modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-14 00:44:55
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
519 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-14 00:44:41
card
stringlengths
11
1.01M
masakhane/m2m100_418M_en_lug_rel_news_ft
masakhane
2022-09-24T15:06:28Z
107
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "lug", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-05T11:21:04Z
--- language: - en - lug license: afl-3.0 ---
masakhane/m2m100_418M_lug_en_rel_news_ft
masakhane
2022-09-24T15:06:26Z
110
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "lug", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-05T11:21:22Z
--- language: - lug - en license: afl-3.0 ---
masakhane/m2m100_418M_lug_en_rel_ft
masakhane
2022-09-24T15:06:26Z
99
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "lug", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-05T11:22:09Z
--- language: - lug - en license: afl-3.0 ---
masakhane/afrimt5_en_pcm_news
masakhane
2022-09-24T15:06:23Z
103
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "en", "pcm", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-09T13:04:05Z
--- language: - en - pcm license: afl-3.0 ---
masakhane/afrimbart_en_pcm_news
masakhane
2022-09-24T15:06:22Z
104
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "en", "pcm", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-09T13:05:13Z
--- language: - en - pcm license: afl-3.0 ---
masakhane/afribyt5_pcm_en_news
masakhane
2022-09-24T15:06:21Z
106
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "pcm", "en", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T06:41:15Z
--- language: - pcm - en license: afl-3.0 ---
masakhane/byt5_en_pcm_news
masakhane
2022-09-24T15:06:20Z
111
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "pcm", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T06:41:46Z
--- language: - en - pcm license: afl-3.0 ---
masakhane/mt5_pcm_en_news
masakhane
2022-09-24T15:06:19Z
104
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "pcm", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T08:53:01Z
--- language: - pcm - en license: afl-3.0 ---
masakhane/mt5_en_pcm_news
masakhane
2022-09-24T15:06:18Z
111
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "en", "pcm", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T08:53:28Z
--- language: - en - pcm license: afl-3.0 ---
masakhane/m2m100_418M_en_pcm_news
masakhane
2022-09-24T15:06:17Z
103
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "pcm", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T08:55:58Z
--- language: - en - pcm license: afl-3.0 ---
masakhane/m2m100_418M_pcm_en_news
masakhane
2022-09-24T15:06:17Z
103
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "pcm", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T08:56:16Z
--- language: - pcm - en license: afl-3.0 ---
masakhane/m2m100_418M_pcm_en_rel_news
masakhane
2022-09-24T15:06:16Z
103
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "pcm", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T08:56:38Z
--- language: - pcm - en license: afl-3.0 ---
masakhane/m2m100_418M_en_pcm_rel_ft
masakhane
2022-09-24T15:06:14Z
105
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "pcm", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T08:58:06Z
--- language: - en - pcm license: afl-3.0 ---
masakhane/m2m100_418M_pcm_en_rel
masakhane
2022-09-24T15:06:13Z
102
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "pcm", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T08:58:50Z
--- language: - pcm - en license: afl-3.0 ---
masakhane/m2m100_418M_pcm_en_rel_news_ft
masakhane
2022-09-24T15:06:13Z
107
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "pcm", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T08:57:44Z
--- language: - pcm - en license: afl-3.0 ---
masakhane/afrimbart_yor_en_news
masakhane
2022-09-24T15:06:11Z
106
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "yor", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T12:11:53Z
--- language: - yor - en license: afl-3.0 ---
masakhane/afrimt5_yor_en_news
masakhane
2022-09-24T15:06:11Z
107
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "yor", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T12:11:28Z
--- language: - yor - en license: afl-3.0 ---
masakhane/afribyt5_yor_en_news
masakhane
2022-09-24T15:06:10Z
104
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "yor", "en", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T12:13:17Z
--- language: - yor - en license: afl-3.0 ---
masakhane/afribyt5_en_yor_news
masakhane
2022-09-24T15:06:09Z
110
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "yor", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T12:13:36Z
--- language: - en - yor license: afl-3.0 ---
masakhane/mt5_yor_en_news
masakhane
2022-09-24T15:06:08Z
105
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "yor", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T12:14:35Z
--- language: - yor - en license: afl-3.0 ---
masakhane/byt5_yor_en_news
masakhane
2022-09-24T15:06:08Z
106
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "yor", "en", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T12:14:16Z
--- language: - yor - en license: afl-3.0 ---
masakhane/mbart50_en_yor_news
masakhane
2022-09-24T15:06:07Z
112
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "en", "yor", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T12:15:22Z
--- language: - en - yor license: afl-3.0 ---
masakhane/m2m100_418M_yor_en_rel_news
masakhane
2022-09-24T15:06:06Z
103
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "yor", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T12:20:08Z
--- language: - yor - en license: afl-3.0 ---
masakhane/mbart50_yor_en_news
masakhane
2022-09-24T15:06:06Z
95
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "yor", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T12:15:39Z
--- language: - yor - en license: afl-3.0 ---
masakhane/m2m100_418M_yor_en_rel_ft
masakhane
2022-09-24T15:06:02Z
104
1
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "yor", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T12:21:44Z
--- language: - yor - en license: afl-3.0 ---
masakhane/afrimt5_swa_en_news
masakhane
2022-09-24T15:06:00Z
102
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "swa", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T09:01:34Z
--- language: - swa - en license: afl-3.0 ---
masakhane/afrimbart_en_swa_news
masakhane
2022-09-24T15:05:59Z
103
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "en", "swa", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T10:09:43Z
--- language: - en - swa license: afl-3.0 ---
masakhane/byt5_swa_en_news
masakhane
2022-09-24T15:05:58Z
104
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "swa", "en", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T10:10:57Z
--- language: - swa - en license: afl-3.0 ---
masakhane/afribyt5_swa_en_news
masakhane
2022-09-24T15:05:58Z
111
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "swa", "en", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T10:10:03Z
--- language: - swa - en license: afl-3.0 ---
masakhane/mt5_swa_en_news
masakhane
2022-09-24T15:05:56Z
116
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "swa", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T10:11:18Z
--- language: - swa - en license: afl-3.0 ---
masakhane/mbart50_swa_en_news
masakhane
2022-09-24T15:05:55Z
106
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "swa", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T10:12:16Z
--- language: - swa - en license: afl-3.0 ---
masakhane/m2m100_418M_en_swa_news
masakhane
2022-09-24T15:05:55Z
106
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "swa", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T10:12:36Z
--- language: - en - swa license: afl-3.0 ---
masakhane/m2m100_418M_swa_en_news
masakhane
2022-09-24T15:05:53Z
103
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "swa", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T10:12:54Z
--- language: - swa - en license: afl-3.0 ---
masakhane/m2m100_418M_swa_en_rel_ft
masakhane
2022-09-24T15:05:52Z
105
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "swa", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T10:14:46Z
--- language: - swa - en license: afl-3.0 ---
masakhane/m2m100_418M_en_swa_rel_ft
masakhane
2022-09-24T15:05:52Z
107
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "swa", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T10:14:29Z
--- language: - en - swa license: afl-3.0 ---
masakhane/m2m100_418M_swa_en_rel_news_ft
masakhane
2022-09-24T15:05:51Z
108
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "swa", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T10:14:10Z
--- language: - swa - en license: afl-3.0 ---
masakhane/m2m100_418M_en_swa_rel
masakhane
2022-09-24T15:05:50Z
110
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "swa", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T10:15:23Z
--- language: - en - swa license: afl-3.0 ---
masakhane/afrimt5_en_tsn_news
masakhane
2022-09-24T15:05:49Z
104
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "en", "tsn", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T13:48:47Z
--- language: - en - tsn license: afl-3.0 ---
masakhane/afrimbart_tsn_en_news
masakhane
2022-09-24T15:05:48Z
102
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "tsn", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T13:49:34Z
--- language: - tsn - en license: afl-3.0 ---
masakhane/byt5_en_tsn_news
masakhane
2022-09-24T15:05:46Z
109
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "tsn", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T13:52:58Z
--- language: - en - tsn license: afl-3.0 ---
masakhane/afribyt5_en_tsn_news
masakhane
2022-09-24T15:05:46Z
107
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "tsn", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T13:52:35Z
--- language: - en - tsn license: afl-3.0 ---
masakhane/mbart50_tsn_en_news
masakhane
2022-09-24T15:05:44Z
114
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "tsn", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T14:02:58Z
--- language: - tsn - en license: afl-3.0 ---
masakhane/m2m100_418M_tsn_en_news
masakhane
2022-09-24T15:05:43Z
107
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "tsn", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T14:22:56Z
--- language: - tsn - en license: afl-3.0 ---
masakhane/m2m100_418M_en_tsn_news
masakhane
2022-09-24T15:05:43Z
106
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "tsn", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T14:20:25Z
--- language: - en - tsn license: afl-3.0 ---
masakhane/m2m100_418M_tsn_en_rel_ft
masakhane
2022-09-24T15:05:40Z
105
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "tsn", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T14:32:34Z
--- language: - tsn - en license: afl-3.0 ---
masakhane/m2m100_418M_en_tsn_rel
masakhane
2022-09-24T15:05:39Z
107
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "tsn", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T14:39:01Z
--- language: - en - tsn license: afl-3.0 ---
masakhane/afrimt5_twi_en_news
masakhane
2022-09-24T15:05:37Z
113
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "twi", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T08:50:58Z
--- language: - twi - en license: afl-3.0 ---
masakhane/afribyt5_en_twi_news
masakhane
2022-09-24T15:05:36Z
103
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "twi", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T08:56:55Z
--- language: - en - twi license: afl-3.0 ---
masakhane/afrimbart_twi_en_news
masakhane
2022-09-24T15:05:36Z
118
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "twi", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T08:53:34Z
--- language: - twi - en license: afl-3.0 ---
masakhane/afribyt5_twi_en_news
masakhane
2022-09-24T15:05:35Z
103
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "twi", "en", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T08:56:34Z
--- language: - twi - en license: afl-3.0 ---
masakhane/byt5_en_twi_news
masakhane
2022-09-24T15:05:35Z
109
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "twi", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:02:29Z
--- language: - en - twi license: afl-3.0 ---
masakhane/mt5_twi_en_news
masakhane
2022-09-24T15:05:33Z
106
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "twi", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:05:43Z
--- language: - twi - en license: afl-3.0 ---
masakhane/m2m100_418M_en_twi_news
masakhane
2022-09-24T15:05:32Z
102
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "twi", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:07:19Z
--- language: - en - twi license: afl-3.0 ---
masakhane/mt5_en_twi_news
masakhane
2022-09-24T15:05:32Z
103
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "en", "twi", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:06:00Z
--- language: - en - twi license: afl-3.0 ---
masakhane/m2m100_418M_twi_en_rel_news
masakhane
2022-09-24T15:05:30Z
106
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "twi", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:09:58Z
--- language: - twi - en license: afl-3.0 ---
masakhane/m2m100_418M_en_twi_rel_news
masakhane
2022-09-24T15:05:30Z
103
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "twi", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:10:15Z
--- language: - en - twi license: afl-3.0 ---
masakhane/m2m100_418M_twi_en_rel
masakhane
2022-09-24T15:05:26Z
107
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "twi", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:17:38Z
--- language: - twi - en license: afl-3.0 ---
masakhane/afrimt5_zul_en_news
masakhane
2022-09-24T15:05:24Z
99
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "zul", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T08:51:37Z
--- language: - zul - en license: afl-3.0 ---
masakhane/afrimt5_en_zul_news
masakhane
2022-09-24T15:05:24Z
84
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "en", "zul", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T08:52:03Z
--- language: - en - zul license: afl-3.0 ---
masakhane/afrimbart_zul_en_news
masakhane
2022-09-24T15:05:22Z
103
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "zul", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T08:54:35Z
--- language: - zul - en license: afl-3.0 ---
masakhane/afribyt5_zul_en_news
masakhane
2022-09-24T15:05:21Z
106
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "zul", "en", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T08:57:29Z
--- language: - zul - en license: afl-3.0 ---
masakhane/afribyt5_en_zul_news
masakhane
2022-09-24T15:05:21Z
107
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "zul", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T08:57:13Z
--- language: - en - zul license: afl-3.0 ---
masakhane/byt5_en_zul_news
masakhane
2022-09-24T15:05:20Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "zul", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:02:52Z
--- language: - en - zul license: afl-3.0 ---
masakhane/mbart50_en_zul_news
masakhane
2022-09-24T15:05:18Z
106
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "en", "zul", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:04:24Z
--- language: - en - zul license: afl-3.0 ---
masakhane/mt5_en_zul_news
masakhane
2022-09-24T15:05:17Z
108
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "en", "zul", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:06:39Z
--- language: - en - zul license: afl-3.0 ---
masakhane/m2m100_418M_en_zul_rel_news
masakhane
2022-09-24T15:05:16Z
105
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "zul", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:09:23Z
--- language: - en - zul license: afl-3.0 ---
masakhane/m2m100_418M_en_zul_rel_news_ft
masakhane
2022-09-24T15:05:14Z
108
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "zul", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:13:58Z
--- language: - en - zul license: afl-3.0 ---
masakhane/m2m100_418M-EN-NEWS
masakhane
2022-09-24T15:05:11Z
109
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "dataset:masakhane/mafand", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-02T22:21:22Z
--- language: en license: afl-3.0 datasets: - masakhane/mafand --- ### Citation Information ``` @inproceedings{adelani-etal-2022-thousand, title = "A Few Thousand Translations Go a Long Way! Leveraging Pre-trained Models for {A}frican News Translation", author = "Adelani, David and Alabi, Jesujoba and Fan, Angela and Kreutzer, Julia and Shen, Xiaoyu and Reid, Machel and Ruiter, Dana and Klakow, Dietrich and Nabende, Peter and Chang, Ernie and Gwadabe, Tajuddeen and Sackey, Freshia and Dossou, Bonaventure F. P. and Emezue, Chris and Leong, Colin and Beukman, Michael and Muhammad, Shamsuddeen and Jarso, Guyo and Yousuf, Oreen and Niyongabo Rubungo, Andre and Hacheme, Gilles and Wairagala, Eric Peter and Nasir, Muhammad Umair and Ajibade, Benjamin and Ajayi, Tunde and Gitau, Yvonne and Abbott, Jade and Ahmed, Mohamed and Ochieng, Millicent and Aremu, Anuoluwapo and Ogayo, Perez and Mukiibi, Jonathan and Ouoba Kabore, Fatoumata and Kalipe, Godson and Mbaye, Derguene and Tapo, Allahsera Auguste and Memdjokam Koagne, Victoire and Munkoh-Buabeng, Edwin and Wagner, Valencia and Abdulmumin, Idris and Awokoya, Ayodele and Buzaaba, Happy and Sibanda, Blessing and Bukula, Andiswa and Manthalu, Sam", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jul, year = "2022", address = "Seattle, United States", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.naacl-main.223", doi = "10.18653/v1/2022.naacl-main.223", pages = "3053--3070", abstract = "Recent advances in the pre-training for language models leverage large-scale datasets to create multilingual models. However, low-resource languages are mostly left out in these datasets. This is primarily because many widely spoken languages that are not well represented on the web and therefore excluded from the large-scale crawls for datasets. Furthermore, downstream users of these models are restricted to the selection of languages originally chosen for pre-training. This work investigates how to optimally leverage existing pre-trained models to create low-resource translation systems for 16 African languages. We focus on two questions: 1) How can pre-trained models be used for languages not included in the initial pretraining? and 2) How can the resulting translation models effectively transfer to new domains? To answer these questions, we create a novel African news corpus covering 16 languages, of which eight languages are not part of any existing evaluation dataset. We demonstrate that the most effective strategy for transferring both additional languages and additional domains is to leverage small quantities of high-quality translation data to fine-tune large pre-trained models.", } ```
masakhane/m2m100_418M-FR-NEWS
masakhane
2022-09-24T15:05:11Z
103
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "fr", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-02T22:22:31Z
--- language: fr license: afl-3.0 --- ### Citation Information ``` @inproceedings{adelani-etal-2022-thousand, title = "A Few Thousand Translations Go a Long Way! Leveraging Pre-trained Models for {A}frican News Translation", author = "Adelani, David and Alabi, Jesujoba and Fan, Angela and Kreutzer, Julia and Shen, Xiaoyu and Reid, Machel and Ruiter, Dana and Klakow, Dietrich and Nabende, Peter and Chang, Ernie and Gwadabe, Tajuddeen and Sackey, Freshia and Dossou, Bonaventure F. P. and Emezue, Chris and Leong, Colin and Beukman, Michael and Muhammad, Shamsuddeen and Jarso, Guyo and Yousuf, Oreen and Niyongabo Rubungo, Andre and Hacheme, Gilles and Wairagala, Eric Peter and Nasir, Muhammad Umair and Ajibade, Benjamin and Ajayi, Tunde and Gitau, Yvonne and Abbott, Jade and Ahmed, Mohamed and Ochieng, Millicent and Aremu, Anuoluwapo and Ogayo, Perez and Mukiibi, Jonathan and Ouoba Kabore, Fatoumata and Kalipe, Godson and Mbaye, Derguene and Tapo, Allahsera Auguste and Memdjokam Koagne, Victoire and Munkoh-Buabeng, Edwin and Wagner, Valencia and Abdulmumin, Idris and Awokoya, Ayodele and Buzaaba, Happy and Sibanda, Blessing and Bukula, Andiswa and Manthalu, Sam", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jul, year = "2022", address = "Seattle, United States", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.naacl-main.223", doi = "10.18653/v1/2022.naacl-main.223", pages = "3053--3070", abstract = "Recent advances in the pre-training for language models leverage large-scale datasets to create multilingual models. However, low-resource languages are mostly left out in these datasets. This is primarily because many widely spoken languages that are not well represented on the web and therefore excluded from the large-scale crawls for datasets. Furthermore, downstream users of these models are restricted to the selection of languages originally chosen for pre-training. This work investigates how to optimally leverage existing pre-trained models to create low-resource translation systems for 16 African languages. We focus on two questions: 1) How can pre-trained models be used for languages not included in the initial pretraining? and 2) How can the resulting translation models effectively transfer to new domains? To answer these questions, we create a novel African news corpus covering 16 languages, of which eight languages are not part of any existing evaluation dataset. We demonstrate that the most effective strategy for transferring both additional languages and additional domains is to leverage small quantities of high-quality translation data to fine-tune large pre-trained models.", } ```
masakhane/m2m100_418M_en_amh_rel
masakhane
2022-09-24T15:05:10Z
112
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "amh", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-25T22:06:14Z
--- language: - en - amh license: cc-by-nc-4.0 ---
masakhane/m2m100_418M_amh_en_rel
masakhane
2022-09-24T15:05:10Z
118
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "amh", "en", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-25T22:05:47Z
--- language: - amh - en license: cc-by-nc-4.0 ---
masakhane/m2m100_418M_kin_en_rel
masakhane
2022-09-24T15:05:09Z
111
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "kin", "en", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-25T22:06:42Z
--- language: - kin - en license: cc-by-nc-4.0 ---
masakhane/m2m100_418M_nya_en_rel
masakhane
2022-09-24T15:05:08Z
117
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "nya", "en", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-25T22:08:07Z
--- language: - nya - en license: cc-by-nc-4.0 ---
rosamondthalken/t5-small-sci-names
rosamondthalken
2022-09-24T14:39:00Z
166
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-16T17:44:50Z
# t5-base-sci-names Biodiversity literature is dedicated to the identification, documentation, and categorization of plants, fungi, animals, and other living organisms. Correctly extracting the name of an organism within these documents involves finding the entire scientific name–including the genus, specific epithet, and author name. Extracting these names allows biologists to access documents about a species more comprehensively, and to track an organism’s history of documentation, which includes biological changes and changes in how scientists describe them. **t5-small-sci-names** uses advances in text-to-text generation to generate scientific names and authors from biodiversity literature. This model was trained on hand-labeled biodiversity texts, including labeled information about a mentioned organism's genus (abbreviated and expanded), specific epithet, and author. This model was trained to output 0-N scientific names with specific prefixes (e.g. "genus = " or "epithet = ") and performs best with anywhere from 20-120 words. You can also use the model in this tutorial for [scientific names generation](https://colab.research.google.com/drive/1GEpnCaMJYiPIhuZiDJ1X1pZsGtGSm8Ds?usp=sharing). *Note that this model is still a work in progress. Any feedback is welcome.*
pere/pk-nb-t5x
pere
2022-09-24T14:38:59Z
0
2
null
[ "region:us" ]
null
2022-04-01T06:33:23Z
Just a placeholder for a future model
sd-concepts-library/paolo-bonolis
sd-concepts-library
2022-09-24T14:36:08Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-24T13:56:26Z
--- license: mit --- ### paolo bonolis on Stable Diffusion This is the `<paolo-bonolis>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<paolo-bonolis> 0](https://huggingface.co/sd-concepts-library/paolo-bonolis/resolve/main/concept_images/3.jpeg) ![<paolo-bonolis> 1](https://huggingface.co/sd-concepts-library/paolo-bonolis/resolve/main/concept_images/1.jpeg) ![<paolo-bonolis> 2](https://huggingface.co/sd-concepts-library/paolo-bonolis/resolve/main/concept_images/0.jpeg) ![<paolo-bonolis> 3](https://huggingface.co/sd-concepts-library/paolo-bonolis/resolve/main/concept_images/2.jpeg)
sd-concepts-library/repeat
sd-concepts-library
2022-09-24T14:17:05Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-09-24T14:16:59Z
--- license: mit --- ### REPEAT on Stable Diffusion This is the `<repeat>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<repeat> 0](https://huggingface.co/sd-concepts-library/repeat/resolve/main/concept_images/3.jpeg) ![<repeat> 1](https://huggingface.co/sd-concepts-library/repeat/resolve/main/concept_images/1.jpeg) ![<repeat> 2](https://huggingface.co/sd-concepts-library/repeat/resolve/main/concept_images/0.jpeg) ![<repeat> 3](https://huggingface.co/sd-concepts-library/repeat/resolve/main/concept_images/2.jpeg)
gokuls/BERT-tiny-emotion-intent
gokuls
2022-09-24T14:11:28Z
268
2
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-24T14:01:37Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: BERT-tiny-emotion-intent results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.91 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT-tiny-emotion-intent This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.3620 - Accuracy: 0.91 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.2603 | 1.0 | 1000 | 0.7766 | 0.7815 | | 0.5919 | 2.0 | 2000 | 0.4117 | 0.884 | | 0.367 | 3.0 | 3000 | 0.3188 | 0.8995 | | 0.2848 | 4.0 | 4000 | 0.2928 | 0.8985 | | 0.2395 | 5.0 | 5000 | 0.2906 | 0.898 | | 0.2094 | 6.0 | 6000 | 0.2887 | 0.907 | | 0.1884 | 7.0 | 7000 | 0.2831 | 0.9065 | | 0.1603 | 8.0 | 8000 | 0.3044 | 0.9065 | | 0.1519 | 9.0 | 9000 | 0.3124 | 0.9095 | | 0.1291 | 10.0 | 10000 | 0.3256 | 0.9065 | | 0.1179 | 11.0 | 11000 | 0.3651 | 0.9035 | | 0.1091 | 12.0 | 12000 | 0.3620 | 0.91 | | 0.0977 | 13.0 | 13000 | 0.3992 | 0.907 | | 0.0914 | 14.0 | 14000 | 0.4285 | 0.908 | | 0.0876 | 15.0 | 15000 | 0.4268 | 0.9055 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
sd-concepts-library/osaka-jyo
sd-concepts-library
2022-09-24T13:47:07Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-24T13:47:03Z
--- license: mit --- ### osaka jyo on Stable Diffusion This is the `<osaka-jyo>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<osaka-jyo> 0](https://huggingface.co/sd-concepts-library/osaka-jyo/resolve/main/concept_images/3.jpeg) ![<osaka-jyo> 1](https://huggingface.co/sd-concepts-library/osaka-jyo/resolve/main/concept_images/1.jpeg) ![<osaka-jyo> 2](https://huggingface.co/sd-concepts-library/osaka-jyo/resolve/main/concept_images/0.jpeg) ![<osaka-jyo> 3](https://huggingface.co/sd-concepts-library/osaka-jyo/resolve/main/concept_images/2.jpeg)
gokuls/distilroberta-emotion-intent
gokuls
2022-09-24T13:36:17Z
105
1
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-24T13:26:33Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: distilroberta-emotion-intent results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9435 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-emotion-intent This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1496 - Accuracy: 0.9435 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4501 | 1.0 | 1000 | 0.2432 | 0.924 | | 0.1947 | 2.0 | 2000 | 0.1646 | 0.934 | | 0.1497 | 3.0 | 3000 | 0.1382 | 0.9405 | | 0.1316 | 4.0 | 4000 | 0.1496 | 0.9435 | | 0.1145 | 5.0 | 5000 | 0.1684 | 0.9385 | | 0.1 | 6.0 | 6000 | 0.2342 | 0.943 | | 0.0828 | 7.0 | 7000 | 0.2807 | 0.939 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
RebekkaB/rlt_2409_1450
RebekkaB
2022-09-24T13:22:34Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-24T12:52:36Z
--- tags: - generated_from_trainer metrics: - f1 model-index: - name: rlt_2409_1450 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rlt_2409_1450 This model is a fine-tuned version of [svalabs/gbert-large-zeroshot-nli](https://huggingface.co/svalabs/gbert-large-zeroshot-nli) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0518 - F1: 0.9826 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.99 | 36 | 0.5165 | 0.8542 | | No log | 1.99 | 72 | 0.1459 | 0.9599 | | No log | 2.99 | 108 | 0.0733 | 0.9882 | | No log | 3.99 | 144 | 0.1385 | 0.9502 | | No log | 4.99 | 180 | 0.0948 | 0.9806 | | No log | 5.99 | 216 | 0.0699 | 0.9822 | | No log | 6.99 | 252 | 0.0582 | 0.9859 | | No log | 7.99 | 288 | 0.0340 | 0.9933 | | No log | 8.99 | 324 | 0.0475 | 0.9826 | | No log | 9.99 | 360 | 0.0518 | 0.9826 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
SaurabhKaushik/distilbert-base-uncased-finetuned-ner
SaurabhKaushik
2022-09-24T12:38:00Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-24T11:26:55Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.9250386398763524 - name: Recall type: recall value: 0.9373531714956931 - name: F1 type: f1 value: 0.9311551925320887 - name: Accuracy type: accuracy value: 0.9839388692074285 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0589 - Precision: 0.9250 - Recall: 0.9374 - F1: 0.9312 - Accuracy: 0.9839 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2343 | 1.0 | 878 | 0.0674 | 0.9177 | 0.9233 | 0.9205 | 0.9818 | | 0.0525 | 2.0 | 1756 | 0.0582 | 0.9245 | 0.9362 | 0.9304 | 0.9837 | | 0.0288 | 3.0 | 2634 | 0.0589 | 0.9250 | 0.9374 | 0.9312 | 0.9839 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1 - Datasets 2.5.1 - Tokenizers 0.12.1
sd-concepts-library/hubris-oshri
sd-concepts-library
2022-09-24T12:35:06Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-24T12:35:02Z
--- license: mit --- ### Hubris-Oshri on Stable Diffusion This is the `<Hubris>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<Hubris> 0](https://huggingface.co/sd-concepts-library/hubris-oshri/resolve/main/concept_images/3.jpeg) ![<Hubris> 1](https://huggingface.co/sd-concepts-library/hubris-oshri/resolve/main/concept_images/1.jpeg) ![<Hubris> 2](https://huggingface.co/sd-concepts-library/hubris-oshri/resolve/main/concept_images/4.jpeg) ![<Hubris> 3](https://huggingface.co/sd-concepts-library/hubris-oshri/resolve/main/concept_images/0.jpeg) ![<Hubris> 4](https://huggingface.co/sd-concepts-library/hubris-oshri/resolve/main/concept_images/2.jpeg)
sd-concepts-library/yilanov2
sd-concepts-library
2022-09-24T12:05:27Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-24T12:05:22Z
--- license: mit --- ### <yilanov2> on Stable Diffusion This is the `<yilanov>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<yilanov> 0](https://huggingface.co/sd-concepts-library/yilanov2/resolve/main/concept_images/3.jpeg) ![<yilanov> 1](https://huggingface.co/sd-concepts-library/yilanov2/resolve/main/concept_images/1.jpeg) ![<yilanov> 2](https://huggingface.co/sd-concepts-library/yilanov2/resolve/main/concept_images/0.jpeg) ![<yilanov> 3](https://huggingface.co/sd-concepts-library/yilanov2/resolve/main/concept_images/2.jpeg)
ckiplab/gpt2-tiny-chinese
ckiplab
2022-09-24T11:53:54Z
133
5
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "lm-head", "zh", "license:gpl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-24T11:49:21Z
--- language: - zh thumbnail: https://ckip.iis.sinica.edu.tw/files/ckip_logo.png tags: - pytorch - lm-head - gpt2 - zh license: gpl-3.0 --- # CKIP GPT2 Tiny Chinese This project provides traditional Chinese transformers models (including ALBERT, BERT, GPT2) and NLP tools (including word segmentation, part-of-speech tagging, named entity recognition). 這個專案提供了繁體中文的 transformers 模型(包含 ALBERT、BERT、GPT2)及自然語言處理工具(包含斷詞、詞性標記、實體辨識)。 ## Homepage - https://github.com/ckiplab/ckip-transformers ## Contributers - [Mu Yang](https://muyang.pro) at [CKIP](https://ckip.iis.sinica.edu.tw) (Author & Maintainer) ## Usage Please use BertTokenizerFast as tokenizer instead of AutoTokenizer. 請使用 BertTokenizerFast 而非 AutoTokenizer。 ``` from transformers import ( BertTokenizerFast, AutoModel, ) tokenizer = BertTokenizerFast.from_pretrained('bert-base-chinese') model = AutoModel.from_pretrained('ckiplab/gpt2-tiny-chinese') ``` For full usage and more information, please refer to https://github.com/ckiplab/ckip-transformers. 有關完整使用方法及其他資訊,請參見 https://github.com/ckiplab/ckip-transformers 。
RebekkaB/san_nli_2409_1325
RebekkaB
2022-09-24T11:50:33Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-24T11:27:27Z
--- tags: - generated_from_trainer metrics: - f1 model-index: - name: san_nli_2409_1325 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # san_nli_2409_1325 This model is a fine-tuned version of [svalabs/gbert-large-zeroshot-nli](https://huggingface.co/svalabs/gbert-large-zeroshot-nli) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3856 - F1: 0.9219 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.93 | 10 | 0.2410 | 0.9219 | | No log | 1.93 | 20 | 0.5240 | 0.9149 | | No log | 2.93 | 30 | 0.4756 | 0.9219 | | No log | 3.93 | 40 | 0.3856 | 0.9219 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
sd-concepts-library/ilo-kunst
sd-concepts-library
2022-09-24T11:33:00Z
0
3
null
[ "license:mit", "region:us" ]
null
2022-09-24T11:32:54Z
--- license: mit --- ### Ilo Kunst on Stable Diffusion This is the `<ilo-kunst>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<ilo-kunst> 0](https://huggingface.co/sd-concepts-library/ilo-kunst/resolve/main/concept_images/3.jpeg) ![<ilo-kunst> 1](https://huggingface.co/sd-concepts-library/ilo-kunst/resolve/main/concept_images/1.jpeg) ![<ilo-kunst> 2](https://huggingface.co/sd-concepts-library/ilo-kunst/resolve/main/concept_images/4.jpeg) ![<ilo-kunst> 3](https://huggingface.co/sd-concepts-library/ilo-kunst/resolve/main/concept_images/0.jpeg) ![<ilo-kunst> 4](https://huggingface.co/sd-concepts-library/ilo-kunst/resolve/main/concept_images/2.jpeg)
ScriptEdgeAI/MarathiSentiment-Bloom-560m
ScriptEdgeAI
2022-09-24T08:14:05Z
102
5
transformers
[ "transformers", "pytorch", "bloom", "text-classification", "mr", "Sentiment-Analysis", "arxiv:2205.14728", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2022-09-23T07:25:34Z
--- language: - mr tags: - mr - Sentiment-Analysis license: cc-by-nc-4.0 widget: - text: "मला तुम्ही आवडता. मी तुझ्यावर प्रेम करतो." --- # Marathi-Bloom-560m is a Bloom fine-tuned model trained by ScriptEdge on MahaNLP tweets dataset from L3Cube-MahaNLP. ## Worked on by: Trained by: - Venkatesh Soni. Assistance: - Rayansh Srivastava. Supervision: - Akshay Ugale, Madhukar Alhat. ## Usage - - It is intended for non-commercial usages. ## Model best metrics | *Model* | *Data* | *Accuracy* | |---------------------------------------------------|---------------------|-------------------| | bigscience/bloom-560m | Validation | 34.7 | | bigscience/bloom-560m | Test | **34.8** | | ScriptEdgeAI/MarathiSentiment-Bloom-560m | Validation | 76.0 | | ScriptEdgeAI/MarathiSentiment-Bloom-560m | Test | **77.0** | Citation to L3CubePune by the dataset usage. ``` @article {joshi2022l3cube, title= {L3Cube-MahaNLP: Marathi Natural Language Processing Datasets, Models, and Library}, author= {Joshi, Raviraj}, journal= {arXiv preprint arXiv:2205.14728}, year= {2022} } ```
huggingtweets/pentosh1
huggingtweets
2022-09-24T08:03:41Z
113
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-24T08:02:41Z
--- language: en thumbnail: http://www.huggingtweets.com/pentosh1/1664006616559/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1553520707472072708/5eseDj4F_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Pentoshi 🐧</div> <div style="text-align: center; font-size: 14px;">@pentosh1</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Pentoshi 🐧. | Data | Pentoshi 🐧 | | --- | --- | | Tweets downloaded | 3242 | | Retweets | 24 | | Short tweets | 573 | | Tweets kept | 2645 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3kzanxqd/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @pentosh1's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3e7vuikz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3e7vuikz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/pentosh1') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/beranewsnetwork
huggingtweets
2022-09-24T07:04:15Z
113
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-24T07:01:56Z
--- language: en thumbnail: http://www.huggingtweets.com/beranewsnetwork/1664003049616/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1445950504102735872/bCnvrgeb_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bera News Network</div> <div style="text-align: center; font-size: 14px;">@beranewsnetwork</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Bera News Network. | Data | Bera News Network | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 1 | | Short tweets | 579 | | Tweets kept | 2670 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/254oa32x/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @beranewsnetwork's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1jqeuf1y) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1jqeuf1y/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/beranewsnetwork') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/it_airmass
huggingtweets
2022-09-24T06:49:38Z
111
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-24T06:49:12Z
--- language: en thumbnail: http://www.huggingtweets.com/it_airmass/1664002173554/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1529248676647944193/-N1UKgKg_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Airmass</div> <div style="text-align: center; font-size: 14px;">@it_airmass</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Airmass. | Data | Airmass | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 126 | | Short tweets | 370 | | Tweets kept | 2753 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2f99nys0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @it_airmass's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/nvbqf9p2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/nvbqf9p2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/it_airmass') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
sd-concepts-library/museum-by-coop-himmelblau
sd-concepts-library
2022-09-24T06:39:31Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-24T06:39:25Z
--- license: mit --- ### museum by coop himmelblau on Stable Diffusion This is the `<coop himmelblau museum>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<coop himmelblau museum> 0](https://huggingface.co/sd-concepts-library/museum-by-coop-himmelblau/resolve/main/concept_images/3.jpeg) ![<coop himmelblau museum> 1](https://huggingface.co/sd-concepts-library/museum-by-coop-himmelblau/resolve/main/concept_images/1.jpeg) ![<coop himmelblau museum> 2](https://huggingface.co/sd-concepts-library/museum-by-coop-himmelblau/resolve/main/concept_images/0.jpeg) ![<coop himmelblau museum> 3](https://huggingface.co/sd-concepts-library/museum-by-coop-himmelblau/resolve/main/concept_images/2.jpeg)
huggingtweets/inversebrah
huggingtweets
2022-09-24T06:29:34Z
111
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-04-28T20:05:27Z
--- language: en thumbnail: http://www.huggingtweets.com/inversebrah/1664000969650/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1547362404061052928/WWnVS98w_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">smolting (wassie, verse)</div> <div style="text-align: center; font-size: 14px;">@inversebrah</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from smolting (wassie, verse). | Data | smolting (wassie, verse) | | --- | --- | | Tweets downloaded | 3217 | | Retweets | 1592 | | Short tweets | 865 | | Tweets kept | 760 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/mt8mw7j5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @inversebrah's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/37fqg9kh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/37fqg9kh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/inversebrah') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
BumblingOrange/GuraLv400
BumblingOrange
2022-09-24T05:56:03Z
0
10
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2022-09-24T04:58:13Z
--- license: bigscience-bloom-rail-1.0 --- Uses the Waifu Diffusion model as a base, linked here: https://huggingface.co/hakurei/waifu-diffusion Custom Dreambooth model based off of the likeness of Hololive Vtuber Gawr Gura. Dataset was 450 training images, and 900 regularization images. Trained for 3000 steps. To use the model, simply insert the name 'Gawr Gura' into your prompts.
sd-concepts-library/ransom
sd-concepts-library
2022-09-24T05:44:13Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-24T05:44:07Z
--- license: mit --- ### ransom on Stable Diffusion This is the `<ransom>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<ransom> 0](https://huggingface.co/sd-concepts-library/ransom/resolve/main/concept_images/3.jpeg) ![<ransom> 1](https://huggingface.co/sd-concepts-library/ransom/resolve/main/concept_images/1.jpeg) ![<ransom> 2](https://huggingface.co/sd-concepts-library/ransom/resolve/main/concept_images/4.jpeg) ![<ransom> 3](https://huggingface.co/sd-concepts-library/ransom/resolve/main/concept_images/6.jpeg) ![<ransom> 4](https://huggingface.co/sd-concepts-library/ransom/resolve/main/concept_images/5.jpeg) ![<ransom> 5](https://huggingface.co/sd-concepts-library/ransom/resolve/main/concept_images/0.jpeg) ![<ransom> 6](https://huggingface.co/sd-concepts-library/ransom/resolve/main/concept_images/2.jpeg) ![<ransom> 7](https://huggingface.co/sd-concepts-library/ransom/resolve/main/concept_images/7.jpeg)
sd-concepts-library/guttestreker
sd-concepts-library
2022-09-24T04:19:49Z
0
11
null
[ "license:mit", "region:us" ]
null
2022-09-24T04:19:26Z
--- license: mit --- ### guttestreker on Stable Diffusion This is the `<guttestreker>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<guttestreker> 0](https://huggingface.co/sd-concepts-library/guttestreker/resolve/main/concept_images/9.jpeg) ![<guttestreker> 1](https://huggingface.co/sd-concepts-library/guttestreker/resolve/main/concept_images/10.jpeg) ![<guttestreker> 2](https://huggingface.co/sd-concepts-library/guttestreker/resolve/main/concept_images/3.jpeg) ![<guttestreker> 3](https://huggingface.co/sd-concepts-library/guttestreker/resolve/main/concept_images/1.jpeg) ![<guttestreker> 4](https://huggingface.co/sd-concepts-library/guttestreker/resolve/main/concept_images/4.jpeg) ![<guttestreker> 5](https://huggingface.co/sd-concepts-library/guttestreker/resolve/main/concept_images/8.jpeg) ![<guttestreker> 6](https://huggingface.co/sd-concepts-library/guttestreker/resolve/main/concept_images/11.jpeg) ![<guttestreker> 7](https://huggingface.co/sd-concepts-library/guttestreker/resolve/main/concept_images/6.jpeg) ![<guttestreker> 8](https://huggingface.co/sd-concepts-library/guttestreker/resolve/main/concept_images/5.jpeg) ![<guttestreker> 9](https://huggingface.co/sd-concepts-library/guttestreker/resolve/main/concept_images/0.jpeg) ![<guttestreker> 10](https://huggingface.co/sd-concepts-library/guttestreker/resolve/main/concept_images/2.jpeg) ![<guttestreker> 11](https://huggingface.co/sd-concepts-library/guttestreker/resolve/main/concept_images/7.jpeg) ![<guttestreker> 12](https://huggingface.co/sd-concepts-library/guttestreker/resolve/main/concept_images/12.jpeg)
nateraw/convnext-tiny-224-finetuned-eurosat-albumentations
nateraw
2022-09-24T01:57:26Z
196
0
transformers
[ "transformers", "pytorch", "tensorboard", "convnext", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-09-24T01:44:28Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: convnext-tiny-224-finetuned-eurosat-albumentations results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9814814814814815 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convnext-tiny-224-finetuned-eurosat-albumentations This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0608 - Accuracy: 0.9815 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1449 | 1.0 | 190 | 0.1327 | 0.9685 | | 0.0766 | 2.0 | 380 | 0.0762 | 0.9774 | | 0.0493 | 3.0 | 570 | 0.0608 | 0.9815 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
huggingtweets/tim_cook
huggingtweets
2022-09-24T01:11:00Z
112
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/tim_cook/1663981855625/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1535420431766671360/Pwq-1eJc_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tim Cook</div> <div style="text-align: center; font-size: 14px;">@tim_cook</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Tim Cook. | Data | Tim Cook | | --- | --- | | Tweets downloaded | 1385 | | Retweets | 20 | | Short tweets | 13 | | Tweets kept | 1352 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2d94dtsh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tim_cook's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/19bm0x3l) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/19bm0x3l/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/tim_cook') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
neelmehta00/t5-small-finetuned-eli5-neel
neelmehta00
2022-09-23T23:44:40Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:eli5", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-23T22:36:49Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - eli5 metrics: - rouge model-index: - name: t5-small-finetuned-eli5-neel results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: eli5 type: eli5 config: LFQA_reddit split: train_eli5 args: LFQA_reddit metrics: - name: Rouge1 type: rouge value: 9.613 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-eli5-neel This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the eli5 dataset. It achieves the following results on the evaluation set: - Loss: 3.6887 - Rouge1: 9.613 - Rouge2: 1.7491 - Rougel: 8.8341 - Rougelsum: 9.3402 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 3.896 | 1.0 | 17040 | 3.6887 | 9.613 | 1.7491 | 8.8341 | 9.3402 | 19.0 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
sd-concepts-library/david-martinez-edgerunners
sd-concepts-library
2022-09-23T23:42:30Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-23T23:42:24Z
--- license: mit --- ### David Martinez Edgerunners on Stable Diffusion This is the `<david-martinez-edgerunners>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<david-martinez-edgerunners> 0](https://huggingface.co/sd-concepts-library/david-martinez-edgerunners/resolve/main/concept_images/9.jpeg) ![<david-martinez-edgerunners> 1](https://huggingface.co/sd-concepts-library/david-martinez-edgerunners/resolve/main/concept_images/18.jpeg) ![<david-martinez-edgerunners> 2](https://huggingface.co/sd-concepts-library/david-martinez-edgerunners/resolve/main/concept_images/22.jpeg) ![<david-martinez-edgerunners> 3](https://huggingface.co/sd-concepts-library/david-martinez-edgerunners/resolve/main/concept_images/19.jpeg) ![<david-martinez-edgerunners> 4](https://huggingface.co/sd-concepts-library/david-martinez-edgerunners/resolve/main/concept_images/10.jpeg) ![<david-martinez-edgerunners> 5](https://huggingface.co/sd-concepts-library/david-martinez-edgerunners/resolve/main/concept_images/3.jpeg) ![<david-martinez-edgerunners> 6](https://huggingface.co/sd-concepts-library/david-martinez-edgerunners/resolve/main/concept_images/1.jpeg) ![<david-martinez-edgerunners> 7](https://huggingface.co/sd-concepts-library/david-martinez-edgerunners/resolve/main/concept_images/4.jpeg) ![<david-martinez-edgerunners> 8](https://huggingface.co/sd-concepts-library/david-martinez-edgerunners/resolve/main/concept_images/17.jpeg) ![<david-martinez-edgerunners> 9](https://huggingface.co/sd-concepts-library/david-martinez-edgerunners/resolve/main/concept_images/21.jpeg) ![<david-martinez-edgerunners> 10](https://huggingface.co/sd-concepts-library/david-martinez-edgerunners/resolve/main/concept_images/25.jpeg) ![<david-martinez-edgerunners> 11](https://huggingface.co/sd-concepts-library/david-martinez-edgerunners/resolve/main/concept_images/8.jpeg) ![<david-martinez-edgerunners> 12](https://huggingface.co/sd-concepts-library/david-martinez-edgerunners/resolve/main/concept_images/11.jpeg) ![<david-martinez-edgerunners> 13](https://huggingface.co/sd-concepts-library/david-martinez-edgerunners/resolve/main/concept_images/6.jpeg) ![<david-martinez-edgerunners> 14](https://huggingface.co/sd-concepts-library/david-martinez-edgerunners/resolve/main/concept_images/5.jpeg) ![<david-martinez-edgerunners> 15](https://huggingface.co/sd-concepts-library/david-martinez-edgerunners/resolve/main/concept_images/0.jpeg) ![<david-martinez-edgerunners> 16](https://huggingface.co/sd-concepts-library/david-martinez-edgerunners/resolve/main/concept_images/2.jpeg) ![<david-martinez-edgerunners> 17](https://huggingface.co/sd-concepts-library/david-martinez-edgerunners/resolve/main/concept_images/16.jpeg) ![<david-martinez-edgerunners> 18](https://huggingface.co/sd-concepts-library/david-martinez-edgerunners/resolve/main/concept_images/7.jpeg) ![<david-martinez-edgerunners> 19](https://huggingface.co/sd-concepts-library/david-martinez-edgerunners/resolve/main/concept_images/26.jpeg) ![<david-martinez-edgerunners> 20](https://huggingface.co/sd-concepts-library/david-martinez-edgerunners/resolve/main/concept_images/23.jpeg) ![<david-martinez-edgerunners> 21](https://huggingface.co/sd-concepts-library/david-martinez-edgerunners/resolve/main/concept_images/24.jpeg) ![<david-martinez-edgerunners> 22](https://huggingface.co/sd-concepts-library/david-martinez-edgerunners/resolve/main/concept_images/13.jpeg) ![<david-martinez-edgerunners> 23](https://huggingface.co/sd-concepts-library/david-martinez-edgerunners/resolve/main/concept_images/14.jpeg) ![<david-martinez-edgerunners> 24](https://huggingface.co/sd-concepts-library/david-martinez-edgerunners/resolve/main/concept_images/12.jpeg) ![<david-martinez-edgerunners> 25](https://huggingface.co/sd-concepts-library/david-martinez-edgerunners/resolve/main/concept_images/20.jpeg) ![<david-martinez-edgerunners> 26](https://huggingface.co/sd-concepts-library/david-martinez-edgerunners/resolve/main/concept_images/15.jpeg)