modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-15 12:29:39
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
521 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-15 12:28:52
card
stringlengths
11
1.01M
jackoyoungblood/ppo-LunarLander-v2c
jackoyoungblood
2022-08-05T19:46:18Z
3
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-29T23:03:33Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 267.50 +/- 18.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mrm8488/dqn-SpaceInvadersNoFrameskip-v4-3
mrm8488
2022-08-05T19:36:16Z
6
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-05T19:35:48Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 349.00 +/- 97.82 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mrm8488 -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga mrm8488 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 1024), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Swervin7s/DialogGPT-medium-AnakinTwo
Swervin7s
2022-08-05T19:24:18Z
0
0
null
[ "conersational", "region:us" ]
null
2022-08-05T19:21:52Z
--- tags: - conersational ---
skr1125/xlm-roberta-base-finetuned-panx-de
skr1125
2022-08-05T17:50:14Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-02T01:50:37Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.863677639046538 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1343 - F1: 0.8637 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2578 | 1.0 | 525 | 0.1562 | 0.8273 | | 0.1297 | 2.0 | 1050 | 0.1330 | 0.8474 | | 0.0809 | 3.0 | 1575 | 0.1343 | 0.8637 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Galeros/q-Taxi-v3
Galeros
2022-08-05T16:33:40Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-08-05T16:33:32Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.52 +/- 2.76 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Galeros/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
jasheershihab/TEST2ppo-LunarLander-v2
jasheershihab
2022-08-05T13:21:55Z
3
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-13T12:32:46Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 28.44 +/- 165.66 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
datajello/lunar-test-v1
datajello
2022-08-05T13:18:24Z
6
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-05T12:42:13Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 224.66 +/- 40.94 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
apjanco/candy-first
apjanco
2022-08-05T13:03:29Z
56
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-08-05T13:03:25Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: candy-first results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.7436399459838867 --- # candy-first An initial attempt to identify candy in images. ## Example Images #### airheads ![airheads](images/airheads.jpg) #### candy corn ![candy corn](images/candy_corn.jpg) #### caramel ![caramel](images/caramel.jpg) #### chips ![chips](images/chips.jpg) #### chocolate ![chocolate](images/chocolate.jpg) #### fruit ![fruit](images/fruit.jpg) #### gum ![gum](images/gum.jpg) #### haribo ![haribo](images/haribo.jpg) #### jelly beans ![jelly beans](images/jelly_beans.jpg) #### lollipop ![lollipop](images/lollipop.jpg) #### m&ms ![m&ms](images/m&ms.jpg) #### marshmallow ![marshmallow](images/marshmallow.jpg) #### mentos ![mentos](images/mentos.jpg) #### mint ![mint](images/mint.jpg) #### nerds ![nerds](images/nerds.jpg) #### peeps ![peeps](images/peeps.jpg) #### pez ![pez](images/pez.jpg) #### popcorn ![popcorn](images/popcorn.jpg) #### pretzel ![pretzel](images/pretzel.jpg) #### reeses ![reeses](images/reeses.jpg) #### seeds ![seeds](images/seeds.jpg) #### skittles ![skittles](images/skittles.jpg) #### snickers ![snickers](images/snickers.jpg) #### soda ![soda](images/soda.jpg) #### sour ![sour](images/sour.jpg) #### swedish fish ![swedish fish](images/swedish_fish.jpg) #### taffy ![taffy](images/taffy.jpg) #### tootsie ![tootsie](images/tootsie.jpg) #### twix ![twix](images/twix.jpg) #### twizzlers ![twizzlers](images/twizzlers.jpg) #### warheads ![warheads](images/warheads.jpg) #### whoppers ![whoppers](images/whoppers.jpg)
huggingtweets/calm-headspace
huggingtweets
2022-08-05T09:27:25Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-05T09:26:46Z
--- language: en thumbnail: http://www.huggingtweets.com/calm-headspace/1659691640977/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/547731071479996417/53RFXHu1_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1157021554280058880/yWiCuBSR_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Calm & Headspace</div> <div style="text-align: center; font-size: 14px;">@calm-headspace</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Calm & Headspace. | Data | Calm | Headspace | | --- | --- | --- | | Tweets downloaded | 3249 | 3250 | | Retweets | 49 | 10 | | Short tweets | 144 | 446 | | Tweets kept | 3056 | 2794 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/190qaia3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @calm-headspace's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1g7llfp4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1g7llfp4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/calm-headspace') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Zaib/Vulnerability-detection
Zaib
2022-08-05T08:47:07Z
13
5
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-16T09:16:45Z
--- tags: - generated_from_trainer model-index: - name: Vulnerability-detection results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Vulnerability-detection This model is a fine-tuned version of [mrm8488/codebert-base-finetuned-detect-insecure-code](https://huggingface.co/mrm8488/codebert-base-finetuned-detect-insecure-code) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5778 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
okho0653/Bio_ClinicalBERT-zero-shot-finetuned-50cad-50noncad-optimal
okho0653
2022-08-05T05:29:50Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-05T05:12:27Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: Bio_ClinicalBERT-zero-shot-finetuned-50cad-50noncad-optimal results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bio_ClinicalBERT-zero-shot-finetuned-50cad-50noncad-optimal This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 9.8836 - Accuracy: 0.5 - F1: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.2 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
alex-apostolo/roberta-base-filtered-cuad
alex-apostolo
2022-08-05T05:28:06Z
25
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "dataset:alex-apostolo/filtered-cuad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-08-04T09:12:07Z
--- license: mit tags: - generated_from_trainer datasets: - alex-apostolo/filtered-cuad model-index: - name: roberta-base-filtered-cuad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-filtered-cuad This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the cuad dataset. It achieves the following results on the evaluation set: - Loss: 0.0396 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.0502 | 1.0 | 8442 | 0.0467 | | 0.0397 | 2.0 | 16884 | 0.0436 | | 0.032 | 3.0 | 25326 | 0.0396 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
zhiguoxu/chinese-roberta-wwm-ext-finetuned2
zhiguoxu
2022-08-05T03:45:08Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T07:54:52Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: chinese-roberta-wwm-ext-finetuned2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # chinese-roberta-wwm-ext-finetuned2 This model is a fine-tuned version of [hfl/chinese-roberta-wwm-ext](https://huggingface.co/hfl/chinese-roberta-wwm-ext) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1448 - Accuracy: 1.0 - F1: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.4081 | 1.0 | 3 | 0.9711 | 0.7273 | 0.6573 | | 0.9516 | 2.0 | 6 | 0.8174 | 0.8182 | 0.8160 | | 0.8945 | 3.0 | 9 | 0.6617 | 0.9091 | 0.9124 | | 0.7042 | 4.0 | 12 | 0.5308 | 1.0 | 1.0 | | 0.6641 | 5.0 | 15 | 0.4649 | 1.0 | 1.0 | | 0.5731 | 6.0 | 18 | 0.4046 | 1.0 | 1.0 | | 0.5132 | 7.0 | 21 | 0.3527 | 1.0 | 1.0 | | 0.3999 | 8.0 | 24 | 0.3070 | 1.0 | 1.0 | | 0.4198 | 9.0 | 27 | 0.2673 | 1.0 | 1.0 | | 0.3677 | 10.0 | 30 | 0.2378 | 1.0 | 1.0 | | 0.3545 | 11.0 | 33 | 0.2168 | 1.0 | 1.0 | | 0.3237 | 12.0 | 36 | 0.1980 | 1.0 | 1.0 | | 0.3122 | 13.0 | 39 | 0.1860 | 1.0 | 1.0 | | 0.2802 | 14.0 | 42 | 0.1759 | 1.0 | 1.0 | | 0.2552 | 15.0 | 45 | 0.1671 | 1.0 | 1.0 | | 0.2475 | 16.0 | 48 | 0.1598 | 1.0 | 1.0 | | 0.2259 | 17.0 | 51 | 0.1541 | 1.0 | 1.0 | | 0.201 | 18.0 | 54 | 0.1492 | 1.0 | 1.0 | | 0.2083 | 19.0 | 57 | 0.1461 | 1.0 | 1.0 | | 0.2281 | 20.0 | 60 | 0.1448 | 1.0 | 1.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.12.0+cu102 - Datasets 2.1.0 - Tokenizers 0.12.1
tals/albert-base-vitaminc_wnei-fever
tals
2022-08-05T02:25:41Z
6
1
transformers
[ "transformers", "pytorch", "albert", "text-classification", "dataset:tals/vitaminc", "dataset:fever", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- datasets: - tals/vitaminc - fever --- # Details Model used in [Get Your Vitamin C! Robust Fact Verification with Contrastive Evidence](https://aclanthology.org/2021.naacl-main.52/) (Schuster et al., NAACL 21`). For more details see: https://github.com/TalSchuster/VitaminC When using this model, please cite the paper. # BibTeX entry and citation info ```bibtex @inproceedings{schuster-etal-2021-get, title = "Get Your Vitamin {C}! Robust Fact Verification with Contrastive Evidence", author = "Schuster, Tal and Fisch, Adam and Barzilay, Regina", booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jun, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.naacl-main.52", doi = "10.18653/v1/2021.naacl-main.52", pages = "624--643", abstract = "Typical fact verification models use retrieved written evidence to verify claims. Evidence sources, however, often change over time as more information is gathered and revised. In order to adapt, models must be sensitive to subtle differences in supporting evidence. We present VitaminC, a benchmark infused with challenging cases that require fact verification models to discern and adjust to slight factual changes. We collect over 100,000 Wikipedia revisions that modify an underlying fact, and leverage these revisions, together with additional synthetically constructed ones, to create a total of over 400,000 claim-evidence pairs. Unlike previous resources, the examples in VitaminC are contrastive, i.e., they contain evidence pairs that are nearly identical in language and content, with the exception that one supports a given claim while the other does not. We show that training using this design increases robustness{---}improving accuracy by 10{\%} on adversarial fact verification and 6{\%} on adversarial natural language inference (NLI). Moreover, the structure of VitaminC leads us to define additional tasks for fact-checking resources: tagging relevant words in the evidence for verifying the claim, identifying factual revisions, and providing automatic edits via factually consistent text generation.", } ```
fzwd6666/NLTBert_multi_fine_tune_new
fzwd6666
2022-08-05T00:22:54Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-05T00:04:38Z
This model is a fine-tuned version of fzwd6666/Ged_bert_new with 4 layers on an NLT dataset. It achieves the following results on the evaluation set: {'precision': 0.9795081967213115} {'recall': 0.989648033126294} {'f1': 0.984552008238929} {'accuracy': 0.9843227424749164} Training hyperparameters: learning_rate: 1e-4 train_batch_size: 8 eval_batch_size: 8 optimizer: AdamW with betas=(0.9,0.999) and epsilon=1e-08 weight_decay= 0.01 lr_scheduler_type: linear num_epochs: 3 It achieves the following results on the test set: Incorrect UD Padded: {'precision': 0.6878048780487804} {'recall': 0.2863913337846987} {'f1': 0.4043977055449331} {'accuracy': 0.4722575180008471} Incorrect UD Unigram: {'precision': 0.6348314606741573} {'recall': 0.3060257278266757} {'f1': 0.4129739607126542} {'accuracy': 0.4557390936044049} Incorrect UD Bigram: {'precision': 0.6588419405320813} {'recall': 0.28503723764387273} {'f1': 0.3979206049149338} {'accuracy': 0.4603981363828886} Incorrect UD All: {'precision': 0.4} {'recall': 0.0013540961408259986} {'f1': 0.002699055330634278} {'accuracy': 0.373994070309191} Incorrect Sentence: {'precision': 0.5} {'recall': 0.012186865267433988} {'f1': 0.02379378717779247} {'accuracy': 0.37441761965268955}
huggingtweets/dominic_w-lastmjs-vitalikbuterin
huggingtweets
2022-08-04T23:40:33Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-04T23:38:29Z
--- language: en thumbnail: http://www.huggingtweets.com/dominic_w-lastmjs-vitalikbuterin/1659656428920/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1376912180721766401/ZVhVhhQ7_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/977496875887558661/L86xyLF4_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/994681826286301184/ZNY20HQG_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">lastmjs.eth ∞ & vitalik.eth & dom.icp ∞</div> <div style="text-align: center; font-size: 14px;">@dominic_w-lastmjs-vitalikbuterin</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from lastmjs.eth ∞ & vitalik.eth & dom.icp ∞. | Data | lastmjs.eth ∞ | vitalik.eth | dom.icp ∞ | | --- | --- | --- | --- | | Tweets downloaded | 3250 | 3246 | 3249 | | Retweets | 14 | 236 | 322 | | Short tweets | 185 | 122 | 61 | | Tweets kept | 3051 | 2888 | 2866 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2rlc6tzy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dominic_w-lastmjs-vitalikbuterin's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1hxl56uf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1hxl56uf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dominic_w-lastmjs-vitalikbuterin') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
fzwd6666/NLI_new
fzwd6666
2022-08-04T22:33:38Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-04T21:42:12Z
This model is a fine-tuned version of bert-base-uncased on an NLI dataset. It achieves the following results on the evaluation set: {'precision': 0.9690210656753407} {'recall': 0.9722337339411521} {'f1': 0.9706247414149772} {'accuracy': 0.9535340314136126} Training hyperparameters: learning_rate: 2e-5 train_batch_size: 8 eval_batch_size: 8 optimizer: AdamW with betas=(0.9,0.999) and epsilon=1e-08 weight_decay= 0.01 lr_scheduler_type: linear num_epochs: 3 It achieves the following results on the test set: Incorrect UD Padded: {'precision': 0.623370110330993} {'recall': 0.8415707515233581} {'f1': 0.7162201094785364} {'accuracy': 0.5828038966539602} Incorrect UD Unigram: {'precision': 0.6211431461810825} {'recall': 0.8314150304671631} {'f1': 0.7110596409959468} {'accuracy': 0.5772977551884795} Incorrect UD Bigram: {'precision': 0.6203980099502487} {'recall': 0.8442789438050101} {'f1': 0.7152279896759391} {'accuracy': 0.579415501905972} Incorrect UD All: {'precision': 0.605543710021322} {'recall': 0.1922816519972918} {'f1': 0.2918807810894142} {'accuracy': 0.4163490046590428} Incorrect Sentence: {'precision': 0.6411042944785276} {'recall': 0.4245091401489506} {'f1': 0.5107942973523422} {'accuracy': 0.4913172384582804}
fzwd6666/Ged_bert_new
fzwd6666
2022-08-04T22:32:48Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-04T22:14:19Z
This model is a fine-tuned version of bert-base-uncased on an NLI dataset. It achieves the following results on the evaluation set: {'precision': 0.8384560400285919} {'recall': 0.9536585365853658} {'f1': 0.892354507417269} {'accuracy': 0.8345996493278784} Training hyperparameters: learning_rate=2e-5 batch_size=32 epochs = 4 warmup_steps=10% training data number optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 lr_scheduler_type: linear
SharpAI/mal-tls-bert-large-w8a8
SharpAI
2022-08-04T22:03:00Z
6
0
transformers
[ "transformers", "pytorch", "tf", "bert", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-27T17:48:37Z
--- tags: - generated_from_keras_callback model-index: - name: mal-tls-bert-large-w8a8 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mal-tls-bert-large-w8a8 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.15.0 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.10.3
SharpAI/mal-tls-bert-large-relu
SharpAI
2022-08-04T21:41:21Z
4
0
transformers
[ "transformers", "pytorch", "tf", "bert", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-04T17:58:24Z
--- tags: - generated_from_keras_callback model-index: - name: mal-tls-bert-large-relu results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mal-tls-bert-large-relu This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
SharpAI/mal-tls-bert-large
SharpAI
2022-08-04T21:04:08Z
4
0
transformers
[ "transformers", "pytorch", "tf", "bert", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-25T22:26:09Z
--- tags: - generated_from_keras_callback model-index: - name: mal-tls-bert-large results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mal-tls-bert-large This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
abdulmatinomotoso/article_title_2299
abdulmatinomotoso
2022-08-04T20:44:37Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-04T19:49:29Z
--- tags: - generated_from_trainer model-index: - name: article_title_2299 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # article_title_2299 This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
DOOGLAK/wikigold_trained_no_DA_testing2
DOOGLAK
2022-08-04T20:30:35Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:wikigold_splits", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-04T19:39:03Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikigold_splits metrics: - precision - recall - f1 - accuracy model-index: - name: wikigold_trained_no_DA_testing2 results: - task: name: Token Classification type: token-classification dataset: name: wikigold_splits type: wikigold_splits args: default metrics: - name: Precision type: precision value: 0.8410852713178295 - name: Recall type: recall value: 0.84765625 - name: F1 type: f1 value: 0.8443579766536965 - name: Accuracy type: accuracy value: 0.9571820972693489 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wikigold_trained_no_DA_testing2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the wikigold_splits dataset. It achieves the following results on the evaluation set: - Loss: 0.1431 - Precision: 0.8411 - Recall: 0.8477 - F1: 0.8444 - Accuracy: 0.9572 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 167 | 0.1618 | 0.7559 | 0.75 | 0.7529 | 0.9410 | | No log | 2.0 | 334 | 0.1488 | 0.8384 | 0.8242 | 0.8313 | 0.9530 | | 0.1589 | 3.0 | 501 | 0.1431 | 0.8411 | 0.8477 | 0.8444 | 0.9572 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
aliprf/KD-Loss
aliprf
2022-08-04T19:47:02Z
0
0
null
[ "computer vision", "face alignment", "facial landmark point", "CNN", "Knowledge Distillation", "loss", "CVIU", "Tensor Flow", "en", "arxiv:2111.07047", "license:mit", "region:us" ]
null
2022-08-04T19:22:34Z
--- language: en tags: [ computer vision, face alignment, facial landmark point, CNN, Knowledge Distillation, loss, CVIU, Tensor Flow] thumbnail: license: mit --- [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/facial-landmark-points-detection-using/face-alignment-on-cofw)](https://paperswithcode.com/sota/face-alignment-on-cofw?p=facial-landmark-points-detection-using) # Facial Landmark Points Detection Using Knowledge Distillation-Based Neural Networks #### Link to the paper: Google Scholar: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=96lS6HIAAAAJ&citation_for_view=96lS6HIAAAAJ:zYLM7Y9cAGgC Elsevier: https://www.sciencedirect.com/science/article/pii/S1077314221001582 Arxiv: https://arxiv.org/abs/2111.07047 #### Link to the paperswithcode.com: https://paperswithcode.com/paper/facial-landmark-points-detection-using ```diff @@plaese STAR the repo if you like it.@@ ``` ``` Please cite this work as: @article{fard2022facial, title={Facial landmark points detection using knowledge distillation-based neural networks}, author={Fard, Ali Pourramezan and Mahoor, Mohammad H}, journal={Computer Vision and Image Understanding}, volume={215}, pages={103316}, year={2022}, publisher={Elsevier} } ``` ## Introduction Facial landmark detection is a vital step for numerous facial image analysis applications. Although some deep learning-based methods have achieved good performances in this task, they are often not suitable for running on mobile devices. Such methods rely on networks with many parameters, which makes the training and inference time-consuming. Training lightweight neural networks such as MobileNets are often challenging, and the models might have low accuracy. Inspired by knowledge distillation (KD), this paper presents a novel loss function to train a lightweight Student network (e.g., MobileNetV2) for facial landmark detection. We use two Teacher networks, a Tolerant-Teacher and a Tough-Teacher in conjunction with the Student network. The Tolerant-Teacher is trained using Soft-landmarks created by active shape models, while the Tough-Teacher is trained using the ground truth (aka Hard-landmarks) landmark points. To utilize the facial landmark points predicted by the Teacher networks, we define an Assistive Loss (ALoss) for each Teacher network. Moreover, we define a loss function called KD-Loss that utilizes the facial landmark points predicted by the two pre-trained Teacher networks (EfficientNet-b3) to guide the lightweight Student network towards predicting the Hard-landmarks. Our experimental results on three challenging facial datasets show that the proposed architecture will result in a better-trained Student network that can extract facial landmark points with high accuracy. ##Architecture We train the Tough-Teacher, and the Tolerant-Teacher networks independently using the Hard-landmarks and the Soft-landmarks respectively utilizing the L2 loss: ![teacher_arch](https://github.com/aliprf/KD-Loss/blob/master/samples/teacher_arch-1.jpg?raw=true) Proposed KD-based architecture for training the Student network. KDLoss uses the knowledge of the previously trained Teacher networks by utilizing the assistive loss functions ALossT ou and ALossT ol, to improve the performance the face alignment task: ![general_framework](https://github.com/aliprf/KD-Loss/blob/master/samples/general_framework-1.jpg?raw=true) ## Evaluation Following are some samples in order to show the visual performance of KD-Loss on 300W, COFW and WFLW datasets: 300W: ![KD_300W_samples](https://github.com/aliprf/KD-Loss/blob/master/samples/KD_300W_samples-1.jpg?raw=true) COFW: ![KD_cofw_samples](https://github.com/aliprf/KD-Loss/blob/master/samples/KD_cofw_samples-1.jpg?raw=true) WFLW: ![KD_WFLW_samples](https://github.com/aliprf/KD-Loss/blob/master/samples/KD_WFLW_samples-1.jpg?raw=true) ---------------------------------------------------------------------------------------------------------------------------------- ## Installing the requirements In order to run the code you need to install python >= 3.5. The requirements and the libraries needed to run the code can be installed using the following command: ``` pip install -r requirements.txt ``` ## Using the pre-trained models You can test and use the preetrained models using the following codes which are available in the test.py: The pretrained student model are also located in "models/students". ``` cnn = CNNModel() model = cnn.get_model(arch=arch, input_tensor=None, output_len=self.output_len) model.load_weights(weight_fname) img = None # load a cropped image image_utility = ImageUtility() pose_predicted = [] image = np.expand_dims(img, axis=0) pose_predicted = model.predict(image)[1][0] ``` ## Training Network from scratch ### Preparing Data Data needs to be normalized and saved in npy format. ### Training ### Training Teacher Networks: The training implementation is located in teacher_trainer.py class. You can use the following code to start the training for the teacher networks: ``` '''train Teacher Networks''' trainer = TeacherTrainer(dataset_name=DatasetName.w300) trainer.train(arch='efficientNet',weight_path=None) ``` ### Training Student Networks: After Training the teacher networks, you can use the trained teachers to train the student network. The implemetation of training of the student network is provided in teacher_trainer.py . You can use the following code to start the training for the student networks: ``` st_trainer = StudentTrainer(dataset_name=DatasetName.w300, use_augmneted=True) st_trainer.train(arch_student='mobileNetV2', weight_path_student=None, loss_weight_student=2.0, arch_tough_teacher='efficientNet', weight_path_tough_teacher='./models/teachers/ds_300w_ef_tou.h5', loss_weight_tough_teacher=1, arch_tol_teacher='efficientNet', weight_path_tol_teacher='./models/teachers/ds_300w_ef_tol.h5', loss_weight_tol_teacher=1) ``` ``` Please cite this work as: @article{fard2022facial, title={Facial landmark points detection using knowledge distillation-based neural networks}, author={Fard, Ali Pourramezan and Mahoor, Mohammad H}, journal={Computer Vision and Image Understanding}, volume={215}, pages={103316}, year={2022}, publisher={Elsevier} } ``` ```diff @@plaese STAR the repo if you like it.@@ ```
pc2976/prot_bert-finetuned-sp6
pc2976
2022-08-04T18:30:52Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-03T20:30:46Z
--- tags: - generated_from_trainer model-index: - name: prot_bert-finetuned-sp6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # prot_bert-finetuned-sp6 This model is a fine-tuned version of [Rostlab/prot_bert](https://huggingface.co/Rostlab/prot_bert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4070 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5027 | 1.0 | 164 | 0.4666 | | 0.3927 | 2.0 | 328 | 0.4328 | | 0.3348 | 3.0 | 492 | 0.4072 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.10.3
keepitreal/mini-phobert-v3.1
keepitreal
2022-08-04T16:49:01Z
6
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-04T11:32:18Z
--- tags: - generated_from_trainer model-index: - name: mini-phobert-v3.1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mini-phobert-v3.1 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0527 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
yukseltron/lyrics-classifier
yukseltron
2022-08-04T15:42:31Z
0
0
null
[ "tensorboard", "text-classification", "lyrics", "catboost", "en", "dataset:data", "license:gpl-3.0", "region:us" ]
text-classification
2022-07-28T12:48:01Z
--- language: - en thumbnail: "http://s4.thingpic.com/images/Yx/zFbS5iJFJMYNxDp9HTR7TQtT.png" tags: - text-classification - lyrics - catboost license: gpl-3.0 datasets: - data metrics: - accuracy widget: - text: "I know when that hotline bling, that can only mean one thing" --- # Lyrics Classifier This submission uses [CatBoost](https://catboost.ai/). CatBoost was chosen for its listed benefits, mainly in requiring less hyperparameter tuning and preprocessing of categorical and text features. It is also fast and fairly easy to set up. <img src="http://s4.thingpic.com/images/Yx/zFbS5iJFJMYNxDp9HTR7TQtT.png" alt="Markdown Monster icon" style="float: left; margin-right: 10px;" />
tj-solergibert/xlm-roberta-base-finetuned-panx-it
tj-solergibert
2022-08-04T15:36:59Z
6
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-04T15:21:38Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.it split: train args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8124233755619126 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2630 - F1: 0.8124 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8193 | 1.0 | 70 | 0.3200 | 0.7356 | | 0.2773 | 2.0 | 140 | 0.2841 | 0.7882 | | 0.1807 | 3.0 | 210 | 0.2630 | 0.8124 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Jacobsith/autotrain-Hello_there-1209845735
Jacobsith
2022-08-04T15:30:19Z
14
0
transformers
[ "transformers", "pytorch", "longt5", "text2text-generation", "autotrain", "summarization", "unk", "dataset:Jacobsith/autotrain-data-Hello_there", "model-index", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-08-02T06:38:58Z
--- tags: - autotrain - summarization language: - unk widget: - text: "I love AutoTrain \U0001F917" datasets: - Jacobsith/autotrain-data-Hello_there co2_eq_emissions: emissions: 3602.3174355473616 model-index: - name: Jacobsith/autotrain-Hello_there-1209845735 results: - task: type: summarization name: Summarization dataset: name: Blaise-g/SumPubmed type: Blaise-g/SumPubmed config: Blaise-g--SumPubmed split: test metrics: - name: ROUGE-1 type: rouge value: 38.2084 verified: true - name: ROUGE-2 type: rouge value: 12.4744 verified: true - name: ROUGE-L type: rouge value: 21.5536 verified: true - name: ROUGE-LSUM type: rouge value: 34.229 verified: true - name: loss type: loss value: 2.0952045917510986 verified: true - name: gen_len type: gen_len value: 126.3001 verified: true --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 1209845735 - CO2 Emissions (in grams): 3602.3174 ## Validation Metrics - Loss: 2.484 - Rouge1: 38.448 - Rouge2: 10.900 - RougeL: 22.080 - RougeLsum: 33.458 - Gen Len: 115.982 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/Jacobsith/autotrain-Hello_there-1209845735 ```
Evelyn18/roberta-base-spanish-squades-becasIncentivos2
Evelyn18
2022-08-04T15:18:42Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "dataset:becasv2", "endpoints_compatible", "region:us" ]
question-answering
2022-07-27T03:53:59Z
--- tags: - generated_from_trainer datasets: - becasv2 model-index: - name: roberta-base-spanish-squades-becasIncentivos2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-spanish-squades-becasIncentivos2 This model is a fine-tuned version of [IIC/roberta-base-spanish-squades](https://huggingface.co/IIC/roberta-base-spanish-squades) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 0.793 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 7 | 1.6939 | | No log | 2.0 | 14 | 1.7033 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
mindwrapped/collaborative-filtering-movielens-copy
mindwrapped
2022-08-04T15:17:05Z
0
1
keras
[ "keras", "tensorboard", "tf-keras", "collaborative-filtering", "recommender", "tabular-classification", "license:cc0-1.0", "region:us" ]
tabular-classification
2022-06-08T16:15:46Z
--- library_name: keras tags: - collaborative-filtering - recommender - tabular-classification license: - cc0-1.0 --- ## Model description This repo contains the model and the notebook on [how to build and train a Keras model for Collaborative Filtering for Movie Recommendations](https://keras.io/examples/structured_data/collaborative_filtering_movielens/). Full credits to [Siddhartha Banerjee](https://twitter.com/sidd2006). ## Intended uses & limitations Based on a user and movies they have rated highly in the past, this model outputs the predicted rating a user would give to a movie they haven't seen yet (between 0-1). This information can be used to find out the top recommended movies for this user. ## Training and evaluation data The dataset consists of user's ratings on specific movies. It also consists of the movie's specific genres. ## Training procedure The model was trained for 5 epochs with a batch size of 64. ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 0.001, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ## Training Metrics | Epochs | Train Loss | Validation Loss | |--- |--- |--- | | 1| 0.637| 0.619| | 2| 0.614| 0.616| | 3| 0.609| 0.611| | 4| 0.608| 0.61| | 5| 0.608| 0.609| ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
tj-solergibert/xlm-roberta-base-finetuned-panx-de-fr
tj-solergibert
2022-08-04T15:00:13Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-04T14:35:07Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1608 - F1: 0.8593 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2888 | 1.0 | 715 | 0.1779 | 0.8233 | | 0.1437 | 2.0 | 1430 | 0.1570 | 0.8497 | | 0.0931 | 3.0 | 2145 | 0.1608 | 0.8593 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Ilyes/wav2vec2-large-xlsr-53-french
Ilyes
2022-08-04T14:51:35Z
29
4
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "fr", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: fr datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: wav2vec2-large-xlsr-53-French by Ilyes Rebai results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice fr type: common_voice args: fr metrics: - name: Test WER type: wer value: 12.82 --- ## Evaluation on Common Voice FR Test The script used for training and evaluation can be found here: https://github.com/irebai/wav2vec2 ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, ) import re model_name = "Ilyes/wav2vec2-large-xlsr-53-french" device = "cpu" # "cuda" model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) processor = Wav2Vec2Processor.from_pretrained(model_name) ds = load_dataset("common_voice", "fr", split="test", cache_dir="./data/fr") chars_to_ignore_regex = '[\,\?\.\!\;\:\"\“\%\‘\”\�\‘\’\’\’\‘\…\·\!\ǃ\?\«\‹\»\›“\”\\ʿ\ʾ\„\∞\\|\.\,\;\:\*\—\–\─\―\_\/\:\ː\;\,\=\«\»\→]' def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") return batch resampler = torchaudio.transforms.Resample(48_000, 16_000) ds = ds.map(map_to_array) def map_to_pred(batch): features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt") input_values = features.input_values.to(device) attention_mask = features.attention_mask.to(device) with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits pred_ids = torch.argmax(logits, dim=-1) batch["predicted"] = processor.batch_decode(pred_ids) batch["target"] = batch["sentence"] return batch result = ds.map(map_to_pred, batched=True, batch_size=16, remove_columns=list(ds.features.keys())) wer = load_metric("wer") print(wer.compute(predictions=result["predicted"], references=result["target"])) ``` ## Results WER=12.82% CER=4.40%
jjjjjjjjjj/dqn-SpaceInvadersNoFrame-v4
jjjjjjjjjj
2022-08-04T14:02:37Z
7
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-04T14:02:15Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 582.50 +/- 220.50 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jjjjjjjjjj -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga jjjjjjjjjj ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
silviacamplani/distilbert-base-uncased-finetuned-dapt-ner-ai_data
silviacamplani
2022-08-04T13:38:43Z
4
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-04T13:37:35Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: silviacamplani/distilbert-base-uncased-finetuned-dapt-ner-ai_data results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # silviacamplani/distilbert-base-uncased-finetuned-dapt-ner-ai_data This model is a fine-tuned version of [silviacamplani/distilbert-base-uncased-finetuned-ai_data](https://huggingface.co/silviacamplani/distilbert-base-uncased-finetuned-ai_data) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.3549 - Validation Loss: 2.3081 - Train Precision: 0.0 - Train Recall: 0.0 - Train F1: 0.0 - Train Accuracy: 0.6392 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 3.0905 | 2.8512 | 0.0 | 0.0 | 0.0 | 0.6376 | 0 | | 2.6612 | 2.4783 | 0.0 | 0.0 | 0.0 | 0.6392 | 1 | | 2.3549 | 2.3081 | 0.0 | 0.0 | 0.0 | 0.6392 | 2 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
schnell/bert-small-ipadic_bpe
schnell
2022-08-04T13:37:42Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-01T15:40:13Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-small-ipadic_bpe results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-small-ipadic_bpe This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6777 - Accuracy: 0.6519 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 256 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 3 - total_train_batch_size: 768 - total_eval_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 14 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 2.2548 | 1.0 | 69473 | 2.1163 | 0.5882 | | 2.0904 | 2.0 | 138946 | 1.9562 | 0.6101 | | 2.0203 | 3.0 | 208419 | 1.8848 | 0.6208 | | 1.978 | 4.0 | 277892 | 1.8408 | 0.6272 | | 1.937 | 5.0 | 347365 | 1.8080 | 0.6320 | | 1.9152 | 6.0 | 416838 | 1.7818 | 0.6361 | | 1.8982 | 7.0 | 486311 | 1.7575 | 0.6395 | | 1.8808 | 8.0 | 555784 | 1.7413 | 0.6421 | | 1.8684 | 9.0 | 625257 | 1.7282 | 0.6440 | | 1.8517 | 10.0 | 694730 | 1.7140 | 0.6464 | | 1.8353 | 11.0 | 764203 | 1.7022 | 0.6481 | | 1.8245 | 12.0 | 833676 | 1.6877 | 0.6504 | | 1.8191 | 13.0 | 903149 | 1.6829 | 0.6515 | | 1.8122 | 14.0 | 972622 | 1.6777 | 0.6519 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.12.0+cu116 - Datasets 2.2.2 - Tokenizers 0.12.1
juletxara/vilt-vsr-zeroshot
juletxara
2022-08-04T12:34:40Z
9
0
transformers
[ "transformers", "pytorch", "vilt", "arxiv:2205.00363", "arxiv:2102.03334", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-08-04T10:55:43Z
--- license: apache-2.0 --- # Vision-and-Language Transformer (ViLT), fine-tuned on VSR zeroshot split Vision-and-Language Transformer (ViLT) model fine-tuned on zeroshot split of [Visual Spatial Reasoning (VSR)](https://arxiv.org/abs/2205.00363). ViLT was introduced in the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Kim et al. and first released in [this repository](https://github.com/dandelin/ViLT). ## Intended uses & limitations You can use the model to determine whether a sentence is true or false given an image. ### How to use Here is how to use the model in PyTorch: ``` from transformers import ViltProcessor, ViltForImagesAndTextClassification import requests from PIL import Image image = Image.open(requests.get("https://camo.githubusercontent.com/ffcbeada14077b8e6d4b16817c91f78ba50aace210a1e4754418f1413d99797f/687474703a2f2f696d616765732e636f636f646174617365742e6f72672f747261696e323031372f3030303030303038303333362e6a7067", stream=True).raw) text = "The person is ahead of the cow." processor = ViltProcessor.from_pretrained("juletxara/vilt-vsr-zeroshot") model = ViltForImagesAndTextClassification.from_pretrained("juletxara/vilt-vsr-zeroshot") # prepare inputs encoding = processor(image, text, return_tensors="pt") # forward pass outputs = model(input_ids=encoding.input_ids, pixel_values=encoding.pixel_values.unsqueeze(0)) logits = outputs.logits idx = logits.argmax(-1).item() print("Predicted answer:", model.config.id2label[idx]) ``` ## Training data (to do) ## Training procedure ### Preprocessing (to do) ### Pretraining (to do) ## Evaluation results (to do) ### BibTeX entry and citation info ```bibtex @misc{kim2021vilt, title={ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision}, author={Wonjae Kim and Bokyung Son and Ildoo Kim}, year={2021}, eprint={2102.03334}, archivePrefix={arXiv}, primaryClass={stat.ML} } @article{liu2022visual, title={Visual Spatial Reasoning}, author={Liu, Fangyu and Emerson, Guy and Collier, Nigel}, journal={arXiv preprint arXiv:2205.00363}, year={2022} } ```
juletxara/vilt-vsr-random
juletxara
2022-08-04T12:24:28Z
2
0
transformers
[ "transformers", "pytorch", "vilt", "arxiv:2205.00363", "arxiv:2102.03334", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-08-04T10:37:16Z
--- license: apache-2.0 --- # Vision-and-Language Transformer (ViLT), fine-tuned on VSR random split Vision-and-Language Transformer (ViLT) model fine-tuned on random split of [Visual Spatial Reasoning (VSR)](https://arxiv.org/abs/2205.00363). ViLT was introduced in the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Kim et al. and first released in [this repository](https://github.com/dandelin/ViLT). ## Intended uses & limitations You can use the model to determine whether a sentence is true or false given an image. ### How to use Here is how to use the model in PyTorch: ``` from transformers import ViltProcessor, ViltForImagesAndTextClassification import requests from PIL import Image image = Image.open(requests.get("https://camo.githubusercontent.com/ffcbeada14077b8e6d4b16817c91f78ba50aace210a1e4754418f1413d99797f/687474703a2f2f696d616765732e636f636f646174617365742e6f72672f747261696e323031372f3030303030303038303333362e6a7067", stream=True).raw) text = "The person is ahead of the cow." processor = ViltProcessor.from_pretrained("juletxara/vilt-vsr-random") model = ViltForImagesAndTextClassification.from_pretrained("juletxara/vilt-vsr-random") # prepare inputs encoding = processor(image, text, return_tensors="pt") # forward pass outputs = model(input_ids=encoding.input_ids, pixel_values=encoding.pixel_values.unsqueeze(0)) logits = outputs.logits idx = logits.argmax(-1).item() print("Predicted answer:", model.config.id2label[idx]) ``` ## Training data (to do) ## Training procedure ### Preprocessing (to do) ### Pretraining (to do) ## Evaluation results (to do) ### BibTeX entry and citation info ```bibtex @misc{kim2021vilt, title={ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision}, author={Wonjae Kim and Bokyung Son and Ildoo Kim}, year={2021}, eprint={2102.03334}, archivePrefix={arXiv}, primaryClass={stat.ML} } @article{liu2022visual, title={Visual Spatial Reasoning}, author={Liu, Fangyu and Emerson, Guy and Collier, Nigel}, journal={arXiv preprint arXiv:2205.00363}, year={2022} } ```
farofang/t5-small-finetuned-thai-informal-to-formal
farofang
2022-08-04T11:47:22Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-03T17:23:33Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: t5-small-finetuned-thai-informal-to-formal results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-thai-informal-to-formal This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3091 - Bleu: 20.5964 - Gen Len: 19.9981 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 300 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:| | 2.2862 | 1.0 | 1011 | 2.2028 | 31.6678 | 20.0 | | 2.1228 | 2.0 | 2022 | 2.0339 | 32.3643 | 20.0 | | 2.0581 | 3.0 | 3033 | 1.9386 | 32.3784 | 20.0 | | 1.9714 | 4.0 | 4044 | 1.8899 | 31.9728 | 20.0 | | 1.9169 | 5.0 | 5055 | 1.8318 | 32.1064 | 20.0 | | 1.8969 | 6.0 | 6066 | 1.8005 | 31.4324 | 20.0 | | 1.8486 | 7.0 | 7077 | 1.7813 | 31.7758 | 20.0 | | 1.802 | 8.0 | 8088 | 1.7464 | 31.9055 | 20.0 | | 1.7654 | 9.0 | 9099 | 1.7352 | 31.9598 | 20.0 | | 1.7439 | 10.0 | 10110 | 1.7009 | 32.1696 | 20.0 | | 1.7603 | 11.0 | 11121 | 1.6873 | 31.8118 | 20.0 | | 1.7288 | 12.0 | 12132 | 1.6678 | 31.5711 | 20.0 | | 1.7004 | 13.0 | 13143 | 1.6482 | 31.4575 | 20.0 | | 1.6851 | 14.0 | 14154 | 1.6374 | 31.9579 | 20.0 | | 1.6497 | 15.0 | 15165 | 1.6290 | 31.4299 | 20.0 | | 1.656 | 16.0 | 16176 | 1.6130 | 31.2145 | 20.0 | | 1.6423 | 17.0 | 17187 | 1.5931 | 31.365 | 20.0 | | 1.6024 | 18.0 | 18198 | 1.5797 | 31.2247 | 20.0 | | 1.6064 | 19.0 | 19209 | 1.5736 | 31.1535 | 20.0 | | 1.5974 | 20.0 | 20220 | 1.5609 | 31.431 | 20.0 | | 1.5961 | 21.0 | 21231 | 1.5578 | 30.9905 | 20.0 | | 1.5621 | 22.0 | 22242 | 1.5466 | 30.8979 | 20.0 | | 1.5307 | 23.0 | 23253 | 1.5285 | 31.277 | 20.0 | | 1.5359 | 24.0 | 24264 | 1.5370 | 31.4321 | 20.0 | | 1.5558 | 25.0 | 25275 | 1.5215 | 31.2769 | 20.0 | | 1.513 | 26.0 | 26286 | 1.5173 | 30.9782 | 19.9997 | | 1.5241 | 27.0 | 27297 | 1.5105 | 30.6717 | 20.0 | | 1.5133 | 28.0 | 28308 | 1.4973 | 30.3152 | 20.0 | | 1.4713 | 29.0 | 29319 | 1.4927 | 30.276 | 19.9997 | | 1.478 | 30.0 | 30330 | 1.4887 | 30.1004 | 19.9989 | | 1.4572 | 31.0 | 31341 | 1.4845 | 29.8939 | 19.9983 | | 1.4485 | 32.0 | 32352 | 1.4653 | 30.0169 | 19.9986 | | 1.4404 | 33.0 | 33363 | 1.4648 | 28.9061 | 19.9989 | | 1.4408 | 34.0 | 34374 | 1.4586 | 29.598 | 19.9994 | | 1.4296 | 35.0 | 35385 | 1.4585 | 28.9821 | 19.9981 | | 1.408 | 36.0 | 36396 | 1.4517 | 29.6025 | 19.9986 | | 1.4004 | 37.0 | 37407 | 1.4456 | 27.8564 | 19.9992 | | 1.3991 | 38.0 | 38418 | 1.4411 | 28.8947 | 19.9994 | | 1.401 | 39.0 | 39429 | 1.4309 | 27.6809 | 19.9994 | | 1.391 | 40.0 | 40440 | 1.4278 | 29.1687 | 19.9994 | | 1.3709 | 41.0 | 41451 | 1.4217 | 28.2947 | 19.9989 | | 1.3726 | 42.0 | 42462 | 1.4247 | 27.2108 | 19.9983 | | 1.3702 | 43.0 | 43473 | 1.4144 | 25.9973 | 19.9981 | | 1.3636 | 44.0 | 44484 | 1.4163 | 26.0146 | 19.9953 | | 1.3673 | 45.0 | 45495 | 1.4118 | 25.8126 | 19.9978 | | 1.3539 | 46.0 | 46506 | 1.4076 | 25.5185 | 19.9981 | | 1.3434 | 47.0 | 47517 | 1.4023 | 26.2123 | 19.9947 | | 1.3428 | 48.0 | 48528 | 1.4008 | 25.8932 | 19.9955 | | 1.3325 | 49.0 | 49539 | 1.4003 | 25.7762 | 19.9969 | | 1.3258 | 50.0 | 50550 | 1.3896 | 24.8206 | 19.9961 | | 1.3151 | 51.0 | 51561 | 1.3852 | 24.4683 | 19.9978 | | 1.3035 | 52.0 | 52572 | 1.3843 | 24.9821 | 19.9992 | | 1.2931 | 53.0 | 53583 | 1.3847 | 24.715 | 19.9989 | | 1.2707 | 54.0 | 54594 | 1.3776 | 24.4374 | 19.9986 | | 1.2792 | 55.0 | 55605 | 1.3801 | 23.7683 | 19.9967 | | 1.284 | 56.0 | 56616 | 1.3781 | 23.6961 | 19.9975 | | 1.2664 | 57.0 | 57627 | 1.3680 | 23.6677 | 19.9975 | | 1.2783 | 58.0 | 58638 | 1.3695 | 23.3193 | 19.9986 | | 1.2762 | 59.0 | 59649 | 1.3741 | 22.613 | 19.9972 | | 1.2759 | 60.0 | 60660 | 1.3629 | 23.9067 | 19.9964 | | 1.2618 | 61.0 | 61671 | 1.3687 | 23.7587 | 19.9967 | | 1.2614 | 62.0 | 62682 | 1.3613 | 23.2615 | 19.9975 | | 1.2455 | 63.0 | 63693 | 1.3623 | 23.8722 | 19.9986 | | 1.1977 | 64.0 | 64704 | 1.3528 | 23.1421 | 19.9981 | | 1.2199 | 65.0 | 65715 | 1.3520 | 22.6977 | 19.9975 | | 1.2368 | 66.0 | 66726 | 1.3552 | 23.2495 | 19.9989 | | 1.2087 | 67.0 | 67737 | 1.3404 | 22.6422 | 19.9989 | | 1.214 | 68.0 | 68748 | 1.3499 | 21.979 | 19.9972 | | 1.2322 | 69.0 | 69759 | 1.3453 | 22.1766 | 19.9978 | | 1.2028 | 70.0 | 70770 | 1.3402 | 21.8311 | 19.9975 | | 1.2163 | 71.0 | 71781 | 1.3399 | 22.1417 | 19.9989 | | 1.1769 | 72.0 | 72792 | 1.3446 | 22.253 | 19.9972 | | 1.221 | 73.0 | 73803 | 1.3413 | 22.1546 | 19.9986 | | 1.1768 | 74.0 | 74814 | 1.3335 | 21.8914 | 19.9972 | | 1.1829 | 75.0 | 75825 | 1.3323 | 21.7763 | 19.9947 | | 1.1687 | 76.0 | 76836 | 1.3344 | 21.4495 | 19.9964 | | 1.1873 | 77.0 | 77847 | 1.3337 | 21.7655 | 19.9964 | | 1.1807 | 78.0 | 78858 | 1.3308 | 21.4564 | 19.9967 | | 1.1735 | 79.0 | 79869 | 1.3282 | 21.233 | 19.9967 | | 1.1693 | 80.0 | 80880 | 1.3240 | 21.0794 | 19.9955 | | 1.1714 | 81.0 | 81891 | 1.3262 | 21.1856 | 19.9969 | | 1.154 | 82.0 | 82902 | 1.3282 | 20.5583 | 19.9964 | | 1.1572 | 83.0 | 83913 | 1.3229 | 20.9262 | 19.995 | | 1.1473 | 84.0 | 84924 | 1.3233 | 20.5432 | 19.995 | | 1.1315 | 85.0 | 85935 | 1.3227 | 20.4939 | 19.9942 | | 1.1567 | 86.0 | 86946 | 1.3203 | 21.3354 | 19.9964 | | 1.1485 | 87.0 | 87957 | 1.3211 | 20.9952 | 19.9939 | | 1.1313 | 88.0 | 88968 | 1.3202 | 20.1199 | 19.9961 | | 1.1428 | 89.0 | 89979 | 1.3188 | 20.414 | 19.9925 | | 1.1374 | 90.0 | 90990 | 1.3220 | 20.003 | 19.993 | | 1.1274 | 91.0 | 92001 | 1.3153 | 20.7172 | 19.9953 | | 1.1174 | 92.0 | 93012 | 1.3126 | 20.5997 | 19.9953 | | 1.1155 | 93.0 | 94023 | 1.3131 | 20.0402 | 19.993 | | 1.1167 | 94.0 | 95034 | 1.3140 | 20.219 | 19.9905 | | 1.1301 | 95.0 | 96045 | 1.3142 | 19.8332 | 19.9922 | | 1.0975 | 96.0 | 97056 | 1.3096 | 19.6051 | 19.9942 | | 1.1025 | 97.0 | 98067 | 1.3148 | 20.4323 | 19.993 | | 1.0932 | 98.0 | 99078 | 1.3134 | 20.0839 | 19.9942 | | 1.0871 | 99.0 | 100089 | 1.3071 | 20.0202 | 19.9939 | | 1.102 | 100.0 | 101100 | 1.3091 | 20.0454 | 19.9947 | | 1.0969 | 101.0 | 102111 | 1.3090 | 19.4474 | 19.9947 | | 1.0988 | 102.0 | 103122 | 1.3117 | 20.1905 | 19.9922 | | 1.0816 | 103.0 | 104133 | 1.3048 | 20.3346 | 19.9928 | | 1.0809 | 104.0 | 105144 | 1.3058 | 20.323 | 19.9953 | | 1.0861 | 105.0 | 106155 | 1.3052 | 20.6984 | 19.9944 | | 1.0907 | 106.0 | 107166 | 1.3076 | 20.3413 | 19.9947 | | 1.0747 | 107.0 | 108177 | 1.3050 | 20.3362 | 19.9955 | | 1.0839 | 108.0 | 109188 | 1.3060 | 20.5379 | 19.9936 | | 1.0755 | 109.0 | 110199 | 1.3071 | 20.3886 | 19.9939 | | 1.0463 | 110.0 | 111210 | 1.3058 | 19.9524 | 19.9953 | | 1.0644 | 111.0 | 112221 | 1.3033 | 19.7226 | 19.9972 | | 1.0771 | 112.0 | 113232 | 1.3089 | 19.9861 | 19.9958 | | 1.0819 | 113.0 | 114243 | 1.3031 | 20.5527 | 19.9942 | | 1.0483 | 114.0 | 115254 | 1.3063 | 20.0048 | 19.9978 | | 1.04 | 115.0 | 116265 | 1.3020 | 20.2327 | 19.9969 | | 1.0574 | 116.0 | 117276 | 1.3025 | 19.6818 | 19.995 | | 1.0356 | 117.0 | 118287 | 1.3077 | 20.1054 | 19.9967 | | 1.0525 | 118.0 | 119298 | 1.3022 | 20.14 | 19.9967 | | 1.0409 | 119.0 | 120309 | 1.2983 | 19.7657 | 19.9972 | | 1.0431 | 120.0 | 121320 | 1.2945 | 20.1315 | 19.9975 | | 1.0419 | 121.0 | 122331 | 1.3035 | 19.8364 | 19.9972 | | 1.0411 | 122.0 | 123342 | 1.2951 | 20.204 | 19.9981 | | 1.0396 | 123.0 | 124353 | 1.3019 | 20.6711 | 19.9955 | | 1.0424 | 124.0 | 125364 | 1.2950 | 20.6527 | 19.9969 | | 1.0203 | 125.0 | 126375 | 1.3008 | 20.4314 | 19.9972 | | 1.0351 | 126.0 | 127386 | 1.3008 | 20.0237 | 19.9978 | | 1.0424 | 127.0 | 128397 | 1.2993 | 20.3024 | 19.9983 | | 1.0165 | 128.0 | 129408 | 1.2960 | 20.1769 | 19.9978 | | 1.0216 | 129.0 | 130419 | 1.2977 | 19.8483 | 19.9972 | | 1.0207 | 130.0 | 131430 | 1.2939 | 20.0639 | 19.9969 | | 1.0119 | 131.0 | 132441 | 1.2985 | 19.731 | 19.9972 | | 0.9965 | 132.0 | 133452 | 1.3006 | 19.5983 | 19.9969 | | 1.0034 | 133.0 | 134463 | 1.2974 | 19.6943 | 19.9989 | | 1.0241 | 134.0 | 135474 | 1.3015 | 20.0083 | 19.9981 | | 1.0181 | 135.0 | 136485 | 1.2982 | 19.6057 | 19.9989 | | 1.0112 | 136.0 | 137496 | 1.2931 | 19.3408 | 19.9986 | | 0.9927 | 137.0 | 138507 | 1.2999 | 19.5222 | 19.9983 | | 1.0134 | 138.0 | 139518 | 1.2909 | 19.42 | 19.9989 | | 0.9921 | 139.0 | 140529 | 1.2951 | 19.8604 | 19.9989 | | 0.9891 | 140.0 | 141540 | 1.2916 | 20.0752 | 19.9989 | | 0.9896 | 141.0 | 142551 | 1.2910 | 19.7536 | 19.9992 | | 1.0034 | 142.0 | 143562 | 1.2934 | 20.0064 | 19.9986 | | 0.9718 | 143.0 | 144573 | 1.2973 | 19.9304 | 19.9989 | | 1.0141 | 144.0 | 145584 | 1.2940 | 20.5053 | 19.9986 | | 0.99 | 145.0 | 146595 | 1.2980 | 20.0913 | 19.9975 | | 0.9729 | 146.0 | 147606 | 1.2927 | 19.7229 | 19.9978 | | 0.9732 | 147.0 | 148617 | 1.2920 | 20.2104 | 19.9975 | | 0.9778 | 148.0 | 149628 | 1.2947 | 20.1365 | 19.9981 | | 0.987 | 149.0 | 150639 | 1.3007 | 20.3436 | 19.9972 | | 0.987 | 150.0 | 151650 | 1.3003 | 20.2827 | 19.9983 | | 0.9788 | 151.0 | 152661 | 1.2953 | 20.2941 | 19.9972 | | 0.9899 | 152.0 | 153672 | 1.2951 | 20.5454 | 19.9978 | | 0.978 | 153.0 | 154683 | 1.2946 | 20.7448 | 19.9969 | | 0.9614 | 154.0 | 155694 | 1.2975 | 20.5359 | 19.9969 | | 0.9759 | 155.0 | 156705 | 1.2925 | 20.3661 | 19.9975 | | 0.9627 | 156.0 | 157716 | 1.2954 | 20.5535 | 19.9969 | | 0.9692 | 157.0 | 158727 | 1.2930 | 20.1919 | 19.9969 | | 0.9737 | 158.0 | 159738 | 1.2922 | 20.484 | 19.9972 | | 0.9642 | 159.0 | 160749 | 1.2952 | 20.5444 | 19.9975 | | 0.9679 | 160.0 | 161760 | 1.2930 | 20.3731 | 19.9983 | | 0.9571 | 161.0 | 162771 | 1.2933 | 20.4158 | 19.9978 | | 0.9542 | 162.0 | 163782 | 1.2937 | 20.4823 | 19.9978 | | 0.9537 | 163.0 | 164793 | 1.2997 | 20.6457 | 19.9964 | | 0.951 | 164.0 | 165804 | 1.2982 | 20.0897 | 19.9986 | | 0.9556 | 165.0 | 166815 | 1.2944 | 20.45 | 19.9986 | | 0.9534 | 166.0 | 167826 | 1.2961 | 20.2743 | 19.9967 | | 0.9381 | 167.0 | 168837 | 1.2922 | 19.8311 | 19.9969 | | 0.9347 | 168.0 | 169848 | 1.2938 | 19.9427 | 19.9978 | | 0.9514 | 169.0 | 170859 | 1.2968 | 20.2039 | 19.9983 | | 0.9439 | 170.0 | 171870 | 1.3014 | 19.9784 | 19.9961 | | 0.9379 | 171.0 | 172881 | 1.3000 | 20.1213 | 19.9964 | | 0.9326 | 172.0 | 173892 | 1.2930 | 20.0882 | 19.9969 | | 0.9178 | 173.0 | 174903 | 1.2942 | 20.1997 | 19.9972 | | 0.9511 | 174.0 | 175914 | 1.2931 | 20.6471 | 19.9969 | | 0.9438 | 175.0 | 176925 | 1.2945 | 20.7321 | 19.9983 | | 0.929 | 176.0 | 177936 | 1.2967 | 20.5813 | 19.9964 | | 0.9343 | 177.0 | 178947 | 1.2940 | 20.2307 | 19.9978 | | 0.9344 | 178.0 | 179958 | 1.2949 | 20.2401 | 19.9969 | | 0.9319 | 179.0 | 180969 | 1.2974 | 19.9881 | 19.9972 | | 0.9286 | 180.0 | 181980 | 1.2974 | 20.2666 | 19.9961 | | 0.9074 | 181.0 | 182991 | 1.2939 | 20.2549 | 19.9969 | | 0.93 | 182.0 | 184002 | 1.2990 | 20.0121 | 19.9969 | | 0.9303 | 183.0 | 185013 | 1.2944 | 20.056 | 19.9978 | | 0.9259 | 184.0 | 186024 | 1.3003 | 19.9021 | 19.9953 | | 0.9014 | 185.0 | 187035 | 1.2962 | 20.0381 | 19.9958 | | 0.9288 | 186.0 | 188046 | 1.2976 | 20.1909 | 19.9947 | | 0.9086 | 187.0 | 189057 | 1.2969 | 20.2923 | 19.9969 | | 0.9183 | 188.0 | 190068 | 1.2941 | 20.1649 | 19.9967 | | 0.9141 | 189.0 | 191079 | 1.3028 | 20.0891 | 19.9958 | | 0.9264 | 190.0 | 192090 | 1.2935 | 20.0164 | 19.9958 | | 0.9307 | 191.0 | 193101 | 1.2956 | 19.8606 | 19.9964 | | 0.9179 | 192.0 | 194112 | 1.2933 | 19.9815 | 19.9961 | | 0.9123 | 193.0 | 195123 | 1.2977 | 20.1232 | 19.9953 | | 0.9221 | 194.0 | 196134 | 1.3014 | 20.0674 | 19.995 | | 0.9195 | 195.0 | 197145 | 1.3031 | 19.9839 | 19.9944 | | 0.9139 | 196.0 | 198156 | 1.2947 | 20.0344 | 19.9953 | | 0.9074 | 197.0 | 199167 | 1.2956 | 20.1076 | 19.9961 | | 0.9149 | 198.0 | 200178 | 1.2963 | 20.0898 | 19.9955 | | 0.9219 | 199.0 | 201189 | 1.2990 | 20.171 | 19.9964 | | 0.8989 | 200.0 | 202200 | 1.2983 | 20.1548 | 19.9961 | | 0.9004 | 201.0 | 203211 | 1.2977 | 20.2135 | 19.9955 | | 0.9043 | 202.0 | 204222 | 1.3023 | 20.3024 | 19.9964 | | 0.917 | 203.0 | 205233 | 1.3014 | 20.5967 | 19.9967 | | 0.9012 | 204.0 | 206244 | 1.3001 | 20.5489 | 19.9961 | | 0.9136 | 205.0 | 207255 | 1.2963 | 20.5013 | 19.9969 | | 0.897 | 206.0 | 208266 | 1.3016 | 20.3285 | 19.9969 | | 0.9036 | 207.0 | 209277 | 1.2981 | 20.3278 | 19.9967 | | 0.9225 | 208.0 | 210288 | 1.3055 | 20.4756 | 19.9967 | | 0.8959 | 209.0 | 211299 | 1.2987 | 20.3112 | 19.9972 | | 0.903 | 210.0 | 212310 | 1.2977 | 20.5512 | 19.9961 | | 0.9012 | 211.0 | 213321 | 1.3026 | 20.4304 | 19.9964 | | 0.8906 | 212.0 | 214332 | 1.2998 | 20.4206 | 19.9967 | | 0.8906 | 213.0 | 215343 | 1.3031 | 20.4499 | 19.9964 | | 0.9049 | 214.0 | 216354 | 1.3029 | 20.6908 | 19.9958 | | 0.9034 | 215.0 | 217365 | 1.2980 | 20.3614 | 19.9969 | | 0.8971 | 216.0 | 218376 | 1.2985 | 20.6196 | 19.9972 | | 0.885 | 217.0 | 219387 | 1.3019 | 20.584 | 19.9972 | | 0.8799 | 218.0 | 220398 | 1.3041 | 20.5843 | 19.9967 | | 0.8805 | 219.0 | 221409 | 1.3035 | 20.5123 | 19.9972 | | 0.8896 | 220.0 | 222420 | 1.3006 | 20.7331 | 19.9975 | | 0.8851 | 221.0 | 223431 | 1.2973 | 20.6914 | 19.9975 | | 0.893 | 222.0 | 224442 | 1.3004 | 20.7484 | 19.9978 | | 0.8903 | 223.0 | 225453 | 1.3001 | 20.5207 | 19.9981 | | 0.8924 | 224.0 | 226464 | 1.3026 | 20.6635 | 19.9972 | | 0.8839 | 225.0 | 227475 | 1.3056 | 20.6999 | 19.9978 | | 0.8631 | 226.0 | 228486 | 1.3042 | 20.9581 | 19.9967 | | 0.8677 | 227.0 | 229497 | 1.3037 | 20.8283 | 19.9964 | | 0.867 | 228.0 | 230508 | 1.3042 | 20.8781 | 19.9978 | | 0.8878 | 229.0 | 231519 | 1.3035 | 20.6884 | 19.9981 | | 0.8805 | 230.0 | 232530 | 1.3092 | 20.716 | 19.9975 | | 0.8769 | 231.0 | 233541 | 1.2988 | 20.6323 | 19.9975 | | 0.8833 | 232.0 | 234552 | 1.3039 | 20.5529 | 19.9978 | | 0.8798 | 233.0 | 235563 | 1.3028 | 20.5848 | 19.9981 | | 0.8694 | 234.0 | 236574 | 1.3037 | 20.4147 | 19.9983 | | 0.8888 | 235.0 | 237585 | 1.3022 | 20.5179 | 19.9983 | | 0.8724 | 236.0 | 238596 | 1.3027 | 20.4379 | 19.9978 | | 0.8864 | 237.0 | 239607 | 1.3024 | 20.3993 | 19.9972 | | 0.8684 | 238.0 | 240618 | 1.3043 | 20.5063 | 19.9969 | | 0.8753 | 239.0 | 241629 | 1.3072 | 20.4079 | 19.9969 | | 0.8734 | 240.0 | 242640 | 1.3026 | 20.5173 | 19.9967 | | 0.867 | 241.0 | 243651 | 1.3044 | 20.6249 | 19.9972 | | 0.8671 | 242.0 | 244662 | 1.3094 | 20.6827 | 19.9972 | | 0.8721 | 243.0 | 245673 | 1.3045 | 20.5017 | 19.9978 | | 0.8726 | 244.0 | 246684 | 1.3065 | 20.5748 | 19.9967 | | 0.8741 | 245.0 | 247695 | 1.3063 | 20.5345 | 19.9972 | | 0.8634 | 246.0 | 248706 | 1.3036 | 20.6084 | 19.9972 | | 0.8527 | 247.0 | 249717 | 1.3045 | 20.535 | 19.9972 | | 0.8662 | 248.0 | 250728 | 1.3089 | 20.5306 | 19.9972 | | 0.8681 | 249.0 | 251739 | 1.3081 | 20.6414 | 19.9967 | | 0.8711 | 250.0 | 252750 | 1.3061 | 20.6039 | 19.9975 | | 0.8653 | 251.0 | 253761 | 1.3018 | 20.5632 | 19.9975 | | 0.8697 | 252.0 | 254772 | 1.3090 | 20.5056 | 19.9978 | | 0.8655 | 253.0 | 255783 | 1.3082 | 20.5235 | 19.9978 | | 0.8636 | 254.0 | 256794 | 1.3067 | 20.5607 | 19.9972 | | 0.8667 | 255.0 | 257805 | 1.3066 | 20.6694 | 19.9964 | | 0.8596 | 256.0 | 258816 | 1.3073 | 20.617 | 19.9967 | | 0.8507 | 257.0 | 259827 | 1.3083 | 20.6035 | 19.9964 | | 0.8677 | 258.0 | 260838 | 1.3077 | 20.6196 | 19.9975 | | 0.8614 | 259.0 | 261849 | 1.3094 | 20.6928 | 19.9969 | | 0.8677 | 260.0 | 262860 | 1.3098 | 20.7181 | 19.9969 | | 0.8628 | 261.0 | 263871 | 1.3065 | 20.679 | 19.9975 | | 0.8636 | 262.0 | 264882 | 1.3055 | 20.7476 | 19.9975 | | 0.8624 | 263.0 | 265893 | 1.3065 | 20.7045 | 19.9972 | | 0.8594 | 264.0 | 266904 | 1.3093 | 20.5442 | 19.9964 | | 0.8658 | 265.0 | 267915 | 1.3105 | 20.7153 | 19.9972 | | 0.8476 | 266.0 | 268926 | 1.3076 | 20.677 | 19.9972 | | 0.858 | 267.0 | 269937 | 1.3091 | 20.6701 | 19.9969 | | 0.8707 | 268.0 | 270948 | 1.3111 | 20.5985 | 19.9975 | | 0.8613 | 269.0 | 271959 | 1.3092 | 20.6108 | 19.9975 | | 0.8497 | 270.0 | 272970 | 1.3070 | 20.5836 | 19.9964 | | 0.8654 | 271.0 | 273981 | 1.3082 | 20.5806 | 19.9983 | | 0.8621 | 272.0 | 274992 | 1.3088 | 20.6817 | 19.9975 | | 0.8619 | 273.0 | 276003 | 1.3090 | 20.5567 | 19.9975 | | 0.8638 | 274.0 | 277014 | 1.3087 | 20.6233 | 19.9975 | | 0.8642 | 275.0 | 278025 | 1.3092 | 20.667 | 19.9967 | | 0.8498 | 276.0 | 279036 | 1.3069 | 20.6295 | 19.9969 | | 0.8572 | 277.0 | 280047 | 1.3107 | 20.6376 | 19.9969 | | 0.8543 | 278.0 | 281058 | 1.3114 | 20.6473 | 19.9964 | | 0.8453 | 279.0 | 282069 | 1.3105 | 20.6931 | 19.9967 | | 0.8575 | 280.0 | 283080 | 1.3077 | 20.691 | 19.9972 | | 0.8492 | 281.0 | 284091 | 1.3101 | 20.7528 | 19.9969 | | 0.8519 | 282.0 | 285102 | 1.3094 | 20.6812 | 19.9981 | | 0.8431 | 283.0 | 286113 | 1.3114 | 20.6608 | 19.9969 | | 0.8546 | 284.0 | 287124 | 1.3093 | 20.6336 | 19.9981 | | 0.86 | 285.0 | 288135 | 1.3108 | 20.6077 | 19.9967 | | 0.8674 | 286.0 | 289146 | 1.3096 | 20.6742 | 19.9978 | | 0.8493 | 287.0 | 290157 | 1.3106 | 20.6674 | 19.9981 | | 0.8521 | 288.0 | 291168 | 1.3099 | 20.5915 | 19.9981 | | 0.856 | 289.0 | 292179 | 1.3102 | 20.6448 | 19.9978 | | 0.8614 | 290.0 | 293190 | 1.3096 | 20.6515 | 19.9981 | | 0.8628 | 291.0 | 294201 | 1.3108 | 20.6679 | 19.9978 | | 0.8498 | 292.0 | 295212 | 1.3104 | 20.6623 | 19.9978 | | 0.8617 | 293.0 | 296223 | 1.3097 | 20.6591 | 19.9978 | | 0.8563 | 294.0 | 297234 | 1.3098 | 20.6266 | 19.9978 | | 0.856 | 295.0 | 298245 | 1.3095 | 20.6536 | 19.9978 | | 0.8493 | 296.0 | 299256 | 1.3095 | 20.6273 | 19.9978 | | 0.8498 | 297.0 | 300267 | 1.3092 | 20.5942 | 19.9978 | | 0.8539 | 298.0 | 301278 | 1.3092 | 20.5942 | 19.9978 | | 0.8608 | 299.0 | 302289 | 1.3091 | 20.5915 | 19.9981 | | 0.8437 | 300.0 | 303300 | 1.3091 | 20.5964 | 19.9981 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
29thDay/PPO-CartPole-v1
29thDay
2022-08-04T11:17:41Z
5
0
stable-baselines3
[ "stable-baselines3", "CartPole-v1", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-03T08:41:13Z
--- library_name: stable-baselines3 tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 --- # **PPO** Agent playing **CartPole-v1** This is a trained model of a **PPO** agent playing **CartPole-v1** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
elopezlopez/Bio_ClinicalBERT_fold_10_binary_v1
elopezlopez
2022-08-04T11:10:27Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T21:03:44Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: Bio_ClinicalBERT_fold_10_binary_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bio_ClinicalBERT_fold_10_binary_v1 This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5504 - F1: 0.8243 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 288 | 0.3803 | 0.8103 | | 0.4005 | 2.0 | 576 | 0.4769 | 0.8070 | | 0.4005 | 3.0 | 864 | 0.5258 | 0.7955 | | 0.1889 | 4.0 | 1152 | 0.7423 | 0.8153 | | 0.1889 | 5.0 | 1440 | 1.1246 | 0.8012 | | 0.0703 | 6.0 | 1728 | 1.1325 | 0.8039 | | 0.0246 | 7.0 | 2016 | 1.2192 | 0.8196 | | 0.0246 | 8.0 | 2304 | 1.3645 | 0.8050 | | 0.0192 | 9.0 | 2592 | 1.4029 | 0.8087 | | 0.0192 | 10.0 | 2880 | 1.3714 | 0.8117 | | 0.0107 | 11.0 | 3168 | 1.4673 | 0.8092 | | 0.0107 | 12.0 | 3456 | 1.3941 | 0.8199 | | 0.0084 | 13.0 | 3744 | 1.4350 | 0.8126 | | 0.0083 | 14.0 | 4032 | 1.4428 | 0.8162 | | 0.0083 | 15.0 | 4320 | 1.2892 | 0.8263 | | 0.0119 | 16.0 | 4608 | 1.4238 | 0.8222 | | 0.0119 | 17.0 | 4896 | 1.4961 | 0.8174 | | 0.0046 | 18.0 | 5184 | 1.5010 | 0.8107 | | 0.0046 | 19.0 | 5472 | 1.4876 | 0.8215 | | 0.0036 | 20.0 | 5760 | 1.5080 | 0.8180 | | 0.0031 | 21.0 | 6048 | 1.5317 | 0.8261 | | 0.0031 | 22.0 | 6336 | 1.5103 | 0.8215 | | 0.0005 | 23.0 | 6624 | 1.5255 | 0.8197 | | 0.0005 | 24.0 | 6912 | 1.5578 | 0.8257 | | 0.0001 | 25.0 | 7200 | 1.5504 | 0.8243 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
yochen/distilroberta-base-finetuned-marktextepoch_200
yochen
2022-08-04T10:31:19Z
5
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-04T07:42:55Z
--- tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-marktextepoch_200 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-marktextepoch_200 This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
Saraswati/Reinforce-CartPole-v1
Saraswati
2022-08-04T09:09:12Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-08-03T12:03:32Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - metrics: - type: mean_reward value: 8.30 +/- 4.96 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
elopezlopez/Bio_ClinicalBERT_fold_4_binary_v1
elopezlopez
2022-08-04T08:55:35Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T18:29:31Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: Bio_ClinicalBERT_fold_4_binary_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bio_ClinicalBERT_fold_4_binary_v1 This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4627 - F1: 0.8342 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 289 | 0.3641 | 0.8394 | | 0.3953 | 2.0 | 578 | 0.3729 | 0.8294 | | 0.3953 | 3.0 | 867 | 0.6156 | 0.8126 | | 0.189 | 4.0 | 1156 | 0.7389 | 0.8326 | | 0.189 | 5.0 | 1445 | 0.8925 | 0.8322 | | 0.0783 | 6.0 | 1734 | 1.0909 | 0.8196 | | 0.0219 | 7.0 | 2023 | 1.1241 | 0.8346 | | 0.0219 | 8.0 | 2312 | 1.2684 | 0.8130 | | 0.0136 | 9.0 | 2601 | 1.2615 | 0.8202 | | 0.0136 | 10.0 | 2890 | 1.2477 | 0.8401 | | 0.0143 | 11.0 | 3179 | 1.3211 | 0.8254 | | 0.0143 | 12.0 | 3468 | 1.2627 | 0.8286 | | 0.0165 | 13.0 | 3757 | 1.3804 | 0.8264 | | 0.006 | 14.0 | 4046 | 1.3213 | 0.8414 | | 0.006 | 15.0 | 4335 | 1.3152 | 0.8427 | | 0.0117 | 16.0 | 4624 | 1.3373 | 0.8368 | | 0.0117 | 17.0 | 4913 | 1.3599 | 0.8406 | | 0.0021 | 18.0 | 5202 | 1.4072 | 0.8237 | | 0.0021 | 19.0 | 5491 | 1.3893 | 0.8336 | | 0.0045 | 20.0 | 5780 | 1.4331 | 0.8391 | | 0.0049 | 21.0 | 6069 | 1.4128 | 0.8370 | | 0.0049 | 22.0 | 6358 | 1.4660 | 0.8356 | | 0.0029 | 23.0 | 6647 | 1.4721 | 0.8388 | | 0.0029 | 24.0 | 6936 | 1.4636 | 0.8329 | | 0.0023 | 25.0 | 7225 | 1.4627 | 0.8342 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
neuralmagic/mobilebert-uncased-finetuned-squadv1
neuralmagic
2022-08-04T08:53:36Z
13
1
transformers
[ "transformers", "pytorch", "mobilebert", "question-answering", "bert", "oBERT", "en", "dataset:squad", "arxiv:2203.07259", "endpoints_compatible", "region:us" ]
question-answering
2022-07-31T19:12:10Z
--- tags: - bert - mobilebert - oBERT language: en datasets: squad --- # mobilebert-uncased-finetuned-squadv1 This model is a finetuned version of the [mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased/tree/main) model on the SQuADv1 task. To make this TPU-trained model stable when used in PyTorch on GPUs, the original model has been additionally pretrained for one epoch on BookCorpus and English Wikipedia with disabled dropout before finetuning on the SQuADv1 task. It is produced as part of the work on the paper [The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models](https://arxiv.org/abs/2203.07259). SQuADv1 dev-set: ``` EM = 83.96 F1 = 90.90 ``` Code: [https://github.com/neuralmagic/sparseml/tree/main/research/optimal_BERT_surgeon_oBERT](https://github.com/neuralmagic/sparseml/tree/main/research/optimal_BERT_surgeon_oBERT) If you find the model useful, please consider citing our work. ## Citation info ```bibtex @article{kurtic2022optimal, title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models}, author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan}, journal={arXiv preprint arXiv:2203.07259}, year={2022} } ```
BlackKakapo/t5-base-paraphrase-ro
BlackKakapo
2022-08-04T08:40:41Z
11
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "ro", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-04T08:27:22Z
--- annotations_creators: [] language: - ro language_creators: - machine-generated license: - apache-2.0 multilinguality: - monolingual pretty_name: BlackKakapo/t5-base-paraphrase-ro size_categories: - 10K<n<100K source_datasets: - original tags: [] task_categories: - text2text-generation task_ids: [] --- # Romanian paraphrase ![v1.0](https://img.shields.io/badge/V.1-03.08.2022-brightgreen) Fine-tune t5-base model for paraphrase. Since there is no Romanian dataset for paraphrasing, I had to create my own [dataset](https://huggingface.co/datasets/BlackKakapo/paraphrase-ro-v1). The dataset contains ~60k examples. ### How to use ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("BlackKakapo/t5-base-paraphrase-ro") model = AutoModelForSeq2SeqLM.from_pretrained("BlackKakapo/t5-base-paraphrase-ro") ``` ### Or ```python from transformers import T5ForConditionalGeneration, T5TokenizerFast model = T5ForConditionalGeneration.from_pretrained("BlackKakapo/t5-base-paraphrase-ro") tokenizer = T5TokenizerFast.from_pretrained("BlackKakapo/t5-base-paraphrase-ro") ``` ### Generate ```python text = "Am impresia că fac multe greșeli." encoding = tokenizer.encode_plus(text, pad_to_max_length=True, return_tensors="pt") input_ids, attention_masks = encoding["input_ids"].to(device), encoding["attention_mask"].to(device) beam_outputs = model.generate( input_ids=input_ids, attention_mask=attention_masks, do_sample=True, max_length=256, top_k=10, top_p=0.9, early_stopping=False, num_return_sequences=5 ) for beam_output in beam_outputs: text_para = tokenizer.decode(beam_output, skip_special_tokens=True,clean_up_tokenization_spaces=True) if text.lower() != text_para.lower() or text not in final_outputs: final_outputs.append(text_para) break print(final_outputs) ``` ### Output ```out ['Cred că fac multe greșeli.'] ```
elopezlopez/Bio_ClinicalBERT_fold_3_binary_v1
elopezlopez
2022-08-04T08:33:05Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T18:03:57Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: Bio_ClinicalBERT_fold_3_binary_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bio_ClinicalBERT_fold_3_binary_v1 This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8860 - F1: 0.8051 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 289 | 0.4493 | 0.7916 | | 0.3975 | 2.0 | 578 | 0.4608 | 0.7909 | | 0.3975 | 3.0 | 867 | 0.8364 | 0.7726 | | 0.1885 | 4.0 | 1156 | 1.0380 | 0.7902 | | 0.1885 | 5.0 | 1445 | 1.1612 | 0.7921 | | 0.0692 | 6.0 | 1734 | 1.3894 | 0.7761 | | 0.0295 | 7.0 | 2023 | 1.3730 | 0.7864 | | 0.0295 | 8.0 | 2312 | 1.4131 | 0.7939 | | 0.0161 | 9.0 | 2601 | 1.5538 | 0.7929 | | 0.0161 | 10.0 | 2890 | 1.6417 | 0.7931 | | 0.006 | 11.0 | 3179 | 1.5745 | 0.7974 | | 0.006 | 12.0 | 3468 | 1.7212 | 0.7908 | | 0.0132 | 13.0 | 3757 | 1.7349 | 0.7945 | | 0.0062 | 14.0 | 4046 | 1.7593 | 0.7908 | | 0.0062 | 15.0 | 4335 | 1.7420 | 0.8035 | | 0.0073 | 16.0 | 4624 | 1.7620 | 0.8007 | | 0.0073 | 17.0 | 4913 | 1.8286 | 0.7908 | | 0.0033 | 18.0 | 5202 | 1.7863 | 0.7977 | | 0.0033 | 19.0 | 5491 | 1.9275 | 0.7919 | | 0.0035 | 20.0 | 5780 | 1.8481 | 0.8042 | | 0.0035 | 21.0 | 6069 | 1.9465 | 0.8012 | | 0.0035 | 22.0 | 6358 | 1.8177 | 0.8044 | | 0.005 | 23.0 | 6647 | 1.8615 | 0.8030 | | 0.005 | 24.0 | 6936 | 1.8427 | 0.8054 | | 0.0011 | 25.0 | 7225 | 1.8860 | 0.8051 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
elopezlopez/Bio_ClinicalBERT_fold_2_binary_v1
elopezlopez
2022-08-04T08:10:50Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T17:38:02Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: Bio_ClinicalBERT_fold_2_binary_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bio_ClinicalBERT_fold_2_binary_v1 This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9317 - F1: 0.7921 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 290 | 0.4221 | 0.7856 | | 0.4062 | 2.0 | 580 | 0.5184 | 0.7949 | | 0.4062 | 3.0 | 870 | 0.6854 | 0.7840 | | 0.1775 | 4.0 | 1160 | 0.9834 | 0.7840 | | 0.1775 | 5.0 | 1450 | 1.3223 | 0.7804 | | 0.0697 | 6.0 | 1740 | 1.2896 | 0.7923 | | 0.0265 | 7.0 | 2030 | 1.4620 | 0.7914 | | 0.0265 | 8.0 | 2320 | 1.5554 | 0.7835 | | 0.0102 | 9.0 | 2610 | 1.7009 | 0.7880 | | 0.0102 | 10.0 | 2900 | 1.6163 | 0.7923 | | 0.015 | 11.0 | 3190 | 1.6851 | 0.7841 | | 0.015 | 12.0 | 3480 | 1.7493 | 0.7901 | | 0.0141 | 13.0 | 3770 | 1.8819 | 0.7827 | | 0.0133 | 14.0 | 4060 | 1.7535 | 0.7939 | | 0.0133 | 15.0 | 4350 | 1.6613 | 0.7966 | | 0.0067 | 16.0 | 4640 | 1.6807 | 0.7999 | | 0.0067 | 17.0 | 4930 | 1.6703 | 0.7978 | | 0.0053 | 18.0 | 5220 | 1.7309 | 0.8013 | | 0.0037 | 19.0 | 5510 | 1.8058 | 0.7942 | | 0.0037 | 20.0 | 5800 | 1.8233 | 0.7916 | | 0.0023 | 21.0 | 6090 | 1.8206 | 0.7913 | | 0.0023 | 22.0 | 6380 | 1.8466 | 0.7949 | | 0.0012 | 23.0 | 6670 | 1.8531 | 0.7985 | | 0.0012 | 24.0 | 6960 | 1.9211 | 0.7944 | | 0.0001 | 25.0 | 7250 | 1.9317 | 0.7921 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
radi-cho/poetry-bg
radi-cho
2022-08-04T08:08:34Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "torch", "custom_code", "bg", "dataset:chitanka", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2022-06-29T10:10:17Z
--- license: apache-2.0 language: - bg datasets: - chitanka tags: - torch inference: false --- # Bulgarian language poetry generation Pretrained model using causal language modeling (CLM) objective based on [GPT-2](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf). <br/> Developed by [Radostin Cholakov](https://www.linkedin.com/in/radostin-cholakov-bb4422146/) as a part of the [AzBuki.ML](https://azbuki-ml.com) initiatives. # How to use? ```python >>> from transformers import AutoModel, AutoTokenizer >>> >>> model_id = "radi-cho/poetry-bg" >>> tokenizer = AutoTokenizer.from_pretrained(model_id) >>> model = AutoModel.from_pretrained(model_id, trust_remote_code=True) >>> >>> input_ids = tokenizer.encode( >>> "[HED]Суетата на живота[NEL][BDY]", >>> add_special_tokens=False, >>> return_tensors='pt') >>> >>> output_ids = model.generate( >>> input_ids, >>> do_sample=True, >>> max_length=250, >>> top_p=0.98, >>> top_k=0, >>> pad_token_id=2, >>> eos_token_id=50258) >>> >>> output = tokenizer.decode(output_ids[0]) >>> >>> output = output.replace('[NEL]', '\n') >>> output = output.replace('[BDY]', '\n') >>> output = output.replace('[HED]', '') >>> output = output.replace('[SEP]', '') >>> >>> print(output) Суетата на живота Да страдам ли? Да страдам ли за това? Не, не за това, че умирам... Но само за това, че миговете ми са рани. Аз съм сам и търся утеха. ``` # Custom Tokens We introduced 3 custom tokens in the tokenizer - `[NEL]`, `[BDY]`, `[HED]` - `[HED]` denotes where the title of the poem begins; - `[BDY]` denotes where the body of the poem begins; - `[NEL]` marks the end of a verse and should be decoded as a new line; `[SEP]` (with id 50258) is the *end of sequence* token. # Credits - Inspired by [rmihaylov/gpt2-medium-bg](https://huggingface.co/rmihaylov/gpt2-medium-bg). - Data: [https://chitanka.info/texts/type/poetry](https://chitanka.info/texts/type/poetry);
FluxML/densenet121
FluxML
2022-08-04T06:39:56Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-08-04T06:12:25Z
--- license: mit --- DenseNet121 model ported from [torchvision](https://pytorch.org/vision/stable/index.html) for use with [Metalhead.jl](https://github.com/FluxML/Metalhead.jl). The scripts for creating this file can be found at [this gist](https://gist.github.com/darsnack/bfb8594cf5fdc702bdacb66586f518ef). To use this model in Julia, [add the Metalhead.jl package to your environment](https://pkgdocs.julialang.org/v1/managing-packages/#Adding-packages). Then execute: ```julia using Metalhead model = DenseNet(121; pretrain = true) ```
FluxML/densenet161
FluxML
2022-08-04T06:39:41Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-08-04T06:16:19Z
--- license: mit --- DenseNet161 model ported from [torchvision](https://pytorch.org/vision/stable/index.html) for use with [Metalhead.jl](https://github.com/FluxML/Metalhead.jl). The scripts for creating this file can be found at [this gist](https://gist.github.com/darsnack/bfb8594cf5fdc702bdacb66586f518ef). To use this model in Julia, [add the Metalhead.jl package to your environment](https://pkgdocs.julialang.org/v1/managing-packages/#Adding-packages). Then execute: ```julia using Metalhead model = DenseNet(161; pretrain = true) ```
FluxML/densenet169
FluxML
2022-08-04T06:39:26Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-08-04T06:20:00Z
--- license: mit --- DenseNet169 model ported from [torchvision](https://pytorch.org/vision/stable/index.html) for use with [Metalhead.jl](https://github.com/FluxML/Metalhead.jl). The scripts for creating this file can be found at [this gist](https://gist.github.com/darsnack/bfb8594cf5fdc702bdacb66586f518ef). To use this model in Julia, [add the Metalhead.jl package to your environment](https://pkgdocs.julialang.org/v1/managing-packages/#Adding-packages). Then execute: ```julia using Metalhead model = DenseNet(169; pretrain = true) ```
bash1130/bert-base-finetuned-ynat
bash1130
2022-08-04T06:19:20Z
20
1
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:klue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T19:50:38Z
--- tags: - generated_from_trainer datasets: - klue metrics: - f1 model-index: - name: bert-base-finetuned-ynat results: - task: name: Text Classification type: text-classification dataset: name: klue type: klue config: ynat split: train args: ynat metrics: - name: F1 type: f1 value: 0.871180664370084 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-finetuned-ynat This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.3609 - F1: 0.8712 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 179 | 0.3979 | 0.8611 | | No log | 2.0 | 358 | 0.3773 | 0.8669 | | 0.3007 | 3.0 | 537 | 0.3609 | 0.8712 | | 0.3007 | 4.0 | 716 | 0.3708 | 0.8708 | | 0.3007 | 5.0 | 895 | 0.3720 | 0.8697 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
kuberpmu/distilbert-base-cased-distilled-squad-finetuned-squad
kuberpmu
2022-08-04T05:44:45Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad_v2_yash", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-08-04T05:20:11Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2_yash model-index: - name: distilbert-base-cased-distilled-squad-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-cased-distilled-squad-finetuned-squad This model is a fine-tuned version of [distilbert-base-cased-distilled-squad](https://huggingface.co/distilbert-base-cased-distilled-squad) on the squad_v2_yash dataset. It achieves the following results on the evaluation set: - Loss: 0.0088 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 198 | 0.5409 | | No log | 2.0 | 396 | 0.3048 | | 0.9541 | 3.0 | 594 | 0.1764 | | 0.9541 | 4.0 | 792 | 0.1117 | | 0.9541 | 5.0 | 990 | 0.0634 | | 0.3052 | 6.0 | 1188 | 0.0345 | | 0.3052 | 7.0 | 1386 | 0.0229 | | 0.1129 | 8.0 | 1584 | 0.0152 | | 0.1129 | 9.0 | 1782 | 0.0101 | | 0.1129 | 10.0 | 1980 | 0.0088 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
keepitreal/mini-phobert-v2
keepitreal
2022-08-04T04:42:30Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-03T20:07:20Z
--- tags: - generated_from_trainer model-index: - name: mini-phobert-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mini-phobert-v2 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.3293 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
RayS2022/dqn-SpaceInvadersNoFrameskip-v4
RayS2022
2022-08-04T03:16:30Z
7
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-04T03:16:11Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 138.50 +/- 87.49 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga RayS2022 -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga RayS2022 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
jjjjjjjjjj/q-FrozenLake-v1-4x4-noSlippery
jjjjjjjjjj
2022-08-04T03:15:05Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-08-04T03:13:43Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="jjjjjjjjjj/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
yashwantk/distilbert-base-cased-distilled-squad-finetuned-squad
yashwantk
2022-08-04T02:42:07Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad_v2_yash", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-08-02T10:29:22Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2_yash model-index: - name: distilbert-base-cased-distilled-squad-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-cased-distilled-squad-finetuned-squad This model is a fine-tuned version of [distilbert-base-cased-distilled-squad](https://huggingface.co/distilbert-base-cased-distilled-squad) on the squad_v2_yash dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 198 | 0.7576 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
canIjoin/datafun
canIjoin
2022-08-04T02:29:03Z
5
0
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "token-classification", "zh", "arxiv:1810.04805", "arxiv:1907.11692", "arxiv:2001.04351", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-03T13:10:26Z
--- language: zh widget: - text: "江苏警方通报特斯拉冲进店铺" --- # Chinese RoBERTa-Base Model for NER ## Model description The model is used for named entity recognition. You can download the model either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo) (in UER-py format), or via HuggingFace from the link [roberta-base-finetuned-cluener2020-chinese](https://huggingface.co/uer/roberta-base-finetuned-cluener2020-chinese). ## How to use You can use this model directly with a pipeline for token classification : ```python >>> from transformers import AutoModelForTokenClassification,AutoTokenizer,pipeline >>> model = AutoModelForTokenClassification.from_pretrained('uer/roberta-base-finetuned-cluener2020-chinese') >>> tokenizer = AutoTokenizer.from_pretrained('uer/roberta-base-finetuned-cluener2020-chinese') >>> ner = pipeline('ner', model=model, tokenizer=tokenizer) >>> ner("江苏警方通报特斯拉冲进店铺") [ {'word': '江', 'score': 0.49153077602386475, 'entity': 'B-address', 'index': 1, 'start': 0, 'end': 1}, {'word': '苏', 'score': 0.6319217681884766, 'entity': 'I-address', 'index': 2, 'start': 1, 'end': 2}, {'word': '特', 'score': 0.5912262797355652, 'entity': 'B-company', 'index': 7, 'start': 6, 'end': 7}, {'word': '斯', 'score': 0.69145667552948, 'entity': 'I-company', 'index': 8, 'start': 7, 'end': 8}, {'word': '拉', 'score': 0.7054660320281982, 'entity': 'I-company', 'index': 9, 'start': 8, 'end': 9} ] ``` ## Training data [CLUENER2020](https://github.com/CLUEbenchmark/CLUENER2020) is used as training data. We only use the train set of the dataset. ## Training procedure The model is fine-tuned by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We fine-tune five epochs with a sequence length of 512 on the basis of the pre-trained model [chinese_roberta_L-12_H-768](https://huggingface.co/uer/chinese_roberta_L-12_H-768). At the end of each epoch, the model is saved when the best performance on development set is achieved. ``` python3 run_ner.py --pretrained_model_path models/cluecorpussmall_roberta_base_seq512_model.bin-250000 \ --vocab_path models/google_zh_vocab.txt \ --train_path datasets/cluener2020/train.tsv \ --dev_path datasets/cluener2020/dev.tsv \ --label2id_path datasets/cluener2020/label2id.json \ --output_model_path models/cluener2020_ner_model.bin \ --learning_rate 3e-5 --epochs_num 5 --batch_size 32 --seq_length 512 ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_token_classification_from_uer_to_huggingface.py --input_model_path models/cluener2020_ner_model.bin \ --output_model_path pytorch_model.bin \ --layers_num 12 ``` ### BibTeX entry and citation info ``` @article{devlin2018bert, title={BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding}, author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1810.04805}, year={2018} } @article{liu2019roberta, title={Roberta: A robustly optimized bert pretraining approach}, author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1907.11692}, year={2019} } @article{xu2020cluener2020, title={CLUENER2020: Fine-grained Name Entity Recognition for Chinese}, author={Xu, Liang and Dong, Qianqian and Yu, Cong and Tian, Yin and Liu, Weitang and Li, Lu and Zhang, Xuanwei}, journal={arXiv preprint arXiv:2001.04351}, year={2020} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ```
Mateopablo/Futur
Mateopablo
2022-08-04T02:27:52Z
0
0
null
[ "region:us" ]
null
2022-08-04T02:26:46Z
Mateo Martínez, argentinian license: afl-3.0 ---
jerryw/my_bert-base-cased
jerryw
2022-08-04T01:38:04Z
5
0
transformers
[ "transformers", "tf", "bert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-04T01:34:19Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: my_bert-base-cased results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # my_bert-base-cased This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.20.1 - TensorFlow 2.9.1 - Datasets 2.4.0 - Tokenizers 0.12.1
huggingtweets/elonmusk-srinithyananda
huggingtweets
2022-08-03T22:27:35Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-03T22:27:29Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1529956155937759233/Nyn1HZWF_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1157286539036020737/5TQyrkEw_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & KAILASA's SPH Nithyananda</div> <div style="text-align: center; font-size: 14px;">@elonmusk-srinithyananda</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & KAILASA's SPH Nithyananda. | Data | Elon Musk | KAILASA's SPH Nithyananda | | --- | --- | --- | | Tweets downloaded | 3200 | 3250 | | Retweets | 128 | 6 | | Short tweets | 982 | 523 | | Tweets kept | 2090 | 2721 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2y3fe7dn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk-srinithyananda's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/gywjziih) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/gywjziih/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elonmusk-srinithyananda') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
NX2411/wav2vec2-large-xlsr-korean-demo-colab-2
NX2411
2022-08-03T21:18:26Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-31T18:12:10Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xlsr-korean-demo-colab-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-korean-demo-colab-2 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2481 - Wer: 0.2480 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.7387 | 2.12 | 400 | 3.1791 | 1.0 | | 1.3766 | 4.23 | 800 | 0.4876 | 0.5264 | | 0.476 | 6.35 | 1200 | 0.2955 | 0.3648 | | 0.3209 | 8.46 | 1600 | 0.2926 | 0.3473 | | 0.2591 | 10.58 | 2000 | 0.2723 | 0.3094 | | 0.2055 | 12.7 | 2400 | 0.2746 | 0.3027 | | 0.1802 | 14.81 | 2800 | 0.2672 | 0.2976 | | 0.1552 | 16.93 | 3200 | 0.2822 | 0.2807 | | 0.1413 | 19.05 | 3600 | 0.2652 | 0.2856 | | 0.1232 | 21.16 | 4000 | 0.2631 | 0.2655 | | 0.1146 | 23.28 | 4400 | 0.2561 | 0.2574 | | 0.1086 | 25.4 | 4800 | 0.2461 | 0.2527 | | 0.0944 | 27.51 | 5200 | 0.2521 | 0.2535 | | 0.0881 | 29.63 | 5600 | 0.2481 | 0.2480 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
andrewzhang505/sample-factory-2-doom-battle
andrewzhang505
2022-08-03T20:49:22Z
7
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-29T16:53:16Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - metrics: - type: mean_reward value: 56.20 +/- 6.72 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_battle type: doom_battle --- A(n) **APPO** model trained on the **doom_battle** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
allegro/plt5-small
allegro
2022-08-03T20:20:31Z
262
2
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "T5", "translation", "summarization", "question answering", "reading comprehension", "pl", "arxiv:2205.08808", "license:cc-by-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:05Z
--- language: pl tags: - T5 - translation - summarization - question answering - reading comprehension datasets: - ccnet - nkjp - wikipedia - open subtitles - free readings license: cc-by-4.0 --- # plT5 Small **plT5** models are T5-based language models trained on Polish corpora. The models were optimized for the original T5 denoising target. ## Corpus plT5 was trained on six different corpora available for Polish language: | Corpus | Tokens | Documents | | :------ | ------: | ------: | | [CCNet Middle](https://github.com/facebookresearch/cc_net) | 3243M | 7.9M | | [CCNet Head](https://github.com/facebookresearch/cc_net) | 2641M | 7.0M | | [National Corpus of Polish](http://nkjp.pl/index.php?page=14&lang=1)| 1357M | 3.9M | | [Open Subtitles](http://opus.nlpl.eu/OpenSubtitles-v2018.php) | 1056M | 1.1M | [Wikipedia](https://dumps.wikimedia.org/) | 260M | 1.4M | | [Wolne Lektury](https://wolnelektury.pl/) | 41M | 5.5k | ## Tokenizer The training dataset was tokenized into subwords using a sentencepiece unigram model with vocabulary size of 50k tokens. ## Usage Example code: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("allegro/plt5-small") model = AutoModel.from_pretrained("allegro/plt5-small") ``` ## License CC BY 4.0 ## Citation If you use this model, please cite the following paper: ``` @article{chrabrowa2022evaluation, title={Evaluation of Transfer Learning for Polish with a Text-to-Text Model}, author={Chrabrowa, Aleksandra and Dragan, {\L}ukasz and Grzegorczyk, Karol and Kajtoch, Dariusz and Koszowski, Miko{\l}aj and Mroczkowski, Robert and Rybak, Piotr}, journal={arXiv preprint arXiv:2205.08808}, year={2022} } ``` ## Authors The model was trained by [**Machine Learning Research Team at Allegro**](https://ml.allegro.tech/) and [**Linguistic Engineering Group at Institute of Computer Science, Polish Academy of Sciences**](http://zil.ipipan.waw.pl/). You can contact us at: <a href="mailto:[email protected]">[email protected]</a>
allegro/plt5-large
allegro
2022-08-03T20:20:09Z
2,442
5
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "T5", "translation", "summarization", "question answering", "reading comprehension", "pl", "arxiv:2205.08808", "license:cc-by-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:05Z
--- language: pl tags: - T5 - translation - summarization - question answering - reading comprehension datasets: - ccnet - nkjp - wikipedia - open subtitles - free readings license: cc-by-4.0 --- # plT5 Large **plT5** models are T5-based language models trained on Polish corpora. The models were optimized for the original T5 denoising target. ## Corpus plT5 was trained on six different corpora available for Polish language: | Corpus | Tokens | Documents | | :------ | ------: | ------: | | [CCNet Middle](https://github.com/facebookresearch/cc_net) | 3243M | 7.9M | | [CCNet Head](https://github.com/facebookresearch/cc_net) | 2641M | 7.0M | | [National Corpus of Polish](http://nkjp.pl/index.php?page=14&lang=1)| 1357M | 3.9M | | [Open Subtitles](http://opus.nlpl.eu/OpenSubtitles-v2018.php) | 1056M | 1.1M | [Wikipedia](https://dumps.wikimedia.org/) | 260M | 1.4M | | [Wolne Lektury](https://wolnelektury.pl/) | 41M | 5.5k | ## Tokenizer The training dataset was tokenized into subwords using a sentencepiece unigram model with vocabulary size of 50k tokens. ## Usage Example code: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("allegro/plt5-large") model = AutoModel.from_pretrained("allegro/plt5-large") ``` ## License CC BY 4.0 ## Citation If you use this model, please cite the following paper: ``` @article{chrabrowa2022evaluation, title={Evaluation of Transfer Learning for Polish with a Text-to-Text Model}, author={Chrabrowa, Aleksandra and Dragan, {\L}ukasz and Grzegorczyk, Karol and Kajtoch, Dariusz and Koszowski, Miko{\l}aj and Mroczkowski, Robert and Rybak, Piotr}, journal={arXiv preprint arXiv:2205.08808}, year={2022} } ``` ## Authors The model was trained by [**Machine Learning Research Team at Allegro**](https://ml.allegro.tech/) and [**Linguistic Engineering Group at Institute of Computer Science, Polish Academy of Sciences**](http://zil.ipipan.waw.pl/). You can contact us at: <a href="mailto:[email protected]">[email protected]</a>
SharpAI/mal-tls-bert-base-relu-w1q8
SharpAI
2022-08-03T19:37:51Z
4
0
transformers
[ "transformers", "pytorch", "tf", "bert", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T19:37:23Z
--- tags: - generated_from_keras_callback model-index: - name: mal_tls-bert-base-relu-w1q8 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mal_tls-bert-base-relu-w1q8 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.15.0 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.10.3
BenWord/autotrain-APMv2Multiclass-1216046004
BenWord
2022-08-03T18:06:06Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "en", "dataset:BenWord/autotrain-data-APMv2Multiclass", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T18:03:06Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - BenWord/autotrain-data-APMv2Multiclass co2_eq_emissions: emissions: 2.4364900803769225 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1216046004 - CO2 Emissions (in grams): 2.4365 ## Validation Metrics - Loss: 0.094 - Accuracy: 1.000 - Macro F1: 1.000 - Micro F1: 1.000 - Weighted F1: 1.000 - Macro Precision: 1.000 - Micro Precision: 1.000 - Weighted Precision: 1.000 - Macro Recall: 1.000 - Micro Recall: 1.000 - Weighted Recall: 1.000 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/BenWord/autotrain-APMv2Multiclass-1216046004 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("BenWord/autotrain-APMv2Multiclass-1216046004", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("BenWord/autotrain-APMv2Multiclass-1216046004", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
MayaGalvez/bert-base-multilingual-cased-finetuned-nli
MayaGalvez
2022-08-03T16:48:33Z
18
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:xnli", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T11:58:59Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xnli metrics: - accuracy model-index: - name: bert-base-multilingual-cased-finetuned-nli results: - task: name: Text Classification type: text-classification dataset: name: xnli type: xnli config: en split: train args: en metrics: - name: Accuracy type: accuracy value: 0.8156626506024096 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-finetuned-nli This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the xnli dataset. It achieves the following results on the evaluation set: - Loss: 0.4681 - Accuracy: 0.8157 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.9299 | 0.02 | 200 | 0.8468 | 0.6277 | | 0.7967 | 0.03 | 400 | 0.7425 | 0.6855 | | 0.7497 | 0.05 | 600 | 0.7116 | 0.6924 | | 0.7083 | 0.07 | 800 | 0.6868 | 0.7153 | | 0.6882 | 0.08 | 1000 | 0.6638 | 0.7289 | | 0.6944 | 0.1 | 1200 | 0.6476 | 0.7361 | | 0.6682 | 0.11 | 1400 | 0.6364 | 0.7458 | | 0.6635 | 0.13 | 1600 | 0.6592 | 0.7337 | | 0.6423 | 0.15 | 1800 | 0.6120 | 0.7510 | | 0.6196 | 0.16 | 2000 | 0.5990 | 0.7582 | | 0.6381 | 0.18 | 2200 | 0.6026 | 0.7538 | | 0.6276 | 0.2 | 2400 | 0.6054 | 0.7598 | | 0.6248 | 0.21 | 2600 | 0.6368 | 0.7526 | | 0.6331 | 0.23 | 2800 | 0.5959 | 0.7655 | | 0.6142 | 0.24 | 3000 | 0.6117 | 0.7554 | | 0.6124 | 0.26 | 3200 | 0.6221 | 0.7570 | | 0.6127 | 0.28 | 3400 | 0.5748 | 0.7695 | | 0.602 | 0.29 | 3600 | 0.5735 | 0.7598 | | 0.5923 | 0.31 | 3800 | 0.5609 | 0.7723 | | 0.5827 | 0.33 | 4000 | 0.5635 | 0.7743 | | 0.5732 | 0.34 | 4200 | 0.5547 | 0.7771 | | 0.5757 | 0.36 | 4400 | 0.5629 | 0.7739 | | 0.5736 | 0.37 | 4600 | 0.5680 | 0.7659 | | 0.5642 | 0.39 | 4800 | 0.5437 | 0.7871 | | 0.5763 | 0.41 | 5000 | 0.5589 | 0.7807 | | 0.5713 | 0.42 | 5200 | 0.5355 | 0.7867 | | 0.5644 | 0.44 | 5400 | 0.5346 | 0.7888 | | 0.5727 | 0.46 | 5600 | 0.5519 | 0.7815 | | 0.5539 | 0.47 | 5800 | 0.5219 | 0.7900 | | 0.5516 | 0.49 | 6000 | 0.5560 | 0.7795 | | 0.5539 | 0.51 | 6200 | 0.5544 | 0.7847 | | 0.5693 | 0.52 | 6400 | 0.5322 | 0.7932 | | 0.5632 | 0.54 | 6600 | 0.5404 | 0.7936 | | 0.565 | 0.55 | 6800 | 0.5382 | 0.7880 | | 0.5555 | 0.57 | 7000 | 0.5364 | 0.7920 | | 0.5329 | 0.59 | 7200 | 0.5177 | 0.7964 | | 0.54 | 0.6 | 7400 | 0.5286 | 0.7916 | | 0.554 | 0.62 | 7600 | 0.5401 | 0.7835 | | 0.5447 | 0.64 | 7800 | 0.5261 | 0.7876 | | 0.5438 | 0.65 | 8000 | 0.5032 | 0.8020 | | 0.5505 | 0.67 | 8200 | 0.5220 | 0.7924 | | 0.5364 | 0.68 | 8400 | 0.5398 | 0.7876 | | 0.5317 | 0.7 | 8600 | 0.5310 | 0.7944 | | 0.5361 | 0.72 | 8800 | 0.5297 | 0.7936 | | 0.5204 | 0.73 | 9000 | 0.5270 | 0.7940 | | 0.5189 | 0.75 | 9200 | 0.5193 | 0.7964 | | 0.5348 | 0.77 | 9400 | 0.5270 | 0.7867 | | 0.5363 | 0.78 | 9600 | 0.5194 | 0.7924 | | 0.5184 | 0.8 | 9800 | 0.5298 | 0.7888 | | 0.5072 | 0.81 | 10000 | 0.4999 | 0.7992 | | 0.5229 | 0.83 | 10200 | 0.4922 | 0.8108 | | 0.5201 | 0.85 | 10400 | 0.5019 | 0.7920 | | 0.5304 | 0.86 | 10600 | 0.4959 | 0.7992 | | 0.5061 | 0.88 | 10800 | 0.5047 | 0.7980 | | 0.5291 | 0.9 | 11000 | 0.4974 | 0.8068 | | 0.5099 | 0.91 | 11200 | 0.4988 | 0.8036 | | 0.5271 | 0.93 | 11400 | 0.4899 | 0.8028 | | 0.5211 | 0.95 | 11600 | 0.4866 | 0.8092 | | 0.4977 | 0.96 | 11800 | 0.5059 | 0.7960 | | 0.5155 | 0.98 | 12000 | 0.4821 | 0.8084 | | 0.5061 | 0.99 | 12200 | 0.4763 | 0.8116 | | 0.4607 | 1.01 | 12400 | 0.5245 | 0.8020 | | 0.4435 | 1.03 | 12600 | 0.5021 | 0.8032 | | 0.4289 | 1.04 | 12800 | 0.5219 | 0.8060 | | 0.4227 | 1.06 | 13000 | 0.5119 | 0.8076 | | 0.4349 | 1.08 | 13200 | 0.4957 | 0.8104 | | 0.4331 | 1.09 | 13400 | 0.4914 | 0.8129 | | 0.4269 | 1.11 | 13600 | 0.4785 | 0.8145 | | 0.4185 | 1.12 | 13800 | 0.4879 | 0.8161 | | 0.4244 | 1.14 | 14000 | 0.4834 | 0.8149 | | 0.4016 | 1.16 | 14200 | 0.5084 | 0.8056 | | 0.4106 | 1.17 | 14400 | 0.4993 | 0.8052 | | 0.4345 | 1.19 | 14600 | 0.5029 | 0.8124 | | 0.4162 | 1.21 | 14800 | 0.4841 | 0.8120 | | 0.4239 | 1.22 | 15000 | 0.4756 | 0.8189 | | 0.4215 | 1.24 | 15200 | 0.4957 | 0.8088 | | 0.4157 | 1.25 | 15400 | 0.4845 | 0.8112 | | 0.3982 | 1.27 | 15600 | 0.5064 | 0.8048 | | 0.4056 | 1.29 | 15800 | 0.4827 | 0.8241 | | 0.4105 | 1.3 | 16000 | 0.4936 | 0.8088 | | 0.4221 | 1.32 | 16200 | 0.4800 | 0.8129 | | 0.4029 | 1.34 | 16400 | 0.4790 | 0.8181 | | 0.4346 | 1.35 | 16600 | 0.4802 | 0.8137 | | 0.4163 | 1.37 | 16800 | 0.4838 | 0.8213 | | 0.4106 | 1.39 | 17000 | 0.4905 | 0.8209 | | 0.4071 | 1.4 | 17200 | 0.4889 | 0.8153 | | 0.4077 | 1.42 | 17400 | 0.4801 | 0.8165 | | 0.4074 | 1.43 | 17600 | 0.4765 | 0.8217 | | 0.4095 | 1.45 | 17800 | 0.4942 | 0.8096 | | 0.4117 | 1.47 | 18000 | 0.4668 | 0.8225 | | 0.3991 | 1.48 | 18200 | 0.4814 | 0.8161 | | 0.4114 | 1.5 | 18400 | 0.4757 | 0.8193 | | 0.4061 | 1.52 | 18600 | 0.4702 | 0.8209 | | 0.4104 | 1.53 | 18800 | 0.4814 | 0.8149 | | 0.3997 | 1.55 | 19000 | 0.4833 | 0.8141 | | 0.3992 | 1.56 | 19200 | 0.4847 | 0.8169 | | 0.4021 | 1.58 | 19400 | 0.4893 | 0.8189 | | 0.4284 | 1.6 | 19600 | 0.4806 | 0.8173 | | 0.3915 | 1.61 | 19800 | 0.4952 | 0.8092 | | 0.4122 | 1.63 | 20000 | 0.4917 | 0.8112 | | 0.4164 | 1.65 | 20200 | 0.4769 | 0.8157 | | 0.4063 | 1.66 | 20400 | 0.4723 | 0.8141 | | 0.4087 | 1.68 | 20600 | 0.4701 | 0.8157 | | 0.4159 | 1.69 | 20800 | 0.4826 | 0.8141 | | 0.4 | 1.71 | 21000 | 0.4760 | 0.8133 | | 0.4024 | 1.73 | 21200 | 0.4755 | 0.8161 | | 0.4201 | 1.74 | 21400 | 0.4728 | 0.8173 | | 0.4066 | 1.76 | 21600 | 0.4690 | 0.8157 | | 0.3941 | 1.78 | 21800 | 0.4687 | 0.8181 | | 0.3987 | 1.79 | 22000 | 0.4735 | 0.8149 | | 0.4074 | 1.81 | 22200 | 0.4715 | 0.8137 | | 0.4083 | 1.83 | 22400 | 0.4660 | 0.8181 | | 0.4107 | 1.84 | 22600 | 0.4699 | 0.8161 | | 0.3924 | 1.86 | 22800 | 0.4732 | 0.8153 | | 0.4205 | 1.87 | 23000 | 0.4686 | 0.8177 | | 0.3962 | 1.89 | 23200 | 0.4688 | 0.8177 | | 0.3888 | 1.91 | 23400 | 0.4778 | 0.8124 | | 0.3978 | 1.92 | 23600 | 0.4713 | 0.8145 | | 0.3963 | 1.94 | 23800 | 0.4704 | 0.8145 | | 0.408 | 1.96 | 24000 | 0.4674 | 0.8165 | | 0.4014 | 1.97 | 24200 | 0.4679 | 0.8161 | | 0.3951 | 1.99 | 24400 | 0.4681 | 0.8157 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
sutd-ai/distilbert-base-uncased-finetuned-squad
sutd-ai
2022-08-03T16:43:10Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-08-03T12:59:58Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.5027 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2343 | 1.0 | 8235 | 1.3121 | | 0.9657 | 2.0 | 16470 | 1.2259 | | 0.7693 | 3.0 | 24705 | 1.5027 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
bhaskar75/ddpm-butterflies-128
bhaskar75
2022-08-03T15:55:42Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-08-03T15:08:41Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/bhaskar75/ddpm-butterflies-128/tensorboard?#scalars)
dminiotas05/distilbert-base-uncased-finetuned-ft1500_norm500
dminiotas05
2022-08-03T14:50:40Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T13:53:55Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-ft1500_norm500 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ft1500_norm500 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8852 - Mse: 2.9505 - Mae: 1.0272 - R2: 0.4233 - Accuracy: 0.4914 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:--------:| | 0.62 | 1.0 | 3122 | 0.8853 | 2.9511 | 1.0392 | 0.4232 | 0.4830 | | 0.5042 | 2.0 | 6244 | 0.8695 | 2.8984 | 1.0347 | 0.4335 | 0.4651 | | 0.309 | 3.0 | 9366 | 0.8852 | 2.9505 | 1.0272 | 0.4233 | 0.4914 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
DOOGLAK/wikigold_trained_no_DA
DOOGLAK
2022-08-03T14:33:52Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:wikigold_splits", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-03T14:25:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikigold_splits metrics: - precision - recall - f1 - accuracy model-index: - name: temp results: - task: name: Token Classification type: token-classification dataset: name: wikigold_splits type: wikigold_splits args: default metrics: - name: Precision type: precision value: 0.8517110266159695 - name: Recall type: recall value: 0.875 - name: F1 type: f1 value: 0.8631984585741811 - name: Accuracy type: accuracy value: 0.9607367910809501 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # temp This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the wikigold_splits dataset. It achieves the following results on the evaluation set: - Loss: 0.1322 - Precision: 0.8517 - Recall: 0.875 - F1: 0.8632 - Accuracy: 0.9607 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 167 | 0.1490 | 0.7583 | 0.7760 | 0.7671 | 0.9472 | | No log | 2.0 | 334 | 0.1337 | 0.8519 | 0.8464 | 0.8491 | 0.9572 | | 0.1569 | 3.0 | 501 | 0.1322 | 0.8517 | 0.875 | 0.8632 | 0.9607 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
elopezlopez/distilbert-base-uncased_fold_10_binary_v1
elopezlopez
2022-08-03T14:29:32Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T11:51:31Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-base-uncased_fold_10_binary_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_fold_10_binary_v1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6912 - F1: 0.7977 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 288 | 0.4002 | 0.8012 | | 0.4056 | 2.0 | 576 | 0.4372 | 0.8075 | | 0.4056 | 3.0 | 864 | 0.4720 | 0.8071 | | 0.1958 | 4.0 | 1152 | 0.8156 | 0.7980 | | 0.1958 | 5.0 | 1440 | 0.8633 | 0.8055 | | 0.0847 | 6.0 | 1728 | 0.9761 | 0.8041 | | 0.0356 | 7.0 | 2016 | 1.1816 | 0.7861 | | 0.0356 | 8.0 | 2304 | 1.2251 | 0.7918 | | 0.0215 | 9.0 | 2592 | 1.3423 | 0.7798 | | 0.0215 | 10.0 | 2880 | 1.3888 | 0.7913 | | 0.013 | 11.0 | 3168 | 1.2899 | 0.8040 | | 0.013 | 12.0 | 3456 | 1.4247 | 0.8051 | | 0.0049 | 13.0 | 3744 | 1.5436 | 0.7991 | | 0.0061 | 14.0 | 4032 | 1.5762 | 0.7991 | | 0.0061 | 15.0 | 4320 | 1.5461 | 0.7998 | | 0.0054 | 16.0 | 4608 | 1.5622 | 0.8018 | | 0.0054 | 17.0 | 4896 | 1.6658 | 0.7991 | | 0.0021 | 18.0 | 5184 | 1.6765 | 0.7972 | | 0.0021 | 19.0 | 5472 | 1.6864 | 0.7973 | | 0.0052 | 20.0 | 5760 | 1.6303 | 0.8030 | | 0.0029 | 21.0 | 6048 | 1.6631 | 0.7947 | | 0.0029 | 22.0 | 6336 | 1.6571 | 0.8006 | | 0.0027 | 23.0 | 6624 | 1.6729 | 0.7949 | | 0.0027 | 24.0 | 6912 | 1.6931 | 0.7934 | | 0.0001 | 25.0 | 7200 | 1.6912 | 0.7977 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
elopezlopez/distilbert-base-uncased_fold_9_binary_v1
elopezlopez
2022-08-03T14:14:40Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T11:37:21Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-base-uncased_fold_9_binary_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_fold_9_binary_v1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6965 - F1: 0.8090 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 291 | 0.4193 | 0.7989 | | 0.3993 | 2.0 | 582 | 0.4039 | 0.8026 | | 0.3993 | 3.0 | 873 | 0.5227 | 0.7995 | | 0.2044 | 4.0 | 1164 | 0.7264 | 0.8011 | | 0.2044 | 5.0 | 1455 | 0.8497 | 0.8007 | | 0.0882 | 6.0 | 1746 | 0.9543 | 0.8055 | | 0.0374 | 7.0 | 2037 | 1.1349 | 0.7997 | | 0.0374 | 8.0 | 2328 | 1.3175 | 0.8009 | | 0.0151 | 9.0 | 2619 | 1.3585 | 0.8030 | | 0.0151 | 10.0 | 2910 | 1.4202 | 0.8067 | | 0.0068 | 11.0 | 3201 | 1.4364 | 0.8108 | | 0.0068 | 12.0 | 3492 | 1.4443 | 0.8088 | | 0.0096 | 13.0 | 3783 | 1.5308 | 0.8075 | | 0.0031 | 14.0 | 4074 | 1.5061 | 0.8020 | | 0.0031 | 15.0 | 4365 | 1.5769 | 0.7980 | | 0.0048 | 16.0 | 4656 | 1.5962 | 0.8038 | | 0.0048 | 17.0 | 4947 | 1.5383 | 0.8085 | | 0.0067 | 18.0 | 5238 | 1.5456 | 0.8158 | | 0.0062 | 19.0 | 5529 | 1.6325 | 0.8044 | | 0.0062 | 20.0 | 5820 | 1.5430 | 0.8141 | | 0.0029 | 21.0 | 6111 | 1.6590 | 0.8117 | | 0.0029 | 22.0 | 6402 | 1.6650 | 0.8112 | | 0.0017 | 23.0 | 6693 | 1.7016 | 0.8053 | | 0.0017 | 24.0 | 6984 | 1.6998 | 0.8090 | | 0.0011 | 25.0 | 7275 | 1.6965 | 0.8090 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
elopezlopez/distilbert-base-uncased_fold_8_binary_v1
elopezlopez
2022-08-03T13:59:34Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T11:22:48Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-base-uncased_fold_8_binary_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_fold_8_binary_v1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6283 - F1: 0.8178 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 290 | 0.4038 | 0.7981 | | 0.409 | 2.0 | 580 | 0.4023 | 0.8176 | | 0.409 | 3.0 | 870 | 0.5245 | 0.8169 | | 0.1938 | 4.0 | 1160 | 0.6242 | 0.8298 | | 0.1938 | 5.0 | 1450 | 0.8432 | 0.8159 | | 0.0848 | 6.0 | 1740 | 1.0887 | 0.8015 | | 0.038 | 7.0 | 2030 | 1.0700 | 0.8167 | | 0.038 | 8.0 | 2320 | 1.0970 | 0.8241 | | 0.0159 | 9.0 | 2610 | 1.2474 | 0.8142 | | 0.0159 | 10.0 | 2900 | 1.3453 | 0.8184 | | 0.01 | 11.0 | 3190 | 1.4412 | 0.8147 | | 0.01 | 12.0 | 3480 | 1.4263 | 0.8181 | | 0.007 | 13.0 | 3770 | 1.3859 | 0.8258 | | 0.0092 | 14.0 | 4060 | 1.4633 | 0.8128 | | 0.0092 | 15.0 | 4350 | 1.4304 | 0.8206 | | 0.0096 | 16.0 | 4640 | 1.5081 | 0.8149 | | 0.0096 | 17.0 | 4930 | 1.5239 | 0.8189 | | 0.0047 | 18.0 | 5220 | 1.5268 | 0.8151 | | 0.0053 | 19.0 | 5510 | 1.5445 | 0.8173 | | 0.0053 | 20.0 | 5800 | 1.6051 | 0.8180 | | 0.0014 | 21.0 | 6090 | 1.5981 | 0.8211 | | 0.0014 | 22.0 | 6380 | 1.5957 | 0.8225 | | 0.001 | 23.0 | 6670 | 1.5838 | 0.8189 | | 0.001 | 24.0 | 6960 | 1.6301 | 0.8178 | | 0.0018 | 25.0 | 7250 | 1.6283 | 0.8178 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
elopezlopez/distilbert-base-uncased_fold_7_binary_v1
elopezlopez
2022-08-03T13:44:34Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-02T23:18:34Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-base-uncased_fold_7_binary_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_fold_7_binary_v1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8361 - F1: 0.7958 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 288 | 0.4025 | 0.8071 | | 0.3986 | 2.0 | 576 | 0.3979 | 0.8072 | | 0.3986 | 3.0 | 864 | 0.5170 | 0.8041 | | 0.1761 | 4.0 | 1152 | 0.7946 | 0.7940 | | 0.1761 | 5.0 | 1440 | 1.0000 | 0.7937 | | 0.0705 | 6.0 | 1728 | 1.1484 | 0.7875 | | 0.0294 | 7.0 | 2016 | 1.1548 | 0.8042 | | 0.0294 | 8.0 | 2304 | 1.3036 | 0.8069 | | 0.0171 | 9.0 | 2592 | 1.4043 | 0.7943 | | 0.0171 | 10.0 | 2880 | 1.3356 | 0.8002 | | 0.0154 | 11.0 | 3168 | 1.4528 | 0.7996 | | 0.0154 | 12.0 | 3456 | 1.5514 | 0.7991 | | 0.005 | 13.0 | 3744 | 1.6341 | 0.8046 | | 0.0038 | 14.0 | 4032 | 1.6240 | 0.7984 | | 0.0038 | 15.0 | 4320 | 1.7476 | 0.8014 | | 0.0037 | 16.0 | 4608 | 1.6666 | 0.7982 | | 0.0037 | 17.0 | 4896 | 1.7495 | 0.7950 | | 0.0083 | 18.0 | 5184 | 1.6993 | 0.7932 | | 0.0083 | 19.0 | 5472 | 1.6573 | 0.8077 | | 0.002 | 20.0 | 5760 | 1.7430 | 0.7980 | | 0.0012 | 21.0 | 6048 | 1.8135 | 0.7955 | | 0.0012 | 22.0 | 6336 | 1.8316 | 0.7972 | | 0.0022 | 23.0 | 6624 | 1.8717 | 0.7926 | | 0.0022 | 24.0 | 6912 | 1.8183 | 0.7978 | | 0.0014 | 25.0 | 7200 | 1.8361 | 0.7958 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
elopezlopez/distilbert-base-uncased_fold_13_binary_v1
elopezlopez
2022-08-03T12:48:08Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T12:34:31Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-base-uncased_fold_13_binary_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_fold_13_binary_v1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7433 - F1: 0.8138 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 291 | 0.4101 | 0.8087 | | 0.4128 | 2.0 | 582 | 0.4605 | 0.8197 | | 0.4128 | 3.0 | 873 | 0.5011 | 0.8130 | | 0.1997 | 4.0 | 1164 | 0.6882 | 0.8147 | | 0.1997 | 5.0 | 1455 | 0.9653 | 0.8092 | | 0.0913 | 6.0 | 1746 | 1.1020 | 0.8031 | | 0.0347 | 7.0 | 2037 | 1.2687 | 0.8050 | | 0.0347 | 8.0 | 2328 | 1.2383 | 0.8103 | | 0.0173 | 9.0 | 2619 | 1.3631 | 0.8066 | | 0.0173 | 10.0 | 2910 | 1.4282 | 0.8001 | | 0.0104 | 11.0 | 3201 | 1.4410 | 0.8179 | | 0.0104 | 12.0 | 3492 | 1.5318 | 0.8018 | | 0.0063 | 13.0 | 3783 | 1.5866 | 0.8018 | | 0.0043 | 14.0 | 4074 | 1.4987 | 0.8159 | | 0.0043 | 15.0 | 4365 | 1.6275 | 0.8181 | | 0.0048 | 16.0 | 4656 | 1.5811 | 0.8231 | | 0.0048 | 17.0 | 4947 | 1.6228 | 0.8182 | | 0.0048 | 18.0 | 5238 | 1.7235 | 0.8138 | | 0.0055 | 19.0 | 5529 | 1.7018 | 0.8066 | | 0.0055 | 20.0 | 5820 | 1.7340 | 0.8069 | | 0.0046 | 21.0 | 6111 | 1.7143 | 0.8156 | | 0.0046 | 22.0 | 6402 | 1.7367 | 0.8159 | | 0.0037 | 23.0 | 6693 | 1.7551 | 0.8151 | | 0.0037 | 24.0 | 6984 | 1.7479 | 0.8145 | | 0.0009 | 25.0 | 7275 | 1.7433 | 0.8138 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
bhavesh/arinfo_sample_dataset_finaltffwjv58-model-classification
bhavesh
2022-08-03T12:40:45Z
0
0
sklearn
[ "sklearn", "tabular-classification", "baseline-trainer", "license:apache-2.0", "region:us" ]
tabular-classification
2022-08-03T12:40:39Z
--- license: apache-2.0 library_name: sklearn tags: - tabular-classification - baseline-trainer --- ## Baseline Model trained on arinfo_sample_dataset_finaltffwjv58 to apply classification on model **Metrics of the best model:** accuracy 0.930688 recall_macro 0.655991 precision_macro 0.640972 f1_macro 0.638021 Name: DecisionTreeClassifier(class_weight='balanced', max_depth=2249), dtype: float64 **See model plot below:** <style>#sk-container-id-4 {color: black;background-color: white;}#sk-container-id-4 pre{padding: 0;}#sk-container-id-4 div.sk-toggleable {background-color: white;}#sk-container-id-4 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-4 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-4 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-4 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-4 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-4 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-4 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-4 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-4 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-4 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-4 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-4 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-4 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-4 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-4 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-4 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-4 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-4 div.sk-item {position: relative;z-index: 1;}#sk-container-id-4 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-4 div.sk-item::before, #sk-container-id-4 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-4 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-4 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-4 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-4 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-4 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-4 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-4 div.sk-label-container {text-align: center;}#sk-container-id-4 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-4 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-4" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;easypreprocessor&#x27;,EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless rto False False False ... False True False ownerNum False False False ... False False False cc False False False ... False False False insurance False False False ... False False False weight True False False ... False False False financer False False False ... False True False fu... class False False False ... False False False state False False False ... False False False year False False False ... False False False categoryId False False False ... False False False onroadPrice True False False ... False False False price_FAIR True False False ... False False False[13 rows x 7 columns])),(&#x27;decisiontreeclassifier&#x27;,DecisionTreeClassifier(class_weight=&#x27;balanced&#x27;,max_depth=2249))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-10" type="checkbox" ><label for="sk-estimator-id-10" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;easypreprocessor&#x27;,EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless rto False False False ... False True False ownerNum False False False ... False False False cc False False False ... False False False insurance False False False ... False False False weight True False False ... False False False financer False False False ... False True False fu... class False False False ... False False False state False False False ... False False False year False False False ... False False False categoryId False False False ... False False False onroadPrice True False False ... False False False price_FAIR True False False ... False False False[13 rows x 7 columns])),(&#x27;decisiontreeclassifier&#x27;,DecisionTreeClassifier(class_weight=&#x27;balanced&#x27;,max_depth=2249))])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-11" type="checkbox" ><label for="sk-estimator-id-11" class="sk-toggleable__label sk-toggleable__label-arrow">EasyPreprocessor</label><div class="sk-toggleable__content"><pre>EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless rto False False False ... False True False ownerNum False False False ... False False False cc False False False ... False False False insurance False False False ... False False False weight True False False ... False False False financer False False False ... False True False fuelType False False False ... False False False class False False False ... False False False state False False False ... False False False year False False False ... False False False categoryId False False False ... False False False onroadPrice True False False ... False False False price_FAIR True False False ... False False False[13 rows x 7 columns])</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-12" type="checkbox" ><label for="sk-estimator-id-12" class="sk-toggleable__label sk-toggleable__label-arrow">DecisionTreeClassifier</label><div class="sk-toggleable__content"><pre>DecisionTreeClassifier(class_weight=&#x27;balanced&#x27;, max_depth=2249)</pre></div></div></div></div></div></div></div> **Disclaimer:** This model is trained with dabl library as a baseline, for better results, use [AutoTrain](https://huggingface.co/autotrain). **Logs of training** including the models tried in the process can be found in logs.txt
elopezlopez/distilbert-base-uncased_fold_12_binary_v1
elopezlopez
2022-08-03T12:34:08Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-03T12:20:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-base-uncased_fold_12_binary_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_fold_12_binary_v1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7046 - F1: 0.8165 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 290 | 0.4165 | 0.7983 | | 0.4052 | 2.0 | 580 | 0.4005 | 0.8213 | | 0.4052 | 3.0 | 870 | 0.6003 | 0.8078 | | 0.1906 | 4.0 | 1160 | 0.8181 | 0.7945 | | 0.1906 | 5.0 | 1450 | 0.7775 | 0.7955 | | 0.0853 | 6.0 | 1740 | 1.0667 | 0.7912 | | 0.0407 | 7.0 | 2030 | 1.2061 | 0.7907 | | 0.0407 | 8.0 | 2320 | 1.2522 | 0.8011 | | 0.0145 | 9.0 | 2610 | 1.3073 | 0.8110 | | 0.0145 | 10.0 | 2900 | 1.4895 | 0.7994 | | 0.015 | 11.0 | 3190 | 1.4568 | 0.8082 | | 0.015 | 12.0 | 3480 | 1.4883 | 0.8058 | | 0.005 | 13.0 | 3770 | 1.4334 | 0.8217 | | 0.0026 | 14.0 | 4060 | 1.5032 | 0.8255 | | 0.0026 | 15.0 | 4350 | 1.5694 | 0.8193 | | 0.0062 | 16.0 | 4640 | 1.6058 | 0.8105 | | 0.0062 | 17.0 | 4930 | 1.7390 | 0.8058 | | 0.0051 | 18.0 | 5220 | 1.6942 | 0.8100 | | 0.0012 | 19.0 | 5510 | 1.6891 | 0.8151 | | 0.0012 | 20.0 | 5800 | 1.6961 | 0.8132 | | 0.0007 | 21.0 | 6090 | 1.6793 | 0.8168 | | 0.0007 | 22.0 | 6380 | 1.7542 | 0.8077 | | 0.0027 | 23.0 | 6670 | 1.6869 | 0.8203 | | 0.0027 | 24.0 | 6960 | 1.7006 | 0.8194 | | 0.0028 | 25.0 | 7250 | 1.7046 | 0.8165 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Saraswati/ppo-CartPole-v2
Saraswati
2022-08-03T12:28:15Z
0
0
null
[ "region:us" ]
null
2022-08-03T12:27:06Z
git lfs install git clone https://huggingface.co/Saraswati/ppo-CartPole-v2
wenkai-li/distilroberta-base-wikitextepoch_50
wenkai-li
2022-08-03T12:16:08Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-03T09:57:04Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-wikitextepoch_50 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-wikitextepoch_50 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6360 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 1.9729 | 1.0 | 2145 | 1.7725 | | 1.9158 | 2.0 | 4290 | 1.7521 | | 1.8479 | 3.0 | 6435 | 1.7376 | | 1.8081 | 4.0 | 8580 | 1.7272 | | 1.7966 | 5.0 | 10725 | 1.7018 | | 1.7284 | 6.0 | 12870 | 1.7010 | | 1.7198 | 7.0 | 15015 | 1.6868 | | 1.6985 | 8.0 | 17160 | 1.6879 | | 1.6712 | 9.0 | 19305 | 1.6930 | | 1.6489 | 10.0 | 21450 | 1.6594 | | 1.6643 | 11.0 | 23595 | 1.6856 | | 1.6215 | 12.0 | 25740 | 1.6816 | | 1.6125 | 13.0 | 27885 | 1.6714 | | 1.5936 | 14.0 | 30030 | 1.6760 | | 1.5745 | 15.0 | 32175 | 1.6660 | | 1.572 | 16.0 | 34320 | 1.6690 | | 1.5614 | 17.0 | 36465 | 1.6807 | | 1.558 | 18.0 | 38610 | 1.6711 | | 1.5305 | 19.0 | 40755 | 1.6446 | | 1.5021 | 20.0 | 42900 | 1.6573 | | 1.4923 | 21.0 | 45045 | 1.6648 | | 1.5086 | 22.0 | 47190 | 1.6757 | | 1.4895 | 23.0 | 49335 | 1.6525 | | 1.4918 | 24.0 | 51480 | 1.6577 | | 1.4642 | 25.0 | 53625 | 1.6633 | | 1.4604 | 26.0 | 55770 | 1.6462 | | 1.4644 | 27.0 | 57915 | 1.6509 | | 1.4633 | 28.0 | 60060 | 1.6417 | | 1.4188 | 29.0 | 62205 | 1.6519 | | 1.4066 | 30.0 | 64350 | 1.6363 | | 1.409 | 31.0 | 66495 | 1.6419 | | 1.4029 | 32.0 | 68640 | 1.6510 | | 1.4013 | 33.0 | 70785 | 1.6522 | | 1.3939 | 34.0 | 72930 | 1.6498 | | 1.3648 | 35.0 | 75075 | 1.6423 | | 1.3682 | 36.0 | 77220 | 1.6504 | | 1.3603 | 37.0 | 79365 | 1.6511 | | 1.3621 | 38.0 | 81510 | 1.6533 | | 1.3783 | 39.0 | 83655 | 1.6426 | | 1.3707 | 40.0 | 85800 | 1.6542 | | 1.3628 | 41.0 | 87945 | 1.6671 | | 1.3359 | 42.0 | 90090 | 1.6394 | | 1.3433 | 43.0 | 92235 | 1.6409 | | 1.3525 | 44.0 | 94380 | 1.6366 | | 1.3312 | 45.0 | 96525 | 1.6408 | | 1.3389 | 46.0 | 98670 | 1.6225 | | 1.3323 | 47.0 | 100815 | 1.6309 | | 1.3294 | 48.0 | 102960 | 1.6151 | | 1.3356 | 49.0 | 105105 | 1.6374 | | 1.3285 | 50.0 | 107250 | 1.6360 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.5.0 - Datasets 2.4.0 - Tokenizers 0.12.1
Rocketknight1/distilbert-base-uncased-finetuned-cola
Rocketknight1
2022-08-03T12:13:22Z
7
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Rocketknight1/distilbert-base-uncased-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Rocketknight1/distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3182 - Validation Loss: 0.4914 - Train Matthews Correlation: 0.5056 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1602, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Matthews Correlation | Epoch | |:----------:|:---------------:|:--------------------------:|:-----:| | 0.5126 | 0.4638 | 0.4555 | 0 | | 0.3182 | 0.4914 | 0.5056 | 1 | ### Framework versions - Transformers 4.22.0.dev0 - TensorFlow 2.9.1 - Datasets 2.4.1.dev0 - Tokenizers 0.11.0
Rookie-06/distilbert-base-uncased-finetuned-imdb
Rookie-06
2022-08-03T12:09:53Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-03T11:48:36Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4898 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
MCG-NJU/videomae-base-short-finetuned-ssv2
MCG-NJU
2022-08-03T10:23:28Z
6
1
transformers
[ "transformers", "pytorch", "videomae", "video-classification", "vision", "arxiv:2203.12602", "arxiv:2111.06377", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2022-08-02T16:17:19Z
--- license: "cc-by-nc-4.0" tags: - vision - video-classification --- # VideoMAE (base-sized model, fine-tuned on Something-Something-v2) VideoMAE model pre-trained for 800 epochs in a self-supervised way and fine-tuned in a supervised way on Something-Something-v2. It was introduced in the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Tong et al. and first released in [this repository](https://github.com/MCG-NJU/VideoMAE). Disclaimer: The team releasing VideoMAE did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description VideoMAE is an extension of [Masked Autoencoders (MAE)](https://arxiv.org/abs/2111.06377) to video. The architecture of the model is very similar to that of a standard Vision Transformer (ViT), with a decoder on top for predicting pixel values for masked patches. Videos are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds fixed sinus/cosinus position embeddings before feeding the sequence to the layers of the Transformer encoder. By pre-training the model, it learns an inner representation of videos that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled videos for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire video. ## Intended uses & limitations You can use the raw model for video classification into one of the 400 possible Kinetics-400 labels. ### How to use Here is how to use this model to classify a video: ```python from transformers import VideoMAEFeatureExtractor, VideoMAEForVideoClassification import numpy as np import torch video = list(np.random.randn(16, 3, 224, 224)) feature_extractor = VideoMAEFeatureExtractor.from_pretrained("MCG-NJU/videomae-base-short-finetuned-ssv2") model = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-short-finetuned-ssv2") inputs = feature_extractor(video, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/main/model_doc/videomae.html#). ## Training data (to do, feel free to open a PR) ## Training procedure ### Preprocessing (to do, feel free to open a PR) ### Pretraining (to do, feel free to open a PR) ## Evaluation results This model obtains a top-1 accuracy of 69.6 and a top-5 accuracy of 92.0 on the test set of Something-Something-v2. ### BibTeX entry and citation info ```bibtex misc{https://doi.org/10.48550/arxiv.2203.12602, doi = {10.48550/ARXIV.2203.12602}, url = {https://arxiv.org/abs/2203.12602}, author = {Tong, Zhan and Song, Yibing and Wang, Jue and Wang, Limin}, keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
spacestar1705/Reinforce-PixelCopter-PLE-v0
spacestar1705
2022-08-03T09:30:13Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-08-02T12:45:24Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PixelCopter-PLE-v0 results: - metrics: - type: mean_reward value: 10.60 +/- 9.50 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
SyedArsal/roberta-urdu-small-finetuned-news
SyedArsal
2022-08-03T09:13:02Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "multiple-choice", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
multiple-choice
2022-07-29T08:04:18Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-urdu-small-finetuned-news results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-urdu-small-finetuned-news This model is a fine-tuned version of [urduhack/roberta-urdu-small](https://huggingface.co/urduhack/roberta-urdu-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2702 - Accuracy: 0.9482 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5949 | 1.0 | 938 | 0.3626 | 0.9029 | | 0.1351 | 2.0 | 1876 | 0.2545 | 0.9389 | | 0.0281 | 3.0 | 2814 | 0.2702 | 0.9482 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
shashanksrinath/News_Sentiment_Analysis
shashanksrinath
2022-08-03T08:34:50Z
66
4
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-01T13:01:39Z
--- tags: - generated_from_trainer model-index: - name: News_Sentiment_Analysis results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # News_Sentiment_Analysis This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment-latest](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
ArneD/pegasus-samsum
ArneD
2022-08-03T07:54:09Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-03T06:20:40Z
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4884 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6902 | 0.54 | 500 | 1.4884 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu113 - Datasets 2.0.0 - Tokenizers 0.10.3
kws/dqn-SpaceInvadersNoFrameskip-v4
kws
2022-08-03T07:43:27Z
8
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-03T07:42:45Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 603.00 +/- 194.90 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga kws -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga kws ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
BekirTaha/dqn-SpaceInvadersNoFrameskip-v4
BekirTaha
2022-08-03T07:41:26Z
8
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-02T13:34:41Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 577.50 +/- 116.86 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga BekirTaha -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga BekirTaha ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
NimaBoscarino/July25Test
NimaBoscarino
2022-08-03T07:20:01Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-07-26T02:54:10Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # NimaBoscarino/July25Test This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('NimaBoscarino/July25Test') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('NimaBoscarino/July25Test') model = AutoModel.from_pretrained('NimaBoscarino/July25Test') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=NimaBoscarino/July25Test) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 2, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
rjac/ner-distilbert-cased
rjac
2022-08-03T06:45:38Z
6
0
transformers
[ "transformers", "pytorch", "tf", "distilbert", "token-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-03T06:33:03Z
--- tags: - generated_from_keras_callback model-index: - name: ner-distilber-cased results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ner-distilber-cased This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.20.1 - TensorFlow 2.9.1 - Datasets 2.3.2 - Tokenizers 0.12.1
Inkdrop/gpl
Inkdrop
2022-08-03T06:31:52Z
6
0
sentence-transformers
[ "sentence-transformers", "pytorch", "causal-lm", "sentence-similarity", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-08-01T12:12:11Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - causal-lm license: - cc-by-sa-4.0 --- # TODO: Name of Model TODO: Description ## Model Description TODO: Add relevant content (0) Base Transformer Type: RobertaModel (1) Pooling mean ## Usage (Sentence-Transformers) Using this model becomes more convenient when you have [sentence-transformers](https://github.com/UKPLab/sentence-transformers) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence"] model = SentenceTransformer(TODO) embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) ```python from transformers import AutoTokenizer, AutoModel import torch # The next step is optional if you want your own pooling function. # Max Pooling - Take the max value over time for every dimension. def max_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() token_embeddings[input_mask_expanded == 0] = -1e9 # Set padding tokens to large negative value max_over_time = torch.max(token_embeddings, 1)[0] return max_over_time # Sentences we want sentence embeddings for sentences = ['This is an example sentence'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained(TODO) model = AutoModel.from_pretrained(TODO) # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt')) # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = max_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## TODO: Training Procedure ## TODO: Evaluation Results ## TODO: Citing & Authors
woojinSong/my_bean_VIT
woojinSong
2022-08-03T05:58:02Z
55
1
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:beans", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-08-03T04:20:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - beans metrics: - accuracy model-index: - name: my_bean_VIT results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9924812030075187 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_bean_VIT This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0321 - Accuracy: 0.9925 ## Model description Bean datasets based Vision Transformer model. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2698 | 1.54 | 100 | 0.1350 | 0.9549 | | 0.0147 | 3.08 | 200 | 0.0321 | 0.9925 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
abyaugustinek/distilbert-base-uncased-finetuned
abyaugustinek
2022-08-03T05:09:00Z
4
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-03T04:41:55Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: abyaugustinek/distilbert-base-uncased-finetuned results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # abyaugustinek/distilbert-base-uncased-finetuned This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.3693 - Validation Loss: 1.2106 - Train Precision: 0.0 - Train Recall: 0.0 - Train F1: 0.0 - Train Accuracy: 0.6565 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 30, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 2.0691 | 1.5942 | 0.0 | 0.0 | 0.0 | 0.6565 | 0 | | 1.4705 | 1.2376 | 0.0 | 0.0 | 0.0 | 0.6565 | 1 | | 1.3693 | 1.2106 | 0.0 | 0.0 | 0.0 | 0.6565 | 2 | ### Framework versions - Transformers 4.21.0 - TensorFlow 2.7.0 - Datasets 2.3.2 - Tokenizers 0.12.1
amartyobanerjee/marian-finetuned-kde4-en-to-fr
amartyobanerjee
2022-08-03T03:32:12Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-06-15T08:33:22Z
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-fr results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 config: en-fr split: train args: en-fr metrics: - name: Bleu type: bleu value: 52.83113187001415 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 0.8560 - Bleu: 52.8311 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
wooihen/xlm-roberta-base-finetuned-panx-de
wooihen
2022-08-03T02:12:37Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-12T07:47:47Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8648740833380706 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - F1: 0.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2553 | 1.0 | 525 | 0.1575 | 0.8279 | | 0.1284 | 2.0 | 1050 | 0.1386 | 0.8463 | | 0.0813 | 3.0 | 1575 | 0.1365 | 0.8649 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
AykeeSalazar/vc-bantai-vit-withoutAMBI-adunest-v3
AykeeSalazar
2022-08-03T02:02:46Z
57
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-08-03T01:15:52Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vc-bantai-vit-withoutAMBI-adunest-v3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder args: Violation-Classification---Raw-10 metrics: - name: Accuracy type: accuracy value: 0.8218352310783658 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vc-bantai-vit-withoutAMBI-adunest-v3 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8889 - Accuracy: 0.8218 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.38 | 100 | 0.8208 | 0.7147 | | No log | 0.76 | 200 | 0.8861 | 0.7595 | | No log | 1.14 | 300 | 0.4306 | 0.7910 | | No log | 1.52 | 400 | 0.5222 | 0.8245 | | 0.3448 | 1.9 | 500 | 0.8621 | 0.7602 | | 0.3448 | 2.28 | 600 | 0.2902 | 0.8801 | | 0.3448 | 2.66 | 700 | 0.3687 | 0.8426 | | 0.3448 | 3.04 | 800 | 0.3585 | 0.8694 | | 0.3448 | 3.42 | 900 | 0.6546 | 0.7897 | | 0.2183 | 3.8 | 1000 | 0.3881 | 0.8272 | | 0.2183 | 4.18 | 1100 | 0.9650 | 0.7709 | | 0.2183 | 4.56 | 1200 | 0.6444 | 0.7917 | | 0.2183 | 4.94 | 1300 | 0.4685 | 0.8707 | | 0.2183 | 5.32 | 1400 | 0.4972 | 0.8506 | | 0.157 | 5.7 | 1500 | 0.4010 | 0.8513 | | 0.157 | 6.08 | 1600 | 0.4629 | 0.8419 | | 0.157 | 6.46 | 1700 | 0.4258 | 0.8714 | | 0.157 | 6.84 | 1800 | 0.4383 | 0.8573 | | 0.157 | 7.22 | 1900 | 0.5324 | 0.8493 | | 0.113 | 7.6 | 2000 | 0.3212 | 0.8942 | | 0.113 | 7.98 | 2100 | 0.8621 | 0.8326 | | 0.113 | 8.37 | 2200 | 0.6050 | 0.8131 | | 0.113 | 8.75 | 2300 | 0.7173 | 0.7991 | | 0.113 | 9.13 | 2400 | 0.5313 | 0.8125 | | 0.0921 | 9.51 | 2500 | 0.6584 | 0.8158 | | 0.0921 | 9.89 | 2600 | 0.8727 | 0.7930 | | 0.0921 | 10.27 | 2700 | 0.4222 | 0.8922 | | 0.0921 | 10.65 | 2800 | 0.5811 | 0.8265 | | 0.0921 | 11.03 | 2900 | 0.6175 | 0.8372 | | 0.0701 | 11.41 | 3000 | 0.3914 | 0.8835 | | 0.0701 | 11.79 | 3100 | 0.3364 | 0.8654 | | 0.0701 | 12.17 | 3200 | 0.6223 | 0.8359 | | 0.0701 | 12.55 | 3300 | 0.7830 | 0.8125 | | 0.0701 | 12.93 | 3400 | 0.4356 | 0.8942 | | 0.0552 | 13.31 | 3500 | 0.7553 | 0.8232 | | 0.0552 | 13.69 | 3600 | 0.9107 | 0.8292 | | 0.0552 | 14.07 | 3700 | 0.6108 | 0.8580 | | 0.0552 | 14.45 | 3800 | 0.5732 | 0.8567 | | 0.0552 | 14.83 | 3900 | 0.5087 | 0.8614 | | 0.0482 | 15.21 | 4000 | 0.8889 | 0.8218 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
elopezlopez/distilbert-base-uncased_fold_6_binary_v1
elopezlopez
2022-08-02T23:17:12Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-02T23:03:36Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-base-uncased_fold_6_binary_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_fold_6_binary_v1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7209 - F1: 0.8156 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 290 | 0.4115 | 0.8048 | | 0.3976 | 2.0 | 580 | 0.3980 | 0.8156 | | 0.3976 | 3.0 | 870 | 0.5953 | 0.8142 | | 0.1965 | 4.0 | 1160 | 0.7940 | 0.8057 | | 0.1965 | 5.0 | 1450 | 0.8098 | 0.8069 | | 0.0847 | 6.0 | 1740 | 1.0293 | 0.7913 | | 0.03 | 7.0 | 2030 | 1.1649 | 0.8073 | | 0.03 | 8.0 | 2320 | 1.2876 | 0.7973 | | 0.0166 | 9.0 | 2610 | 1.3260 | 0.8038 | | 0.0166 | 10.0 | 2900 | 1.3523 | 0.8084 | | 0.0062 | 11.0 | 3190 | 1.3814 | 0.8097 | | 0.0062 | 12.0 | 3480 | 1.4134 | 0.8165 | | 0.0113 | 13.0 | 3770 | 1.5374 | 0.8068 | | 0.006 | 14.0 | 4060 | 1.5808 | 0.8100 | | 0.006 | 15.0 | 4350 | 1.6551 | 0.7972 | | 0.0088 | 16.0 | 4640 | 1.5793 | 0.8116 | | 0.0088 | 17.0 | 4930 | 1.6134 | 0.8143 | | 0.0021 | 18.0 | 5220 | 1.6204 | 0.8119 | | 0.0031 | 19.0 | 5510 | 1.7006 | 0.8029 | | 0.0031 | 20.0 | 5800 | 1.6777 | 0.8145 | | 0.0019 | 21.0 | 6090 | 1.7202 | 0.8079 | | 0.0019 | 22.0 | 6380 | 1.7539 | 0.8053 | | 0.0008 | 23.0 | 6670 | 1.7408 | 0.8119 | | 0.0008 | 24.0 | 6960 | 1.7388 | 0.8176 | | 0.0014 | 25.0 | 7250 | 1.7209 | 0.8156 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1