-Base", use_fast=False, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("baichuan-inc/Baichuan2-13B-Base", device_map="auto", trust_remote_code=True) inputs = tokenizer('登鹳雀楼->王之涣\n夜雨寄北->', return_tensors='pt') inputs = inputs.to('cuda:0') pred = model.generate(**inputs, max_new_tokens=64, repetition_penalty=1.1) print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True)) ``` # <span id="Benchmark">Benchmark 结果/Benchmark Evaluation</span> 我们在[通用]、[法律]、[医疗]、[数学]、[代码]和[多语言翻译]六个领域的中英文权威数据集上对模型进行了广泛测试,更多详细测评结果可查看[GitHub]。 We have extensively tested the model on authoritative Chinese-English datasets across six domains: [General](https://github.com/baichuan-inc/Baichuan2/blob/main/README_EN.md#general-domain), [Legal](https://github.com/baichuan-inc/Baichuan2/blob/main/README_EN.md#law-and-medicine), [Medical](https://github.com/baichuan-inc/Baichuan2/blob/main/README_EN.md#law-and-medicine), [Mathematics](https://github.com/baichuan-inc/Baichuan2/blob/main/README_EN.md#mathematics-and-code), [Code](https://github.com/baichuan-inc/Baichuan2/blob/main/README_EN.md#mathematics-and-code), and [Multilingual Translation](https://github.com/baichuan-inc/Baichuan2/blob/main/README_EN.md#multilingual-translation). For more detailed evaluation results, please refer to [GitHub](https://github.com/baichuan-inc/Baichuan2/blob/main/README_EN.md). ### 7B Model Results | | **C-Eval** | **MMLU** | **CMMLU** | **Gaokao** | **AGIEval** | **BBH** | |:-----------------------:|:----------:|:--------:|:---------:|:----------:|:-----------:|:-------:| | | 5-shot | 5-shot | 5-shot | 5-shot | 5-shot | 3-shot | | **GPT-4** | 68.40 | 83.93 | 70.33 | 66.15 | 63.27 | 75.12 | | **GPT-3.5 Turbo** | 51.10 | 68.54 | 54.06 | 47.07 | 46.13 | 61.59 | | **LLaMA-7B** | 27.10 | 35.10 | 26.75 | 27.81 | 28.17 | 32.38 | | **LLaMA2-7B** | 28.90 | 45.73 | 31.38 | 25.97 | 26.53 | 39.16 | | **MPT-7B** | 27.15 | 27.93 | 26.00 | 26.54 | 24.83 | 35.20 | | **Falcon-7B** | 24.23 | 26.03 | 25.66 | 24.24 | 24.10 | 28.77 | | **ChatGLM2-6B** | 50.20 | 45.90 | 49.00 | 49.44 | 45.28 | 31.65 | | **[Baichuan-7B]** | 42.80 | 42.30 | 44.02 | 36.34 | 34.44 | 32.48 | | **[Baichuan2-7B-Base]** | 54.00 | 54.16 | 57.07 | 47.47 | 42.73 | 41.56 | ### 13B Model Results | | **C-Eval** | **MMLU** | **CMMLU** | **Gaokao** | **AGIEval** | **BBH** | |:---------------------------:|:----------:|:--------:|:---------:|:----------:|:-----------:|:-------:| | | 5-shot | 5-shot | 5-shot | 5-shot | 5-shot | 3-shot | | **GPT-4** | 68.40 | 83.93 | 70.33 | 66.15 | 63.27 | 75.12 | | **GPT-3.5 Turbo** | 51.10 | 68.54 | 54.06 | 47.07 | 46.13 | 61.59 | | **LLaMA-13B** | 28.50 | 46.30 | 31.15 | 28.23 | 28.22 | 37.89 | | **LLaMA2-13B** | 35.80 | 55.09 | 37.99 | 30.83 | 32.29 | 46.98 | | **Vicuna-13B** | 32.80 | 52.00 | 36.28 | 30.11 | 31.55 | 43.04 | | **Chinese-Alpaca-Plus-13B** | 38.80 | 43.90 | 33.43 | 34.78 | 35.46 | 28.94 | | **XVERSE-13B** | 53.70 | 55.21 | 58.44 | 44.69 | 42.54 | 38.06 | | **[Baichuan-13B-Base]** | 52.40 | 51.60 | 55.30 | 49.69 | 43.20 | 43.01 | | **[Baichuan2-13B-Base]** | 58.10 | 59.17 | 61.97 | 54.33 | 48.17 | 48.78 | ## 训练过程模型/Training Dynamics 除了训练了 2.6 万亿 Tokens 的 [Baichuan2-7B-Base](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base) 模型,我们还提供了在此之前的另外 11 个中间过程的模型(分别对应训练了约 0.2 ~ 2.4 万亿 Tokens)供社区研究使用 ([训练过程checkpoint下载](https://huggingface.co/baichuan-inc/Baichuan2-7B-Intermediate-Checkpoints))。下图给出了这些 checkpoints 在 C-Eval、MMLU、CMMLU 三个 benchmark 上的效果变化: In addition to the [Baichuan2-7B-Base](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base) model trained on 2.6 trillion tokens, we also offer 11 additional intermediate-stage models for community research, corresponding to training on approximately 0.2 to 2.4 trillion tokens each ([Intermediate Checkpoints Download](https://huggingface.co/baichuan-inc/Baichuan2-7B-Intermediate-Checkpoints)). The graph below shows the performance changes of these checkpoints on three benchmarks: C-Eval, MMLU, and CMMLU. ![checkpoint](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/resolve/main/checkpoints.jpeg) # <span id="Terms">声明与协议/Terms and Conditions</span> ## 声明 我们在此声明,我们的开发团队并未基于 Baichuan 2 模型开发任何应用,无论是在 iOS、Android、网页或任何其他平台。我们强烈呼吁所有使用者,不要利用 Baichuan 2 模型进行任何危害国家社会安全或违法的活动。另外,我们也要求使用者不要将 Baichuan 2 模型用于未经适当安全审查和备案的互联网服务。我们希望所有的使用者都能遵守这个原则,确保科技的发展能在规范和合法的环境下进行。 我们已经尽我们所能,来确保模型训练过程中使用的数据的合规性。然而,尽管我们已经做出了巨大的努力,但由于模型和数据的复杂性,仍有可能存在一些无法预见的问题。因此,如果由于使用 Baichuan 2 开源模型而导致的任何问题,包括但不限于数据安全问题、公共舆论风险,或模型被误导、滥用、传播或不当利用所带来的任何风险和问题,我们将不承担任何责任。 We hereby declare that our team has not developed any applications based on Baichuan 2 models, not on iOS, Android, the web, or any other platform. We strongly call on all users not to use Baichuan 2 models for any activities that harm national / social security or violate the law. Also, we ask users not to use Baichuan 2 models for Internet services that have not undergone appropriate security reviews and filings. We hope that all users can abide by this principle and ensure that the development of technology proceeds in a regulated and legal environment. We have done our best to ensure the compliance of the data used in the model training process. However, despite our considerable efforts, there may still be some unforeseeable issues due to the complexity of the model and data. Therefore, if any problems arise due to the use of Baichuan 2 open-source models, including but not limited to data security issues, public opinion risks, or any risks and problems brought about by the model being misled, abused, spread or improperly exploited, we will not assume any responsibility. ## 协议 Baichuan 2 模型的社区使用需遵循[《Baichuan 2 模型社区许可协议》]。Baichuan 2 支持商用。如果将 Baichuan 2 模型或其衍生品用作商业用途,请您按照如下方式联系许可方,以进行登记并向许可方申请书面授权:联系邮箱 [[email protected]]。 The use of the source code in this repository follows the open-source license Apache 2.0. Community use of the Baichuan 2 model must adhere to the [Community License for Baichuan 2 Model](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Baichuan%202%E6%A8%A1%E5%9E%8B%E7%A4%BE%E5%8C%BA%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf). Baichuan 2 supports commercial use. If you are using the Baichuan 2 models or their derivatives for commercial purposes, please contact the licensor in the following manner for registration and to apply for written authorization: Email [email protected]. [GitHub]:https://github.com/baichuan-inc/Baichuan2 [Baichuan2]:https://github.com/baichuan-inc/Baichuan2 [Baichuan-7B]:https://huggingface.co/baichuan-inc/Baichuan-7B [Baichuan2-7B-Base]:https://huggingface.co/baichuan-inc/Baichuan2-7B-Base [Baichuan2-7B-Chat]:https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat [Baichuan2-7B-Chat-4bits]:https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat-4bits [Baichuan-13B-Base]:https://huggingface.co/baichuan-inc/Baichuan-13B-Base [Baichuan2-13B-Base]:https://huggingface.co/baichuan-inc/Baichuan2-13B-Base [Baichuan2-13B-Chat]:https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat [Baichuan2-13B-Chat-4bits]:https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat-4bits [通用]:https://github.com/baichuan-inc/Baichuan2#%E9%80%9A%E7%94%A8%E9%A2%86%E5%9F%9F [法律]:https://github.com/baichuan-inc/Baichuan2#%E6%B3%95%E5%BE%8B%E5%8C%BB%E7%96%97 [医疗]:https://github.com/baichuan-inc/Baichuan2#%E6%B3%95%E5%BE%8B%E5%8C%BB%E7%96%97 [数学]:https://github.com/baichuan-inc/Baichuan2#%E6%95%B0%E5%AD%A6%E4%BB%A3%E7%A0%81 [代码]:https://github.com/baichuan-inc/Baichuan2#%E6%95%B0%E5%AD%A6%E4%BB%A3%E7%A0%81 [多语言翻译]:https://github.com/baichuan-inc/Baichuan2#%E5%A4%9A%E8%AF%AD%E8%A8%80%E7%BF%BB%E8%AF%91 [《Baichuan 2 模型社区许可协议》]:https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Baichuan%202%E6%A8%A1%E5%9E%8B%E7%A4%BE%E5%8C%BA%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf [邮件申请]: mailto:[email protected] [Email]: mailto:[email protected] [[email protected]]: mailto:[email protected] [训练过程heckpoint下载]: https://huggingface.co/baichuan-inc/Baichuan2-7B-Intermediate-Checkpoints [百川智能]: https://www.baichuan-ai.com
Robo0890/roboxl
Robo0890
2023-09-08T22:56:33Z
217
2
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "region:us" ]
text-to-image
2023-09-08T22:56:26Z
--- license: other tags: - text-to-image - stable-diffusion - lora - diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: scifi widget: - text: scifi --- # RoboXL ![Image 0](1908492.jpeg) None ## Image examples for the model: ![Image 1](1908495.jpeg) ![Image 2](1908493.jpeg) ![Image 3](1908494.jpeg) ![Image 4](1908499.jpeg) ![Image 5](1908496.jpeg) ![Image 6](1908498.jpeg) ![Image 7](1908497.jpeg) ![Image 8](1908500.jpeg)
Brouz/Slerpeno
Brouz
2023-09-08T22:51:29Z
1,534
4
transformers
[ "transformers", "safetensors", "gguf", "llama", "text-generation", "license:cc-by-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-08T00:33:20Z
--- license: cc-by-4.0 --- Uses the same models Stheno does but merging using SLERP method instead 13B model
Onutoa/1_8e-3_1_0.5
Onutoa
2023-09-08T22:47:28Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-08T19:46:56Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: 1_8e-3_1_0.5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 1_8e-3_1_0.5 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5223 - Accuracy: 0.7101 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.008 - train_batch_size: 16 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.047 | 1.0 | 590 | 0.5930 | 0.6147 | | 1.1566 | 2.0 | 1180 | 0.8138 | 0.3786 | | 0.8071 | 3.0 | 1770 | 1.1906 | 0.6217 | | 0.8515 | 4.0 | 2360 | 0.5963 | 0.5232 | | 0.7727 | 5.0 | 2950 | 0.5584 | 0.6043 | | 0.864 | 6.0 | 3540 | 1.9242 | 0.3783 | | 0.7792 | 7.0 | 4130 | 0.7053 | 0.5116 | | 0.768 | 8.0 | 4720 | 2.9011 | 0.3783 | | 0.7931 | 9.0 | 5310 | 0.6747 | 0.3783 | | 0.726 | 10.0 | 5900 | 5.3441 | 0.3783 | | 0.7177 | 11.0 | 6490 | 0.7048 | 0.3783 | | 0.6681 | 12.0 | 7080 | 0.6229 | 0.3783 | | 0.6889 | 13.0 | 7670 | 1.0114 | 0.6205 | | 0.6618 | 14.0 | 8260 | 2.8718 | 0.6217 | | 0.6566 | 15.0 | 8850 | 1.5485 | 0.6217 | | 0.6227 | 16.0 | 9440 | 0.7295 | 0.6220 | | 0.6016 | 17.0 | 10030 | 0.6356 | 0.6217 | | 0.5891 | 18.0 | 10620 | 0.9814 | 0.6266 | | 0.5534 | 19.0 | 11210 | 1.4086 | 0.6205 | | 0.5574 | 20.0 | 11800 | 1.9522 | 0.6211 | | 0.5349 | 21.0 | 12390 | 0.5543 | 0.6355 | | 0.5171 | 22.0 | 12980 | 0.5258 | 0.6780 | | 0.5043 | 23.0 | 13570 | 0.7235 | 0.4746 | | 0.4775 | 24.0 | 14160 | 0.5588 | 0.6428 | | 0.4721 | 25.0 | 14750 | 0.5342 | 0.6731 | | 0.461 | 26.0 | 15340 | 0.7023 | 0.5560 | | 0.461 | 27.0 | 15930 | 1.0768 | 0.4144 | | 0.4312 | 28.0 | 16520 | 0.5149 | 0.6798 | | 0.4378 | 29.0 | 17110 | 0.8702 | 0.5226 | | 0.4214 | 30.0 | 17700 | 0.8323 | 0.6514 | | 0.4205 | 31.0 | 18290 | 0.4795 | 0.6869 | | 0.3944 | 32.0 | 18880 | 0.4763 | 0.6969 | | 0.3874 | 33.0 | 19470 | 1.5854 | 0.6248 | | 0.3779 | 34.0 | 20060 | 0.5091 | 0.6914 | | 0.3723 | 35.0 | 20650 | 0.7588 | 0.6541 | | 0.3693 | 36.0 | 21240 | 0.7886 | 0.5128 | | 0.3602 | 37.0 | 21830 | 1.4420 | 0.4719 | | 0.3522 | 38.0 | 22420 | 0.9082 | 0.5073 | | 0.3488 | 39.0 | 23010 | 0.6001 | 0.6853 | | 0.3348 | 40.0 | 23600 | 0.6879 | 0.6492 | | 0.3482 | 41.0 | 24190 | 1.7803 | 0.6315 | | 0.3324 | 42.0 | 24780 | 0.5648 | 0.6997 | | 0.3318 | 43.0 | 25370 | 0.9623 | 0.6618 | | 0.336 | 44.0 | 25960 | 0.6179 | 0.6459 | | 0.3167 | 45.0 | 26550 | 0.5041 | 0.6997 | | 0.3069 | 46.0 | 27140 | 0.4954 | 0.7003 | | 0.3078 | 47.0 | 27730 | 0.5356 | 0.7028 | | 0.2981 | 48.0 | 28320 | 1.3955 | 0.6450 | | 0.3037 | 49.0 | 28910 | 0.5689 | 0.6878 | | 0.2887 | 50.0 | 29500 | 0.8592 | 0.5517 | | 0.28 | 51.0 | 30090 | 0.5939 | 0.6838 | | 0.2786 | 52.0 | 30680 | 0.6514 | 0.6765 | | 0.2778 | 53.0 | 31270 | 1.8380 | 0.6339 | | 0.2797 | 54.0 | 31860 | 1.1076 | 0.6440 | | 0.2773 | 55.0 | 32450 | 0.4983 | 0.6972 | | 0.2746 | 56.0 | 33040 | 1.5742 | 0.4483 | | 0.2691 | 57.0 | 33630 | 0.8767 | 0.6498 | | 0.2555 | 58.0 | 34220 | 0.6028 | 0.6113 | | 0.2675 | 59.0 | 34810 | 0.7268 | 0.6664 | | 0.2567 | 60.0 | 35400 | 0.5953 | 0.6593 | | 0.2555 | 61.0 | 35990 | 0.5564 | 0.6795 | | 0.2525 | 62.0 | 36580 | 0.7419 | 0.6009 | | 0.2451 | 63.0 | 37170 | 0.5019 | 0.7043 | | 0.2431 | 64.0 | 37760 | 0.5603 | 0.6997 | | 0.2373 | 65.0 | 38350 | 0.5755 | 0.6612 | | 0.2387 | 66.0 | 38940 | 0.6158 | 0.6254 | | 0.2433 | 67.0 | 39530 | 0.5994 | 0.6150 | | 0.2354 | 68.0 | 40120 | 0.5195 | 0.7101 | | 0.2361 | 69.0 | 40710 | 0.5164 | 0.7076 | | 0.234 | 70.0 | 41300 | 0.5001 | 0.6997 | | 0.2341 | 71.0 | 41890 | 1.0352 | 0.4728 | | 0.2245 | 72.0 | 42480 | 0.5045 | 0.7073 | | 0.2219 | 73.0 | 43070 | 0.5208 | 0.7080 | | 0.216 | 74.0 | 43660 | 0.5116 | 0.7061 | | 0.2227 | 75.0 | 44250 | 0.5224 | 0.7089 | | 0.2163 | 76.0 | 44840 | 0.6881 | 0.5960 | | 0.217 | 77.0 | 45430 | 0.5131 | 0.7 | | 0.2209 | 78.0 | 46020 | 0.5344 | 0.7086 | | 0.2094 | 79.0 | 46610 | 0.6909 | 0.6098 | | 0.21 | 80.0 | 47200 | 0.7910 | 0.5829 | | 0.2069 | 81.0 | 47790 | 0.7681 | 0.6575 | | 0.2021 | 82.0 | 48380 | 0.5345 | 0.7083 | | 0.2077 | 83.0 | 48970 | 0.5224 | 0.7043 | | 0.2002 | 84.0 | 49560 | 0.5126 | 0.7015 | | 0.2033 | 85.0 | 50150 | 0.5920 | 0.7003 | | 0.2021 | 86.0 | 50740 | 0.5589 | 0.7040 | | 0.1873 | 87.0 | 51330 | 0.5470 | 0.7101 | | 0.1972 | 88.0 | 51920 | 0.5276 | 0.7040 | | 0.1855 | 89.0 | 52510 | 0.5280 | 0.7049 | | 0.1916 | 90.0 | 53100 | 0.5261 | 0.7046 | | 0.1912 | 91.0 | 53690 | 0.5950 | 0.6569 | | 0.1917 | 92.0 | 54280 | 0.5402 | 0.6850 | | 0.1879 | 93.0 | 54870 | 0.5765 | 0.7037 | | 0.1923 | 94.0 | 55460 | 0.5297 | 0.6991 | | 0.1894 | 95.0 | 56050 | 0.5150 | 0.7083 | | 0.1853 | 96.0 | 56640 | 0.5276 | 0.6976 | | 0.1848 | 97.0 | 57230 | 0.5356 | 0.7113 | | 0.1796 | 98.0 | 57820 | 0.5585 | 0.7086 | | 0.1848 | 99.0 | 58410 | 0.5230 | 0.7101 | | 0.1849 | 100.0 | 59000 | 0.5223 | 0.7101 | ### Framework versions - Transformers 4.30.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
actionpace/Llama-2-13b-hf
actionpace
2023-09-08T22:36:02Z
0
0
null
[ "gguf", "en", "license:other", "endpoints_compatible", "region:us" ]
null
2023-09-08T20:42:00Z
--- license: other language: - en --- **Some of my own quants:** * Llama-2-13b-hf_Q5_1.gguf **Source:** [meta-llama](https://huggingface.co/meta-llama) **Source Model:** [Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf) **Source models for meta-llama/Llama-2-13b-hf** - [meta-llama/Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf) ([Ref](https://huggingface.co/actionpace/Llama-2-13b-hf)) **Models utilizing meta-llama/Llama-2-13b-hf** - [The-Face-Of-Goonery/Huginn-v3-13b](https://huggingface.co/The-Face-Of-Goonery/Huginn-v3-13b) ([Ref](https://huggingface.co/actionpace/Huginn-v3-13b)) (Finetune, kaiokendev/SuperCOT-dataset) - [Fredithefish/Guanaco-13B-Uncensored](https://huggingface.co/Fredithefish/Guanaco-13B-Uncensored) ([Ref](https://huggingface.co/actionpace/Guanaco-13B-Uncensored)) (Finetune, Fredithefish/openassistant-guanaco-unfiltered) - [PeanutJar/LLaMa-2-PeanutButter_v19_R8-7B](https://huggingface.co/PeanutJar/LLaMa-2-PeanutButter_v19_R8-7B) ([Ref](https://huggingface.co/actionpace/LLaMa-2-PeanutButter_v19_R8-7B)) (Finetune, Custom-V19) - [jondurbin/spicyboros-7b-2.2](https://huggingface.co/jondurbin/spicyboros-7b-2.2) ([Ref](https://huggingface.co/actionpace/spicyboros-7b-2.2)) (Finetune, jondurbin/airoboros-2.2) - [meta-llama/Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf) ([Ref](https://huggingface.co/actionpace/Llama-2-13b-hf))
Onutoa/1_6e-3_1_0.5
Onutoa
2023-09-08T22:30:55Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-08T19:31:46Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: 1_6e-3_1_0.5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 1_6e-3_1_0.5 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4885 - Accuracy: 0.7401 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.006 - train_batch_size: 16 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.9248 | 1.0 | 590 | 0.7400 | 0.3786 | | 0.8836 | 2.0 | 1180 | 0.7971 | 0.3914 | | 0.8513 | 3.0 | 1770 | 0.6664 | 0.6217 | | 0.7488 | 4.0 | 2360 | 0.7384 | 0.6217 | | 0.729 | 5.0 | 2950 | 1.0125 | 0.6217 | | 0.7097 | 6.0 | 3540 | 0.7106 | 0.5046 | | 0.6521 | 7.0 | 4130 | 0.5533 | 0.6098 | | 0.6704 | 8.0 | 4720 | 0.4852 | 0.6587 | | 0.6271 | 9.0 | 5310 | 0.5153 | 0.6850 | | 0.6134 | 10.0 | 5900 | 0.4555 | 0.6948 | | 0.5702 | 11.0 | 6490 | 0.4732 | 0.6716 | | 0.5428 | 12.0 | 7080 | 0.4548 | 0.6963 | | 0.5681 | 13.0 | 7670 | 0.4534 | 0.6859 | | 0.5238 | 14.0 | 8260 | 0.6556 | 0.6725 | | 0.5103 | 15.0 | 8850 | 0.5050 | 0.7110 | | 0.5004 | 16.0 | 9440 | 0.4638 | 0.6813 | | 0.4614 | 17.0 | 10030 | 0.4935 | 0.7113 | | 0.4702 | 18.0 | 10620 | 0.4570 | 0.7040 | | 0.4305 | 19.0 | 11210 | 0.4871 | 0.7190 | | 0.4402 | 20.0 | 11800 | 0.5026 | 0.6722 | | 0.4035 | 21.0 | 12390 | 0.4476 | 0.7208 | | 0.3907 | 22.0 | 12980 | 0.6030 | 0.6367 | | 0.3686 | 23.0 | 13570 | 0.4396 | 0.7131 | | 0.3765 | 24.0 | 14160 | 0.4589 | 0.7180 | | 0.3709 | 25.0 | 14750 | 0.4440 | 0.7107 | | 0.3446 | 26.0 | 15340 | 1.0145 | 0.5728 | | 0.3433 | 27.0 | 15930 | 0.6213 | 0.6627 | | 0.331 | 28.0 | 16520 | 0.4566 | 0.7144 | | 0.3373 | 29.0 | 17110 | 0.5484 | 0.7284 | | 0.3117 | 30.0 | 17700 | 0.6371 | 0.6648 | | 0.2988 | 31.0 | 18290 | 0.7013 | 0.7089 | | 0.2928 | 32.0 | 18880 | 0.4553 | 0.7281 | | 0.297 | 33.0 | 19470 | 0.5225 | 0.6976 | | 0.2808 | 34.0 | 20060 | 0.4951 | 0.7343 | | 0.2735 | 35.0 | 20650 | 0.5188 | 0.7095 | | 0.2624 | 36.0 | 21240 | 0.4961 | 0.7367 | | 0.2642 | 37.0 | 21830 | 0.4731 | 0.7254 | | 0.2548 | 38.0 | 22420 | 0.4635 | 0.7260 | | 0.2575 | 39.0 | 23010 | 0.4896 | 0.7073 | | 0.244 | 40.0 | 23600 | 0.5605 | 0.7358 | | 0.2472 | 41.0 | 24190 | 0.6450 | 0.7266 | | 0.2433 | 42.0 | 24780 | 0.4922 | 0.7367 | | 0.2312 | 43.0 | 25370 | 0.5115 | 0.7269 | | 0.2355 | 44.0 | 25960 | 0.4879 | 0.7388 | | 0.2204 | 45.0 | 26550 | 0.5023 | 0.7355 | | 0.2223 | 46.0 | 27140 | 0.4976 | 0.7355 | | 0.22 | 47.0 | 27730 | 0.5051 | 0.7364 | | 0.2056 | 48.0 | 28320 | 0.4973 | 0.7205 | | 0.2166 | 49.0 | 28910 | 0.5008 | 0.7180 | | 0.2129 | 50.0 | 29500 | 0.5323 | 0.7382 | | 0.1973 | 51.0 | 30090 | 0.5689 | 0.6908 | | 0.2025 | 52.0 | 30680 | 0.4855 | 0.7367 | | 0.1977 | 53.0 | 31270 | 0.5230 | 0.7211 | | 0.1946 | 54.0 | 31860 | 0.5969 | 0.7333 | | 0.2063 | 55.0 | 32450 | 0.5340 | 0.7098 | | 0.1967 | 56.0 | 33040 | 0.5589 | 0.7361 | | 0.1793 | 57.0 | 33630 | 0.5207 | 0.7358 | | 0.1872 | 58.0 | 34220 | 0.4926 | 0.7394 | | 0.1831 | 59.0 | 34810 | 0.5265 | 0.7434 | | 0.1808 | 60.0 | 35400 | 0.5113 | 0.7407 | | 0.1892 | 61.0 | 35990 | 0.4972 | 0.7416 | | 0.1795 | 62.0 | 36580 | 0.5121 | 0.7391 | | 0.172 | 63.0 | 37170 | 0.4857 | 0.7321 | | 0.176 | 64.0 | 37760 | 0.5014 | 0.7232 | | 0.1763 | 65.0 | 38350 | 0.5061 | 0.7370 | | 0.1753 | 66.0 | 38940 | 0.4840 | 0.7358 | | 0.1716 | 67.0 | 39530 | 0.5262 | 0.7361 | | 0.1675 | 68.0 | 40120 | 0.4844 | 0.7324 | | 0.1647 | 69.0 | 40710 | 0.5357 | 0.7440 | | 0.1702 | 70.0 | 41300 | 0.4852 | 0.7394 | | 0.1666 | 71.0 | 41890 | 0.4749 | 0.7391 | | 0.162 | 72.0 | 42480 | 0.5616 | 0.7385 | | 0.1546 | 73.0 | 43070 | 0.5089 | 0.7352 | | 0.1525 | 74.0 | 43660 | 0.5315 | 0.7382 | | 0.1595 | 75.0 | 44250 | 0.5300 | 0.7419 | | 0.1555 | 76.0 | 44840 | 0.5664 | 0.7407 | | 0.1604 | 77.0 | 45430 | 0.5057 | 0.7416 | | 0.1584 | 78.0 | 46020 | 0.5008 | 0.7355 | | 0.1574 | 79.0 | 46610 | 0.5206 | 0.7398 | | 0.1552 | 80.0 | 47200 | 0.5176 | 0.7361 | | 0.1501 | 81.0 | 47790 | 0.4955 | 0.7376 | | 0.1492 | 82.0 | 48380 | 0.5001 | 0.7391 | | 0.1508 | 83.0 | 48970 | 0.4963 | 0.7379 | | 0.1463 | 84.0 | 49560 | 0.5148 | 0.7413 | | 0.1449 | 85.0 | 50150 | 0.4868 | 0.7349 | | 0.1489 | 86.0 | 50740 | 0.5012 | 0.7419 | | 0.1415 | 87.0 | 51330 | 0.4963 | 0.7321 | | 0.145 | 88.0 | 51920 | 0.5046 | 0.7291 | | 0.1375 | 89.0 | 52510 | 0.5011 | 0.7416 | | 0.1387 | 90.0 | 53100 | 0.5041 | 0.7440 | | 0.1428 | 91.0 | 53690 | 0.4940 | 0.7425 | | 0.1442 | 92.0 | 54280 | 0.4912 | 0.7401 | | 0.139 | 93.0 | 54870 | 0.5014 | 0.7428 | | 0.1406 | 94.0 | 55460 | 0.4919 | 0.7391 | | 0.1387 | 95.0 | 56050 | 0.5063 | 0.7446 | | 0.1368 | 96.0 | 56640 | 0.4902 | 0.7410 | | 0.1391 | 97.0 | 57230 | 0.4947 | 0.7407 | | 0.136 | 98.0 | 57820 | 0.4922 | 0.7413 | | 0.133 | 99.0 | 58410 | 0.4926 | 0.7394 | | 0.1379 | 100.0 | 59000 | 0.4885 | 0.7401 | ### Framework versions - Transformers 4.30.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
mgmeskill/downstrike-320m
mgmeskill
2023-09-08T22:04:56Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-09-08T22:02:18Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: mgmeskill/downstrike-320m 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
MattStammers/a2c-PandaPickAndPlace-v3
MattStammers
2023-09-08T22:00:42Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaPickAndPlace-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-08T21:55:15Z
--- library_name: stable-baselines3 tags: - PandaPickAndPlace-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaPickAndPlace-v3 type: PandaPickAndPlace-v3 metrics: - type: mean_reward value: -40.00 +/- 20.00 name: mean_reward verified: false --- # **A2C** Agent playing **PandaPickAndPlace-v3** This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mmnga/stockmark-gpt-neox-japanese-1.4b-gguf
mmnga
2023-09-08T22:00:37Z
727
1
null
[ "gguf", "gpt-neox", "ja", "license:mit", "endpoints_compatible", "region:us" ]
null
2023-08-22T12:45:18Z
--- license: mit language: - ja tags: - gpt-neox --- # stockmark-gpt-neox-japanese-1.4b-gguf [stockmarkさんが公開しているgpt-neox-japanese-1.4b](https://huggingface.co/stockmark/gpt-neox-japanese-1.4b)のggufフォーマット変換版です。 注意:こちらはブランチで試用になります。llama.cpp本家にgptneoxが実装された時に、このggufファイルが使用できない可能性があります。 ***[GitHubリポジトリの readme はこちら](https://github.com/mmnga/llama.cpp/tree/mmnga-dev)*** ## Usage (試用) ``` git clone --branch mmnga-dev https://github.com/mmnga/llama.cpp.git cd llama.cpp make -j ./main -m 'stockmark-gpt-neox-japanese-1.4b-q4_0.gguf' -n 128 -p '吾輩は猫である。名前は実を言うと、' --top_p 0.9 --temp 0.7 --repeat-penalty 1.1 ``` **CUBLAS** ``` LLAMA_CUBLAS=1 make -j ./main -m 'stockmark-gpt-neox-japanese-1.4b-q4_0.gguf' -n 128 -p '吾輩は猫である。名前は実を言うと、' -ngl 24 ```
PHL99/Reinforce-Cartpole-v1
PHL99
2023-09-08T21:39:42Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-08T21:39:31Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Cartpole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
quantumaikr/falcon-180B-WizardLM_Orca
quantumaikr
2023-09-08T21:28:26Z
1,512
1
transformers
[ "transformers", "safetensors", "falcon", "text-generation", "en", "de", "es", "fr", "dataset:tiiuae/falcon-refinedweb", "dataset:pankajmathur/WizardLM_Orca", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-09-08T03:47:54Z
--- datasets: - tiiuae/falcon-refinedweb - pankajmathur/WizardLM_Orca language: - en - de - es - fr inference: false --- # 🇰🇷 quantumaikr/falcon-180B-WizardLM_Orca **quantumaikr/falcon-180B-WizardLM_Orca is a 180B parameters causal decoder-only model built by [quantumaikr](https://www.quantumai.kr) based on [Falcon-180B-chat](https://huggingface.co/tiiuae/falcon-180B-chat)** ## How to Get Started with the Model To run inference with the model in full `bfloat16` precision you need approximately 8xA100 80GB or equivalent. ```python from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch model = "quantumaikr/falcon-180B-WizardLM_Orca" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", ) sequences = pipeline( "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:", max_length=200, do_sample=True, top_k=10, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, ) for seq in sequences: print(f"Result: {seq['generated_text']}") ``` ## Contact 🇰🇷 www.quantumai.kr 🇰🇷 [email protected] [초거대언어모델 기술도입 문의환영]
Dischordo/Anime
Dischordo
2023-09-08T21:20:48Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-09-08T21:12:00Z
--- license: openrail --- Nekezuga: Clip Skip 1 capable Manga style model tuned away from bhili styles and more towards retro western tastes. Preview images are mostly raw at 1024 no upscaling, metadata is left on images.
rebolforces/a2c-PandaReachDense-v2g
rebolforces
2023-09-08T21:17:39Z
4
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "arxiv:2106.13687", "model-index", "region:us" ]
reinforcement-learning
2023-03-19T05:58:22Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.03 +/- 0.78 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ``` Panda Gym environments: [arxiv.org/abs/2106.13687](https://arxiv.org/abs/2106.13687)
rebolforces/a2c-PandaReachDense-v2f
rebolforces
2023-09-08T21:17:25Z
2
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "arxiv:2106.13687", "model-index", "region:us" ]
reinforcement-learning
2023-03-19T05:42:53Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.23 +/- 0.71 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ``` Panda Gym environments: [arxiv.org/abs/2106.13687](https://arxiv.org/abs/2106.13687)
rebolforces/a2c-PandaReachDense-v2
rebolforces
2023-09-08T21:16:37Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "arxiv:2106.13687", "model-index", "region:us" ]
reinforcement-learning
2023-03-19T02:41:36Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -3.54 +/- 1.14 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ``` Panda Gym environments: [arxiv.org/abs/2106.13687](https://arxiv.org/abs/2106.13687)
rnkVikcdkam/q-FrozenLake-v1-4x4-noSlippery
rnkVikcdkam
2023-09-08T21:08:06Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-09-08T21:08:04Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="rnkVikcdkam/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
MattStammers/a2c-PandaReachDense-v3
MattStammers
2023-09-08T20:52:59Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-08T20:28:58Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.20 +/- 0.09 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ``` Having some issues with the video but this is a much better robotic reacher - will try to sort later on
Onutoa/1_8e-3_10_0.1
Onutoa
2023-09-08T19:46:25Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-08T16:45:24Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: 1_8e-3_10_0.1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 1_8e-3_10_0.1 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 1.0109 - Accuracy: 0.7272 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.008 - train_batch_size: 16 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.8619 | 1.0 | 590 | 1.0251 | 0.4685 | | 1.3275 | 2.0 | 1180 | 1.3329 | 0.3795 | | 1.2711 | 3.0 | 1770 | 1.3427 | 0.3817 | | 1.2563 | 4.0 | 2360 | 0.9486 | 0.6352 | | 1.3677 | 5.0 | 2950 | 1.5968 | 0.4266 | | 1.2101 | 6.0 | 3540 | 2.8999 | 0.6217 | | 1.2131 | 7.0 | 4130 | 1.7592 | 0.4410 | | 1.0951 | 8.0 | 4720 | 1.0889 | 0.6535 | | 1.1265 | 9.0 | 5310 | 1.6306 | 0.4963 | | 1.0834 | 10.0 | 5900 | 0.8228 | 0.6789 | | 0.9934 | 11.0 | 6490 | 0.9519 | 0.6789 | | 0.9867 | 12.0 | 7080 | 1.2001 | 0.6471 | | 0.9321 | 13.0 | 7670 | 0.7980 | 0.6850 | | 0.914 | 14.0 | 8260 | 0.7659 | 0.7092 | | 0.9005 | 15.0 | 8850 | 0.8234 | 0.7104 | | 0.8728 | 16.0 | 9440 | 0.9553 | 0.6948 | | 0.7346 | 17.0 | 10030 | 2.0394 | 0.5012 | | 0.8001 | 18.0 | 10620 | 1.2116 | 0.6180 | | 0.8778 | 19.0 | 11210 | 0.8516 | 0.6823 | | 0.7117 | 20.0 | 11800 | 1.1178 | 0.6251 | | 0.6709 | 21.0 | 12390 | 0.8929 | 0.7125 | | 0.7554 | 22.0 | 12980 | 0.9317 | 0.6801 | | 0.7167 | 23.0 | 13570 | 1.3876 | 0.6061 | | 0.6239 | 24.0 | 14160 | 0.9124 | 0.6737 | | 0.6273 | 25.0 | 14750 | 0.8818 | 0.7242 | | 0.5882 | 26.0 | 15340 | 1.0614 | 0.6728 | | 0.5567 | 27.0 | 15930 | 1.0177 | 0.7306 | | 0.5606 | 28.0 | 16520 | 1.3018 | 0.6459 | | 0.5559 | 29.0 | 17110 | 1.4926 | 0.6914 | | 0.4879 | 30.0 | 17700 | 0.9648 | 0.6924 | | 0.4945 | 31.0 | 18290 | 0.9028 | 0.7150 | | 0.4876 | 32.0 | 18880 | 0.8188 | 0.7257 | | 0.455 | 33.0 | 19470 | 1.0325 | 0.7312 | | 0.468 | 34.0 | 20060 | 0.9495 | 0.7330 | | 0.4324 | 35.0 | 20650 | 0.8765 | 0.7202 | | 0.4098 | 36.0 | 21240 | 1.5105 | 0.6963 | | 0.4002 | 37.0 | 21830 | 0.9019 | 0.7309 | | 0.4077 | 38.0 | 22420 | 0.8470 | 0.7223 | | 0.378 | 39.0 | 23010 | 0.9477 | 0.7196 | | 0.3697 | 40.0 | 23600 | 0.9213 | 0.7226 | | 0.3957 | 41.0 | 24190 | 0.9321 | 0.7260 | | 0.338 | 42.0 | 24780 | 0.8633 | 0.7284 | | 0.343 | 43.0 | 25370 | 0.9502 | 0.7355 | | 0.3454 | 44.0 | 25960 | 1.1264 | 0.6930 | | 0.3288 | 45.0 | 26550 | 1.5310 | 0.6440 | | 0.3075 | 46.0 | 27140 | 1.0321 | 0.7067 | | 0.326 | 47.0 | 27730 | 1.0041 | 0.7257 | | 0.3035 | 48.0 | 28320 | 0.9984 | 0.7168 | | 0.3318 | 49.0 | 28910 | 0.9336 | 0.7294 | | 0.2923 | 50.0 | 29500 | 1.2029 | 0.6758 | | 0.2813 | 51.0 | 30090 | 0.9525 | 0.7217 | | 0.2844 | 52.0 | 30680 | 1.0021 | 0.7242 | | 0.2706 | 53.0 | 31270 | 0.9836 | 0.7187 | | 0.2748 | 54.0 | 31860 | 0.9966 | 0.7113 | | 0.2585 | 55.0 | 32450 | 1.0029 | 0.7211 | | 0.2603 | 56.0 | 33040 | 0.9700 | 0.7235 | | 0.2442 | 57.0 | 33630 | 0.9675 | 0.7330 | | 0.2503 | 58.0 | 34220 | 1.0088 | 0.7373 | | 0.2473 | 59.0 | 34810 | 0.9043 | 0.7306 | | 0.2503 | 60.0 | 35400 | 1.0069 | 0.7211 | | 0.233 | 61.0 | 35990 | 1.0046 | 0.7245 | | 0.2248 | 62.0 | 36580 | 1.0468 | 0.7217 | | 0.2343 | 63.0 | 37170 | 0.9263 | 0.7202 | | 0.2312 | 64.0 | 37760 | 1.1075 | 0.7101 | | 0.2173 | 65.0 | 38350 | 1.0439 | 0.7205 | | 0.2138 | 66.0 | 38940 | 1.1012 | 0.7364 | | 0.2037 | 67.0 | 39530 | 1.0094 | 0.7336 | | 0.2129 | 68.0 | 40120 | 0.9811 | 0.7275 | | 0.1937 | 69.0 | 40710 | 1.0312 | 0.7419 | | 0.2102 | 70.0 | 41300 | 1.0208 | 0.7318 | | 0.2078 | 71.0 | 41890 | 1.0093 | 0.7174 | | 0.2037 | 72.0 | 42480 | 1.1041 | 0.7404 | | 0.1903 | 73.0 | 43070 | 0.9927 | 0.7318 | | 0.1898 | 74.0 | 43660 | 1.0875 | 0.7431 | | 0.1966 | 75.0 | 44250 | 0.9659 | 0.7257 | | 0.1967 | 76.0 | 44840 | 1.0025 | 0.7254 | | 0.191 | 77.0 | 45430 | 0.9488 | 0.7306 | | 0.1916 | 78.0 | 46020 | 1.0042 | 0.7327 | | 0.1819 | 79.0 | 46610 | 1.0258 | 0.7355 | | 0.1794 | 80.0 | 47200 | 1.0124 | 0.7309 | | 0.1773 | 81.0 | 47790 | 0.9920 | 0.7324 | | 0.1852 | 82.0 | 48380 | 1.0088 | 0.7367 | | 0.1809 | 83.0 | 48970 | 1.0702 | 0.7352 | | 0.1695 | 84.0 | 49560 | 1.0249 | 0.7260 | | 0.1704 | 85.0 | 50150 | 1.0086 | 0.7294 | | 0.1698 | 86.0 | 50740 | 1.0465 | 0.7318 | | 0.1609 | 87.0 | 51330 | 1.0387 | 0.7291 | | 0.1654 | 88.0 | 51920 | 1.0260 | 0.7297 | | 0.1589 | 89.0 | 52510 | 1.0342 | 0.7257 | | 0.1624 | 90.0 | 53100 | 1.0773 | 0.7297 | | 0.1633 | 91.0 | 53690 | 1.0567 | 0.7309 | | 0.1593 | 92.0 | 54280 | 1.0176 | 0.7196 | | 0.1558 | 93.0 | 54870 | 1.0428 | 0.7257 | | 0.1536 | 94.0 | 55460 | 1.0158 | 0.7294 | | 0.1559 | 95.0 | 56050 | 1.0159 | 0.7315 | | 0.1577 | 96.0 | 56640 | 1.0299 | 0.7306 | | 0.1518 | 97.0 | 57230 | 1.0132 | 0.7281 | | 0.1477 | 98.0 | 57820 | 0.9931 | 0.7266 | | 0.1529 | 99.0 | 58410 | 1.0248 | 0.7272 | | 0.1445 | 100.0 | 59000 | 1.0109 | 0.7272 | ### Framework versions - Transformers 4.30.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
Onutoa/1_6e-3_10_0.1
Onutoa
2023-09-08T19:31:14Z
109
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-08T16:31:36Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: 1_6e-3_10_0.1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 1_6e-3_10_0.1 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.9853 - Accuracy: 0.7416 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.006 - train_batch_size: 16 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.4161 | 1.0 | 590 | 1.9327 | 0.6217 | | 1.4964 | 2.0 | 1180 | 1.4733 | 0.6217 | | 1.4294 | 3.0 | 1770 | 1.3770 | 0.6217 | | 1.3196 | 4.0 | 2360 | 1.1956 | 0.4070 | | 1.1661 | 5.0 | 2950 | 0.9866 | 0.6333 | | 1.1565 | 6.0 | 3540 | 0.9164 | 0.6453 | | 1.0435 | 7.0 | 4130 | 1.0146 | 0.5786 | | 1.0861 | 8.0 | 4720 | 0.8707 | 0.6541 | | 1.0246 | 9.0 | 5310 | 0.9747 | 0.6728 | | 0.9761 | 10.0 | 5900 | 1.0055 | 0.6560 | | 0.9672 | 11.0 | 6490 | 0.7808 | 0.6869 | | 0.8746 | 12.0 | 7080 | 0.8158 | 0.6768 | | 0.8883 | 13.0 | 7670 | 0.7982 | 0.6917 | | 0.8257 | 14.0 | 8260 | 0.9875 | 0.6869 | | 0.8053 | 15.0 | 8850 | 0.9210 | 0.7171 | | 0.7995 | 16.0 | 9440 | 0.7910 | 0.7168 | | 0.7376 | 17.0 | 10030 | 0.8382 | 0.7122 | | 0.6743 | 18.0 | 10620 | 1.0620 | 0.6141 | | 0.6343 | 19.0 | 11210 | 0.7421 | 0.7245 | | 0.6499 | 20.0 | 11800 | 0.7841 | 0.7187 | | 0.5897 | 21.0 | 12390 | 0.9551 | 0.6713 | | 0.6163 | 22.0 | 12980 | 1.0281 | 0.7135 | | 0.5617 | 23.0 | 13570 | 0.9252 | 0.7245 | | 0.5282 | 24.0 | 14160 | 0.8599 | 0.7080 | | 0.5402 | 25.0 | 14750 | 0.8381 | 0.7254 | | 0.493 | 26.0 | 15340 | 1.0387 | 0.6657 | | 0.474 | 27.0 | 15930 | 0.7978 | 0.7266 | | 0.4658 | 28.0 | 16520 | 0.8697 | 0.7306 | | 0.4624 | 29.0 | 17110 | 0.8746 | 0.7287 | | 0.4333 | 30.0 | 17700 | 0.9256 | 0.7254 | | 0.4324 | 31.0 | 18290 | 0.8635 | 0.7336 | | 0.4352 | 32.0 | 18880 | 1.0482 | 0.7232 | | 0.4144 | 33.0 | 19470 | 1.2383 | 0.6872 | | 0.3822 | 34.0 | 20060 | 0.9361 | 0.7324 | | 0.3549 | 35.0 | 20650 | 0.9758 | 0.7180 | | 0.3597 | 36.0 | 21240 | 1.1784 | 0.7239 | | 0.3598 | 37.0 | 21830 | 0.9757 | 0.7336 | | 0.3421 | 38.0 | 22420 | 1.3951 | 0.7245 | | 0.3309 | 39.0 | 23010 | 1.1202 | 0.7401 | | 0.3209 | 40.0 | 23600 | 0.9882 | 0.7358 | | 0.3214 | 41.0 | 24190 | 0.9997 | 0.7343 | | 0.3101 | 42.0 | 24780 | 0.8871 | 0.7376 | | 0.2913 | 43.0 | 25370 | 1.0116 | 0.7401 | | 0.2884 | 44.0 | 25960 | 1.1248 | 0.7291 | | 0.2761 | 45.0 | 26550 | 0.8363 | 0.7291 | | 0.2761 | 46.0 | 27140 | 1.0666 | 0.7202 | | 0.2674 | 47.0 | 27730 | 1.0285 | 0.7416 | | 0.2647 | 48.0 | 28320 | 0.9575 | 0.7300 | | 0.2662 | 49.0 | 28910 | 0.9258 | 0.7373 | | 0.2726 | 50.0 | 29500 | 1.0936 | 0.7346 | | 0.2461 | 51.0 | 30090 | 1.0192 | 0.7196 | | 0.2485 | 52.0 | 30680 | 1.0543 | 0.7382 | | 0.245 | 53.0 | 31270 | 0.9507 | 0.7336 | | 0.2377 | 54.0 | 31860 | 0.8907 | 0.7361 | | 0.2379 | 55.0 | 32450 | 0.9788 | 0.7327 | | 0.2335 | 56.0 | 33040 | 1.0168 | 0.7413 | | 0.2251 | 57.0 | 33630 | 1.0117 | 0.7346 | | 0.2293 | 58.0 | 34220 | 0.9280 | 0.7336 | | 0.2211 | 59.0 | 34810 | 0.9735 | 0.7401 | | 0.2236 | 60.0 | 35400 | 0.9822 | 0.7404 | | 0.2123 | 61.0 | 35990 | 1.0189 | 0.7346 | | 0.207 | 62.0 | 36580 | 1.0436 | 0.7401 | | 0.2059 | 63.0 | 37170 | 0.9571 | 0.7410 | | 0.2052 | 64.0 | 37760 | 1.0027 | 0.7419 | | 0.193 | 65.0 | 38350 | 0.9395 | 0.7413 | | 0.2099 | 66.0 | 38940 | 1.0325 | 0.7358 | | 0.1968 | 67.0 | 39530 | 1.0441 | 0.7398 | | 0.1887 | 68.0 | 40120 | 1.1337 | 0.7413 | | 0.1911 | 69.0 | 40710 | 1.0438 | 0.7382 | | 0.1955 | 70.0 | 41300 | 1.0361 | 0.7394 | | 0.1998 | 71.0 | 41890 | 1.0202 | 0.7349 | | 0.1944 | 72.0 | 42480 | 1.0261 | 0.7407 | | 0.1755 | 73.0 | 43070 | 1.0091 | 0.7422 | | 0.1836 | 74.0 | 43660 | 0.9986 | 0.7425 | | 0.1856 | 75.0 | 44250 | 0.9461 | 0.7404 | | 0.187 | 76.0 | 44840 | 0.9383 | 0.7385 | | 0.1873 | 77.0 | 45430 | 1.0445 | 0.7416 | | 0.1763 | 78.0 | 46020 | 1.0263 | 0.7410 | | 0.1749 | 79.0 | 46610 | 0.9650 | 0.7370 | | 0.1728 | 80.0 | 47200 | 0.9903 | 0.7343 | | 0.1668 | 81.0 | 47790 | 1.0391 | 0.7382 | | 0.1693 | 82.0 | 48380 | 0.9794 | 0.7346 | | 0.1665 | 83.0 | 48970 | 1.0463 | 0.7355 | | 0.1609 | 84.0 | 49560 | 0.9976 | 0.7373 | | 0.165 | 85.0 | 50150 | 1.0040 | 0.7404 | | 0.1622 | 86.0 | 50740 | 1.0184 | 0.7419 | | 0.1615 | 87.0 | 51330 | 0.9825 | 0.7336 | | 0.1624 | 88.0 | 51920 | 0.9889 | 0.7394 | | 0.1557 | 89.0 | 52510 | 0.9938 | 0.7370 | | 0.1515 | 90.0 | 53100 | 1.0207 | 0.7385 | | 0.1565 | 91.0 | 53690 | 1.0081 | 0.7401 | | 0.1582 | 92.0 | 54280 | 0.9308 | 0.7364 | | 0.1513 | 93.0 | 54870 | 0.9795 | 0.7398 | | 0.1572 | 94.0 | 55460 | 0.9688 | 0.7382 | | 0.1514 | 95.0 | 56050 | 1.0002 | 0.7410 | | 0.1546 | 96.0 | 56640 | 0.9869 | 0.7401 | | 0.1534 | 97.0 | 57230 | 0.9694 | 0.7370 | | 0.1405 | 98.0 | 57820 | 0.9705 | 0.7404 | | 0.149 | 99.0 | 58410 | 0.9859 | 0.7413 | | 0.1456 | 100.0 | 59000 | 0.9853 | 0.7416 | ### Framework versions - Transformers 4.30.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
voyzan/ppo-Pyramids-Training
voyzan
2023-09-08T18:56:17Z
11
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-09-08T18:56:11Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: voyzan/ppo-Pyramids-Training 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Weni/ZeroShot-Llama2-13B-nenhuma
Weni
2023-09-08T18:55:27Z
0
0
peft
[ "peft", "pytorch", "llama", "pt", "region:us" ]
null
2023-08-03T18:08:36Z
--- language: - pt library_name: peft --- This model was trained with 20k data in Portuguese in a prompt format. It was trained to receive an input dictionary containing: the phrase to be sorted and the class options (including the 'none' class) ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
actionpace/LLaMa-2-PeanutButter_v19_R8-7B
actionpace
2023-09-08T18:53:56Z
0
0
null
[ "gguf", "en", "license:other", "endpoints_compatible", "region:us" ]
null
2023-09-08T16:03:43Z
--- license: other language: - en --- **Some of my own quants:** * LLaMa-2-PeanutButter_v19_R8-7B_Q5_1.gguf **Source:** [PeanutJar](https://huggingface.co/PeanutJar) **Source Model:** [LLaMa-2-PeanutButter_v19_R8-7B](https://huggingface.co/PeanutJar/LLaMa-2-PeanutButter_v19_R8-7B)
LarryAIDraw/Momo-V1
LarryAIDraw
2023-09-08T18:47:22Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-08T18:36:54Z
--- license: creativeml-openrail-m --- https://civitai.com/models/119296/momo-belia-deviluke-to-love-ru
VanGraham/LolaZieta
VanGraham
2023-09-08T18:38:23Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-07T17:11:01Z
--- license: creativeml-openrail-m ---
audreyt/Taiwan-LLaMa-v1.0-GGML
audreyt
2023-09-08T18:36:08Z
0
38
null
[ "text-generation", "zh", "dataset:yentinglin/zh_TW_c4", "dataset:yentinglin/traditional_chinese_instructions", "arxiv:2305.13711", "arxiv:2104.09864", "license:llama2", "region:us" ]
text-generation
2023-08-11T13:06:52Z
--- datasets: - yentinglin/zh_TW_c4 - yentinglin/traditional_chinese_instructions inference: false license: llama2 language: - zh model_creator: Yen-Ting Lin model_link: https://huggingface.co/yentinglin/Taiwan-LLaMa-v1.0 model_name: Language Models for Taiwanese Culture 1.0 model_type: llama quantized_by: Audrey Tang pipeline_tag: text-generation --- <!-- header start --> <!-- header end --> # Taiwan-LLaMa-v1.0 - GGML - Model creator: [Yen-Ting Lin](https://huggingface.co/yentinglin) - Original model: [Language Models for Taiwanese Culture v1.0](https://huggingface.co/yentinglin/Taiwan-LLaMa-v1.0) ## Description This repo contains GGML format model files for [Yen-Ting Lin's Language Models for Taiwanese Culture v1.0](https://huggingface.co/yentinglin/Taiwan-LLaMa-v1.0). ### Important note regarding GGML files. The GGML format has now been superseded by GGUF. As of August 21st 2023, [llama.cpp](https://github.com/ggerganov/llama.cpp) no longer supports GGML models. Third party clients and libraries are expected to still support it for a time, but many may also drop support. Please use the GGUF models instead. ## Repositories available * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/audreyt/Taiwan-LLaMa-v1.0-GGUF) * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/audreyt/Taiwan-LLaMa-v1.0-GGML) * [Yen-Ting Lin's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/yentinglin/Taiwan-LLaMa-v1.0) <!-- footer start --> <!-- footer end --> # Original model card: Yen-Ting Lin's Language Models for Taiwanese Culture v1.0 # Language Models for Taiwanese Culture <p align="center"> ✍️ <a href="https://huggingface.co/spaces/yentinglin/Taiwan-LLaMa2" target="_blank">Online Demo</a> • 🤗 <a href="https://huggingface.co/yentinglin" target="_blank">HF Repo</a> • 🐦 <a href="https://twitter.com/yentinglin56" target="_blank">Twitter</a> • 📃 <a href="https://arxiv.org/pdf/2305.13711.pdf" target="_blank">[Paper Coming Soon]</a> • 👨️ <a href="https://yentingl.com/" target="_blank">Yen-Ting Lin</a> <br/><br/> <img src="https://www.csie.ntu.edu.tw/~miulab/taiwan-llama/logo-v2.png" width="100"> <br/> <a href="https://github.com/tatsu-lab/stanford_alpaca/blob/main/LICENSE"> <img src="https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg"></a> <a href="https://github.com/tatsu-lab/stanford_alpaca/blob/main/DATA_LICENSE"> <img src="https://img.shields.io/badge/Data%20License-CC%20By%20NC%204.0-red.svg"></a> <br/> </p> ## Overview Taiwan-LLaMa is a full parameter fine-tuned model based on LLaMa 2 for Traditional Mandarin applications. **Taiwan-LLaMa v1.0** pretrained on over 5 billion tokens and instruction-tuned on over 490k conversations both in traditional mandarin. ## Demo A live demonstration of the model can be accessed at [Hugging Face Spaces](https://huggingface.co/spaces/yentinglin/Taiwan-LLaMa2). ## Key Features 1. **Traditional Mandarin Support**: The model is fine-tuned to understand and generate text in Traditional Mandarin, making it suitable for Taiwanese culture and related applications. 2. **Instruction-Tuned**: Further fine-tuned on conversational data to offer context-aware and instruction-following responses. 3. **Performance on Vicuna Benchmark**: Taiwan-LLaMa's relative performance on Vicuna Benchmark is measured against models like GPT-4 and ChatGPT. It's particularly optimized for Taiwanese culture. 4. **Flexible Customization**: Advanced options for controlling the model's behavior like system prompt, temperature, top-p, and top-k are available in the demo. ## Work in progress - [ ] **Improved pretraining**: A refined pretraining process (e.g. more data from Taiwan, training strategies) is under development, aiming to enhance model performance for better Taiwanese culture. - [ ] **Extend max length**: Utilizing the Rope mechanism as described in [the paper](https://arxiv.org/abs/2104.09864), the model's length will be extended from 4k to 8k. ## Taiwanese Culture Examples | Question | ChatGPT | **Taiwan LLaMa v1.0** | **Taiwan LLaMa v0.0 (w/o pretraining)** | Llama2_Traditional_Chinese_13b_Chat | |:-|:-|:-|:-|:-| | 以惡地景觀著名的是高雄哪一個景點? | 以惡地地景著名的是高雄市的旗津。 | 高雄以擁有惡地景觀著名的景點是田寮月世界。✅ | 以惡地景觀著名的是高雄市的旗津島。旗津島是一個小島,... | 高雄市內有多個以惡地景觀著名的景點,其中以下面幾個最為著名: 1. 高雄捷運紅線沿途景點:高雄市政府為了推廣高雄 | | 唐鳳是誰? | 唐鳳(Audrey Tang)是台灣的政治家、社會活動家和軟體工程師。她於2016年擔任台灣行政院數位政務委員,是台灣政府歷史上首位沒有政黨背景的政務官。唐鳳在軟體工程領域有豐富的經驗。 ✅ | 唐鳳是政治評論家、資訊社會學研究者,也是台灣第一位擔任政府數位政委的人。 ✅ | 唐鳳(Tang Feng)是一位著名的中國演員和歌手。他出生於1974年12月17日,出生地點在中國北京。唐鳳在1995年開始他的演藝生涯,並在同年發行了他的首張專輯《我不孤單》。此後,他發行了許多受歡迎的歌曲,並在多部電視劇和電影中擔任主角。唐鳳因其精湛的演技和迷人的歌聲而被譽為“亞洲魅力男王”。他的音樂獲得了多個獎項,包括“華表最佳新男演唱獎”、“華表最佳歌曲獎”和“華表最佳舞蹈獎”等。 | 唐鳳是唐朝時期的一位著名文學家,他的代表作品包括《陰騭》、《狂凡子》等。他的文學風格具有強烈的個性和創意,被譽為「唐代文學之父」。 | | NTU 在哪? | NTU位於新加坡,具體地址是50 Nanyang Avenue, Singapore 639798。 | NTU 是國立臺灣大學的縮寫。它是臺灣的一所頂尖研究型大學,位於臺北市。 ✅| NTU 是台灣的一所大學,位於台北市。✅ | NTU 的總部位於台灣新北市板橋區,佔地面積約為1,000公頃。| | 甚麼是22K? | "22K" 可能指的是金的純度,尤其是在珠寶和金飾方面。 | "22K"是指台灣的大學畢業生的起薪,大約是新台幣22,000元。這個詞被用來形容大學畢業生的起薪偏低,並且在就業市場上對於大學畢業生的需求不足。✅| 22K是指溫度尺度上的22,000K(千度)。1K代表一度,即溫度差距,是攝氏溫標(攝氏度)的一百萬分之一。因此,22K等於-253.15°C(攝氏溫標)或-423.67°F(華氏溫標)。 | 22K是一種簡寫,即22,000。它是一個數字,表示22,000個單位。| | 肉圓要不要加香菜? | 這是個個人口味的問題,有些人喜歡在肉圓中加入香菜,因為香菜的清香可以增添風味;而有些人則不喜歡香菜的味道,覺得它會蓋過其他食材的味道。所以要不要加香菜,可以根據個人喜好來決定。 | 這是一個個人喜好的問題,有些人喜歡在肉圓裡加香菜,有些人不喜歡。**在台灣**,肉圓加香菜是一種常見的做法,這是一種在肉圓上加香菜的做法。然而,在其他國這是一個文化差異的問題。😊 | 肉圓加香菜可以增添一些芳香和美味的口感,如果你喜歡香菜的味道,可以試試加入肉圓中。香菜通常在製作過程中炒香,可以增添一些芳香和美味的味道。如果你想要加入香菜,可以在製作過程中炒香一些香菜,然後將其混入肉圓中。肉圓加香菜可以增添一些芳香和美味的口感,如果你喜歡香菜的味道,可以試試加入肉圓中。| 加香菜的肉圓味道更好,但是不加香菜的肉圓也很好吃。如果你喜歡香菜的味道,那麼加上香菜就好了。如果你不喜歡香菜,那麼不加也不會影響肉 | ## Model We provide a number of model checkpoints that we trained. Please find them on Hugging Face [here](https://huggingface.co/models?search=taiwan-llama). Here are some quick links to the checkpoints that are finetuned from LLaMa 2: | **Model** | **13B** | |--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------| | **Taiwan-LLaMa v1.0** (_better for Taiwanese Culture_) | 🤗 <a href="https://huggingface.co/yentinglin/Taiwan-LLaMa-v1.0" target="_blank">yentinglin/Taiwan-LLaMa-v1.0</a> | | Taiwan-LLaMa v0.9 (partial instruction set) | 🤗 <a href="https://huggingface.co/yentinglin/Taiwan-LLaMa-v0.9" target="_blank">yentinglin/Taiwan-LLaMa-v0.9</a> | | Taiwan-LLaMa v0.0 (no Traditional Mandarin pretraining) | 🤗 <a href="https://huggingface.co/yentinglin/Taiwan-LLaMa-v0.0" target="_blank">yentinglin/Taiwan-LLaMa-v0.0</a> | ## Data Here are some quick links to the datasets that we used to train the models: | **Dataset** | **Link** | |---------------------------------|-------------------------------------------------------------------------------------------------------------------------------| | **Instruction-tuning** | 🤗 <a href="https://huggingface.co/datasets/yentinglin/traditional_mandarin_instructions" target="_blank">yentinglin/traditional_mandarin_instructions</a> | | Traditional Mandarin Pretraining | 🤗 <a href="https://huggingface.co/datasets/yentinglin/zh_TW_c4" target="_blank">yentinglin/zh_TW_c4</a> | ## Architecture Taiwan-LLaMa is based on LLaMa 2, leveraging transformer architecture, <a href="https://github.com/Dao-AILab/flash-attention" target="_blank">flash attention 2</a>, and bfloat16. It includes: * Pretraining Phase: Pretrained on a vast corpus of over 5 billion tokens, extracted from common crawl in Traditional Mandarin. * Fine-tuning Phase: Further instruction-tuned on over 490k multi-turn conversational data to enable more instruction-following and context-aware responses. ## Generic Capabilities on Vicuna Benchmark The data is translated into traditional mandarin for evaluating the general capability. <img src="./images/zhtw_vicuna_bench_chatgptbaseline.png" width="700"> The scores are calculated with ChatGPT as the baseline, represented as 100%. The other values show the relative performance of different models compared to ChatGPT. | Language Model | Relative Score (%) | |-------------------------------------|--------------------| | GPT-4 | 102.59% | | ChatGPT | 100.00% | | **Taiwan-LLaMa v1.0** | 76.76% | | Claude-Instant-1.2 | 74.04% | | Llama2_Traditional_Chinese_13b_Chat | 56.21% | ## How to deploy the model on my own machine? We recommend hosting models with [🤗 Text Generation Inference](https://github.com/huggingface/text-generation-inference). Please see their [license](https://github.com/huggingface/text-generation-inference/blob/main/LICENSE) for details on usage and limitations. ```bash bash run_text_generation_inference.sh "yentinglin/Taiwan-LLaMa" NUM_GPUS DIR_TO_SAVE_MODEL PORT MAX_INPUT_LEN MODEL_MAX_LEN ``` Prompt format follows vicuna-v1.1 template: ``` A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {user} ASSISTANT: ``` ## Setup development environment ```bash conda create -n taiwan-llama python=3.10 -y conda activate taiwan-llama pip install -r requirements.txt ``` ## Citations If you use our code, data, or models in your research, please cite this repository. You can use the following BibTeX entry: ```bibtex @inproceedings{lin-chen-2023-llm, title = "{LLM}-Eval: Unified Multi-Dimensional Automatic Evaluation for Open-Domain Conversations with Large Language Models", author = "Lin, Yen-Ting and Chen, Yun-Nung", booktitle = "Proceedings of the 5th Workshop on NLP for Conversational AI (NLP4ConvAI 2023)", month = jul, year = "2023", address = "Toronto, Canada", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.nlp4convai-1.5", pages = "47--58" } @misc{taiwanllama, author={Lin, Yen-Ting and Chen, Yun-Nung}, title={Language Models for Taiwanese Culture}, year={2023}, url={https://github.com/MiuLab/Taiwan-LLaMa}, note={Code and models available at https://github.com/MiuLab/Taiwan-LLaMa}, } ``` ## Collaborate With Us If you are interested in contributing to the development of Traditional Mandarin language models, exploring new applications, or leveraging Taiwan-LLaMa for your specific needs, please don't hesitate to contact us. We welcome collaborations from academia, industry, and individual contributors. ## License The code in this project is licensed under the Apache 2.0 License - see the [LICENSE](LICENSE) file for details. The models included in this project are licensed under the LLAMA 2 Community License. See the [LLAMA2 License](https://github.com/facebookresearch/llama/blob/main/LICENSE) for full details. ## OpenAI Data Acknowledgment The data included in this project were generated using OpenAI's models and are subject to OpenAI's Terms of Use. Please review [OpenAI's Terms of Use](https://openai.com/policies/terms-of-use) for details on usage and limitations. ## Acknowledgements We thank [Meta LLaMA team](https://github.com/facebookresearch/llama) and [Vicuna team](https://github.com/lm-sys/FastChat) for their open-source efforts in democratizing large language models.
daochf/Lora-MetaLlama2-7b-hf-PuceDs04x10-v01
daochf
2023-09-08T18:27:33Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-08T17:34:28Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0
rossevine/Model_G_S_P_Wav2Vec2
rossevine
2023-09-08T18:22:54Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T07:53:49Z
--- tags: - generated_from_trainer metrics: - wer model-index: - name: Model_G_S_P_Wav2Vec2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Model_G_S_P_Wav2Vec2 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5098 - Wer: 0.5366 - Cer: 0.2277 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 1.0449 | 3.49 | 400 | 1.7576 | 0.6270 | 0.2607 | | 0.484 | 6.99 | 800 | 1.8072 | 0.6043 | 0.2536 | | 0.3335 | 10.48 | 1200 | 2.0222 | 0.5892 | 0.2500 | | 0.2559 | 13.97 | 1600 | 2.4174 | 0.5719 | 0.2448 | | 0.1999 | 17.47 | 2000 | 2.2888 | 0.5566 | 0.2376 | | 0.1546 | 20.96 | 2400 | 2.5271 | 0.5753 | 0.2400 | | 0.1225 | 24.45 | 2800 | 2.4489 | 0.5427 | 0.2327 | | 0.0983 | 27.95 | 3200 | 2.5098 | 0.5366 | 0.2277 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
LarryAIDraw/Succub_LoRA
LarryAIDraw
2023-09-08T18:22:27Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-08T18:03:55Z
--- license: creativeml-openrail-m --- https://civitai.com/models/142014/lora-oror-succubus-konosuba-oror
LarryAIDraw/izumi_hashima_v1
LarryAIDraw
2023-09-08T18:21:40Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-08T17:59:25Z
--- license: creativeml-openrail-m --- https://civitai.com/models/141751/izumi-hashima-or-saekano-how-to-raise-a-boring-girlfriend
LarryAIDraw/Kikyo-10
LarryAIDraw
2023-09-08T18:20:57Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-08T17:57:12Z
--- license: creativeml-openrail-m --- https://civitai.com/models/141792/kikyo-inuyashaanime-version
LarryAIDraw/MikotoV2-02
LarryAIDraw
2023-09-08T18:20:42Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-08T17:56:42Z
--- license: creativeml-openrail-m --- https://civitai.com/models/95904/mikoto-aketa-idolmaster
voyzan/ppo-SnowballTarget
voyzan
2023-09-08T18:01:58Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-09-08T17:51:14Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: voyzan/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
newronai/clma2-13b-Chat-Adapter-Unvalidated
newronai
2023-09-08T17:48:51Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-08T17:48:29Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
dribar/DanModel1
dribar
2023-09-08T17:44:26Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-09-08T15:13:11Z
--- license: openrail --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> Just something to try out - **Developed by:** Dan Ribar
vladjr/mt5-small-finetuned-americanas-pt
vladjr
2023-09-08T17:31:00Z
3
0
transformers
[ "transformers", "tf", "mt5", "text2text-generation", "generated_from_keras_callback", "base_model:google/mt5-small", "base_model:finetune:google/mt5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-07T18:33:19Z
--- license: apache-2.0 base_model: google/mt5-small tags: - generated_from_keras_callback model-index: - name: vladjr/mt5-small-finetuned-americanas-pt results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # vladjr/mt5-small-finetuned-americanas-pt This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.3639 - Validation Loss: 2.2243 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 39624, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 5.6980 | 2.8237 | 0 | | 3.3824 | 2.5473 | 1 | | 2.8673 | 2.3947 | 2 | | 2.6298 | 2.3175 | 3 | | 2.5025 | 2.2665 | 4 | | 2.4292 | 2.2444 | 5 | | 2.3823 | 2.2295 | 6 | | 2.3639 | 2.2243 | 7 | ### Framework versions - Transformers 4.33.1 - TensorFlow 2.12.0 - Datasets 2.14.5 - Tokenizers 0.13.3