modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-16 12:29:00
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
523 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-16 12:28:25
card
stringlengths
11
1.01M
junjuice0/VOXO-v0-4
junjuice0
2023-09-28T08:26:25Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-28T08:26:25Z
--- license: creativeml-openrail-m ---
asmaa1/videomae-base-groub10-finetuned-SLT-subset
asmaa1
2023-09-28T08:25:10Z
61
0
transformers
[ "transformers", "pytorch", "videomae", "video-classification", "generated_from_trainer", "base_model:MCG-NJU/videomae-base", "base_model:finetune:MCG-NJU/videomae-base", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2023-09-28T07:55:26Z
--- license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-groub10-finetuned-SLT-subset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-groub10-finetuned-SLT-subset This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.7437 - Accuracy: 0.1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.25 | 5 | 2.9087 | 0.1 | | 3.1062 | 1.25 | 10 | 2.8303 | 0.1 | | 3.1062 | 2.25 | 15 | 2.7706 | 0.1 | | 2.8191 | 3.25 | 20 | 2.7437 | 0.1 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.0+cpu - Datasets 2.1.0 - Tokenizers 0.13.3
hw2942/chinese-lert-base-SSE50
hw2942
2023-09-28T08:15:38Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:hfl/chinese-lert-base", "base_model:finetune:hfl/chinese-lert-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-28T08:09:10Z
--- license: apache-2.0 base_model: hfl/chinese-lert-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: chinese-lert-base-wallstreetcn-morning-news-market-overview-SSE50-10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # chinese-lert-base-wallstreetcn-morning-news-market-overview-SSE50-10 This model is a fine-tuned version of [hfl/chinese-lert-base](https://huggingface.co/hfl/chinese-lert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.3547 - Accuracy: 0.6364 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 34 | 3.8141 | 0.6364 | | No log | 2.0 | 68 | 3.0470 | 0.6667 | | No log | 3.0 | 102 | 3.6099 | 0.6364 | | No log | 4.0 | 136 | 3.5038 | 0.5758 | | No log | 5.0 | 170 | 3.7060 | 0.6364 | | No log | 6.0 | 204 | 3.6808 | 0.5758 | | No log | 7.0 | 238 | 3.4109 | 0.6667 | | No log | 8.0 | 272 | 3.9414 | 0.5455 | | No log | 9.0 | 306 | 3.3539 | 0.6364 | | No log | 10.0 | 340 | 3.3547 | 0.6364 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
dhrf/lora-Llama-2-7b-hf-qa-1epoch
dhrf
2023-09-28T08:06:57Z
0
1
peft
[ "peft", "region:us" ]
null
2023-09-28T07:51:26Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0 - PEFT 0.5.0
yaojiapeng/vit-base-beans
yaojiapeng
2023-09-28T08:02:56Z
193
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "vision", "generated_from_trainer", "dataset:beans", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-28T08:01:14Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - vision - generated_from_trainer datasets: - beans metrics: - accuracy model-index: - name: vit-base-beans results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9849624060150376 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0861 - Accuracy: 0.9850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3095 | 1.0 | 130 | 0.2102 | 0.9774 | | 0.2114 | 2.0 | 260 | 0.1360 | 0.9624 | | 0.1861 | 3.0 | 390 | 0.1154 | 0.9699 | | 0.0827 | 4.0 | 520 | 0.1022 | 0.9774 | | 0.1281 | 5.0 | 650 | 0.0861 | 0.9850 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.14.0
oshita-n/textual_inversion_11
oshita-n
2023-09-28T08:01:20Z
36
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "textual_inversion", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-28T07:55:56Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - oshita-n/textual_inversion_11 These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
TexR6/q-FrozenLake-v1-4x4-noSlippery
TexR6
2023-09-28T07:57:19Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-09-28T07:57:16Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="TexR6/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
npvinHnivqn/bloom-cot-small
npvinHnivqn
2023-09-28T07:52:44Z
3
0
peft
[ "peft", "region:us" ]
null
2023-09-24T05:47:57Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
eugene6/a2c-PandaReachDense-v3
eugene6
2023-09-28T07:51:49Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-28T07:46:34Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.19 +/- 0.08 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
filipealmeida/Mistral-7B-Instruct-v0.1-GGUF
filipealmeida
2023-09-28T07:50:49Z
16
0
null
[ "gguf", "finetuned", "text-generation", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2023-09-28T07:33:46Z
--- license: apache-2.0 pipeline_tag: text-generation tags: - finetuned --- # GGUF version of version of Mistral-7B-Instruct-v0.1 GGUF version of version of Mistral-7B-Instruct-v0.1 compatible with [llama.cpp](https://github.com/ggerganov/llama.cpp) This is the unquantized fp16 version of the model. # Model Card for Mistral-7B-Instruct-v0.1 The Mistral-7B-Instruct-v0.1 Large Language Model (LLM) is a instruct fine-tuned version of the [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) generative text model using a variety of publicly available conversation datasets. For full details of this model please read our [release blog post](https://mistral.ai/news/announcing-mistral-7b/) ## Instruction format In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[\INST]` tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id. E.g. ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1") tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1") text = "<s>[INST] What is your favourite condiment? [/INST]" "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> " "[INST] Do you have mayonnaise recipes? [/INST]" encodeds = tokenizer(text, return_tensors="pt", add_special_tokens=False) model_inputs = encodeds.to(device) model.to(device) generated_ids = model.generate(**model_inputs, max_new_tokens=1000, do_sample=True) decoded = tokenizer.batch_decode(generated_ids) print(decoded[0]) ``` ## Model Architecture This instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices: - Grouped-Query Attention - Sliding-Window Attention - Byte-fallback BPE tokenizer ## The Mistral AI Team Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
samuelleecong/speecht5_finetuned_swahili
samuelleecong
2023-09-28T07:48:36Z
82
0
transformers
[ "transformers", "pytorch", "speecht5", "text-to-audio", "generated_from_trainer", "text-to-speech", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-28T04:45:29Z
--- license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer model-index: - name: speecht5_finetuned_swahili results: [] pipeline_tag: text-to-speech --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_swahili This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the A kiswahili Dataset for Development of Text-To-Speech System dataset. It achieves the following results on the evaluation set: - eval_loss: 0.4618 - eval_runtime: 11.2006 - eval_samples_per_second: 54.015 - eval_steps_per_second: 27.052 - epoch: 11.76 - step: 2000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
raghvendramall/esm2_t6_8M_UR50D-localization-v1-finetuned-localization
raghvendramall
2023-09-28T07:35:12Z
103
0
transformers
[ "transformers", "pytorch", "esm", "text-classification", "generated_from_trainer", "base_model:facebook/esm2_t6_8M_UR50D", "base_model:finetune:facebook/esm2_t6_8M_UR50D", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-25T11:51:47Z
--- license: mit tags: - generated_from_trainer metrics: - f1 base_model: facebook/esm2_t6_8M_UR50D model-index: - name: esm2_t6_8M_UR50D-localization-v1-finetuned-localization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # esm2_t6_8M_UR50D-localization-v1-finetuned-localization This model is a fine-tuned version of [facebook/esm2_t6_8M_UR50D](https://huggingface.co/facebook/esm2_t6_8M_UR50D) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2123 - F1: 0.7355 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.4992 | 1.0 | 2048 | 0.5178 | 0.5567 | | 0.4623 | 2.0 | 4096 | 0.3970 | 0.6536 | | 0.3754 | 3.0 | 6144 | 0.5035 | 0.7153 | | 0.3396 | 4.0 | 8192 | 0.6703 | 0.6598 | | 0.2128 | 5.0 | 10240 | 0.7133 | 0.6876 | | 0.1336 | 6.0 | 12288 | 0.9024 | 0.7065 | | 0.0607 | 7.0 | 14336 | 0.9994 | 0.6841 | | 0.025 | 8.0 | 16384 | 1.1050 | 0.7046 | | 0.0098 | 9.0 | 18432 | 1.2199 | 0.7119 | | 0.0047 | 10.0 | 20480 | 1.2123 | 0.7355 | ### Framework versions - Transformers 4.28.0 - Pytorch 1.13.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
infCapital/llama2-7b-chat
infCapital
2023-09-28T07:22:49Z
7
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-23T15:49:58Z
--- {} --- Clone from meta-llama/llama2-7b-chat-hf and extend vocab_size up to 44800 (Add Vietnamese vocabs), may be not suitable for general purpose
metabloit/swahBERT
metabloit
2023-09-28T07:11:41Z
115
1
transformers
[ "transformers", "pytorch", "bert", "text-classification", "sw", "dataset:metabloit/offensive-swahili-text", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-14T11:14:09Z
--- license: mit language: - sw metrics: - accuracy - f1 - precision - recall model-index: - name: v1 results: - task: type: Offensive words classifier name: Text Classification metrics: - type: f1 value: 0.9272349272349272 name: F1 Score verified: false - type: precision value: 0.9550321199143469 name: Precision verified: false - type: recall value: 0.901010101010101 name: Recall verified: false - type: accuracy value: 0.9292214357937311 name: Accuracy verified: false datasets: - metabloit/offensive-swahili-text --- # swahBERT This model was fine tuned using the dataset listed below. It achieves the following results on the evaluation set: - Loss: 0.4982 - Accuracy: 0.9292 - Precision: 0.9550 - Recall: 0.9010 - F1: 0.9272 ## Model description This is a fine tuned swahBERT model. You can get the original model from [here](https://github.com/gatimartin/SwahBERT "swahBERT Model") ## Training and evaluation data The model was fine tuned using [this dataset](https://huggingface.co/datasets/metabloit/offensive-swahili-text "Swahili offensive/non-offensive dataset") ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 310 | 0.6506 | 0.9282 | 0.9417 | 0.9131 | 0.9272 | | 0.0189 | 2.0 | 620 | 0.4982 | 0.9292 | 0.9550 | 0.9010 | 0.9272 | | 0.0189 | 3.0 | 930 | 0.5387 | 0.9323 | 0.9693 | 0.8929 | 0.9295 | | 0.0314 | 4.0 | 1240 | 0.6365 | 0.9221 | 0.9524 | 0.8889 | 0.9195 | | 0.0106 | 5.0 | 1550 | 0.6687 | 0.9282 | 0.9473 | 0.9071 | 0.9267 | | 0.0106 | 6.0 | 1860 | 0.6671 | 0.9282 | 0.9454 | 0.9091 | 0.9269 | | 0.0016 | 7.0 | 2170 | 0.6908 | 0.9242 | 0.9468 | 0.8990 | 0.9223 | | 0.0016 | 8.0 | 2480 | 0.6832 | 0.9272 | 0.9471 | 0.9051 | 0.9256 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cpu - Datasets 2.14.5 - Tokenizers 0.13.3 ## References @inproceedings{martin-etal-2022-swahbert, title = "{S}wah{BERT}: Language Model of {S}wahili", author = "Martin, Gati and Mswahili, Medard Edmund and Jeong, Young-Seob and Woo, Jiyoung", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jul, year = "2022", address = "Seattle, United States", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.naacl-main.23", pages = "303--313" }
asmaa1/videomae-base-groub8-finetuned-SLT-subset
asmaa1
2023-09-28T06:57:40Z
61
0
transformers
[ "transformers", "pytorch", "videomae", "video-classification", "generated_from_trainer", "base_model:MCG-NJU/videomae-base", "base_model:finetune:MCG-NJU/videomae-base", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2023-09-28T06:26:10Z
--- license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-groub8-finetuned-SLT-subset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-groub8-finetuned-SLT-subset This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.7797 - Accuracy: 0.2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.25 | 5 | 2.9454 | 0.15 | | 3.1466 | 1.25 | 10 | 2.8727 | 0.15 | | 3.1466 | 2.25 | 15 | 2.8190 | 0.2 | | 2.8589 | 3.25 | 20 | 2.7797 | 0.2 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.0+cpu - Datasets 2.1.0 - Tokenizers 0.13.3
fishytorts/whisper-large-peft-lora-intent-voice-checker-v2
fishytorts
2023-09-28T06:55:00Z
1
0
peft
[ "peft", "region:us" ]
null
2023-09-27T15:05:51Z
--- library_name: peft --- ## LoraConfig arguments config = LoraConfig(r=32, lora_alpha=64, #target_modules=".*decoder.*(self_attn|encoder_attn).*(q_proj|v_proj)$",#["q_proj", "v_proj"], target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none") ## Training arguments training_args = TrainingArguments( output_dir="temp", # change to a repo name of your choice per_device_train_batch_size=8, gradient_accumulation_steps=2, # increase by 2x for every 2x decrease in batch size learning_rate=1e-3, warmup_steps=10, max_steps=400, #1500 #evaluation_strategy="steps", fp16=True, per_device_eval_batch_size=8, #generation_max_length=128, eval_steps=100, logging_steps=25, remove_unused_columns=False, # required as the PeftModel forward doesn't have the signature of the wrapped model's forward label_names=["label"], # same reason as above ) ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0
CyberHarem/saito_kaede_encouragementofclimb
CyberHarem
2023-09-28T06:39:51Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/saito_kaede_encouragementofclimb", "license:mit", "region:us" ]
text-to-image
2023-09-28T06:17:48Z
--- license: mit datasets: - CyberHarem/saito_kaede_encouragementofclimb pipeline_tag: text-to-image tags: - art --- # Lora of saito_kaede_encouragementofclimb This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 8400, you need to download `8400/saito_kaede_encouragementofclimb.pt` as the embedding and `8400/saito_kaede_encouragementofclimb.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 8400**, with the score of 0.972. The trigger words are: 1. `saito_kaede_encouragementofclimb` 2. `black_hair, glasses, blush, long_hair, hairclip, hair_ornament, blue_eyes, smile` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | pattern_5 | pattern_6 | pattern_7 | pattern_8 | pattern_9 | pattern_10 | pattern_11 | pattern_12 | pattern_13 | pattern_14 | pattern_15 | pattern_16 | pattern_17 | pattern_18 | pattern_19 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:----------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------|:-------------------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | 9000 | 0.940 | [Download](9000/saito_kaede_encouragementofclimb.zip) | ![pattern_1-9000](9000/previews/pattern_1.png) | ![pattern_2-9000](9000/previews/pattern_2.png) | ![pattern_3-9000](9000/previews/pattern_3.png) | ![pattern_4-9000](9000/previews/pattern_4.png) | ![pattern_5-9000](9000/previews/pattern_5.png) | ![pattern_6-9000](9000/previews/pattern_6.png) | ![pattern_7-9000](9000/previews/pattern_7.png) | ![pattern_8-9000](9000/previews/pattern_8.png) | ![pattern_9-9000](9000/previews/pattern_9.png) | ![pattern_10-9000](9000/previews/pattern_10.png) | ![pattern_11-9000](9000/previews/pattern_11.png) | ![pattern_12-9000](9000/previews/pattern_12.png) | ![pattern_13-9000](9000/previews/pattern_13.png) | ![pattern_14-9000](9000/previews/pattern_14.png) | ![pattern_15-9000](9000/previews/pattern_15.png) | ![pattern_16-9000](9000/previews/pattern_16.png) | ![pattern_17-9000](9000/previews/pattern_17.png) | ![pattern_18-9000](9000/previews/pattern_18.png) | [<NSFW, click to see>](9000/previews/pattern_19.png) | [<NSFW, click to see>](9000/previews/bikini.png) | [<NSFW, click to see>](9000/previews/bondage.png) | ![free-9000](9000/previews/free.png) | ![maid-9000](9000/previews/maid.png) | ![miko-9000](9000/previews/miko.png) | [<NSFW, click to see>](9000/previews/nude.png) | [<NSFW, click to see>](9000/previews/nude2.png) | ![suit-9000](9000/previews/suit.png) | ![yukata-9000](9000/previews/yukata.png) | | **8400** | **0.972** | [**Download**](8400/saito_kaede_encouragementofclimb.zip) | ![pattern_1-8400](8400/previews/pattern_1.png) | ![pattern_2-8400](8400/previews/pattern_2.png) | ![pattern_3-8400](8400/previews/pattern_3.png) | ![pattern_4-8400](8400/previews/pattern_4.png) | ![pattern_5-8400](8400/previews/pattern_5.png) | ![pattern_6-8400](8400/previews/pattern_6.png) | ![pattern_7-8400](8400/previews/pattern_7.png) | ![pattern_8-8400](8400/previews/pattern_8.png) | ![pattern_9-8400](8400/previews/pattern_9.png) | ![pattern_10-8400](8400/previews/pattern_10.png) | ![pattern_11-8400](8400/previews/pattern_11.png) | ![pattern_12-8400](8400/previews/pattern_12.png) | ![pattern_13-8400](8400/previews/pattern_13.png) | ![pattern_14-8400](8400/previews/pattern_14.png) | ![pattern_15-8400](8400/previews/pattern_15.png) | ![pattern_16-8400](8400/previews/pattern_16.png) | ![pattern_17-8400](8400/previews/pattern_17.png) | ![pattern_18-8400](8400/previews/pattern_18.png) | [<NSFW, click to see>](8400/previews/pattern_19.png) | [<NSFW, click to see>](8400/previews/bikini.png) | [<NSFW, click to see>](8400/previews/bondage.png) | ![free-8400](8400/previews/free.png) | ![maid-8400](8400/previews/maid.png) | ![miko-8400](8400/previews/miko.png) | [<NSFW, click to see>](8400/previews/nude.png) | [<NSFW, click to see>](8400/previews/nude2.png) | ![suit-8400](8400/previews/suit.png) | ![yukata-8400](8400/previews/yukata.png) | | 7800 | 0.938 | [Download](7800/saito_kaede_encouragementofclimb.zip) | ![pattern_1-7800](7800/previews/pattern_1.png) | ![pattern_2-7800](7800/previews/pattern_2.png) | ![pattern_3-7800](7800/previews/pattern_3.png) | ![pattern_4-7800](7800/previews/pattern_4.png) | ![pattern_5-7800](7800/previews/pattern_5.png) | ![pattern_6-7800](7800/previews/pattern_6.png) | ![pattern_7-7800](7800/previews/pattern_7.png) | ![pattern_8-7800](7800/previews/pattern_8.png) | ![pattern_9-7800](7800/previews/pattern_9.png) | ![pattern_10-7800](7800/previews/pattern_10.png) | ![pattern_11-7800](7800/previews/pattern_11.png) | ![pattern_12-7800](7800/previews/pattern_12.png) | ![pattern_13-7800](7800/previews/pattern_13.png) | ![pattern_14-7800](7800/previews/pattern_14.png) | ![pattern_15-7800](7800/previews/pattern_15.png) | ![pattern_16-7800](7800/previews/pattern_16.png) | ![pattern_17-7800](7800/previews/pattern_17.png) | ![pattern_18-7800](7800/previews/pattern_18.png) | [<NSFW, click to see>](7800/previews/pattern_19.png) | [<NSFW, click to see>](7800/previews/bikini.png) | [<NSFW, click to see>](7800/previews/bondage.png) | ![free-7800](7800/previews/free.png) | ![maid-7800](7800/previews/maid.png) | ![miko-7800](7800/previews/miko.png) | [<NSFW, click to see>](7800/previews/nude.png) | [<NSFW, click to see>](7800/previews/nude2.png) | ![suit-7800](7800/previews/suit.png) | ![yukata-7800](7800/previews/yukata.png) | | 7200 | 0.955 | [Download](7200/saito_kaede_encouragementofclimb.zip) | ![pattern_1-7200](7200/previews/pattern_1.png) | ![pattern_2-7200](7200/previews/pattern_2.png) | ![pattern_3-7200](7200/previews/pattern_3.png) | ![pattern_4-7200](7200/previews/pattern_4.png) | ![pattern_5-7200](7200/previews/pattern_5.png) | ![pattern_6-7200](7200/previews/pattern_6.png) | ![pattern_7-7200](7200/previews/pattern_7.png) | ![pattern_8-7200](7200/previews/pattern_8.png) | ![pattern_9-7200](7200/previews/pattern_9.png) | ![pattern_10-7200](7200/previews/pattern_10.png) | ![pattern_11-7200](7200/previews/pattern_11.png) | ![pattern_12-7200](7200/previews/pattern_12.png) | ![pattern_13-7200](7200/previews/pattern_13.png) | ![pattern_14-7200](7200/previews/pattern_14.png) | ![pattern_15-7200](7200/previews/pattern_15.png) | ![pattern_16-7200](7200/previews/pattern_16.png) | ![pattern_17-7200](7200/previews/pattern_17.png) | ![pattern_18-7200](7200/previews/pattern_18.png) | [<NSFW, click to see>](7200/previews/pattern_19.png) | [<NSFW, click to see>](7200/previews/bikini.png) | [<NSFW, click to see>](7200/previews/bondage.png) | ![free-7200](7200/previews/free.png) | ![maid-7200](7200/previews/maid.png) | ![miko-7200](7200/previews/miko.png) | [<NSFW, click to see>](7200/previews/nude.png) | [<NSFW, click to see>](7200/previews/nude2.png) | ![suit-7200](7200/previews/suit.png) | ![yukata-7200](7200/previews/yukata.png) | | 6600 | 0.937 | [Download](6600/saito_kaede_encouragementofclimb.zip) | ![pattern_1-6600](6600/previews/pattern_1.png) | ![pattern_2-6600](6600/previews/pattern_2.png) | ![pattern_3-6600](6600/previews/pattern_3.png) | ![pattern_4-6600](6600/previews/pattern_4.png) | ![pattern_5-6600](6600/previews/pattern_5.png) | ![pattern_6-6600](6600/previews/pattern_6.png) | ![pattern_7-6600](6600/previews/pattern_7.png) | ![pattern_8-6600](6600/previews/pattern_8.png) | ![pattern_9-6600](6600/previews/pattern_9.png) | ![pattern_10-6600](6600/previews/pattern_10.png) | ![pattern_11-6600](6600/previews/pattern_11.png) | ![pattern_12-6600](6600/previews/pattern_12.png) | ![pattern_13-6600](6600/previews/pattern_13.png) | ![pattern_14-6600](6600/previews/pattern_14.png) | ![pattern_15-6600](6600/previews/pattern_15.png) | ![pattern_16-6600](6600/previews/pattern_16.png) | ![pattern_17-6600](6600/previews/pattern_17.png) | ![pattern_18-6600](6600/previews/pattern_18.png) | [<NSFW, click to see>](6600/previews/pattern_19.png) | [<NSFW, click to see>](6600/previews/bikini.png) | [<NSFW, click to see>](6600/previews/bondage.png) | ![free-6600](6600/previews/free.png) | ![maid-6600](6600/previews/maid.png) | ![miko-6600](6600/previews/miko.png) | [<NSFW, click to see>](6600/previews/nude.png) | [<NSFW, click to see>](6600/previews/nude2.png) | ![suit-6600](6600/previews/suit.png) | ![yukata-6600](6600/previews/yukata.png) | | 6000 | 0.939 | [Download](6000/saito_kaede_encouragementofclimb.zip) | ![pattern_1-6000](6000/previews/pattern_1.png) | ![pattern_2-6000](6000/previews/pattern_2.png) | ![pattern_3-6000](6000/previews/pattern_3.png) | ![pattern_4-6000](6000/previews/pattern_4.png) | ![pattern_5-6000](6000/previews/pattern_5.png) | ![pattern_6-6000](6000/previews/pattern_6.png) | ![pattern_7-6000](6000/previews/pattern_7.png) | ![pattern_8-6000](6000/previews/pattern_8.png) | ![pattern_9-6000](6000/previews/pattern_9.png) | ![pattern_10-6000](6000/previews/pattern_10.png) | ![pattern_11-6000](6000/previews/pattern_11.png) | ![pattern_12-6000](6000/previews/pattern_12.png) | ![pattern_13-6000](6000/previews/pattern_13.png) | ![pattern_14-6000](6000/previews/pattern_14.png) | ![pattern_15-6000](6000/previews/pattern_15.png) | ![pattern_16-6000](6000/previews/pattern_16.png) | ![pattern_17-6000](6000/previews/pattern_17.png) | ![pattern_18-6000](6000/previews/pattern_18.png) | [<NSFW, click to see>](6000/previews/pattern_19.png) | [<NSFW, click to see>](6000/previews/bikini.png) | [<NSFW, click to see>](6000/previews/bondage.png) | ![free-6000](6000/previews/free.png) | ![maid-6000](6000/previews/maid.png) | ![miko-6000](6000/previews/miko.png) | [<NSFW, click to see>](6000/previews/nude.png) | [<NSFW, click to see>](6000/previews/nude2.png) | ![suit-6000](6000/previews/suit.png) | ![yukata-6000](6000/previews/yukata.png) | | 5400 | 0.934 | [Download](5400/saito_kaede_encouragementofclimb.zip) | ![pattern_1-5400](5400/previews/pattern_1.png) | ![pattern_2-5400](5400/previews/pattern_2.png) | ![pattern_3-5400](5400/previews/pattern_3.png) | ![pattern_4-5400](5400/previews/pattern_4.png) | ![pattern_5-5400](5400/previews/pattern_5.png) | ![pattern_6-5400](5400/previews/pattern_6.png) | ![pattern_7-5400](5400/previews/pattern_7.png) | ![pattern_8-5400](5400/previews/pattern_8.png) | ![pattern_9-5400](5400/previews/pattern_9.png) | ![pattern_10-5400](5400/previews/pattern_10.png) | ![pattern_11-5400](5400/previews/pattern_11.png) | ![pattern_12-5400](5400/previews/pattern_12.png) | ![pattern_13-5400](5400/previews/pattern_13.png) | ![pattern_14-5400](5400/previews/pattern_14.png) | ![pattern_15-5400](5400/previews/pattern_15.png) | ![pattern_16-5400](5400/previews/pattern_16.png) | ![pattern_17-5400](5400/previews/pattern_17.png) | ![pattern_18-5400](5400/previews/pattern_18.png) | [<NSFW, click to see>](5400/previews/pattern_19.png) | [<NSFW, click to see>](5400/previews/bikini.png) | [<NSFW, click to see>](5400/previews/bondage.png) | ![free-5400](5400/previews/free.png) | ![maid-5400](5400/previews/maid.png) | ![miko-5400](5400/previews/miko.png) | [<NSFW, click to see>](5400/previews/nude.png) | [<NSFW, click to see>](5400/previews/nude2.png) | ![suit-5400](5400/previews/suit.png) | ![yukata-5400](5400/previews/yukata.png) | | 4800 | 0.941 | [Download](4800/saito_kaede_encouragementofclimb.zip) | ![pattern_1-4800](4800/previews/pattern_1.png) | ![pattern_2-4800](4800/previews/pattern_2.png) | ![pattern_3-4800](4800/previews/pattern_3.png) | ![pattern_4-4800](4800/previews/pattern_4.png) | ![pattern_5-4800](4800/previews/pattern_5.png) | ![pattern_6-4800](4800/previews/pattern_6.png) | ![pattern_7-4800](4800/previews/pattern_7.png) | ![pattern_8-4800](4800/previews/pattern_8.png) | ![pattern_9-4800](4800/previews/pattern_9.png) | ![pattern_10-4800](4800/previews/pattern_10.png) | ![pattern_11-4800](4800/previews/pattern_11.png) | ![pattern_12-4800](4800/previews/pattern_12.png) | ![pattern_13-4800](4800/previews/pattern_13.png) | ![pattern_14-4800](4800/previews/pattern_14.png) | ![pattern_15-4800](4800/previews/pattern_15.png) | ![pattern_16-4800](4800/previews/pattern_16.png) | ![pattern_17-4800](4800/previews/pattern_17.png) | ![pattern_18-4800](4800/previews/pattern_18.png) | [<NSFW, click to see>](4800/previews/pattern_19.png) | [<NSFW, click to see>](4800/previews/bikini.png) | [<NSFW, click to see>](4800/previews/bondage.png) | ![free-4800](4800/previews/free.png) | ![maid-4800](4800/previews/maid.png) | ![miko-4800](4800/previews/miko.png) | [<NSFW, click to see>](4800/previews/nude.png) | [<NSFW, click to see>](4800/previews/nude2.png) | ![suit-4800](4800/previews/suit.png) | ![yukata-4800](4800/previews/yukata.png) | | 4200 | 0.940 | [Download](4200/saito_kaede_encouragementofclimb.zip) | ![pattern_1-4200](4200/previews/pattern_1.png) | ![pattern_2-4200](4200/previews/pattern_2.png) | ![pattern_3-4200](4200/previews/pattern_3.png) | ![pattern_4-4200](4200/previews/pattern_4.png) | ![pattern_5-4200](4200/previews/pattern_5.png) | ![pattern_6-4200](4200/previews/pattern_6.png) | ![pattern_7-4200](4200/previews/pattern_7.png) | ![pattern_8-4200](4200/previews/pattern_8.png) | ![pattern_9-4200](4200/previews/pattern_9.png) | ![pattern_10-4200](4200/previews/pattern_10.png) | ![pattern_11-4200](4200/previews/pattern_11.png) | ![pattern_12-4200](4200/previews/pattern_12.png) | ![pattern_13-4200](4200/previews/pattern_13.png) | ![pattern_14-4200](4200/previews/pattern_14.png) | ![pattern_15-4200](4200/previews/pattern_15.png) | ![pattern_16-4200](4200/previews/pattern_16.png) | ![pattern_17-4200](4200/previews/pattern_17.png) | ![pattern_18-4200](4200/previews/pattern_18.png) | [<NSFW, click to see>](4200/previews/pattern_19.png) | [<NSFW, click to see>](4200/previews/bikini.png) | [<NSFW, click to see>](4200/previews/bondage.png) | ![free-4200](4200/previews/free.png) | ![maid-4200](4200/previews/maid.png) | ![miko-4200](4200/previews/miko.png) | [<NSFW, click to see>](4200/previews/nude.png) | [<NSFW, click to see>](4200/previews/nude2.png) | ![suit-4200](4200/previews/suit.png) | ![yukata-4200](4200/previews/yukata.png) | | 3600 | 0.910 | [Download](3600/saito_kaede_encouragementofclimb.zip) | ![pattern_1-3600](3600/previews/pattern_1.png) | ![pattern_2-3600](3600/previews/pattern_2.png) | ![pattern_3-3600](3600/previews/pattern_3.png) | ![pattern_4-3600](3600/previews/pattern_4.png) | ![pattern_5-3600](3600/previews/pattern_5.png) | ![pattern_6-3600](3600/previews/pattern_6.png) | ![pattern_7-3600](3600/previews/pattern_7.png) | ![pattern_8-3600](3600/previews/pattern_8.png) | ![pattern_9-3600](3600/previews/pattern_9.png) | ![pattern_10-3600](3600/previews/pattern_10.png) | ![pattern_11-3600](3600/previews/pattern_11.png) | ![pattern_12-3600](3600/previews/pattern_12.png) | ![pattern_13-3600](3600/previews/pattern_13.png) | ![pattern_14-3600](3600/previews/pattern_14.png) | ![pattern_15-3600](3600/previews/pattern_15.png) | ![pattern_16-3600](3600/previews/pattern_16.png) | ![pattern_17-3600](3600/previews/pattern_17.png) | ![pattern_18-3600](3600/previews/pattern_18.png) | [<NSFW, click to see>](3600/previews/pattern_19.png) | [<NSFW, click to see>](3600/previews/bikini.png) | [<NSFW, click to see>](3600/previews/bondage.png) | ![free-3600](3600/previews/free.png) | ![maid-3600](3600/previews/maid.png) | ![miko-3600](3600/previews/miko.png) | [<NSFW, click to see>](3600/previews/nude.png) | [<NSFW, click to see>](3600/previews/nude2.png) | ![suit-3600](3600/previews/suit.png) | ![yukata-3600](3600/previews/yukata.png) | | 3000 | 0.929 | [Download](3000/saito_kaede_encouragementofclimb.zip) | ![pattern_1-3000](3000/previews/pattern_1.png) | ![pattern_2-3000](3000/previews/pattern_2.png) | ![pattern_3-3000](3000/previews/pattern_3.png) | ![pattern_4-3000](3000/previews/pattern_4.png) | ![pattern_5-3000](3000/previews/pattern_5.png) | ![pattern_6-3000](3000/previews/pattern_6.png) | ![pattern_7-3000](3000/previews/pattern_7.png) | ![pattern_8-3000](3000/previews/pattern_8.png) | ![pattern_9-3000](3000/previews/pattern_9.png) | ![pattern_10-3000](3000/previews/pattern_10.png) | ![pattern_11-3000](3000/previews/pattern_11.png) | ![pattern_12-3000](3000/previews/pattern_12.png) | ![pattern_13-3000](3000/previews/pattern_13.png) | ![pattern_14-3000](3000/previews/pattern_14.png) | ![pattern_15-3000](3000/previews/pattern_15.png) | ![pattern_16-3000](3000/previews/pattern_16.png) | ![pattern_17-3000](3000/previews/pattern_17.png) | ![pattern_18-3000](3000/previews/pattern_18.png) | [<NSFW, click to see>](3000/previews/pattern_19.png) | [<NSFW, click to see>](3000/previews/bikini.png) | [<NSFW, click to see>](3000/previews/bondage.png) | ![free-3000](3000/previews/free.png) | ![maid-3000](3000/previews/maid.png) | ![miko-3000](3000/previews/miko.png) | [<NSFW, click to see>](3000/previews/nude.png) | [<NSFW, click to see>](3000/previews/nude2.png) | ![suit-3000](3000/previews/suit.png) | ![yukata-3000](3000/previews/yukata.png) | | 2400 | 0.935 | [Download](2400/saito_kaede_encouragementofclimb.zip) | ![pattern_1-2400](2400/previews/pattern_1.png) | ![pattern_2-2400](2400/previews/pattern_2.png) | ![pattern_3-2400](2400/previews/pattern_3.png) | ![pattern_4-2400](2400/previews/pattern_4.png) | ![pattern_5-2400](2400/previews/pattern_5.png) | ![pattern_6-2400](2400/previews/pattern_6.png) | ![pattern_7-2400](2400/previews/pattern_7.png) | ![pattern_8-2400](2400/previews/pattern_8.png) | ![pattern_9-2400](2400/previews/pattern_9.png) | ![pattern_10-2400](2400/previews/pattern_10.png) | ![pattern_11-2400](2400/previews/pattern_11.png) | ![pattern_12-2400](2400/previews/pattern_12.png) | ![pattern_13-2400](2400/previews/pattern_13.png) | ![pattern_14-2400](2400/previews/pattern_14.png) | ![pattern_15-2400](2400/previews/pattern_15.png) | ![pattern_16-2400](2400/previews/pattern_16.png) | ![pattern_17-2400](2400/previews/pattern_17.png) | ![pattern_18-2400](2400/previews/pattern_18.png) | [<NSFW, click to see>](2400/previews/pattern_19.png) | [<NSFW, click to see>](2400/previews/bikini.png) | [<NSFW, click to see>](2400/previews/bondage.png) | ![free-2400](2400/previews/free.png) | ![maid-2400](2400/previews/maid.png) | ![miko-2400](2400/previews/miko.png) | [<NSFW, click to see>](2400/previews/nude.png) | [<NSFW, click to see>](2400/previews/nude2.png) | ![suit-2400](2400/previews/suit.png) | ![yukata-2400](2400/previews/yukata.png) | | 1800 | 0.909 | [Download](1800/saito_kaede_encouragementofclimb.zip) | ![pattern_1-1800](1800/previews/pattern_1.png) | ![pattern_2-1800](1800/previews/pattern_2.png) | ![pattern_3-1800](1800/previews/pattern_3.png) | ![pattern_4-1800](1800/previews/pattern_4.png) | ![pattern_5-1800](1800/previews/pattern_5.png) | ![pattern_6-1800](1800/previews/pattern_6.png) | ![pattern_7-1800](1800/previews/pattern_7.png) | ![pattern_8-1800](1800/previews/pattern_8.png) | ![pattern_9-1800](1800/previews/pattern_9.png) | ![pattern_10-1800](1800/previews/pattern_10.png) | ![pattern_11-1800](1800/previews/pattern_11.png) | ![pattern_12-1800](1800/previews/pattern_12.png) | ![pattern_13-1800](1800/previews/pattern_13.png) | ![pattern_14-1800](1800/previews/pattern_14.png) | ![pattern_15-1800](1800/previews/pattern_15.png) | ![pattern_16-1800](1800/previews/pattern_16.png) | ![pattern_17-1800](1800/previews/pattern_17.png) | ![pattern_18-1800](1800/previews/pattern_18.png) | [<NSFW, click to see>](1800/previews/pattern_19.png) | [<NSFW, click to see>](1800/previews/bikini.png) | [<NSFW, click to see>](1800/previews/bondage.png) | ![free-1800](1800/previews/free.png) | ![maid-1800](1800/previews/maid.png) | ![miko-1800](1800/previews/miko.png) | [<NSFW, click to see>](1800/previews/nude.png) | [<NSFW, click to see>](1800/previews/nude2.png) | ![suit-1800](1800/previews/suit.png) | ![yukata-1800](1800/previews/yukata.png) | | 1200 | 0.887 | [Download](1200/saito_kaede_encouragementofclimb.zip) | ![pattern_1-1200](1200/previews/pattern_1.png) | ![pattern_2-1200](1200/previews/pattern_2.png) | ![pattern_3-1200](1200/previews/pattern_3.png) | ![pattern_4-1200](1200/previews/pattern_4.png) | ![pattern_5-1200](1200/previews/pattern_5.png) | ![pattern_6-1200](1200/previews/pattern_6.png) | ![pattern_7-1200](1200/previews/pattern_7.png) | ![pattern_8-1200](1200/previews/pattern_8.png) | ![pattern_9-1200](1200/previews/pattern_9.png) | ![pattern_10-1200](1200/previews/pattern_10.png) | ![pattern_11-1200](1200/previews/pattern_11.png) | ![pattern_12-1200](1200/previews/pattern_12.png) | ![pattern_13-1200](1200/previews/pattern_13.png) | ![pattern_14-1200](1200/previews/pattern_14.png) | ![pattern_15-1200](1200/previews/pattern_15.png) | ![pattern_16-1200](1200/previews/pattern_16.png) | ![pattern_17-1200](1200/previews/pattern_17.png) | ![pattern_18-1200](1200/previews/pattern_18.png) | [<NSFW, click to see>](1200/previews/pattern_19.png) | [<NSFW, click to see>](1200/previews/bikini.png) | [<NSFW, click to see>](1200/previews/bondage.png) | ![free-1200](1200/previews/free.png) | ![maid-1200](1200/previews/maid.png) | ![miko-1200](1200/previews/miko.png) | [<NSFW, click to see>](1200/previews/nude.png) | [<NSFW, click to see>](1200/previews/nude2.png) | ![suit-1200](1200/previews/suit.png) | ![yukata-1200](1200/previews/yukata.png) | | 600 | 0.681 | [Download](600/saito_kaede_encouragementofclimb.zip) | ![pattern_1-600](600/previews/pattern_1.png) | ![pattern_2-600](600/previews/pattern_2.png) | ![pattern_3-600](600/previews/pattern_3.png) | ![pattern_4-600](600/previews/pattern_4.png) | ![pattern_5-600](600/previews/pattern_5.png) | ![pattern_6-600](600/previews/pattern_6.png) | ![pattern_7-600](600/previews/pattern_7.png) | ![pattern_8-600](600/previews/pattern_8.png) | ![pattern_9-600](600/previews/pattern_9.png) | ![pattern_10-600](600/previews/pattern_10.png) | ![pattern_11-600](600/previews/pattern_11.png) | ![pattern_12-600](600/previews/pattern_12.png) | ![pattern_13-600](600/previews/pattern_13.png) | ![pattern_14-600](600/previews/pattern_14.png) | ![pattern_15-600](600/previews/pattern_15.png) | ![pattern_16-600](600/previews/pattern_16.png) | ![pattern_17-600](600/previews/pattern_17.png) | ![pattern_18-600](600/previews/pattern_18.png) | [<NSFW, click to see>](600/previews/pattern_19.png) | [<NSFW, click to see>](600/previews/bikini.png) | [<NSFW, click to see>](600/previews/bondage.png) | ![free-600](600/previews/free.png) | ![maid-600](600/previews/maid.png) | ![miko-600](600/previews/miko.png) | [<NSFW, click to see>](600/previews/nude.png) | [<NSFW, click to see>](600/previews/nude2.png) | ![suit-600](600/previews/suit.png) | ![yukata-600](600/previews/yukata.png) |
dss107/news3
dss107
2023-09-28T06:26:18Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-09-28T06:25:03Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # dss107/news3 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("dss107/news3") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
CyberHarem/tedeza_rize_istheorderarabbit
CyberHarem
2023-09-28T06:21:50Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/tedeza_rize_istheorderarabbit", "license:mit", "region:us" ]
text-to-image
2023-09-28T06:02:53Z
--- license: mit datasets: - CyberHarem/tedeza_rize_istheorderarabbit pipeline_tag: text-to-image tags: - art --- # Lora of tedeza_rize_istheorderarabbit This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 7800, you need to download `7800/tedeza_rize_istheorderarabbit.pt` as the embedding and `7800/tedeza_rize_istheorderarabbit.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 7800**, with the score of 0.970. The trigger words are: 1. `tedeza_rize_istheorderarabbit` 2. `purple_hair, long_hair, twintails, purple_eyes, bangs, hair_ornament, blush, hairclip, hair_between_eyes, closed_mouth, indoors` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | pattern_5 | pattern_6 | pattern_7 | pattern_8 | pattern_9 | pattern_10 | pattern_11 | pattern_12 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:-------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------|:-------------------------------------------------|:-----------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | 9000 | 0.964 | [Download](9000/tedeza_rize_istheorderarabbit.zip) | ![pattern_1-9000](9000/previews/pattern_1.png) | ![pattern_2-9000](9000/previews/pattern_2.png) | ![pattern_3-9000](9000/previews/pattern_3.png) | ![pattern_4-9000](9000/previews/pattern_4.png) | ![pattern_5-9000](9000/previews/pattern_5.png) | ![pattern_6-9000](9000/previews/pattern_6.png) | ![pattern_7-9000](9000/previews/pattern_7.png) | ![pattern_8-9000](9000/previews/pattern_8.png) | ![pattern_9-9000](9000/previews/pattern_9.png) | ![pattern_10-9000](9000/previews/pattern_10.png) | [<NSFW, click to see>](9000/previews/pattern_11.png) | ![pattern_12-9000](9000/previews/pattern_12.png) | ![bikini-9000](9000/previews/bikini.png) | [<NSFW, click to see>](9000/previews/bondage.png) | ![free-9000](9000/previews/free.png) | ![maid-9000](9000/previews/maid.png) | ![miko-9000](9000/previews/miko.png) | [<NSFW, click to see>](9000/previews/nude.png) | [<NSFW, click to see>](9000/previews/nude2.png) | ![suit-9000](9000/previews/suit.png) | ![yukata-9000](9000/previews/yukata.png) | | 8400 | 0.966 | [Download](8400/tedeza_rize_istheorderarabbit.zip) | ![pattern_1-8400](8400/previews/pattern_1.png) | ![pattern_2-8400](8400/previews/pattern_2.png) | ![pattern_3-8400](8400/previews/pattern_3.png) | ![pattern_4-8400](8400/previews/pattern_4.png) | ![pattern_5-8400](8400/previews/pattern_5.png) | ![pattern_6-8400](8400/previews/pattern_6.png) | ![pattern_7-8400](8400/previews/pattern_7.png) | ![pattern_8-8400](8400/previews/pattern_8.png) | ![pattern_9-8400](8400/previews/pattern_9.png) | ![pattern_10-8400](8400/previews/pattern_10.png) | [<NSFW, click to see>](8400/previews/pattern_11.png) | ![pattern_12-8400](8400/previews/pattern_12.png) | ![bikini-8400](8400/previews/bikini.png) | [<NSFW, click to see>](8400/previews/bondage.png) | ![free-8400](8400/previews/free.png) | ![maid-8400](8400/previews/maid.png) | ![miko-8400](8400/previews/miko.png) | [<NSFW, click to see>](8400/previews/nude.png) | [<NSFW, click to see>](8400/previews/nude2.png) | ![suit-8400](8400/previews/suit.png) | ![yukata-8400](8400/previews/yukata.png) | | **7800** | **0.970** | [**Download**](7800/tedeza_rize_istheorderarabbit.zip) | ![pattern_1-7800](7800/previews/pattern_1.png) | ![pattern_2-7800](7800/previews/pattern_2.png) | ![pattern_3-7800](7800/previews/pattern_3.png) | ![pattern_4-7800](7800/previews/pattern_4.png) | ![pattern_5-7800](7800/previews/pattern_5.png) | ![pattern_6-7800](7800/previews/pattern_6.png) | ![pattern_7-7800](7800/previews/pattern_7.png) | ![pattern_8-7800](7800/previews/pattern_8.png) | ![pattern_9-7800](7800/previews/pattern_9.png) | ![pattern_10-7800](7800/previews/pattern_10.png) | [<NSFW, click to see>](7800/previews/pattern_11.png) | ![pattern_12-7800](7800/previews/pattern_12.png) | ![bikini-7800](7800/previews/bikini.png) | [<NSFW, click to see>](7800/previews/bondage.png) | ![free-7800](7800/previews/free.png) | ![maid-7800](7800/previews/maid.png) | ![miko-7800](7800/previews/miko.png) | [<NSFW, click to see>](7800/previews/nude.png) | [<NSFW, click to see>](7800/previews/nude2.png) | ![suit-7800](7800/previews/suit.png) | ![yukata-7800](7800/previews/yukata.png) | | 7200 | 0.965 | [Download](7200/tedeza_rize_istheorderarabbit.zip) | ![pattern_1-7200](7200/previews/pattern_1.png) | ![pattern_2-7200](7200/previews/pattern_2.png) | ![pattern_3-7200](7200/previews/pattern_3.png) | ![pattern_4-7200](7200/previews/pattern_4.png) | ![pattern_5-7200](7200/previews/pattern_5.png) | ![pattern_6-7200](7200/previews/pattern_6.png) | ![pattern_7-7200](7200/previews/pattern_7.png) | ![pattern_8-7200](7200/previews/pattern_8.png) | ![pattern_9-7200](7200/previews/pattern_9.png) | ![pattern_10-7200](7200/previews/pattern_10.png) | [<NSFW, click to see>](7200/previews/pattern_11.png) | ![pattern_12-7200](7200/previews/pattern_12.png) | ![bikini-7200](7200/previews/bikini.png) | [<NSFW, click to see>](7200/previews/bondage.png) | ![free-7200](7200/previews/free.png) | ![maid-7200](7200/previews/maid.png) | ![miko-7200](7200/previews/miko.png) | [<NSFW, click to see>](7200/previews/nude.png) | [<NSFW, click to see>](7200/previews/nude2.png) | ![suit-7200](7200/previews/suit.png) | ![yukata-7200](7200/previews/yukata.png) | | 6600 | 0.969 | [Download](6600/tedeza_rize_istheorderarabbit.zip) | ![pattern_1-6600](6600/previews/pattern_1.png) | ![pattern_2-6600](6600/previews/pattern_2.png) | ![pattern_3-6600](6600/previews/pattern_3.png) | ![pattern_4-6600](6600/previews/pattern_4.png) | ![pattern_5-6600](6600/previews/pattern_5.png) | ![pattern_6-6600](6600/previews/pattern_6.png) | ![pattern_7-6600](6600/previews/pattern_7.png) | ![pattern_8-6600](6600/previews/pattern_8.png) | ![pattern_9-6600](6600/previews/pattern_9.png) | ![pattern_10-6600](6600/previews/pattern_10.png) | [<NSFW, click to see>](6600/previews/pattern_11.png) | ![pattern_12-6600](6600/previews/pattern_12.png) | ![bikini-6600](6600/previews/bikini.png) | [<NSFW, click to see>](6600/previews/bondage.png) | ![free-6600](6600/previews/free.png) | ![maid-6600](6600/previews/maid.png) | ![miko-6600](6600/previews/miko.png) | [<NSFW, click to see>](6600/previews/nude.png) | [<NSFW, click to see>](6600/previews/nude2.png) | ![suit-6600](6600/previews/suit.png) | ![yukata-6600](6600/previews/yukata.png) | | 6000 | 0.921 | [Download](6000/tedeza_rize_istheorderarabbit.zip) | ![pattern_1-6000](6000/previews/pattern_1.png) | ![pattern_2-6000](6000/previews/pattern_2.png) | ![pattern_3-6000](6000/previews/pattern_3.png) | ![pattern_4-6000](6000/previews/pattern_4.png) | ![pattern_5-6000](6000/previews/pattern_5.png) | ![pattern_6-6000](6000/previews/pattern_6.png) | ![pattern_7-6000](6000/previews/pattern_7.png) | ![pattern_8-6000](6000/previews/pattern_8.png) | ![pattern_9-6000](6000/previews/pattern_9.png) | ![pattern_10-6000](6000/previews/pattern_10.png) | [<NSFW, click to see>](6000/previews/pattern_11.png) | ![pattern_12-6000](6000/previews/pattern_12.png) | ![bikini-6000](6000/previews/bikini.png) | [<NSFW, click to see>](6000/previews/bondage.png) | ![free-6000](6000/previews/free.png) | ![maid-6000](6000/previews/maid.png) | ![miko-6000](6000/previews/miko.png) | [<NSFW, click to see>](6000/previews/nude.png) | [<NSFW, click to see>](6000/previews/nude2.png) | ![suit-6000](6000/previews/suit.png) | ![yukata-6000](6000/previews/yukata.png) | | 5400 | 0.960 | [Download](5400/tedeza_rize_istheorderarabbit.zip) | ![pattern_1-5400](5400/previews/pattern_1.png) | ![pattern_2-5400](5400/previews/pattern_2.png) | ![pattern_3-5400](5400/previews/pattern_3.png) | ![pattern_4-5400](5400/previews/pattern_4.png) | ![pattern_5-5400](5400/previews/pattern_5.png) | ![pattern_6-5400](5400/previews/pattern_6.png) | ![pattern_7-5400](5400/previews/pattern_7.png) | ![pattern_8-5400](5400/previews/pattern_8.png) | ![pattern_9-5400](5400/previews/pattern_9.png) | ![pattern_10-5400](5400/previews/pattern_10.png) | [<NSFW, click to see>](5400/previews/pattern_11.png) | ![pattern_12-5400](5400/previews/pattern_12.png) | ![bikini-5400](5400/previews/bikini.png) | [<NSFW, click to see>](5400/previews/bondage.png) | ![free-5400](5400/previews/free.png) | ![maid-5400](5400/previews/maid.png) | ![miko-5400](5400/previews/miko.png) | [<NSFW, click to see>](5400/previews/nude.png) | [<NSFW, click to see>](5400/previews/nude2.png) | ![suit-5400](5400/previews/suit.png) | ![yukata-5400](5400/previews/yukata.png) | | 4800 | 0.963 | [Download](4800/tedeza_rize_istheorderarabbit.zip) | ![pattern_1-4800](4800/previews/pattern_1.png) | ![pattern_2-4800](4800/previews/pattern_2.png) | ![pattern_3-4800](4800/previews/pattern_3.png) | ![pattern_4-4800](4800/previews/pattern_4.png) | ![pattern_5-4800](4800/previews/pattern_5.png) | ![pattern_6-4800](4800/previews/pattern_6.png) | ![pattern_7-4800](4800/previews/pattern_7.png) | ![pattern_8-4800](4800/previews/pattern_8.png) | ![pattern_9-4800](4800/previews/pattern_9.png) | ![pattern_10-4800](4800/previews/pattern_10.png) | [<NSFW, click to see>](4800/previews/pattern_11.png) | ![pattern_12-4800](4800/previews/pattern_12.png) | ![bikini-4800](4800/previews/bikini.png) | [<NSFW, click to see>](4800/previews/bondage.png) | ![free-4800](4800/previews/free.png) | ![maid-4800](4800/previews/maid.png) | ![miko-4800](4800/previews/miko.png) | [<NSFW, click to see>](4800/previews/nude.png) | [<NSFW, click to see>](4800/previews/nude2.png) | ![suit-4800](4800/previews/suit.png) | ![yukata-4800](4800/previews/yukata.png) | | 4200 | 0.959 | [Download](4200/tedeza_rize_istheorderarabbit.zip) | ![pattern_1-4200](4200/previews/pattern_1.png) | ![pattern_2-4200](4200/previews/pattern_2.png) | ![pattern_3-4200](4200/previews/pattern_3.png) | ![pattern_4-4200](4200/previews/pattern_4.png) | ![pattern_5-4200](4200/previews/pattern_5.png) | ![pattern_6-4200](4200/previews/pattern_6.png) | ![pattern_7-4200](4200/previews/pattern_7.png) | ![pattern_8-4200](4200/previews/pattern_8.png) | ![pattern_9-4200](4200/previews/pattern_9.png) | ![pattern_10-4200](4200/previews/pattern_10.png) | [<NSFW, click to see>](4200/previews/pattern_11.png) | ![pattern_12-4200](4200/previews/pattern_12.png) | ![bikini-4200](4200/previews/bikini.png) | [<NSFW, click to see>](4200/previews/bondage.png) | ![free-4200](4200/previews/free.png) | ![maid-4200](4200/previews/maid.png) | ![miko-4200](4200/previews/miko.png) | [<NSFW, click to see>](4200/previews/nude.png) | [<NSFW, click to see>](4200/previews/nude2.png) | ![suit-4200](4200/previews/suit.png) | ![yukata-4200](4200/previews/yukata.png) | | 3600 | 0.903 | [Download](3600/tedeza_rize_istheorderarabbit.zip) | ![pattern_1-3600](3600/previews/pattern_1.png) | ![pattern_2-3600](3600/previews/pattern_2.png) | ![pattern_3-3600](3600/previews/pattern_3.png) | ![pattern_4-3600](3600/previews/pattern_4.png) | ![pattern_5-3600](3600/previews/pattern_5.png) | ![pattern_6-3600](3600/previews/pattern_6.png) | ![pattern_7-3600](3600/previews/pattern_7.png) | ![pattern_8-3600](3600/previews/pattern_8.png) | ![pattern_9-3600](3600/previews/pattern_9.png) | ![pattern_10-3600](3600/previews/pattern_10.png) | [<NSFW, click to see>](3600/previews/pattern_11.png) | ![pattern_12-3600](3600/previews/pattern_12.png) | ![bikini-3600](3600/previews/bikini.png) | [<NSFW, click to see>](3600/previews/bondage.png) | ![free-3600](3600/previews/free.png) | ![maid-3600](3600/previews/maid.png) | ![miko-3600](3600/previews/miko.png) | [<NSFW, click to see>](3600/previews/nude.png) | [<NSFW, click to see>](3600/previews/nude2.png) | ![suit-3600](3600/previews/suit.png) | ![yukata-3600](3600/previews/yukata.png) | | 3000 | 0.932 | [Download](3000/tedeza_rize_istheorderarabbit.zip) | ![pattern_1-3000](3000/previews/pattern_1.png) | ![pattern_2-3000](3000/previews/pattern_2.png) | ![pattern_3-3000](3000/previews/pattern_3.png) | ![pattern_4-3000](3000/previews/pattern_4.png) | ![pattern_5-3000](3000/previews/pattern_5.png) | ![pattern_6-3000](3000/previews/pattern_6.png) | ![pattern_7-3000](3000/previews/pattern_7.png) | ![pattern_8-3000](3000/previews/pattern_8.png) | ![pattern_9-3000](3000/previews/pattern_9.png) | ![pattern_10-3000](3000/previews/pattern_10.png) | [<NSFW, click to see>](3000/previews/pattern_11.png) | ![pattern_12-3000](3000/previews/pattern_12.png) | ![bikini-3000](3000/previews/bikini.png) | [<NSFW, click to see>](3000/previews/bondage.png) | ![free-3000](3000/previews/free.png) | ![maid-3000](3000/previews/maid.png) | ![miko-3000](3000/previews/miko.png) | [<NSFW, click to see>](3000/previews/nude.png) | [<NSFW, click to see>](3000/previews/nude2.png) | ![suit-3000](3000/previews/suit.png) | ![yukata-3000](3000/previews/yukata.png) | | 2400 | 0.927 | [Download](2400/tedeza_rize_istheorderarabbit.zip) | ![pattern_1-2400](2400/previews/pattern_1.png) | ![pattern_2-2400](2400/previews/pattern_2.png) | ![pattern_3-2400](2400/previews/pattern_3.png) | ![pattern_4-2400](2400/previews/pattern_4.png) | ![pattern_5-2400](2400/previews/pattern_5.png) | ![pattern_6-2400](2400/previews/pattern_6.png) | ![pattern_7-2400](2400/previews/pattern_7.png) | ![pattern_8-2400](2400/previews/pattern_8.png) | ![pattern_9-2400](2400/previews/pattern_9.png) | ![pattern_10-2400](2400/previews/pattern_10.png) | [<NSFW, click to see>](2400/previews/pattern_11.png) | ![pattern_12-2400](2400/previews/pattern_12.png) | ![bikini-2400](2400/previews/bikini.png) | [<NSFW, click to see>](2400/previews/bondage.png) | ![free-2400](2400/previews/free.png) | ![maid-2400](2400/previews/maid.png) | ![miko-2400](2400/previews/miko.png) | [<NSFW, click to see>](2400/previews/nude.png) | [<NSFW, click to see>](2400/previews/nude2.png) | ![suit-2400](2400/previews/suit.png) | ![yukata-2400](2400/previews/yukata.png) | | 1800 | 0.885 | [Download](1800/tedeza_rize_istheorderarabbit.zip) | ![pattern_1-1800](1800/previews/pattern_1.png) | ![pattern_2-1800](1800/previews/pattern_2.png) | ![pattern_3-1800](1800/previews/pattern_3.png) | ![pattern_4-1800](1800/previews/pattern_4.png) | ![pattern_5-1800](1800/previews/pattern_5.png) | ![pattern_6-1800](1800/previews/pattern_6.png) | ![pattern_7-1800](1800/previews/pattern_7.png) | ![pattern_8-1800](1800/previews/pattern_8.png) | ![pattern_9-1800](1800/previews/pattern_9.png) | ![pattern_10-1800](1800/previews/pattern_10.png) | [<NSFW, click to see>](1800/previews/pattern_11.png) | ![pattern_12-1800](1800/previews/pattern_12.png) | ![bikini-1800](1800/previews/bikini.png) | [<NSFW, click to see>](1800/previews/bondage.png) | ![free-1800](1800/previews/free.png) | ![maid-1800](1800/previews/maid.png) | ![miko-1800](1800/previews/miko.png) | [<NSFW, click to see>](1800/previews/nude.png) | [<NSFW, click to see>](1800/previews/nude2.png) | ![suit-1800](1800/previews/suit.png) | ![yukata-1800](1800/previews/yukata.png) | | 1200 | 0.822 | [Download](1200/tedeza_rize_istheorderarabbit.zip) | ![pattern_1-1200](1200/previews/pattern_1.png) | ![pattern_2-1200](1200/previews/pattern_2.png) | ![pattern_3-1200](1200/previews/pattern_3.png) | ![pattern_4-1200](1200/previews/pattern_4.png) | ![pattern_5-1200](1200/previews/pattern_5.png) | ![pattern_6-1200](1200/previews/pattern_6.png) | ![pattern_7-1200](1200/previews/pattern_7.png) | ![pattern_8-1200](1200/previews/pattern_8.png) | ![pattern_9-1200](1200/previews/pattern_9.png) | ![pattern_10-1200](1200/previews/pattern_10.png) | [<NSFW, click to see>](1200/previews/pattern_11.png) | ![pattern_12-1200](1200/previews/pattern_12.png) | ![bikini-1200](1200/previews/bikini.png) | [<NSFW, click to see>](1200/previews/bondage.png) | ![free-1200](1200/previews/free.png) | ![maid-1200](1200/previews/maid.png) | ![miko-1200](1200/previews/miko.png) | [<NSFW, click to see>](1200/previews/nude.png) | [<NSFW, click to see>](1200/previews/nude2.png) | ![suit-1200](1200/previews/suit.png) | ![yukata-1200](1200/previews/yukata.png) | | 600 | 0.687 | [Download](600/tedeza_rize_istheorderarabbit.zip) | ![pattern_1-600](600/previews/pattern_1.png) | ![pattern_2-600](600/previews/pattern_2.png) | ![pattern_3-600](600/previews/pattern_3.png) | ![pattern_4-600](600/previews/pattern_4.png) | ![pattern_5-600](600/previews/pattern_5.png) | ![pattern_6-600](600/previews/pattern_6.png) | ![pattern_7-600](600/previews/pattern_7.png) | ![pattern_8-600](600/previews/pattern_8.png) | ![pattern_9-600](600/previews/pattern_9.png) | ![pattern_10-600](600/previews/pattern_10.png) | [<NSFW, click to see>](600/previews/pattern_11.png) | ![pattern_12-600](600/previews/pattern_12.png) | ![bikini-600](600/previews/bikini.png) | [<NSFW, click to see>](600/previews/bondage.png) | ![free-600](600/previews/free.png) | ![maid-600](600/previews/maid.png) | ![miko-600](600/previews/miko.png) | [<NSFW, click to see>](600/previews/nude.png) | [<NSFW, click to see>](600/previews/nude2.png) | ![suit-600](600/previews/suit.png) | ![yukata-600](600/previews/yukata.png) |
Yntec/Cetus
Yntec
2023-09-28T06:17:00Z
417
3
diffusers
[ "diffusers", "safetensors", "Anime", "2D", "2.5D", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "Eagelaxis", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-29T04:42:12Z
--- license: creativeml-openrail-m library_name: diffusers pipeline_tag: text-to-image language: - en tags: - Anime - 2D - 2.5D - stable-diffusion - stable-diffusion-diffusers - text-to-image - Eagelaxis inference: true --- # Cetus When you think about a Cetus generation, you think about the 3.5 version. It's fp16-no-ema. Samples and prompts: ![Sample](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/KhO8z7TG3uOXsK-is6X8T.png) ![Sample](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/V64NUDrpX_5ce4jby1Ru0.png) Pretty cute girl. Like lesser birds on the four winds. Like silver scrapes in May. Now the sands become a crust. And most of you have gone away. Original page: https://civitai.com/models/6755?modelVersionId=29851
abvijaykumar/bloom-560m-prefix-tuned-qa
abvijaykumar
2023-09-28T06:15:21Z
1
0
peft
[ "peft", "region:us" ]
null
2023-09-18T13:29:57Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
Gayathri142214002/Pegasus_paraphraser_2
Gayathri142214002
2023-09-28T06:03:08Z
3
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-25T05:19:43Z
--- tags: - generated_from_trainer model-index: - name: Pegasus_paraphraser_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Pegasus_paraphraser_2 This model is a fine-tuned version of [Gayathri142214002/Pegasus_paraphraser_1](https://huggingface.co/Gayathri142214002/Pegasus_paraphraser_1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2781 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.2589 | 0.45 | 1000 | 0.2488 | | 0.2693 | 0.9 | 2000 | 0.2436 | | 0.2255 | 1.35 | 3000 | 0.2632 | | 0.2291 | 1.8 | 4000 | 0.2603 | | 0.2092 | 2.25 | 5000 | 0.2714 | | 0.1955 | 2.69 | 6000 | 0.2668 | | 0.1893 | 3.14 | 7000 | 0.2802 | | 0.1706 | 3.59 | 8000 | 0.2781 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
JeswinMS4/finetuned-llama-2
JeswinMS4
2023-09-28T05:24:52Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-28T05:24:50Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0 - PEFT 0.5.0
roa7n/gpt2-human_nontata_promoters-randomized_5_layers_0.003_lr_8_e
roa7n
2023-09-28T05:19:26Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-28T05:19:23Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
CyberHarem/kafuu_chino_istheorderarabbit
CyberHarem
2023-09-28T05:08:48Z
0
1
null
[ "art", "text-to-image", "dataset:CyberHarem/kafuu_chino_istheorderarabbit", "license:mit", "region:us" ]
text-to-image
2023-09-28T04:50:57Z
--- license: mit datasets: - CyberHarem/kafuu_chino_istheorderarabbit pipeline_tag: text-to-image tags: - art --- # Lora of kafuu_chino_istheorderarabbit This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 8400, you need to download `8400/kafuu_chino_istheorderarabbit.pt` as the embedding and `8400/kafuu_chino_istheorderarabbit.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 8400**, with the score of 0.968. The trigger words are: 1. `kafuu_chino_istheorderarabbit` 2. `blue_hair, long_hair, blue_eyes, x_hair_ornament, hair_ornament, blush, bangs, closed_mouth, hair_between_eyes` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | pattern_5 | pattern_6 | pattern_7 | pattern_8 | pattern_9 | pattern_10 | pattern_11 | pattern_12 | pattern_13 | pattern_14 | pattern_15 | pattern_16 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:-------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-----------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | 9000 | 0.968 | [Download](9000/kafuu_chino_istheorderarabbit.zip) | ![pattern_1-9000](9000/previews/pattern_1.png) | ![pattern_2-9000](9000/previews/pattern_2.png) | ![pattern_3-9000](9000/previews/pattern_3.png) | ![pattern_4-9000](9000/previews/pattern_4.png) | ![pattern_5-9000](9000/previews/pattern_5.png) | ![pattern_6-9000](9000/previews/pattern_6.png) | ![pattern_7-9000](9000/previews/pattern_7.png) | ![pattern_8-9000](9000/previews/pattern_8.png) | ![pattern_9-9000](9000/previews/pattern_9.png) | ![pattern_10-9000](9000/previews/pattern_10.png) | ![pattern_11-9000](9000/previews/pattern_11.png) | ![pattern_12-9000](9000/previews/pattern_12.png) | ![pattern_13-9000](9000/previews/pattern_13.png) | ![pattern_14-9000](9000/previews/pattern_14.png) | ![pattern_15-9000](9000/previews/pattern_15.png) | ![pattern_16-9000](9000/previews/pattern_16.png) | ![bikini-9000](9000/previews/bikini.png) | [<NSFW, click to see>](9000/previews/bondage.png) | ![free-9000](9000/previews/free.png) | ![maid-9000](9000/previews/maid.png) | ![miko-9000](9000/previews/miko.png) | [<NSFW, click to see>](9000/previews/nude.png) | [<NSFW, click to see>](9000/previews/nude2.png) | ![suit-9000](9000/previews/suit.png) | ![yukata-9000](9000/previews/yukata.png) | | **8400** | **0.968** | [**Download**](8400/kafuu_chino_istheorderarabbit.zip) | ![pattern_1-8400](8400/previews/pattern_1.png) | ![pattern_2-8400](8400/previews/pattern_2.png) | ![pattern_3-8400](8400/previews/pattern_3.png) | ![pattern_4-8400](8400/previews/pattern_4.png) | ![pattern_5-8400](8400/previews/pattern_5.png) | ![pattern_6-8400](8400/previews/pattern_6.png) | ![pattern_7-8400](8400/previews/pattern_7.png) | ![pattern_8-8400](8400/previews/pattern_8.png) | ![pattern_9-8400](8400/previews/pattern_9.png) | ![pattern_10-8400](8400/previews/pattern_10.png) | ![pattern_11-8400](8400/previews/pattern_11.png) | ![pattern_12-8400](8400/previews/pattern_12.png) | ![pattern_13-8400](8400/previews/pattern_13.png) | ![pattern_14-8400](8400/previews/pattern_14.png) | ![pattern_15-8400](8400/previews/pattern_15.png) | ![pattern_16-8400](8400/previews/pattern_16.png) | ![bikini-8400](8400/previews/bikini.png) | [<NSFW, click to see>](8400/previews/bondage.png) | ![free-8400](8400/previews/free.png) | ![maid-8400](8400/previews/maid.png) | ![miko-8400](8400/previews/miko.png) | [<NSFW, click to see>](8400/previews/nude.png) | [<NSFW, click to see>](8400/previews/nude2.png) | ![suit-8400](8400/previews/suit.png) | ![yukata-8400](8400/previews/yukata.png) | | 7800 | 0.967 | [Download](7800/kafuu_chino_istheorderarabbit.zip) | ![pattern_1-7800](7800/previews/pattern_1.png) | ![pattern_2-7800](7800/previews/pattern_2.png) | ![pattern_3-7800](7800/previews/pattern_3.png) | ![pattern_4-7800](7800/previews/pattern_4.png) | ![pattern_5-7800](7800/previews/pattern_5.png) | ![pattern_6-7800](7800/previews/pattern_6.png) | ![pattern_7-7800](7800/previews/pattern_7.png) | ![pattern_8-7800](7800/previews/pattern_8.png) | ![pattern_9-7800](7800/previews/pattern_9.png) | ![pattern_10-7800](7800/previews/pattern_10.png) | ![pattern_11-7800](7800/previews/pattern_11.png) | ![pattern_12-7800](7800/previews/pattern_12.png) | ![pattern_13-7800](7800/previews/pattern_13.png) | ![pattern_14-7800](7800/previews/pattern_14.png) | ![pattern_15-7800](7800/previews/pattern_15.png) | ![pattern_16-7800](7800/previews/pattern_16.png) | ![bikini-7800](7800/previews/bikini.png) | [<NSFW, click to see>](7800/previews/bondage.png) | ![free-7800](7800/previews/free.png) | ![maid-7800](7800/previews/maid.png) | ![miko-7800](7800/previews/miko.png) | [<NSFW, click to see>](7800/previews/nude.png) | [<NSFW, click to see>](7800/previews/nude2.png) | ![suit-7800](7800/previews/suit.png) | ![yukata-7800](7800/previews/yukata.png) | | 7200 | 0.968 | [Download](7200/kafuu_chino_istheorderarabbit.zip) | ![pattern_1-7200](7200/previews/pattern_1.png) | ![pattern_2-7200](7200/previews/pattern_2.png) | ![pattern_3-7200](7200/previews/pattern_3.png) | ![pattern_4-7200](7200/previews/pattern_4.png) | ![pattern_5-7200](7200/previews/pattern_5.png) | ![pattern_6-7200](7200/previews/pattern_6.png) | ![pattern_7-7200](7200/previews/pattern_7.png) | ![pattern_8-7200](7200/previews/pattern_8.png) | ![pattern_9-7200](7200/previews/pattern_9.png) | ![pattern_10-7200](7200/previews/pattern_10.png) | ![pattern_11-7200](7200/previews/pattern_11.png) | ![pattern_12-7200](7200/previews/pattern_12.png) | ![pattern_13-7200](7200/previews/pattern_13.png) | ![pattern_14-7200](7200/previews/pattern_14.png) | ![pattern_15-7200](7200/previews/pattern_15.png) | ![pattern_16-7200](7200/previews/pattern_16.png) | ![bikini-7200](7200/previews/bikini.png) | [<NSFW, click to see>](7200/previews/bondage.png) | ![free-7200](7200/previews/free.png) | ![maid-7200](7200/previews/maid.png) | ![miko-7200](7200/previews/miko.png) | [<NSFW, click to see>](7200/previews/nude.png) | [<NSFW, click to see>](7200/previews/nude2.png) | ![suit-7200](7200/previews/suit.png) | ![yukata-7200](7200/previews/yukata.png) | | 6600 | 0.963 | [Download](6600/kafuu_chino_istheorderarabbit.zip) | ![pattern_1-6600](6600/previews/pattern_1.png) | ![pattern_2-6600](6600/previews/pattern_2.png) | ![pattern_3-6600](6600/previews/pattern_3.png) | ![pattern_4-6600](6600/previews/pattern_4.png) | ![pattern_5-6600](6600/previews/pattern_5.png) | ![pattern_6-6600](6600/previews/pattern_6.png) | ![pattern_7-6600](6600/previews/pattern_7.png) | ![pattern_8-6600](6600/previews/pattern_8.png) | ![pattern_9-6600](6600/previews/pattern_9.png) | ![pattern_10-6600](6600/previews/pattern_10.png) | ![pattern_11-6600](6600/previews/pattern_11.png) | ![pattern_12-6600](6600/previews/pattern_12.png) | ![pattern_13-6600](6600/previews/pattern_13.png) | ![pattern_14-6600](6600/previews/pattern_14.png) | ![pattern_15-6600](6600/previews/pattern_15.png) | ![pattern_16-6600](6600/previews/pattern_16.png) | ![bikini-6600](6600/previews/bikini.png) | [<NSFW, click to see>](6600/previews/bondage.png) | ![free-6600](6600/previews/free.png) | ![maid-6600](6600/previews/maid.png) | ![miko-6600](6600/previews/miko.png) | [<NSFW, click to see>](6600/previews/nude.png) | [<NSFW, click to see>](6600/previews/nude2.png) | ![suit-6600](6600/previews/suit.png) | ![yukata-6600](6600/previews/yukata.png) | | 6000 | 0.962 | [Download](6000/kafuu_chino_istheorderarabbit.zip) | ![pattern_1-6000](6000/previews/pattern_1.png) | ![pattern_2-6000](6000/previews/pattern_2.png) | ![pattern_3-6000](6000/previews/pattern_3.png) | ![pattern_4-6000](6000/previews/pattern_4.png) | ![pattern_5-6000](6000/previews/pattern_5.png) | ![pattern_6-6000](6000/previews/pattern_6.png) | ![pattern_7-6000](6000/previews/pattern_7.png) | ![pattern_8-6000](6000/previews/pattern_8.png) | ![pattern_9-6000](6000/previews/pattern_9.png) | ![pattern_10-6000](6000/previews/pattern_10.png) | ![pattern_11-6000](6000/previews/pattern_11.png) | ![pattern_12-6000](6000/previews/pattern_12.png) | ![pattern_13-6000](6000/previews/pattern_13.png) | ![pattern_14-6000](6000/previews/pattern_14.png) | ![pattern_15-6000](6000/previews/pattern_15.png) | ![pattern_16-6000](6000/previews/pattern_16.png) | ![bikini-6000](6000/previews/bikini.png) | [<NSFW, click to see>](6000/previews/bondage.png) | ![free-6000](6000/previews/free.png) | ![maid-6000](6000/previews/maid.png) | ![miko-6000](6000/previews/miko.png) | [<NSFW, click to see>](6000/previews/nude.png) | [<NSFW, click to see>](6000/previews/nude2.png) | ![suit-6000](6000/previews/suit.png) | ![yukata-6000](6000/previews/yukata.png) | | 5400 | 0.926 | [Download](5400/kafuu_chino_istheorderarabbit.zip) | ![pattern_1-5400](5400/previews/pattern_1.png) | ![pattern_2-5400](5400/previews/pattern_2.png) | ![pattern_3-5400](5400/previews/pattern_3.png) | ![pattern_4-5400](5400/previews/pattern_4.png) | ![pattern_5-5400](5400/previews/pattern_5.png) | ![pattern_6-5400](5400/previews/pattern_6.png) | ![pattern_7-5400](5400/previews/pattern_7.png) | ![pattern_8-5400](5400/previews/pattern_8.png) | ![pattern_9-5400](5400/previews/pattern_9.png) | ![pattern_10-5400](5400/previews/pattern_10.png) | ![pattern_11-5400](5400/previews/pattern_11.png) | ![pattern_12-5400](5400/previews/pattern_12.png) | ![pattern_13-5400](5400/previews/pattern_13.png) | ![pattern_14-5400](5400/previews/pattern_14.png) | ![pattern_15-5400](5400/previews/pattern_15.png) | ![pattern_16-5400](5400/previews/pattern_16.png) | ![bikini-5400](5400/previews/bikini.png) | [<NSFW, click to see>](5400/previews/bondage.png) | ![free-5400](5400/previews/free.png) | ![maid-5400](5400/previews/maid.png) | ![miko-5400](5400/previews/miko.png) | [<NSFW, click to see>](5400/previews/nude.png) | [<NSFW, click to see>](5400/previews/nude2.png) | ![suit-5400](5400/previews/suit.png) | ![yukata-5400](5400/previews/yukata.png) | | 4800 | 0.961 | [Download](4800/kafuu_chino_istheorderarabbit.zip) | ![pattern_1-4800](4800/previews/pattern_1.png) | ![pattern_2-4800](4800/previews/pattern_2.png) | ![pattern_3-4800](4800/previews/pattern_3.png) | ![pattern_4-4800](4800/previews/pattern_4.png) | ![pattern_5-4800](4800/previews/pattern_5.png) | ![pattern_6-4800](4800/previews/pattern_6.png) | ![pattern_7-4800](4800/previews/pattern_7.png) | ![pattern_8-4800](4800/previews/pattern_8.png) | ![pattern_9-4800](4800/previews/pattern_9.png) | ![pattern_10-4800](4800/previews/pattern_10.png) | ![pattern_11-4800](4800/previews/pattern_11.png) | ![pattern_12-4800](4800/previews/pattern_12.png) | ![pattern_13-4800](4800/previews/pattern_13.png) | ![pattern_14-4800](4800/previews/pattern_14.png) | ![pattern_15-4800](4800/previews/pattern_15.png) | ![pattern_16-4800](4800/previews/pattern_16.png) | ![bikini-4800](4800/previews/bikini.png) | [<NSFW, click to see>](4800/previews/bondage.png) | ![free-4800](4800/previews/free.png) | ![maid-4800](4800/previews/maid.png) | ![miko-4800](4800/previews/miko.png) | [<NSFW, click to see>](4800/previews/nude.png) | [<NSFW, click to see>](4800/previews/nude2.png) | ![suit-4800](4800/previews/suit.png) | ![yukata-4800](4800/previews/yukata.png) | | 4200 | 0.956 | [Download](4200/kafuu_chino_istheorderarabbit.zip) | ![pattern_1-4200](4200/previews/pattern_1.png) | ![pattern_2-4200](4200/previews/pattern_2.png) | ![pattern_3-4200](4200/previews/pattern_3.png) | ![pattern_4-4200](4200/previews/pattern_4.png) | ![pattern_5-4200](4200/previews/pattern_5.png) | ![pattern_6-4200](4200/previews/pattern_6.png) | ![pattern_7-4200](4200/previews/pattern_7.png) | ![pattern_8-4200](4200/previews/pattern_8.png) | ![pattern_9-4200](4200/previews/pattern_9.png) | ![pattern_10-4200](4200/previews/pattern_10.png) | ![pattern_11-4200](4200/previews/pattern_11.png) | ![pattern_12-4200](4200/previews/pattern_12.png) | ![pattern_13-4200](4200/previews/pattern_13.png) | ![pattern_14-4200](4200/previews/pattern_14.png) | ![pattern_15-4200](4200/previews/pattern_15.png) | ![pattern_16-4200](4200/previews/pattern_16.png) | ![bikini-4200](4200/previews/bikini.png) | [<NSFW, click to see>](4200/previews/bondage.png) | ![free-4200](4200/previews/free.png) | ![maid-4200](4200/previews/maid.png) | ![miko-4200](4200/previews/miko.png) | [<NSFW, click to see>](4200/previews/nude.png) | [<NSFW, click to see>](4200/previews/nude2.png) | ![suit-4200](4200/previews/suit.png) | ![yukata-4200](4200/previews/yukata.png) | | 3600 | 0.925 | [Download](3600/kafuu_chino_istheorderarabbit.zip) | ![pattern_1-3600](3600/previews/pattern_1.png) | ![pattern_2-3600](3600/previews/pattern_2.png) | ![pattern_3-3600](3600/previews/pattern_3.png) | ![pattern_4-3600](3600/previews/pattern_4.png) | ![pattern_5-3600](3600/previews/pattern_5.png) | ![pattern_6-3600](3600/previews/pattern_6.png) | ![pattern_7-3600](3600/previews/pattern_7.png) | ![pattern_8-3600](3600/previews/pattern_8.png) | ![pattern_9-3600](3600/previews/pattern_9.png) | ![pattern_10-3600](3600/previews/pattern_10.png) | ![pattern_11-3600](3600/previews/pattern_11.png) | ![pattern_12-3600](3600/previews/pattern_12.png) | ![pattern_13-3600](3600/previews/pattern_13.png) | ![pattern_14-3600](3600/previews/pattern_14.png) | ![pattern_15-3600](3600/previews/pattern_15.png) | ![pattern_16-3600](3600/previews/pattern_16.png) | ![bikini-3600](3600/previews/bikini.png) | [<NSFW, click to see>](3600/previews/bondage.png) | ![free-3600](3600/previews/free.png) | ![maid-3600](3600/previews/maid.png) | ![miko-3600](3600/previews/miko.png) | [<NSFW, click to see>](3600/previews/nude.png) | [<NSFW, click to see>](3600/previews/nude2.png) | ![suit-3600](3600/previews/suit.png) | ![yukata-3600](3600/previews/yukata.png) | | 3000 | 0.935 | [Download](3000/kafuu_chino_istheorderarabbit.zip) | ![pattern_1-3000](3000/previews/pattern_1.png) | ![pattern_2-3000](3000/previews/pattern_2.png) | ![pattern_3-3000](3000/previews/pattern_3.png) | ![pattern_4-3000](3000/previews/pattern_4.png) | ![pattern_5-3000](3000/previews/pattern_5.png) | ![pattern_6-3000](3000/previews/pattern_6.png) | ![pattern_7-3000](3000/previews/pattern_7.png) | ![pattern_8-3000](3000/previews/pattern_8.png) | ![pattern_9-3000](3000/previews/pattern_9.png) | ![pattern_10-3000](3000/previews/pattern_10.png) | ![pattern_11-3000](3000/previews/pattern_11.png) | ![pattern_12-3000](3000/previews/pattern_12.png) | ![pattern_13-3000](3000/previews/pattern_13.png) | ![pattern_14-3000](3000/previews/pattern_14.png) | ![pattern_15-3000](3000/previews/pattern_15.png) | ![pattern_16-3000](3000/previews/pattern_16.png) | ![bikini-3000](3000/previews/bikini.png) | [<NSFW, click to see>](3000/previews/bondage.png) | ![free-3000](3000/previews/free.png) | ![maid-3000](3000/previews/maid.png) | ![miko-3000](3000/previews/miko.png) | [<NSFW, click to see>](3000/previews/nude.png) | [<NSFW, click to see>](3000/previews/nude2.png) | ![suit-3000](3000/previews/suit.png) | ![yukata-3000](3000/previews/yukata.png) | | 2400 | 0.935 | [Download](2400/kafuu_chino_istheorderarabbit.zip) | ![pattern_1-2400](2400/previews/pattern_1.png) | ![pattern_2-2400](2400/previews/pattern_2.png) | ![pattern_3-2400](2400/previews/pattern_3.png) | ![pattern_4-2400](2400/previews/pattern_4.png) | ![pattern_5-2400](2400/previews/pattern_5.png) | ![pattern_6-2400](2400/previews/pattern_6.png) | ![pattern_7-2400](2400/previews/pattern_7.png) | ![pattern_8-2400](2400/previews/pattern_8.png) | ![pattern_9-2400](2400/previews/pattern_9.png) | ![pattern_10-2400](2400/previews/pattern_10.png) | ![pattern_11-2400](2400/previews/pattern_11.png) | ![pattern_12-2400](2400/previews/pattern_12.png) | ![pattern_13-2400](2400/previews/pattern_13.png) | ![pattern_14-2400](2400/previews/pattern_14.png) | ![pattern_15-2400](2400/previews/pattern_15.png) | ![pattern_16-2400](2400/previews/pattern_16.png) | ![bikini-2400](2400/previews/bikini.png) | [<NSFW, click to see>](2400/previews/bondage.png) | ![free-2400](2400/previews/free.png) | ![maid-2400](2400/previews/maid.png) | ![miko-2400](2400/previews/miko.png) | [<NSFW, click to see>](2400/previews/nude.png) | [<NSFW, click to see>](2400/previews/nude2.png) | ![suit-2400](2400/previews/suit.png) | ![yukata-2400](2400/previews/yukata.png) | | 1800 | 0.900 | [Download](1800/kafuu_chino_istheorderarabbit.zip) | ![pattern_1-1800](1800/previews/pattern_1.png) | ![pattern_2-1800](1800/previews/pattern_2.png) | ![pattern_3-1800](1800/previews/pattern_3.png) | ![pattern_4-1800](1800/previews/pattern_4.png) | ![pattern_5-1800](1800/previews/pattern_5.png) | ![pattern_6-1800](1800/previews/pattern_6.png) | ![pattern_7-1800](1800/previews/pattern_7.png) | ![pattern_8-1800](1800/previews/pattern_8.png) | ![pattern_9-1800](1800/previews/pattern_9.png) | ![pattern_10-1800](1800/previews/pattern_10.png) | ![pattern_11-1800](1800/previews/pattern_11.png) | ![pattern_12-1800](1800/previews/pattern_12.png) | ![pattern_13-1800](1800/previews/pattern_13.png) | ![pattern_14-1800](1800/previews/pattern_14.png) | ![pattern_15-1800](1800/previews/pattern_15.png) | ![pattern_16-1800](1800/previews/pattern_16.png) | ![bikini-1800](1800/previews/bikini.png) | [<NSFW, click to see>](1800/previews/bondage.png) | ![free-1800](1800/previews/free.png) | ![maid-1800](1800/previews/maid.png) | ![miko-1800](1800/previews/miko.png) | [<NSFW, click to see>](1800/previews/nude.png) | [<NSFW, click to see>](1800/previews/nude2.png) | ![suit-1800](1800/previews/suit.png) | ![yukata-1800](1800/previews/yukata.png) | | 1200 | 0.848 | [Download](1200/kafuu_chino_istheorderarabbit.zip) | ![pattern_1-1200](1200/previews/pattern_1.png) | ![pattern_2-1200](1200/previews/pattern_2.png) | ![pattern_3-1200](1200/previews/pattern_3.png) | ![pattern_4-1200](1200/previews/pattern_4.png) | ![pattern_5-1200](1200/previews/pattern_5.png) | ![pattern_6-1200](1200/previews/pattern_6.png) | ![pattern_7-1200](1200/previews/pattern_7.png) | ![pattern_8-1200](1200/previews/pattern_8.png) | ![pattern_9-1200](1200/previews/pattern_9.png) | ![pattern_10-1200](1200/previews/pattern_10.png) | ![pattern_11-1200](1200/previews/pattern_11.png) | ![pattern_12-1200](1200/previews/pattern_12.png) | ![pattern_13-1200](1200/previews/pattern_13.png) | ![pattern_14-1200](1200/previews/pattern_14.png) | ![pattern_15-1200](1200/previews/pattern_15.png) | ![pattern_16-1200](1200/previews/pattern_16.png) | ![bikini-1200](1200/previews/bikini.png) | [<NSFW, click to see>](1200/previews/bondage.png) | ![free-1200](1200/previews/free.png) | ![maid-1200](1200/previews/maid.png) | ![miko-1200](1200/previews/miko.png) | [<NSFW, click to see>](1200/previews/nude.png) | [<NSFW, click to see>](1200/previews/nude2.png) | ![suit-1200](1200/previews/suit.png) | ![yukata-1200](1200/previews/yukata.png) | | 600 | 0.563 | [Download](600/kafuu_chino_istheorderarabbit.zip) | ![pattern_1-600](600/previews/pattern_1.png) | ![pattern_2-600](600/previews/pattern_2.png) | ![pattern_3-600](600/previews/pattern_3.png) | ![pattern_4-600](600/previews/pattern_4.png) | ![pattern_5-600](600/previews/pattern_5.png) | ![pattern_6-600](600/previews/pattern_6.png) | ![pattern_7-600](600/previews/pattern_7.png) | ![pattern_8-600](600/previews/pattern_8.png) | ![pattern_9-600](600/previews/pattern_9.png) | ![pattern_10-600](600/previews/pattern_10.png) | ![pattern_11-600](600/previews/pattern_11.png) | ![pattern_12-600](600/previews/pattern_12.png) | ![pattern_13-600](600/previews/pattern_13.png) | ![pattern_14-600](600/previews/pattern_14.png) | ![pattern_15-600](600/previews/pattern_15.png) | ![pattern_16-600](600/previews/pattern_16.png) | ![bikini-600](600/previews/bikini.png) | [<NSFW, click to see>](600/previews/bondage.png) | ![free-600](600/previews/free.png) | ![maid-600](600/previews/maid.png) | ![miko-600](600/previews/miko.png) | [<NSFW, click to see>](600/previews/nude.png) | [<NSFW, click to see>](600/previews/nude2.png) | ![suit-600](600/previews/suit.png) | ![yukata-600](600/previews/yukata.png) |
kensvin/sdss-cnn
kensvin
2023-09-28T05:01:55Z
47
0
transformers
[ "transformers", "pytorch", "cnn", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-09-28T05:01:40Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: sdss-cnn results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sdss-cnn This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1573 - Accuracy: 0.9505 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 100 - eval_batch_size: 100 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 80 | 0.4954 | 0.8635 | | No log | 2.0 | 160 | 0.2788 | 0.9055 | | No log | 3.0 | 240 | 0.2239 | 0.9085 | | No log | 4.0 | 320 | 0.1991 | 0.9325 | | No log | 5.0 | 400 | 0.1954 | 0.94 | | No log | 6.0 | 480 | 0.1854 | 0.9445 | | 0.3543 | 7.0 | 560 | 0.1891 | 0.9375 | | 0.3543 | 8.0 | 640 | 0.1777 | 0.943 | | 0.3543 | 9.0 | 720 | 0.1780 | 0.9415 | | 0.3543 | 10.0 | 800 | 0.1804 | 0.942 | | 0.3543 | 11.0 | 880 | 0.1734 | 0.9475 | | 0.3543 | 12.0 | 960 | 0.1689 | 0.947 | | 0.2022 | 13.0 | 1040 | 0.1698 | 0.9445 | | 0.2022 | 14.0 | 1120 | 0.1689 | 0.9405 | | 0.2022 | 15.0 | 1200 | 0.1650 | 0.9475 | | 0.2022 | 16.0 | 1280 | 0.1755 | 0.934 | | 0.2022 | 17.0 | 1360 | 0.1635 | 0.944 | | 0.2022 | 18.0 | 1440 | 0.1711 | 0.942 | | 0.1836 | 19.0 | 1520 | 0.1604 | 0.9485 | | 0.1836 | 20.0 | 1600 | 0.1595 | 0.95 | | 0.1836 | 21.0 | 1680 | 0.1613 | 0.9475 | | 0.1836 | 22.0 | 1760 | 0.1579 | 0.949 | | 0.1836 | 23.0 | 1840 | 0.1593 | 0.946 | | 0.1836 | 24.0 | 1920 | 0.1579 | 0.945 | | 0.167 | 25.0 | 2000 | 0.1584 | 0.9495 | | 0.167 | 26.0 | 2080 | 0.1573 | 0.9505 | | 0.167 | 27.0 | 2160 | 0.1596 | 0.945 | | 0.167 | 28.0 | 2240 | 0.1599 | 0.9435 | | 0.167 | 29.0 | 2320 | 0.1565 | 0.9485 | | 0.167 | 30.0 | 2400 | 0.1582 | 0.946 | | 0.167 | 31.0 | 2480 | 0.1563 | 0.95 | | 0.1568 | 32.0 | 2560 | 0.1563 | 0.95 | | 0.1568 | 33.0 | 2640 | 0.1573 | 0.9495 | | 0.1568 | 34.0 | 2720 | 0.1564 | 0.9465 | | 0.1568 | 35.0 | 2800 | 0.1557 | 0.95 | | 0.1568 | 36.0 | 2880 | 0.1554 | 0.949 | | 0.1568 | 37.0 | 2960 | 0.1562 | 0.948 | | 0.1515 | 38.0 | 3040 | 0.1555 | 0.948 | | 0.1515 | 39.0 | 3120 | 0.1557 | 0.95 | | 0.1515 | 40.0 | 3200 | 0.1559 | 0.9485 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
oshita-n/textual_inversion_10
oshita-n
2023-09-28T04:58:03Z
36
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "textual_inversion", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-28T04:52:27Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - oshita-n/textual_inversion_10 These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
imdatta0/internlm-huft
imdatta0
2023-09-28T04:57:35Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-28T04:57:32Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0 - PEFT 0.5.0
zhengzhou/checkpoints
zhengzhou
2023-09-28T04:29:56Z
3
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-26T18:41:35Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a photo of zly woman tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - zhengzhou/checkpoints This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a photo of zly woman using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
asmaa1/videomae-base-groub6-finetuned-SLT-subset
asmaa1
2023-09-28T04:13:09Z
60
0
transformers
[ "transformers", "pytorch", "videomae", "video-classification", "generated_from_trainer", "base_model:MCG-NJU/videomae-base", "base_model:finetune:MCG-NJU/videomae-base", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2023-09-28T03:16:33Z
--- license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-groub6-finetuned-SLT-subset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-groub6-finetuned-SLT-subset This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.7184 - Accuracy: 0.1905 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 132 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.3751 | 0.16 | 21 | 2.9978 | 0.0952 | | 3.3444 | 1.16 | 42 | 2.9361 | 0.1429 | | 3.1148 | 2.16 | 63 | 2.8907 | 0.1429 | | 3.1054 | 3.16 | 84 | 2.8089 | 0.1905 | | 2.6316 | 4.16 | 105 | 2.7559 | 0.1905 | | 2.9311 | 5.16 | 126 | 2.7195 | 0.1905 | | 2.972 | 6.05 | 132 | 2.7184 | 0.1905 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.0+cpu - Datasets 2.1.0 - Tokenizers 0.13.3
george24/hubbub-topics
george24
2023-09-28T04:09:36Z
0
0
null
[ "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:finetune:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2023-09-27T23:04:22Z
--- base_model: meta-llama/Llama-2-7b-hf tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: hubbub-topics results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hubbub-topics This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5901 - Accuracy: 0.8152 - Precision: 0.8134 - Recall: 0.8152 - F1: 0.8079 ## Model description Hubbub Categories/Topics fine-tuned model ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.209 | 1.0 | 1406 | 1.0149 | 0.6644 | 0.6512 | 0.6644 | 0.6460 | | 1.0161 | 2.0 | 2812 | 0.8027 | 0.7444 | 0.7414 | 0.7444 | 0.7327 | | 0.7695 | 3.0 | 4218 | 0.5901 | 0.8152 | 0.8134 | 0.8152 | 0.8079 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
CyberHarem/yukimura_aoi_encouragementofclimb
CyberHarem
2023-09-28T04:02:30Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/yukimura_aoi_encouragementofclimb", "license:mit", "region:us" ]
text-to-image
2023-09-28T03:43:45Z
--- license: mit datasets: - CyberHarem/yukimura_aoi_encouragementofclimb pipeline_tag: text-to-image tags: - art --- # Lora of yukimura_aoi_encouragementofclimb This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 9240, you need to download `9240/yukimura_aoi_encouragementofclimb.pt` as the embedding and `9240/yukimura_aoi_encouragementofclimb.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 9240**, with the score of 0.913. The trigger words are: 1. `yukimura_aoi_encouragementofclimb` 2. `blush, short_hair, green_eyes, hair_ornament, hairclip, grey_hair, brown_hair` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | pattern_5 | pattern_6 | pattern_7 | pattern_8 | pattern_9 | pattern_10 | pattern_11 | pattern_12 | pattern_13 | pattern_14 | pattern_15 | pattern_16 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:-----------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-----------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | 9900 | 0.896 | [Download](9900/yukimura_aoi_encouragementofclimb.zip) | ![pattern_1-9900](9900/previews/pattern_1.png) | ![pattern_2-9900](9900/previews/pattern_2.png) | ![pattern_3-9900](9900/previews/pattern_3.png) | ![pattern_4-9900](9900/previews/pattern_4.png) | ![pattern_5-9900](9900/previews/pattern_5.png) | ![pattern_6-9900](9900/previews/pattern_6.png) | ![pattern_7-9900](9900/previews/pattern_7.png) | ![pattern_8-9900](9900/previews/pattern_8.png) | ![pattern_9-9900](9900/previews/pattern_9.png) | ![pattern_10-9900](9900/previews/pattern_10.png) | ![pattern_11-9900](9900/previews/pattern_11.png) | ![pattern_12-9900](9900/previews/pattern_12.png) | ![pattern_13-9900](9900/previews/pattern_13.png) | ![pattern_14-9900](9900/previews/pattern_14.png) | ![pattern_15-9900](9900/previews/pattern_15.png) | ![pattern_16-9900](9900/previews/pattern_16.png) | ![bikini-9900](9900/previews/bikini.png) | [<NSFW, click to see>](9900/previews/bondage.png) | ![free-9900](9900/previews/free.png) | ![maid-9900](9900/previews/maid.png) | ![miko-9900](9900/previews/miko.png) | [<NSFW, click to see>](9900/previews/nude.png) | [<NSFW, click to see>](9900/previews/nude2.png) | ![suit-9900](9900/previews/suit.png) | ![yukata-9900](9900/previews/yukata.png) | | **9240** | **0.913** | [**Download**](9240/yukimura_aoi_encouragementofclimb.zip) | ![pattern_1-9240](9240/previews/pattern_1.png) | ![pattern_2-9240](9240/previews/pattern_2.png) | ![pattern_3-9240](9240/previews/pattern_3.png) | ![pattern_4-9240](9240/previews/pattern_4.png) | ![pattern_5-9240](9240/previews/pattern_5.png) | ![pattern_6-9240](9240/previews/pattern_6.png) | ![pattern_7-9240](9240/previews/pattern_7.png) | ![pattern_8-9240](9240/previews/pattern_8.png) | ![pattern_9-9240](9240/previews/pattern_9.png) | ![pattern_10-9240](9240/previews/pattern_10.png) | ![pattern_11-9240](9240/previews/pattern_11.png) | ![pattern_12-9240](9240/previews/pattern_12.png) | ![pattern_13-9240](9240/previews/pattern_13.png) | ![pattern_14-9240](9240/previews/pattern_14.png) | ![pattern_15-9240](9240/previews/pattern_15.png) | ![pattern_16-9240](9240/previews/pattern_16.png) | ![bikini-9240](9240/previews/bikini.png) | [<NSFW, click to see>](9240/previews/bondage.png) | ![free-9240](9240/previews/free.png) | ![maid-9240](9240/previews/maid.png) | ![miko-9240](9240/previews/miko.png) | [<NSFW, click to see>](9240/previews/nude.png) | [<NSFW, click to see>](9240/previews/nude2.png) | ![suit-9240](9240/previews/suit.png) | ![yukata-9240](9240/previews/yukata.png) | | 8580 | 0.902 | [Download](8580/yukimura_aoi_encouragementofclimb.zip) | ![pattern_1-8580](8580/previews/pattern_1.png) | ![pattern_2-8580](8580/previews/pattern_2.png) | ![pattern_3-8580](8580/previews/pattern_3.png) | ![pattern_4-8580](8580/previews/pattern_4.png) | ![pattern_5-8580](8580/previews/pattern_5.png) | ![pattern_6-8580](8580/previews/pattern_6.png) | ![pattern_7-8580](8580/previews/pattern_7.png) | ![pattern_8-8580](8580/previews/pattern_8.png) | ![pattern_9-8580](8580/previews/pattern_9.png) | ![pattern_10-8580](8580/previews/pattern_10.png) | ![pattern_11-8580](8580/previews/pattern_11.png) | ![pattern_12-8580](8580/previews/pattern_12.png) | ![pattern_13-8580](8580/previews/pattern_13.png) | ![pattern_14-8580](8580/previews/pattern_14.png) | ![pattern_15-8580](8580/previews/pattern_15.png) | ![pattern_16-8580](8580/previews/pattern_16.png) | ![bikini-8580](8580/previews/bikini.png) | [<NSFW, click to see>](8580/previews/bondage.png) | ![free-8580](8580/previews/free.png) | ![maid-8580](8580/previews/maid.png) | ![miko-8580](8580/previews/miko.png) | [<NSFW, click to see>](8580/previews/nude.png) | [<NSFW, click to see>](8580/previews/nude2.png) | ![suit-8580](8580/previews/suit.png) | ![yukata-8580](8580/previews/yukata.png) | | 7920 | 0.855 | [Download](7920/yukimura_aoi_encouragementofclimb.zip) | ![pattern_1-7920](7920/previews/pattern_1.png) | ![pattern_2-7920](7920/previews/pattern_2.png) | ![pattern_3-7920](7920/previews/pattern_3.png) | ![pattern_4-7920](7920/previews/pattern_4.png) | ![pattern_5-7920](7920/previews/pattern_5.png) | ![pattern_6-7920](7920/previews/pattern_6.png) | ![pattern_7-7920](7920/previews/pattern_7.png) | ![pattern_8-7920](7920/previews/pattern_8.png) | ![pattern_9-7920](7920/previews/pattern_9.png) | ![pattern_10-7920](7920/previews/pattern_10.png) | ![pattern_11-7920](7920/previews/pattern_11.png) | ![pattern_12-7920](7920/previews/pattern_12.png) | ![pattern_13-7920](7920/previews/pattern_13.png) | ![pattern_14-7920](7920/previews/pattern_14.png) | ![pattern_15-7920](7920/previews/pattern_15.png) | ![pattern_16-7920](7920/previews/pattern_16.png) | ![bikini-7920](7920/previews/bikini.png) | [<NSFW, click to see>](7920/previews/bondage.png) | ![free-7920](7920/previews/free.png) | ![maid-7920](7920/previews/maid.png) | ![miko-7920](7920/previews/miko.png) | [<NSFW, click to see>](7920/previews/nude.png) | [<NSFW, click to see>](7920/previews/nude2.png) | ![suit-7920](7920/previews/suit.png) | ![yukata-7920](7920/previews/yukata.png) | | 7260 | 0.893 | [Download](7260/yukimura_aoi_encouragementofclimb.zip) | ![pattern_1-7260](7260/previews/pattern_1.png) | ![pattern_2-7260](7260/previews/pattern_2.png) | ![pattern_3-7260](7260/previews/pattern_3.png) | ![pattern_4-7260](7260/previews/pattern_4.png) | ![pattern_5-7260](7260/previews/pattern_5.png) | ![pattern_6-7260](7260/previews/pattern_6.png) | ![pattern_7-7260](7260/previews/pattern_7.png) | ![pattern_8-7260](7260/previews/pattern_8.png) | ![pattern_9-7260](7260/previews/pattern_9.png) | ![pattern_10-7260](7260/previews/pattern_10.png) | ![pattern_11-7260](7260/previews/pattern_11.png) | ![pattern_12-7260](7260/previews/pattern_12.png) | ![pattern_13-7260](7260/previews/pattern_13.png) | ![pattern_14-7260](7260/previews/pattern_14.png) | ![pattern_15-7260](7260/previews/pattern_15.png) | ![pattern_16-7260](7260/previews/pattern_16.png) | ![bikini-7260](7260/previews/bikini.png) | [<NSFW, click to see>](7260/previews/bondage.png) | ![free-7260](7260/previews/free.png) | ![maid-7260](7260/previews/maid.png) | ![miko-7260](7260/previews/miko.png) | [<NSFW, click to see>](7260/previews/nude.png) | [<NSFW, click to see>](7260/previews/nude2.png) | ![suit-7260](7260/previews/suit.png) | ![yukata-7260](7260/previews/yukata.png) | | 6600 | 0.891 | [Download](6600/yukimura_aoi_encouragementofclimb.zip) | ![pattern_1-6600](6600/previews/pattern_1.png) | ![pattern_2-6600](6600/previews/pattern_2.png) | ![pattern_3-6600](6600/previews/pattern_3.png) | ![pattern_4-6600](6600/previews/pattern_4.png) | ![pattern_5-6600](6600/previews/pattern_5.png) | ![pattern_6-6600](6600/previews/pattern_6.png) | ![pattern_7-6600](6600/previews/pattern_7.png) | ![pattern_8-6600](6600/previews/pattern_8.png) | ![pattern_9-6600](6600/previews/pattern_9.png) | ![pattern_10-6600](6600/previews/pattern_10.png) | ![pattern_11-6600](6600/previews/pattern_11.png) | ![pattern_12-6600](6600/previews/pattern_12.png) | ![pattern_13-6600](6600/previews/pattern_13.png) | ![pattern_14-6600](6600/previews/pattern_14.png) | ![pattern_15-6600](6600/previews/pattern_15.png) | ![pattern_16-6600](6600/previews/pattern_16.png) | ![bikini-6600](6600/previews/bikini.png) | [<NSFW, click to see>](6600/previews/bondage.png) | ![free-6600](6600/previews/free.png) | ![maid-6600](6600/previews/maid.png) | ![miko-6600](6600/previews/miko.png) | [<NSFW, click to see>](6600/previews/nude.png) | [<NSFW, click to see>](6600/previews/nude2.png) | ![suit-6600](6600/previews/suit.png) | ![yukata-6600](6600/previews/yukata.png) | | 5940 | 0.882 | [Download](5940/yukimura_aoi_encouragementofclimb.zip) | ![pattern_1-5940](5940/previews/pattern_1.png) | ![pattern_2-5940](5940/previews/pattern_2.png) | ![pattern_3-5940](5940/previews/pattern_3.png) | ![pattern_4-5940](5940/previews/pattern_4.png) | ![pattern_5-5940](5940/previews/pattern_5.png) | ![pattern_6-5940](5940/previews/pattern_6.png) | ![pattern_7-5940](5940/previews/pattern_7.png) | ![pattern_8-5940](5940/previews/pattern_8.png) | ![pattern_9-5940](5940/previews/pattern_9.png) | ![pattern_10-5940](5940/previews/pattern_10.png) | ![pattern_11-5940](5940/previews/pattern_11.png) | ![pattern_12-5940](5940/previews/pattern_12.png) | ![pattern_13-5940](5940/previews/pattern_13.png) | ![pattern_14-5940](5940/previews/pattern_14.png) | ![pattern_15-5940](5940/previews/pattern_15.png) | ![pattern_16-5940](5940/previews/pattern_16.png) | ![bikini-5940](5940/previews/bikini.png) | [<NSFW, click to see>](5940/previews/bondage.png) | ![free-5940](5940/previews/free.png) | ![maid-5940](5940/previews/maid.png) | ![miko-5940](5940/previews/miko.png) | [<NSFW, click to see>](5940/previews/nude.png) | [<NSFW, click to see>](5940/previews/nude2.png) | ![suit-5940](5940/previews/suit.png) | ![yukata-5940](5940/previews/yukata.png) | | 5280 | 0.870 | [Download](5280/yukimura_aoi_encouragementofclimb.zip) | ![pattern_1-5280](5280/previews/pattern_1.png) | ![pattern_2-5280](5280/previews/pattern_2.png) | ![pattern_3-5280](5280/previews/pattern_3.png) | ![pattern_4-5280](5280/previews/pattern_4.png) | ![pattern_5-5280](5280/previews/pattern_5.png) | ![pattern_6-5280](5280/previews/pattern_6.png) | ![pattern_7-5280](5280/previews/pattern_7.png) | ![pattern_8-5280](5280/previews/pattern_8.png) | ![pattern_9-5280](5280/previews/pattern_9.png) | ![pattern_10-5280](5280/previews/pattern_10.png) | ![pattern_11-5280](5280/previews/pattern_11.png) | ![pattern_12-5280](5280/previews/pattern_12.png) | ![pattern_13-5280](5280/previews/pattern_13.png) | ![pattern_14-5280](5280/previews/pattern_14.png) | ![pattern_15-5280](5280/previews/pattern_15.png) | ![pattern_16-5280](5280/previews/pattern_16.png) | ![bikini-5280](5280/previews/bikini.png) | [<NSFW, click to see>](5280/previews/bondage.png) | ![free-5280](5280/previews/free.png) | ![maid-5280](5280/previews/maid.png) | ![miko-5280](5280/previews/miko.png) | [<NSFW, click to see>](5280/previews/nude.png) | [<NSFW, click to see>](5280/previews/nude2.png) | ![suit-5280](5280/previews/suit.png) | ![yukata-5280](5280/previews/yukata.png) | | 4620 | 0.867 | [Download](4620/yukimura_aoi_encouragementofclimb.zip) | ![pattern_1-4620](4620/previews/pattern_1.png) | ![pattern_2-4620](4620/previews/pattern_2.png) | ![pattern_3-4620](4620/previews/pattern_3.png) | ![pattern_4-4620](4620/previews/pattern_4.png) | ![pattern_5-4620](4620/previews/pattern_5.png) | ![pattern_6-4620](4620/previews/pattern_6.png) | ![pattern_7-4620](4620/previews/pattern_7.png) | ![pattern_8-4620](4620/previews/pattern_8.png) | ![pattern_9-4620](4620/previews/pattern_9.png) | ![pattern_10-4620](4620/previews/pattern_10.png) | ![pattern_11-4620](4620/previews/pattern_11.png) | ![pattern_12-4620](4620/previews/pattern_12.png) | ![pattern_13-4620](4620/previews/pattern_13.png) | ![pattern_14-4620](4620/previews/pattern_14.png) | ![pattern_15-4620](4620/previews/pattern_15.png) | ![pattern_16-4620](4620/previews/pattern_16.png) | ![bikini-4620](4620/previews/bikini.png) | [<NSFW, click to see>](4620/previews/bondage.png) | ![free-4620](4620/previews/free.png) | ![maid-4620](4620/previews/maid.png) | ![miko-4620](4620/previews/miko.png) | [<NSFW, click to see>](4620/previews/nude.png) | [<NSFW, click to see>](4620/previews/nude2.png) | ![suit-4620](4620/previews/suit.png) | ![yukata-4620](4620/previews/yukata.png) | | 3960 | 0.869 | [Download](3960/yukimura_aoi_encouragementofclimb.zip) | ![pattern_1-3960](3960/previews/pattern_1.png) | ![pattern_2-3960](3960/previews/pattern_2.png) | ![pattern_3-3960](3960/previews/pattern_3.png) | ![pattern_4-3960](3960/previews/pattern_4.png) | ![pattern_5-3960](3960/previews/pattern_5.png) | ![pattern_6-3960](3960/previews/pattern_6.png) | ![pattern_7-3960](3960/previews/pattern_7.png) | ![pattern_8-3960](3960/previews/pattern_8.png) | ![pattern_9-3960](3960/previews/pattern_9.png) | ![pattern_10-3960](3960/previews/pattern_10.png) | ![pattern_11-3960](3960/previews/pattern_11.png) | ![pattern_12-3960](3960/previews/pattern_12.png) | ![pattern_13-3960](3960/previews/pattern_13.png) | ![pattern_14-3960](3960/previews/pattern_14.png) | ![pattern_15-3960](3960/previews/pattern_15.png) | ![pattern_16-3960](3960/previews/pattern_16.png) | ![bikini-3960](3960/previews/bikini.png) | [<NSFW, click to see>](3960/previews/bondage.png) | ![free-3960](3960/previews/free.png) | ![maid-3960](3960/previews/maid.png) | ![miko-3960](3960/previews/miko.png) | [<NSFW, click to see>](3960/previews/nude.png) | [<NSFW, click to see>](3960/previews/nude2.png) | ![suit-3960](3960/previews/suit.png) | ![yukata-3960](3960/previews/yukata.png) | | 3300 | 0.888 | [Download](3300/yukimura_aoi_encouragementofclimb.zip) | ![pattern_1-3300](3300/previews/pattern_1.png) | ![pattern_2-3300](3300/previews/pattern_2.png) | ![pattern_3-3300](3300/previews/pattern_3.png) | ![pattern_4-3300](3300/previews/pattern_4.png) | ![pattern_5-3300](3300/previews/pattern_5.png) | ![pattern_6-3300](3300/previews/pattern_6.png) | ![pattern_7-3300](3300/previews/pattern_7.png) | ![pattern_8-3300](3300/previews/pattern_8.png) | ![pattern_9-3300](3300/previews/pattern_9.png) | ![pattern_10-3300](3300/previews/pattern_10.png) | ![pattern_11-3300](3300/previews/pattern_11.png) | ![pattern_12-3300](3300/previews/pattern_12.png) | ![pattern_13-3300](3300/previews/pattern_13.png) | ![pattern_14-3300](3300/previews/pattern_14.png) | ![pattern_15-3300](3300/previews/pattern_15.png) | ![pattern_16-3300](3300/previews/pattern_16.png) | ![bikini-3300](3300/previews/bikini.png) | [<NSFW, click to see>](3300/previews/bondage.png) | ![free-3300](3300/previews/free.png) | ![maid-3300](3300/previews/maid.png) | ![miko-3300](3300/previews/miko.png) | [<NSFW, click to see>](3300/previews/nude.png) | [<NSFW, click to see>](3300/previews/nude2.png) | ![suit-3300](3300/previews/suit.png) | ![yukata-3300](3300/previews/yukata.png) | | 2640 | 0.863 | [Download](2640/yukimura_aoi_encouragementofclimb.zip) | ![pattern_1-2640](2640/previews/pattern_1.png) | ![pattern_2-2640](2640/previews/pattern_2.png) | ![pattern_3-2640](2640/previews/pattern_3.png) | ![pattern_4-2640](2640/previews/pattern_4.png) | ![pattern_5-2640](2640/previews/pattern_5.png) | ![pattern_6-2640](2640/previews/pattern_6.png) | ![pattern_7-2640](2640/previews/pattern_7.png) | ![pattern_8-2640](2640/previews/pattern_8.png) | ![pattern_9-2640](2640/previews/pattern_9.png) | ![pattern_10-2640](2640/previews/pattern_10.png) | ![pattern_11-2640](2640/previews/pattern_11.png) | ![pattern_12-2640](2640/previews/pattern_12.png) | ![pattern_13-2640](2640/previews/pattern_13.png) | ![pattern_14-2640](2640/previews/pattern_14.png) | ![pattern_15-2640](2640/previews/pattern_15.png) | ![pattern_16-2640](2640/previews/pattern_16.png) | ![bikini-2640](2640/previews/bikini.png) | [<NSFW, click to see>](2640/previews/bondage.png) | ![free-2640](2640/previews/free.png) | ![maid-2640](2640/previews/maid.png) | ![miko-2640](2640/previews/miko.png) | [<NSFW, click to see>](2640/previews/nude.png) | [<NSFW, click to see>](2640/previews/nude2.png) | ![suit-2640](2640/previews/suit.png) | ![yukata-2640](2640/previews/yukata.png) | | 1980 | 0.796 | [Download](1980/yukimura_aoi_encouragementofclimb.zip) | ![pattern_1-1980](1980/previews/pattern_1.png) | ![pattern_2-1980](1980/previews/pattern_2.png) | ![pattern_3-1980](1980/previews/pattern_3.png) | ![pattern_4-1980](1980/previews/pattern_4.png) | ![pattern_5-1980](1980/previews/pattern_5.png) | ![pattern_6-1980](1980/previews/pattern_6.png) | ![pattern_7-1980](1980/previews/pattern_7.png) | ![pattern_8-1980](1980/previews/pattern_8.png) | ![pattern_9-1980](1980/previews/pattern_9.png) | ![pattern_10-1980](1980/previews/pattern_10.png) | ![pattern_11-1980](1980/previews/pattern_11.png) | ![pattern_12-1980](1980/previews/pattern_12.png) | ![pattern_13-1980](1980/previews/pattern_13.png) | ![pattern_14-1980](1980/previews/pattern_14.png) | ![pattern_15-1980](1980/previews/pattern_15.png) | ![pattern_16-1980](1980/previews/pattern_16.png) | ![bikini-1980](1980/previews/bikini.png) | [<NSFW, click to see>](1980/previews/bondage.png) | ![free-1980](1980/previews/free.png) | ![maid-1980](1980/previews/maid.png) | ![miko-1980](1980/previews/miko.png) | [<NSFW, click to see>](1980/previews/nude.png) | [<NSFW, click to see>](1980/previews/nude2.png) | ![suit-1980](1980/previews/suit.png) | ![yukata-1980](1980/previews/yukata.png) | | 1320 | 0.791 | [Download](1320/yukimura_aoi_encouragementofclimb.zip) | ![pattern_1-1320](1320/previews/pattern_1.png) | ![pattern_2-1320](1320/previews/pattern_2.png) | ![pattern_3-1320](1320/previews/pattern_3.png) | ![pattern_4-1320](1320/previews/pattern_4.png) | ![pattern_5-1320](1320/previews/pattern_5.png) | ![pattern_6-1320](1320/previews/pattern_6.png) | ![pattern_7-1320](1320/previews/pattern_7.png) | ![pattern_8-1320](1320/previews/pattern_8.png) | ![pattern_9-1320](1320/previews/pattern_9.png) | ![pattern_10-1320](1320/previews/pattern_10.png) | ![pattern_11-1320](1320/previews/pattern_11.png) | ![pattern_12-1320](1320/previews/pattern_12.png) | ![pattern_13-1320](1320/previews/pattern_13.png) | ![pattern_14-1320](1320/previews/pattern_14.png) | ![pattern_15-1320](1320/previews/pattern_15.png) | ![pattern_16-1320](1320/previews/pattern_16.png) | ![bikini-1320](1320/previews/bikini.png) | [<NSFW, click to see>](1320/previews/bondage.png) | ![free-1320](1320/previews/free.png) | ![maid-1320](1320/previews/maid.png) | ![miko-1320](1320/previews/miko.png) | [<NSFW, click to see>](1320/previews/nude.png) | [<NSFW, click to see>](1320/previews/nude2.png) | ![suit-1320](1320/previews/suit.png) | ![yukata-1320](1320/previews/yukata.png) | | 660 | 0.722 | [Download](660/yukimura_aoi_encouragementofclimb.zip) | ![pattern_1-660](660/previews/pattern_1.png) | ![pattern_2-660](660/previews/pattern_2.png) | ![pattern_3-660](660/previews/pattern_3.png) | ![pattern_4-660](660/previews/pattern_4.png) | ![pattern_5-660](660/previews/pattern_5.png) | ![pattern_6-660](660/previews/pattern_6.png) | ![pattern_7-660](660/previews/pattern_7.png) | ![pattern_8-660](660/previews/pattern_8.png) | ![pattern_9-660](660/previews/pattern_9.png) | ![pattern_10-660](660/previews/pattern_10.png) | ![pattern_11-660](660/previews/pattern_11.png) | ![pattern_12-660](660/previews/pattern_12.png) | ![pattern_13-660](660/previews/pattern_13.png) | ![pattern_14-660](660/previews/pattern_14.png) | ![pattern_15-660](660/previews/pattern_15.png) | ![pattern_16-660](660/previews/pattern_16.png) | ![bikini-660](660/previews/bikini.png) | [<NSFW, click to see>](660/previews/bondage.png) | ![free-660](660/previews/free.png) | ![maid-660](660/previews/maid.png) | ![miko-660](660/previews/miko.png) | [<NSFW, click to see>](660/previews/nude.png) | [<NSFW, click to see>](660/previews/nude2.png) | ![suit-660](660/previews/suit.png) | ![yukata-660](660/previews/yukata.png) |
roa7n/gpt2-human_nontata_promoters-randomized_5_layers_3e-05_lr_2_e
roa7n
2023-09-28T03:30:19Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-28T03:30:16Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
checkiejan/multi-qa-mpnet-base-dot-v1-covidqa-search-multiple-negatives-loss
checkiejan
2023-09-28T03:27:11Z
13
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-09-28T03:26:44Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 595 with parameters: ``` {'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 50, "evaluator": "sentence_transformers.evaluation.TripletEvaluator.TripletEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 59, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
xinli95/q-Taxi-v3
xinli95
2023-09-28T03:24:25Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-09-28T03:24:23Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="xinli95/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
omidvaramin/HBART
omidvaramin
2023-09-28T03:22:36Z
111
1
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-24T21:02:54Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Hprophetnet-large <!-- Provide a quick summary of what the model is/does. --> This model is a fine-tuned version of [bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on Newsroom dataset to generate news headlines. To ask model to generate headliens "Headline: " should be appended to the beginning of the article. ## Intended uses & limitations You can use this model for headline generation task on English news articles. ### Usage ```python article = """Two of the OPEC oil cartel’s 11 members, Nigeria and Venezuela, said today \ that they would voluntarily cut production in response to declining crude oil prices, which \ have fallen 20 percent from their peak two months ago. The move, which would take less than 200,000 barrels of oil a day off the market, follows days \ of mixed signals from some OPEC officials, who have voiced increasing concern about the rapid \ drop in prices. Nigeria’s oil minister, Edmund Daukoru, who is president of OPEC this year, \ recently said the price of oil was very low. Nigeria and Venezuela, which have generally been price hawks within the group, said their decision \ to cut production grew out of an informal deal reached at OPEC’s last meeting, earlier this month, \ to pare output if prices fell steeply. Some OPEC representatives have grown anxious at the slide in \ the oil futures markets, where prices for benchmark contracts have fallen from a midsummer high of \ $77.03 a barrel. But traders shrugged off the announcement of the production cuts today. On the New York Mercantile \ Exchange, the most widely watched contract price light, low-sulfur crude for delivery next month \ traded this afternoon at $62.30 a barrel, down 0.7 percent. Mr. Daukoru has been in contact with other OPEC ministers to discuss prices, which on Monday briefly \ slipped below $60 a barrel for the first time in six months. But the Organization of the Petroleum \ Exporting Countries, as the cartel is formally known, denied any shift in policy. We are not currently concerned, a delegate from one of OPECs Gulf members said. The prices are \ currently manageable and fair. We are not overly alarmed by the prices. It is not a cause for alarm. \ It's the market working. It is not unusual for oil prices to fall after Labor Day and the conclusion of the summer travel season. \ Demand tends to slow in the third quarter, and refiners reduce their output for seasonal maintenance; \ consumption picks up again with the first winter cold in the Western Hemisphere, and prices sometimes do as well. We are not going to push extra oil in the market or force it down our customers throats, we just respond to demand, \ the delegate from the Gulf said. Still, contradictory statements from senior OPEC representatives have sown doubt about the oil cartel's strategy. \ Whether OPEC countries actually reduce their output or not, the mixed messages have at least succeeded in one way: \ oil traders have been persuaded that OPEC is willing to step in to defend prices, and have traded on that belief, \ slowing the recent price decline. While apparently fanciful, reports of an imminent output cut reflect two hard facts: stocks are building faster than \ expected, and several producers have an incredibly low pain threshold when it comes to price drops, Antoine Halff, an \ energy analyst with Fimat, wrote in a note to clients today. “However, more price declines will likely be needed before \ OPEC producers decide on any coordinated move. Venezuela, which pumps about 2.5 million barrels a day, said it would cut its daily output by 50,000 barrels, or about 2 \ percent, starting Oct. 1. Nigeria said it would trim its exports by 5 percent on the same date, a reduction of about \ 120,000 barrels a day from its current output of about 3.8 million barrels a day. They are trying to influence the psychology of the market, said Larry Goldstein, a veteran oil analyst and the president \ of the Petroleum Industry Research Foundation in New York. Although they are reacting to the reduction in demand, they \ are trying to convince the market that they are actually anticipating it, by making cuts ahead of the market. But they \ are simply reacting to it, which is how markets should operate.""" import transformers import os import torch #If you have more than one GPU, you can specify here which one to use os.environ["CUDA_VISIBLE_DEVICES"]="5" from transformers import AutoModelForSeq2SeqLM, AutoTokenizer device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(device) #appending the task identifier to the beginning of input article = "Headline: " + article model = AutoModelForSeq2SeqLM.from_pretrained("omidvaramin/HBART").to(device) tokenizer = AutoTokenizer.from_pretrained("omidvaramin/HBART") #encodign article using tokenizer encoding = tokenizer(article , max_length=1024 , truncation=True ,return_tensors="pt" ,padding='longest') input_ids = encoding['input_ids'] attention_masks = encoding['attention_mask'] #transfering the data into GPU input_ids = input_ids.to(device) attention_masks = attention_masks.to(device) #generate headlines using kbeam technique beam_outputs = model.generate( input_ids = input_ids, attention_mask = attention_masks ,do_sample = False ,num_beams = 4 ,max_length = 20 ,min_length = 1 ,num_return_sequences = 1 ) result = tokenizer.batch_decode(beam_outputs, skip_special_tokens=True) print(result[0]) >>> [{'2 OPEC Nations Agree to Cut Oil Output'}] ``` ### BibTeX entry and citation info ```bibtex @ARTICLE{10154027, author={Omidvar, Amin and An, Aijun}, journal={IEEE Access}, title={Learning to Generate Popular Headlines}, year={2023}, volume={11}, number={}, pages={60904-60914}, doi={10.1109/ACCESS.2023.3286853}}
oshita-n/textual_inversion_7
oshita-n
2023-09-28T03:22:00Z
35
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "textual_inversion", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-28T03:16:33Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - oshita-n/textual_inversion_7 These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
xinli95/q-FrozenLake-v1-4x4-noSlippery
xinli95
2023-09-28T03:14:26Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-09-28T03:14:23Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="xinli95/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
tylerkiser/ppo-Huggy
tylerkiser
2023-09-28T03:11:51Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-09-28T03:06:07Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: tylerkiser/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
pablorfb/chatbot
pablorfb
2023-09-28T02:59:30Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-28T02:59:27Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0
oshita-n/textual_inversion_5
oshita-n
2023-09-28T02:53:14Z
38
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "textual_inversion", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-28T02:46:45Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - oshita-n/textual_inversion_5 These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
micposso/spotted-lanterfly-reco
micposso
2023-09-28T02:42:44Z
0
0
null
[ "biology", "en", "license:mit", "region:us" ]
null
2023-09-21T18:53:16Z
--- license: mit language: - en tags: - biology --- ## Spotter Lanternfly Image Detector # This model can be used to identify spotted lanterflies at different growth states. # You can try the model here https://teachablemachine.withgoogle.com/models/KdKkohSG2/
VuongQuoc/checkpoints_27_9_microsoft_deberta_21_9
VuongQuoc
2023-09-28T02:39:59Z
1
0
transformers
[ "transformers", "pytorch", "deberta-v2", "multiple-choice", "generated_from_trainer", "base_model:VuongQuoc/checkpoints_26_9_microsoft_deberta_21_9", "base_model:finetune:VuongQuoc/checkpoints_26_9_microsoft_deberta_21_9", "license:mit", "endpoints_compatible", "region:us" ]
multiple-choice
2023-09-26T16:11:41Z
--- license: mit base_model: VuongQuoc/checkpoints_26_9_microsoft_deberta_21_9 tags: - generated_from_trainer metrics: - accuracy model-index: - name: checkpoints_27_9_microsoft_deberta_21_9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # checkpoints_27_9_microsoft_deberta_21_9 This model is a fine-tuned version of [VuongQuoc/checkpoints_26_9_microsoft_deberta_21_9](https://huggingface.co/VuongQuoc/checkpoints_26_9_microsoft_deberta_21_9) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6632 - Map@3: 0.8608 - Accuracy: 0.775 - MAX_INPUT = 256 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Map@3 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 0.6308 | 0.05 | 100 | 0.6775 | 0.8842 | 0.815 | | 0.3472 | 0.11 | 200 | 0.7255 | 0.8767 | 0.805 | | 0.2267 | 0.16 | 300 | 0.7786 | 0.8608 | 0.785 | | 0.143 | 0.21 | 400 | 0.8580 | 0.8333 | 0.735 | | 0.0723 | 0.27 | 500 | 0.9517 | 0.8358 | 0.735 | | 0.3952 | 0.32 | 600 | 0.6632 | 0.8608 | 0.775 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.0 - Datasets 2.9.0 - Tokenizers 0.13.3
oshita-n/textual_inversion_4
oshita-n
2023-09-28T02:33:04Z
35
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "textual_inversion", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-28T02:27:37Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - oshita-n/textual_inversion_4 These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
roa7n/gpt2-human_nontata_promoters-randomized_5_layers_0.003_lr_2_e
roa7n
2023-09-28T02:25:09Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-28T02:25:07Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
checkiejan/multi-qa-mpnet-base-dot-v1-covidqa-search-triplet-100
checkiejan
2023-09-28T02:24:39Z
13
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-09-28T02:24:14Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 298 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.TripletLoss.TripletLoss` with parameters: ``` {'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 5} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 50, "evaluator": "sentence_transformers.evaluation.TripletEvaluator.TripletEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 29, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
CyberHarem/fujimiya_konomi_nonnonbiyori
CyberHarem
2023-09-28T02:02:40Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/fujimiya_konomi_nonnonbiyori", "license:mit", "region:us" ]
text-to-image
2023-09-28T01:49:02Z
--- license: mit datasets: - CyberHarem/fujimiya_konomi_nonnonbiyori pipeline_tag: text-to-image tags: - art --- # Lora of fujimiya_konomi_nonnonbiyori This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 4420, you need to download `4420/fujimiya_konomi_nonnonbiyori.pt` as the embedding and `4420/fujimiya_konomi_nonnonbiyori.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 4420**, with the score of 0.918. The trigger words are: 1. `fujimiya_konomi_nonnonbiyori` 2. `brown_hair, hair_ornament, hairclip, long_hair, purple_eyes, braid, smile, blush` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | pattern_5 | pattern_6 | pattern_7 | pattern_8 | pattern_9 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-------------------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | 5100 | 0.877 | [Download](5100/fujimiya_konomi_nonnonbiyori.zip) | ![pattern_1-5100](5100/previews/pattern_1.png) | ![pattern_2-5100](5100/previews/pattern_2.png) | ![pattern_3-5100](5100/previews/pattern_3.png) | ![pattern_4-5100](5100/previews/pattern_4.png) | ![pattern_5-5100](5100/previews/pattern_5.png) | ![pattern_6-5100](5100/previews/pattern_6.png) | ![pattern_7-5100](5100/previews/pattern_7.png) | ![pattern_8-5100](5100/previews/pattern_8.png) | ![pattern_9-5100](5100/previews/pattern_9.png) | [<NSFW, click to see>](5100/previews/bikini.png) | [<NSFW, click to see>](5100/previews/bondage.png) | ![free-5100](5100/previews/free.png) | ![maid-5100](5100/previews/maid.png) | ![miko-5100](5100/previews/miko.png) | [<NSFW, click to see>](5100/previews/nude.png) | [<NSFW, click to see>](5100/previews/nude2.png) | ![suit-5100](5100/previews/suit.png) | ![yukata-5100](5100/previews/yukata.png) | | 4760 | 0.915 | [Download](4760/fujimiya_konomi_nonnonbiyori.zip) | ![pattern_1-4760](4760/previews/pattern_1.png) | ![pattern_2-4760](4760/previews/pattern_2.png) | ![pattern_3-4760](4760/previews/pattern_3.png) | ![pattern_4-4760](4760/previews/pattern_4.png) | ![pattern_5-4760](4760/previews/pattern_5.png) | ![pattern_6-4760](4760/previews/pattern_6.png) | ![pattern_7-4760](4760/previews/pattern_7.png) | ![pattern_8-4760](4760/previews/pattern_8.png) | ![pattern_9-4760](4760/previews/pattern_9.png) | [<NSFW, click to see>](4760/previews/bikini.png) | [<NSFW, click to see>](4760/previews/bondage.png) | ![free-4760](4760/previews/free.png) | ![maid-4760](4760/previews/maid.png) | ![miko-4760](4760/previews/miko.png) | [<NSFW, click to see>](4760/previews/nude.png) | [<NSFW, click to see>](4760/previews/nude2.png) | ![suit-4760](4760/previews/suit.png) | ![yukata-4760](4760/previews/yukata.png) | | **4420** | **0.918** | [**Download**](4420/fujimiya_konomi_nonnonbiyori.zip) | ![pattern_1-4420](4420/previews/pattern_1.png) | ![pattern_2-4420](4420/previews/pattern_2.png) | ![pattern_3-4420](4420/previews/pattern_3.png) | ![pattern_4-4420](4420/previews/pattern_4.png) | ![pattern_5-4420](4420/previews/pattern_5.png) | ![pattern_6-4420](4420/previews/pattern_6.png) | ![pattern_7-4420](4420/previews/pattern_7.png) | ![pattern_8-4420](4420/previews/pattern_8.png) | ![pattern_9-4420](4420/previews/pattern_9.png) | [<NSFW, click to see>](4420/previews/bikini.png) | [<NSFW, click to see>](4420/previews/bondage.png) | ![free-4420](4420/previews/free.png) | ![maid-4420](4420/previews/maid.png) | ![miko-4420](4420/previews/miko.png) | [<NSFW, click to see>](4420/previews/nude.png) | [<NSFW, click to see>](4420/previews/nude2.png) | ![suit-4420](4420/previews/suit.png) | ![yukata-4420](4420/previews/yukata.png) | | 4080 | 0.916 | [Download](4080/fujimiya_konomi_nonnonbiyori.zip) | ![pattern_1-4080](4080/previews/pattern_1.png) | ![pattern_2-4080](4080/previews/pattern_2.png) | ![pattern_3-4080](4080/previews/pattern_3.png) | ![pattern_4-4080](4080/previews/pattern_4.png) | ![pattern_5-4080](4080/previews/pattern_5.png) | ![pattern_6-4080](4080/previews/pattern_6.png) | ![pattern_7-4080](4080/previews/pattern_7.png) | ![pattern_8-4080](4080/previews/pattern_8.png) | ![pattern_9-4080](4080/previews/pattern_9.png) | [<NSFW, click to see>](4080/previews/bikini.png) | [<NSFW, click to see>](4080/previews/bondage.png) | ![free-4080](4080/previews/free.png) | ![maid-4080](4080/previews/maid.png) | ![miko-4080](4080/previews/miko.png) | [<NSFW, click to see>](4080/previews/nude.png) | [<NSFW, click to see>](4080/previews/nude2.png) | ![suit-4080](4080/previews/suit.png) | ![yukata-4080](4080/previews/yukata.png) | | 3740 | 0.915 | [Download](3740/fujimiya_konomi_nonnonbiyori.zip) | ![pattern_1-3740](3740/previews/pattern_1.png) | ![pattern_2-3740](3740/previews/pattern_2.png) | ![pattern_3-3740](3740/previews/pattern_3.png) | ![pattern_4-3740](3740/previews/pattern_4.png) | ![pattern_5-3740](3740/previews/pattern_5.png) | ![pattern_6-3740](3740/previews/pattern_6.png) | ![pattern_7-3740](3740/previews/pattern_7.png) | ![pattern_8-3740](3740/previews/pattern_8.png) | ![pattern_9-3740](3740/previews/pattern_9.png) | [<NSFW, click to see>](3740/previews/bikini.png) | [<NSFW, click to see>](3740/previews/bondage.png) | ![free-3740](3740/previews/free.png) | ![maid-3740](3740/previews/maid.png) | ![miko-3740](3740/previews/miko.png) | [<NSFW, click to see>](3740/previews/nude.png) | [<NSFW, click to see>](3740/previews/nude2.png) | ![suit-3740](3740/previews/suit.png) | ![yukata-3740](3740/previews/yukata.png) | | 3400 | 0.872 | [Download](3400/fujimiya_konomi_nonnonbiyori.zip) | ![pattern_1-3400](3400/previews/pattern_1.png) | ![pattern_2-3400](3400/previews/pattern_2.png) | ![pattern_3-3400](3400/previews/pattern_3.png) | ![pattern_4-3400](3400/previews/pattern_4.png) | ![pattern_5-3400](3400/previews/pattern_5.png) | ![pattern_6-3400](3400/previews/pattern_6.png) | ![pattern_7-3400](3400/previews/pattern_7.png) | ![pattern_8-3400](3400/previews/pattern_8.png) | ![pattern_9-3400](3400/previews/pattern_9.png) | [<NSFW, click to see>](3400/previews/bikini.png) | [<NSFW, click to see>](3400/previews/bondage.png) | ![free-3400](3400/previews/free.png) | ![maid-3400](3400/previews/maid.png) | ![miko-3400](3400/previews/miko.png) | [<NSFW, click to see>](3400/previews/nude.png) | [<NSFW, click to see>](3400/previews/nude2.png) | ![suit-3400](3400/previews/suit.png) | ![yukata-3400](3400/previews/yukata.png) | | 3060 | 0.892 | [Download](3060/fujimiya_konomi_nonnonbiyori.zip) | ![pattern_1-3060](3060/previews/pattern_1.png) | ![pattern_2-3060](3060/previews/pattern_2.png) | ![pattern_3-3060](3060/previews/pattern_3.png) | ![pattern_4-3060](3060/previews/pattern_4.png) | ![pattern_5-3060](3060/previews/pattern_5.png) | ![pattern_6-3060](3060/previews/pattern_6.png) | ![pattern_7-3060](3060/previews/pattern_7.png) | ![pattern_8-3060](3060/previews/pattern_8.png) | ![pattern_9-3060](3060/previews/pattern_9.png) | [<NSFW, click to see>](3060/previews/bikini.png) | [<NSFW, click to see>](3060/previews/bondage.png) | ![free-3060](3060/previews/free.png) | ![maid-3060](3060/previews/maid.png) | ![miko-3060](3060/previews/miko.png) | [<NSFW, click to see>](3060/previews/nude.png) | [<NSFW, click to see>](3060/previews/nude2.png) | ![suit-3060](3060/previews/suit.png) | ![yukata-3060](3060/previews/yukata.png) | | 2720 | 0.869 | [Download](2720/fujimiya_konomi_nonnonbiyori.zip) | ![pattern_1-2720](2720/previews/pattern_1.png) | ![pattern_2-2720](2720/previews/pattern_2.png) | ![pattern_3-2720](2720/previews/pattern_3.png) | ![pattern_4-2720](2720/previews/pattern_4.png) | ![pattern_5-2720](2720/previews/pattern_5.png) | ![pattern_6-2720](2720/previews/pattern_6.png) | ![pattern_7-2720](2720/previews/pattern_7.png) | ![pattern_8-2720](2720/previews/pattern_8.png) | ![pattern_9-2720](2720/previews/pattern_9.png) | [<NSFW, click to see>](2720/previews/bikini.png) | [<NSFW, click to see>](2720/previews/bondage.png) | ![free-2720](2720/previews/free.png) | ![maid-2720](2720/previews/maid.png) | ![miko-2720](2720/previews/miko.png) | [<NSFW, click to see>](2720/previews/nude.png) | [<NSFW, click to see>](2720/previews/nude2.png) | ![suit-2720](2720/previews/suit.png) | ![yukata-2720](2720/previews/yukata.png) | | 2380 | 0.875 | [Download](2380/fujimiya_konomi_nonnonbiyori.zip) | ![pattern_1-2380](2380/previews/pattern_1.png) | ![pattern_2-2380](2380/previews/pattern_2.png) | ![pattern_3-2380](2380/previews/pattern_3.png) | ![pattern_4-2380](2380/previews/pattern_4.png) | ![pattern_5-2380](2380/previews/pattern_5.png) | ![pattern_6-2380](2380/previews/pattern_6.png) | ![pattern_7-2380](2380/previews/pattern_7.png) | ![pattern_8-2380](2380/previews/pattern_8.png) | ![pattern_9-2380](2380/previews/pattern_9.png) | [<NSFW, click to see>](2380/previews/bikini.png) | [<NSFW, click to see>](2380/previews/bondage.png) | ![free-2380](2380/previews/free.png) | ![maid-2380](2380/previews/maid.png) | ![miko-2380](2380/previews/miko.png) | [<NSFW, click to see>](2380/previews/nude.png) | [<NSFW, click to see>](2380/previews/nude2.png) | ![suit-2380](2380/previews/suit.png) | ![yukata-2380](2380/previews/yukata.png) | | 2040 | 0.857 | [Download](2040/fujimiya_konomi_nonnonbiyori.zip) | ![pattern_1-2040](2040/previews/pattern_1.png) | ![pattern_2-2040](2040/previews/pattern_2.png) | ![pattern_3-2040](2040/previews/pattern_3.png) | ![pattern_4-2040](2040/previews/pattern_4.png) | ![pattern_5-2040](2040/previews/pattern_5.png) | ![pattern_6-2040](2040/previews/pattern_6.png) | ![pattern_7-2040](2040/previews/pattern_7.png) | ![pattern_8-2040](2040/previews/pattern_8.png) | ![pattern_9-2040](2040/previews/pattern_9.png) | [<NSFW, click to see>](2040/previews/bikini.png) | [<NSFW, click to see>](2040/previews/bondage.png) | ![free-2040](2040/previews/free.png) | ![maid-2040](2040/previews/maid.png) | ![miko-2040](2040/previews/miko.png) | [<NSFW, click to see>](2040/previews/nude.png) | [<NSFW, click to see>](2040/previews/nude2.png) | ![suit-2040](2040/previews/suit.png) | ![yukata-2040](2040/previews/yukata.png) | | 1700 | 0.843 | [Download](1700/fujimiya_konomi_nonnonbiyori.zip) | ![pattern_1-1700](1700/previews/pattern_1.png) | ![pattern_2-1700](1700/previews/pattern_2.png) | ![pattern_3-1700](1700/previews/pattern_3.png) | ![pattern_4-1700](1700/previews/pattern_4.png) | ![pattern_5-1700](1700/previews/pattern_5.png) | ![pattern_6-1700](1700/previews/pattern_6.png) | ![pattern_7-1700](1700/previews/pattern_7.png) | ![pattern_8-1700](1700/previews/pattern_8.png) | ![pattern_9-1700](1700/previews/pattern_9.png) | [<NSFW, click to see>](1700/previews/bikini.png) | [<NSFW, click to see>](1700/previews/bondage.png) | ![free-1700](1700/previews/free.png) | ![maid-1700](1700/previews/maid.png) | ![miko-1700](1700/previews/miko.png) | [<NSFW, click to see>](1700/previews/nude.png) | [<NSFW, click to see>](1700/previews/nude2.png) | ![suit-1700](1700/previews/suit.png) | ![yukata-1700](1700/previews/yukata.png) | | 1360 | 0.845 | [Download](1360/fujimiya_konomi_nonnonbiyori.zip) | ![pattern_1-1360](1360/previews/pattern_1.png) | ![pattern_2-1360](1360/previews/pattern_2.png) | ![pattern_3-1360](1360/previews/pattern_3.png) | ![pattern_4-1360](1360/previews/pattern_4.png) | ![pattern_5-1360](1360/previews/pattern_5.png) | ![pattern_6-1360](1360/previews/pattern_6.png) | ![pattern_7-1360](1360/previews/pattern_7.png) | ![pattern_8-1360](1360/previews/pattern_8.png) | ![pattern_9-1360](1360/previews/pattern_9.png) | [<NSFW, click to see>](1360/previews/bikini.png) | [<NSFW, click to see>](1360/previews/bondage.png) | ![free-1360](1360/previews/free.png) | ![maid-1360](1360/previews/maid.png) | ![miko-1360](1360/previews/miko.png) | [<NSFW, click to see>](1360/previews/nude.png) | [<NSFW, click to see>](1360/previews/nude2.png) | ![suit-1360](1360/previews/suit.png) | ![yukata-1360](1360/previews/yukata.png) | | 1020 | 0.803 | [Download](1020/fujimiya_konomi_nonnonbiyori.zip) | ![pattern_1-1020](1020/previews/pattern_1.png) | ![pattern_2-1020](1020/previews/pattern_2.png) | ![pattern_3-1020](1020/previews/pattern_3.png) | ![pattern_4-1020](1020/previews/pattern_4.png) | ![pattern_5-1020](1020/previews/pattern_5.png) | ![pattern_6-1020](1020/previews/pattern_6.png) | ![pattern_7-1020](1020/previews/pattern_7.png) | ![pattern_8-1020](1020/previews/pattern_8.png) | ![pattern_9-1020](1020/previews/pattern_9.png) | [<NSFW, click to see>](1020/previews/bikini.png) | [<NSFW, click to see>](1020/previews/bondage.png) | ![free-1020](1020/previews/free.png) | ![maid-1020](1020/previews/maid.png) | ![miko-1020](1020/previews/miko.png) | [<NSFW, click to see>](1020/previews/nude.png) | [<NSFW, click to see>](1020/previews/nude2.png) | ![suit-1020](1020/previews/suit.png) | ![yukata-1020](1020/previews/yukata.png) | | 680 | 0.676 | [Download](680/fujimiya_konomi_nonnonbiyori.zip) | ![pattern_1-680](680/previews/pattern_1.png) | ![pattern_2-680](680/previews/pattern_2.png) | ![pattern_3-680](680/previews/pattern_3.png) | ![pattern_4-680](680/previews/pattern_4.png) | ![pattern_5-680](680/previews/pattern_5.png) | ![pattern_6-680](680/previews/pattern_6.png) | ![pattern_7-680](680/previews/pattern_7.png) | ![pattern_8-680](680/previews/pattern_8.png) | ![pattern_9-680](680/previews/pattern_9.png) | [<NSFW, click to see>](680/previews/bikini.png) | [<NSFW, click to see>](680/previews/bondage.png) | ![free-680](680/previews/free.png) | ![maid-680](680/previews/maid.png) | ![miko-680](680/previews/miko.png) | [<NSFW, click to see>](680/previews/nude.png) | [<NSFW, click to see>](680/previews/nude2.png) | ![suit-680](680/previews/suit.png) | ![yukata-680](680/previews/yukata.png) | | 340 | 0.571 | [Download](340/fujimiya_konomi_nonnonbiyori.zip) | ![pattern_1-340](340/previews/pattern_1.png) | ![pattern_2-340](340/previews/pattern_2.png) | ![pattern_3-340](340/previews/pattern_3.png) | ![pattern_4-340](340/previews/pattern_4.png) | ![pattern_5-340](340/previews/pattern_5.png) | ![pattern_6-340](340/previews/pattern_6.png) | ![pattern_7-340](340/previews/pattern_7.png) | ![pattern_8-340](340/previews/pattern_8.png) | ![pattern_9-340](340/previews/pattern_9.png) | [<NSFW, click to see>](340/previews/bikini.png) | [<NSFW, click to see>](340/previews/bondage.png) | ![free-340](340/previews/free.png) | ![maid-340](340/previews/maid.png) | ![miko-340](340/previews/miko.png) | [<NSFW, click to see>](340/previews/nude.png) | [<NSFW, click to see>](340/previews/nude2.png) | ![suit-340](340/previews/suit.png) | ![yukata-340](340/previews/yukata.png) |
mchen-hf-2023/Pixelcopter-PLE-v0
mchen-hf-2023
2023-09-28T02:00:04Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-28T01:59:33Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 45.20 +/- 23.36 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
roa7n/gpt2-human_nontata_promoters-randomized_4_layers_3e-05_lr_8_e
roa7n
2023-09-28T01:52:35Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-28T01:52:31Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
CyberHarem/miyauchi_hikage_nonnonbiyori
CyberHarem
2023-09-28T01:18:37Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/miyauchi_hikage_nonnonbiyori", "license:mit", "region:us" ]
text-to-image
2023-09-28T01:05:11Z
--- license: mit datasets: - CyberHarem/miyauchi_hikage_nonnonbiyori pipeline_tag: text-to-image tags: - art --- # Lora of miyauchi_hikage_nonnonbiyori This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 6000, you need to download `6000/miyauchi_hikage_nonnonbiyori.pt` as the embedding and `6000/miyauchi_hikage_nonnonbiyori.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 6000**, with the score of 0.892. The trigger words are: 1. `miyauchi_hikage_nonnonbiyori` 2. `blue_eyes, purple_hair, blush, one_side_up, black_hair, short_hair` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | pattern_5 | pattern_6 | pattern_7 | pattern_8 | pattern_9 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | **6000** | **0.892** | [**Download**](6000/miyauchi_hikage_nonnonbiyori.zip) | ![pattern_1-6000](6000/previews/pattern_1.png) | ![pattern_2-6000](6000/previews/pattern_2.png) | ![pattern_3-6000](6000/previews/pattern_3.png) | ![pattern_4-6000](6000/previews/pattern_4.png) | ![pattern_5-6000](6000/previews/pattern_5.png) | ![pattern_6-6000](6000/previews/pattern_6.png) | ![pattern_7-6000](6000/previews/pattern_7.png) | ![pattern_8-6000](6000/previews/pattern_8.png) | ![pattern_9-6000](6000/previews/pattern_9.png) | ![bikini-6000](6000/previews/bikini.png) | [<NSFW, click to see>](6000/previews/bondage.png) | ![free-6000](6000/previews/free.png) | ![maid-6000](6000/previews/maid.png) | ![miko-6000](6000/previews/miko.png) | [<NSFW, click to see>](6000/previews/nude.png) | [<NSFW, click to see>](6000/previews/nude2.png) | ![suit-6000](6000/previews/suit.png) | ![yukata-6000](6000/previews/yukata.png) | | 5600 | 0.881 | [Download](5600/miyauchi_hikage_nonnonbiyori.zip) | ![pattern_1-5600](5600/previews/pattern_1.png) | ![pattern_2-5600](5600/previews/pattern_2.png) | ![pattern_3-5600](5600/previews/pattern_3.png) | ![pattern_4-5600](5600/previews/pattern_4.png) | ![pattern_5-5600](5600/previews/pattern_5.png) | ![pattern_6-5600](5600/previews/pattern_6.png) | ![pattern_7-5600](5600/previews/pattern_7.png) | ![pattern_8-5600](5600/previews/pattern_8.png) | ![pattern_9-5600](5600/previews/pattern_9.png) | ![bikini-5600](5600/previews/bikini.png) | [<NSFW, click to see>](5600/previews/bondage.png) | ![free-5600](5600/previews/free.png) | ![maid-5600](5600/previews/maid.png) | ![miko-5600](5600/previews/miko.png) | [<NSFW, click to see>](5600/previews/nude.png) | [<NSFW, click to see>](5600/previews/nude2.png) | ![suit-5600](5600/previews/suit.png) | ![yukata-5600](5600/previews/yukata.png) | | 5200 | 0.891 | [Download](5200/miyauchi_hikage_nonnonbiyori.zip) | ![pattern_1-5200](5200/previews/pattern_1.png) | ![pattern_2-5200](5200/previews/pattern_2.png) | ![pattern_3-5200](5200/previews/pattern_3.png) | ![pattern_4-5200](5200/previews/pattern_4.png) | ![pattern_5-5200](5200/previews/pattern_5.png) | ![pattern_6-5200](5200/previews/pattern_6.png) | ![pattern_7-5200](5200/previews/pattern_7.png) | ![pattern_8-5200](5200/previews/pattern_8.png) | ![pattern_9-5200](5200/previews/pattern_9.png) | ![bikini-5200](5200/previews/bikini.png) | [<NSFW, click to see>](5200/previews/bondage.png) | ![free-5200](5200/previews/free.png) | ![maid-5200](5200/previews/maid.png) | ![miko-5200](5200/previews/miko.png) | [<NSFW, click to see>](5200/previews/nude.png) | [<NSFW, click to see>](5200/previews/nude2.png) | ![suit-5200](5200/previews/suit.png) | ![yukata-5200](5200/previews/yukata.png) | | 4800 | 0.874 | [Download](4800/miyauchi_hikage_nonnonbiyori.zip) | ![pattern_1-4800](4800/previews/pattern_1.png) | ![pattern_2-4800](4800/previews/pattern_2.png) | ![pattern_3-4800](4800/previews/pattern_3.png) | ![pattern_4-4800](4800/previews/pattern_4.png) | ![pattern_5-4800](4800/previews/pattern_5.png) | ![pattern_6-4800](4800/previews/pattern_6.png) | ![pattern_7-4800](4800/previews/pattern_7.png) | ![pattern_8-4800](4800/previews/pattern_8.png) | ![pattern_9-4800](4800/previews/pattern_9.png) | ![bikini-4800](4800/previews/bikini.png) | [<NSFW, click to see>](4800/previews/bondage.png) | ![free-4800](4800/previews/free.png) | ![maid-4800](4800/previews/maid.png) | ![miko-4800](4800/previews/miko.png) | [<NSFW, click to see>](4800/previews/nude.png) | [<NSFW, click to see>](4800/previews/nude2.png) | ![suit-4800](4800/previews/suit.png) | ![yukata-4800](4800/previews/yukata.png) | | 4400 | 0.873 | [Download](4400/miyauchi_hikage_nonnonbiyori.zip) | ![pattern_1-4400](4400/previews/pattern_1.png) | ![pattern_2-4400](4400/previews/pattern_2.png) | ![pattern_3-4400](4400/previews/pattern_3.png) | ![pattern_4-4400](4400/previews/pattern_4.png) | ![pattern_5-4400](4400/previews/pattern_5.png) | ![pattern_6-4400](4400/previews/pattern_6.png) | ![pattern_7-4400](4400/previews/pattern_7.png) | ![pattern_8-4400](4400/previews/pattern_8.png) | ![pattern_9-4400](4400/previews/pattern_9.png) | ![bikini-4400](4400/previews/bikini.png) | [<NSFW, click to see>](4400/previews/bondage.png) | ![free-4400](4400/previews/free.png) | ![maid-4400](4400/previews/maid.png) | ![miko-4400](4400/previews/miko.png) | [<NSFW, click to see>](4400/previews/nude.png) | [<NSFW, click to see>](4400/previews/nude2.png) | ![suit-4400](4400/previews/suit.png) | ![yukata-4400](4400/previews/yukata.png) | | 4000 | 0.878 | [Download](4000/miyauchi_hikage_nonnonbiyori.zip) | ![pattern_1-4000](4000/previews/pattern_1.png) | ![pattern_2-4000](4000/previews/pattern_2.png) | ![pattern_3-4000](4000/previews/pattern_3.png) | ![pattern_4-4000](4000/previews/pattern_4.png) | ![pattern_5-4000](4000/previews/pattern_5.png) | ![pattern_6-4000](4000/previews/pattern_6.png) | ![pattern_7-4000](4000/previews/pattern_7.png) | ![pattern_8-4000](4000/previews/pattern_8.png) | ![pattern_9-4000](4000/previews/pattern_9.png) | ![bikini-4000](4000/previews/bikini.png) | [<NSFW, click to see>](4000/previews/bondage.png) | ![free-4000](4000/previews/free.png) | ![maid-4000](4000/previews/maid.png) | ![miko-4000](4000/previews/miko.png) | [<NSFW, click to see>](4000/previews/nude.png) | [<NSFW, click to see>](4000/previews/nude2.png) | ![suit-4000](4000/previews/suit.png) | ![yukata-4000](4000/previews/yukata.png) | | 3600 | 0.867 | [Download](3600/miyauchi_hikage_nonnonbiyori.zip) | ![pattern_1-3600](3600/previews/pattern_1.png) | ![pattern_2-3600](3600/previews/pattern_2.png) | ![pattern_3-3600](3600/previews/pattern_3.png) | ![pattern_4-3600](3600/previews/pattern_4.png) | ![pattern_5-3600](3600/previews/pattern_5.png) | ![pattern_6-3600](3600/previews/pattern_6.png) | ![pattern_7-3600](3600/previews/pattern_7.png) | ![pattern_8-3600](3600/previews/pattern_8.png) | ![pattern_9-3600](3600/previews/pattern_9.png) | ![bikini-3600](3600/previews/bikini.png) | [<NSFW, click to see>](3600/previews/bondage.png) | ![free-3600](3600/previews/free.png) | ![maid-3600](3600/previews/maid.png) | ![miko-3600](3600/previews/miko.png) | [<NSFW, click to see>](3600/previews/nude.png) | [<NSFW, click to see>](3600/previews/nude2.png) | ![suit-3600](3600/previews/suit.png) | ![yukata-3600](3600/previews/yukata.png) | | 3200 | 0.859 | [Download](3200/miyauchi_hikage_nonnonbiyori.zip) | ![pattern_1-3200](3200/previews/pattern_1.png) | ![pattern_2-3200](3200/previews/pattern_2.png) | ![pattern_3-3200](3200/previews/pattern_3.png) | ![pattern_4-3200](3200/previews/pattern_4.png) | ![pattern_5-3200](3200/previews/pattern_5.png) | ![pattern_6-3200](3200/previews/pattern_6.png) | ![pattern_7-3200](3200/previews/pattern_7.png) | ![pattern_8-3200](3200/previews/pattern_8.png) | ![pattern_9-3200](3200/previews/pattern_9.png) | ![bikini-3200](3200/previews/bikini.png) | [<NSFW, click to see>](3200/previews/bondage.png) | ![free-3200](3200/previews/free.png) | ![maid-3200](3200/previews/maid.png) | ![miko-3200](3200/previews/miko.png) | [<NSFW, click to see>](3200/previews/nude.png) | [<NSFW, click to see>](3200/previews/nude2.png) | ![suit-3200](3200/previews/suit.png) | ![yukata-3200](3200/previews/yukata.png) | | 2800 | 0.787 | [Download](2800/miyauchi_hikage_nonnonbiyori.zip) | ![pattern_1-2800](2800/previews/pattern_1.png) | ![pattern_2-2800](2800/previews/pattern_2.png) | ![pattern_3-2800](2800/previews/pattern_3.png) | ![pattern_4-2800](2800/previews/pattern_4.png) | ![pattern_5-2800](2800/previews/pattern_5.png) | ![pattern_6-2800](2800/previews/pattern_6.png) | ![pattern_7-2800](2800/previews/pattern_7.png) | ![pattern_8-2800](2800/previews/pattern_8.png) | ![pattern_9-2800](2800/previews/pattern_9.png) | ![bikini-2800](2800/previews/bikini.png) | [<NSFW, click to see>](2800/previews/bondage.png) | ![free-2800](2800/previews/free.png) | ![maid-2800](2800/previews/maid.png) | ![miko-2800](2800/previews/miko.png) | [<NSFW, click to see>](2800/previews/nude.png) | [<NSFW, click to see>](2800/previews/nude2.png) | ![suit-2800](2800/previews/suit.png) | ![yukata-2800](2800/previews/yukata.png) | | 2400 | 0.796 | [Download](2400/miyauchi_hikage_nonnonbiyori.zip) | ![pattern_1-2400](2400/previews/pattern_1.png) | ![pattern_2-2400](2400/previews/pattern_2.png) | ![pattern_3-2400](2400/previews/pattern_3.png) | ![pattern_4-2400](2400/previews/pattern_4.png) | ![pattern_5-2400](2400/previews/pattern_5.png) | ![pattern_6-2400](2400/previews/pattern_6.png) | ![pattern_7-2400](2400/previews/pattern_7.png) | ![pattern_8-2400](2400/previews/pattern_8.png) | ![pattern_9-2400](2400/previews/pattern_9.png) | ![bikini-2400](2400/previews/bikini.png) | [<NSFW, click to see>](2400/previews/bondage.png) | ![free-2400](2400/previews/free.png) | ![maid-2400](2400/previews/maid.png) | ![miko-2400](2400/previews/miko.png) | [<NSFW, click to see>](2400/previews/nude.png) | [<NSFW, click to see>](2400/previews/nude2.png) | ![suit-2400](2400/previews/suit.png) | ![yukata-2400](2400/previews/yukata.png) | | 2000 | 0.829 | [Download](2000/miyauchi_hikage_nonnonbiyori.zip) | ![pattern_1-2000](2000/previews/pattern_1.png) | ![pattern_2-2000](2000/previews/pattern_2.png) | ![pattern_3-2000](2000/previews/pattern_3.png) | ![pattern_4-2000](2000/previews/pattern_4.png) | ![pattern_5-2000](2000/previews/pattern_5.png) | ![pattern_6-2000](2000/previews/pattern_6.png) | ![pattern_7-2000](2000/previews/pattern_7.png) | ![pattern_8-2000](2000/previews/pattern_8.png) | ![pattern_9-2000](2000/previews/pattern_9.png) | ![bikini-2000](2000/previews/bikini.png) | [<NSFW, click to see>](2000/previews/bondage.png) | ![free-2000](2000/previews/free.png) | ![maid-2000](2000/previews/maid.png) | ![miko-2000](2000/previews/miko.png) | [<NSFW, click to see>](2000/previews/nude.png) | [<NSFW, click to see>](2000/previews/nude2.png) | ![suit-2000](2000/previews/suit.png) | ![yukata-2000](2000/previews/yukata.png) | | 1600 | 0.802 | [Download](1600/miyauchi_hikage_nonnonbiyori.zip) | ![pattern_1-1600](1600/previews/pattern_1.png) | ![pattern_2-1600](1600/previews/pattern_2.png) | ![pattern_3-1600](1600/previews/pattern_3.png) | ![pattern_4-1600](1600/previews/pattern_4.png) | ![pattern_5-1600](1600/previews/pattern_5.png) | ![pattern_6-1600](1600/previews/pattern_6.png) | ![pattern_7-1600](1600/previews/pattern_7.png) | ![pattern_8-1600](1600/previews/pattern_8.png) | ![pattern_9-1600](1600/previews/pattern_9.png) | ![bikini-1600](1600/previews/bikini.png) | [<NSFW, click to see>](1600/previews/bondage.png) | ![free-1600](1600/previews/free.png) | ![maid-1600](1600/previews/maid.png) | ![miko-1600](1600/previews/miko.png) | [<NSFW, click to see>](1600/previews/nude.png) | [<NSFW, click to see>](1600/previews/nude2.png) | ![suit-1600](1600/previews/suit.png) | ![yukata-1600](1600/previews/yukata.png) | | 1200 | 0.698 | [Download](1200/miyauchi_hikage_nonnonbiyori.zip) | ![pattern_1-1200](1200/previews/pattern_1.png) | ![pattern_2-1200](1200/previews/pattern_2.png) | ![pattern_3-1200](1200/previews/pattern_3.png) | ![pattern_4-1200](1200/previews/pattern_4.png) | ![pattern_5-1200](1200/previews/pattern_5.png) | ![pattern_6-1200](1200/previews/pattern_6.png) | ![pattern_7-1200](1200/previews/pattern_7.png) | ![pattern_8-1200](1200/previews/pattern_8.png) | ![pattern_9-1200](1200/previews/pattern_9.png) | ![bikini-1200](1200/previews/bikini.png) | [<NSFW, click to see>](1200/previews/bondage.png) | ![free-1200](1200/previews/free.png) | ![maid-1200](1200/previews/maid.png) | ![miko-1200](1200/previews/miko.png) | [<NSFW, click to see>](1200/previews/nude.png) | [<NSFW, click to see>](1200/previews/nude2.png) | ![suit-1200](1200/previews/suit.png) | ![yukata-1200](1200/previews/yukata.png) | | 800 | 0.737 | [Download](800/miyauchi_hikage_nonnonbiyori.zip) | ![pattern_1-800](800/previews/pattern_1.png) | ![pattern_2-800](800/previews/pattern_2.png) | ![pattern_3-800](800/previews/pattern_3.png) | ![pattern_4-800](800/previews/pattern_4.png) | ![pattern_5-800](800/previews/pattern_5.png) | ![pattern_6-800](800/previews/pattern_6.png) | ![pattern_7-800](800/previews/pattern_7.png) | ![pattern_8-800](800/previews/pattern_8.png) | ![pattern_9-800](800/previews/pattern_9.png) | ![bikini-800](800/previews/bikini.png) | [<NSFW, click to see>](800/previews/bondage.png) | ![free-800](800/previews/free.png) | ![maid-800](800/previews/maid.png) | ![miko-800](800/previews/miko.png) | [<NSFW, click to see>](800/previews/nude.png) | [<NSFW, click to see>](800/previews/nude2.png) | ![suit-800](800/previews/suit.png) | ![yukata-800](800/previews/yukata.png) | | 400 | 0.600 | [Download](400/miyauchi_hikage_nonnonbiyori.zip) | ![pattern_1-400](400/previews/pattern_1.png) | ![pattern_2-400](400/previews/pattern_2.png) | ![pattern_3-400](400/previews/pattern_3.png) | ![pattern_4-400](400/previews/pattern_4.png) | ![pattern_5-400](400/previews/pattern_5.png) | ![pattern_6-400](400/previews/pattern_6.png) | ![pattern_7-400](400/previews/pattern_7.png) | ![pattern_8-400](400/previews/pattern_8.png) | ![pattern_9-400](400/previews/pattern_9.png) | ![bikini-400](400/previews/bikini.png) | [<NSFW, click to see>](400/previews/bondage.png) | ![free-400](400/previews/free.png) | ![maid-400](400/previews/maid.png) | ![miko-400](400/previews/miko.png) | [<NSFW, click to see>](400/previews/nude.png) | [<NSFW, click to see>](400/previews/nude2.png) | ![suit-400](400/previews/suit.png) | ![yukata-400](400/previews/yukata.png) |
CyberHarem/miyauchi_kazuho_nonnonbiyori
CyberHarem
2023-09-28T00:30:09Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/miyauchi_kazuho_nonnonbiyori", "license:mit", "region:us" ]
text-to-image
2023-09-28T00:16:50Z
--- license: mit datasets: - CyberHarem/miyauchi_kazuho_nonnonbiyori pipeline_tag: text-to-image tags: - art --- # Lora of miyauchi_kazuho_nonnonbiyori This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 4420, you need to download `4420/miyauchi_kazuho_nonnonbiyori.pt` as the embedding and `4420/miyauchi_kazuho_nonnonbiyori.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 4420**, with the score of 0.991. The trigger words are: 1. `miyauchi_kazuho_nonnonbiyori` 2. `closed_eyes, purple_hair, long_hair, smile, ponytail, blue_hair` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | pattern_5 | pattern_6 | pattern_7 | pattern_8 | pattern_9 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-------------------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | 5100 | 0.926 | [Download](5100/miyauchi_kazuho_nonnonbiyori.zip) | ![pattern_1-5100](5100/previews/pattern_1.png) | ![pattern_2-5100](5100/previews/pattern_2.png) | ![pattern_3-5100](5100/previews/pattern_3.png) | ![pattern_4-5100](5100/previews/pattern_4.png) | ![pattern_5-5100](5100/previews/pattern_5.png) | ![pattern_6-5100](5100/previews/pattern_6.png) | ![pattern_7-5100](5100/previews/pattern_7.png) | ![pattern_8-5100](5100/previews/pattern_8.png) | ![pattern_9-5100](5100/previews/pattern_9.png) | [<NSFW, click to see>](5100/previews/bikini.png) | [<NSFW, click to see>](5100/previews/bondage.png) | ![free-5100](5100/previews/free.png) | ![maid-5100](5100/previews/maid.png) | ![miko-5100](5100/previews/miko.png) | [<NSFW, click to see>](5100/previews/nude.png) | [<NSFW, click to see>](5100/previews/nude2.png) | ![suit-5100](5100/previews/suit.png) | ![yukata-5100](5100/previews/yukata.png) | | 4760 | 0.947 | [Download](4760/miyauchi_kazuho_nonnonbiyori.zip) | ![pattern_1-4760](4760/previews/pattern_1.png) | ![pattern_2-4760](4760/previews/pattern_2.png) | ![pattern_3-4760](4760/previews/pattern_3.png) | ![pattern_4-4760](4760/previews/pattern_4.png) | ![pattern_5-4760](4760/previews/pattern_5.png) | ![pattern_6-4760](4760/previews/pattern_6.png) | ![pattern_7-4760](4760/previews/pattern_7.png) | ![pattern_8-4760](4760/previews/pattern_8.png) | ![pattern_9-4760](4760/previews/pattern_9.png) | [<NSFW, click to see>](4760/previews/bikini.png) | [<NSFW, click to see>](4760/previews/bondage.png) | ![free-4760](4760/previews/free.png) | ![maid-4760](4760/previews/maid.png) | ![miko-4760](4760/previews/miko.png) | [<NSFW, click to see>](4760/previews/nude.png) | [<NSFW, click to see>](4760/previews/nude2.png) | ![suit-4760](4760/previews/suit.png) | ![yukata-4760](4760/previews/yukata.png) | | **4420** | **0.991** | [**Download**](4420/miyauchi_kazuho_nonnonbiyori.zip) | ![pattern_1-4420](4420/previews/pattern_1.png) | ![pattern_2-4420](4420/previews/pattern_2.png) | ![pattern_3-4420](4420/previews/pattern_3.png) | ![pattern_4-4420](4420/previews/pattern_4.png) | ![pattern_5-4420](4420/previews/pattern_5.png) | ![pattern_6-4420](4420/previews/pattern_6.png) | ![pattern_7-4420](4420/previews/pattern_7.png) | ![pattern_8-4420](4420/previews/pattern_8.png) | ![pattern_9-4420](4420/previews/pattern_9.png) | [<NSFW, click to see>](4420/previews/bikini.png) | [<NSFW, click to see>](4420/previews/bondage.png) | ![free-4420](4420/previews/free.png) | ![maid-4420](4420/previews/maid.png) | ![miko-4420](4420/previews/miko.png) | [<NSFW, click to see>](4420/previews/nude.png) | [<NSFW, click to see>](4420/previews/nude2.png) | ![suit-4420](4420/previews/suit.png) | ![yukata-4420](4420/previews/yukata.png) | | 4080 | 0.883 | [Download](4080/miyauchi_kazuho_nonnonbiyori.zip) | ![pattern_1-4080](4080/previews/pattern_1.png) | ![pattern_2-4080](4080/previews/pattern_2.png) | ![pattern_3-4080](4080/previews/pattern_3.png) | ![pattern_4-4080](4080/previews/pattern_4.png) | ![pattern_5-4080](4080/previews/pattern_5.png) | ![pattern_6-4080](4080/previews/pattern_6.png) | ![pattern_7-4080](4080/previews/pattern_7.png) | ![pattern_8-4080](4080/previews/pattern_8.png) | ![pattern_9-4080](4080/previews/pattern_9.png) | [<NSFW, click to see>](4080/previews/bikini.png) | [<NSFW, click to see>](4080/previews/bondage.png) | ![free-4080](4080/previews/free.png) | ![maid-4080](4080/previews/maid.png) | ![miko-4080](4080/previews/miko.png) | [<NSFW, click to see>](4080/previews/nude.png) | [<NSFW, click to see>](4080/previews/nude2.png) | ![suit-4080](4080/previews/suit.png) | ![yukata-4080](4080/previews/yukata.png) | | 3740 | 0.989 | [Download](3740/miyauchi_kazuho_nonnonbiyori.zip) | ![pattern_1-3740](3740/previews/pattern_1.png) | ![pattern_2-3740](3740/previews/pattern_2.png) | ![pattern_3-3740](3740/previews/pattern_3.png) | ![pattern_4-3740](3740/previews/pattern_4.png) | ![pattern_5-3740](3740/previews/pattern_5.png) | ![pattern_6-3740](3740/previews/pattern_6.png) | ![pattern_7-3740](3740/previews/pattern_7.png) | ![pattern_8-3740](3740/previews/pattern_8.png) | ![pattern_9-3740](3740/previews/pattern_9.png) | [<NSFW, click to see>](3740/previews/bikini.png) | [<NSFW, click to see>](3740/previews/bondage.png) | ![free-3740](3740/previews/free.png) | ![maid-3740](3740/previews/maid.png) | ![miko-3740](3740/previews/miko.png) | [<NSFW, click to see>](3740/previews/nude.png) | [<NSFW, click to see>](3740/previews/nude2.png) | ![suit-3740](3740/previews/suit.png) | ![yukata-3740](3740/previews/yukata.png) | | 3400 | 0.880 | [Download](3400/miyauchi_kazuho_nonnonbiyori.zip) | ![pattern_1-3400](3400/previews/pattern_1.png) | ![pattern_2-3400](3400/previews/pattern_2.png) | ![pattern_3-3400](3400/previews/pattern_3.png) | ![pattern_4-3400](3400/previews/pattern_4.png) | ![pattern_5-3400](3400/previews/pattern_5.png) | ![pattern_6-3400](3400/previews/pattern_6.png) | ![pattern_7-3400](3400/previews/pattern_7.png) | ![pattern_8-3400](3400/previews/pattern_8.png) | ![pattern_9-3400](3400/previews/pattern_9.png) | [<NSFW, click to see>](3400/previews/bikini.png) | [<NSFW, click to see>](3400/previews/bondage.png) | ![free-3400](3400/previews/free.png) | ![maid-3400](3400/previews/maid.png) | ![miko-3400](3400/previews/miko.png) | [<NSFW, click to see>](3400/previews/nude.png) | [<NSFW, click to see>](3400/previews/nude2.png) | ![suit-3400](3400/previews/suit.png) | ![yukata-3400](3400/previews/yukata.png) | | 3060 | 0.882 | [Download](3060/miyauchi_kazuho_nonnonbiyori.zip) | ![pattern_1-3060](3060/previews/pattern_1.png) | ![pattern_2-3060](3060/previews/pattern_2.png) | ![pattern_3-3060](3060/previews/pattern_3.png) | ![pattern_4-3060](3060/previews/pattern_4.png) | ![pattern_5-3060](3060/previews/pattern_5.png) | ![pattern_6-3060](3060/previews/pattern_6.png) | ![pattern_7-3060](3060/previews/pattern_7.png) | ![pattern_8-3060](3060/previews/pattern_8.png) | ![pattern_9-3060](3060/previews/pattern_9.png) | [<NSFW, click to see>](3060/previews/bikini.png) | [<NSFW, click to see>](3060/previews/bondage.png) | ![free-3060](3060/previews/free.png) | ![maid-3060](3060/previews/maid.png) | ![miko-3060](3060/previews/miko.png) | [<NSFW, click to see>](3060/previews/nude.png) | [<NSFW, click to see>](3060/previews/nude2.png) | ![suit-3060](3060/previews/suit.png) | ![yukata-3060](3060/previews/yukata.png) | | 2720 | 0.824 | [Download](2720/miyauchi_kazuho_nonnonbiyori.zip) | ![pattern_1-2720](2720/previews/pattern_1.png) | ![pattern_2-2720](2720/previews/pattern_2.png) | ![pattern_3-2720](2720/previews/pattern_3.png) | ![pattern_4-2720](2720/previews/pattern_4.png) | ![pattern_5-2720](2720/previews/pattern_5.png) | ![pattern_6-2720](2720/previews/pattern_6.png) | ![pattern_7-2720](2720/previews/pattern_7.png) | ![pattern_8-2720](2720/previews/pattern_8.png) | ![pattern_9-2720](2720/previews/pattern_9.png) | [<NSFW, click to see>](2720/previews/bikini.png) | [<NSFW, click to see>](2720/previews/bondage.png) | ![free-2720](2720/previews/free.png) | ![maid-2720](2720/previews/maid.png) | ![miko-2720](2720/previews/miko.png) | [<NSFW, click to see>](2720/previews/nude.png) | [<NSFW, click to see>](2720/previews/nude2.png) | ![suit-2720](2720/previews/suit.png) | ![yukata-2720](2720/previews/yukata.png) | | 2380 | 0.872 | [Download](2380/miyauchi_kazuho_nonnonbiyori.zip) | ![pattern_1-2380](2380/previews/pattern_1.png) | ![pattern_2-2380](2380/previews/pattern_2.png) | ![pattern_3-2380](2380/previews/pattern_3.png) | ![pattern_4-2380](2380/previews/pattern_4.png) | ![pattern_5-2380](2380/previews/pattern_5.png) | ![pattern_6-2380](2380/previews/pattern_6.png) | ![pattern_7-2380](2380/previews/pattern_7.png) | ![pattern_8-2380](2380/previews/pattern_8.png) | ![pattern_9-2380](2380/previews/pattern_9.png) | [<NSFW, click to see>](2380/previews/bikini.png) | [<NSFW, click to see>](2380/previews/bondage.png) | ![free-2380](2380/previews/free.png) | ![maid-2380](2380/previews/maid.png) | ![miko-2380](2380/previews/miko.png) | [<NSFW, click to see>](2380/previews/nude.png) | [<NSFW, click to see>](2380/previews/nude2.png) | ![suit-2380](2380/previews/suit.png) | ![yukata-2380](2380/previews/yukata.png) | | 2040 | 0.931 | [Download](2040/miyauchi_kazuho_nonnonbiyori.zip) | ![pattern_1-2040](2040/previews/pattern_1.png) | ![pattern_2-2040](2040/previews/pattern_2.png) | ![pattern_3-2040](2040/previews/pattern_3.png) | ![pattern_4-2040](2040/previews/pattern_4.png) | ![pattern_5-2040](2040/previews/pattern_5.png) | ![pattern_6-2040](2040/previews/pattern_6.png) | ![pattern_7-2040](2040/previews/pattern_7.png) | ![pattern_8-2040](2040/previews/pattern_8.png) | ![pattern_9-2040](2040/previews/pattern_9.png) | [<NSFW, click to see>](2040/previews/bikini.png) | [<NSFW, click to see>](2040/previews/bondage.png) | ![free-2040](2040/previews/free.png) | ![maid-2040](2040/previews/maid.png) | ![miko-2040](2040/previews/miko.png) | [<NSFW, click to see>](2040/previews/nude.png) | [<NSFW, click to see>](2040/previews/nude2.png) | ![suit-2040](2040/previews/suit.png) | ![yukata-2040](2040/previews/yukata.png) | | 1700 | 0.925 | [Download](1700/miyauchi_kazuho_nonnonbiyori.zip) | ![pattern_1-1700](1700/previews/pattern_1.png) | ![pattern_2-1700](1700/previews/pattern_2.png) | ![pattern_3-1700](1700/previews/pattern_3.png) | ![pattern_4-1700](1700/previews/pattern_4.png) | ![pattern_5-1700](1700/previews/pattern_5.png) | ![pattern_6-1700](1700/previews/pattern_6.png) | ![pattern_7-1700](1700/previews/pattern_7.png) | ![pattern_8-1700](1700/previews/pattern_8.png) | ![pattern_9-1700](1700/previews/pattern_9.png) | [<NSFW, click to see>](1700/previews/bikini.png) | [<NSFW, click to see>](1700/previews/bondage.png) | ![free-1700](1700/previews/free.png) | ![maid-1700](1700/previews/maid.png) | ![miko-1700](1700/previews/miko.png) | [<NSFW, click to see>](1700/previews/nude.png) | [<NSFW, click to see>](1700/previews/nude2.png) | ![suit-1700](1700/previews/suit.png) | ![yukata-1700](1700/previews/yukata.png) | | 1360 | 0.861 | [Download](1360/miyauchi_kazuho_nonnonbiyori.zip) | ![pattern_1-1360](1360/previews/pattern_1.png) | ![pattern_2-1360](1360/previews/pattern_2.png) | ![pattern_3-1360](1360/previews/pattern_3.png) | ![pattern_4-1360](1360/previews/pattern_4.png) | ![pattern_5-1360](1360/previews/pattern_5.png) | ![pattern_6-1360](1360/previews/pattern_6.png) | ![pattern_7-1360](1360/previews/pattern_7.png) | ![pattern_8-1360](1360/previews/pattern_8.png) | ![pattern_9-1360](1360/previews/pattern_9.png) | [<NSFW, click to see>](1360/previews/bikini.png) | [<NSFW, click to see>](1360/previews/bondage.png) | ![free-1360](1360/previews/free.png) | ![maid-1360](1360/previews/maid.png) | ![miko-1360](1360/previews/miko.png) | [<NSFW, click to see>](1360/previews/nude.png) | [<NSFW, click to see>](1360/previews/nude2.png) | ![suit-1360](1360/previews/suit.png) | ![yukata-1360](1360/previews/yukata.png) | | 1020 | 0.872 | [Download](1020/miyauchi_kazuho_nonnonbiyori.zip) | ![pattern_1-1020](1020/previews/pattern_1.png) | ![pattern_2-1020](1020/previews/pattern_2.png) | ![pattern_3-1020](1020/previews/pattern_3.png) | ![pattern_4-1020](1020/previews/pattern_4.png) | ![pattern_5-1020](1020/previews/pattern_5.png) | ![pattern_6-1020](1020/previews/pattern_6.png) | ![pattern_7-1020](1020/previews/pattern_7.png) | ![pattern_8-1020](1020/previews/pattern_8.png) | ![pattern_9-1020](1020/previews/pattern_9.png) | [<NSFW, click to see>](1020/previews/bikini.png) | [<NSFW, click to see>](1020/previews/bondage.png) | ![free-1020](1020/previews/free.png) | ![maid-1020](1020/previews/maid.png) | ![miko-1020](1020/previews/miko.png) | [<NSFW, click to see>](1020/previews/nude.png) | [<NSFW, click to see>](1020/previews/nude2.png) | ![suit-1020](1020/previews/suit.png) | ![yukata-1020](1020/previews/yukata.png) | | 680 | 0.806 | [Download](680/miyauchi_kazuho_nonnonbiyori.zip) | ![pattern_1-680](680/previews/pattern_1.png) | ![pattern_2-680](680/previews/pattern_2.png) | ![pattern_3-680](680/previews/pattern_3.png) | ![pattern_4-680](680/previews/pattern_4.png) | ![pattern_5-680](680/previews/pattern_5.png) | ![pattern_6-680](680/previews/pattern_6.png) | ![pattern_7-680](680/previews/pattern_7.png) | ![pattern_8-680](680/previews/pattern_8.png) | ![pattern_9-680](680/previews/pattern_9.png) | [<NSFW, click to see>](680/previews/bikini.png) | [<NSFW, click to see>](680/previews/bondage.png) | ![free-680](680/previews/free.png) | ![maid-680](680/previews/maid.png) | ![miko-680](680/previews/miko.png) | [<NSFW, click to see>](680/previews/nude.png) | [<NSFW, click to see>](680/previews/nude2.png) | ![suit-680](680/previews/suit.png) | ![yukata-680](680/previews/yukata.png) | | 340 | 0.602 | [Download](340/miyauchi_kazuho_nonnonbiyori.zip) | ![pattern_1-340](340/previews/pattern_1.png) | ![pattern_2-340](340/previews/pattern_2.png) | ![pattern_3-340](340/previews/pattern_3.png) | ![pattern_4-340](340/previews/pattern_4.png) | ![pattern_5-340](340/previews/pattern_5.png) | ![pattern_6-340](340/previews/pattern_6.png) | ![pattern_7-340](340/previews/pattern_7.png) | ![pattern_8-340](340/previews/pattern_8.png) | ![pattern_9-340](340/previews/pattern_9.png) | [<NSFW, click to see>](340/previews/bikini.png) | [<NSFW, click to see>](340/previews/bondage.png) | ![free-340](340/previews/free.png) | ![maid-340](340/previews/maid.png) | ![miko-340](340/previews/miko.png) | [<NSFW, click to see>](340/previews/nude.png) | [<NSFW, click to see>](340/previews/nude2.png) | ![suit-340](340/previews/suit.png) | ![yukata-340](340/previews/yukata.png) |
line-corporation/japanese-large-lm-3.6b-instruction-sft-8bit-1g-actorder_True
line-corporation
2023-09-28T00:02:06Z
84
3
transformers
[ "transformers", "pytorch", "safetensors", "gpt_neox", "text-generation", "ja", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-09-26T06:16:23Z
--- license: apache-2.0 inference: false language: ja --- # japanese-large-lm-3.6b-instruction-sft-8bit-1g-actorder_True This repository provides a 3.6B parameters Japanese language **quantized** model, fine-tuned and trained by [LINE Corporation](https://linecorp.com/ja/). ## For Japanese 詳細な説明や実験に関しては「[【インターンレポート】量子化による大規模言語モデル軽量化の効果測定](https://engineering.linecorp.com/ja/blog/quantization-lightweighting-llms)」をご覧ください。 ## How to use ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline tokenizer = AutoTokenizer.from_pretrained("line-corporation/japanese-large-lm-3.6b-instruction-sft", use_fast=False) model = AutoModelForCausalLM.from_pretrained("line-corporation/japanese-large-lm-3.6b-instruction-sft-8bit-1g-actorder_True") generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0) input_text = """四国の県名を全て列挙してください。""" text = generator( f"ユーザー: {input_text}\nシステム: ", max_length = 256, do_sample = True, temperature = 0.7, top_p = 0.9, top_k = 0, repetition_penalty = 1.1, num_beams = 1, pad_token_id = tokenizer.pad_token_id, num_return_sequences = 1, ) print(text) # [{'generated_text': 'ユーザー: 四国の県名を全て列挙してください。\nシステム: 高知県、徳島県、香川県、愛媛県'}] ``` ## Tokenization We use a sentencepiece tokenizer with a unigram language model and byte-fallback. We **do not** apply pre-tokenization with Japanese tokenizer. Thus, a user may directly feed raw sentences into the tokenizer. ## License [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
line-corporation/japanese-large-lm-3.6b-instruction-sft-4bit-32g-actorder_False
line-corporation
2023-09-27T23:56:05Z
79
1
transformers
[ "transformers", "pytorch", "safetensors", "gpt_neox", "text-generation", "ja", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-09-26T06:15:51Z
--- license: apache-2.0 inference: false language: ja --- # japanese-large-lm-3.6b-instruction-sft-4bit-32g-actorder_False This repository provides a 3.6B parameters Japanese language **quantized** model, fine-tuned and trained by [LINE Corporation](https://linecorp.com/ja/). ## For Japanese 詳細な説明や実験に関しては「[【インターンレポート】量子化による大規模言語モデル軽量化の効果測定](https://engineering.linecorp.com/ja/blog/quantization-lightweighting-llms)」をご覧ください。 ## How to use ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline tokenizer = AutoTokenizer.from_pretrained("line-corporation/japanese-large-lm-3.6b-instruction-sft", use_fast=False) model = AutoModelForCausalLM.from_pretrained("line-corporation/japanese-large-lm-3.6b-instruction-sft-4bit-32g-actorder_False") generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0) input_text = """四国の県名を全て列挙してください。""" text = generator( f"ユーザー: {input_text}\nシステム: ", max_length = 256, do_sample = True, temperature = 0.7, top_p = 0.9, top_k = 0, repetition_penalty = 1.1, num_beams = 1, pad_token_id = tokenizer.pad_token_id, num_return_sequences = 1, ) print(text) # [{'generated_text': 'ユーザー: 四国の県名を全て列挙してください。\nシステム: 高知県、徳島県、香川県、愛媛県'}] ``` ## Tokenization We use a sentencepiece tokenizer with a unigram language model and byte-fallback. We **do not** apply pre-tokenization with Japanese tokenizer. Thus, a user may directly feed raw sentences into the tokenizer. ## License [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
line-corporation/japanese-large-lm-3.6b-instruction-sft-4bit-128g-actorder_False
line-corporation
2023-09-27T23:54:44Z
81
2
transformers
[ "transformers", "pytorch", "safetensors", "gpt_neox", "text-generation", "ja", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-09-26T06:16:04Z
--- license: apache-2.0 inference: false language: ja --- # japanese-large-lm-3.6b-instruction-sft-4bit-128g-actorder_False This repository provides a 3.6B parameters Japanese language **quantized** model, fine-tuned and trained by [LINE Corporation](https://linecorp.com/ja/). ## For Japanese 詳細な説明や実験に関しては「[【インターンレポート】量子化による大規模言語モデル軽量化の効果測定](https://engineering.linecorp.com/ja/blog/quantization-lightweighting-llms)」をご覧ください。 ## How to use ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline tokenizer = AutoTokenizer.from_pretrained("line-corporation/japanese-large-lm-3.6b-instruction-sft", use_fast=False) model = AutoModelForCausalLM.from_pretrained("line-corporation/japanese-large-lm-3.6b-instruction-sft-4bit-128g-actorder_False") generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0) input_text = """四国の県名を全て列挙してください。""" text = generator( f"ユーザー: {input_text}\nシステム: ", max_length = 256, do_sample = True, temperature = 0.7, top_p = 0.9, top_k = 0, repetition_penalty = 1.1, num_beams = 1, pad_token_id = tokenizer.pad_token_id, num_return_sequences = 1, ) print(text) # [{'generated_text': 'ユーザー: 四国の県名を全て列挙してください。\nシステム: 高知県、徳島県、香川県、愛媛県'}] ``` ## Tokenization We use a sentencepiece tokenizer with a unigram language model and byte-fallback. We **do not** apply pre-tokenization with Japanese tokenizer. Thus, a user may directly feed raw sentences into the tokenizer. ## License [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
GraydientPlatformAPI/ether
GraydientPlatformAPI
2023-09-27T23:49:38Z
29
0
diffusers
[ "diffusers", "text-to-image", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-27T23:38:26Z
--- library_name: diffusers pipeline_tag: text-to-image ---
badokorach/flan-t5-small-qa-9
badokorach
2023-09-27T23:49:06Z
3
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "base_model:badokorach/flan-t5-small-qa", "base_model:finetune:badokorach/flan-t5-small-qa", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-27T22:13:23Z
--- license: apache-2.0 base_model: badokorach/flan-t5-small-qa tags: - generated_from_trainer model-index: - name: flan-t5-small-qa-9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-small-qa-9 This model is a fine-tuned version of [badokorach/flan-t5-small-qa](https://huggingface.co/badokorach/flan-t5-small-qa) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0989 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 305 | 0.0747 | | 0.061 | 2.0 | 610 | 0.0791 | | 0.061 | 3.0 | 915 | 0.0798 | | 0.052 | 4.0 | 1220 | 0.0845 | | 0.0481 | 5.0 | 1525 | 0.0807 | | 0.0481 | 6.0 | 1830 | 0.0837 | | 0.0443 | 7.0 | 2135 | 0.0888 | | 0.0443 | 8.0 | 2440 | 0.0890 | | 0.0413 | 9.0 | 2745 | 0.0869 | | 0.0381 | 10.0 | 3050 | 0.0905 | | 0.0381 | 11.0 | 3355 | 0.0903 | | 0.0356 | 12.0 | 3660 | 0.0900 | | 0.0356 | 13.0 | 3965 | 0.0915 | | 0.0341 | 14.0 | 4270 | 0.0937 | | 0.0325 | 15.0 | 4575 | 0.0949 | | 0.0325 | 16.0 | 4880 | 0.0943 | | 0.0306 | 17.0 | 5185 | 0.0953 | | 0.0306 | 18.0 | 5490 | 0.0948 | | 0.0301 | 19.0 | 5795 | 0.0966 | | 0.0288 | 20.0 | 6100 | 0.0969 | | 0.0288 | 21.0 | 6405 | 0.0976 | | 0.0279 | 22.0 | 6710 | 0.0987 | | 0.0275 | 23.0 | 7015 | 0.0984 | | 0.0275 | 24.0 | 7320 | 0.0975 | | 0.027 | 25.0 | 7625 | 0.0979 | | 0.027 | 26.0 | 7930 | 0.0984 | | 0.0261 | 27.0 | 8235 | 0.0991 | | 0.026 | 28.0 | 8540 | 0.0992 | | 0.026 | 29.0 | 8845 | 0.0990 | | 0.0259 | 30.0 | 9150 | 0.0989 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Tokenizers 0.13.3
CyberHarem/kagayama_kaede_nonnonbiyori
CyberHarem
2023-09-27T23:47:19Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/kagayama_kaede_nonnonbiyori", "license:mit", "region:us" ]
text-to-image
2023-09-27T23:33:47Z
--- license: mit datasets: - CyberHarem/kagayama_kaede_nonnonbiyori pipeline_tag: text-to-image tags: - art --- # Lora of kagayama_kaede_nonnonbiyori This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 2660, you need to download `2660/kagayama_kaede_nonnonbiyori.pt` as the embedding and `2660/kagayama_kaede_nonnonbiyori.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 2660**, with the score of 0.905. The trigger words are: 1. `kagayama_kaede_nonnonbiyori` 2. `blonde_hair, long_hair, brown_eyes, ahoge` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | pattern_5 | pattern_6 | pattern_7 | pattern_8 | pattern_9 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:-----------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | 5700 | 0.903 | [Download](5700/kagayama_kaede_nonnonbiyori.zip) | ![pattern_1-5700](5700/previews/pattern_1.png) | ![pattern_2-5700](5700/previews/pattern_2.png) | ![pattern_3-5700](5700/previews/pattern_3.png) | ![pattern_4-5700](5700/previews/pattern_4.png) | ![pattern_5-5700](5700/previews/pattern_5.png) | ![pattern_6-5700](5700/previews/pattern_6.png) | ![pattern_7-5700](5700/previews/pattern_7.png) | ![pattern_8-5700](5700/previews/pattern_8.png) | ![pattern_9-5700](5700/previews/pattern_9.png) | ![bikini-5700](5700/previews/bikini.png) | [<NSFW, click to see>](5700/previews/bondage.png) | ![free-5700](5700/previews/free.png) | ![maid-5700](5700/previews/maid.png) | ![miko-5700](5700/previews/miko.png) | [<NSFW, click to see>](5700/previews/nude.png) | [<NSFW, click to see>](5700/previews/nude2.png) | ![suit-5700](5700/previews/suit.png) | ![yukata-5700](5700/previews/yukata.png) | | 5320 | 0.812 | [Download](5320/kagayama_kaede_nonnonbiyori.zip) | ![pattern_1-5320](5320/previews/pattern_1.png) | ![pattern_2-5320](5320/previews/pattern_2.png) | ![pattern_3-5320](5320/previews/pattern_3.png) | ![pattern_4-5320](5320/previews/pattern_4.png) | ![pattern_5-5320](5320/previews/pattern_5.png) | ![pattern_6-5320](5320/previews/pattern_6.png) | ![pattern_7-5320](5320/previews/pattern_7.png) | ![pattern_8-5320](5320/previews/pattern_8.png) | ![pattern_9-5320](5320/previews/pattern_9.png) | ![bikini-5320](5320/previews/bikini.png) | [<NSFW, click to see>](5320/previews/bondage.png) | ![free-5320](5320/previews/free.png) | ![maid-5320](5320/previews/maid.png) | ![miko-5320](5320/previews/miko.png) | [<NSFW, click to see>](5320/previews/nude.png) | [<NSFW, click to see>](5320/previews/nude2.png) | ![suit-5320](5320/previews/suit.png) | ![yukata-5320](5320/previews/yukata.png) | | 4940 | 0.820 | [Download](4940/kagayama_kaede_nonnonbiyori.zip) | ![pattern_1-4940](4940/previews/pattern_1.png) | ![pattern_2-4940](4940/previews/pattern_2.png) | ![pattern_3-4940](4940/previews/pattern_3.png) | ![pattern_4-4940](4940/previews/pattern_4.png) | ![pattern_5-4940](4940/previews/pattern_5.png) | ![pattern_6-4940](4940/previews/pattern_6.png) | ![pattern_7-4940](4940/previews/pattern_7.png) | ![pattern_8-4940](4940/previews/pattern_8.png) | ![pattern_9-4940](4940/previews/pattern_9.png) | ![bikini-4940](4940/previews/bikini.png) | [<NSFW, click to see>](4940/previews/bondage.png) | ![free-4940](4940/previews/free.png) | ![maid-4940](4940/previews/maid.png) | ![miko-4940](4940/previews/miko.png) | [<NSFW, click to see>](4940/previews/nude.png) | [<NSFW, click to see>](4940/previews/nude2.png) | ![suit-4940](4940/previews/suit.png) | ![yukata-4940](4940/previews/yukata.png) | | 4560 | 0.886 | [Download](4560/kagayama_kaede_nonnonbiyori.zip) | ![pattern_1-4560](4560/previews/pattern_1.png) | ![pattern_2-4560](4560/previews/pattern_2.png) | ![pattern_3-4560](4560/previews/pattern_3.png) | ![pattern_4-4560](4560/previews/pattern_4.png) | ![pattern_5-4560](4560/previews/pattern_5.png) | ![pattern_6-4560](4560/previews/pattern_6.png) | ![pattern_7-4560](4560/previews/pattern_7.png) | ![pattern_8-4560](4560/previews/pattern_8.png) | ![pattern_9-4560](4560/previews/pattern_9.png) | ![bikini-4560](4560/previews/bikini.png) | [<NSFW, click to see>](4560/previews/bondage.png) | ![free-4560](4560/previews/free.png) | ![maid-4560](4560/previews/maid.png) | ![miko-4560](4560/previews/miko.png) | [<NSFW, click to see>](4560/previews/nude.png) | [<NSFW, click to see>](4560/previews/nude2.png) | ![suit-4560](4560/previews/suit.png) | ![yukata-4560](4560/previews/yukata.png) | | 4180 | 0.897 | [Download](4180/kagayama_kaede_nonnonbiyori.zip) | ![pattern_1-4180](4180/previews/pattern_1.png) | ![pattern_2-4180](4180/previews/pattern_2.png) | ![pattern_3-4180](4180/previews/pattern_3.png) | ![pattern_4-4180](4180/previews/pattern_4.png) | ![pattern_5-4180](4180/previews/pattern_5.png) | ![pattern_6-4180](4180/previews/pattern_6.png) | ![pattern_7-4180](4180/previews/pattern_7.png) | ![pattern_8-4180](4180/previews/pattern_8.png) | ![pattern_9-4180](4180/previews/pattern_9.png) | ![bikini-4180](4180/previews/bikini.png) | [<NSFW, click to see>](4180/previews/bondage.png) | ![free-4180](4180/previews/free.png) | ![maid-4180](4180/previews/maid.png) | ![miko-4180](4180/previews/miko.png) | [<NSFW, click to see>](4180/previews/nude.png) | [<NSFW, click to see>](4180/previews/nude2.png) | ![suit-4180](4180/previews/suit.png) | ![yukata-4180](4180/previews/yukata.png) | | 3800 | 0.809 | [Download](3800/kagayama_kaede_nonnonbiyori.zip) | ![pattern_1-3800](3800/previews/pattern_1.png) | ![pattern_2-3800](3800/previews/pattern_2.png) | ![pattern_3-3800](3800/previews/pattern_3.png) | ![pattern_4-3800](3800/previews/pattern_4.png) | ![pattern_5-3800](3800/previews/pattern_5.png) | ![pattern_6-3800](3800/previews/pattern_6.png) | ![pattern_7-3800](3800/previews/pattern_7.png) | ![pattern_8-3800](3800/previews/pattern_8.png) | ![pattern_9-3800](3800/previews/pattern_9.png) | ![bikini-3800](3800/previews/bikini.png) | [<NSFW, click to see>](3800/previews/bondage.png) | ![free-3800](3800/previews/free.png) | ![maid-3800](3800/previews/maid.png) | ![miko-3800](3800/previews/miko.png) | [<NSFW, click to see>](3800/previews/nude.png) | [<NSFW, click to see>](3800/previews/nude2.png) | ![suit-3800](3800/previews/suit.png) | ![yukata-3800](3800/previews/yukata.png) | | 3420 | 0.897 | [Download](3420/kagayama_kaede_nonnonbiyori.zip) | ![pattern_1-3420](3420/previews/pattern_1.png) | ![pattern_2-3420](3420/previews/pattern_2.png) | ![pattern_3-3420](3420/previews/pattern_3.png) | ![pattern_4-3420](3420/previews/pattern_4.png) | ![pattern_5-3420](3420/previews/pattern_5.png) | ![pattern_6-3420](3420/previews/pattern_6.png) | ![pattern_7-3420](3420/previews/pattern_7.png) | ![pattern_8-3420](3420/previews/pattern_8.png) | ![pattern_9-3420](3420/previews/pattern_9.png) | ![bikini-3420](3420/previews/bikini.png) | [<NSFW, click to see>](3420/previews/bondage.png) | ![free-3420](3420/previews/free.png) | ![maid-3420](3420/previews/maid.png) | ![miko-3420](3420/previews/miko.png) | [<NSFW, click to see>](3420/previews/nude.png) | [<NSFW, click to see>](3420/previews/nude2.png) | ![suit-3420](3420/previews/suit.png) | ![yukata-3420](3420/previews/yukata.png) | | 3040 | 0.834 | [Download](3040/kagayama_kaede_nonnonbiyori.zip) | ![pattern_1-3040](3040/previews/pattern_1.png) | ![pattern_2-3040](3040/previews/pattern_2.png) | ![pattern_3-3040](3040/previews/pattern_3.png) | ![pattern_4-3040](3040/previews/pattern_4.png) | ![pattern_5-3040](3040/previews/pattern_5.png) | ![pattern_6-3040](3040/previews/pattern_6.png) | ![pattern_7-3040](3040/previews/pattern_7.png) | ![pattern_8-3040](3040/previews/pattern_8.png) | ![pattern_9-3040](3040/previews/pattern_9.png) | ![bikini-3040](3040/previews/bikini.png) | [<NSFW, click to see>](3040/previews/bondage.png) | ![free-3040](3040/previews/free.png) | ![maid-3040](3040/previews/maid.png) | ![miko-3040](3040/previews/miko.png) | [<NSFW, click to see>](3040/previews/nude.png) | [<NSFW, click to see>](3040/previews/nude2.png) | ![suit-3040](3040/previews/suit.png) | ![yukata-3040](3040/previews/yukata.png) | | **2660** | **0.905** | [**Download**](2660/kagayama_kaede_nonnonbiyori.zip) | ![pattern_1-2660](2660/previews/pattern_1.png) | ![pattern_2-2660](2660/previews/pattern_2.png) | ![pattern_3-2660](2660/previews/pattern_3.png) | ![pattern_4-2660](2660/previews/pattern_4.png) | ![pattern_5-2660](2660/previews/pattern_5.png) | ![pattern_6-2660](2660/previews/pattern_6.png) | ![pattern_7-2660](2660/previews/pattern_7.png) | ![pattern_8-2660](2660/previews/pattern_8.png) | ![pattern_9-2660](2660/previews/pattern_9.png) | ![bikini-2660](2660/previews/bikini.png) | [<NSFW, click to see>](2660/previews/bondage.png) | ![free-2660](2660/previews/free.png) | ![maid-2660](2660/previews/maid.png) | ![miko-2660](2660/previews/miko.png) | [<NSFW, click to see>](2660/previews/nude.png) | [<NSFW, click to see>](2660/previews/nude2.png) | ![suit-2660](2660/previews/suit.png) | ![yukata-2660](2660/previews/yukata.png) | | 2280 | 0.852 | [Download](2280/kagayama_kaede_nonnonbiyori.zip) | ![pattern_1-2280](2280/previews/pattern_1.png) | ![pattern_2-2280](2280/previews/pattern_2.png) | ![pattern_3-2280](2280/previews/pattern_3.png) | ![pattern_4-2280](2280/previews/pattern_4.png) | ![pattern_5-2280](2280/previews/pattern_5.png) | ![pattern_6-2280](2280/previews/pattern_6.png) | ![pattern_7-2280](2280/previews/pattern_7.png) | ![pattern_8-2280](2280/previews/pattern_8.png) | ![pattern_9-2280](2280/previews/pattern_9.png) | ![bikini-2280](2280/previews/bikini.png) | [<NSFW, click to see>](2280/previews/bondage.png) | ![free-2280](2280/previews/free.png) | ![maid-2280](2280/previews/maid.png) | ![miko-2280](2280/previews/miko.png) | [<NSFW, click to see>](2280/previews/nude.png) | [<NSFW, click to see>](2280/previews/nude2.png) | ![suit-2280](2280/previews/suit.png) | ![yukata-2280](2280/previews/yukata.png) | | 1900 | 0.860 | [Download](1900/kagayama_kaede_nonnonbiyori.zip) | ![pattern_1-1900](1900/previews/pattern_1.png) | ![pattern_2-1900](1900/previews/pattern_2.png) | ![pattern_3-1900](1900/previews/pattern_3.png) | ![pattern_4-1900](1900/previews/pattern_4.png) | ![pattern_5-1900](1900/previews/pattern_5.png) | ![pattern_6-1900](1900/previews/pattern_6.png) | ![pattern_7-1900](1900/previews/pattern_7.png) | ![pattern_8-1900](1900/previews/pattern_8.png) | ![pattern_9-1900](1900/previews/pattern_9.png) | ![bikini-1900](1900/previews/bikini.png) | [<NSFW, click to see>](1900/previews/bondage.png) | ![free-1900](1900/previews/free.png) | ![maid-1900](1900/previews/maid.png) | ![miko-1900](1900/previews/miko.png) | [<NSFW, click to see>](1900/previews/nude.png) | [<NSFW, click to see>](1900/previews/nude2.png) | ![suit-1900](1900/previews/suit.png) | ![yukata-1900](1900/previews/yukata.png) | | 1520 | 0.846 | [Download](1520/kagayama_kaede_nonnonbiyori.zip) | ![pattern_1-1520](1520/previews/pattern_1.png) | ![pattern_2-1520](1520/previews/pattern_2.png) | ![pattern_3-1520](1520/previews/pattern_3.png) | ![pattern_4-1520](1520/previews/pattern_4.png) | ![pattern_5-1520](1520/previews/pattern_5.png) | ![pattern_6-1520](1520/previews/pattern_6.png) | ![pattern_7-1520](1520/previews/pattern_7.png) | ![pattern_8-1520](1520/previews/pattern_8.png) | ![pattern_9-1520](1520/previews/pattern_9.png) | ![bikini-1520](1520/previews/bikini.png) | [<NSFW, click to see>](1520/previews/bondage.png) | ![free-1520](1520/previews/free.png) | ![maid-1520](1520/previews/maid.png) | ![miko-1520](1520/previews/miko.png) | [<NSFW, click to see>](1520/previews/nude.png) | [<NSFW, click to see>](1520/previews/nude2.png) | ![suit-1520](1520/previews/suit.png) | ![yukata-1520](1520/previews/yukata.png) | | 1140 | 0.877 | [Download](1140/kagayama_kaede_nonnonbiyori.zip) | ![pattern_1-1140](1140/previews/pattern_1.png) | ![pattern_2-1140](1140/previews/pattern_2.png) | ![pattern_3-1140](1140/previews/pattern_3.png) | ![pattern_4-1140](1140/previews/pattern_4.png) | ![pattern_5-1140](1140/previews/pattern_5.png) | ![pattern_6-1140](1140/previews/pattern_6.png) | ![pattern_7-1140](1140/previews/pattern_7.png) | ![pattern_8-1140](1140/previews/pattern_8.png) | ![pattern_9-1140](1140/previews/pattern_9.png) | ![bikini-1140](1140/previews/bikini.png) | [<NSFW, click to see>](1140/previews/bondage.png) | ![free-1140](1140/previews/free.png) | ![maid-1140](1140/previews/maid.png) | ![miko-1140](1140/previews/miko.png) | [<NSFW, click to see>](1140/previews/nude.png) | [<NSFW, click to see>](1140/previews/nude2.png) | ![suit-1140](1140/previews/suit.png) | ![yukata-1140](1140/previews/yukata.png) | | 760 | 0.680 | [Download](760/kagayama_kaede_nonnonbiyori.zip) | ![pattern_1-760](760/previews/pattern_1.png) | ![pattern_2-760](760/previews/pattern_2.png) | ![pattern_3-760](760/previews/pattern_3.png) | ![pattern_4-760](760/previews/pattern_4.png) | ![pattern_5-760](760/previews/pattern_5.png) | ![pattern_6-760](760/previews/pattern_6.png) | ![pattern_7-760](760/previews/pattern_7.png) | ![pattern_8-760](760/previews/pattern_8.png) | ![pattern_9-760](760/previews/pattern_9.png) | ![bikini-760](760/previews/bikini.png) | [<NSFW, click to see>](760/previews/bondage.png) | ![free-760](760/previews/free.png) | ![maid-760](760/previews/maid.png) | ![miko-760](760/previews/miko.png) | [<NSFW, click to see>](760/previews/nude.png) | [<NSFW, click to see>](760/previews/nude2.png) | ![suit-760](760/previews/suit.png) | ![yukata-760](760/previews/yukata.png) | | 380 | 0.553 | [Download](380/kagayama_kaede_nonnonbiyori.zip) | ![pattern_1-380](380/previews/pattern_1.png) | ![pattern_2-380](380/previews/pattern_2.png) | ![pattern_3-380](380/previews/pattern_3.png) | ![pattern_4-380](380/previews/pattern_4.png) | ![pattern_5-380](380/previews/pattern_5.png) | ![pattern_6-380](380/previews/pattern_6.png) | ![pattern_7-380](380/previews/pattern_7.png) | ![pattern_8-380](380/previews/pattern_8.png) | ![pattern_9-380](380/previews/pattern_9.png) | ![bikini-380](380/previews/bikini.png) | [<NSFW, click to see>](380/previews/bondage.png) | ![free-380](380/previews/free.png) | ![maid-380](380/previews/maid.png) | ![miko-380](380/previews/miko.png) | [<NSFW, click to see>](380/previews/nude.png) | [<NSFW, click to see>](380/previews/nude2.png) | ![suit-380](380/previews/suit.png) | ![yukata-380](380/previews/yukata.png) |
HazemHM/Reinforce-CartPole-V1
HazemHM
2023-09-27T23:43:13Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-27T23:43:02Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-V1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 499.90 +/- 0.30 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
HazemHM/Reinforce-CartPoleV1
HazemHM
2023-09-27T23:24:05Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-27T23:23:53Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPoleV1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 482.50 +/- 52.50 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
vagmi/squeal
vagmi
2023-09-27T22:52:08Z
4
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "dataset:b-mc2/sql-create-context", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-27T15:57:37Z
--- license: apache-2.0 datasets: - b-mc2/sql-create-context language: - en library_name: transformers --- # Generate SQL from text - Squeal Please use the code below as an example for how to use this model. ```python import torch from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig def load_model(model_name): # Load tokenizer and model with QLoRA configuration compute_dtype = getattr(torch, 'float16') bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type='nf4', bnb_4bit_compute_dtype=compute_dtype, bnb_4bit_use_double_quant=False, ) model = AutoModelForCausalLM.from_pretrained( model_name, device_map={"": 0}, quantization_config=bnb_config ) # Load Tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "right" return model, tokenizer model, tokenizer = load_model('vagmi/squeal') prompt = "<s>[INST] Output SQL for the given table structure \n \ CREATE TABLE votes (contestant_number VARCHAR, num_votes int); \ CREATE TABLE contestants (contestant_number VARCHAR, contestant_name VARCHAR); \ What is the contestant number and name of the contestant who got least votes?[/INST]" pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200, device_map='auto', ) result = pipe(prompt) print(result[0]['generated_text'][len(prompt):-1]) ``` ## How I built it? Watch me build this model. https://www.youtube.com/watch?v=PNFhAfxR_d8 Here is the notebook I used to train this model. https://colab.research.google.com/drive/1jYX8AlRMTY7F_dH3hCFM4ljg5qEmCoUe#scrollTo=IUILKaGWhBxS
ayymen/crnn_mobilenet_v3_large_tifinagh
ayymen
2023-09-27T22:46:25Z
56
4
transformers
[ "transformers", "pytorch", "OCR", "zgh", "ber", "taq", "endpoints_compatible", "region:us" ]
null
2023-09-27T22:10:35Z
--- language: - zgh - ber - taq tags: - OCR --- <p align="center"> <img src="https://doctr-static.mindee.com/models?id=v0.3.1/Logo_doctr.gif&src=0" width="60%"> </p> **Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch** ## Task: recognition https://github.com/mindee/doctr ### Example usage: ```python >>> from doctr.io import DocumentFile >>> from doctr.models import ocr_predictor, from_hub >>> img = DocumentFile.from_images(['<image_path>']) >>> # Load your model from the hub >>> model = from_hub('mindee/my-model') >>> # Pass it to the predictor >>> # If your model is a recognition model: >>> predictor = ocr_predictor(det_arch='db_mobilenet_v3_large', >>> reco_arch=model, >>> pretrained=True) >>> # If your model is a detection model: >>> predictor = ocr_predictor(det_arch=model, >>> reco_arch='crnn_mobilenet_v3_small', >>> pretrained=True) >>> # Get your predictions >>> res = predictor(img) ``` ### Run Configuration { "arch": "crnn_mobilenet_v3_large", "train_path": "train", "val_path": "val", "train_samples": 1000, "val_samples": 20, "font": "FreeMono.ttf,FreeSans.ttf,FreeSerif.ttf", "min_chars": 1, "max_chars": 12, "name": "crnn_mobilenet_v3_large_tifinagh", "epochs": 1, "batch_size": 64, "device": null, "input_size": 32, "lr": 0.001, "weight_decay": 0, "workers": 2, "resume": "crnn_mobilenet_v3_large_tifinagh.pt", "vocab": "tamazight", "test_only": false, "show_samples": false, "wb": true, "push_to_hub": true, "pretrained": false, "sched": "cosine", "amp": false, "find_lr": false }
akashmaggon/llam2fullmodel
akashmaggon
2023-09-27T22:43:48Z
1
0
peft
[ "peft", "region:us" ]
null
2023-09-27T22:43:01Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
Globaly/globaly-1-llama2-7b-NSHF-v0.3
Globaly
2023-09-27T22:16:13Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-27T22:15:40Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0
fmagot01/whisper-small-dv-second
fmagot01
2023-09-27T22:15:40Z
77
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dv", "dataset:mozilla-foundation/common_voice_13_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-27T14:17:13Z
--- language: - dv license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Small Dv - Sanchit Gandhi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13 type: mozilla-foundation/common_voice_13_0 metrics: - name: Wer type: wer value: 0.13502799318426817 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Dv - Sanchit Gandhi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 13 dataset. It achieves the following results on the evaluation set: - Loss: 0.1689 - Wer Ortho: 0.6258 - Wer: 0.1350 - Cer: 0.0963 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | 0.1995 | 0.81 | 250 | 0.2387 | 0.7319 | 0.1888 | 0.1330 | | 0.1215 | 1.63 | 500 | 0.1689 | 0.6258 | 0.1350 | 0.0963 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
Mintrz/Loobe-3
Mintrz
2023-09-27T22:11:36Z
19
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-27T22:04:08Z
--- license: other license_name: d license_link: LICENSE ---
LarryAIDraw/beidou_genshin
LarryAIDraw
2023-09-27T22:09:41Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-27T22:06:11Z
--- license: creativeml-openrail-m --- https://civitai.com/models/130976/beidou-genshin-impact
LarryAIDraw/Shinonono_Tabane
LarryAIDraw
2023-09-27T22:09:24Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-27T22:05:45Z
--- license: creativeml-openrail-m --- https://civitai.com/models/152683/shinonono-tabaneinfinite-stratos
LarryAIDraw/ichinose_shiki_v1
LarryAIDraw
2023-09-27T22:09:13Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-27T22:05:15Z
--- license: creativeml-openrail-m --- https://civitai.com/models/152587/ichinose-shiki-the-idolmster-cinderella-girls
LarryAIDraw/Feise-08
LarryAIDraw
2023-09-27T22:09:04Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-27T22:04:42Z
--- license: creativeml-openrail-m --- https://civitai.com/models/152854/fei-se-tower-of-fantasy
LarryAIDraw/Tohru-10
LarryAIDraw
2023-09-27T22:08:55Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-27T22:04:20Z
--- license: creativeml-openrail-m --- https://civitai.com/models/152827/tohru-miss-kobayashis-dragon-maid-lora
LarryAIDraw/yor-08
LarryAIDraw
2023-09-27T22:08:12Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-27T22:02:40Z
--- license: creativeml-openrail-m --- https://civitai.com/models/152721/yor-or-spy-family
ahof1704/brainlm
ahof1704
2023-09-27T21:40:48Z
0
2
null
[ "arxiv:1910.09700", "region:us" ]
null
2023-09-27T21:13:41Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # BrainLM model <!-- Provide a quick summary of what the model is/does. --> The pretrained model of Brain Language Model (BrainLM) aims to achieve a general understanding of brain dynamics through self-supervised masked prediction. It is introduced in [this paper](https://www.biorxiv.org/content/10.1101/2023.09.12.557460v1) and its code is available at [this repository](https://github.com/vandijklab/BrainLM) ## Model Details ### Model Description We introduce the Brain Language Model (BrainLM), a foundation model for brain activity dynamics trained on 6,700 hours of fMRI recordings. Utilizing self-supervised masked-prediction training, BrainLM demonstrates proficiency in both fine-tuning and zero-shot inference tasks. Fine-tuning allows for the prediction of clinical variables and future brain states. In zero-shot inference, the model identifies functional networks and generates interpretable latent representations of neural activity. Furthermore, we introduce a novel prompting technique, allowing BrainLM to function as an in silico simulator of brain activity responses to perturbations. BrainLM offers a novel framework for the analysis and understanding of large-scale brain activity data, serving as a “lens” through which new data can be more effectively interpreted. - **Developed by:** [van Dijk Lab](https://www.vandijklab.org/) at Yale University - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/vandijklab/BrainLM - **Paper:** https://www.biorxiv.org/content/10.1101/2023.09.12.557460v1 - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** ```bibtex @article{ortega2023brainlm, title={BrainLM: A foundation model for brain activity recordings}, author={Ortega Caro, Josue and Oliveira Fonseca, Antonio Henrique and Averill, Christopher and Rizvi, Syed A and Rosati, Matteo and Cross, James L and Mittal, Prateek and Zappala, Emanuele and Levine, Daniel and Dhodapkar, Rahul M and others}, journal={bioRxiv}, pages={2023--09}, year={2023}, publisher={Cold Spring Harbor Laboratory} } ``` **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
GuilhermeGPGil/First_DRL_Model
GuilhermeGPGil
2023-09-27T21:35:42Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-27T21:35:17Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 239.72 +/- 52.89 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
kevinzeng/ppo-LunarLander-v2
kevinzeng
2023-09-27T21:32:01Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-27T21:31:40Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 254.94 +/- 16.62 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
SaffalPoosh/system_design_expert
SaffalPoosh
2023-09-27T21:20:06Z
6
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-27T14:13:08Z
--- language: - en pipeline_tag: text-generation --- This is llama2 7B finetuned using qlora with bf16 as compute dtype. The dataset has been generated using open-ai api with samples semantics oriented towards abstract explanation of system design. lora has been merged into the original model, 3 peochs have been trained with batch size of 16. ```bash from google.colab import drive from transformers import AutoModelForCausalLM, AutoTokenizer from transformers import pipeline model_path = "SaffalPoosh/system_design_expert" model = AutoModelForCausalLM.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained(model_path) prompt = "Design an application like Whatsapp with tech stack you will use" gen = pipeline('text-generation', model=model, tokenizer=tokenizer) result = gen(prompt) print(result[0]['generated_text']) ```
noahgift/hf_fine_tune_hello_world
noahgift
2023-09-27T21:10:19Z
119
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "dataset:yelp_review_full", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-24T15:58:53Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - yelp_review_full metrics: - accuracy base_model: bert-base-cased model-index: - name: hf_fine_tune_hello_world results: - task: type: text-classification name: Text Classification dataset: name: yelp_review_full type: yelp_review_full config: yelp_review_full split: train args: yelp_review_full metrics: - type: accuracy value: 0.562 name: Accuracy --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hf_fine_tune_hello_world This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the yelp_review_full dataset. It achieves the following results on the evaluation set: - Loss: 1.0594 - Accuracy: 0.562 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 125 | 1.2177 | 0.467 | | No log | 2.0 | 250 | 1.0214 | 0.569 | | No log | 3.0 | 375 | 1.0594 | 0.562 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu102 - Datasets 2.5.2 - Tokenizers 0.12.1
oshita-n/textual_inversion_2
oshita-n
2023-09-27T20:43:23Z
38
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "textual_inversion", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-27T19:55:34Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - oshita-n/textual_inversion_2 These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
JEdappully/Taxi
JEdappully
2023-09-27T20:41:57Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-09-27T20:41:52Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="JEdappully/Taxi", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
DouglasPontes/2020-Q2-filtered_tweets_tok_prog
DouglasPontes
2023-09-27T20:38:18Z
14
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-23T14:08:01Z
--- tags: - generated_from_trainer model-index: - name: 2020-Q2-filtered_tweets_tok_prog results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 2020-Q2-filtered_tweets_tok_prog This model is a fine-tuned version of [DouglasPontes/2020-Q1-full_tweets_tok](https://huggingface.co/DouglasPontes/2020-Q1-full_tweets_tok) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.2151 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1400 - training_steps: 2400000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | No log | 0.03 | 8000 | 7.0102 | | 7.2267 | 0.07 | 16000 | 6.9542 | | 7.2267 | 0.1 | 24000 | 6.9403 | | 6.9704 | 0.14 | 32000 | 6.8324 | | 6.9704 | 0.17 | 40000 | 6.7820 | | 6.8499 | 0.21 | 48000 | 6.7417 | | 6.8499 | 0.24 | 56000 | 6.6973 | | 6.729 | 0.28 | 64000 | 6.6547 | | 6.729 | 0.31 | 72000 | 6.6154 | | 6.6453 | 0.35 | 80000 | 6.5520 | | 6.6453 | 0.38 | 88000 | 6.5154 | | 6.555 | 0.42 | 96000 | 6.4724 | | 6.555 | 0.45 | 104000 | 6.4253 | | 6.4797 | 0.49 | 112000 | 6.4060 | | 6.4797 | 0.52 | 120000 | 6.3705 | | 6.4146 | 0.56 | 128000 | 6.3289 | | 6.4146 | 0.59 | 136000 | 6.3175 | | 6.3623 | 0.63 | 144000 | 6.2903 | | 6.3623 | 0.66 | 152000 | 6.2669 | | 6.3233 | 0.7 | 160000 | 6.2329 | | 6.3233 | 0.73 | 168000 | 6.2148 | | 6.2846 | 0.77 | 176000 | 6.2140 | | 6.2846 | 0.8 | 184000 | 6.1774 | | 6.2548 | 0.84 | 192000 | 6.1518 | | 6.2548 | 0.87 | 200000 | 6.1421 | | 6.2163 | 0.91 | 208000 | 6.1221 | | 6.2163 | 0.94 | 216000 | 6.1063 | | 6.1854 | 0.98 | 224000 | 6.0982 | | 6.1854 | 1.01 | 232000 | 6.0752 | | 6.157 | 1.05 | 240000 | 6.0771 | | 6.157 | 1.08 | 248000 | 6.0410 | | 6.1311 | 1.12 | 256000 | 6.0283 | | 6.1311 | 1.15 | 264000 | 6.0268 | | 6.1132 | 1.19 | 272000 | 6.0237 | | 6.1132 | 1.22 | 280000 | 6.0218 | | 6.0771 | 1.26 | 288000 | 5.9890 | | 6.0771 | 1.29 | 296000 | 5.9574 | | 6.0559 | 1.33 | 304000 | 5.9871 | | 6.0559 | 1.36 | 312000 | 5.9688 | | 6.0159 | 1.4 | 320000 | 5.9408 | | 6.0159 | 1.43 | 328000 | 5.9212 | | 6.0085 | 1.47 | 336000 | 5.9064 | | 6.0085 | 1.5 | 344000 | 5.9124 | | 5.9947 | 1.54 | 352000 | 5.9012 | | 5.9947 | 1.57 | 360000 | 5.8873 | | 5.9726 | 1.61 | 368000 | 5.8993 | | 5.9726 | 1.64 | 376000 | 5.8968 | | 5.9668 | 1.68 | 384000 | 5.8790 | | 5.9668 | 1.71 | 392000 | 5.8659 | | 5.958 | 1.75 | 400000 | 5.8856 | | 5.958 | 1.78 | 408000 | 5.8503 | | 5.9476 | 1.82 | 416000 | 5.8859 | | 5.9476 | 1.85 | 424000 | 5.8909 | | 5.9195 | 1.89 | 432000 | 5.8603 | | 5.9195 | 1.92 | 440000 | 5.8370 | | 5.9143 | 1.96 | 448000 | 5.8232 | | 5.9143 | 1.99 | 456000 | 5.8213 | | 5.8991 | 2.03 | 464000 | 5.8196 | | 5.8991 | 2.06 | 472000 | 5.8079 | | 5.8735 | 2.09 | 480000 | 5.7811 | | 5.8735 | 2.13 | 488000 | 5.7851 | | 5.855 | 2.16 | 496000 | 5.7738 | | 5.855 | 2.2 | 504000 | 5.7488 | | 5.8666 | 2.23 | 512000 | 5.7699 | | 5.8666 | 2.27 | 520000 | 5.7531 | | 5.8256 | 2.3 | 528000 | 5.7357 | | 5.8256 | 2.34 | 536000 | 5.7426 | | 5.8222 | 2.37 | 544000 | 5.7376 | | 5.8222 | 2.41 | 552000 | 5.7224 | | 5.8097 | 2.44 | 560000 | 5.7088 | | 5.8097 | 2.48 | 568000 | 5.7054 | | 5.8077 | 2.51 | 576000 | 5.6899 | | 5.8077 | 2.55 | 584000 | 5.6957 | | 5.7859 | 2.58 | 592000 | 5.6851 | | 5.7859 | 2.62 | 600000 | 5.7154 | | 5.7823 | 2.65 | 608000 | 5.7051 | | 5.7823 | 2.69 | 616000 | 5.6641 | | 5.7714 | 2.72 | 624000 | 5.6700 | | 5.7714 | 2.76 | 632000 | 5.6546 | | 5.7686 | 2.79 | 640000 | 5.6435 | | 5.7686 | 2.83 | 648000 | 5.6450 | | 5.7483 | 2.86 | 656000 | 5.6132 | | 5.7483 | 2.9 | 664000 | 5.6289 | | 5.7308 | 2.93 | 672000 | 5.6310 | | 5.7308 | 2.97 | 680000 | 5.6176 | | 5.7201 | 3.0 | 688000 | 5.6278 | | 5.7201 | 3.04 | 696000 | 5.6315 | | 5.7202 | 3.07 | 704000 | 5.6112 | | 5.7202 | 3.11 | 712000 | 5.6397 | | 5.6954 | 3.14 | 720000 | 5.5901 | | 5.6954 | 3.18 | 728000 | 5.5947 | | 5.6794 | 3.21 | 736000 | 5.6044 | | 5.6794 | 3.25 | 744000 | 5.5823 | | 5.676 | 3.28 | 752000 | 5.5610 | | 5.676 | 3.32 | 760000 | 5.5880 | | 5.6746 | 3.35 | 768000 | 5.5645 | | 5.6746 | 3.39 | 776000 | 5.5577 | | 5.6617 | 3.42 | 784000 | 5.5687 | | 5.6617 | 3.46 | 792000 | 5.5711 | | 5.6519 | 3.49 | 800000 | 5.5424 | | 5.6519 | 3.53 | 808000 | 5.5436 | | 5.6453 | 3.56 | 816000 | 5.5545 | | 5.6453 | 3.6 | 824000 | 5.5590 | | 5.634 | 3.63 | 832000 | 5.5475 | | 5.634 | 3.67 | 840000 | 5.5399 | | 5.6364 | 3.7 | 848000 | 5.5167 | | 5.6364 | 3.74 | 856000 | 5.5586 | | 5.642 | 3.77 | 864000 | 5.5230 | | 5.642 | 3.81 | 872000 | 5.5323 | | 5.6453 | 3.84 | 880000 | 5.5151 | | 5.6453 | 3.88 | 888000 | 5.5105 | | 5.6174 | 3.91 | 896000 | 5.5233 | | 5.6174 | 3.95 | 904000 | 5.5111 | | 5.6076 | 3.98 | 912000 | 5.5201 | | 5.6076 | 4.02 | 920000 | 5.5210 | | 5.6179 | 4.05 | 928000 | 5.5249 | | 5.6179 | 4.08 | 936000 | 5.4997 | | 5.6125 | 4.12 | 944000 | 5.4942 | | 5.6125 | 4.15 | 952000 | 5.5023 | | 5.5992 | 4.19 | 960000 | 5.5026 | | 5.5992 | 4.22 | 968000 | 5.5102 | | 5.6088 | 4.26 | 976000 | 5.4885 | | 5.6088 | 4.29 | 984000 | 5.4878 | | 5.5988 | 4.33 | 992000 | 5.4941 | | 5.5988 | 4.36 | 1000000 | 5.4859 | | 5.5807 | 4.4 | 1008000 | 5.5001 | | 5.5807 | 4.43 | 1016000 | 5.4815 | | 5.5729 | 4.47 | 1024000 | 5.4762 | | 5.5729 | 4.5 | 1032000 | 5.4702 | | 5.5735 | 4.54 | 1040000 | 5.4680 | | 5.5735 | 4.57 | 1048000 | 5.4746 | | 5.5697 | 4.61 | 1056000 | 5.4505 | | 5.5697 | 4.64 | 1064000 | 5.4598 | | 5.5519 | 4.68 | 1072000 | 5.4463 | | 5.5519 | 4.71 | 1080000 | 5.4462 | | 5.5609 | 4.75 | 1088000 | 5.4327 | | 5.5609 | 4.78 | 1096000 | 5.4424 | | 5.5297 | 4.82 | 1104000 | 5.4504 | | 5.5297 | 4.85 | 1112000 | 5.4250 | | 5.5337 | 4.89 | 1120000 | 5.4178 | | 5.5337 | 4.92 | 1128000 | 5.4223 | | 5.5188 | 4.96 | 1136000 | 5.4344 | | 5.5188 | 4.99 | 1144000 | 5.4237 | | 5.5252 | 5.03 | 1152000 | 5.4352 | | 5.5252 | 5.06 | 1160000 | 5.4122 | | 5.5079 | 5.1 | 1168000 | 5.3956 | | 5.5079 | 5.13 | 1176000 | 5.4041 | | 5.5087 | 5.17 | 1184000 | 5.4014 | | 5.5087 | 5.2 | 1192000 | 5.4066 | | 5.4815 | 5.24 | 1200000 | 5.4048 | | 5.4815 | 5.27 | 1208000 | 5.4176 | | 5.5038 | 5.31 | 1216000 | 5.3841 | | 5.5038 | 5.34 | 1224000 | 5.4197 | | 5.5111 | 5.38 | 1232000 | 5.4098 | | 5.5111 | 5.41 | 1240000 | 5.3933 | | 5.4898 | 5.45 | 1248000 | 5.3870 | | 5.4898 | 5.48 | 1256000 | 5.3909 | | 5.4883 | 5.52 | 1264000 | 5.3741 | | 5.4883 | 5.55 | 1272000 | 5.3825 | | 5.489 | 5.59 | 1280000 | 5.3820 | | 5.489 | 5.62 | 1288000 | 5.3900 | | 5.4895 | 5.66 | 1296000 | 5.3884 | | 5.4895 | 5.69 | 1304000 | 5.3957 | | 5.4738 | 5.73 | 1312000 | 5.3762 | | 5.4738 | 5.76 | 1320000 | 5.3720 | | 5.4736 | 5.8 | 1328000 | 5.3955 | | 5.4736 | 5.83 | 1336000 | 5.3632 | | 5.4768 | 5.87 | 1344000 | 5.3807 | | 5.4768 | 5.9 | 1352000 | 5.3680 | | 5.4676 | 5.94 | 1360000 | 5.3807 | | 5.4676 | 5.97 | 1368000 | 5.3685 | | 5.4728 | 6.01 | 1376000 | 5.3745 | | 5.4728 | 6.04 | 1384000 | 5.3591 | | 5.4594 | 6.08 | 1392000 | 5.3641 | | 5.4594 | 6.11 | 1400000 | 5.3577 | | 5.4551 | 6.14 | 1408000 | 5.3704 | | 5.4551 | 6.18 | 1416000 | 5.3587 | | 5.4434 | 6.21 | 1424000 | 5.3646 | | 5.4434 | 6.25 | 1432000 | 5.3644 | | 5.4479 | 6.28 | 1440000 | 5.3500 | | 5.4479 | 6.32 | 1448000 | 5.3695 | | 5.447 | 6.35 | 1456000 | 5.3418 | | 5.447 | 6.39 | 1464000 | 5.3468 | | 5.4295 | 6.42 | 1472000 | 5.3460 | | 5.4295 | 6.46 | 1480000 | 5.3491 | | 5.4461 | 6.49 | 1488000 | 5.3509 | | 5.4461 | 6.53 | 1496000 | 5.3335 | | 5.4491 | 6.56 | 1504000 | 5.3422 | | 5.4491 | 6.6 | 1512000 | 5.3506 | | 5.4518 | 6.63 | 1520000 | 5.3481 | | 5.4518 | 6.67 | 1528000 | 5.3398 | | 5.442 | 6.7 | 1536000 | 5.3202 | | 5.442 | 6.74 | 1544000 | 5.3221 | | 5.4266 | 6.77 | 1552000 | 5.3344 | | 5.4266 | 6.81 | 1560000 | 5.3331 | | 5.4185 | 6.84 | 1568000 | 5.3406 | | 5.4185 | 6.88 | 1576000 | 5.3246 | | 5.4162 | 6.91 | 1584000 | 5.3317 | | 5.4162 | 6.95 | 1592000 | 5.3198 | | 5.425 | 6.98 | 1600000 | 5.3128 | | 5.425 | 7.02 | 1608000 | 5.3174 | | 5.4018 | 7.05 | 1616000 | 5.3192 | | 5.4018 | 7.09 | 1624000 | 5.3178 | | 5.4084 | 7.12 | 1632000 | 5.3163 | | 5.4084 | 7.16 | 1640000 | 5.3155 | | 5.4211 | 7.19 | 1648000 | 5.3180 | | 5.4211 | 7.23 | 1656000 | 5.3208 | | 5.4087 | 7.26 | 1664000 | 5.3175 | | 5.4087 | 7.3 | 1672000 | 5.3004 | | 5.3983 | 7.33 | 1680000 | 5.3081 | | 5.3983 | 7.37 | 1688000 | 5.3048 | | 5.4004 | 7.4 | 1696000 | 5.3077 | | 5.4004 | 7.44 | 1704000 | 5.2859 | | 5.3888 | 7.47 | 1712000 | 5.3083 | | 5.3888 | 7.51 | 1720000 | 5.3010 | | 5.3834 | 7.54 | 1728000 | 5.2991 | | 5.3834 | 7.58 | 1736000 | 5.2878 | | 5.379 | 7.61 | 1744000 | 5.2785 | | 5.379 | 7.65 | 1752000 | 5.2871 | | 5.3872 | 7.68 | 1760000 | 5.3042 | | 5.3872 | 7.72 | 1768000 | 5.2847 | | 5.3891 | 7.75 | 1776000 | 5.3002 | | 5.3891 | 7.79 | 1784000 | 5.2793 | | 5.3915 | 7.82 | 1792000 | 5.2721 | | 5.3915 | 7.86 | 1800000 | 5.2710 | | 5.3786 | 7.89 | 1808000 | 5.2894 | | 5.3786 | 7.93 | 1816000 | 5.2897 | | 5.3802 | 7.96 | 1824000 | 5.2838 | | 5.3802 | 8.0 | 1832000 | 5.2762 | | 5.3681 | 8.03 | 1840000 | 5.2869 | | 5.3681 | 8.07 | 1848000 | 5.2630 | | 5.3658 | 8.1 | 1856000 | 5.2833 | | 5.3658 | 8.13 | 1864000 | 5.2774 | | 5.3674 | 8.17 | 1872000 | 5.2680 | | 5.3674 | 8.2 | 1880000 | 5.2601 | | 5.3626 | 8.24 | 1888000 | 5.2669 | | 5.3626 | 8.27 | 1896000 | 5.2480 | | 5.3588 | 8.31 | 1904000 | 5.2580 | | 5.3588 | 8.34 | 1912000 | 5.2707 | | 5.3503 | 8.38 | 1920000 | 5.2699 | | 5.3503 | 8.41 | 1928000 | 5.2660 | | 5.3505 | 8.45 | 1936000 | 5.2469 | | 5.3505 | 8.48 | 1944000 | 5.2541 | | 5.3543 | 8.52 | 1952000 | 5.2568 | | 5.3543 | 8.55 | 1960000 | 5.2691 | | 5.3503 | 8.59 | 1968000 | 5.2508 | | 5.3503 | 8.62 | 1976000 | 5.2467 | | 5.348 | 8.66 | 1984000 | 5.2731 | | 5.348 | 8.69 | 1992000 | 5.2624 | | 5.3519 | 8.73 | 2000000 | 5.2682 | | 5.3519 | 8.76 | 2008000 | 5.2457 | | 5.3303 | 8.8 | 2016000 | 5.2627 | | 5.3303 | 8.83 | 2024000 | 5.2619 | | 5.3418 | 8.87 | 2032000 | 5.2428 | | 5.3418 | 8.9 | 2040000 | 5.2523 | | 5.3525 | 8.94 | 2048000 | 5.2514 | | 5.3525 | 8.97 | 2056000 | 5.2533 | | 5.3332 | 9.01 | 2064000 | 5.2367 | | 5.3332 | 9.04 | 2072000 | 5.2391 | | 5.3352 | 9.08 | 2080000 | 5.2304 | | 5.3352 | 9.11 | 2088000 | 5.2329 | | 5.3434 | 9.15 | 2096000 | 5.2337 | | 5.3434 | 9.18 | 2104000 | 5.2364 | | 5.3205 | 9.22 | 2112000 | 5.2368 | | 5.3205 | 9.25 | 2120000 | 5.2304 | | 5.3216 | 9.29 | 2128000 | 5.2256 | | 5.3216 | 9.32 | 2136000 | 5.2172 | | 5.3247 | 9.36 | 2144000 | 5.2261 | | 5.3247 | 9.39 | 2152000 | 5.2383 | | 5.3249 | 9.43 | 2160000 | 5.2242 | | 5.3249 | 9.46 | 2168000 | 5.2455 | | 5.3054 | 9.5 | 2176000 | 5.2404 | | 5.3054 | 9.53 | 2184000 | 5.2329 | | 5.3182 | 9.57 | 2192000 | 5.2129 | | 5.3182 | 9.6 | 2200000 | 5.2111 | | 5.3119 | 9.64 | 2208000 | 5.2214 | | 5.3119 | 9.67 | 2216000 | 5.2236 | | 5.302 | 9.71 | 2224000 | 5.2206 | | 5.302 | 9.74 | 2232000 | 5.2170 | | 5.3074 | 9.78 | 2240000 | 5.2258 | | 5.3074 | 9.81 | 2248000 | 5.2059 | | 5.3098 | 9.85 | 2256000 | 5.2100 | | 5.3098 | 9.88 | 2264000 | 5.2124 | | 5.294 | 9.92 | 2272000 | 5.2088 | | 5.294 | 9.95 | 2280000 | 5.2018 | | 5.3123 | 9.99 | 2288000 | 5.2135 | | 5.3123 | 10.02 | 2296000 | 5.2197 | | 5.3061 | 10.06 | 2304000 | 5.2147 | | 5.3061 | 10.09 | 2312000 | 5.2134 | | 5.2906 | 10.13 | 2320000 | 5.2046 | | 5.2906 | 10.16 | 2328000 | 5.2007 | | 5.2974 | 10.19 | 2336000 | 5.2045 | | 5.2974 | 10.23 | 2344000 | 5.2041 | | 5.2964 | 10.26 | 2352000 | 5.1983 | | 5.2964 | 10.3 | 2360000 | 5.2027 | | 5.3104 | 10.33 | 2368000 | 5.1968 | | 5.3104 | 10.37 | 2376000 | 5.2040 | | 5.2933 | 10.4 | 2384000 | 5.2189 | | 5.2933 | 10.44 | 2392000 | 5.2054 | | 5.307 | 10.47 | 2400000 | 5.2138 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
JEdappully/q-FrozenLake-v1-4x4-noSlippery
JEdappully
2023-09-27T20:32:28Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-09-27T20:32:24Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 metrics: - type: mean_reward value: 0.67 +/- 0.47 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="JEdappully/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
kupru/a2c-PandaPickAndPlace-v3
kupru
2023-09-27T20:31:52Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaPickAndPlace-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-27T20:25:49Z
--- library_name: stable-baselines3 tags: - PandaPickAndPlace-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaPickAndPlace-v3 type: PandaPickAndPlace-v3 metrics: - type: mean_reward value: -50.00 +/- 0.00 name: mean_reward verified: false --- # **A2C** Agent playing **PandaPickAndPlace-v3** This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
roa7n/gpt2-human_nontata_promoters-randomized_4_layers_3e-05_lr_2_e
roa7n
2023-09-27T20:25:15Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-27T20:25:12Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
grakshit/squad_a_r_1160_bal
grakshit
2023-09-27T20:24:14Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-27T20:21:39Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: squad_a_r_1160_bal results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # squad_a_r_1160_bal This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6484 - Accuracy: 0.6782 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 35 | 0.6942 | 0.4368 | | No log | 2.0 | 70 | 0.6090 | 0.6724 | | No log | 3.0 | 105 | 0.6323 | 0.6897 | | No log | 4.0 | 140 | 0.6484 | 0.6782 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
JOSEDURANisc/practicaNLP
JOSEDURANisc
2023-09-27T20:22:13Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:glue", "base_model:distilbert/distilroberta-base", "base_model:finetune:distilbert/distilroberta-base", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-27T20:10:49Z
--- license: apache-2.0 base_model: distilroberta-base tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: practicaNLP results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8357843137254902 - name: F1 type: f1 value: 0.8846815834767642 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # practicaNLP This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7396 - Accuracy: 0.8358 - F1: 0.8847 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4012 | 1.09 | 500 | 0.5515 | 0.8235 | 0.8763 | | 0.3039 | 2.18 | 1000 | 0.7396 | 0.8358 | 0.8847 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
eugene6/ppo-Pyramids
eugene6
2023-09-27T20:10:57Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-09-27T20:10:53Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: eugene6/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
LoneStriker/Mistral-7B-Instruct-v0.1-8.0bpw-exl2
LoneStriker
2023-09-27T19:55:06Z
5
2
transformers
[ "transformers", "pytorch", "mistral", "text-generation", "finetuned", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-27T19:18:08Z
--- license: apache-2.0 pipeline_tag: text-generation tags: - finetuned --- # ExLLaMA v2 quantization of Mistral-7B-Instruct-v0.1 Use [text-generation-webui](https://github.com/oobabooga/text-generation-webui) or [exllamav2](https://github.com/turboderp/exllamav2) # Model Card for Mistral-7B-Instruct-v0.1 The Mistral-7B-Instruct-v0.1 Large Language Model (LLM) is a instruct fine-tuned version of the [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) generative text model using a variety of publicly available conversation datasets. For full details of this model please read our [release blog post](https://mistral.ai/news/announcing-mistral-7b/) ## Instruction format In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[\INST]` tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id. E.g. ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1") tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1") text = "<s>[INST] What is your favourite condiment? [/INST]" "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> " "[INST] Do you have mayonnaise recipes? [/INST]" encodeds = tokenizer(instructions, return_tensors="pt", add_special_tokens=False) model_inputs = encodeds.to(device) model.to(device) generated_ids = model.generate(**model_inputs, max_new_tokens=1000, do_sample=True) decoded = tokenizer.batch_decode(generated_ids) print(decoded[0]) ``` ## Model Architecture This instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices: - Grouped-Query Attention - Sliding-Window Attention - Byte-fallback BPE tokenizer ## The Mistral AI Team Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
roa7n/gpt2-human_nontata_promoters-randomized_4_layers_0.0003_lr_2_e
roa7n
2023-09-27T19:52:40Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-27T19:52:37Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
LoneStriker/Mistral-7B-Instruct-v0.1-6.0bpw-exl2
LoneStriker
2023-09-27T19:49:42Z
4
0
transformers
[ "transformers", "pytorch", "mistral", "text-generation", "finetuned", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-27T19:17:57Z
--- license: apache-2.0 pipeline_tag: text-generation tags: - finetuned --- # ExLLaMA v2 quantization of Mistral-7B-Instruct-v0.1 Use [text-generation-webui](https://github.com/oobabooga/text-generation-webui) or [exllamav2](https://github.com/turboderp/exllamav2) # Model Card for Mistral-7B-Instruct-v0.1 The Mistral-7B-Instruct-v0.1 Large Language Model (LLM) is a instruct fine-tuned version of the [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) generative text model using a variety of publicly available conversation datasets. For full details of this model please read our [release blog post](https://mistral.ai/news/announcing-mistral-7b/) ## Instruction format In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[\INST]` tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id. E.g. ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1") tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1") text = "<s>[INST] What is your favourite condiment? [/INST]" "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> " "[INST] Do you have mayonnaise recipes? [/INST]" encodeds = tokenizer(instructions, return_tensors="pt", add_special_tokens=False) model_inputs = encodeds.to(device) model.to(device) generated_ids = model.generate(**model_inputs, max_new_tokens=1000, do_sample=True) decoded = tokenizer.batch_decode(generated_ids) print(decoded[0]) ``` ## Model Architecture This instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices: - Grouped-Query Attention - Sliding-Window Attention - Byte-fallback BPE tokenizer ## The Mistral AI Team Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
LoneStriker/Mistral-7B-Instruct-v0.1-5.0bpw-exl2
LoneStriker
2023-09-27T19:46:35Z
5
0
transformers
[ "transformers", "pytorch", "mistral", "text-generation", "finetuned", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-27T19:17:46Z
--- license: apache-2.0 pipeline_tag: text-generation tags: - finetuned --- # ExLLaMA v2 quantization of Mistral-7B-Instruct-v0.1 Use [text-generation-webui](https://github.com/oobabooga/text-generation-webui) or [exllamav2](https://github.com/turboderp/exllamav2) # Model Card for Mistral-7B-Instruct-v0.1 The Mistral-7B-Instruct-v0.1 Large Language Model (LLM) is a instruct fine-tuned version of the [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) generative text model using a variety of publicly available conversation datasets. For full details of this model please read our [release blog post](https://mistral.ai/news/announcing-mistral-7b/) ## Instruction format In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[\INST]` tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id. E.g. ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1") tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1") text = "<s>[INST] What is your favourite condiment? [/INST]" "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> " "[INST] Do you have mayonnaise recipes? [/INST]" encodeds = tokenizer(instructions, return_tensors="pt", add_special_tokens=False) model_inputs = encodeds.to(device) model.to(device) generated_ids = model.generate(**model_inputs, max_new_tokens=1000, do_sample=True) decoded = tokenizer.batch_decode(generated_ids) print(decoded[0]) ``` ## Model Architecture This instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices: - Grouped-Query Attention - Sliding-Window Attention - Byte-fallback BPE tokenizer ## The Mistral AI Team Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
LoneStriker/Mistral-7B-Instruct-v0.1-3.0bpw-exl2
LoneStriker
2023-09-27T19:46:01Z
8
0
transformers
[ "transformers", "pytorch", "mistral", "text-generation", "finetuned", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-27T19:17:13Z
--- license: apache-2.0 pipeline_tag: text-generation tags: - finetuned --- # ExLLaMA v2 quantization of Mistral-7B-Instruct-v0.1 Use [text-generation-webui](https://github.com/oobabooga/text-generation-webui) or [exllamav2](https://github.com/turboderp/exllamav2) # Model Card for Mistral-7B-Instruct-v0.1 The Mistral-7B-Instruct-v0.1 Large Language Model (LLM) is a instruct fine-tuned version of the [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) generative text model using a variety of publicly available conversation datasets. For full details of this model please read our [release blog post](https://mistral.ai/news/announcing-mistral-7b/) ## Instruction format In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[\INST]` tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id. E.g. ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1") tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1") text = "<s>[INST] What is your favourite condiment? [/INST]" "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> " "[INST] Do you have mayonnaise recipes? [/INST]" encodeds = tokenizer(instructions, return_tensors="pt", add_special_tokens=False) model_inputs = encodeds.to(device) model.to(device) generated_ids = model.generate(**model_inputs, max_new_tokens=1000, do_sample=True) decoded = tokenizer.batch_decode(generated_ids) print(decoded[0]) ``` ## Model Architecture This instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices: - Grouped-Query Attention - Sliding-Window Attention - Byte-fallback BPE tokenizer ## The Mistral AI Team Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
texasdave2/flan-t5-base-samsum
texasdave2
2023-09-27T19:43:10Z
86
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:samsum", "base_model:google/flan-t5-base", "base_model:finetune:google/flan-t5-base", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-23T04:26:27Z
--- license: apache-2.0 base_model: google/flan-t5-base tags: - generated_from_trainer datasets: - samsum metrics: - rouge model-index: - name: flan-t5-base-samsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: samsum type: samsum config: samsum split: test args: samsum metrics: - name: Rouge1 type: rouge value: 47.1046 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-base-samsum This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.3859 - Rouge1: 47.1046 - Rouge2: 23.264 - Rougel: 39.2757 - Rougelsum: 43.2598 - Gen Len: 17.3333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.5121 | 0.08 | 50 | 1.4287 | 46.7868 | 22.863 | 38.971 | 42.8209 | 16.9634 | | 1.46 | 0.16 | 100 | 1.4199 | 46.8031 | 22.8195 | 39.0708 | 42.8717 | 17.2393 | | 1.4515 | 0.24 | 150 | 1.4147 | 46.6849 | 23.0376 | 38.9434 | 42.8344 | 17.1245 | | 1.4679 | 0.33 | 200 | 1.4121 | 46.8756 | 22.8504 | 39.1671 | 43.1892 | 17.3431 | | 1.451 | 0.41 | 250 | 1.4109 | 46.8572 | 23.09 | 39.2939 | 43.2955 | 17.2686 | | 1.4434 | 0.49 | 300 | 1.4040 | 46.6829 | 23.071 | 39.3131 | 43.1432 | 16.9158 | | 1.4417 | 0.57 | 350 | 1.4007 | 46.8637 | 23.0661 | 39.2462 | 43.1897 | 17.1172 | | 1.4781 | 0.65 | 400 | 1.3952 | 46.8511 | 23.1134 | 39.3071 | 43.2164 | 17.2076 | | 1.4626 | 0.73 | 450 | 1.3940 | 47.1533 | 23.2771 | 39.3094 | 43.2806 | 17.2222 | | 1.4307 | 0.81 | 500 | 1.3955 | 46.9527 | 23.2227 | 39.2844 | 43.1903 | 17.2002 | | 1.4586 | 0.9 | 550 | 1.3933 | 46.7523 | 23.1759 | 39.2675 | 43.1588 | 17.3040 | | 1.4465 | 0.98 | 600 | 1.3905 | 46.855 | 23.3518 | 39.2879 | 43.2145 | 17.3468 | | 1.381 | 1.06 | 650 | 1.3953 | 46.9719 | 22.9788 | 39.0886 | 43.1892 | 17.4066 | | 1.4125 | 1.14 | 700 | 1.3922 | 46.535 | 23.0956 | 38.9275 | 42.9811 | 17.2381 | | 1.3667 | 1.22 | 750 | 1.3922 | 47.3311 | 23.4123 | 39.5412 | 43.5624 | 17.2930 | | 1.3878 | 1.3 | 800 | 1.3953 | 46.6737 | 23.2153 | 39.2982 | 43.2596 | 17.3358 | | 1.3884 | 1.38 | 850 | 1.3931 | 46.9764 | 23.1561 | 39.1606 | 43.2115 | 17.3614 | | 1.3766 | 1.47 | 900 | 1.3898 | 47.0466 | 23.1674 | 39.2822 | 43.293 | 17.3333 | | 1.3727 | 1.55 | 950 | 1.3889 | 46.7311 | 23.0837 | 39.0882 | 43.0072 | 17.3211 | | 1.4001 | 1.63 | 1000 | 1.3859 | 47.1046 | 23.264 | 39.2757 | 43.2598 | 17.3333 | | 1.3894 | 1.71 | 1050 | 1.3874 | 47.2479 | 23.3762 | 39.4723 | 43.5241 | 17.3297 | | 1.3697 | 1.79 | 1100 | 1.3860 | 47.1037 | 23.3894 | 39.3848 | 43.3875 | 17.3504 | | 1.3886 | 1.87 | 1150 | 1.3862 | 47.0714 | 23.3937 | 39.4181 | 43.3841 | 17.3260 | | 1.4037 | 1.95 | 1200 | 1.3861 | 47.0725 | 23.4085 | 39.3575 | 43.3676 | 17.3321 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.0+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
mami99/my_first_model
mami99
2023-09-27T19:43:02Z
94
0
transformers
[ "transformers", "pytorch", "distilbert", "token-classification", "generated_from_trainer", "dataset:wnut_17", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-27T19:00:15Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: my_first_model results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 config: wnut_17 split: test args: wnut_17 metrics: - name: Precision type: precision value: 0.5806451612903226 - name: Recall type: recall value: 0.3002780352177943 - name: F1 type: f1 value: 0.39584605986560784 - name: Accuracy type: accuracy value: 0.9416869736223333 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_first_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.2670 - Precision: 0.5806 - Recall: 0.3003 - F1: 0.3958 - Accuracy: 0.9417 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 213 | 0.2772 | 0.6181 | 0.2595 | 0.3655 | 0.9395 | | No log | 2.0 | 426 | 0.2670 | 0.5806 | 0.3003 | 0.3958 | 0.9417 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.2
Pavanb/fincausal_robertalarge_lora_spanish
Pavanb
2023-09-27T19:40:16Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-27T17:07:08Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
tasnim7ahmed/Huggy-v1
tasnim7ahmed
2023-09-27T19:29:54Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-09-27T19:08:09Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: tasnim7ahmed/Huggy-v1 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
RogerB/bert-base-uncased-kinyarwanda-finetuned
RogerB
2023-09-27T19:14:35Z
3
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-27T18:27:04Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: bert-base-uncased-kinyarwanda-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-kinyarwanda-finetuned This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6941 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.5872 | 1.0 | 5500 | 1.9887 | | 1.9819 | 2.0 | 11000 | 1.7608 | | 1.8218 | 3.0 | 16500 | 1.7007 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
JiemingYou/a2c-PandaReachDense-v3
JiemingYou
2023-09-27T19:09:05Z
2
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-27T19:03:26Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.16 +/- 0.13 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Manab/LoRAImplement
Manab
2023-09-27T19:04:08Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-27T19:04:04Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
anniew666/lora-roberta-large-0927
anniew666
2023-09-27T19:03:26Z
0
0
null
[ "generated_from_trainer", "base_model:FacebookAI/roberta-large", "base_model:finetune:FacebookAI/roberta-large", "license:mit", "region:us" ]
null
2023-09-27T11:03:46Z
--- license: mit base_model: roberta-large tags: - generated_from_trainer metrics: - accuracy - recall - f1 model-index: - name: lora-roberta-large-0927 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lora-roberta-large-0927 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5366 - Accuracy: 0.4472 - Prec: 0.2000 - Recall: 0.4472 - F1: 0.2763 - B Acc: 0.1429 - Micro F1: 0.4472 - Prec Joy: 0.0 - Recall Joy: 0.0 - F1 Joy: 0.0 - Prec Anger: 0.0 - Recall Anger: 0.0 - F1 Anger: 0.0 - Prec Disgust: 0.0 - Recall Disgust: 0.0 - F1 Disgust: 0.0 - Prec Fear: 0.0 - Recall Fear: 0.0 - F1 Fear: 0.0 - Prec Neutral: 0.4472 - Recall Neutral: 1.0 - F1 Neutral: 0.6180 - Prec Sadness: 0.0 - Recall Sadness: 0.0 - F1 Sadness: 0.0 - Prec Surprise: 0.0 - Recall Surprise: 0.0 - F1 Surprise: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 25.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Prec | Recall | F1 | B Acc | Micro F1 | Prec Joy | Recall Joy | F1 Joy | Prec Anger | Recall Anger | F1 Anger | Prec Disgust | Recall Disgust | F1 Disgust | Prec Fear | Recall Fear | F1 Fear | Prec Neutral | Recall Neutral | F1 Neutral | Prec Sadness | Recall Sadness | F1 Sadness | Prec Surprise | Recall Surprise | F1 Surprise | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:------:|:------:|:------:|:--------:|:--------:|:----------:|:------:|:----------:|:------------:|:--------:|:------------:|:--------------:|:----------:|:---------:|:-----------:|:-------:|:------------:|:--------------:|:----------:|:------------:|:--------------:|:----------:|:-------------:|:---------------:|:-----------:| | 0.8381 | 1.25 | 2092 | 1.5415 | 0.4472 | 0.2000 | 0.4472 | 0.2763 | 0.1429 | 0.4472 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4472 | 1.0 | 0.6180 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4866 | 2.5 | 4184 | 1.5564 | 0.4472 | 0.2000 | 0.4472 | 0.2763 | 0.1429 | 0.4472 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4472 | 1.0 | 0.6180 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4862 | 3.75 | 6276 | 1.5700 | 0.4472 | 0.2000 | 0.4472 | 0.2763 | 0.1429 | 0.4472 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4472 | 1.0 | 0.6180 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4762 | 5.0 | 8368 | 1.5391 | 0.4472 | 0.2000 | 0.4472 | 0.2763 | 0.1429 | 0.4472 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4472 | 1.0 | 0.6180 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4765 | 6.25 | 10460 | 1.5566 | 0.4472 | 0.2000 | 0.4472 | 0.2763 | 0.1429 | 0.4472 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4472 | 1.0 | 0.6180 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4848 | 7.5 | 12552 | 1.5411 | 0.4472 | 0.2000 | 0.4472 | 0.2763 | 0.1429 | 0.4472 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4472 | 1.0 | 0.6180 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4782 | 8.75 | 14644 | 1.5548 | 0.4472 | 0.2000 | 0.4472 | 0.2763 | 0.1429 | 0.4472 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4472 | 1.0 | 0.6180 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4943 | 10.0 | 16736 | 1.6115 | 0.4472 | 0.2000 | 0.4472 | 0.2763 | 0.1429 | 0.4472 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4472 | 1.0 | 0.6180 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4801 | 11.25 | 18828 | 1.5424 | 0.4472 | 0.2000 | 0.4472 | 0.2763 | 0.1429 | 0.4472 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4472 | 1.0 | 0.6180 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4946 | 12.5 | 20920 | 1.5637 | 0.4472 | 0.2000 | 0.4472 | 0.2763 | 0.1429 | 0.4472 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4472 | 1.0 | 0.6180 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4867 | 13.75 | 23012 | 1.5492 | 0.4472 | 0.2000 | 0.4472 | 0.2763 | 0.1429 | 0.4472 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4472 | 1.0 | 0.6180 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4957 | 15.01 | 25104 | 1.5812 | 0.4472 | 0.2000 | 0.4472 | 0.2763 | 0.1429 | 0.4472 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4472 | 1.0 | 0.6180 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4913 | 16.26 | 27196 | 1.5425 | 0.4472 | 0.2000 | 0.4472 | 0.2763 | 0.1429 | 0.4472 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4472 | 1.0 | 0.6180 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.5007 | 17.51 | 29288 | 1.5446 | 0.4472 | 0.2000 | 0.4472 | 0.2763 | 0.1429 | 0.4472 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4472 | 1.0 | 0.6180 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4919 | 18.76 | 31380 | 1.5616 | 0.4472 | 0.2000 | 0.4472 | 0.2763 | 0.1429 | 0.4472 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4472 | 1.0 | 0.6180 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4895 | 20.01 | 33472 | 1.5502 | 0.4472 | 0.2000 | 0.4472 | 0.2763 | 0.1429 | 0.4472 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4472 | 1.0 | 0.6180 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4946 | 21.26 | 35564 | 1.5398 | 0.4472 | 0.2000 | 0.4472 | 0.2763 | 0.1429 | 0.4472 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4472 | 1.0 | 0.6180 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4754 | 22.51 | 37656 | 1.5307 | 0.4472 | 0.2000 | 0.4472 | 0.2763 | 0.1429 | 0.4472 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4472 | 1.0 | 0.6180 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4824 | 23.76 | 39748 | 1.5356 | 0.4472 | 0.2000 | 0.4472 | 0.2763 | 0.1429 | 0.4472 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4472 | 1.0 | 0.6180 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
anupamtripathi/oreo_sd_xl
anupamtripathi
2023-09-27T19:01:52Z
1
2
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-09-25T22:01:07Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of Oreo biscuits tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
tclopess/bart_samsum
tclopess
2023-09-27T18:40:33Z
104
4
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "dataset:samsum", "base_model:facebook/bart-large-cnn", "base_model:finetune:facebook/bart-large-cnn", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-27T18:39:22Z
--- license: mit base_model: facebook/bart-large-cnn tags: - generated_from_trainer datasets: - samsum model-index: - name: bart_samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart_samsum This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the samsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3