modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-14 12:27:51
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
520 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-14 12:25:52
card
stringlengths
11
1.01M
facebook/mms-tts-ntm
facebook
2023-09-01T11:20:38Z
106
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:20:07Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Nateni Text-to-Speech This repository contains the **Nateni (ntm)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-ntm") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-ntm") text = "some example text in the Nateni language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-jam
facebook
2023-09-01T11:20:34Z
110
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:20:09Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Jamaican English Creole Text-to-Speech This repository contains the **Jamaican English Creole (jam)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-jam") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-jam") text = "some example text in the Jamaican English Creole language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-yad
facebook
2023-09-01T11:20:33Z
110
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:20:14Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Yagua Text-to-Speech This repository contains the **Yagua (yad)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-yad") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-yad") text = "some example text in the Yagua language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-thk
facebook
2023-09-01T11:20:30Z
107
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:20:07Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Kitharaka Text-to-Speech This repository contains the **Kitharaka (thk)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-thk") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-thk") text = "some example text in the Kitharaka language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-tha
facebook
2023-09-01T11:19:24Z
926
9
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:19:01Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Thai Text-to-Speech This repository contains the **Thai (tha)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-tha") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-tha") text = "some example text in the Thai language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-jac
facebook
2023-09-01T11:19:22Z
106
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:19:01Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Jakalteko Text-to-Speech This repository contains the **Jakalteko (jac)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-jac") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-jac") text = "some example text in the Jakalteko language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-rmc-script_latin
facebook
2023-09-01T11:19:02Z
106
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:18:45Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Romani, Carpathian Text-to-Speech This repository contains the **Romani, Carpathian (rmc-script_latin)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-rmc-script_latin") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-rmc-script_latin") text = "some example text in the Romani, Carpathian language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-kyf
facebook
2023-09-01T11:19:01Z
110
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:18:44Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Kouya Text-to-Speech This repository contains the **Kouya (kyf)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-kyf") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-kyf") text = "some example text in the Kouya language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-nst
facebook
2023-09-01T11:18:37Z
106
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:17:59Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Naga, Tangshang Text-to-Speech This repository contains the **Naga, Tangshang (nst)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-nst") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-nst") text = "some example text in the Naga, Tangshang language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-fin
facebook
2023-09-01T11:17:57Z
394
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:17:41Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Finnish Text-to-Speech This repository contains the **Finnish (fin)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-fin") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-fin") text = "some example text in the Finnish language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-kyc
facebook
2023-09-01T11:17:57Z
107
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:17:34Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Kyaka Text-to-Speech This repository contains the **Kyaka (kyc)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-kyc") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-kyc") text = "some example text in the Kyaka language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-tgo
facebook
2023-09-01T11:17:39Z
107
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:17:21Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Sudest Text-to-Speech This repository contains the **Sudest (tgo)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-tgo") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-tgo") text = "some example text in the Sudest language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-npy
facebook
2023-09-01T11:17:24Z
110
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:17:07Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Napu Text-to-Speech This repository contains the **Napu (npy)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-npy") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-npy") text = "some example text in the Napu language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-fij
facebook
2023-09-01T11:17:21Z
106
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:17:05Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Fijian Text-to-Speech This repository contains the **Fijian (fij)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-fij") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-fij") text = "some example text in the Fijian language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-xtn
facebook
2023-09-01T11:16:55Z
106
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:16:28Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Mixtec, Northern Tlaxiaco Text-to-Speech This repository contains the **Mixtec, Northern Tlaxiaco (xtn)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-xtn") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-xtn") text = "some example text in the Mixtec, Northern Tlaxiaco language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-kyb
facebook
2023-09-01T11:16:54Z
108
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:16:37Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Kalinga, Butbut Text-to-Speech This repository contains the **Kalinga, Butbut (kyb)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-kyb") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-kyb") text = "some example text in the Kalinga, Butbut language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-ixl-dialect_santamarianebaj
facebook
2023-09-01T11:16:45Z
110
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:16:28Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Ixil Text-to-Speech This repository contains the **Ixil (ixl-dialect_santamarianebaj)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-ixl-dialect_santamarianebaj") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-ixl-dialect_santamarianebaj") text = "some example text in the Ixil language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-fas
facebook
2023-09-01T11:16:26Z
928
4
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:16:07Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Persian Text-to-Speech This repository contains the **Persian (fas)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-fas") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-fas") text = "some example text in the Persian language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-ixl-dialect_sanjuancotzal
facebook
2023-09-01T11:15:55Z
106
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:15:32Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Ixil Text-to-Speech This repository contains the **Ixil (ixl-dialect_sanjuancotzal)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-ixl-dialect_sanjuancotzal") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-ixl-dialect_sanjuancotzal") text = "some example text in the Ixil language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-xtm
facebook
2023-09-01T11:15:54Z
106
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:15:32Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Mixtec, Magdalena Peñasco Text-to-Speech This repository contains the **Mixtec, Magdalena Peñasco (xtm)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-xtm") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-xtm") text = "some example text in the Mixtec, Magdalena Peñasco language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-tgk
facebook
2023-09-01T11:15:44Z
141
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:15:16Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Tajik Text-to-Speech This repository contains the **Tajik (tgk)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-tgk") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-tgk") text = "some example text in the Tajik language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-rim
facebook
2023-09-01T11:15:24Z
109
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:15:00Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Nyaturu Text-to-Speech This repository contains the **Nyaturu (rim)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-rim") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-rim") text = "some example text in the Nyaturu language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-kxm
facebook
2023-09-01T11:15:13Z
130
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:14:47Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Khmer, Northern Text-to-Speech This repository contains the **Khmer, Northern (kxm)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-kxm") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-kxm") text = "some example text in the Khmer, Northern language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-xte
facebook
2023-09-01T11:14:59Z
106
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:14:39Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Ketengban Text-to-Speech This repository contains the **Ketengban (xte)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-xte") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-xte") text = "some example text in the Ketengban language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-ixl-dialect_sangasparchajul
facebook
2023-09-01T11:14:54Z
109
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:14:25Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Ixil Text-to-Speech This repository contains the **Ixil (ixl-dialect_sangasparchajul)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-ixl-dialect_sangasparchajul") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-ixl-dialect_sangasparchajul") text = "some example text in the Ixil language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-fao
facebook
2023-09-01T11:14:34Z
131
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:14:02Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Faroese Text-to-Speech This repository contains the **Faroese (fao)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-fao") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-fao") text = "some example text in the Faroese language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-itv
facebook
2023-09-01T11:13:54Z
161
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:13:36Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Itawit Text-to-Speech This repository contains the **Itawit (itv)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-itv") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-itv") text = "some example text in the Itawit language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-fal
facebook
2023-09-01T11:13:20Z
108
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:13:03Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Fali, South Text-to-Speech This repository contains the **Fali, South (fal)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-fal") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-fal") text = "some example text in the Fali, South language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-rif-script_latin
facebook
2023-09-01T11:13:18Z
105
1
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:12:57Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Tarifit Text-to-Speech This repository contains the **Tarifit (rif-script_latin)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-rif-script_latin") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-rif-script_latin") text = "some example text in the Tarifit language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-itl
facebook
2023-09-01T11:13:09Z
341
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:12:40Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Itelmen Text-to-Speech This repository contains the **Itelmen (itl)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-itl") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-itl") text = "some example text in the Itelmen language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
VladiPa/volodya
VladiPa
2023-09-01T11:12:30Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-08-31T18:30:47Z
--- license: bigscience-openrail-m ---
facebook/mms-tts-noa
facebook
2023-09-01T11:12:28Z
105
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:12:01Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Woun Meu Text-to-Speech This repository contains the **Woun Meu (noa)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-noa") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-noa") text = "some example text in the Woun Meu language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-kwf
facebook
2023-09-01T11:12:03Z
105
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:11:24Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Kwara’ae Text-to-Speech This repository contains the **Kwara’ae (kwf)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-kwf") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-kwf") text = "some example text in the Kwara’ae language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-xsu
facebook
2023-09-01T11:11:55Z
109
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:11:33Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Sanumá Text-to-Speech This repository contains the **Sanumá (xsu)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-xsu") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-xsu") text = "some example text in the Sanumá language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
ldos/text_shortening_model_v3
ldos
2023-09-01T11:11:30Z
104
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-01T09:59:13Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer metrics: - rouge model-index: - name: text_shortening_model_v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text_shortening_model_v3 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4219 - Rouge1: 0.593 - Rouge2: 0.3643 - Rougel: 0.5423 - Rougelsum: 0.5412 - Bert precision: 0.8882 - Bert recall: 0.9022 - Average word count: 11.9 - Max word count: 17 - Min word count: 6 - Average token count: 17.2857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bert precision | Bert recall | Average word count | Max word count | Min word count | Average token count | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------------:|:-----------:|:------------------:|:--------------:|:--------------:|:-------------------:| | 1.6953 | 1.0 | 8 | 1.8235 | 0.5468 | 0.3281 | 0.4997 | 0.4987 | 0.8808 | 0.886 | 11.5786 | 18 | 6 | 16.8286 | | 1.4749 | 2.0 | 16 | 1.6832 | 0.5482 | 0.3138 | 0.4936 | 0.4934 | 0.8776 | 0.8889 | 12.1429 | 18 | 5 | 17.2929 | | 1.3967 | 3.0 | 24 | 1.6181 | 0.5653 | 0.3362 | 0.5121 | 0.512 | 0.8833 | 0.894 | 11.9143 | 18 | 5 | 17.0286 | | 1.3533 | 4.0 | 32 | 1.5757 | 0.5631 | 0.338 | 0.5133 | 0.5133 | 0.8838 | 0.8948 | 11.8786 | 18 | 4 | 16.9929 | | 1.3 | 5.0 | 40 | 1.5398 | 0.5748 | 0.3463 | 0.5256 | 0.525 | 0.8863 | 0.8977 | 11.95 | 18 | 4 | 16.9857 | | 1.2528 | 6.0 | 48 | 1.5159 | 0.58 | 0.3475 | 0.5261 | 0.5247 | 0.8855 | 0.8988 | 11.9571 | 18 | 5 | 17.0429 | | 1.2234 | 7.0 | 56 | 1.4974 | 0.5823 | 0.3515 | 0.5301 | 0.5289 | 0.8864 | 0.8993 | 11.8929 | 18 | 6 | 17.05 | | 1.2024 | 8.0 | 64 | 1.4819 | 0.5846 | 0.3575 | 0.5326 | 0.5312 | 0.8876 | 0.9014 | 11.9143 | 18 | 6 | 17.1429 | | 1.1665 | 9.0 | 72 | 1.4680 | 0.5881 | 0.3593 | 0.5367 | 0.5359 | 0.8877 | 0.9014 | 11.8571 | 17 | 6 | 17.1429 | | 1.1589 | 10.0 | 80 | 1.4567 | 0.5873 | 0.359 | 0.5314 | 0.5305 | 0.8873 | 0.9004 | 11.7929 | 17 | 6 | 17.0429 | | 1.1411 | 11.0 | 88 | 1.4501 | 0.5891 | 0.3627 | 0.5386 | 0.5373 | 0.8888 | 0.9017 | 11.85 | 17 | 6 | 17.1286 | | 1.1188 | 12.0 | 96 | 1.4460 | 0.5911 | 0.364 | 0.5399 | 0.5391 | 0.8881 | 0.9024 | 11.95 | 17 | 6 | 17.2786 | | 1.1061 | 13.0 | 104 | 1.4396 | 0.5908 | 0.3648 | 0.5395 | 0.5386 | 0.8881 | 0.9024 | 11.9071 | 17 | 6 | 17.3071 | | 1.0939 | 14.0 | 112 | 1.4328 | 0.5904 | 0.3625 | 0.5392 | 0.5384 | 0.8876 | 0.9018 | 11.9071 | 17 | 6 | 17.3 | | 1.0863 | 15.0 | 120 | 1.4305 | 0.5899 | 0.3633 | 0.5387 | 0.5379 | 0.8875 | 0.9015 | 11.8714 | 17 | 6 | 17.2714 | | 1.0792 | 16.0 | 128 | 1.4286 | 0.5908 | 0.3636 | 0.5401 | 0.5392 | 0.8875 | 0.9018 | 11.8929 | 17 | 6 | 17.3 | | 1.0871 | 17.0 | 136 | 1.4255 | 0.5908 | 0.3628 | 0.5401 | 0.5392 | 0.8878 | 0.9017 | 11.8714 | 17 | 6 | 17.2571 | | 1.057 | 18.0 | 144 | 1.4229 | 0.5928 | 0.365 | 0.5427 | 0.5414 | 0.8886 | 0.9022 | 11.85 | 17 | 6 | 17.2357 | | 1.0554 | 19.0 | 152 | 1.4221 | 0.593 | 0.3643 | 0.5423 | 0.5412 | 0.8882 | 0.9022 | 11.9 | 17 | 6 | 17.2857 | | 1.06 | 20.0 | 160 | 1.4219 | 0.593 | 0.3643 | 0.5423 | 0.5412 | 0.8882 | 0.9022 | 11.9 | 17 | 6 | 17.2857 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
facebook/mms-tts-ewe
facebook
2023-09-01T11:11:27Z
916
1
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:11:08Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Éwé Text-to-Speech This repository contains the **Éwé (ewe)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-ewe") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-ewe") text = "some example text in the Éwé language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-tew
facebook
2023-09-01T11:11:24Z
105
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:11:03Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Tewa Text-to-Speech This repository contains the **Tewa (tew)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-tew") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-tew") text = "some example text in the Tewa language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-rhg
facebook
2023-09-01T11:11:22Z
108
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:11:00Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Rohingya Text-to-Speech This repository contains the **Rohingya (rhg)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-rhg") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-rhg") text = "some example text in the Rohingya language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-irk
facebook
2023-09-01T11:11:20Z
105
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:10:56Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Iraqw Text-to-Speech This repository contains the **Iraqw (irk)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-irk") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-irk") text = "some example text in the Iraqw language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-xsr
facebook
2023-09-01T11:11:13Z
118
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:10:29Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Sherpa Text-to-Speech This repository contains the **Sherpa (xsr)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-xsr") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-xsr") text = "some example text in the Sherpa language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-kwd
facebook
2023-09-01T11:11:08Z
107
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:10:34Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Kwaio Text-to-Speech This repository contains the **Kwaio (kwd)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-kwd") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-kwd") text = "some example text in the Kwaio language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-evn
facebook
2023-09-01T11:10:29Z
105
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:10:13Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Evenki Text-to-Speech This repository contains the **Evenki (evn)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-evn") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-evn") text = "some example text in the Evenki language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-iri
facebook
2023-09-01T11:10:18Z
105
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:09:49Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Rigwe Text-to-Speech This repository contains the **Rigwe (iri)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-iri") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-iri") text = "some example text in the Rigwe language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-nnq
facebook
2023-09-01T11:10:12Z
105
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:09:49Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Ngindo Text-to-Speech This repository contains the **Ngindo (nnq)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-nnq") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-nnq") text = "some example text in the Ngindo language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-eus
facebook
2023-09-01T11:09:43Z
177
2
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:09:24Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Basque Text-to-Speech This repository contains the **Basque (eus)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-eus") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eus") text = "some example text in the Basque language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-ter
facebook
2023-09-01T11:09:42Z
105
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:09:16Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Terêna Text-to-Speech This repository contains the **Terêna (ter)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-ter") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-ter") text = "some example text in the Terêna language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-rel
facebook
2023-09-01T11:09:17Z
105
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:09:00Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Rendille Text-to-Speech This repository contains the **Rendille (rel)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-rel") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-rel") text = "some example text in the Rendille language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-nnb
facebook
2023-09-01T11:09:09Z
109
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:08:52Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Nande Text-to-Speech This repository contains the **Nande (nnb)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-nnb") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-nnb") text = "some example text in the Nande language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-iqw
facebook
2023-09-01T11:09:09Z
105
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:08:52Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Ikwo Text-to-Speech This repository contains the **Ikwo (iqw)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-iqw") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-iqw") text = "some example text in the Ikwo language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-teo
facebook
2023-09-01T11:08:44Z
109
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:08:20Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Ateso Text-to-Speech This repository contains the **Ateso (teo)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-teo") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-teo") text = "some example text in the Ateso language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-rej
facebook
2023-09-01T11:08:31Z
107
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:08:08Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Rejang Text-to-Speech This repository contains the **Rejang (rej)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-rej") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-rej") text = "some example text in the Rejang language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-ipi
facebook
2023-09-01T11:08:20Z
109
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:07:56Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Ipili Text-to-Speech This repository contains the **Ipili (ipi)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-ipi") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-ipi") text = "some example text in the Ipili language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-kus
facebook
2023-09-01T11:07:58Z
105
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:07:39Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Kusaal Text-to-Speech This repository contains the **Kusaal (kus)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-kus") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-kus") text = "some example text in the Kusaal language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-kum
facebook
2023-09-01T11:07:11Z
109
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:06:50Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Kumyk Text-to-Speech This repository contains the **Kumyk (kum)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-kum") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-kum") text = "some example text in the Kumyk language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-xon
facebook
2023-09-01T11:06:46Z
110
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:06:27Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Konkomba Text-to-Speech This repository contains the **Konkomba (xon)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-xon") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-xon") text = "some example text in the Konkomba language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-rav
facebook
2023-09-01T11:06:35Z
116
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:06:11Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Sampang Text-to-Speech This repository contains the **Sampang (rav)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-rav") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-rav") text = "some example text in the Sampang language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-ind
facebook
2023-09-01T11:06:30Z
1,766
8
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:06:10Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Indonesian Text-to-Speech This repository contains the **Indonesian (ind)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-ind") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-ind") text = "some example text in the Indonesian language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-tee
facebook
2023-09-01T11:05:58Z
106
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:05:29Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Tepehua, Huehuetla Text-to-Speech This repository contains the **Tepehua, Huehuetla (tee)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-tee") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-tee") text = "some example text in the Tepehua, Huehuetla language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-xog
facebook
2023-09-01T11:05:48Z
114
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:05:26Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Soga Text-to-Speech This repository contains the **Soga (xog)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-xog") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-xog") text = "some example text in the Soga language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-inb
facebook
2023-09-01T11:05:38Z
108
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:05:11Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Inga Text-to-Speech This repository contains the **Inga (inb)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-inb") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-inb") text = "some example text in the Inga language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-nld
facebook
2023-09-01T11:05:26Z
598
2
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:04:55Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Dutch Text-to-Speech This repository contains the **Dutch (nld)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-nld") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-nld") text = "some example text in the Dutch language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-enb
facebook
2023-09-01T11:05:14Z
115
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:04:51Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Markweeta Text-to-Speech This repository contains the **Markweeta (enb)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-enb") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-enb") text = "some example text in the Markweeta language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-cab
facebook
2023-09-01T11:05:00Z
106
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:04:27Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Garifuna Text-to-Speech This repository contains the **Garifuna (cab)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-cab") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-cab") text = "some example text in the Garifuna language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-ktj
facebook
2023-09-01T11:04:22Z
105
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:04:05Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Krumen, Plapo Text-to-Speech This repository contains the **Krumen, Plapo (ktj)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-ktj") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-ktj") text = "some example text in the Krumen, Plapo language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-tdj
facebook
2023-09-01T11:03:47Z
106
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:03:29Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Tajio Text-to-Speech This repository contains the **Tajio (tdj)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-tdj") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-tdj") text = "some example text in the Tajio language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-ilo
facebook
2023-09-01T11:03:35Z
109
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:03:07Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Ilocano Text-to-Speech This repository contains the **Ilocano (ilo)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-ilo") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-ilo") text = "some example text in the Ilocano language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-ktb
facebook
2023-09-01T11:03:27Z
107
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:03:07Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Kambaata Text-to-Speech This repository contains the **Kambaata (ktb)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-ktb") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-ktb") text = "some example text in the Kambaata language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-nko
facebook
2023-09-01T11:03:12Z
107
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:02:53Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Nkonya Text-to-Speech This repository contains the **Nkonya (nko)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-nko") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-nko") text = "some example text in the Nkonya language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-kss
facebook
2023-09-01T11:02:24Z
118
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:02:05Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Kisi, Southern Text-to-Speech This repository contains the **Kisi, Southern (kss)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-kss") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-kss") text = "some example text in the Kisi, Southern language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-eka
facebook
2023-09-01T11:01:47Z
105
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:01:31Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Ekajuk Text-to-Speech This repository contains the **Ekajuk (eka)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-eka") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eka") text = "some example text in the Ekajuk language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-ikk
facebook
2023-09-01T11:01:32Z
107
1
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:00:51Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Ika Text-to-Speech This repository contains the **Ika (ikk)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-ikk") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-ikk") text = "some example text in the Ika language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-qxo
facebook
2023-09-01T11:01:22Z
109
0
transformers
[ "transformers", "pytorch", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:00:51Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Quechua, Southern Conchucos Text-to-Speech This repository contains the **Quechua, Southern Conchucos (qxo)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-qxo") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-qxo") text = "some example text in the Quechua, Southern Conchucos language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-nim
facebook
2023-09-01T11:01:08Z
106
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T11:00:51Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Nilamba Text-to-Speech This repository contains the **Nilamba (nim)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-nim") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-nim") text = "some example text in the Nilamba language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-nij
facebook
2023-09-01T10:59:54Z
108
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T10:59:14Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Ngaju Text-to-Speech This repository contains the **Ngaju (nij)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-nij") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-nij") text = "some example text in the Ngaju language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-dzo
facebook
2023-09-01T10:59:52Z
681
3
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T10:58:59Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Dzongkha Text-to-Speech This repository contains the **Dzongkha (dzo)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-dzo") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-dzo") text = "some example text in the Dzongkha language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-tca
facebook
2023-09-01T10:59:18Z
105
2
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T10:59:00Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Ticuna Text-to-Speech This repository contains the **Ticuna (tca)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-tca") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-tca") text = "some example text in the Ticuna language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
Veer15/Lunar-lander-mlp
Veer15
2023-09-01T10:58:33Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-01T10:44:17Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 287.16 +/- 18.15 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from huggingface_sb3 import load_from_hub checkpoint = load_from_hub( repo_id="Veer15/Lunar-lander-mlp", filename="{MODEL FILENAME}.zip", ) ... ```
facebook/mms-tts-xal
facebook
2023-09-01T10:58:30Z
105
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T10:58:01Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Kalmyk-Oirat Text-to-Speech This repository contains the **Kalmyk-Oirat (xal)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-xal") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-xal") text = "some example text in the Kalmyk-Oirat language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-nia
facebook
2023-09-01T10:58:29Z
106
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T10:58:10Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Nias Text-to-Speech This repository contains the **Nias (nia)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-nia") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-nia") text = "some example text in the Nias language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-tbz
facebook
2023-09-01T10:58:04Z
105
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T10:57:41Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Ditammari Text-to-Speech This repository contains the **Ditammari (tbz)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-tbz") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-tbz") text = "some example text in the Ditammari language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-dyu
facebook
2023-09-01T10:58:00Z
110
1
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T10:57:41Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Jula Text-to-Speech This repository contains the **Jula (dyu)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-dyu") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-dyu") text = "some example text in the Jula language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-krs
facebook
2023-09-01T10:57:51Z
0
0
null
[ "mms", "vits", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "region:us" ]
text-to-speech
2023-09-01T10:57:41Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Gbaya Text-to-Speech This repository contains the **Gbaya (krs)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-krs") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-krs") text = "some example text in the Gbaya language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-ify
facebook
2023-09-01T10:57:41Z
105
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T10:57:07Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Kallahan, Keley-i Text-to-Speech This repository contains the **Kallahan, Keley-i (ify)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-ify") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-ify") text = "some example text in the Kallahan, Keley-i language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-wwa
facebook
2023-09-01T10:57:29Z
106
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T10:57:09Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Waama Text-to-Speech This repository contains the **Waama (wwa)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-wwa") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-wwa") text = "some example text in the Waama language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-nhy
facebook
2023-09-01T10:57:28Z
105
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T10:57:09Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Nahuatl, Northern Oaxaca Text-to-Speech This repository contains the **Nahuatl, Northern Oaxaca (nhy)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-nhy") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-nhy") text = "some example text in the Nahuatl, Northern Oaxaca language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
nightdude/config_8019
nightdude
2023-09-01T10:56:47Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-01T10:55:46Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
facebook/mms-tts-dyo
facebook
2023-09-01T10:56:41Z
105
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T10:56:25Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Jola-Fonyi Text-to-Speech This repository contains the **Jola-Fonyi (dyo)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-dyo") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-dyo") text = "some example text in the Jola-Fonyi language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-krr
facebook
2023-09-01T10:56:30Z
107
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T10:56:04Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Krung Text-to-Speech This repository contains the **Krung (krr)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-krr") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-krr") text = "some example text in the Krung language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-tby
facebook
2023-09-01T10:56:21Z
106
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T10:56:05Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Tabaru Text-to-Speech This repository contains the **Tabaru (tby)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-tby") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-tby") text = "some example text in the Tabaru language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-ifu
facebook
2023-09-01T10:56:14Z
106
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T10:55:17Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Ifugao, Mayoyao Text-to-Speech This repository contains the **Ifugao, Mayoyao (ifu)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-ifu") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-ifu") text = "some example text in the Ifugao, Mayoyao language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-met
facebook
2023-09-01T10:56:13Z
107
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T10:55:56Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Mato Text-to-Speech This repository contains the **Mato (met)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-met") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-met") text = "some example text in the Mato language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-bwq
facebook
2023-09-01T10:56:10Z
105
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T10:55:17Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Bobo Madaré, Southern Text-to-Speech This repository contains the **Bobo Madaré, Southern (bwq)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-bwq") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-bwq") text = "some example text in the Bobo Madaré, Southern language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
AndrzejDD/lora-trained-xl-colab
AndrzejDD
2023-09-01T10:56:09Z
3
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-09-01T09:40:22Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of sks dog tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - AndrzejDD/lora-trained-xl-colab These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
facebook/mms-tts-dyi
facebook
2023-09-01T10:56:08Z
105
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T10:55:52Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Sénoufo, Djimini Text-to-Speech This repository contains the **Sénoufo, Djimini (dyi)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-dyi") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-dyi") text = "some example text in the Sénoufo, Djimini language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
dreamboat26/Tokenizers
dreamboat26
2023-09-01T10:55:18Z
0
0
null
[ "en", "license:afl-3.0", "region:us" ]
null
2023-09-01T08:27:49Z
--- license: afl-3.0 language: - en --- Tokenizers are one of the core components of the NLP pipeline. They serve one purpose: to translate text into data that can be processed by the model. Models can only process numbers, so tokenizers need to convert our text inputs to numerical data. In this section, we’ll explore exactly what happens in the tokenization pipeline. # Word-based There are also variations of word tokenizers that have extra rules for punctuation. With this kind of tokenizer, we can end up with some pretty large “vocabularies,” where a vocabulary is defined by the total number of independent tokens that we have in our corpus. Each word gets assigned an ID, starting from 0 and going up to the size of the vocabulary. The model uses these IDs to identify each word. # Character-based Character-based tokenizers split the text into characters, rather than words. This has two primary benefits: The vocabulary is much smaller. There are much fewer out-of-vocabulary (unknown) tokens, since every word can be built from characters. This approach isn’t perfect either. Since the representation is now based on characters rather than words, one could argue that, intuitively, it’s less meaningful: each character doesn’t mean a lot on its own, whereas that is the case with words. However, this again differs according to the language; in Chinese, for example, each character carries more information than a character in a Latin language. # Subword tokenization Subword tokenization algorithms rely on the principle that frequently used words should not be split into smaller subwords, but rare words should be decomposed into meaningful subwords. For instance, “annoyingly” might be considered a rare word and could be decomposed into “annoying” and “ly”. These are both likely to appear more frequently as standalone subwords, while at the same time the meaning of “annoyingly” is kept by the composite meaning of “annoying” and “ly”. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c94be17b4d0d947cf43b5a/1x5s_gCn3Jv3whThtHRLV.png)
facebook/mms-tts-meq
facebook
2023-09-01T10:54:36Z
111
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T10:54:13Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Merey Text-to-Speech This repository contains the **Merey (meq)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-meq") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-meq") text = "some example text in the Merey language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-krj
facebook
2023-09-01T10:54:10Z
105
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T10:53:49Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Kinaray-a Text-to-Speech This repository contains the **Kinaray-a (krj)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-krj") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-krj") text = "some example text in the Kinaray-a language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-tbk
facebook
2023-09-01T10:53:58Z
105
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T10:53:41Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Tagbanwa, Calamian Text-to-Speech This repository contains the **Tagbanwa, Calamian (tbk)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-tbk") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-tbk") text = "some example text in the Tagbanwa, Calamian language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-nhu
facebook
2023-09-01T10:53:33Z
104
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T10:52:52Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Noone Text-to-Speech This repository contains the **Noone (nhu)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-nhu") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-nhu") text = "some example text in the Noone language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-men
facebook
2023-09-01T10:53:19Z
113
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T10:53:01Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Mende Text-to-Speech This repository contains the **Mende (men)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-men") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-men") text = "some example text in the Mende language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.