modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-02 12:29:30
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
548 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-02 12:29:18
card
stringlengths
11
1.01M
salbatarni/arabert_baseline_grammar_task6_fold1
salbatarni
2024-08-29T07:06:54Z
5
0
null
[ "tensorboard", "safetensors", "bert", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "region:us" ]
null
2024-08-29T07:05:44Z
--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_baseline_grammar_task6_fold1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # arabert_baseline_grammar_task6_fold1 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7851 - Qwk: 0.7296 - Mse: 0.7851 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:| | No log | 0.5 | 2 | 1.4135 | -0.0678 | 1.4135 | | No log | 1.0 | 4 | 0.9828 | 0.5032 | 0.9828 | | No log | 1.5 | 6 | 1.1603 | 0.3288 | 1.1603 | | No log | 2.0 | 8 | 1.0440 | 0.2036 | 1.0440 | | No log | 2.5 | 10 | 0.8854 | 0.2383 | 0.8854 | | No log | 3.0 | 12 | 0.7492 | 0.4348 | 0.7492 | | No log | 3.5 | 14 | 0.7513 | 0.4348 | 0.7513 | | No log | 4.0 | 16 | 0.8038 | 0.6500 | 0.8038 | | No log | 4.5 | 18 | 0.8093 | 0.6500 | 0.8093 | | No log | 5.0 | 20 | 0.8924 | 0.6847 | 0.8924 | | No log | 5.5 | 22 | 1.0282 | 0.6805 | 1.0282 | | No log | 6.0 | 24 | 0.9757 | 0.7296 | 0.9757 | | No log | 6.5 | 26 | 0.9823 | 0.7296 | 0.9823 | | No log | 7.0 | 28 | 0.9823 | 0.6957 | 0.9823 | | No log | 7.5 | 30 | 0.8153 | 0.7296 | 0.8153 | | No log | 8.0 | 32 | 0.7571 | 0.6192 | 0.7571 | | No log | 8.5 | 34 | 0.7411 | 0.7014 | 0.7411 | | No log | 9.0 | 36 | 0.7685 | 0.7296 | 0.7685 | | No log | 9.5 | 38 | 0.7773 | 0.7296 | 0.7773 | | No log | 10.0 | 40 | 0.7851 | 0.7296 | 0.7851 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1
salbatarni/arabert_baseline_grammar_task5_fold1
salbatarni
2024-08-29T07:04:35Z
5
0
null
[ "tensorboard", "safetensors", "bert", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "region:us" ]
null
2024-08-29T07:03:00Z
--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_baseline_grammar_task5_fold1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # arabert_baseline_grammar_task5_fold1 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4829 - Qwk: 0.6262 - Mse: 0.4829 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:| | No log | 0.3333 | 2 | 2.4374 | 0.0250 | 2.4374 | | No log | 0.6667 | 4 | 0.9732 | -0.0090 | 0.9732 | | No log | 1.0 | 6 | 0.5943 | 0.3165 | 0.5943 | | No log | 1.3333 | 8 | 0.5108 | 0.3182 | 0.5108 | | No log | 1.6667 | 10 | 0.4747 | 0.3137 | 0.4747 | | No log | 2.0 | 12 | 0.4634 | 0.3165 | 0.4634 | | No log | 2.3333 | 14 | 0.4798 | 0.4509 | 0.4798 | | No log | 2.6667 | 16 | 0.4795 | 0.4737 | 0.4795 | | No log | 3.0 | 18 | 0.5467 | 0.5327 | 0.5467 | | No log | 3.3333 | 20 | 0.5831 | 0.5327 | 0.5831 | | No log | 3.6667 | 22 | 0.5213 | 0.6269 | 0.5213 | | No log | 4.0 | 24 | 0.6213 | 0.7087 | 0.6213 | | No log | 4.3333 | 26 | 0.6774 | 0.7236 | 0.6774 | | No log | 4.6667 | 28 | 0.6694 | 0.7236 | 0.6694 | | No log | 5.0 | 30 | 0.5668 | 0.7 | 0.5668 | | No log | 5.3333 | 32 | 0.5235 | 0.7059 | 0.5235 | | No log | 5.6667 | 34 | 0.5216 | 0.7059 | 0.5216 | | No log | 6.0 | 36 | 0.5070 | 0.5957 | 0.5070 | | No log | 6.3333 | 38 | 0.5038 | 0.6047 | 0.5038 | | No log | 6.6667 | 40 | 0.5220 | 0.6606 | 0.5220 | | No log | 7.0 | 42 | 0.5420 | 0.6377 | 0.5420 | | No log | 7.3333 | 44 | 0.5474 | 0.6667 | 0.5474 | | No log | 7.6667 | 46 | 0.5400 | 0.6262 | 0.5400 | | No log | 8.0 | 48 | 0.5341 | 0.6262 | 0.5341 | | No log | 8.3333 | 50 | 0.5282 | 0.6262 | 0.5282 | | No log | 8.6667 | 52 | 0.5146 | 0.6262 | 0.5146 | | No log | 9.0 | 54 | 0.4982 | 0.6262 | 0.4982 | | No log | 9.3333 | 56 | 0.4857 | 0.6262 | 0.4857 | | No log | 9.6667 | 58 | 0.4846 | 0.6262 | 0.4846 | | No log | 10.0 | 60 | 0.4829 | 0.6262 | 0.4829 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1
salbatarni/arabert_baseline_grammar_task3_fold0
salbatarni
2024-08-29T06:58:31Z
6
0
null
[ "tensorboard", "safetensors", "bert", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "region:us" ]
null
2024-08-29T06:57:33Z
--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_baseline_grammar_task3_fold0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # arabert_baseline_grammar_task3_fold0 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6034 - Qwk: 0.0 - Mse: 0.6123 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:| | No log | 0.6667 | 2 | 3.3662 | -0.0117 | 3.3080 | | No log | 1.3333 | 4 | 1.1203 | -0.1172 | 1.0755 | | No log | 2.0 | 6 | 0.8683 | -0.1134 | 0.8544 | | No log | 2.6667 | 8 | 0.6489 | -0.0476 | 0.6406 | | No log | 3.3333 | 10 | 0.4735 | -0.0476 | 0.4763 | | No log | 4.0 | 12 | 0.3822 | -0.0476 | 0.3821 | | No log | 4.6667 | 14 | 0.5267 | -0.0476 | 0.5316 | | No log | 5.3333 | 16 | 0.4612 | -0.0476 | 0.4639 | | No log | 6.0 | 18 | 0.3363 | 0.3529 | 0.3349 | | No log | 6.6667 | 20 | 0.3888 | -0.0476 | 0.3896 | | No log | 7.3333 | 22 | 0.4637 | -0.0476 | 0.4673 | | No log | 8.0 | 24 | 0.5117 | 0.0 | 0.5172 | | No log | 8.6667 | 26 | 0.5877 | 0.0 | 0.5954 | | No log | 9.3333 | 28 | 0.6138 | 0.0 | 0.6226 | | No log | 10.0 | 30 | 0.6034 | 0.0 | 0.6123 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1
luaqi/sn29_merged_v10
luaqi
2024-08-29T06:55:28Z
34
0
transformers
[ "transformers", "safetensors", "phi3", "text-generation", "conversational", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-08-29T06:52:43Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kaitchup/Meta-Llama-3.1-70B-Instruct-ExLlamaV2-4bit
kaitchup
2024-08-29T06:36:27Z
5
0
null
[ "safetensors", "llama", "4-bit", "exl2", "region:us" ]
null
2024-08-20T05:32:51Z
Llama 3.1 70B instruct quantized with ExLlamaV2.
salbatarni/arabert_baseline_mechanics_task1_fold0
salbatarni
2024-08-29T06:34:22Z
5
0
null
[ "tensorboard", "safetensors", "bert", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "region:us" ]
null
2024-08-29T06:32:42Z
--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_baseline_mechanics_task1_fold0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # arabert_baseline_mechanics_task1_fold0 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6765 - Qwk: 0.4590 - Mse: 0.6922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:| | No log | 0.3333 | 2 | 4.5225 | -0.0658 | 4.5651 | | No log | 0.6667 | 4 | 1.8523 | 0.1370 | 1.8774 | | No log | 1.0 | 6 | 0.9383 | 0.2326 | 0.9611 | | No log | 1.3333 | 8 | 0.8679 | 0.3119 | 0.8947 | | No log | 1.6667 | 10 | 0.8994 | 0.4015 | 0.9273 | | No log | 2.0 | 12 | 1.2109 | 0.0582 | 1.2468 | | No log | 2.3333 | 14 | 1.0652 | 0.0783 | 1.0979 | | No log | 2.6667 | 16 | 0.8918 | 0.4726 | 0.9192 | | No log | 3.0 | 18 | 0.9069 | 0.3931 | 0.9346 | | No log | 3.3333 | 20 | 0.8533 | 0.3636 | 0.8812 | | No log | 3.6667 | 22 | 0.7332 | 0.4582 | 0.7567 | | No log | 4.0 | 24 | 0.7505 | 0.5333 | 0.7733 | | No log | 4.3333 | 26 | 0.7390 | 0.475 | 0.7612 | | No log | 4.6667 | 28 | 0.7760 | 0.3824 | 0.8000 | | No log | 5.0 | 30 | 0.8078 | 0.3913 | 0.8335 | | No log | 5.3333 | 32 | 0.7440 | 0.4450 | 0.7671 | | No log | 5.6667 | 34 | 0.7175 | 0.4906 | 0.7395 | | No log | 6.0 | 36 | 0.7050 | 0.5254 | 0.7261 | | No log | 6.3333 | 38 | 0.7088 | 0.4450 | 0.7299 | | No log | 6.6667 | 40 | 0.6952 | 0.4727 | 0.7141 | | No log | 7.0 | 42 | 0.6847 | 0.4770 | 0.7014 | | No log | 7.3333 | 44 | 0.6839 | 0.5054 | 0.7003 | | No log | 7.6667 | 46 | 0.6830 | 0.4822 | 0.6983 | | No log | 8.0 | 48 | 0.6803 | 0.4822 | 0.6954 | | No log | 8.3333 | 50 | 0.6819 | 0.4279 | 0.6979 | | No log | 8.6667 | 52 | 0.6851 | 0.4360 | 0.7017 | | No log | 9.0 | 54 | 0.6844 | 0.4360 | 0.7010 | | No log | 9.3333 | 56 | 0.6804 | 0.4360 | 0.6965 | | No log | 9.6667 | 58 | 0.6769 | 0.4590 | 0.6926 | | No log | 10.0 | 60 | 0.6765 | 0.4590 | 0.6922 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1
YanqiDai/MMRole-Eval_RM
YanqiDai
2024-08-29T06:31:43Z
5
1
null
[ "pytorch", "qwen", "custom_code", "en", "zh", "dataset:YanqiDai/MMRole_dataset", "arxiv:2408.04203", "base_model:Qwen/Qwen-VL-Chat", "base_model:finetune:Qwen/Qwen-VL-Chat", "license:mit", "region:us" ]
null
2024-08-28T01:25:11Z
--- license: mit datasets: - YanqiDai/MMRole_dataset language: - en - zh base_model: Qwen/Qwen-VL-Chat --- The model weights of the reward model in *MMRole*, A Comprehensive Framework for Developing and Evaluating Multimodal Role-Playing Agents. Please refer to our paper (https://arxiv.org/abs/2408.04203) and code (https://github.com/YanqiDai/MMRole) for more details.
salbatarni/arabert_baseline_style_task6_fold1
salbatarni
2024-08-29T06:29:44Z
5
0
null
[ "tensorboard", "safetensors", "bert", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "region:us" ]
null
2024-08-29T06:28:27Z
--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_baseline_style_task6_fold1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # arabert_baseline_style_task6_fold1 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8646 - Qwk: 0.5642 - Mse: 0.8646 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | No log | 0.5 | 2 | 1.9949 | 0.0653 | 1.9949 | | No log | 1.0 | 4 | 0.9870 | 0.4463 | 0.9870 | | No log | 1.5 | 6 | 1.0110 | 0.3212 | 1.0110 | | No log | 2.0 | 8 | 1.2493 | 0.1888 | 1.2493 | | No log | 2.5 | 10 | 1.3543 | 0.2877 | 1.3543 | | No log | 3.0 | 12 | 0.9301 | 0.3348 | 0.9301 | | No log | 3.5 | 14 | 0.8618 | 0.4615 | 0.8618 | | No log | 4.0 | 16 | 0.8638 | 0.3275 | 0.8638 | | No log | 4.5 | 18 | 0.8955 | 0.4340 | 0.8955 | | No log | 5.0 | 20 | 0.9073 | 0.5391 | 0.9073 | | No log | 5.5 | 22 | 0.8973 | 0.5817 | 0.8973 | | No log | 6.0 | 24 | 0.9007 | 0.5817 | 0.9007 | | No log | 6.5 | 26 | 0.8920 | 0.5817 | 0.8920 | | No log | 7.0 | 28 | 0.8869 | 0.5817 | 0.8869 | | No log | 7.5 | 30 | 0.8758 | 0.5817 | 0.8758 | | No log | 8.0 | 32 | 0.8811 | 0.5642 | 0.8811 | | No log | 8.5 | 34 | 0.8874 | 0.4943 | 0.8874 | | No log | 9.0 | 36 | 0.8749 | 0.5642 | 0.8749 | | No log | 9.5 | 38 | 0.8676 | 0.5642 | 0.8676 | | No log | 10.0 | 40 | 0.8646 | 0.5642 | 0.8646 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1
HafijulHoquenabid2/T5_flanlarge_phase_1
HafijulHoquenabid2
2024-08-29T06:26:11Z
24
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "question-answering", "base_model:google/flan-t5-large", "base_model:finetune:google/flan-t5-large", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
question-answering
2024-08-28T20:34:07Z
--- license: apache-2.0 base_model: google/flan-t5-large tags: - generated_from_trainer model-index: - name: T5_flanlarge_phase_1 results: [] pipeline_tag: question-answering library_name: transformers --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # T5_flanlarge_phase_1 This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4526 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.5176 | 0.9987 | 595 | 1.4956 | | 1.4423 | 1.9992 | 1191 | 1.4624 | | 1.4197 | 2.9996 | 1787 | 1.4531 | | 1.2841 | 3.9950 | 2380 | 1.4526 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1
DanielTobi0/sabiyarn_custom_finetune
DanielTobi0
2024-08-29T06:16:59Z
133
0
transformers
[ "transformers", "safetensors", "nanogpt-j", "text-generation", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "region:us" ]
text-generation
2024-08-29T05:55:14Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
salbatarni/arabert_baseline_style_task1_fold0
salbatarni
2024-08-29T06:15:50Z
5
0
null
[ "tensorboard", "safetensors", "bert", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "region:us" ]
null
2024-08-29T06:14:11Z
--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_baseline_style_task1_fold0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # arabert_baseline_style_task1_fold0 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5100 - Qwk: 0.6698 - Mse: 0.5053 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:| | No log | 0.3333 | 2 | 5.4651 | -0.0419 | 5.4241 | | No log | 0.6667 | 4 | 2.3074 | 0.1693 | 2.2743 | | No log | 1.0 | 6 | 1.2115 | 0.1561 | 1.2001 | | No log | 1.3333 | 8 | 0.9959 | 0.4358 | 0.9923 | | No log | 1.6667 | 10 | 0.7290 | 0.4921 | 0.7317 | | No log | 2.0 | 12 | 0.7145 | 0.5587 | 0.7193 | | No log | 2.3333 | 14 | 0.7329 | 0.5435 | 0.7351 | | No log | 2.6667 | 16 | 0.7694 | 0.5219 | 0.7660 | | No log | 3.0 | 18 | 0.9233 | 0.4358 | 0.9210 | | No log | 3.3333 | 20 | 0.8596 | 0.4516 | 0.8545 | | No log | 3.6667 | 22 | 0.7445 | 0.5743 | 0.7322 | | No log | 4.0 | 24 | 0.7760 | 0.4773 | 0.7614 | | No log | 4.3333 | 26 | 0.6783 | 0.5743 | 0.6684 | | No log | 4.6667 | 28 | 0.7836 | 0.5152 | 0.7834 | | No log | 5.0 | 30 | 0.7387 | 0.5188 | 0.7401 | | No log | 5.3333 | 32 | 0.5679 | 0.5743 | 0.5656 | | No log | 5.6667 | 34 | 0.5183 | 0.5743 | 0.5136 | | No log | 6.0 | 36 | 0.5055 | 0.5743 | 0.5017 | | No log | 6.3333 | 38 | 0.5518 | 0.5188 | 0.5511 | | No log | 6.6667 | 40 | 0.6558 | 0.5188 | 0.6585 | | No log | 7.0 | 42 | 0.6773 | 0.6025 | 0.6812 | | No log | 7.3333 | 44 | 0.6216 | 0.6025 | 0.6242 | | No log | 7.6667 | 46 | 0.5382 | 0.6698 | 0.5375 | | No log | 8.0 | 48 | 0.5083 | 0.6698 | 0.5056 | | No log | 8.3333 | 50 | 0.5045 | 0.6698 | 0.5004 | | No log | 8.6667 | 52 | 0.5059 | 0.7151 | 0.5009 | | No log | 9.0 | 54 | 0.5070 | 0.7151 | 0.5018 | | No log | 9.3333 | 56 | 0.5069 | 0.7151 | 0.5016 | | No log | 9.6667 | 58 | 0.5086 | 0.7151 | 0.5037 | | No log | 10.0 | 60 | 0.5100 | 0.6698 | 0.5053 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1
salbatarni/arabert_baseline_development_task7_fold0
salbatarni
2024-08-29T06:12:38Z
5
0
null
[ "tensorboard", "safetensors", "bert", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "region:us" ]
null
2024-08-29T06:11:07Z
--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_baseline_development_task7_fold0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # arabert_baseline_development_task7_fold0 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3255 - Qwk: 0.6 - Mse: 0.3255 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | No log | 0.3333 | 2 | 1.1202 | 0.0777 | 1.1202 | | No log | 0.6667 | 4 | 0.6041 | 0.4521 | 0.6041 | | No log | 1.0 | 6 | 0.5933 | 0.4048 | 0.5933 | | No log | 1.3333 | 8 | 0.6033 | 0.4186 | 0.6033 | | No log | 1.6667 | 10 | 0.4045 | 0.5380 | 0.4045 | | No log | 2.0 | 12 | 0.4962 | 0.5370 | 0.4962 | | No log | 2.3333 | 14 | 0.4729 | 0.5380 | 0.4729 | | No log | 2.6667 | 16 | 0.4672 | 0.4643 | 0.4672 | | No log | 3.0 | 18 | 0.5466 | 0.4421 | 0.5466 | | No log | 3.3333 | 20 | 0.6361 | 0.4508 | 0.6361 | | No log | 3.6667 | 22 | 0.4635 | 0.4421 | 0.4635 | | No log | 4.0 | 24 | 0.3643 | 0.6 | 0.3643 | | No log | 4.3333 | 26 | 0.3664 | 0.6237 | 0.3664 | | No log | 4.6667 | 28 | 0.3535 | 0.6 | 0.3535 | | No log | 5.0 | 30 | 0.3681 | 0.5545 | 0.3681 | | No log | 5.3333 | 32 | 0.3906 | 0.5327 | 0.3906 | | No log | 5.6667 | 34 | 0.3676 | 0.5327 | 0.3676 | | No log | 6.0 | 36 | 0.3373 | 0.6 | 0.3373 | | No log | 6.3333 | 38 | 0.3425 | 0.6324 | 0.3425 | | No log | 6.6667 | 40 | 0.3594 | 0.5960 | 0.3594 | | No log | 7.0 | 42 | 0.3550 | 0.6 | 0.3550 | | No log | 7.3333 | 44 | 0.3547 | 0.5874 | 0.3547 | | No log | 7.6667 | 46 | 0.3761 | 0.5726 | 0.3761 | | No log | 8.0 | 48 | 0.3915 | 0.5726 | 0.3915 | | No log | 8.3333 | 50 | 0.3777 | 0.5726 | 0.3777 | | No log | 8.6667 | 52 | 0.3558 | 0.5642 | 0.3558 | | No log | 9.0 | 54 | 0.3383 | 0.5874 | 0.3383 | | No log | 9.3333 | 56 | 0.3286 | 0.6 | 0.3286 | | No log | 9.6667 | 58 | 0.3263 | 0.6 | 0.3263 | | No log | 10.0 | 60 | 0.3255 | 0.6 | 0.3255 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1
salbatarni/arabert_baseline_development_task6_fold0
salbatarni
2024-08-29T06:09:51Z
5
0
null
[ "tensorboard", "safetensors", "bert", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "region:us" ]
null
2024-08-29T06:08:38Z
--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_baseline_development_task6_fold0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # arabert_baseline_development_task6_fold0 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7890 - Qwk: 0.4503 - Mse: 0.7890 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | No log | 0.5 | 2 | 1.5011 | 0.2195 | 1.5011 | | No log | 1.0 | 4 | 1.0235 | 0.3558 | 1.0235 | | No log | 1.5 | 6 | 1.1605 | 0.3913 | 1.1605 | | No log | 2.0 | 8 | 1.0269 | 0.3558 | 1.0269 | | No log | 2.5 | 10 | 0.9070 | 0.3558 | 0.9070 | | No log | 3.0 | 12 | 0.8423 | 0.3913 | 0.8423 | | No log | 3.5 | 14 | 0.7993 | 0.3558 | 0.7993 | | No log | 4.0 | 16 | 0.7964 | 0.4740 | 0.7964 | | No log | 4.5 | 18 | 0.8073 | 0.4740 | 0.8073 | | No log | 5.0 | 20 | 0.8740 | 0.6091 | 0.8740 | | No log | 5.5 | 22 | 0.8159 | 0.6056 | 0.8159 | | No log | 6.0 | 24 | 0.8260 | 0.6056 | 0.8260 | | No log | 6.5 | 26 | 0.8604 | 0.6056 | 0.8604 | | No log | 7.0 | 28 | 0.8853 | 0.6056 | 0.8853 | | No log | 7.5 | 30 | 0.8139 | 0.5172 | 0.8139 | | No log | 8.0 | 32 | 0.7491 | 0.4503 | 0.7491 | | No log | 8.5 | 34 | 0.7564 | 0.4503 | 0.7564 | | No log | 9.0 | 36 | 0.7842 | 0.4503 | 0.7842 | | No log | 9.5 | 38 | 0.7831 | 0.4503 | 0.7831 | | No log | 10.0 | 40 | 0.7890 | 0.4503 | 0.7890 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1
salbatarni/arabert_baseline_organization_task7_fold1
salbatarni
2024-08-29T05:55:18Z
5
0
null
[ "tensorboard", "safetensors", "bert", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "region:us" ]
null
2024-08-29T05:53:50Z
--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_baseline_organization_task7_fold1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # arabert_baseline_organization_task7_fold1 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6217 - Qwk: 0.4969 - Mse: 0.6213 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | No log | 0.3333 | 2 | 1.0245 | 0.3758 | 1.0297 | | No log | 0.6667 | 4 | 0.7919 | 0.5312 | 0.8059 | | No log | 1.0 | 6 | 0.8469 | 0.6400 | 0.8626 | | No log | 1.3333 | 8 | 0.7621 | 0.3793 | 0.7785 | | No log | 1.6667 | 10 | 0.8831 | 0.2326 | 0.8970 | | No log | 2.0 | 12 | 0.7493 | 0.4 | 0.7628 | | No log | 2.3333 | 14 | 0.4924 | 0.6165 | 0.5052 | | No log | 2.6667 | 16 | 0.4499 | 0.6571 | 0.4612 | | No log | 3.0 | 18 | 0.4936 | 0.6203 | 0.5029 | | No log | 3.3333 | 20 | 0.7252 | 0.4224 | 0.7311 | | No log | 3.6667 | 22 | 0.9227 | 0.3657 | 0.9263 | | No log | 4.0 | 24 | 0.8957 | 0.3657 | 0.8980 | | No log | 4.3333 | 26 | 0.7242 | 0.4211 | 0.7260 | | No log | 4.6667 | 28 | 0.5595 | 0.6203 | 0.5620 | | No log | 5.0 | 30 | 0.4521 | 0.6024 | 0.4559 | | No log | 5.3333 | 32 | 0.4402 | 0.6786 | 0.4437 | | No log | 5.6667 | 34 | 0.4703 | 0.6909 | 0.4728 | | No log | 6.0 | 36 | 0.6144 | 0.5 | 0.6153 | | No log | 6.3333 | 38 | 0.7150 | 0.4969 | 0.7150 | | No log | 6.6667 | 40 | 0.7022 | 0.4969 | 0.7024 | | No log | 7.0 | 42 | 0.6409 | 0.5 | 0.6418 | | No log | 7.3333 | 44 | 0.5912 | 0.5 | 0.5923 | | No log | 7.6667 | 46 | 0.5457 | 0.6341 | 0.5469 | | No log | 8.0 | 48 | 0.5073 | 0.6909 | 0.5089 | | No log | 8.3333 | 50 | 0.5143 | 0.6909 | 0.5157 | | No log | 8.6667 | 52 | 0.5540 | 0.6341 | 0.5549 | | No log | 9.0 | 54 | 0.5883 | 0.6272 | 0.5886 | | No log | 9.3333 | 56 | 0.6103 | 0.4969 | 0.6102 | | No log | 9.6667 | 58 | 0.6204 | 0.4969 | 0.6200 | | No log | 10.0 | 60 | 0.6217 | 0.4969 | 0.6213 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1
Jaume/gte-multilingual-base-no-network
Jaume
2024-08-29T05:55:01Z
19
0
sentence-transformers
[ "sentence-transformers", "safetensors", "new", "feature-extraction", "transformers", "multilingual", "sentence-similarity", "custom_code", "af", "ar", "az", "be", "bg", "bn", "ca", "ceb", "cs", "cy", "da", "de", "el", "en", "es", "et", "eu", "fa", "fi", "fr", "gl", "gu", "he", "hi", "hr", "ht", "hu", "hy", "id", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ky", "lo", "lt", "lv", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "pa", "pl", "pt", "qu", "ro", "ru", "si", "sk", "sl", "so", "sq", "sr", "sv", "sw", "ta", "te", "th", "tl", "tr", "uk", "ur", "vi", "yo", "zh", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-08-29T05:52:29Z
--- tags: - sentence-transformers - transformers - multilingual - sentence-similarity license: apache-2.0 language: - af - ar - az - be - bg - bn - ca - ceb - cs - cy - da - de - el - en - es - et - eu - fa - fi - fr - gl - gu - he - hi - hr - ht - hu - hy - id - is - it - ja - jv - ka - kk - km - kn - ko - ky - lo - lt - lv - mk - ml - mn - mr - ms - my - ne - nl - 'no' - pa - pl - pt - qu - ro - ru - si - sk - sl - so - sq - sr - sv - sw - ta - te - th - tl - tr - uk - ur - vi - yo - zh --- ## gte-multilingual-base (no network) This is a mirror model for [`Alibaba-NLP/gte-multilingual-base`](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) in which all code is included in the same repository so no external network connection is needed when loading the model from local.
salbatarni/arabert_baseline_organization_task3_fold1
salbatarni
2024-08-29T05:45:22Z
5
0
null
[ "tensorboard", "safetensors", "bert", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "region:us" ]
null
2024-08-29T05:44:20Z
--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_baseline_organization_task3_fold1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # arabert_baseline_organization_task3_fold1 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5660 - Qwk: 0.0120 - Mse: 0.6114 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:| | No log | 0.6667 | 2 | 3.6631 | 0.0494 | 3.6515 | | No log | 1.3333 | 4 | 1.3687 | -0.0302 | 1.4053 | | No log | 2.0 | 6 | 1.0057 | -0.0097 | 1.0728 | | No log | 2.6667 | 8 | 0.5822 | 0.0403 | 0.6339 | | No log | 3.3333 | 10 | 0.6456 | 0.0120 | 0.7020 | | No log | 4.0 | 12 | 0.7331 | 0.0 | 0.7912 | | No log | 4.6667 | 14 | 0.7761 | 0.0 | 0.8325 | | No log | 5.3333 | 16 | 0.6870 | 0.0 | 0.7416 | | No log | 6.0 | 18 | 0.6157 | 0.0 | 0.6661 | | No log | 6.6667 | 20 | 0.5690 | 0.0120 | 0.6176 | | No log | 7.3333 | 22 | 0.5419 | 0.1646 | 0.5867 | | No log | 8.0 | 24 | 0.5390 | 0.1646 | 0.5830 | | No log | 8.6667 | 26 | 0.5477 | 0.0120 | 0.5917 | | No log | 9.3333 | 28 | 0.5587 | 0.0120 | 0.6034 | | No log | 10.0 | 30 | 0.5660 | 0.0120 | 0.6114 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1
yixuan-chia/snowflake-arctic-embed-m-v1.5-Q8_0-GGUF
yixuan-chia
2024-08-29T05:39:56Z
13
0
sentence-transformers
[ "sentence-transformers", "gguf", "feature-extraction", "sentence-similarity", "mteb", "arctic", "snowflake-arctic-embed", "transformers.js", "llama-cpp", "gguf-my-repo", "base_model:Snowflake/snowflake-arctic-embed-m-v1.5", "base_model:quantized:Snowflake/snowflake-arctic-embed-m-v1.5", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-08-29T05:39:52Z
--- base_model: Snowflake/snowflake-arctic-embed-m-v1.5 license: apache-2.0 pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - mteb - arctic - snowflake-arctic-embed - transformers.js - llama-cpp - gguf-my-repo model-index: - name: snowflake-arctic-embed-m-v1.5 results: - task: type: Retrieval dataset: name: MTEB ArguAna type: mteb/arguana config: default split: test revision: c22ab2a51041ffd869aaddef7af8d8215647e41a metrics: - type: main_score value: 59.53000000000001 - type: map_at_1 value: 34.282000000000004 - type: map_at_10 value: 50.613 - type: map_at_100 value: 51.269 - type: map_at_1000 value: 51.271 - type: map_at_20 value: 51.158 - type: map_at_3 value: 45.626 - type: map_at_5 value: 48.638 - type: mrr_at_1 value: 34.92176386913229 - type: mrr_at_10 value: 50.856081645555406 - type: mrr_at_100 value: 51.510739437069034 - type: mrr_at_1000 value: 51.51299498830165 - type: mrr_at_20 value: 51.39987941081724 - type: mrr_at_3 value: 45.993361782835514 - type: mrr_at_5 value: 48.88098624940742 - type: nauc_map_at_1000_diff1 value: 10.628675774160785 - type: nauc_map_at_1000_max value: -10.11742589992339 - type: nauc_map_at_1000_std value: -18.29277379812427 - type: nauc_map_at_100_diff1 value: 10.63250240035489 - type: nauc_map_at_100_max value: -10.112078786734363 - type: nauc_map_at_100_std value: -18.288524872706834 - type: nauc_map_at_10_diff1 value: 10.476494913081712 - type: nauc_map_at_10_max value: -9.890937746734037 - type: nauc_map_at_10_std value: -18.279750514750443 - type: nauc_map_at_1_diff1 value: 14.549204048461151 - type: nauc_map_at_1_max value: -12.230560087701225 - type: nauc_map_at_1_std value: -19.469903650130362 - type: nauc_map_at_20_diff1 value: 10.586564571825674 - type: nauc_map_at_20_max value: -10.00292720526217 - type: nauc_map_at_20_std value: -18.258077347878064 - type: nauc_map_at_3_diff1 value: 10.378663968090372 - type: nauc_map_at_3_max value: -10.458896171786185 - type: nauc_map_at_3_std value: -18.38852760333766 - type: nauc_map_at_5_diff1 value: 10.235960275925581 - type: nauc_map_at_5_max value: -10.239496080409058 - type: nauc_map_at_5_std value: -18.817023479445886 - type: nauc_mrr_at_1000_diff1 value: 8.718212649575722 - type: nauc_mrr_at_1000_max value: -10.81022794038691 - type: nauc_mrr_at_1000_std value: -17.87669499555167 - type: nauc_mrr_at_100_diff1 value: 8.722174171165133 - type: nauc_mrr_at_100_max value: -10.804840985713525 - type: nauc_mrr_at_100_std value: -17.872487099359986 - type: nauc_mrr_at_10_diff1 value: 8.609421635870238 - type: nauc_mrr_at_10_max value: -10.568644717548432 - type: nauc_mrr_at_10_std value: -17.872968762635814 - type: nauc_mrr_at_1_diff1 value: 12.69590006263834 - type: nauc_mrr_at_1_max value: -12.082056561238321 - type: nauc_mrr_at_1_std value: -18.036424092186657 - type: nauc_mrr_at_20_diff1 value: 8.684842497970315 - type: nauc_mrr_at_20_max value: -10.691578914627286 - type: nauc_mrr_at_20_std value: -17.84350301434992 - type: nauc_mrr_at_3_diff1 value: 8.649761557556763 - type: nauc_mrr_at_3_max value: -11.104694428047496 - type: nauc_mrr_at_3_std value: -18.149917948370344 - type: nauc_mrr_at_5_diff1 value: 8.433489750038396 - type: nauc_mrr_at_5_max value: -10.917772454397436 - type: nauc_mrr_at_5_std value: -18.4094211134111 - type: nauc_ndcg_at_1000_diff1 value: 10.19041067807956 - type: nauc_ndcg_at_1000_max value: -9.54328201605796 - type: nauc_ndcg_at_1000_std value: -17.824620427456633 - type: nauc_ndcg_at_100_diff1 value: 10.289491087585963 - type: nauc_ndcg_at_100_max value: -9.357214331420337 - type: nauc_ndcg_at_100_std value: -17.657600653632873 - type: nauc_ndcg_at_10_diff1 value: 9.435530877596092 - type: nauc_ndcg_at_10_max value: -8.182581635383546 - type: nauc_ndcg_at_10_std value: -17.603156479980388 - type: nauc_ndcg_at_1_diff1 value: 14.549204048461151 - type: nauc_ndcg_at_1_max value: -12.230560087701225 - type: nauc_ndcg_at_1_std value: -19.469903650130362 - type: nauc_ndcg_at_20_diff1 value: 9.885227087275197 - type: nauc_ndcg_at_20_max value: -8.52362662391439 - type: nauc_ndcg_at_20_std value: -17.441705436231764 - type: nauc_ndcg_at_3_diff1 value: 9.22542769998547 - type: nauc_ndcg_at_3_max value: -9.903590564219288 - type: nauc_ndcg_at_3_std value: -18.357220221111593 - type: nauc_ndcg_at_5_diff1 value: 8.8756720745828 - type: nauc_ndcg_at_5_max value: -9.269764943861245 - type: nauc_ndcg_at_5_std value: -19.009229433187784 - type: nauc_precision_at_1000_diff1 value: 3.733355117431035 - type: nauc_precision_at_1000_max value: 3.9603571352517393 - type: nauc_precision_at_1000_std value: 70.07345061131439 - type: nauc_precision_at_100_diff1 value: 29.019032142462457 - type: nauc_precision_at_100_max value: 40.75153328286103 - type: nauc_precision_at_100_std value: 62.634249549126594 - type: nauc_precision_at_10_diff1 value: 2.5762677254910353 - type: nauc_precision_at_10_max value: 6.096298633773051 - type: nauc_precision_at_10_std value: -11.507400451348587 - type: nauc_precision_at_1_diff1 value: 14.549204048461151 - type: nauc_precision_at_1_max value: -12.230560087701225 - type: nauc_precision_at_1_std value: -19.469903650130362 - type: nauc_precision_at_20_diff1 value: 1.715540124567996 - type: nauc_precision_at_20_max value: 21.53546453945913 - type: nauc_precision_at_20_std value: 1.537961142195571 - type: nauc_precision_at_3_diff1 value: 5.701850652555737 - type: nauc_precision_at_3_max value: -8.180345365085552 - type: nauc_precision_at_3_std value: -18.37033750502482 - type: nauc_precision_at_5_diff1 value: 3.6053552181042843 - type: nauc_precision_at_5_max value: -5.207647070615612 - type: nauc_precision_at_5_std value: -19.89491085427258 - type: nauc_recall_at_1000_diff1 value: 3.733355117431255 - type: nauc_recall_at_1000_max value: 3.9603571352482194 - type: nauc_recall_at_1000_std value: 70.07345061131205 - type: nauc_recall_at_100_diff1 value: 29.01903214246288 - type: nauc_recall_at_100_max value: 40.7515332828621 - type: nauc_recall_at_100_std value: 62.63424954912607 - type: nauc_recall_at_10_diff1 value: 2.5762677254911988 - type: nauc_recall_at_10_max value: 6.0962986337729905 - type: nauc_recall_at_10_std value: -11.507400451348577 - type: nauc_recall_at_1_diff1 value: 14.549204048461151 - type: nauc_recall_at_1_max value: -12.230560087701225 - type: nauc_recall_at_1_std value: -19.469903650130362 - type: nauc_recall_at_20_diff1 value: 1.7155401245682675 - type: nauc_recall_at_20_max value: 21.535464539459632 - type: nauc_recall_at_20_std value: 1.5379611421957025 - type: nauc_recall_at_3_diff1 value: 5.7018506525557875 - type: nauc_recall_at_3_max value: -8.180345365085538 - type: nauc_recall_at_3_std value: -18.370337505024796 - type: nauc_recall_at_5_diff1 value: 3.6053552181043913 - type: nauc_recall_at_5_max value: -5.207647070615579 - type: nauc_recall_at_5_std value: -19.894910854272492 - type: ndcg_at_1 value: 34.282000000000004 - type: ndcg_at_10 value: 59.53000000000001 - type: ndcg_at_100 value: 62.187000000000005 - type: ndcg_at_1000 value: 62.243 - type: ndcg_at_20 value: 61.451 - type: ndcg_at_3 value: 49.393 - type: ndcg_at_5 value: 54.771 - type: precision_at_1 value: 34.282000000000004 - type: precision_at_10 value: 8.791 - type: precision_at_100 value: 0.992 - type: precision_at_1000 value: 0.1 - type: precision_at_20 value: 4.769 - type: precision_at_3 value: 20.104 - type: precision_at_5 value: 14.651 - type: recall_at_1 value: 34.282000000000004 - type: recall_at_10 value: 87.909 - type: recall_at_100 value: 99.21799999999999 - type: recall_at_1000 value: 99.644 - type: recall_at_20 value: 95.377 - type: recall_at_3 value: 60.313 - type: recall_at_5 value: 73.257 - task: type: Retrieval dataset: name: MTEB CQADupstackAndroidRetrieval type: mteb/cqadupstack-android config: default split: test revision: f46a197baaae43b4f621051089b82a364682dfeb metrics: - type: main_score value: 53.885000000000005 - type: map_at_1 value: 35.429 - type: map_at_10 value: 47.469 - type: map_at_100 value: 48.997 - type: map_at_1000 value: 49.117 - type: map_at_20 value: 48.324 - type: map_at_3 value: 43.835 - type: map_at_5 value: 46.043 - type: mrr_at_1 value: 43.34763948497854 - type: mrr_at_10 value: 53.258623430297234 - type: mrr_at_100 value: 53.99123884299005 - type: mrr_at_1000 value: 54.02458101713216 - type: mrr_at_20 value: 53.695964669618945 - type: mrr_at_3 value: 50.81068192656173 - type: mrr_at_5 value: 52.45588936576058 - type: nauc_map_at_1000_diff1 value: 51.55382824218782 - type: nauc_map_at_1000_max value: 31.855350695084606 - type: nauc_map_at_1000_std value: -5.465862008150992 - type: nauc_map_at_100_diff1 value: 51.55889312452534 - type: nauc_map_at_100_max value: 31.88429637207401 - type: nauc_map_at_100_std value: -5.40805152544196 - type: nauc_map_at_10_diff1 value: 51.6592677505875 - type: nauc_map_at_10_max value: 31.554425233617543 - type: nauc_map_at_10_std value: -6.125756131339046 - type: nauc_map_at_1_diff1 value: 55.6889617582672 - type: nauc_map_at_1_max value: 27.821166966868176 - type: nauc_map_at_1_std value: -5.778838498211728 - type: nauc_map_at_20_diff1 value: 51.70520970992564 - type: nauc_map_at_20_max value: 31.811676633900465 - type: nauc_map_at_20_std value: -5.463596751904718 - type: nauc_map_at_3_diff1 value: 53.206169626589606 - type: nauc_map_at_3_max value: 31.64373830824983 - type: nauc_map_at_3_std value: -6.054761451312827 - type: nauc_map_at_5_diff1 value: 52.37308971673694 - type: nauc_map_at_5_max value: 31.974302019633644 - type: nauc_map_at_5_std value: -6.302653399940531 - type: nauc_mrr_at_1000_diff1 value: 49.345152231490616 - type: nauc_mrr_at_1000_max value: 33.49789501712511 - type: nauc_mrr_at_1000_std value: -6.054730861163538 - type: nauc_mrr_at_100_diff1 value: 49.3387577601307 - type: nauc_mrr_at_100_max value: 33.48149992464187 - type: nauc_mrr_at_100_std value: -6.061177137579308 - type: nauc_mrr_at_10_diff1 value: 49.08312288449718 - type: nauc_mrr_at_10_max value: 33.470393322577465 - type: nauc_mrr_at_10_std value: -6.180286430216975 - type: nauc_mrr_at_1_diff1 value: 52.43364978537192 - type: nauc_mrr_at_1_max value: 31.521755633355713 - type: nauc_mrr_at_1_std value: -7.002499524130836 - type: nauc_mrr_at_20_diff1 value: 49.311059224991766 - type: nauc_mrr_at_20_max value: 33.538523037692144 - type: nauc_mrr_at_20_std value: -6.034619474981136 - type: nauc_mrr_at_3_diff1 value: 49.90489868439366 - type: nauc_mrr_at_3_max value: 34.400493912164606 - type: nauc_mrr_at_3_std value: -6.028875320994629 - type: nauc_mrr_at_5_diff1 value: 49.033661898983475 - type: nauc_mrr_at_5_max value: 33.732315350193936 - type: nauc_mrr_at_5_std value: -6.272548556330368 - type: nauc_ndcg_at_1000_diff1 value: 49.81681892539247 - type: nauc_ndcg_at_1000_max value: 33.06518006062093 - type: nauc_ndcg_at_1000_std value: -4.282105713014755 - type: nauc_ndcg_at_100_diff1 value: 49.42362108857786 - type: nauc_ndcg_at_100_max value: 32.92024325540483 - type: nauc_ndcg_at_100_std value: -3.7786765305496717 - type: nauc_ndcg_at_10_diff1 value: 48.83102435475594 - type: nauc_ndcg_at_10_max value: 31.898404563611958 - type: nauc_ndcg_at_10_std value: -6.2024003866707 - type: nauc_ndcg_at_1_diff1 value: 52.43364978537192 - type: nauc_ndcg_at_1_max value: 31.521755633355713 - type: nauc_ndcg_at_1_std value: -7.002499524130836 - type: nauc_ndcg_at_20_diff1 value: 49.466526454438316 - type: nauc_ndcg_at_20_max value: 32.424462698701674 - type: nauc_ndcg_at_20_std value: -4.520809563712905 - type: nauc_ndcg_at_3_diff1 value: 50.997884562583884 - type: nauc_ndcg_at_3_max value: 33.26787046916917 - type: nauc_ndcg_at_3_std value: -6.340699471083753 - type: nauc_ndcg_at_5_diff1 value: 49.68314458398097 - type: nauc_ndcg_at_5_max value: 32.80910071143984 - type: nauc_ndcg_at_5_std value: -6.734495576445887 - type: nauc_precision_at_1000_diff1 value: -24.18940012795299 - type: nauc_precision_at_1000_max value: -10.995343674356896 - type: nauc_precision_at_1000_std value: -8.298841004724856 - type: nauc_precision_at_100_diff1 value: -18.104939577865935 - type: nauc_precision_at_100_max value: -1.3757613100627637 - type: nauc_precision_at_100_std value: 0.07661922190466432 - type: nauc_precision_at_10_diff1 value: 3.9624459059275967 - type: nauc_precision_at_10_max value: 14.841561593450391 - type: nauc_precision_at_10_std value: -2.485374333613117 - type: nauc_precision_at_1_diff1 value: 52.43364978537192 - type: nauc_precision_at_1_max value: 31.521755633355713 - type: nauc_precision_at_1_std value: -7.002499524130836 - type: nauc_precision_at_20_diff1 value: -4.4791763436505265 - type: nauc_precision_at_20_max value: 9.157872836996276 - type: nauc_precision_at_20_std value: 2.086903518342088 - type: nauc_precision_at_3_diff1 value: 28.480888018235568 - type: nauc_precision_at_3_max value: 30.34526267718485 - type: nauc_precision_at_3_std value: -6.3006706923866025 - type: nauc_precision_at_5_diff1 value: 16.488039195453517 - type: nauc_precision_at_5_max value: 24.593477099241852 - type: nauc_precision_at_5_std value: -5.316448107840636 - type: nauc_recall_at_1000_diff1 value: 34.715187316533076 - type: nauc_recall_at_1000_max value: 58.2266544684947 - type: nauc_recall_at_1000_std value: 63.85237636398278 - type: nauc_recall_at_100_diff1 value: 36.08623826028132 - type: nauc_recall_at_100_max value: 33.05011429439473 - type: nauc_recall_at_100_std value: 16.559545021212564 - type: nauc_recall_at_10_diff1 value: 39.76738610714205 - type: nauc_recall_at_10_max value: 28.233045706945997 - type: nauc_recall_at_10_std value: -5.13243784043598 - type: nauc_recall_at_1_diff1 value: 55.6889617582672 - type: nauc_recall_at_1_max value: 27.821166966868176 - type: nauc_recall_at_1_std value: -5.778838498211728 - type: nauc_recall_at_20_diff1 value: 41.18682480073759 - type: nauc_recall_at_20_max value: 29.525993239296945 - type: nauc_recall_at_20_std value: 1.5003598438954298 - type: nauc_recall_at_3_diff1 value: 48.31879460301157 - type: nauc_recall_at_3_max value: 32.93751306970167 - type: nauc_recall_at_3_std value: -5.28070084211707 - type: nauc_recall_at_5_diff1 value: 44.327686388315435 - type: nauc_recall_at_5_max value: 32.04823486234599 - type: nauc_recall_at_5_std value: -6.4221525602778256 - type: ndcg_at_1 value: 43.348 - type: ndcg_at_10 value: 53.885000000000005 - type: ndcg_at_100 value: 59.204 - type: ndcg_at_1000 value: 60.744 - type: ndcg_at_20 value: 55.995 - type: ndcg_at_3 value: 49.112 - type: ndcg_at_5 value: 51.61900000000001 - type: precision_at_1 value: 43.348 - type: precision_at_10 value: 10.242999999999999 - type: precision_at_100 value: 1.6150000000000002 - type: precision_at_1000 value: 0.203 - type: precision_at_20 value: 6.066 - type: precision_at_3 value: 23.605 - type: precision_at_5 value: 17.024 - type: recall_at_1 value: 35.429 - type: recall_at_10 value: 65.77199999999999 - type: recall_at_100 value: 87.89 - type: recall_at_1000 value: 97.13000000000001 - type: recall_at_20 value: 73.299 - type: recall_at_3 value: 52.034000000000006 - type: recall_at_5 value: 58.96 - task: type: Retrieval dataset: name: MTEB CQADupstackEnglishRetrieval type: mteb/cqadupstack-english config: default split: test revision: ad9991cb51e31e31e430383c75ffb2885547b5f0 metrics: - type: main_score value: 49.55 - type: map_at_1 value: 31.684 - type: map_at_10 value: 43.258 - type: map_at_100 value: 44.628 - type: map_at_1000 value: 44.761 - type: map_at_20 value: 44.015 - type: map_at_3 value: 39.778000000000006 - type: map_at_5 value: 41.643 - type: mrr_at_1 value: 39.87261146496815 - type: mrr_at_10 value: 49.31978566373469 - type: mrr_at_100 value: 49.94922739445482 - type: mrr_at_1000 value: 49.990325601254106 - type: mrr_at_20 value: 49.70597468576704 - type: mrr_at_3 value: 47.070063694267546 - type: mrr_at_5 value: 48.23248407643316 - type: nauc_map_at_1000_diff1 value: 53.44044712371752 - type: nauc_map_at_1000_max value: 34.5651440062204 - type: nauc_map_at_1000_std value: -0.9814384609230475 - type: nauc_map_at_100_diff1 value: 53.429004435388464 - type: nauc_map_at_100_max value: 34.52038957273436 - type: nauc_map_at_100_std value: -1.1021936362699805 - type: nauc_map_at_10_diff1 value: 53.879128574022005 - type: nauc_map_at_10_max value: 33.74771524140917 - type: nauc_map_at_10_std value: -2.945132777205236 - type: nauc_map_at_1_diff1 value: 60.25159799695403 - type: nauc_map_at_1_max value: 26.843892985235808 - type: nauc_map_at_1_std value: -9.618702739509093 - type: nauc_map_at_20_diff1 value: 53.56789898225283 - type: nauc_map_at_20_max value: 34.11628845872402 - type: nauc_map_at_20_std value: -2.024376635870884 - type: nauc_map_at_3_diff1 value: 54.45882099014072 - type: nauc_map_at_3_max value: 31.29495446507793 - type: nauc_map_at_3_std value: -6.391948228781555 - type: nauc_map_at_5_diff1 value: 54.20536489050697 - type: nauc_map_at_5_max value: 32.31001487256826 - type: nauc_map_at_5_std value: -5.050953263346934 - type: nauc_mrr_at_1000_diff1 value: 50.835858995999125 - type: nauc_mrr_at_1000_max value: 38.20717381701079 - type: nauc_mrr_at_1000_std value: 4.174163368228787 - type: nauc_mrr_at_100_diff1 value: 50.827072441041224 - type: nauc_mrr_at_100_max value: 38.21077622034756 - type: nauc_mrr_at_100_std value: 4.1951082737013365 - type: nauc_mrr_at_10_diff1 value: 50.90578491570948 - type: nauc_mrr_at_10_max value: 38.19229691746408 - type: nauc_mrr_at_10_std value: 3.8290750066335546 - type: nauc_mrr_at_1_diff1 value: 54.807021746871186 - type: nauc_mrr_at_1_max value: 37.09225642043841 - type: nauc_mrr_at_1_std value: 0.5654547513131355 - type: nauc_mrr_at_20_diff1 value: 50.86247832095378 - type: nauc_mrr_at_20_max value: 38.19277867384178 - type: nauc_mrr_at_20_std value: 4.098932316791841 - type: nauc_mrr_at_3_diff1 value: 50.788934370903036 - type: nauc_mrr_at_3_max value: 37.72130561895659 - type: nauc_mrr_at_3_std value: 2.7339370381517583 - type: nauc_mrr_at_5_diff1 value: 50.72543792525547 - type: nauc_mrr_at_5_max value: 37.57740908475375 - type: nauc_mrr_at_5_std value: 2.742881431085094 - type: nauc_ndcg_at_1000_diff1 value: 50.89692885407576 - type: nauc_ndcg_at_1000_max value: 37.250583054716955 - type: nauc_ndcg_at_1000_std value: 5.552279826578831 - type: nauc_ndcg_at_100_diff1 value: 50.624606875496944 - type: nauc_ndcg_at_100_max value: 37.1024514234627 - type: nauc_ndcg_at_100_std value: 5.495892760032762 - type: nauc_ndcg_at_10_diff1 value: 51.910387255793445 - type: nauc_ndcg_at_10_max value: 36.71168418905039 - type: nauc_ndcg_at_10_std value: 2.3064115117905217 - type: nauc_ndcg_at_1_diff1 value: 54.807021746871186 - type: nauc_ndcg_at_1_max value: 37.09225642043841 - type: nauc_ndcg_at_1_std value: 0.5654547513131355 - type: nauc_ndcg_at_20_diff1 value: 51.43416588546778 - type: nauc_ndcg_at_20_max value: 36.76387180172346 - type: nauc_ndcg_at_20_std value: 3.7012798827049718 - type: nauc_ndcg_at_3_diff1 value: 50.91198494475423 - type: nauc_ndcg_at_3_max value: 34.92770670756687 - type: nauc_ndcg_at_3_std value: -0.9071486759887368 - type: nauc_ndcg_at_5_diff1 value: 51.63559468683886 - type: nauc_ndcg_at_5_max value: 34.86849679864564 - type: nauc_ndcg_at_5_std value: -0.734837221224976 - type: nauc_precision_at_1000_diff1 value: -13.43645457127175 - type: nauc_precision_at_1000_max value: 12.71162105198664 - type: nauc_precision_at_1000_std value: 33.175399007040255 - type: nauc_precision_at_100_diff1 value: -8.549834785105412 - type: nauc_precision_at_100_max value: 22.47383497331883 - type: nauc_precision_at_100_std value: 39.09108761430844 - type: nauc_precision_at_10_diff1 value: 7.556572451100043 - type: nauc_precision_at_10_max value: 35.35285122987575 - type: nauc_precision_at_10_std value: 29.417466305615967 - type: nauc_precision_at_1_diff1 value: 54.807021746871186 - type: nauc_precision_at_1_max value: 37.09225642043841 - type: nauc_precision_at_1_std value: 0.5654547513131355 - type: nauc_precision_at_20_diff1 value: -0.550158641635712 - type: nauc_precision_at_20_max value: 29.9068430006187 - type: nauc_precision_at_20_std value: 33.920603132821185 - type: nauc_precision_at_3_diff1 value: 25.551264664276687 - type: nauc_precision_at_3_max value: 37.59463225854679 - type: nauc_precision_at_3_std value: 13.707295021359043 - type: nauc_precision_at_5_diff1 value: 17.76136129817151 - type: nauc_precision_at_5_max value: 35.85363807255972 - type: nauc_precision_at_5_std value: 19.48470876841111 - type: nauc_recall_at_1000_diff1 value: 37.1593620123866 - type: nauc_recall_at_1000_max value: 46.29322536951135 - type: nauc_recall_at_1000_std value: 51.47312657083967 - type: nauc_recall_at_100_diff1 value: 37.7542224949536 - type: nauc_recall_at_100_max value: 38.84120637703135 - type: nauc_recall_at_100_std value: 28.839672572221925 - type: nauc_recall_at_10_diff1 value: 46.24130302658384 - type: nauc_recall_at_10_max value: 35.89001724712849 - type: nauc_recall_at_10_std value: 6.985137790828618 - type: nauc_recall_at_1_diff1 value: 60.25159799695403 - type: nauc_recall_at_1_max value: 26.843892985235808 - type: nauc_recall_at_1_std value: -9.618702739509093 - type: nauc_recall_at_20_diff1 value: 43.63576680886187 - type: nauc_recall_at_20_max value: 36.79079644708101 - type: nauc_recall_at_20_std value: 13.81561928605839 - type: nauc_recall_at_3_diff1 value: 48.2299322140522 - type: nauc_recall_at_3_max value: 30.038088484376203 - type: nauc_recall_at_3_std value: -4.871116183843762 - type: nauc_recall_at_5_diff1 value: 47.22331872695983 - type: nauc_recall_at_5_max value: 30.398541477173136 - type: nauc_recall_at_5_std value: -3.2038541888528957 - type: ndcg_at_1 value: 39.873 - type: ndcg_at_10 value: 49.55 - type: ndcg_at_100 value: 53.809 - type: ndcg_at_1000 value: 55.767999999999994 - type: ndcg_at_20 value: 51.275999999999996 - type: ndcg_at_3 value: 44.91 - type: ndcg_at_5 value: 46.855999999999995 - type: precision_at_1 value: 39.873 - type: precision_at_10 value: 9.65 - type: precision_at_100 value: 1.522 - type: precision_at_1000 value: 0.196 - type: precision_at_20 value: 5.701 - type: precision_at_3 value: 22.166 - type: precision_at_5 value: 15.643 - type: recall_at_1 value: 31.684 - type: recall_at_10 value: 60.69 - type: recall_at_100 value: 78.521 - type: recall_at_1000 value: 91.02900000000001 - type: recall_at_20 value: 66.973 - type: recall_at_3 value: 46.807 - type: recall_at_5 value: 52.402 - task: type: Retrieval dataset: name: MTEB CQADupstackGamingRetrieval type: mteb/cqadupstack-gaming config: default split: test revision: 4885aa143210c98657558c04aaf3dc47cfb54340 metrics: - type: main_score value: 62.686 - type: map_at_1 value: 43.856 - type: map_at_10 value: 57.056 - type: map_at_100 value: 58.048 - type: map_at_1000 value: 58.092 - type: map_at_20 value: 57.684000000000005 - type: map_at_3 value: 53.958 - type: map_at_5 value: 55.80500000000001 - type: mrr_at_1 value: 50.03134796238244 - type: mrr_at_10 value: 60.31022043091019 - type: mrr_at_100 value: 60.91892338857461 - type: mrr_at_1000 value: 60.93770463536649 - type: mrr_at_20 value: 60.705642387392736 - type: mrr_at_3 value: 58.286311389759746 - type: mrr_at_5 value: 59.49320794148393 - type: nauc_map_at_1000_diff1 value: 54.849140197256695 - type: nauc_map_at_1000_max value: 38.978448968260224 - type: nauc_map_at_1000_std value: 0.4955439383268162 - type: nauc_map_at_100_diff1 value: 54.824334747823364 - type: nauc_map_at_100_max value: 38.959443109450994 - type: nauc_map_at_100_std value: 0.49626092018886037 - type: nauc_map_at_10_diff1 value: 54.778189277103394 - type: nauc_map_at_10_max value: 38.20972191654546 - type: nauc_map_at_10_std value: -0.7239823837455759 - type: nauc_map_at_1_diff1 value: 58.74017164752485 - type: nauc_map_at_1_max value: 31.528974862589585 - type: nauc_map_at_1_std value: -3.273824691929492 - type: nauc_map_at_20_diff1 value: 54.78943693416187 - type: nauc_map_at_20_max value: 38.77930316443076 - type: nauc_map_at_20_std value: 0.25607460088355544 - type: nauc_map_at_3_diff1 value: 55.68313410225767 - type: nauc_map_at_3_max value: 36.22847284104399 - type: nauc_map_at_3_std value: -3.010979639100503 - type: nauc_map_at_5_diff1 value: 55.11385094420661 - type: nauc_map_at_5_max value: 37.319681045490924 - type: nauc_map_at_5_std value: -2.156640733221061 - type: nauc_mrr_at_1000_diff1 value: 54.504759468380705 - type: nauc_mrr_at_1000_max value: 40.58849492650406 - type: nauc_mrr_at_1000_std value: 1.8226622175866118 - type: nauc_mrr_at_100_diff1 value: 54.4918034449886 - type: nauc_mrr_at_100_max value: 40.59202728933427 - type: nauc_mrr_at_100_std value: 1.8276428096536335 - type: nauc_mrr_at_10_diff1 value: 54.33603399493329 - type: nauc_mrr_at_10_max value: 40.58896878978089 - type: nauc_mrr_at_10_std value: 1.5733340909114375 - type: nauc_mrr_at_1_diff1 value: 58.062410036466105 - type: nauc_mrr_at_1_max value: 37.660958859966506 - type: nauc_mrr_at_1_std value: 0.029007600674170648 - type: nauc_mrr_at_20_diff1 value: 54.43793386924358 - type: nauc_mrr_at_20_max value: 40.66773423875307 - type: nauc_mrr_at_20_std value: 1.891967891797154 - type: nauc_mrr_at_3_diff1 value: 54.77901284537966 - type: nauc_mrr_at_3_max value: 40.182219821206964 - type: nauc_mrr_at_3_std value: 0.8911935034597871 - type: nauc_mrr_at_5_diff1 value: 54.466068837163675 - type: nauc_mrr_at_5_max value: 40.334996916684126 - type: nauc_mrr_at_5_std value: 0.9460830492892364 - type: nauc_ndcg_at_1000_diff1 value: 53.8465376860938 - type: nauc_ndcg_at_1000_max value: 41.63158111016696 - type: nauc_ndcg_at_1000_std value: 3.864205884257578 - type: nauc_ndcg_at_100_diff1 value: 53.4025864436944 - type: nauc_ndcg_at_100_max value: 41.805453995307914 - type: nauc_ndcg_at_100_std value: 4.36777557904857 - type: nauc_ndcg_at_10_diff1 value: 52.96034987157544 - type: nauc_ndcg_at_10_max value: 40.7601173480795 - type: nauc_ndcg_at_10_std value: 1.905824035879141 - type: nauc_ndcg_at_1_diff1 value: 58.062410036466105 - type: nauc_ndcg_at_1_max value: 37.660958859966506 - type: nauc_ndcg_at_1_std value: 0.029007600674170648 - type: nauc_ndcg_at_20_diff1 value: 53.2834771889242 - type: nauc_ndcg_at_20_max value: 41.713541932946406 - type: nauc_ndcg_at_20_std value: 3.865102828793311 - type: nauc_ndcg_at_3_diff1 value: 54.03389464372289 - type: nauc_ndcg_at_3_max value: 38.41449914649933 - type: nauc_ndcg_at_3_std value: -0.886276189886313 - type: nauc_ndcg_at_5_diff1 value: 53.456413320299 - type: nauc_ndcg_at_5_max value: 39.49048882649335 - type: nauc_ndcg_at_5_std value: -0.42692690160443814 - type: nauc_precision_at_1000_diff1 value: -14.770791653274824 - type: nauc_precision_at_1000_max value: 21.479874538905246 - type: nauc_precision_at_1000_std value: 28.607024261300207 - type: nauc_precision_at_100_diff1 value: -12.189696449878126 - type: nauc_precision_at_100_max value: 26.69785787492456 - type: nauc_precision_at_100_std value: 33.59098307467553 - type: nauc_precision_at_10_diff1 value: 6.922968330978399 - type: nauc_precision_at_10_max value: 34.52138344123087 - type: nauc_precision_at_10_std value: 21.768427637079952 - type: nauc_precision_at_1_diff1 value: 58.062410036466105 - type: nauc_precision_at_1_max value: 37.660958859966506 - type: nauc_precision_at_1_std value: 0.029007600674170648 - type: nauc_precision_at_20_diff1 value: -0.6837867902179278 - type: nauc_precision_at_20_max value: 33.98683709011133 - type: nauc_precision_at_20_std value: 30.8845561918902 - type: nauc_precision_at_3_diff1 value: 28.195043041120847 - type: nauc_precision_at_3_max value: 37.659916094938836 - type: nauc_precision_at_3_std value: 7.226520146634867 - type: nauc_precision_at_5_diff1 value: 16.633667288096245 - type: nauc_precision_at_5_max value: 34.90176597404891 - type: nauc_precision_at_5_std value: 12.421585442334088 - type: nauc_recall_at_1000_diff1 value: 45.20743732415397 - type: nauc_recall_at_1000_max value: 72.77115913579242 - type: nauc_recall_at_1000_std value: 70.48328496679083 - type: nauc_recall_at_100_diff1 value: 38.56282680810794 - type: nauc_recall_at_100_max value: 55.46797683321103 - type: nauc_recall_at_100_std value: 36.878791151929136 - type: nauc_recall_at_10_diff1 value: 44.18252051452362 - type: nauc_recall_at_10_max value: 43.33391810040086 - type: nauc_recall_at_10_std value: 6.663378192277723 - type: nauc_recall_at_1_diff1 value: 58.74017164752485 - type: nauc_recall_at_1_max value: 31.528974862589585 - type: nauc_recall_at_1_std value: -3.273824691929492 - type: nauc_recall_at_20_diff1 value: 44.19944231642417 - type: nauc_recall_at_20_max value: 49.401101483915866 - type: nauc_recall_at_20_std value: 18.97803841673839 - type: nauc_recall_at_3_diff1 value: 49.56378985428704 - type: nauc_recall_at_3_max value: 36.434210616870224 - type: nauc_recall_at_3_std value: -2.850559971607616 - type: nauc_recall_at_5_diff1 value: 47.37107217086109 - type: nauc_recall_at_5_max value: 39.0236745509895 - type: nauc_recall_at_5_std value: -1.7402454457937195 - type: ndcg_at_1 value: 50.031000000000006 - type: ndcg_at_10 value: 62.686 - type: ndcg_at_100 value: 66.403 - type: ndcg_at_1000 value: 67.241 - type: ndcg_at_20 value: 64.37899999999999 - type: ndcg_at_3 value: 57.859 - type: ndcg_at_5 value: 60.375 - type: precision_at_1 value: 50.031000000000006 - type: precision_at_10 value: 9.856 - type: precision_at_100 value: 1.266 - type: precision_at_1000 value: 0.13799999999999998 - type: precision_at_20 value: 5.489 - type: precision_at_3 value: 25.746999999999996 - type: precision_at_5 value: 17.492 - type: recall_at_1 value: 43.856 - type: recall_at_10 value: 75.824 - type: recall_at_100 value: 91.622 - type: recall_at_1000 value: 97.538 - type: recall_at_20 value: 81.951 - type: recall_at_3 value: 63.016000000000005 - type: recall_at_5 value: 69.18299999999999 - task: type: Retrieval dataset: name: MTEB CQADupstackGisRetrieval type: mteb/cqadupstack-gis config: default split: test revision: 5003b3064772da1887988e05400cf3806fe491f2 metrics: - type: main_score value: 43.983 - type: map_at_1 value: 28.942 - type: map_at_10 value: 38.621 - type: map_at_100 value: 39.7 - type: map_at_1000 value: 39.766 - type: map_at_20 value: 39.262 - type: map_at_3 value: 35.719 - type: map_at_5 value: 37.378 - type: mrr_at_1 value: 31.29943502824859 - type: mrr_at_10 value: 40.76463994260603 - type: mrr_at_100 value: 41.67073617629083 - type: mrr_at_1000 value: 41.717446259457105 - type: mrr_at_20 value: 41.32577374689195 - type: mrr_at_3 value: 37.984934086628996 - type: mrr_at_5 value: 39.64595103578152 - type: nauc_map_at_1000_diff1 value: 43.64461679688985 - type: nauc_map_at_1000_max value: 31.53717883948204 - type: nauc_map_at_1000_std value: 1.193745788248017 - type: nauc_map_at_100_diff1 value: 43.63847825079489 - type: nauc_map_at_100_max value: 31.536602619279165 - type: nauc_map_at_100_std value: 1.2001240243342401 - type: nauc_map_at_10_diff1 value: 43.845991987142014 - type: nauc_map_at_10_max value: 31.27509937344113 - type: nauc_map_at_10_std value: 0.7327934840520994 - type: nauc_map_at_1_diff1 value: 50.62269273984579 - type: nauc_map_at_1_max value: 30.16325757909521 - type: nauc_map_at_1_std value: -0.6398875136233392 - type: nauc_map_at_20_diff1 value: 43.630758403790914 - type: nauc_map_at_20_max value: 31.408258098047703 - type: nauc_map_at_20_std value: 1.12616034652217 - type: nauc_map_at_3_diff1 value: 44.823493567359456 - type: nauc_map_at_3_max value: 31.075886347614496 - type: nauc_map_at_3_std value: -0.25126874515735426 - type: nauc_map_at_5_diff1 value: 43.79768853087658 - type: nauc_map_at_5_max value: 31.091080995725324 - type: nauc_map_at_5_std value: 0.16440771782544047 - type: nauc_mrr_at_1000_diff1 value: 42.7865400752329 - type: nauc_mrr_at_1000_max value: 32.84731670326893 - type: nauc_mrr_at_1000_std value: 2.6067637582013825 - type: nauc_mrr_at_100_diff1 value: 42.771741548331065 - type: nauc_mrr_at_100_max value: 32.85324232845987 - type: nauc_mrr_at_100_std value: 2.6092786694308376 - type: nauc_mrr_at_10_diff1 value: 42.82969738870672 - type: nauc_mrr_at_10_max value: 32.69407549631432 - type: nauc_mrr_at_10_std value: 2.302903910016054 - type: nauc_mrr_at_1_diff1 value: 49.05638333657571 - type: nauc_mrr_at_1_max value: 33.12030717171514 - type: nauc_mrr_at_1_std value: 1.3278035087690774 - type: nauc_mrr_at_20_diff1 value: 42.74267239536286 - type: nauc_mrr_at_20_max value: 32.78571108973092 - type: nauc_mrr_at_20_std value: 2.5932669908758643 - type: nauc_mrr_at_3_diff1 value: 43.69963426089187 - type: nauc_mrr_at_3_max value: 32.78193126956233 - type: nauc_mrr_at_3_std value: 1.634874463134699 - type: nauc_mrr_at_5_diff1 value: 42.838630647832524 - type: nauc_mrr_at_5_max value: 32.459318735260545 - type: nauc_mrr_at_5_std value: 1.9412518283209172 - type: nauc_ndcg_at_1000_diff1 value: 41.01253839851583 - type: nauc_ndcg_at_1000_max value: 32.69570568894237 - type: nauc_ndcg_at_1000_std value: 3.4254737113410343 - type: nauc_ndcg_at_100_diff1 value: 40.62589243745832 - type: nauc_ndcg_at_100_max value: 32.664990655736126 - type: nauc_ndcg_at_100_std value: 3.799569445326048 - type: nauc_ndcg_at_10_diff1 value: 41.31658753735306 - type: nauc_ndcg_at_10_max value: 31.511946320339295 - type: nauc_ndcg_at_10_std value: 2.0492930500796662 - type: nauc_ndcg_at_1_diff1 value: 49.05638333657571 - type: nauc_ndcg_at_1_max value: 33.12030717171514 - type: nauc_ndcg_at_1_std value: 1.3278035087690774 - type: nauc_ndcg_at_20_diff1 value: 40.66188223212841 - type: nauc_ndcg_at_20_max value: 31.926240431497476 - type: nauc_ndcg_at_20_std value: 3.370398664595343 - type: nauc_ndcg_at_3_diff1 value: 43.035580180241 - type: nauc_ndcg_at_3_max value: 31.363874129878404 - type: nauc_ndcg_at_3_std value: 0.1422507242819929 - type: nauc_ndcg_at_5_diff1 value: 41.29049003955878 - type: nauc_ndcg_at_5_max value: 31.112034994977737 - type: nauc_ndcg_at_5_std value: 0.860179279828966 - type: nauc_precision_at_1000_diff1 value: -12.41854465881981 - type: nauc_precision_at_1000_max value: 14.706779246590548 - type: nauc_precision_at_1000_std value: 9.812804367375206 - type: nauc_precision_at_100_diff1 value: 2.797520107808461 - type: nauc_precision_at_100_max value: 24.335873541811406 - type: nauc_precision_at_100_std value: 12.87186398750545 - type: nauc_precision_at_10_diff1 value: 24.530962799265847 - type: nauc_precision_at_10_max value: 31.00772010798733 - type: nauc_precision_at_10_std value: 6.696733001548185 - type: nauc_precision_at_1_diff1 value: 49.05638333657571 - type: nauc_precision_at_1_max value: 33.12030717171514 - type: nauc_precision_at_1_std value: 1.3278035087690774 - type: nauc_precision_at_20_diff1 value: 16.25028416351204 - type: nauc_precision_at_20_max value: 29.629326492027342 - type: nauc_precision_at_20_std value: 11.085888573121679 - type: nauc_precision_at_3_diff1 value: 33.923667689694256 - type: nauc_precision_at_3_max value: 33.5859782361996 - type: nauc_precision_at_3_std value: 1.9468331086918693 - type: nauc_precision_at_5_diff1 value: 27.917827233088875 - type: nauc_precision_at_5_max value: 33.13290043423535 - type: nauc_precision_at_5_std value: 3.800870695945311 - type: nauc_recall_at_1000_diff1 value: 9.680283388428789 - type: nauc_recall_at_1000_max value: 49.479399284871235 - type: nauc_recall_at_1000_std value: 31.506985071436088 - type: nauc_recall_at_100_diff1 value: 23.607673377885448 - type: nauc_recall_at_100_max value: 36.637750366403935 - type: nauc_recall_at_100_std value: 18.30770690564224 - type: nauc_recall_at_10_diff1 value: 33.199683418312446 - type: nauc_recall_at_10_max value: 29.63115497012312 - type: nauc_recall_at_10_std value: 4.813200391480566 - type: nauc_recall_at_1_diff1 value: 50.62269273984579 - type: nauc_recall_at_1_max value: 30.16325757909521 - type: nauc_recall_at_1_std value: -0.6398875136233392 - type: nauc_recall_at_20_diff1 value: 29.16488387844995 - type: nauc_recall_at_20_max value: 30.788019479459 - type: nauc_recall_at_20_std value: 11.031953917298853 - type: nauc_recall_at_3_diff1 value: 38.215351600417065 - type: nauc_recall_at_3_max value: 29.619887154236128 - type: nauc_recall_at_3_std value: -0.13237298980339363 - type: nauc_recall_at_5_diff1 value: 33.93788042633265 - type: nauc_recall_at_5_max value: 28.67185092656741 - type: nauc_recall_at_5_std value: 1.316700201091445 - type: ndcg_at_1 value: 31.299 - type: ndcg_at_10 value: 43.983 - type: ndcg_at_100 value: 48.992999999999995 - type: ndcg_at_1000 value: 50.757 - type: ndcg_at_20 value: 46.152 - type: ndcg_at_3 value: 38.367000000000004 - type: ndcg_at_5 value: 41.171 - type: precision_at_1 value: 31.299 - type: precision_at_10 value: 6.734 - type: precision_at_100 value: 0.972 - type: precision_at_1000 value: 0.11499999999999999 - type: precision_at_20 value: 3.898 - type: precision_at_3 value: 16.121 - type: precision_at_5 value: 11.344999999999999 - type: recall_at_1 value: 28.942 - type: recall_at_10 value: 58.343999999999994 - type: recall_at_100 value: 80.82300000000001 - type: recall_at_1000 value: 94.348 - type: recall_at_20 value: 66.449 - type: recall_at_3 value: 43.415 - type: recall_at_5 value: 50.007999999999996 - task: type: Retrieval dataset: name: MTEB CQADupstackMathematicaRetrieval type: mteb/cqadupstack-mathematica config: default split: test revision: 90fceea13679c63fe563ded68f3b6f06e50061de metrics: - type: main_score value: 33.144 - type: map_at_1 value: 19.41 - type: map_at_10 value: 27.802 - type: map_at_100 value: 29.157 - type: map_at_1000 value: 29.274 - type: map_at_20 value: 28.549000000000003 - type: map_at_3 value: 25.052999999999997 - type: map_at_5 value: 26.521 - type: mrr_at_1 value: 23.756218905472636 - type: mrr_at_10 value: 32.3623450209271 - type: mrr_at_100 value: 33.3648208444617 - type: mrr_at_1000 value: 33.427688215162185 - type: mrr_at_20 value: 32.93723485575758 - type: mrr_at_3 value: 29.539800995024883 - type: mrr_at_5 value: 31.156716417910452 - type: nauc_map_at_1000_diff1 value: 36.196391248081284 - type: nauc_map_at_1000_max value: 25.650644367091495 - type: nauc_map_at_1000_std value: 6.130340697729844 - type: nauc_map_at_100_diff1 value: 36.138890642411376 - type: nauc_map_at_100_max value: 25.587124763888518 - type: nauc_map_at_100_std value: 6.129336379055536 - type: nauc_map_at_10_diff1 value: 36.254426743566775 - type: nauc_map_at_10_max value: 25.465599906543034 - type: nauc_map_at_10_std value: 5.880280378112879 - type: nauc_map_at_1_diff1 value: 42.890551563179976 - type: nauc_map_at_1_max value: 25.813805281076956 - type: nauc_map_at_1_std value: 5.150718386163028 - type: nauc_map_at_20_diff1 value: 35.98551587974314 - type: nauc_map_at_20_max value: 25.501540521726636 - type: nauc_map_at_20_std value: 5.858703157458749 - type: nauc_map_at_3_diff1 value: 37.646558039577734 - type: nauc_map_at_3_max value: 26.138491471124247 - type: nauc_map_at_3_std value: 6.0487505175540734 - type: nauc_map_at_5_diff1 value: 36.817582976153695 - type: nauc_map_at_5_max value: 25.398200211121146 - type: nauc_map_at_5_std value: 6.31126763919522 - type: nauc_mrr_at_1000_diff1 value: 37.313544952847835 - type: nauc_mrr_at_1000_max value: 26.96218532078988 - type: nauc_mrr_at_1000_std value: 6.814359224654042 - type: nauc_mrr_at_100_diff1 value: 37.28104407653679 - type: nauc_mrr_at_100_max value: 26.931243040477256 - type: nauc_mrr_at_100_std value: 6.800500150841733 - type: nauc_mrr_at_10_diff1 value: 37.315832621275895 - type: nauc_mrr_at_10_max value: 26.941454225978372 - type: nauc_mrr_at_10_std value: 6.837046527796884 - type: nauc_mrr_at_1_diff1 value: 43.19904188582958 - type: nauc_mrr_at_1_max value: 26.975620445904795 - type: nauc_mrr_at_1_std value: 4.52071008581395 - type: nauc_mrr_at_20_diff1 value: 37.2200524790774 - type: nauc_mrr_at_20_max value: 26.971494160765847 - type: nauc_mrr_at_20_std value: 6.716431228783282 - type: nauc_mrr_at_3_diff1 value: 38.46236387340654 - type: nauc_mrr_at_3_max value: 27.846812992192056 - type: nauc_mrr_at_3_std value: 6.550711872569794 - type: nauc_mrr_at_5_diff1 value: 37.620346007658476 - type: nauc_mrr_at_5_max value: 27.031025952102038 - type: nauc_mrr_at_5_std value: 7.32343760231163 - type: nauc_ndcg_at_1000_diff1 value: 34.95081314840592 - type: nauc_ndcg_at_1000_max value: 26.89265465124325 - type: nauc_ndcg_at_1000_std value: 7.854154466831975 - type: nauc_ndcg_at_100_diff1 value: 34.01417812563093 - type: nauc_ndcg_at_100_max value: 25.792737746436835 - type: nauc_ndcg_at_100_std value: 7.726584165493833 - type: nauc_ndcg_at_10_diff1 value: 33.895122516474466 - type: nauc_ndcg_at_10_max value: 25.388442204589612 - type: nauc_ndcg_at_10_std value: 6.359560223645991 - type: nauc_ndcg_at_1_diff1 value: 43.19904188582958 - type: nauc_ndcg_at_1_max value: 26.975620445904795 - type: nauc_ndcg_at_1_std value: 4.52071008581395 - type: nauc_ndcg_at_20_diff1 value: 33.36078689830245 - type: nauc_ndcg_at_20_max value: 25.531794610571563 - type: nauc_ndcg_at_20_std value: 6.136658608653248 - type: nauc_ndcg_at_3_diff1 value: 36.44505602530781 - type: nauc_ndcg_at_3_max value: 26.9104071983157 - type: nauc_ndcg_at_3_std value: 6.427178520371878 - type: nauc_ndcg_at_5_diff1 value: 35.01384323197442 - type: nauc_ndcg_at_5_max value: 25.5560447088692 - type: nauc_ndcg_at_5_std value: 7.3676236760360485 - type: nauc_precision_at_1000_diff1 value: 2.8903331041804514 - type: nauc_precision_at_1000_max value: 4.059662742366004 - type: nauc_precision_at_1000_std value: -1.5891687644008334 - type: nauc_precision_at_100_diff1 value: 8.437726471693766 - type: nauc_precision_at_100_max value: 11.250588557568427 - type: nauc_precision_at_100_std value: 4.231571164627862 - type: nauc_precision_at_10_diff1 value: 19.57085237210294 - type: nauc_precision_at_10_max value: 20.973093492003905 - type: nauc_precision_at_10_std value: 3.197416248152466 - type: nauc_precision_at_1_diff1 value: 43.19904188582958 - type: nauc_precision_at_1_max value: 26.975620445904795 - type: nauc_precision_at_1_std value: 4.52071008581395 - type: nauc_precision_at_20_diff1 value: 15.67136554192724 - type: nauc_precision_at_20_max value: 17.706882621057858 - type: nauc_precision_at_20_std value: 1.9363472182867714 - type: nauc_precision_at_3_diff1 value: 30.38035695042325 - type: nauc_precision_at_3_max value: 26.48218693244094 - type: nauc_precision_at_3_std value: 6.424657705785632 - type: nauc_precision_at_5_diff1 value: 25.272543315171458 - type: nauc_precision_at_5_max value: 22.32441421311652 - type: nauc_precision_at_5_std value: 7.4912569081905716 - type: nauc_recall_at_1000_diff1 value: 25.5748044137675 - type: nauc_recall_at_1000_max value: 43.85796585370269 - type: nauc_recall_at_1000_std value: 30.0338086596789 - type: nauc_recall_at_100_diff1 value: 22.577080638885093 - type: nauc_recall_at_100_max value: 23.224511700617477 - type: nauc_recall_at_100_std value: 15.187963852289313 - type: nauc_recall_at_10_diff1 value: 25.058592299355908 - type: nauc_recall_at_10_max value: 22.24448483279841 - type: nauc_recall_at_10_std value: 6.3179089740052765 - type: nauc_recall_at_1_diff1 value: 42.890551563179976 - type: nauc_recall_at_1_max value: 25.813805281076956 - type: nauc_recall_at_1_std value: 5.150718386163028 - type: nauc_recall_at_20_diff1 value: 22.433865123187307 - type: nauc_recall_at_20_max value: 22.739695641511762 - type: nauc_recall_at_20_std value: 5.362005125538497 - type: nauc_recall_at_3_diff1 value: 32.17919168998616 - type: nauc_recall_at_3_max value: 26.044028436867357 - type: nauc_recall_at_3_std value: 7.420349884006329 - type: nauc_recall_at_5_diff1 value: 28.967104573649138 - type: nauc_recall_at_5_max value: 23.40865848168201 - type: nauc_recall_at_5_std value: 9.174406147723621 - type: ndcg_at_1 value: 23.756 - type: ndcg_at_10 value: 33.144 - type: ndcg_at_100 value: 39.261 - type: ndcg_at_1000 value: 41.881 - type: ndcg_at_20 value: 35.56 - type: ndcg_at_3 value: 27.927999999999997 - type: ndcg_at_5 value: 30.293999999999997 - type: precision_at_1 value: 23.756 - type: precision_at_10 value: 5.995 - type: precision_at_100 value: 1.053 - type: precision_at_1000 value: 0.14100000000000001 - type: precision_at_20 value: 3.688 - type: precision_at_3 value: 13.059999999999999 - type: precision_at_5 value: 9.602 - type: recall_at_1 value: 19.41 - type: recall_at_10 value: 45.074 - type: recall_at_100 value: 71.131 - type: recall_at_1000 value: 89.604 - type: recall_at_20 value: 53.673 - type: recall_at_3 value: 31.055 - type: recall_at_5 value: 36.714999999999996 - task: type: Retrieval dataset: name: MTEB CQADupstackPhysicsRetrieval type: mteb/cqadupstack-physics config: default split: test revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4 metrics: - type: main_score value: 49.675000000000004 - type: map_at_1 value: 33.178999999999995 - type: map_at_10 value: 43.807 - type: map_at_100 value: 45.17 - type: map_at_1000 value: 45.271 - type: map_at_20 value: 44.516 - type: map_at_3 value: 40.813 - type: map_at_5 value: 42.457 - type: mrr_at_1 value: 40.32723772858518 - type: mrr_at_10 value: 49.646867409138814 - type: mrr_at_100 value: 50.493686101426285 - type: mrr_at_1000 value: 50.525386961808834 - type: mrr_at_20 value: 50.120274354884586 - type: mrr_at_3 value: 47.49759384023096 - type: mrr_at_5 value: 48.72473532242535 - type: nauc_map_at_1000_diff1 value: 49.5947127786396 - type: nauc_map_at_1000_max value: 33.39720045844929 - type: nauc_map_at_1000_std value: -3.131428593252271 - type: nauc_map_at_100_diff1 value: 49.57797867324617 - type: nauc_map_at_100_max value: 33.356927974709464 - type: nauc_map_at_100_std value: -3.1661365376766337 - type: nauc_map_at_10_diff1 value: 49.59294630598952 - type: nauc_map_at_10_max value: 32.86647346990462 - type: nauc_map_at_10_std value: -4.1582043443386745 - type: nauc_map_at_1_diff1 value: 53.98646767288695 - type: nauc_map_at_1_max value: 29.45629077638936 - type: nauc_map_at_1_std value: -5.621187380771589 - type: nauc_map_at_20_diff1 value: 49.486982890447074 - type: nauc_map_at_20_max value: 33.11681933406332 - type: nauc_map_at_20_std value: -3.5826433195146854 - type: nauc_map_at_3_diff1 value: 50.81807107491861 - type: nauc_map_at_3_max value: 32.32552291988859 - type: nauc_map_at_3_std value: -3.952946504088928 - type: nauc_map_at_5_diff1 value: 49.70201354274439 - type: nauc_map_at_5_max value: 32.831846031004886 - type: nauc_map_at_5_std value: -3.8330488624207737 - type: nauc_mrr_at_1000_diff1 value: 49.04159472507738 - type: nauc_mrr_at_1000_max value: 35.617600171138676 - type: nauc_mrr_at_1000_std value: -1.5975830757486646 - type: nauc_mrr_at_100_diff1 value: 49.03848471692094 - type: nauc_mrr_at_100_max value: 35.61936748662614 - type: nauc_mrr_at_100_std value: -1.5922053398594729 - type: nauc_mrr_at_10_diff1 value: 48.92463964652612 - type: nauc_mrr_at_10_max value: 35.37757708992045 - type: nauc_mrr_at_10_std value: -2.2052028139567303 - type: nauc_mrr_at_1_diff1 value: 52.23915787290734 - type: nauc_mrr_at_1_max value: 34.393531787632334 - type: nauc_mrr_at_1_std value: -1.452007661016969 - type: nauc_mrr_at_20_diff1 value: 48.91168438018404 - type: nauc_mrr_at_20_max value: 35.478962544421876 - type: nauc_mrr_at_20_std value: -1.8246048423555414 - type: nauc_mrr_at_3_diff1 value: 50.115432665442164 - type: nauc_mrr_at_3_max value: 35.89093796085569 - type: nauc_mrr_at_3_std value: -1.4895016313153366 - type: nauc_mrr_at_5_diff1 value: 49.04321261351915 - type: nauc_mrr_at_5_max value: 35.85730520949451 - type: nauc_mrr_at_5_std value: -1.68790556880753 - type: nauc_ndcg_at_1000_diff1 value: 48.294697499154374 - type: nauc_ndcg_at_1000_max value: 35.167410242367595 - type: nauc_ndcg_at_1000_std value: -0.6346078535914157 - type: nauc_ndcg_at_100_diff1 value: 48.025525283449014 - type: nauc_ndcg_at_100_max value: 34.79288511776105 - type: nauc_ndcg_at_100_std value: -0.7823403044086993 - type: nauc_ndcg_at_10_diff1 value: 47.70793258015258 - type: nauc_ndcg_at_10_max value: 33.09558927880104 - type: nauc_ndcg_at_10_std value: -4.7793864166260605 - type: nauc_ndcg_at_1_diff1 value: 52.23915787290734 - type: nauc_ndcg_at_1_max value: 34.393531787632334 - type: nauc_ndcg_at_1_std value: -1.452007661016969 - type: nauc_ndcg_at_20_diff1 value: 47.354286045074815 - type: nauc_ndcg_at_20_max value: 33.686648806027975 - type: nauc_ndcg_at_20_std value: -3.0189085132476556 - type: nauc_ndcg_at_3_diff1 value: 49.68805334316908 - type: nauc_ndcg_at_3_max value: 34.196077748056496 - type: nauc_ndcg_at_3_std value: -2.7167289163768436 - type: nauc_ndcg_at_5_diff1 value: 47.94474868912989 - type: nauc_ndcg_at_5_max value: 34.00261603413051 - type: nauc_ndcg_at_5_std value: -3.3541028103046115 - type: nauc_precision_at_1000_diff1 value: -12.0150100710755 - type: nauc_precision_at_1000_max value: 5.332942816568796 - type: nauc_precision_at_1000_std value: 14.543288479130458 - type: nauc_precision_at_100_diff1 value: -4.920332181588838 - type: nauc_precision_at_100_max value: 14.42313332017491 - type: nauc_precision_at_100_std value: 17.821953321018384 - type: nauc_precision_at_10_diff1 value: 14.70509089079217 - type: nauc_precision_at_10_max value: 25.381887131649716 - type: nauc_precision_at_10_std value: 5.226419288645675 - type: nauc_precision_at_1_diff1 value: 52.23915787290734 - type: nauc_precision_at_1_max value: 34.393531787632334 - type: nauc_precision_at_1_std value: -1.452007661016969 - type: nauc_precision_at_20_diff1 value: 6.312827641507564 - type: nauc_precision_at_20_max value: 22.483038562271933 - type: nauc_precision_at_20_std value: 11.368419856892416 - type: nauc_precision_at_3_diff1 value: 33.271443420273606 - type: nauc_precision_at_3_max value: 33.571078182106675 - type: nauc_precision_at_3_std value: 4.47382265155717 - type: nauc_precision_at_5_diff1 value: 23.43287104284656 - type: nauc_precision_at_5_max value: 30.909085068105313 - type: nauc_precision_at_5_std value: 5.545672049452433 - type: nauc_recall_at_1000_diff1 value: 35.22615594677707 - type: nauc_recall_at_1000_max value: 52.0710533173532 - type: nauc_recall_at_1000_std value: 45.17683523786464 - type: nauc_recall_at_100_diff1 value: 36.2169056956332 - type: nauc_recall_at_100_max value: 35.02435003210817 - type: nauc_recall_at_100_std value: 15.833632946282508 - type: nauc_recall_at_10_diff1 value: 39.12440292974848 - type: nauc_recall_at_10_max value: 28.0546011979648 - type: nauc_recall_at_10_std value: -9.620558638092172 - type: nauc_recall_at_1_diff1 value: 53.98646767288695 - type: nauc_recall_at_1_max value: 29.45629077638936 - type: nauc_recall_at_1_std value: -5.621187380771589 - type: nauc_recall_at_20_diff1 value: 36.39254630768161 - type: nauc_recall_at_20_max value: 29.277856508751967 - type: nauc_recall_at_20_std value: -3.048007490798412 - type: nauc_recall_at_3_diff1 value: 45.64706642644958 - type: nauc_recall_at_3_max value: 31.003050159737413 - type: nauc_recall_at_3_std value: -4.849763876930667 - type: nauc_recall_at_5_diff1 value: 40.918108859971746 - type: nauc_recall_at_5_max value: 30.69907335071493 - type: nauc_recall_at_5_std value: -6.1445436251916865 - type: ndcg_at_1 value: 40.327 - type: ndcg_at_10 value: 49.675000000000004 - type: ndcg_at_100 value: 55.364000000000004 - type: ndcg_at_1000 value: 56.992 - type: ndcg_at_20 value: 51.803999999999995 - type: ndcg_at_3 value: 45.227000000000004 - type: ndcg_at_5 value: 47.244 - type: precision_at_1 value: 40.327 - type: precision_at_10 value: 8.826 - type: precision_at_100 value: 1.354 - type: precision_at_1000 value: 0.167 - type: precision_at_20 value: 5.115 - type: precision_at_3 value: 21.303 - type: precision_at_5 value: 14.726 - type: recall_at_1 value: 33.178999999999995 - type: recall_at_10 value: 61.087 - type: recall_at_100 value: 85.099 - type: recall_at_1000 value: 95.14099999999999 - type: recall_at_20 value: 68.623 - type: recall_at_3 value: 48.245 - type: recall_at_5 value: 53.832 - task: type: Retrieval dataset: name: MTEB CQADupstackProgrammersRetrieval type: mteb/cqadupstack-programmers config: default split: test revision: 6184bc1440d2dbc7612be22b50686b8826d22b32 metrics: - type: main_score value: 44.99 - type: map_at_1 value: 28.089 - type: map_at_10 value: 38.98 - type: map_at_100 value: 40.339000000000006 - type: map_at_1000 value: 40.441 - type: map_at_20 value: 39.702 - type: map_at_3 value: 35.620000000000005 - type: map_at_5 value: 37.657000000000004 - type: mrr_at_1 value: 35.15981735159817 - type: mrr_at_10 value: 44.54075161266937 - type: mrr_at_100 value: 45.435730392436646 - type: mrr_at_1000 value: 45.47673849356812 - type: mrr_at_20 value: 45.05949613726918 - type: mrr_at_3 value: 42.00913242009131 - type: mrr_at_5 value: 43.52739726027392 - type: nauc_map_at_1000_diff1 value: 42.6375513442399 - type: nauc_map_at_1000_max value: 35.83899956589522 - type: nauc_map_at_1000_std value: 5.798620017712549 - type: nauc_map_at_100_diff1 value: 42.609712253881504 - type: nauc_map_at_100_max value: 35.85401871065736 - type: nauc_map_at_100_std value: 5.829007296755533 - type: nauc_map_at_10_diff1 value: 42.90931172127824 - type: nauc_map_at_10_max value: 35.46694204511423 - type: nauc_map_at_10_std value: 5.131477704152026 - type: nauc_map_at_1_diff1 value: 48.066312177855956 - type: nauc_map_at_1_max value: 30.67745267941573 - type: nauc_map_at_1_std value: -1.4170737991670943 - type: nauc_map_at_20_diff1 value: 42.730423700784 - type: nauc_map_at_20_max value: 35.710039616497085 - type: nauc_map_at_20_std value: 5.363961887475162 - type: nauc_map_at_3_diff1 value: 43.499223646579935 - type: nauc_map_at_3_max value: 33.872570039621564 - type: nauc_map_at_3_std value: 3.0787571843453008 - type: nauc_map_at_5_diff1 value: 43.28963642946521 - type: nauc_map_at_5_max value: 35.18327408279892 - type: nauc_map_at_5_std value: 4.516467154662473 - type: nauc_mrr_at_1000_diff1 value: 42.71279871641341 - type: nauc_mrr_at_1000_max value: 37.48825064817496 - type: nauc_mrr_at_1000_std value: 8.10015025024314 - type: nauc_mrr_at_100_diff1 value: 42.694777404773376 - type: nauc_mrr_at_100_max value: 37.476741768741086 - type: nauc_mrr_at_100_std value: 8.11525130417229 - type: nauc_mrr_at_10_diff1 value: 42.954194054560176 - type: nauc_mrr_at_10_max value: 37.606138578797506 - type: nauc_mrr_at_10_std value: 8.092519513302399 - type: nauc_mrr_at_1_diff1 value: 48.350790286038574 - type: nauc_mrr_at_1_max value: 33.97992759739641 - type: nauc_mrr_at_1_std value: 1.8332987018664093 - type: nauc_mrr_at_20_diff1 value: 42.664983701783044 - type: nauc_mrr_at_20_max value: 37.47450702110784 - type: nauc_mrr_at_20_std value: 8.001067634745462 - type: nauc_mrr_at_3_diff1 value: 42.921968602737955 - type: nauc_mrr_at_3_max value: 37.19599728791262 - type: nauc_mrr_at_3_std value: 7.4692697422507575 - type: nauc_mrr_at_5_diff1 value: 42.96028546491891 - type: nauc_mrr_at_5_max value: 37.688350071295915 - type: nauc_mrr_at_5_std value: 8.213017954012372 - type: nauc_ndcg_at_1000_diff1 value: 40.70763263942397 - type: nauc_ndcg_at_1000_max value: 37.87768319167602 - type: nauc_ndcg_at_1000_std value: 9.908807071686738 - type: nauc_ndcg_at_100_diff1 value: 39.97828438221707 - type: nauc_ndcg_at_100_max value: 37.7723393835996 - type: nauc_ndcg_at_100_std value: 10.666779466040097 - type: nauc_ndcg_at_10_diff1 value: 41.172233451172936 - type: nauc_ndcg_at_10_max value: 37.12252131573939 - type: nauc_ndcg_at_10_std value: 8.273798754436639 - type: nauc_ndcg_at_1_diff1 value: 48.350790286038574 - type: nauc_ndcg_at_1_max value: 33.97992759739641 - type: nauc_ndcg_at_1_std value: 1.8332987018664093 - type: nauc_ndcg_at_20_diff1 value: 40.33325895172716 - type: nauc_ndcg_at_20_max value: 37.36015594019951 - type: nauc_ndcg_at_20_std value: 8.818556108749302 - type: nauc_ndcg_at_3_diff1 value: 41.652701699747254 - type: nauc_ndcg_at_3_max value: 35.499109874223294 - type: nauc_ndcg_at_3_std value: 5.831784865606119 - type: nauc_ndcg_at_5_diff1 value: 41.856346892595475 - type: nauc_ndcg_at_5_max value: 36.940681835687194 - type: nauc_ndcg_at_5_std value: 7.507798515093516 - type: nauc_precision_at_1000_diff1 value: -2.4605367806784866 - type: nauc_precision_at_1000_max value: -0.3538142127162922 - type: nauc_precision_at_1000_std value: 8.369794961833236 - type: nauc_precision_at_100_diff1 value: -0.34954522096524704 - type: nauc_precision_at_100_max value: 13.159909603146458 - type: nauc_precision_at_100_std value: 19.425561514133996 - type: nauc_precision_at_10_diff1 value: 17.048304710148145 - type: nauc_precision_at_10_max value: 29.816041846806375 - type: nauc_precision_at_10_std value: 18.358893367243798 - type: nauc_precision_at_1_diff1 value: 48.350790286038574 - type: nauc_precision_at_1_max value: 33.97992759739641 - type: nauc_precision_at_1_std value: 1.8332987018664093 - type: nauc_precision_at_20_diff1 value: 10.450903599411344 - type: nauc_precision_at_20_max value: 25.228916373799127 - type: nauc_precision_at_20_std value: 18.46893569529936 - type: nauc_precision_at_3_diff1 value: 29.181236567048636 - type: nauc_precision_at_3_max value: 35.64918262500281 - type: nauc_precision_at_3_std value: 13.347538222514968 - type: nauc_precision_at_5_diff1 value: 23.693323840550345 - type: nauc_precision_at_5_max value: 33.972399735191225 - type: nauc_precision_at_5_std value: 17.107012760554618 - type: nauc_recall_at_1000_diff1 value: 20.297340483227945 - type: nauc_recall_at_1000_max value: 63.084305970127275 - type: nauc_recall_at_1000_std value: 63.04655000858784 - type: nauc_recall_at_100_diff1 value: 22.587332148979723 - type: nauc_recall_at_100_max value: 40.740968468024775 - type: nauc_recall_at_100_std value: 34.120423684507124 - type: nauc_recall_at_10_diff1 value: 33.361195948673675 - type: nauc_recall_at_10_max value: 37.1411402410262 - type: nauc_recall_at_10_std value: 13.475407196166259 - type: nauc_recall_at_1_diff1 value: 48.066312177855956 - type: nauc_recall_at_1_max value: 30.67745267941573 - type: nauc_recall_at_1_std value: -1.4170737991670943 - type: nauc_recall_at_20_diff1 value: 28.703982984383984 - type: nauc_recall_at_20_max value: 37.32929431193496 - type: nauc_recall_at_20_std value: 16.139135347989903 - type: nauc_recall_at_3_diff1 value: 36.53346179134789 - type: nauc_recall_at_3_max value: 34.11397914899309 - type: nauc_recall_at_3_std value: 7.19358019807132 - type: nauc_recall_at_5_diff1 value: 36.24058894947452 - type: nauc_recall_at_5_max value: 37.00990358651097 - type: nauc_recall_at_5_std value: 11.074645476821619 - type: ndcg_at_1 value: 35.160000000000004 - type: ndcg_at_10 value: 44.99 - type: ndcg_at_100 value: 50.661 - type: ndcg_at_1000 value: 52.599 - type: ndcg_at_20 value: 47.154 - type: ndcg_at_3 value: 39.843 - type: ndcg_at_5 value: 42.486000000000004 - type: precision_at_1 value: 35.160000000000004 - type: precision_at_10 value: 8.299 - type: precision_at_100 value: 1.2850000000000001 - type: precision_at_1000 value: 0.16199999999999998 - type: precision_at_20 value: 4.84 - type: precision_at_3 value: 19.178 - type: precision_at_5 value: 13.927 - type: recall_at_1 value: 28.089 - type: recall_at_10 value: 57.158 - type: recall_at_100 value: 81.461 - type: recall_at_1000 value: 94.46900000000001 - type: recall_at_20 value: 64.927 - type: recall_at_3 value: 42.775999999999996 - type: recall_at_5 value: 49.719 - task: type: Retrieval dataset: name: MTEB CQADupstackRetrieval type: mteb/cqadupstack config: default split: test revision: CQADupstackRetrieval is a combined dataset metrics: - type: main_score value: 44.989166666666655 - type: ndcg_at_10 value: 44.989166666666655 - task: type: Retrieval dataset: name: MTEB CQADupstackStatsRetrieval type: mteb/cqadupstack-stats config: default split: test revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a metrics: - type: main_score value: 39.586 - type: map_at_1 value: 27.301 - type: map_at_10 value: 35.022 - type: map_at_100 value: 36.061 - type: map_at_1000 value: 36.146 - type: map_at_20 value: 35.608000000000004 - type: map_at_3 value: 32.978 - type: map_at_5 value: 33.994 - type: mrr_at_1 value: 30.67484662576687 - type: mrr_at_10 value: 38.1696124257474 - type: mrr_at_100 value: 38.99730898994137 - type: mrr_at_1000 value: 39.049871007408136 - type: mrr_at_20 value: 38.62424051396064 - type: mrr_at_3 value: 36.40081799591004 - type: mrr_at_5 value: 37.23670756646219 - type: nauc_map_at_1000_diff1 value: 50.4395097150819 - type: nauc_map_at_1000_max value: 42.36231476768413 - type: nauc_map_at_1000_std value: 1.0739414045485742 - type: nauc_map_at_100_diff1 value: 50.4253775421283 - type: nauc_map_at_100_max value: 42.34508969348633 - type: nauc_map_at_100_std value: 1.0590256535050135 - type: nauc_map_at_10_diff1 value: 50.74196619464362 - type: nauc_map_at_10_max value: 42.354326434590284 - type: nauc_map_at_10_std value: 0.6330167542705694 - type: nauc_map_at_1_diff1 value: 55.7404810490963 - type: nauc_map_at_1_max value: 40.7676941648045 - type: nauc_map_at_1_std value: -5.021772566610674 - type: nauc_map_at_20_diff1 value: 50.39792463598886 - type: nauc_map_at_20_max value: 42.25768760228577 - type: nauc_map_at_20_std value: 0.8979017700131807 - type: nauc_map_at_3_diff1 value: 51.53267996170815 - type: nauc_map_at_3_max value: 41.78801756883417 - type: nauc_map_at_3_std value: -0.6652383024396911 - type: nauc_map_at_5_diff1 value: 50.992783683271504 - type: nauc_map_at_5_max value: 41.8607977828188 - type: nauc_map_at_5_std value: 0.3484379897869807 - type: nauc_mrr_at_1000_diff1 value: 48.952907124445126 - type: nauc_mrr_at_1000_max value: 42.93563741482114 - type: nauc_mrr_at_1000_std value: 3.0791495753556424 - type: nauc_mrr_at_100_diff1 value: 48.941921107360805 - type: nauc_mrr_at_100_max value: 42.94419657374061 - type: nauc_mrr_at_100_std value: 3.075397087180154 - type: nauc_mrr_at_10_diff1 value: 49.098926306303056 - type: nauc_mrr_at_10_max value: 42.941857820499806 - type: nauc_mrr_at_10_std value: 2.8184474174054372 - type: nauc_mrr_at_1_diff1 value: 54.428109877009334 - type: nauc_mrr_at_1_max value: 42.50273386972492 - type: nauc_mrr_at_1_std value: -2.1811826216412187 - type: nauc_mrr_at_20_diff1 value: 48.82502192775839 - type: nauc_mrr_at_20_max value: 42.92227277257095 - type: nauc_mrr_at_20_std value: 2.975812634368533 - type: nauc_mrr_at_3_diff1 value: 49.440009227591176 - type: nauc_mrr_at_3_max value: 42.95503176290712 - type: nauc_mrr_at_3_std value: 2.2997128945013796 - type: nauc_mrr_at_5_diff1 value: 49.09846782701398 - type: nauc_mrr_at_5_max value: 42.51449168285772 - type: nauc_mrr_at_5_std value: 2.7785816484421297 - type: nauc_ndcg_at_1000_diff1 value: 48.14680758187888 - type: nauc_ndcg_at_1000_max value: 43.57465718500695 - type: nauc_ndcg_at_1000_std value: 5.287435676678261 - type: nauc_ndcg_at_100_diff1 value: 47.66081605743284 - type: nauc_ndcg_at_100_max value: 43.28156751251163 - type: nauc_ndcg_at_100_std value: 4.959626409663624 - type: nauc_ndcg_at_10_diff1 value: 48.25075619623878 - type: nauc_ndcg_at_10_max value: 43.00688660666578 - type: nauc_ndcg_at_10_std value: 3.2319193368891637 - type: nauc_ndcg_at_1_diff1 value: 54.428109877009334 - type: nauc_ndcg_at_1_max value: 42.50273386972492 - type: nauc_ndcg_at_1_std value: -2.1811826216412187 - type: nauc_ndcg_at_20_diff1 value: 47.1943098627403 - type: nauc_ndcg_at_20_max value: 42.86954491768707 - type: nauc_ndcg_at_20_std value: 4.08583080150737 - type: nauc_ndcg_at_3_diff1 value: 49.32681523192246 - type: nauc_ndcg_at_3_max value: 42.46898641470274 - type: nauc_ndcg_at_3_std value: 1.7416962407725236 - type: nauc_ndcg_at_5_diff1 value: 48.59647012439291 - type: nauc_ndcg_at_5_max value: 42.07098889846439 - type: nauc_ndcg_at_5_std value: 2.979621233356828 - type: nauc_precision_at_1000_diff1 value: -1.7366334161587105 - type: nauc_precision_at_1000_max value: 17.70969166396819 - type: nauc_precision_at_1000_std value: 17.50619975322144 - type: nauc_precision_at_100_diff1 value: 10.082579982582155 - type: nauc_precision_at_100_max value: 28.024893516091776 - type: nauc_precision_at_100_std value: 18.41413013357596 - type: nauc_precision_at_10_diff1 value: 28.796167732373657 - type: nauc_precision_at_10_max value: 40.37340024485382 - type: nauc_precision_at_10_std value: 13.718572711091733 - type: nauc_precision_at_1_diff1 value: 54.428109877009334 - type: nauc_precision_at_1_max value: 42.50273386972492 - type: nauc_precision_at_1_std value: -2.1811826216412187 - type: nauc_precision_at_20_diff1 value: 19.82691920771315 - type: nauc_precision_at_20_max value: 34.45075390159975 - type: nauc_precision_at_20_std value: 16.410812072348058 - type: nauc_precision_at_3_diff1 value: 40.85430254962678 - type: nauc_precision_at_3_max value: 43.63016056067074 - type: nauc_precision_at_3_std value: 9.322014634477581 - type: nauc_precision_at_5_diff1 value: 35.830272848975795 - type: nauc_precision_at_5_max value: 41.30047691620363 - type: nauc_precision_at_5_std value: 13.145693992266565 - type: nauc_recall_at_1000_diff1 value: 35.532000545890504 - type: nauc_recall_at_1000_max value: 50.714223194510325 - type: nauc_recall_at_1000_std value: 43.09037309139045 - type: nauc_recall_at_100_diff1 value: 35.11024488875192 - type: nauc_recall_at_100_max value: 43.0874566265193 - type: nauc_recall_at_100_std value: 19.70628521846854 - type: nauc_recall_at_10_diff1 value: 40.36203726741153 - type: nauc_recall_at_10_max value: 42.581482582576726 - type: nauc_recall_at_10_std value: 8.642553371022348 - type: nauc_recall_at_1_diff1 value: 55.7404810490963 - type: nauc_recall_at_1_max value: 40.7676941648045 - type: nauc_recall_at_1_std value: -5.021772566610674 - type: nauc_recall_at_20_diff1 value: 35.97348868186562 - type: nauc_recall_at_20_max value: 41.82695933305065 - type: nauc_recall_at_20_std value: 11.444957541593585 - type: nauc_recall_at_3_diff1 value: 44.20020470014979 - type: nauc_recall_at_3_max value: 40.84130855296979 - type: nauc_recall_at_3_std value: 5.004883338558809 - type: nauc_recall_at_5_diff1 value: 42.08756885472078 - type: nauc_recall_at_5_max value: 39.90323783606852 - type: nauc_recall_at_5_std value: 8.085182534171127 - type: ndcg_at_1 value: 30.675 - type: ndcg_at_10 value: 39.586 - type: ndcg_at_100 value: 44.737 - type: ndcg_at_1000 value: 46.863 - type: ndcg_at_20 value: 41.495 - type: ndcg_at_3 value: 35.8 - type: ndcg_at_5 value: 37.3 - type: precision_at_1 value: 30.675 - type: precision_at_10 value: 6.196 - type: precision_at_100 value: 0.9570000000000001 - type: precision_at_1000 value: 0.122 - type: precision_at_20 value: 3.6350000000000002 - type: precision_at_3 value: 15.337 - type: precision_at_5 value: 10.337 - type: recall_at_1 value: 27.301 - type: recall_at_10 value: 50.346999999999994 - type: recall_at_100 value: 74.459 - type: recall_at_1000 value: 90.018 - type: recall_at_20 value: 57.473 - type: recall_at_3 value: 39.672000000000004 - type: recall_at_5 value: 43.383 - task: type: Retrieval dataset: name: MTEB CQADupstackTexRetrieval type: mteb/cqadupstack-tex config: default split: test revision: 46989137a86843e03a6195de44b09deda022eec7 metrics: - type: main_score value: 32.842 - type: map_at_1 value: 19.527 - type: map_at_10 value: 27.711999999999996 - type: map_at_100 value: 28.98 - type: map_at_1000 value: 29.108 - type: map_at_20 value: 28.407 - type: map_at_3 value: 25.023 - type: map_at_5 value: 26.528000000000002 - type: mrr_at_1 value: 23.675154852030282 - type: mrr_at_10 value: 31.810676323752784 - type: mrr_at_100 value: 32.788970614380716 - type: mrr_at_1000 value: 32.86028758975889 - type: mrr_at_20 value: 32.35935756676056 - type: mrr_at_3 value: 29.41615049323246 - type: mrr_at_5 value: 30.785730672172633 - type: nauc_map_at_1000_diff1 value: 35.597766688968015 - type: nauc_map_at_1000_max value: 26.295790183159845 - type: nauc_map_at_1000_std value: -0.04229904865958209 - type: nauc_map_at_100_diff1 value: 35.568782622469925 - type: nauc_map_at_100_max value: 26.27850795471227 - type: nauc_map_at_100_std value: -0.04944875782811099 - type: nauc_map_at_10_diff1 value: 35.63760937893694 - type: nauc_map_at_10_max value: 26.130094042028233 - type: nauc_map_at_10_std value: -0.6896882769027717 - type: nauc_map_at_1_diff1 value: 41.759098341890976 - type: nauc_map_at_1_max value: 23.918885427783326 - type: nauc_map_at_1_std value: -2.1383574897865074 - type: nauc_map_at_20_diff1 value: 35.55706530442612 - type: nauc_map_at_20_max value: 26.23339626569677 - type: nauc_map_at_20_std value: -0.162172033918129 - type: nauc_map_at_3_diff1 value: 37.22183376355153 - type: nauc_map_at_3_max value: 25.770512522122186 - type: nauc_map_at_3_std value: -1.3105892187778403 - type: nauc_map_at_5_diff1 value: 36.205913161663084 - type: nauc_map_at_5_max value: 25.953300641502064 - type: nauc_map_at_5_std value: -0.7987363137547906 - type: nauc_mrr_at_1000_diff1 value: 34.864016559617646 - type: nauc_mrr_at_1000_max value: 26.8689525348564 - type: nauc_mrr_at_1000_std value: -0.5839923973914446 - type: nauc_mrr_at_100_diff1 value: 34.83820469598538 - type: nauc_mrr_at_100_max value: 26.864669056231282 - type: nauc_mrr_at_100_std value: -0.5785645654158633 - type: nauc_mrr_at_10_diff1 value: 34.81868397381981 - type: nauc_mrr_at_10_max value: 26.79988560460627 - type: nauc_mrr_at_10_std value: -1.1113808365827318 - type: nauc_mrr_at_1_diff1 value: 40.0281507903504 - type: nauc_mrr_at_1_max value: 25.036735941806583 - type: nauc_mrr_at_1_std value: -2.508700799268523 - type: nauc_mrr_at_20_diff1 value: 34.81954537357966 - type: nauc_mrr_at_20_max value: 26.877673033315453 - type: nauc_mrr_at_20_std value: -0.6706028107452919 - type: nauc_mrr_at_3_diff1 value: 35.87313782549696 - type: nauc_mrr_at_3_max value: 26.776261693392335 - type: nauc_mrr_at_3_std value: -1.8010591328112908 - type: nauc_mrr_at_5_diff1 value: 35.31673912159536 - type: nauc_mrr_at_5_max value: 26.78720786106881 - type: nauc_mrr_at_5_std value: -1.3096326953900546 - type: nauc_ndcg_at_1000_diff1 value: 33.43105244339048 - type: nauc_ndcg_at_1000_max value: 27.52195065724684 - type: nauc_ndcg_at_1000_std value: 2.8376056562675744 - type: nauc_ndcg_at_100_diff1 value: 32.90916846420573 - type: nauc_ndcg_at_100_max value: 27.27161017736065 - type: nauc_ndcg_at_100_std value: 2.8703122625872126 - type: nauc_ndcg_at_10_diff1 value: 33.12714979317447 - type: nauc_ndcg_at_10_max value: 26.67762031747992 - type: nauc_ndcg_at_10_std value: -0.1341345572932233 - type: nauc_ndcg_at_1_diff1 value: 40.0281507903504 - type: nauc_ndcg_at_1_max value: 25.036735941806583 - type: nauc_ndcg_at_1_std value: -2.508700799268523 - type: nauc_ndcg_at_20_diff1 value: 32.891656138688546 - type: nauc_ndcg_at_20_max value: 26.991976404027163 - type: nauc_ndcg_at_20_std value: 1.6050741106677746 - type: nauc_ndcg_at_3_diff1 value: 35.576958713955484 - type: nauc_ndcg_at_3_max value: 26.41687745899445 - type: nauc_ndcg_at_3_std value: -1.5326687067002291 - type: nauc_ndcg_at_5_diff1 value: 34.27335619067276 - type: nauc_ndcg_at_5_max value: 26.479515412084208 - type: nauc_ndcg_at_5_std value: -0.5597648935666003 - type: nauc_precision_at_1000_diff1 value: -0.18660914306684007 - type: nauc_precision_at_1000_max value: 7.268255385799229 - type: nauc_precision_at_1000_std value: -0.1968875268478991 - type: nauc_precision_at_100_diff1 value: 7.386701205054449 - type: nauc_precision_at_100_max value: 15.477735603019607 - type: nauc_precision_at_100_std value: 4.753153414679307 - type: nauc_precision_at_10_diff1 value: 18.4668296945938 - type: nauc_precision_at_10_max value: 25.457144217779597 - type: nauc_precision_at_10_std value: 0.40165373733963605 - type: nauc_precision_at_1_diff1 value: 40.0281507903504 - type: nauc_precision_at_1_max value: 25.036735941806583 - type: nauc_precision_at_1_std value: -2.508700799268523 - type: nauc_precision_at_20_diff1 value: 14.751135844289335 - type: nauc_precision_at_20_max value: 22.763373329576293 - type: nauc_precision_at_20_std value: 4.360731801761864 - type: nauc_precision_at_3_diff1 value: 28.154753888265393 - type: nauc_precision_at_3_max value: 27.838427033527147 - type: nauc_precision_at_3_std value: -1.0042621266717804 - type: nauc_precision_at_5_diff1 value: 23.549026872711423 - type: nauc_precision_at_5_max value: 27.192214745385044 - type: nauc_precision_at_5_std value: 0.4455206110174471 - type: nauc_recall_at_1000_diff1 value: 17.905404210815632 - type: nauc_recall_at_1000_max value: 32.8674418535776 - type: nauc_recall_at_1000_std value: 35.187050415735435 - type: nauc_recall_at_100_diff1 value: 20.903609751984757 - type: nauc_recall_at_100_max value: 27.180306691518364 - type: nauc_recall_at_100_std value: 17.553030959393297 - type: nauc_recall_at_10_diff1 value: 25.615147693464387 - type: nauc_recall_at_10_max value: 25.97062699453565 - type: nauc_recall_at_10_std value: 2.2181702899826576 - type: nauc_recall_at_1_diff1 value: 41.759098341890976 - type: nauc_recall_at_1_max value: 23.918885427783326 - type: nauc_recall_at_1_std value: -2.1383574897865074 - type: nauc_recall_at_20_diff1 value: 23.922775940094386 - type: nauc_recall_at_20_max value: 26.384627814902785 - type: nauc_recall_at_20_std value: 7.944532403561578 - type: nauc_recall_at_3_diff1 value: 32.26543270634743 - type: nauc_recall_at_3_max value: 26.36357710828272 - type: nauc_recall_at_3_std value: -0.42723331708340706 - type: nauc_recall_at_5_diff1 value: 29.080464141763336 - type: nauc_recall_at_5_max value: 25.81238438303652 - type: nauc_recall_at_5_std value: 1.1649311168287726 - type: ndcg_at_1 value: 23.674999999999997 - type: ndcg_at_10 value: 32.842 - type: ndcg_at_100 value: 38.64 - type: ndcg_at_1000 value: 41.367 - type: ndcg_at_20 value: 35.032999999999994 - type: ndcg_at_3 value: 28.166000000000004 - type: ndcg_at_5 value: 30.407 - type: precision_at_1 value: 23.674999999999997 - type: precision_at_10 value: 6.005 - type: precision_at_100 value: 1.053 - type: precision_at_1000 value: 0.146 - type: precision_at_20 value: 3.6580000000000004 - type: precision_at_3 value: 13.352 - type: precision_at_5 value: 9.718 - type: recall_at_1 value: 19.527 - type: recall_at_10 value: 44.096999999999994 - type: recall_at_100 value: 69.962 - type: recall_at_1000 value: 89.035 - type: recall_at_20 value: 52.166000000000004 - type: recall_at_3 value: 30.946 - type: recall_at_5 value: 36.789 - task: type: Retrieval dataset: name: MTEB CQADupstackUnixRetrieval type: mteb/cqadupstack-unix config: default split: test revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53 metrics: - type: main_score value: 46.54 - type: map_at_1 value: 29.953999999999997 - type: map_at_10 value: 40.742 - type: map_at_100 value: 41.964 - type: map_at_1000 value: 42.059999999999995 - type: map_at_20 value: 41.426 - type: map_at_3 value: 37.378 - type: map_at_5 value: 39.267 - type: mrr_at_1 value: 34.701492537313435 - type: mrr_at_10 value: 44.29978085761664 - type: mrr_at_100 value: 45.205551401915486 - type: mrr_at_1000 value: 45.24735017384963 - type: mrr_at_20 value: 44.85338423755729 - type: mrr_at_3 value: 41.57338308457707 - type: mrr_at_5 value: 43.19185323383077 - type: nauc_map_at_1000_diff1 value: 48.45170522932164 - type: nauc_map_at_1000_max value: 31.544164363591204 - type: nauc_map_at_1000_std value: 0.8661088818146858 - type: nauc_map_at_100_diff1 value: 48.47347800061323 - type: nauc_map_at_100_max value: 31.568637596620313 - type: nauc_map_at_100_std value: 0.9252699336843858 - type: nauc_map_at_10_diff1 value: 48.64849891585432 - type: nauc_map_at_10_max value: 31.40371265579746 - type: nauc_map_at_10_std value: 0.7088016563713089 - type: nauc_map_at_1_diff1 value: 53.57918993108331 - type: nauc_map_at_1_max value: 31.392632653740993 - type: nauc_map_at_1_std value: -2.857306170463933 - type: nauc_map_at_20_diff1 value: 48.49084353023969 - type: nauc_map_at_20_max value: 31.470313174779374 - type: nauc_map_at_20_std value: 0.8950296035234309 - type: nauc_map_at_3_diff1 value: 49.273481161619806 - type: nauc_map_at_3_max value: 31.101471509782826 - type: nauc_map_at_3_std value: -0.886510096257905 - type: nauc_map_at_5_diff1 value: 48.85344288229106 - type: nauc_map_at_5_max value: 31.32633663238284 - type: nauc_map_at_5_std value: -0.44752909698881177 - type: nauc_mrr_at_1000_diff1 value: 46.27593166906613 - type: nauc_mrr_at_1000_max value: 31.637594372116336 - type: nauc_mrr_at_1000_std value: 0.8444917550670064 - type: nauc_mrr_at_100_diff1 value: 46.27161543033672 - type: nauc_mrr_at_100_max value: 31.64330655339695 - type: nauc_mrr_at_100_std value: 0.8717446416398773 - type: nauc_mrr_at_10_diff1 value: 46.100348481312864 - type: nauc_mrr_at_10_max value: 31.594271897882237 - type: nauc_mrr_at_10_std value: 0.8807168907688873 - type: nauc_mrr_at_1_diff1 value: 51.35163098909763 - type: nauc_mrr_at_1_max value: 31.99084441327899 - type: nauc_mrr_at_1_std value: -2.688594880742662 - type: nauc_mrr_at_20_diff1 value: 46.18178546174727 - type: nauc_mrr_at_20_max value: 31.639111674119448 - type: nauc_mrr_at_20_std value: 0.9855008641374622 - type: nauc_mrr_at_3_diff1 value: 46.307484835305864 - type: nauc_mrr_at_3_max value: 31.35563850804847 - type: nauc_mrr_at_3_std value: -0.3419536587707561 - type: nauc_mrr_at_5_diff1 value: 46.17646418781234 - type: nauc_mrr_at_5_max value: 31.313474270239833 - type: nauc_mrr_at_5_std value: -0.08656550526568331 - type: nauc_ndcg_at_1000_diff1 value: 46.12095795101613 - type: nauc_ndcg_at_1000_max value: 31.989083597726314 - type: nauc_ndcg_at_1000_std value: 3.2965704707660763 - type: nauc_ndcg_at_100_diff1 value: 46.05376249841318 - type: nauc_ndcg_at_100_max value: 32.39195988574972 - type: nauc_ndcg_at_100_std value: 4.518018135593347 - type: nauc_ndcg_at_10_diff1 value: 46.133631183744875 - type: nauc_ndcg_at_10_max value: 31.45358876172339 - type: nauc_ndcg_at_10_std value: 3.4254370918871055 - type: nauc_ndcg_at_1_diff1 value: 51.35163098909763 - type: nauc_ndcg_at_1_max value: 31.99084441327899 - type: nauc_ndcg_at_1_std value: -2.688594880742662 - type: nauc_ndcg_at_20_diff1 value: 45.94584949766954 - type: nauc_ndcg_at_20_max value: 31.689777515111295 - type: nauc_ndcg_at_20_std value: 4.189082428922442 - type: nauc_ndcg_at_3_diff1 value: 46.5057835389752 - type: nauc_ndcg_at_3_max value: 30.941407592082047 - type: nauc_ndcg_at_3_std value: -0.042473944857831535 - type: nauc_ndcg_at_5_diff1 value: 46.369027395136136 - type: nauc_ndcg_at_5_max value: 31.057841776505352 - type: nauc_ndcg_at_5_std value: 0.6878993420489522 - type: nauc_precision_at_1000_diff1 value: -17.30759714093202 - type: nauc_precision_at_1000_max value: -4.441155558458858 - type: nauc_precision_at_1000_std value: 1.5537300718220326 - type: nauc_precision_at_100_diff1 value: -7.18920438222021 - type: nauc_precision_at_100_max value: 8.017878121399253 - type: nauc_precision_at_100_std value: 11.357132919349102 - type: nauc_precision_at_10_diff1 value: 15.202451884794076 - type: nauc_precision_at_10_max value: 19.077295902881417 - type: nauc_precision_at_10_std value: 9.885526867355805 - type: nauc_precision_at_1_diff1 value: 51.35163098909763 - type: nauc_precision_at_1_max value: 31.99084441327899 - type: nauc_precision_at_1_std value: -2.688594880742662 - type: nauc_precision_at_20_diff1 value: 6.827461091494899 - type: nauc_precision_at_20_max value: 15.27268633497114 - type: nauc_precision_at_20_std value: 11.515826649647384 - type: nauc_precision_at_3_diff1 value: 31.043021807472027 - type: nauc_precision_at_3_max value: 26.22457157531548 - type: nauc_precision_at_3_std value: 1.788215968301994 - type: nauc_precision_at_5_diff1 value: 25.030185818513235 - type: nauc_precision_at_5_max value: 23.680129160901537 - type: nauc_precision_at_5_std value: 4.303018899688115 - type: nauc_recall_at_1000_diff1 value: 28.68826642607512 - type: nauc_recall_at_1000_max value: 42.33849804103852 - type: nauc_recall_at_1000_std value: 42.67413575876864 - type: nauc_recall_at_100_diff1 value: 36.51494878715 - type: nauc_recall_at_100_max value: 37.4764995034434 - type: nauc_recall_at_100_std value: 28.295671266661017 - type: nauc_recall_at_10_diff1 value: 39.416721111463524 - type: nauc_recall_at_10_max value: 29.95985608454179 - type: nauc_recall_at_10_std value: 12.423335839786201 - type: nauc_recall_at_1_diff1 value: 53.57918993108331 - type: nauc_recall_at_1_max value: 31.392632653740993 - type: nauc_recall_at_1_std value: -2.857306170463933 - type: nauc_recall_at_20_diff1 value: 38.228803480194046 - type: nauc_recall_at_20_max value: 30.87261362975955 - type: nauc_recall_at_20_std value: 16.977113091834095 - type: nauc_recall_at_3_diff1 value: 43.154348566653155 - type: nauc_recall_at_3_max value: 29.54536633744803 - type: nauc_recall_at_3_std value: 2.02842672250621 - type: nauc_recall_at_5_diff1 value: 41.00436246072242 - type: nauc_recall_at_5_max value: 29.413569555348023 - type: nauc_recall_at_5_std value: 3.845214021958289 - type: ndcg_at_1 value: 34.701 - type: ndcg_at_10 value: 46.54 - type: ndcg_at_100 value: 51.754999999999995 - type: ndcg_at_1000 value: 53.71 - type: ndcg_at_20 value: 48.679 - type: ndcg_at_3 value: 40.892 - type: ndcg_at_5 value: 43.595 - type: precision_at_1 value: 34.701 - type: precision_at_10 value: 8.004 - type: precision_at_100 value: 1.185 - type: precision_at_1000 value: 0.145 - type: precision_at_20 value: 4.632 - type: precision_at_3 value: 18.719 - type: precision_at_5 value: 13.245999999999999 - type: recall_at_1 value: 29.953999999999997 - type: recall_at_10 value: 60.246 - type: recall_at_100 value: 82.128 - type: recall_at_1000 value: 95.622 - type: recall_at_20 value: 67.756 - type: recall_at_3 value: 45.096000000000004 - type: recall_at_5 value: 51.9 - task: type: Retrieval dataset: name: MTEB CQADupstackWebmastersRetrieval type: mteb/cqadupstack-webmasters config: default split: test revision: 160c094312a0e1facb97e55eeddb698c0abe3571 metrics: - type: main_score value: 44.718999999999994 - type: map_at_1 value: 28.383999999999997 - type: map_at_10 value: 38.422 - type: map_at_100 value: 40.058 - type: map_at_1000 value: 40.276 - type: map_at_20 value: 39.301 - type: map_at_3 value: 35.205 - type: map_at_5 value: 36.803999999999995 - type: mrr_at_1 value: 33.59683794466403 - type: mrr_at_10 value: 42.837536859275986 - type: mrr_at_100 value: 43.7501703455481 - type: mrr_at_1000 value: 43.79258407771123 - type: mrr_at_20 value: 43.36044710445095 - type: mrr_at_3 value: 40.15151515151516 - type: mrr_at_5 value: 41.74242424242425 - type: nauc_map_at_1000_diff1 value: 47.934826596875304 - type: nauc_map_at_1000_max value: 32.39759438116062 - type: nauc_map_at_1000_std value: 0.9489007346763054 - type: nauc_map_at_100_diff1 value: 47.94844822157888 - type: nauc_map_at_100_max value: 32.51485845519537 - type: nauc_map_at_100_std value: 0.8094339925545622 - type: nauc_map_at_10_diff1 value: 48.251456404874645 - type: nauc_map_at_10_max value: 31.412906399154245 - type: nauc_map_at_10_std value: -0.7024825737369933 - type: nauc_map_at_1_diff1 value: 55.81906101970174 - type: nauc_map_at_1_max value: 31.811715334193796 - type: nauc_map_at_1_std value: -6.17056859281584 - type: nauc_map_at_20_diff1 value: 47.80902650237369 - type: nauc_map_at_20_max value: 32.22465403023091 - type: nauc_map_at_20_std value: 0.20706526946705656 - type: nauc_map_at_3_diff1 value: 49.97333984346632 - type: nauc_map_at_3_max value: 31.58195498640799 - type: nauc_map_at_3_std value: -2.577539707727459 - type: nauc_map_at_5_diff1 value: 49.40005767350608 - type: nauc_map_at_5_max value: 30.998435600377434 - type: nauc_map_at_5_std value: -2.1231771618690307 - type: nauc_mrr_at_1000_diff1 value: 46.86811371969663 - type: nauc_mrr_at_1000_max value: 31.25147138171024 - type: nauc_mrr_at_1000_std value: 1.9954422477585918 - type: nauc_mrr_at_100_diff1 value: 46.855870345882195 - type: nauc_mrr_at_100_max value: 31.263524035665966 - type: nauc_mrr_at_100_std value: 2.0160751193806568 - type: nauc_mrr_at_10_diff1 value: 46.93294772825783 - type: nauc_mrr_at_10_max value: 30.927002048701663 - type: nauc_mrr_at_10_std value: 1.6538220080908224 - type: nauc_mrr_at_1_diff1 value: 52.416386548395664 - type: nauc_mrr_at_1_max value: 32.28582003787206 - type: nauc_mrr_at_1_std value: -2.154991145714492 - type: nauc_mrr_at_20_diff1 value: 46.71796185319694 - type: nauc_mrr_at_20_max value: 31.16219902794994 - type: nauc_mrr_at_20_std value: 1.8590646572728409 - type: nauc_mrr_at_3_diff1 value: 47.697100317669914 - type: nauc_mrr_at_3_max value: 30.821806030159383 - type: nauc_mrr_at_3_std value: 1.1927626358099177 - type: nauc_mrr_at_5_diff1 value: 47.065272061365704 - type: nauc_mrr_at_5_max value: 30.299230962805023 - type: nauc_mrr_at_5_std value: 1.3225842862629529 - type: nauc_ndcg_at_1000_diff1 value: 45.20612583136058 - type: nauc_ndcg_at_1000_max value: 33.51931869947315 - type: nauc_ndcg_at_1000_std value: 4.923707509620363 - type: nauc_ndcg_at_100_diff1 value: 44.76206243393775 - type: nauc_ndcg_at_100_max value: 33.57771606755598 - type: nauc_ndcg_at_100_std value: 5.30915563331338 - type: nauc_ndcg_at_10_diff1 value: 45.12714032463827 - type: nauc_ndcg_at_10_max value: 30.351909495610492 - type: nauc_ndcg_at_10_std value: 2.3972947289996873 - type: nauc_ndcg_at_1_diff1 value: 52.416386548395664 - type: nauc_ndcg_at_1_max value: 32.28582003787206 - type: nauc_ndcg_at_1_std value: -2.154991145714492 - type: nauc_ndcg_at_20_diff1 value: 44.20281844000005 - type: nauc_ndcg_at_20_max value: 32.14112739396226 - type: nauc_ndcg_at_20_std value: 3.3971385462591916 - type: nauc_ndcg_at_3_diff1 value: 47.0633767031858 - type: nauc_ndcg_at_3_max value: 31.032896053733435 - type: nauc_ndcg_at_3_std value: 0.6827544906310201 - type: nauc_ndcg_at_5_diff1 value: 46.735352294106484 - type: nauc_ndcg_at_5_max value: 29.784992270528544 - type: nauc_ndcg_at_5_std value: 0.8685943819516141 - type: nauc_precision_at_1000_diff1 value: -12.223330179860852 - type: nauc_precision_at_1000_max value: -9.266492213777273 - type: nauc_precision_at_1000_std value: 19.0569899587788 - type: nauc_precision_at_100_diff1 value: -5.803751085072067 - type: nauc_precision_at_100_max value: 3.448932057044294 - type: nauc_precision_at_100_std value: 23.470863527030627 - type: nauc_precision_at_10_diff1 value: 8.887357341361907 - type: nauc_precision_at_10_max value: 18.67165390928126 - type: nauc_precision_at_10_std value: 19.158543337955404 - type: nauc_precision_at_1_diff1 value: 52.416386548395664 - type: nauc_precision_at_1_max value: 32.28582003787206 - type: nauc_precision_at_1_std value: -2.154991145714492 - type: nauc_precision_at_20_diff1 value: 0.942496138409553 - type: nauc_precision_at_20_max value: 18.86957127610774 - type: nauc_precision_at_20_std value: 24.075503903246496 - type: nauc_precision_at_3_diff1 value: 28.15363877307106 - type: nauc_precision_at_3_max value: 27.064928137991824 - type: nauc_precision_at_3_std value: 8.632807104504753 - type: nauc_precision_at_5_diff1 value: 20.805862332497973 - type: nauc_precision_at_5_max value: 21.420201475758404 - type: nauc_precision_at_5_std value: 12.380239645425714 - type: nauc_recall_at_1000_diff1 value: 18.478341468055547 - type: nauc_recall_at_1000_max value: 56.293560115074506 - type: nauc_recall_at_1000_std value: 64.31607185065428 - type: nauc_recall_at_100_diff1 value: 26.737267337771886 - type: nauc_recall_at_100_max value: 38.011889141496326 - type: nauc_recall_at_100_std value: 30.44904690114732 - type: nauc_recall_at_10_diff1 value: 35.22772732735716 - type: nauc_recall_at_10_max value: 26.000054115159486 - type: nauc_recall_at_10_std value: 5.174264254271206 - type: nauc_recall_at_1_diff1 value: 55.81906101970174 - type: nauc_recall_at_1_max value: 31.811715334193796 - type: nauc_recall_at_1_std value: -6.17056859281584 - type: nauc_recall_at_20_diff1 value: 30.48493302415641 - type: nauc_recall_at_20_max value: 31.05487040370753 - type: nauc_recall_at_20_std value: 10.319948318834136 - type: nauc_recall_at_3_diff1 value: 43.12289512340243 - type: nauc_recall_at_3_max value: 28.176279771026135 - type: nauc_recall_at_3_std value: -0.1775154523381921 - type: nauc_recall_at_5_diff1 value: 40.9934933741234 - type: nauc_recall_at_5_max value: 25.569156290584733 - type: nauc_recall_at_5_std value: 0.21166696686855038 - type: ndcg_at_1 value: 33.597 - type: ndcg_at_10 value: 44.718999999999994 - type: ndcg_at_100 value: 50.324000000000005 - type: ndcg_at_1000 value: 52.468 - type: ndcg_at_20 value: 46.822 - type: ndcg_at_3 value: 39.558 - type: ndcg_at_5 value: 41.827999999999996 - type: precision_at_1 value: 33.597 - type: precision_at_10 value: 8.735 - type: precision_at_100 value: 1.6420000000000001 - type: precision_at_1000 value: 0.246 - type: precision_at_20 value: 5.375 - type: precision_at_3 value: 18.511 - type: precision_at_5 value: 13.399 - type: recall_at_1 value: 28.383999999999997 - type: recall_at_10 value: 56.425000000000004 - type: recall_at_100 value: 82.01899999999999 - type: recall_at_1000 value: 95.285 - type: recall_at_20 value: 64.615 - type: recall_at_3 value: 42.171 - type: recall_at_5 value: 48.296 - task: type: Retrieval dataset: name: MTEB CQADupstackWordpressRetrieval type: mteb/cqadupstack-wordpress config: default split: test revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 metrics: - type: main_score value: 38.269999999999996 - type: map_at_1 value: 25.324999999999996 - type: map_at_10 value: 33.263 - type: map_at_100 value: 34.304 - type: map_at_1000 value: 34.394000000000005 - type: map_at_20 value: 33.827 - type: map_at_3 value: 30.259999999999998 - type: map_at_5 value: 31.832 - type: mrr_at_1 value: 27.171903881700555 - type: mrr_at_10 value: 35.334991051257234 - type: mrr_at_100 value: 36.251283465952355 - type: mrr_at_1000 value: 36.316236092511055 - type: mrr_at_20 value: 35.87141909945257 - type: mrr_at_3 value: 32.71719038817007 - type: mrr_at_5 value: 34.19593345656194 - type: nauc_map_at_1000_diff1 value: 39.614836211522714 - type: nauc_map_at_1000_max value: 22.019768626310192 - type: nauc_map_at_1000_std value: -1.5238708712112499 - type: nauc_map_at_100_diff1 value: 39.63008548572307 - type: nauc_map_at_100_max value: 22.044756063752345 - type: nauc_map_at_100_std value: -1.4869190221494792 - type: nauc_map_at_10_diff1 value: 39.73025012395569 - type: nauc_map_at_10_max value: 22.117710178892107 - type: nauc_map_at_10_std value: -2.5129984871932973 - type: nauc_map_at_1_diff1 value: 45.015617718902654 - type: nauc_map_at_1_max value: 19.313800263189638 - type: nauc_map_at_1_std value: -4.763931386681675 - type: nauc_map_at_20_diff1 value: 39.53678019013766 - type: nauc_map_at_20_max value: 21.880316719428258 - type: nauc_map_at_20_std value: -1.882003994523355 - type: nauc_map_at_3_diff1 value: 40.37307665298228 - type: nauc_map_at_3_max value: 20.851976075322533 - type: nauc_map_at_3_std value: -2.429569082966531 - type: nauc_map_at_5_diff1 value: 39.763015635086 - type: nauc_map_at_5_max value: 22.010102196900725 - type: nauc_map_at_5_std value: -2.654896415670943 - type: nauc_mrr_at_1000_diff1 value: 39.74071733680025 - type: nauc_mrr_at_1000_max value: 21.67309640681989 - type: nauc_mrr_at_1000_std value: -1.4003373135477462 - type: nauc_mrr_at_100_diff1 value: 39.730614151966485 - type: nauc_mrr_at_100_max value: 21.678390048971767 - type: nauc_mrr_at_100_std value: -1.3655362623563931 - type: nauc_mrr_at_10_diff1 value: 39.7900031013241 - type: nauc_mrr_at_10_max value: 21.73643491725051 - type: nauc_mrr_at_10_std value: -2.1175389838696312 - type: nauc_mrr_at_1_diff1 value: 46.165736140679776 - type: nauc_mrr_at_1_max value: 20.071083446822147 - type: nauc_mrr_at_1_std value: -5.018909100858311 - type: nauc_mrr_at_20_diff1 value: 39.6371295762885 - type: nauc_mrr_at_20_max value: 21.659557440270973 - type: nauc_mrr_at_20_std value: -1.4909603958341686 - type: nauc_mrr_at_3_diff1 value: 40.351150322758876 - type: nauc_mrr_at_3_max value: 20.83706249041544 - type: nauc_mrr_at_3_std value: -1.956027373253151 - type: nauc_mrr_at_5_diff1 value: 39.57759107791911 - type: nauc_mrr_at_5_max value: 21.79552045204151 - type: nauc_mrr_at_5_std value: -2.1507013120951126 - type: nauc_ndcg_at_1000_diff1 value: 37.717619356839016 - type: nauc_ndcg_at_1000_max value: 22.545375504379805 - type: nauc_ndcg_at_1000_std value: 1.682348628141016 - type: nauc_ndcg_at_100_diff1 value: 37.656027803682626 - type: nauc_ndcg_at_100_max value: 22.49278246383637 - type: nauc_ndcg_at_100_std value: 2.6818118152357773 - type: nauc_ndcg_at_10_diff1 value: 37.834954205539766 - type: nauc_ndcg_at_10_max value: 22.655839885558443 - type: nauc_ndcg_at_10_std value: -1.97159619786231 - type: nauc_ndcg_at_1_diff1 value: 46.165736140679776 - type: nauc_ndcg_at_1_max value: 20.071083446822147 - type: nauc_ndcg_at_1_std value: -5.018909100858311 - type: nauc_ndcg_at_20_diff1 value: 37.171914857454304 - type: nauc_ndcg_at_20_max value: 21.858904801745897 - type: nauc_ndcg_at_20_std value: 0.3809854859496657 - type: nauc_ndcg_at_3_diff1 value: 38.4460623883955 - type: nauc_ndcg_at_3_max value: 20.95244159463402 - type: nauc_ndcg_at_3_std value: -1.2685011660086651 - type: nauc_ndcg_at_5_diff1 value: 37.48831054573054 - type: nauc_ndcg_at_5_max value: 22.625921624640526 - type: nauc_ndcg_at_5_std value: -2.049221092724925 - type: nauc_precision_at_1000_diff1 value: -19.120500628263994 - type: nauc_precision_at_1000_max value: -6.650707109047473 - type: nauc_precision_at_1000_std value: 15.71193179253002 - type: nauc_precision_at_100_diff1 value: 6.254606806876069 - type: nauc_precision_at_100_max value: 14.601826922181823 - type: nauc_precision_at_100_std value: 28.38299592246453 - type: nauc_precision_at_10_diff1 value: 22.978614338670816 - type: nauc_precision_at_10_max value: 23.04146766323557 - type: nauc_precision_at_10_std value: 6.226264308612577 - type: nauc_precision_at_1_diff1 value: 46.165736140679776 - type: nauc_precision_at_1_max value: 20.071083446822147 - type: nauc_precision_at_1_std value: -5.018909100858311 - type: nauc_precision_at_20_diff1 value: 17.681032853225602 - type: nauc_precision_at_20_max value: 18.66680304585122 - type: nauc_precision_at_20_std value: 15.34896796713905 - type: nauc_precision_at_3_diff1 value: 31.359396694559194 - type: nauc_precision_at_3_max value: 22.279263308973274 - type: nauc_precision_at_3_std value: 3.6302537979529035 - type: nauc_precision_at_5_diff1 value: 26.32257879892933 - type: nauc_precision_at_5_max value: 25.402524493181026 - type: nauc_precision_at_5_std value: 4.731450603747359 - type: nauc_recall_at_1000_diff1 value: 23.562925244967875 - type: nauc_recall_at_1000_max value: 30.737399333586797 - type: nauc_recall_at_1000_std value: 34.19418935008663 - type: nauc_recall_at_100_diff1 value: 28.703574970574824 - type: nauc_recall_at_100_max value: 22.448663600170278 - type: nauc_recall_at_100_std value: 24.53297349042035 - type: nauc_recall_at_10_diff1 value: 31.73603907811882 - type: nauc_recall_at_10_max value: 23.453183748640765 - type: nauc_recall_at_10_std value: -1.8279054407176274 - type: nauc_recall_at_1_diff1 value: 45.015617718902654 - type: nauc_recall_at_1_max value: 19.313800263189638 - type: nauc_recall_at_1_std value: -4.763931386681675 - type: nauc_recall_at_20_diff1 value: 28.74169081866096 - type: nauc_recall_at_20_max value: 20.035509169577324 - type: nauc_recall_at_20_std value: 7.371615811227748 - type: nauc_recall_at_3_diff1 value: 34.09890157333362 - type: nauc_recall_at_3_max value: 20.46565842748346 - type: nauc_recall_at_3_std value: -0.4337283067447526 - type: nauc_recall_at_5_diff1 value: 30.974580787842402 - type: nauc_recall_at_5_max value: 23.76379349487105 - type: nauc_recall_at_5_std value: -1.8407515927979428 - type: ndcg_at_1 value: 27.172 - type: ndcg_at_10 value: 38.269999999999996 - type: ndcg_at_100 value: 43.338 - type: ndcg_at_1000 value: 45.594 - type: ndcg_at_20 value: 40.256 - type: ndcg_at_3 value: 32.673 - type: ndcg_at_5 value: 35.224 - type: precision_at_1 value: 27.172 - type: precision_at_10 value: 6.063000000000001 - type: precision_at_100 value: 0.9259999999999999 - type: precision_at_1000 value: 0.123 - type: precision_at_20 value: 3.5029999999999997 - type: precision_at_3 value: 13.74 - type: precision_at_5 value: 9.797 - type: recall_at_1 value: 25.324999999999996 - type: recall_at_10 value: 51.634 - type: recall_at_100 value: 74.687 - type: recall_at_1000 value: 91.412 - type: recall_at_20 value: 59.207 - type: recall_at_3 value: 36.678 - type: recall_at_5 value: 42.742999999999995 - task: type: Retrieval dataset: name: MTEB ClimateFEVER type: mteb/climate-fever config: default split: test revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 metrics: - type: main_score value: 36.853 - type: map_at_1 value: 15.371000000000002 - type: map_at_10 value: 27.122 - type: map_at_100 value: 29.226000000000003 - type: map_at_1000 value: 29.409999999999997 - type: map_at_20 value: 28.274 - type: map_at_3 value: 22.431 - type: map_at_5 value: 24.877 - type: mrr_at_1 value: 34.13680781758958 - type: mrr_at_10 value: 47.265911793599145 - type: mrr_at_100 value: 48.028369995763846 - type: mrr_at_1000 value: 48.05317022537804 - type: mrr_at_20 value: 47.75785292259516 - type: mrr_at_3 value: 43.887079261672156 - type: mrr_at_5 value: 45.906623235613544 - type: nauc_map_at_1000_diff1 value: 24.949211292921547 - type: nauc_map_at_1000_max value: 38.69844483304584 - type: nauc_map_at_1000_std value: 18.336359440844753 - type: nauc_map_at_100_diff1 value: 24.8951732982492 - type: nauc_map_at_100_max value: 38.65049158594052 - type: nauc_map_at_100_std value: 18.28935278388095 - type: nauc_map_at_10_diff1 value: 24.606032216798273 - type: nauc_map_at_10_max value: 38.00608351559887 - type: nauc_map_at_10_std value: 16.61261615173358 - type: nauc_map_at_1_diff1 value: 30.83614944448221 - type: nauc_map_at_1_max value: 33.757528532809 - type: nauc_map_at_1_std value: 8.880622713261126 - type: nauc_map_at_20_diff1 value: 24.75491310922017 - type: nauc_map_at_20_max value: 38.353679076398834 - type: nauc_map_at_20_std value: 17.58637493443171 - type: nauc_map_at_3_diff1 value: 25.563085273287083 - type: nauc_map_at_3_max value: 35.14515679047155 - type: nauc_map_at_3_std value: 11.75594869817732 - type: nauc_map_at_5_diff1 value: 24.815807517691614 - type: nauc_map_at_5_max value: 36.25905426665983 - type: nauc_map_at_5_std value: 14.516391726180697 - type: nauc_mrr_at_1000_diff1 value: 27.948233427121274 - type: nauc_mrr_at_1000_max value: 37.5893640945859 - type: nauc_mrr_at_1000_std value: 19.588442449629763 - type: nauc_mrr_at_100_diff1 value: 27.947962345854037 - type: nauc_mrr_at_100_max value: 37.60375479481945 - type: nauc_mrr_at_100_std value: 19.614791576283793 - type: nauc_mrr_at_10_diff1 value: 27.882311310262136 - type: nauc_mrr_at_10_max value: 37.58580968074054 - type: nauc_mrr_at_10_std value: 19.49875186170201 - type: nauc_mrr_at_1_diff1 value: 28.017413073648477 - type: nauc_mrr_at_1_max value: 32.87710191514022 - type: nauc_mrr_at_1_std value: 14.04889142608459 - type: nauc_mrr_at_20_diff1 value: 27.89129925771968 - type: nauc_mrr_at_20_max value: 37.6142863106945 - type: nauc_mrr_at_20_std value: 19.645390143394163 - type: nauc_mrr_at_3_diff1 value: 27.99609559690795 - type: nauc_mrr_at_3_max value: 36.87362332456197 - type: nauc_mrr_at_3_std value: 18.598416821915333 - type: nauc_mrr_at_5_diff1 value: 27.68306089976716 - type: nauc_mrr_at_5_max value: 37.12264485659723 - type: nauc_mrr_at_5_std value: 19.18875305730564 - type: nauc_ndcg_at_1000_diff1 value: 25.736779186453777 - type: nauc_ndcg_at_1000_max value: 41.93281139456004 - type: nauc_ndcg_at_1000_std value: 25.179038422659993 - type: nauc_ndcg_at_100_diff1 value: 25.144796623848322 - type: nauc_ndcg_at_100_max value: 41.72820916876173 - type: nauc_ndcg_at_100_std value: 25.12851686850754 - type: nauc_ndcg_at_10_diff1 value: 24.321249191226652 - type: nauc_ndcg_at_10_max value: 40.23711916935706 - type: nauc_ndcg_at_10_std value: 20.89060972334557 - type: nauc_ndcg_at_1_diff1 value: 28.017413073648477 - type: nauc_ndcg_at_1_max value: 32.87710191514022 - type: nauc_ndcg_at_1_std value: 14.04889142608459 - type: nauc_ndcg_at_20_diff1 value: 24.5090484877482 - type: nauc_ndcg_at_20_max value: 40.752854032983606 - type: nauc_ndcg_at_20_std value: 22.70331074781384 - type: nauc_ndcg_at_3_diff1 value: 25.13499057756147 - type: nauc_ndcg_at_3_max value: 35.8325682137567 - type: nauc_ndcg_at_3_std value: 15.23768392706637 - type: nauc_ndcg_at_5_diff1 value: 24.614105695451116 - type: nauc_ndcg_at_5_max value: 37.68089587624492 - type: nauc_ndcg_at_5_std value: 17.946406099261708 - type: nauc_precision_at_1000_diff1 value: -2.022340544774227 - type: nauc_precision_at_1000_max value: 6.070578645067797 - type: nauc_precision_at_1000_std value: 22.15132728777549 - type: nauc_precision_at_100_diff1 value: 4.544144474504255 - type: nauc_precision_at_100_max value: 19.780392159848574 - type: nauc_precision_at_100_std value: 31.107111186002438 - type: nauc_precision_at_10_diff1 value: 10.107015022955848 - type: nauc_precision_at_10_max value: 30.779709099060465 - type: nauc_precision_at_10_std value: 27.324148451668602 - type: nauc_precision_at_1_diff1 value: 28.017413073648477 - type: nauc_precision_at_1_max value: 32.87710191514022 - type: nauc_precision_at_1_std value: 14.04889142608459 - type: nauc_precision_at_20_diff1 value: 8.270881053079405 - type: nauc_precision_at_20_max value: 27.26753946078481 - type: nauc_precision_at_20_std value: 29.156725822074204 - type: nauc_precision_at_3_diff1 value: 17.82468940497632 - type: nauc_precision_at_3_max value: 31.490021174215155 - type: nauc_precision_at_3_std value: 18.73818985054394 - type: nauc_precision_at_5_diff1 value: 13.24803141673961 - type: nauc_precision_at_5_max value: 29.94926240784298 - type: nauc_precision_at_5_std value: 23.2940906142919 - type: nauc_recall_at_1000_diff1 value: 19.09850333580471 - type: nauc_recall_at_1000_max value: 46.026306142840596 - type: nauc_recall_at_1000_std value: 46.50391519568263 - type: nauc_recall_at_100_diff1 value: 16.739384224869738 - type: nauc_recall_at_100_max value: 40.68987136431252 - type: nauc_recall_at_100_std value: 36.01609750485591 - type: nauc_recall_at_10_diff1 value: 17.51796617221814 - type: nauc_recall_at_10_max value: 39.47453129444401 - type: nauc_recall_at_10_std value: 23.79239002974899 - type: nauc_recall_at_1_diff1 value: 30.83614944448221 - type: nauc_recall_at_1_max value: 33.757528532809 - type: nauc_recall_at_1_std value: 8.880622713261126 - type: nauc_recall_at_20_diff1 value: 16.978668307251652 - type: nauc_recall_at_20_max value: 39.09115357303713 - type: nauc_recall_at_20_std value: 27.278668534187524 - type: nauc_recall_at_3_diff1 value: 22.55937738994021 - type: nauc_recall_at_3_max value: 36.25055459395638 - type: nauc_recall_at_3_std value: 14.828905168761247 - type: nauc_recall_at_5_diff1 value: 19.32656748627199 - type: nauc_recall_at_5_max value: 36.28836228620816 - type: nauc_recall_at_5_std value: 19.264352933914278 - type: ndcg_at_1 value: 34.137 - type: ndcg_at_10 value: 36.853 - type: ndcg_at_100 value: 44.279 - type: ndcg_at_1000 value: 47.336 - type: ndcg_at_20 value: 39.815 - type: ndcg_at_3 value: 30.253999999999998 - type: ndcg_at_5 value: 32.649 - type: precision_at_1 value: 34.137 - type: precision_at_10 value: 11.655 - type: precision_at_100 value: 1.9619999999999997 - type: precision_at_1000 value: 0.254 - type: precision_at_20 value: 7.1209999999999996 - type: precision_at_3 value: 22.823 - type: precision_at_5 value: 17.655 - type: recall_at_1 value: 15.371000000000002 - type: recall_at_10 value: 43.718 - type: recall_at_100 value: 68.81 - type: recall_at_1000 value: 85.69600000000001 - type: recall_at_20 value: 51.94 - type: recall_at_3 value: 27.694000000000003 - type: recall_at_5 value: 34.469 - task: type: Retrieval dataset: name: MTEB DBPedia type: mteb/dbpedia config: default split: test revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 metrics: - type: main_score value: 45.553 - type: map_at_1 value: 9.168999999999999 - type: map_at_10 value: 22.154 - type: map_at_100 value: 32.174 - type: map_at_1000 value: 33.974 - type: map_at_20 value: 25.899 - type: map_at_3 value: 15.275 - type: map_at_5 value: 18.291 - type: mrr_at_1 value: 70.75 - type: mrr_at_10 value: 78.39662698412697 - type: mrr_at_100 value: 78.56221458977012 - type: mrr_at_1000 value: 78.56669970642338 - type: mrr_at_20 value: 78.49688805346696 - type: mrr_at_3 value: 76.33333333333333 - type: mrr_at_5 value: 77.70833333333333 - type: nauc_map_at_1000_diff1 value: 18.465085922071346 - type: nauc_map_at_1000_max value: 24.29804638788498 - type: nauc_map_at_1000_std value: 22.380463943423514 - type: nauc_map_at_100_diff1 value: 19.37585410674523 - type: nauc_map_at_100_max value: 22.56424042509462 - type: nauc_map_at_100_std value: 19.672237275984426 - type: nauc_map_at_10_diff1 value: 23.597788166305577 - type: nauc_map_at_10_max value: 9.157316105122925 - type: nauc_map_at_10_std value: -3.8881247055786807 - type: nauc_map_at_1_diff1 value: 43.96699602275052 - type: nauc_map_at_1_max value: -0.7577088440873263 - type: nauc_map_at_1_std value: -17.732463891968404 - type: nauc_map_at_20_diff1 value: 22.326759054850097 - type: nauc_map_at_20_max value: 14.879191412167703 - type: nauc_map_at_20_std value: 5.405751236575241 - type: nauc_map_at_3_diff1 value: 28.73583545428074 - type: nauc_map_at_3_max value: 1.5986597211018239 - type: nauc_map_at_3_std value: -16.512455883681515 - type: nauc_map_at_5_diff1 value: 25.401810959155057 - type: nauc_map_at_5_max value: 4.418875376978587 - type: nauc_map_at_5_std value: -12.296750992013052 - type: nauc_mrr_at_1000_diff1 value: 51.228801807498584 - type: nauc_mrr_at_1000_max value: 61.040998883279585 - type: nauc_mrr_at_1000_std value: 40.93983887257123 - type: nauc_mrr_at_100_diff1 value: 51.23715338435314 - type: nauc_mrr_at_100_max value: 61.03971408781317 - type: nauc_mrr_at_100_std value: 40.91796923590573 - type: nauc_mrr_at_10_diff1 value: 51.1214868552331 - type: nauc_mrr_at_10_max value: 61.03069045590881 - type: nauc_mrr_at_10_std value: 40.661621199704264 - type: nauc_mrr_at_1_diff1 value: 50.84660003035892 - type: nauc_mrr_at_1_max value: 60.692091499960895 - type: nauc_mrr_at_1_std value: 42.126228731502955 - type: nauc_mrr_at_20_diff1 value: 51.0402624284872 - type: nauc_mrr_at_20_max value: 60.94577844338166 - type: nauc_mrr_at_20_std value: 40.89505950503613 - type: nauc_mrr_at_3_diff1 value: 51.771113665996516 - type: nauc_mrr_at_3_max value: 61.65264793077224 - type: nauc_mrr_at_3_std value: 41.75781827057092 - type: nauc_mrr_at_5_diff1 value: 51.0656793772882 - type: nauc_mrr_at_5_max value: 61.08042065139715 - type: nauc_mrr_at_5_std value: 41.11203271084835 - type: nauc_ndcg_at_1000_diff1 value: 22.347978262245107 - type: nauc_ndcg_at_1000_max value: 36.56458763955002 - type: nauc_ndcg_at_1000_std value: 35.99616144258822 - type: nauc_ndcg_at_100_diff1 value: 23.1120990977162 - type: nauc_ndcg_at_100_max value: 30.79663306311657 - type: nauc_ndcg_at_100_std value: 27.387572106784297 - type: nauc_ndcg_at_10_diff1 value: 23.329746066899656 - type: nauc_ndcg_at_10_max value: 28.69246947084685 - type: nauc_ndcg_at_10_std value: 21.457736188325345 - type: nauc_ndcg_at_1_diff1 value: 39.99399153456974 - type: nauc_ndcg_at_1_max value: 38.12447856470389 - type: nauc_ndcg_at_1_std value: 27.768869260384676 - type: nauc_ndcg_at_20_diff1 value: 24.945374175339907 - type: nauc_ndcg_at_20_max value: 27.67836982165295 - type: nauc_ndcg_at_20_std value: 19.7933631060578 - type: nauc_ndcg_at_3_diff1 value: 26.063492354398527 - type: nauc_ndcg_at_3_max value: 33.06541959550656 - type: nauc_ndcg_at_3_std value: 23.278902797288726 - type: nauc_ndcg_at_5_diff1 value: 22.521596060750035 - type: nauc_ndcg_at_5_max value: 31.210005673730784 - type: nauc_ndcg_at_5_std value: 22.893106456317927 - type: nauc_precision_at_1000_diff1 value: -19.845356495096006 - type: nauc_precision_at_1000_max value: 4.163819381816099 - type: nauc_precision_at_1000_std value: 7.612952884590339 - type: nauc_precision_at_100_diff1 value: -8.2679285153361 - type: nauc_precision_at_100_max value: 29.78018175573565 - type: nauc_precision_at_100_std value: 41.07244463956215 - type: nauc_precision_at_10_diff1 value: -3.2451428407349057 - type: nauc_precision_at_10_max value: 36.92563008274906 - type: nauc_precision_at_10_std value: 45.06962043489777 - type: nauc_precision_at_1_diff1 value: 50.84660003035892 - type: nauc_precision_at_1_max value: 60.692091499960895 - type: nauc_precision_at_1_std value: 42.126228731502955 - type: nauc_precision_at_20_diff1 value: -3.432279149061878 - type: nauc_precision_at_20_max value: 37.013592483974875 - type: nauc_precision_at_20_std value: 46.47324739428665 - type: nauc_precision_at_3_diff1 value: 7.28495481051025 - type: nauc_precision_at_3_max value: 38.66372411741402 - type: nauc_precision_at_3_std value: 35.23163993723955 - type: nauc_precision_at_5_diff1 value: -0.16540230063716202 - type: nauc_precision_at_5_max value: 37.322494255721715 - type: nauc_precision_at_5_std value: 39.666653561269754 - type: nauc_recall_at_1000_diff1 value: 11.388326469283681 - type: nauc_recall_at_1000_max value: 32.698146308591674 - type: nauc_recall_at_1000_std value: 49.48830488070777 - type: nauc_recall_at_100_diff1 value: 11.497443532756819 - type: nauc_recall_at_100_max value: 20.196970431621615 - type: nauc_recall_at_100_std value: 23.688772100803433 - type: nauc_recall_at_10_diff1 value: 16.519851398596003 - type: nauc_recall_at_10_max value: 0.774066845071221 - type: nauc_recall_at_10_std value: -10.89514647001814 - type: nauc_recall_at_1_diff1 value: 43.96699602275052 - type: nauc_recall_at_1_max value: -0.7577088440873263 - type: nauc_recall_at_1_std value: -17.732463891968404 - type: nauc_recall_at_20_diff1 value: 15.202960269878258 - type: nauc_recall_at_20_max value: 7.067263295590253 - type: nauc_recall_at_20_std value: -0.06050108222640702 - type: nauc_recall_at_3_diff1 value: 24.066741361525125 - type: nauc_recall_at_3_max value: -2.1961525860488424 - type: nauc_recall_at_3_std value: -19.48307077749568 - type: nauc_recall_at_5_diff1 value: 20.086330794102707 - type: nauc_recall_at_5_max value: -0.8866528062747986 - type: nauc_recall_at_5_std value: -16.53799173962747 - type: ndcg_at_1 value: 57.99999999999999 - type: ndcg_at_10 value: 45.553 - type: ndcg_at_100 value: 51.014 - type: ndcg_at_1000 value: 58.226 - type: ndcg_at_20 value: 44.98 - type: ndcg_at_3 value: 48.981 - type: ndcg_at_5 value: 46.794999999999995 - type: precision_at_1 value: 70.75 - type: precision_at_10 value: 36.85 - type: precision_at_100 value: 11.955 - type: precision_at_1000 value: 2.247 - type: precision_at_20 value: 28.075 - type: precision_at_3 value: 52.666999999999994 - type: precision_at_5 value: 45.85 - type: recall_at_1 value: 9.168999999999999 - type: recall_at_10 value: 28.796 - type: recall_at_100 value: 58.892999999999994 - type: recall_at_1000 value: 81.644 - type: recall_at_20 value: 36.659000000000006 - type: recall_at_3 value: 16.709 - type: recall_at_5 value: 21.387 - task: type: Retrieval dataset: name: MTEB FEVER type: mteb/fever config: default split: test revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 metrics: - type: main_score value: 88.41 - type: map_at_1 value: 75.637 - type: map_at_10 value: 84.674 - type: map_at_100 value: 84.909 - type: map_at_1000 value: 84.92 - type: map_at_20 value: 84.836 - type: map_at_3 value: 83.44200000000001 - type: map_at_5 value: 84.28099999999999 - type: mrr_at_1 value: 81.56315631563157 - type: mrr_at_10 value: 88.89571695264748 - type: mrr_at_100 value: 88.93671417216285 - type: mrr_at_1000 value: 88.93708016011664 - type: mrr_at_20 value: 88.9311652665256 - type: mrr_at_3 value: 88.20882088208805 - type: mrr_at_5 value: 88.72937293729349 - type: nauc_map_at_1000_diff1 value: 54.41216035074026 - type: nauc_map_at_1000_max value: 13.346153003554361 - type: nauc_map_at_1000_std value: -6.721664416152164 - type: nauc_map_at_100_diff1 value: 54.36538350995795 - type: nauc_map_at_100_max value: 13.355583381471298 - type: nauc_map_at_100_std value: -6.696921015641016 - type: nauc_map_at_10_diff1 value: 54.0389127730555 - type: nauc_map_at_10_max value: 13.387802159150663 - type: nauc_map_at_10_std value: -6.73514381731833 - type: nauc_map_at_1_diff1 value: 57.99489574836453 - type: nauc_map_at_1_max value: 7.830032589171654 - type: nauc_map_at_1_std value: -10.140208285080295 - type: nauc_map_at_20_diff1 value: 54.16841004736076 - type: nauc_map_at_20_max value: 13.345607363689746 - type: nauc_map_at_20_std value: -6.663119775158465 - type: nauc_map_at_3_diff1 value: 53.82879543599303 - type: nauc_map_at_3_max value: 12.716952288433902 - type: nauc_map_at_3_std value: -7.746102082835598 - type: nauc_map_at_5_diff1 value: 53.82838395350109 - type: nauc_map_at_5_max value: 13.487373534211702 - type: nauc_map_at_5_std value: -6.869504398693434 - type: nauc_mrr_at_1000_diff1 value: 68.92783546581906 - type: nauc_mrr_at_1000_max value: 12.076297180596592 - type: nauc_mrr_at_1000_std value: -13.306257067567998 - type: nauc_mrr_at_100_diff1 value: 68.92780219775517 - type: nauc_mrr_at_100_max value: 12.078449805054374 - type: nauc_mrr_at_100_std value: -13.303524852703719 - type: nauc_mrr_at_10_diff1 value: 68.92686206881258 - type: nauc_mrr_at_10_max value: 12.273295656884873 - type: nauc_mrr_at_10_std value: -13.222483496603965 - type: nauc_mrr_at_1_diff1 value: 70.1738022073041 - type: nauc_mrr_at_1_max value: 9.378639533482806 - type: nauc_mrr_at_1_std value: -13.444033823202348 - type: nauc_mrr_at_20_diff1 value: 68.91161304905303 - type: nauc_mrr_at_20_max value: 12.117091514817885 - type: nauc_mrr_at_20_std value: -13.258261750160239 - type: nauc_mrr_at_3_diff1 value: 68.61982455945467 - type: nauc_mrr_at_3_max value: 12.608213879734578 - type: nauc_mrr_at_3_std value: -13.558003431587839 - type: nauc_mrr_at_5_diff1 value: 68.81439097457242 - type: nauc_mrr_at_5_max value: 12.54025598903624 - type: nauc_mrr_at_5_std value: -13.199231514972093 - type: nauc_ndcg_at_1000_diff1 value: 56.47563443877495 - type: nauc_ndcg_at_1000_max value: 14.508331783439466 - type: nauc_ndcg_at_1000_std value: -6.206829736668775 - type: nauc_ndcg_at_100_diff1 value: 55.54015515673474 - type: nauc_ndcg_at_100_max value: 14.753595778278136 - type: nauc_ndcg_at_100_std value: -5.638517949568802 - type: nauc_ndcg_at_10_diff1 value: 54.220845223257996 - type: nauc_ndcg_at_10_max value: 15.265309648490021 - type: nauc_ndcg_at_10_std value: -5.516276098929109 - type: nauc_ndcg_at_1_diff1 value: 70.1738022073041 - type: nauc_ndcg_at_1_max value: 9.378639533482806 - type: nauc_ndcg_at_1_std value: -13.444033823202348 - type: nauc_ndcg_at_20_diff1 value: 54.481406100854635 - type: nauc_ndcg_at_20_max value: 14.868763583210498 - type: nauc_ndcg_at_20_std value: -5.328097380018734 - type: nauc_ndcg_at_3_diff1 value: 54.94411725607744 - type: nauc_ndcg_at_3_max value: 14.27186734506607 - type: nauc_ndcg_at_3_std value: -7.894724962312474 - type: nauc_ndcg_at_5_diff1 value: 54.08048166974806 - type: nauc_ndcg_at_5_max value: 15.528233170721006 - type: nauc_ndcg_at_5_std value: -5.984768714537104 - type: nauc_precision_at_1000_diff1 value: -8.744323640074445 - type: nauc_precision_at_1000_max value: -0.01881224392053465 - type: nauc_precision_at_1000_std value: 3.8721477979260635 - type: nauc_precision_at_100_diff1 value: -11.86150156952171 - type: nauc_precision_at_100_max value: 3.2736651314552314 - type: nauc_precision_at_100_std value: 8.12687620615509 - type: nauc_precision_at_10_diff1 value: -10.360708676781178 - type: nauc_precision_at_10_max value: 10.945552490433458 - type: nauc_precision_at_10_std value: 11.016707653014485 - type: nauc_precision_at_1_diff1 value: 70.1738022073041 - type: nauc_precision_at_1_max value: 9.378639533482806 - type: nauc_precision_at_1_std value: -13.444033823202348 - type: nauc_precision_at_20_diff1 value: -13.557721925696583 - type: nauc_precision_at_20_max value: 6.331386521718574 - type: nauc_precision_at_20_std value: 10.322188778142388 - type: nauc_precision_at_3_diff1 value: 15.139456770248968 - type: nauc_precision_at_3_max value: 17.10220985600708 - type: nauc_precision_at_3_std value: 3.0448183682558074 - type: nauc_precision_at_5_diff1 value: -1.9825577548111102 - type: nauc_precision_at_5_max value: 17.139148127012625 - type: nauc_precision_at_5_std value: 10.598435750554753 - type: nauc_recall_at_1000_diff1 value: 15.641740744283005 - type: nauc_recall_at_1000_max value: 44.65315702195612 - type: nauc_recall_at_1000_std value: 52.34265862835513 - type: nauc_recall_at_100_diff1 value: 5.254385435323394 - type: nauc_recall_at_100_max value: 38.53577774395794 - type: nauc_recall_at_100_std value: 43.47744274335829 - type: nauc_recall_at_10_diff1 value: 19.135735476268042 - type: nauc_recall_at_10_max value: 30.05417445923848 - type: nauc_recall_at_10_std value: 18.3988023241141 - type: nauc_recall_at_1_diff1 value: 57.99489574836453 - type: nauc_recall_at_1_max value: 7.830032589171654 - type: nauc_recall_at_1_std value: -10.140208285080295 - type: nauc_recall_at_20_diff1 value: 9.444797759735126 - type: nauc_recall_at_20_max value: 31.001311675371017 - type: nauc_recall_at_20_std value: 29.351418893822178 - type: nauc_recall_at_3_diff1 value: 36.88862653262064 - type: nauc_recall_at_3_max value: 19.845892741607823 - type: nauc_recall_at_3_std value: -1.0584273105890794 - type: nauc_recall_at_5_diff1 value: 27.360718561944974 - type: nauc_recall_at_5_max value: 26.698311215441738 - type: nauc_recall_at_5_std value: 8.97113997755362 - type: ndcg_at_1 value: 81.563 - type: ndcg_at_10 value: 88.41 - type: ndcg_at_100 value: 89.101 - type: ndcg_at_1000 value: 89.25800000000001 - type: ndcg_at_20 value: 88.79 - type: ndcg_at_3 value: 86.599 - type: ndcg_at_5 value: 87.74 - type: precision_at_1 value: 81.563 - type: precision_at_10 value: 10.699 - type: precision_at_100 value: 1.13 - type: precision_at_1000 value: 0.116 - type: precision_at_20 value: 5.479 - type: precision_at_3 value: 33.238 - type: precision_at_5 value: 20.744 - type: recall_at_1 value: 75.637 - type: recall_at_10 value: 95.57600000000001 - type: recall_at_100 value: 98.072 - type: recall_at_1000 value: 98.951 - type: recall_at_20 value: 96.792 - type: recall_at_3 value: 90.79599999999999 - type: recall_at_5 value: 93.674 - task: type: Retrieval dataset: name: MTEB FiQA2018 type: mteb/fiqa config: default split: test revision: 27a168819829fe9bcd655c2df245fb19452e8e06 metrics: - type: main_score value: 42.396 - type: map_at_1 value: 21.711 - type: map_at_10 value: 34.628 - type: map_at_100 value: 36.549 - type: map_at_1000 value: 36.719 - type: map_at_20 value: 35.673 - type: map_at_3 value: 30.585 - type: map_at_5 value: 32.875 - type: mrr_at_1 value: 41.82098765432099 - type: mrr_at_10 value: 50.69505682931607 - type: mrr_at_100 value: 51.50556608727901 - type: mrr_at_1000 value: 51.53870583208304 - type: mrr_at_20 value: 51.15345764364655 - type: mrr_at_3 value: 48.35390946502059 - type: mrr_at_5 value: 49.87397119341563 - type: nauc_map_at_1000_diff1 value: 45.182252919583895 - type: nauc_map_at_1000_max value: 35.66124930024801 - type: nauc_map_at_1000_std value: -0.6925562638650965 - type: nauc_map_at_100_diff1 value: 45.116964706960125 - type: nauc_map_at_100_max value: 35.54990469525889 - type: nauc_map_at_100_std value: -0.6667263852859368 - type: nauc_map_at_10_diff1 value: 45.39189096228184 - type: nauc_map_at_10_max value: 34.780111261901 - type: nauc_map_at_10_std value: -1.8169859294150819 - type: nauc_map_at_1_diff1 value: 47.72764937952259 - type: nauc_map_at_1_max value: 24.83306559709341 - type: nauc_map_at_1_std value: -4.714128457297418 - type: nauc_map_at_20_diff1 value: 45.17073365898278 - type: nauc_map_at_20_max value: 35.0938403469058 - type: nauc_map_at_20_std value: -1.373412631183604 - type: nauc_map_at_3_diff1 value: 46.525724305731295 - type: nauc_map_at_3_max value: 31.042538866512597 - type: nauc_map_at_3_std value: -4.119355935975354 - type: nauc_map_at_5_diff1 value: 45.79569633383187 - type: nauc_map_at_5_max value: 32.88779656647293 - type: nauc_map_at_5_std value: -3.2518474739335312 - type: nauc_mrr_at_1000_diff1 value: 52.83619185487903 - type: nauc_mrr_at_1000_max value: 42.30310720405186 - type: nauc_mrr_at_1000_std value: -1.1487703348518024 - type: nauc_mrr_at_100_diff1 value: 52.82248853996664 - type: nauc_mrr_at_100_max value: 42.30549701564678 - type: nauc_mrr_at_100_std value: -1.1240113031894834 - type: nauc_mrr_at_10_diff1 value: 52.74644276642243 - type: nauc_mrr_at_10_max value: 42.39103029476398 - type: nauc_mrr_at_10_std value: -1.1043413237848576 - type: nauc_mrr_at_1_diff1 value: 54.810335521617326 - type: nauc_mrr_at_1_max value: 40.733260207843394 - type: nauc_mrr_at_1_std value: -4.452554921565855 - type: nauc_mrr_at_20_diff1 value: 52.788257862499954 - type: nauc_mrr_at_20_max value: 42.32658875363406 - type: nauc_mrr_at_20_std value: -1.2209728080684497 - type: nauc_mrr_at_3_diff1 value: 53.43281175319808 - type: nauc_mrr_at_3_max value: 41.735942650867926 - type: nauc_mrr_at_3_std value: -2.462688102468019 - type: nauc_mrr_at_5_diff1 value: 52.874037126566606 - type: nauc_mrr_at_5_max value: 41.93740449458822 - type: nauc_mrr_at_5_std value: -1.2928874908441947 - type: nauc_ndcg_at_1000_diff1 value: 46.5532425476402 - type: nauc_ndcg_at_1000_max value: 40.369611603370515 - type: nauc_ndcg_at_1000_std value: 3.472567588386994 - type: nauc_ndcg_at_100_diff1 value: 45.75244404695404 - type: nauc_ndcg_at_100_max value: 39.36470550675439 - type: nauc_ndcg_at_100_std value: 4.356189041115731 - type: nauc_ndcg_at_10_diff1 value: 46.005135323539704 - type: nauc_ndcg_at_10_max value: 37.89018165334218 - type: nauc_ndcg_at_10_std value: 0.7129618297768014 - type: nauc_ndcg_at_1_diff1 value: 54.810335521617326 - type: nauc_ndcg_at_1_max value: 40.733260207843394 - type: nauc_ndcg_at_1_std value: -4.452554921565855 - type: nauc_ndcg_at_20_diff1 value: 45.841552790490034 - type: nauc_ndcg_at_20_max value: 38.04992825472661 - type: nauc_ndcg_at_20_std value: 1.2748305707955212 - type: nauc_ndcg_at_3_diff1 value: 46.683033449357744 - type: nauc_ndcg_at_3_max value: 37.46397870760607 - type: nauc_ndcg_at_3_std value: -2.3421854966319824 - type: nauc_ndcg_at_5_diff1 value: 45.82409645378457 - type: nauc_ndcg_at_5_max value: 36.27588234096716 - type: nauc_ndcg_at_5_std value: -1.5141197170944254 - type: nauc_precision_at_1000_diff1 value: -3.137944321071885 - type: nauc_precision_at_1000_max value: 24.12803166253776 - type: nauc_precision_at_1000_std value: 11.076454789944101 - type: nauc_precision_at_100_diff1 value: 3.9896283891401048 - type: nauc_precision_at_100_max value: 31.00198316788829 - type: nauc_precision_at_100_std value: 15.725887643803063 - type: nauc_precision_at_10_diff1 value: 20.493420889888394 - type: nauc_precision_at_10_max value: 41.689699671507405 - type: nauc_precision_at_10_std value: 9.374983385669914 - type: nauc_precision_at_1_diff1 value: 54.810335521617326 - type: nauc_precision_at_1_max value: 40.733260207843394 - type: nauc_precision_at_1_std value: -4.452554921565855 - type: nauc_precision_at_20_diff1 value: 15.02911800246446 - type: nauc_precision_at_20_max value: 39.227068888505 - type: nauc_precision_at_20_std value: 11.755558515319404 - type: nauc_precision_at_3_diff1 value: 34.044986535461746 - type: nauc_precision_at_3_max value: 40.96605829831656 - type: nauc_precision_at_3_std value: 1.1903535705688038 - type: nauc_precision_at_5_diff1 value: 26.617002443432707 - type: nauc_precision_at_5_max value: 40.60413785916794 - type: nauc_precision_at_5_std value: 3.6984531670502814 - type: nauc_recall_at_1000_diff1 value: 26.96489389440101 - type: nauc_recall_at_1000_max value: 41.811583968523955 - type: nauc_recall_at_1000_std value: 41.5719519496712 - type: nauc_recall_at_100_diff1 value: 28.50851434908223 - type: nauc_recall_at_100_max value: 32.19528060706322 - type: nauc_recall_at_100_std value: 25.56935294258179 - type: nauc_recall_at_10_diff1 value: 35.139582891180964 - type: nauc_recall_at_10_max value: 32.15221840434225 - type: nauc_recall_at_10_std value: 5.550434611582702 - type: nauc_recall_at_1_diff1 value: 47.72764937952259 - type: nauc_recall_at_1_max value: 24.83306559709341 - type: nauc_recall_at_1_std value: -4.714128457297418 - type: nauc_recall_at_20_diff1 value: 32.78604811055205 - type: nauc_recall_at_20_max value: 29.62940720700254 - type: nauc_recall_at_20_std value: 6.769941491859872 - type: nauc_recall_at_3_diff1 value: 40.76090616138699 - type: nauc_recall_at_3_max value: 27.506425490226867 - type: nauc_recall_at_3_std value: -2.608872693119243 - type: nauc_recall_at_5_diff1 value: 37.06532485024711 - type: nauc_recall_at_5_max value: 27.704150556658448 - type: nauc_recall_at_5_std value: 0.4718707152343872 - type: ndcg_at_1 value: 41.821000000000005 - type: ndcg_at_10 value: 42.396 - type: ndcg_at_100 value: 49.370000000000005 - type: ndcg_at_1000 value: 52.251000000000005 - type: ndcg_at_20 value: 45.097 - type: ndcg_at_3 value: 39.028 - type: ndcg_at_5 value: 40.222 - type: precision_at_1 value: 41.821000000000005 - type: precision_at_10 value: 11.451 - type: precision_at_100 value: 1.863 - type: precision_at_1000 value: 0.23900000000000002 - type: precision_at_20 value: 6.798 - type: precision_at_3 value: 25.823 - type: precision_at_5 value: 18.735 - type: recall_at_1 value: 21.711 - type: recall_at_10 value: 48.862 - type: recall_at_100 value: 74.708 - type: recall_at_1000 value: 91.865 - type: recall_at_20 value: 57.50999999999999 - type: recall_at_3 value: 35.85 - type: recall_at_5 value: 41.976 - task: type: Retrieval dataset: name: MTEB HotpotQA type: mteb/hotpotqa config: default split: test revision: ab518f4d6fcca38d87c25209f94beba119d02014 metrics: - type: main_score value: 72.21 - type: map_at_1 value: 39.487 - type: map_at_10 value: 63.949999999999996 - type: map_at_100 value: 64.873 - type: map_at_1000 value: 64.927 - type: map_at_20 value: 64.529 - type: map_at_3 value: 60.243 - type: map_at_5 value: 62.613 - type: mrr_at_1 value: 78.97366644159351 - type: mrr_at_10 value: 84.84600173627825 - type: mrr_at_100 value: 85.0172804866798 - type: mrr_at_1000 value: 85.02245651152857 - type: mrr_at_20 value: 84.9625577788225 - type: mrr_at_3 value: 83.90276839972962 - type: mrr_at_5 value: 84.48278190411845 - type: nauc_map_at_1000_diff1 value: 19.825004700775164 - type: nauc_map_at_1000_max value: 19.943221724164182 - type: nauc_map_at_1000_std value: 10.068951166560058 - type: nauc_map_at_100_diff1 value: 19.80139472181137 - type: nauc_map_at_100_max value: 19.938006132804347 - type: nauc_map_at_100_std value: 10.100008107666842 - type: nauc_map_at_10_diff1 value: 19.53604502514735 - type: nauc_map_at_10_max value: 19.62768870331064 - type: nauc_map_at_10_std value: 9.446859074725705 - type: nauc_map_at_1_diff1 value: 67.7764270505257 - type: nauc_map_at_1_max value: 38.45166604737058 - type: nauc_map_at_1_std value: 1.9919181988552352 - type: nauc_map_at_20_diff1 value: 19.635871913149913 - type: nauc_map_at_20_max value: 19.812838965919155 - type: nauc_map_at_20_std value: 9.905163140101845 - type: nauc_map_at_3_diff1 value: 18.965707122532212 - type: nauc_map_at_3_max value: 17.878860313056517 - type: nauc_map_at_3_std value: 6.189378752019195 - type: nauc_map_at_5_diff1 value: 19.493354049675954 - type: nauc_map_at_5_max value: 19.24527088109141 - type: nauc_map_at_5_std value: 8.283883139680066 - type: nauc_mrr_at_1000_diff1 value: 66.87150374356781 - type: nauc_mrr_at_1000_max value: 41.413456443203984 - type: nauc_mrr_at_1000_std value: 4.140387282484357 - type: nauc_mrr_at_100_diff1 value: 66.87178015619061 - type: nauc_mrr_at_100_max value: 41.419754763150834 - type: nauc_mrr_at_100_std value: 4.15222235416704 - type: nauc_mrr_at_10_diff1 value: 66.89720586892301 - type: nauc_mrr_at_10_max value: 41.56353878125211 - type: nauc_mrr_at_10_std value: 4.213376519922392 - type: nauc_mrr_at_1_diff1 value: 67.7764270505257 - type: nauc_mrr_at_1_max value: 38.45166604737058 - type: nauc_mrr_at_1_std value: 1.9919181988552352 - type: nauc_mrr_at_20_diff1 value: 66.8714688713149 - type: nauc_mrr_at_20_max value: 41.46170778986735 - type: nauc_mrr_at_20_std value: 4.165154741309859 - type: nauc_mrr_at_3_diff1 value: 66.31615462679144 - type: nauc_mrr_at_3_max value: 41.419637693259936 - type: nauc_mrr_at_3_std value: 3.814834551396097 - type: nauc_mrr_at_5_diff1 value: 66.7289413087213 - type: nauc_mrr_at_5_max value: 41.668346356371586 - type: nauc_mrr_at_5_std value: 4.116331539882484 - type: nauc_ndcg_at_1000_diff1 value: 26.37325375970598 - type: nauc_ndcg_at_1000_max value: 24.850915174721735 - type: nauc_ndcg_at_1000_std value: 13.37585683440429 - type: nauc_ndcg_at_100_diff1 value: 25.591771178059503 - type: nauc_ndcg_at_100_max value: 24.562820829532473 - type: nauc_ndcg_at_100_std value: 14.093690500501541 - type: nauc_ndcg_at_10_diff1 value: 24.64600598115805 - type: nauc_ndcg_at_10_max value: 23.543499404760023 - type: nauc_ndcg_at_10_std value: 11.55823632781553 - type: nauc_ndcg_at_1_diff1 value: 67.7764270505257 - type: nauc_ndcg_at_1_max value: 38.45166604737058 - type: nauc_ndcg_at_1_std value: 1.9919181988552352 - type: nauc_ndcg_at_20_diff1 value: 24.757843275306726 - type: nauc_ndcg_at_20_max value: 23.951154200380827 - type: nauc_ndcg_at_20_std value: 12.931320453044886 - type: nauc_ndcg_at_3_diff1 value: 24.37742630418847 - type: nauc_ndcg_at_3_max value: 21.310512304883723 - type: nauc_ndcg_at_3_std value: 6.503993200818077 - type: nauc_ndcg_at_5_diff1 value: 24.813706829269716 - type: nauc_ndcg_at_5_max value: 22.993657212898 - type: nauc_ndcg_at_5_std value: 9.34462052506809 - type: nauc_precision_at_1000_diff1 value: -0.6506415756958156 - type: nauc_precision_at_1000_max value: 28.039755644694875 - type: nauc_precision_at_1000_std value: 53.46474329623814 - type: nauc_precision_at_100_diff1 value: 3.78462668236152 - type: nauc_precision_at_100_max value: 22.501700881673862 - type: nauc_precision_at_100_std value: 40.56672716474142 - type: nauc_precision_at_10_diff1 value: 9.156113228907534 - type: nauc_precision_at_10_max value: 19.734206254833254 - type: nauc_precision_at_10_std value: 19.986282545779602 - type: nauc_precision_at_1_diff1 value: 67.7764270505257 - type: nauc_precision_at_1_max value: 38.45166604737058 - type: nauc_precision_at_1_std value: 1.9919181988552352 - type: nauc_precision_at_20_diff1 value: 6.6164335644470125 - type: nauc_precision_at_20_max value: 20.29343459608317 - type: nauc_precision_at_20_std value: 26.51115475333977 - type: nauc_precision_at_3_diff1 value: 12.476520554399546 - type: nauc_precision_at_3_max value: 16.69401409858964 - type: nauc_precision_at_3_std value: 8.165880294907444 - type: nauc_precision_at_5_diff1 value: 11.783242828320958 - type: nauc_precision_at_5_max value: 19.0679467875759 - type: nauc_precision_at_5_std value: 13.615358345509884 - type: nauc_recall_at_1000_diff1 value: -0.6506415756960168 - type: nauc_recall_at_1000_max value: 28.039755644694786 - type: nauc_recall_at_1000_std value: 53.46474329623801 - type: nauc_recall_at_100_diff1 value: 3.7846266823613877 - type: nauc_recall_at_100_max value: 22.501700881674008 - type: nauc_recall_at_100_std value: 40.566727164741366 - type: nauc_recall_at_10_diff1 value: 9.15611322890755 - type: nauc_recall_at_10_max value: 19.73420625483318 - type: nauc_recall_at_10_std value: 19.98628254577951 - type: nauc_recall_at_1_diff1 value: 67.7764270505257 - type: nauc_recall_at_1_max value: 38.45166604737058 - type: nauc_recall_at_1_std value: 1.9919181988552352 - type: nauc_recall_at_20_diff1 value: 6.616433564446929 - type: nauc_recall_at_20_max value: 20.293434596083248 - type: nauc_recall_at_20_std value: 26.5111547533396 - type: nauc_recall_at_3_diff1 value: 12.476520554399531 - type: nauc_recall_at_3_max value: 16.69401409858966 - type: nauc_recall_at_3_std value: 8.165880294907438 - type: nauc_recall_at_5_diff1 value: 11.783242828320999 - type: nauc_recall_at_5_max value: 19.067946787575845 - type: nauc_recall_at_5_std value: 13.61535834550991 - type: ndcg_at_1 value: 78.974 - type: ndcg_at_10 value: 72.21 - type: ndcg_at_100 value: 75.264 - type: ndcg_at_1000 value: 76.259 - type: ndcg_at_20 value: 73.628 - type: ndcg_at_3 value: 67.047 - type: ndcg_at_5 value: 69.974 - type: precision_at_1 value: 78.974 - type: precision_at_10 value: 15.267 - type: precision_at_100 value: 1.762 - type: precision_at_1000 value: 0.189 - type: precision_at_20 value: 8.09 - type: precision_at_3 value: 43.309 - type: precision_at_5 value: 28.294000000000004 - type: recall_at_1 value: 39.487 - type: recall_at_10 value: 76.334 - type: recall_at_100 value: 88.076 - type: recall_at_1000 value: 94.59100000000001 - type: recall_at_20 value: 80.898 - type: recall_at_3 value: 64.96300000000001 - type: recall_at_5 value: 70.736 - task: type: Retrieval dataset: name: MTEB MSMARCO type: mteb/msmarco config: default split: dev revision: c5a29a104738b98a9e76336939199e264163d4a0 metrics: - type: main_score value: 42.027 - type: map_at_1 value: 22.118 - type: map_at_10 value: 34.816 - type: map_at_100 value: 35.983 - type: map_at_1000 value: 36.028999999999996 - type: map_at_20 value: 35.545 - type: map_at_3 value: 30.752000000000002 - type: map_at_5 value: 33.114 - type: mrr_at_1 value: 22.793696275071635 - type: mrr_at_10 value: 35.47250079592483 - type: mrr_at_100 value: 36.576471512902856 - type: mrr_at_1000 value: 36.616205680509786 - type: mrr_at_20 value: 36.16557033864942 - type: mrr_at_3 value: 31.48758357211065 - type: mrr_at_5 value: 33.80563514804202 - type: nauc_map_at_1000_diff1 value: 32.89234100489284 - type: nauc_map_at_1000_max value: 1.1802816553581001 - type: nauc_map_at_1000_std value: -20.187692925732446 - type: nauc_map_at_100_diff1 value: 32.88694493681772 - type: nauc_map_at_100_max value: 1.1732717578080365 - type: nauc_map_at_100_std value: -20.164165529035245 - type: nauc_map_at_10_diff1 value: 32.826182211848796 - type: nauc_map_at_10_max value: 1.1551262165737235 - type: nauc_map_at_10_std value: -20.88326292319754 - type: nauc_map_at_1_diff1 value: 36.12732122790642 - type: nauc_map_at_1_max value: 1.8197550109156913 - type: nauc_map_at_1_std value: -17.205625720792167 - type: nauc_map_at_20_diff1 value: 32.83333177195551 - type: nauc_map_at_20_max value: 1.0937431645506202 - type: nauc_map_at_20_std value: -20.503956514646145 - type: nauc_map_at_3_diff1 value: 32.76264193805814 - type: nauc_map_at_3_max value: 0.8560962042500389 - type: nauc_map_at_3_std value: -20.608930717315577 - type: nauc_map_at_5_diff1 value: 32.78673238978775 - type: nauc_map_at_5_max value: 1.0511863039329437 - type: nauc_map_at_5_std value: -21.02164728626011 - type: nauc_mrr_at_1000_diff1 value: 32.610323934702286 - type: nauc_mrr_at_1000_max value: 1.276669121901405 - type: nauc_mrr_at_1000_std value: -19.908120615285043 - type: nauc_mrr_at_100_diff1 value: 32.601373758102795 - type: nauc_mrr_at_100_max value: 1.2752735149992132 - type: nauc_mrr_at_100_std value: -19.87937042610101 - type: nauc_mrr_at_10_diff1 value: 32.55795432078168 - type: nauc_mrr_at_10_max value: 1.2881786969258637 - type: nauc_mrr_at_10_std value: -20.54564519015977 - type: nauc_mrr_at_1_diff1 value: 35.596301376443726 - type: nauc_mrr_at_1_max value: 1.7633238037306902 - type: nauc_mrr_at_1_std value: -17.1999420019887 - type: nauc_mrr_at_20_diff1 value: 32.57185739111023 - type: nauc_mrr_at_20_max value: 1.2212620853201877 - type: nauc_mrr_at_20_std value: -20.179517281041264 - type: nauc_mrr_at_3_diff1 value: 32.42681377099514 - type: nauc_mrr_at_3_max value: 0.8745921708861145 - type: nauc_mrr_at_3_std value: -20.41017687790572 - type: nauc_mrr_at_5_diff1 value: 32.499107129648266 - type: nauc_mrr_at_5_max value: 1.1159673851851573 - type: nauc_mrr_at_5_std value: -20.695143502133824 - type: nauc_ndcg_at_1000_diff1 value: 32.16957965806702 - type: nauc_ndcg_at_1000_max value: 1.6763998947980905 - type: nauc_ndcg_at_1000_std value: -18.970592350332893 - type: nauc_ndcg_at_100_diff1 value: 31.977550102558872 - type: nauc_ndcg_at_100_max value: 1.5625858650110014 - type: nauc_ndcg_at_100_std value: -17.990456766123835 - type: nauc_ndcg_at_10_diff1 value: 31.82738932481356 - type: nauc_ndcg_at_10_max value: 1.1661362042692103 - type: nauc_ndcg_at_10_std value: -21.872680193994217 - type: nauc_ndcg_at_1_diff1 value: 35.596301376443726 - type: nauc_ndcg_at_1_max value: 1.7633238037306902 - type: nauc_ndcg_at_1_std value: -17.1999420019887 - type: nauc_ndcg_at_20_diff1 value: 31.749656399266264 - type: nauc_ndcg_at_20_max value: 0.9629024493088691 - type: nauc_ndcg_at_20_std value: -20.4379403899277 - type: nauc_ndcg_at_3_diff1 value: 31.731361436850836 - type: nauc_ndcg_at_3_max value: 0.531749791578849 - type: nauc_ndcg_at_3_std value: -21.551112910698674 - type: nauc_ndcg_at_5_diff1 value: 31.785373941157303 - type: nauc_ndcg_at_5_max value: 0.86207769368333 - type: nauc_ndcg_at_5_std value: -22.24923399160171 - type: nauc_precision_at_1000_diff1 value: -3.841288331986519 - type: nauc_precision_at_1000_max value: 13.558041371634976 - type: nauc_precision_at_1000_std value: 15.181510484512827 - type: nauc_precision_at_100_diff1 value: 12.441154582709053 - type: nauc_precision_at_100_max value: 8.428136255841935 - type: nauc_precision_at_100_std value: 14.710391839731656 - type: nauc_precision_at_10_diff1 value: 26.185854813986705 - type: nauc_precision_at_10_max value: 1.6348387310504464 - type: nauc_precision_at_10_std value: -23.448927004357298 - type: nauc_precision_at_1_diff1 value: 35.596301376443726 - type: nauc_precision_at_1_max value: 1.7633238037306902 - type: nauc_precision_at_1_std value: -17.1999420019887 - type: nauc_precision_at_20_diff1 value: 22.69194179544158 - type: nauc_precision_at_20_max value: 1.2972015009169306 - type: nauc_precision_at_20_std value: -15.751482380060269 - type: nauc_precision_at_3_diff1 value: 28.255531512125188 - type: nauc_precision_at_3_max value: -0.3715575458464333 - type: nauc_precision_at_3_std value: -24.227970454057697 - type: nauc_precision_at_5_diff1 value: 27.65497951098847 - type: nauc_precision_at_5_max value: 0.449773375292472 - type: nauc_precision_at_5_std value: -25.37445450938601 - type: nauc_recall_at_1000_diff1 value: 15.243948516763819 - type: nauc_recall_at_1000_max value: 41.821227805251375 - type: nauc_recall_at_1000_std value: 61.66297794838101 - type: nauc_recall_at_100_diff1 value: 24.516543685029994 - type: nauc_recall_at_100_max value: 7.093972966253228 - type: nauc_recall_at_100_std value: 17.244452321212282 - type: nauc_recall_at_10_diff1 value: 28.404243095182828 - type: nauc_recall_at_10_max value: 1.0805210480930945 - type: nauc_recall_at_10_std value: -24.885018657039527 - type: nauc_recall_at_1_diff1 value: 36.12732122790642 - type: nauc_recall_at_1_max value: 1.8197550109156913 - type: nauc_recall_at_1_std value: -17.205625720792167 - type: nauc_recall_at_20_diff1 value: 26.956250169438512 - type: nauc_recall_at_20_max value: 0.023973408161285917 - type: nauc_recall_at_20_std value: -18.32944444428131 - type: nauc_recall_at_3_diff1 value: 28.9894205130054 - type: nauc_recall_at_3_max value: -0.36140658021466865 - type: nauc_recall_at_3_std value: -24.022505107768364 - type: nauc_recall_at_5_diff1 value: 28.907023434955104 - type: nauc_recall_at_5_max value: 0.2501037567297729 - type: nauc_recall_at_5_std value: -25.719919602271496 - type: ndcg_at_1 value: 22.794 - type: ndcg_at_10 value: 42.027 - type: ndcg_at_100 value: 47.601 - type: ndcg_at_1000 value: 48.713 - type: ndcg_at_20 value: 44.623000000000005 - type: ndcg_at_3 value: 33.772999999999996 - type: ndcg_at_5 value: 37.991 - type: precision_at_1 value: 22.794 - type: precision_at_10 value: 6.711 - type: precision_at_100 value: 0.9490000000000001 - type: precision_at_1000 value: 0.105 - type: precision_at_20 value: 3.8920000000000003 - type: precision_at_3 value: 14.46 - type: precision_at_5 value: 10.822 - type: recall_at_1 value: 22.118 - type: recall_at_10 value: 64.201 - type: recall_at_100 value: 89.878 - type: recall_at_1000 value: 98.259 - type: recall_at_20 value: 74.34100000000001 - type: recall_at_3 value: 41.8 - type: recall_at_5 value: 51.959 - task: type: Retrieval dataset: name: MTEB NFCorpus type: mteb/nfcorpus config: default split: test revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 metrics: - type: main_score value: 36.201 - type: map_at_1 value: 5.654 - type: map_at_10 value: 13.402 - type: map_at_100 value: 16.849 - type: map_at_1000 value: 18.264 - type: map_at_20 value: 14.832 - type: map_at_3 value: 9.619 - type: map_at_5 value: 11.483 - type: mrr_at_1 value: 47.6780185758514 - type: mrr_at_10 value: 56.47906531033466 - type: mrr_at_100 value: 57.04539749991402 - type: mrr_at_1000 value: 57.08810157607369 - type: mrr_at_20 value: 56.88003170105462 - type: mrr_at_3 value: 54.43756449948401 - type: mrr_at_5 value: 55.660474716202266 - type: nauc_map_at_1000_diff1 value: 31.134615238698192 - type: nauc_map_at_1000_max value: 36.09522002487132 - type: nauc_map_at_1000_std value: 14.72627666649002 - type: nauc_map_at_100_diff1 value: 32.777473351864444 - type: nauc_map_at_100_max value: 35.25391471621035 - type: nauc_map_at_100_std value: 12.024428973861083 - type: nauc_map_at_10_diff1 value: 36.46466466148528 - type: nauc_map_at_10_max value: 29.707805406826722 - type: nauc_map_at_10_std value: 2.0678757794226335 - type: nauc_map_at_1_diff1 value: 54.30208426149679 - type: nauc_map_at_1_max value: 18.69125148481608 - type: nauc_map_at_1_std value: -8.970955660291802 - type: nauc_map_at_20_diff1 value: 34.76513311600623 - type: nauc_map_at_20_max value: 32.20666003570514 - type: nauc_map_at_20_std value: 5.924889441518581 - type: nauc_map_at_3_diff1 value: 45.73465176835491 - type: nauc_map_at_3_max value: 23.492291524989106 - type: nauc_map_at_3_std value: -5.0123536561688855 - type: nauc_map_at_5_diff1 value: 39.7128319374107 - type: nauc_map_at_5_max value: 25.84231729559691 - type: nauc_map_at_5_std value: -2.0861428981140344 - type: nauc_mrr_at_1000_diff1 value: 33.0997881703397 - type: nauc_mrr_at_1000_max value: 52.7089709923531 - type: nauc_mrr_at_1000_std value: 28.8517952674151 - type: nauc_mrr_at_100_diff1 value: 33.1094984027438 - type: nauc_mrr_at_100_max value: 52.74301398138847 - type: nauc_mrr_at_100_std value: 28.897997840300892 - type: nauc_mrr_at_10_diff1 value: 33.300713655464925 - type: nauc_mrr_at_10_max value: 52.572139698742184 - type: nauc_mrr_at_10_std value: 28.66875615527188 - type: nauc_mrr_at_1_diff1 value: 32.57632582147155 - type: nauc_mrr_at_1_max value: 46.020072246328816 - type: nauc_mrr_at_1_std value: 20.99097889820076 - type: nauc_mrr_at_20_diff1 value: 33.04083904518949 - type: nauc_mrr_at_20_max value: 52.597451362456994 - type: nauc_mrr_at_20_std value: 28.681527293587898 - type: nauc_mrr_at_3_diff1 value: 33.64864656322754 - type: nauc_mrr_at_3_max value: 51.82256412011279 - type: nauc_mrr_at_3_std value: 27.241260746740686 - type: nauc_mrr_at_5_diff1 value: 33.53201325467246 - type: nauc_mrr_at_5_max value: 52.79440885773516 - type: nauc_mrr_at_5_std value: 28.663081392086028 - type: nauc_ndcg_at_1000_diff1 value: 28.632650542040714 - type: nauc_ndcg_at_1000_max value: 51.24103069835822 - type: nauc_ndcg_at_1000_std value: 35.05503784757999 - type: nauc_ndcg_at_100_diff1 value: 29.082177715298503 - type: nauc_ndcg_at_100_max value: 45.24750203464315 - type: nauc_ndcg_at_100_std value: 27.146548925680914 - type: nauc_ndcg_at_10_diff1 value: 25.123554466093594 - type: nauc_ndcg_at_10_max value: 42.74355537806512 - type: nauc_ndcg_at_10_std value: 22.234407997803935 - type: nauc_ndcg_at_1_diff1 value: 33.75083940012058 - type: nauc_ndcg_at_1_max value: 44.44319402133161 - type: nauc_ndcg_at_1_std value: 19.146499358406487 - type: nauc_ndcg_at_20_diff1 value: 24.954207968331872 - type: nauc_ndcg_at_20_max value: 41.25991844405748 - type: nauc_ndcg_at_20_std value: 22.169009285868864 - type: nauc_ndcg_at_3_diff1 value: 28.186539942033516 - type: nauc_ndcg_at_3_max value: 44.40790009754965 - type: nauc_ndcg_at_3_std value: 20.99226576085115 - type: nauc_ndcg_at_5_diff1 value: 25.498387899376706 - type: nauc_ndcg_at_5_max value: 43.174709766261316 - type: nauc_ndcg_at_5_std value: 21.88111962672031 - type: nauc_precision_at_1000_diff1 value: -16.22321012507648 - type: nauc_precision_at_1000_max value: 5.808852256649677 - type: nauc_precision_at_1000_std value: 19.875641776698824 - type: nauc_precision_at_100_diff1 value: -10.248089374355486 - type: nauc_precision_at_100_max value: 19.29065415127588 - type: nauc_precision_at_100_std value: 31.75019665627339 - type: nauc_precision_at_10_diff1 value: 3.6783257583955056 - type: nauc_precision_at_10_max value: 39.22286010695767 - type: nauc_precision_at_10_std value: 31.225485732801022 - type: nauc_precision_at_1_diff1 value: 32.57632582147155 - type: nauc_precision_at_1_max value: 46.020072246328816 - type: nauc_precision_at_1_std value: 20.99097889820076 - type: nauc_precision_at_20_diff1 value: -3.1632510833242784 - type: nauc_precision_at_20_max value: 31.575496762405734 - type: nauc_precision_at_20_std value: 31.576283324468115 - type: nauc_precision_at_3_diff1 value: 17.78864585545647 - type: nauc_precision_at_3_max value: 44.201289661125585 - type: nauc_precision_at_3_std value: 25.447840649726693 - type: nauc_precision_at_5_diff1 value: 9.986748662091358 - type: nauc_precision_at_5_max value: 41.214164860776755 - type: nauc_precision_at_5_std value: 28.22551704127726 - type: nauc_recall_at_1000_diff1 value: 10.984331766850506 - type: nauc_recall_at_1000_max value: 24.641216018034104 - type: nauc_recall_at_1000_std value: 26.91064221008446 - type: nauc_recall_at_100_diff1 value: 23.7009352078473 - type: nauc_recall_at_100_max value: 30.176031609451297 - type: nauc_recall_at_100_std value: 20.360365243211564 - type: nauc_recall_at_10_diff1 value: 28.11831737650638 - type: nauc_recall_at_10_max value: 24.21539670487414 - type: nauc_recall_at_10_std value: 2.245504974150148 - type: nauc_recall_at_1_diff1 value: 54.30208426149679 - type: nauc_recall_at_1_max value: 18.69125148481608 - type: nauc_recall_at_1_std value: -8.970955660291802 - type: nauc_recall_at_20_diff1 value: 26.199425305139908 - type: nauc_recall_at_20_max value: 24.66704097503736 - type: nauc_recall_at_20_std value: 5.86052107206246 - type: nauc_recall_at_3_diff1 value: 42.88348677575622 - type: nauc_recall_at_3_max value: 21.189371077603308 - type: nauc_recall_at_3_std value: -4.537510127238226 - type: nauc_recall_at_5_diff1 value: 30.7936756722569 - type: nauc_recall_at_5_max value: 21.06136406164962 - type: nauc_recall_at_5_std value: -1.4113804735229794 - type: ndcg_at_1 value: 45.975 - type: ndcg_at_10 value: 36.201 - type: ndcg_at_100 value: 32.736 - type: ndcg_at_1000 value: 41.099000000000004 - type: ndcg_at_20 value: 33.724 - type: ndcg_at_3 value: 42.242000000000004 - type: ndcg_at_5 value: 40.137 - type: precision_at_1 value: 47.678 - type: precision_at_10 value: 26.904 - type: precision_at_100 value: 8.368 - type: precision_at_1000 value: 2.078 - type: precision_at_20 value: 19.845 - type: precision_at_3 value: 40.351 - type: precision_at_5 value: 35.108 - type: recall_at_1 value: 5.654 - type: recall_at_10 value: 17.793 - type: recall_at_100 value: 32.483000000000004 - type: recall_at_1000 value: 63.294 - type: recall_at_20 value: 21.754 - type: recall_at_3 value: 10.771 - type: recall_at_5 value: 14.084 - task: type: Retrieval dataset: name: MTEB NQ type: mteb/nq config: default split: test revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 metrics: - type: main_score value: 62.464 - type: map_at_1 value: 38.0 - type: map_at_10 value: 54.806 - type: map_at_100 value: 55.599 - type: map_at_1000 value: 55.617000000000004 - type: map_at_20 value: 55.336 - type: map_at_3 value: 50.58200000000001 - type: map_at_5 value: 53.181 - type: mrr_at_1 value: 42.46813441483198 - type: mrr_at_10 value: 57.060710147326446 - type: mrr_at_100 value: 57.60978373431328 - type: mrr_at_1000 value: 57.62192762809547 - type: mrr_at_20 value: 57.43431796174232 - type: mrr_at_3 value: 53.78041714947835 - type: mrr_at_5 value: 55.81257242178437 - type: nauc_map_at_1000_diff1 value: 38.337572188308194 - type: nauc_map_at_1000_max value: 27.550035254787197 - type: nauc_map_at_1000_std value: -7.5513729587308145 - type: nauc_map_at_100_diff1 value: 38.335337794455015 - type: nauc_map_at_100_max value: 27.56919614414171 - type: nauc_map_at_100_std value: -7.526017855405723 - type: nauc_map_at_10_diff1 value: 38.308131361353816 - type: nauc_map_at_10_max value: 27.691849580929933 - type: nauc_map_at_10_std value: -7.971461731555123 - type: nauc_map_at_1_diff1 value: 42.721072690634884 - type: nauc_map_at_1_max value: 21.750451486885332 - type: nauc_map_at_1_std value: -9.99540950522643 - type: nauc_map_at_20_diff1 value: 38.25792874982169 - type: nauc_map_at_20_max value: 27.68877906159661 - type: nauc_map_at_20_std value: -7.560753583212102 - type: nauc_map_at_3_diff1 value: 37.950570055936254 - type: nauc_map_at_3_max value: 26.257969511794858 - type: nauc_map_at_3_std value: -9.236868658300553 - type: nauc_map_at_5_diff1 value: 37.99893219450212 - type: nauc_map_at_5_max value: 27.293454259158057 - type: nauc_map_at_5_std value: -8.734089449603806 - type: nauc_mrr_at_1000_diff1 value: 37.777767467474774 - type: nauc_mrr_at_1000_max value: 27.39507603748298 - type: nauc_mrr_at_1000_std value: -5.554754076870114 - type: nauc_mrr_at_100_diff1 value: 37.77981674583538 - type: nauc_mrr_at_100_max value: 27.411100989441557 - type: nauc_mrr_at_100_std value: -5.539061231412731 - type: nauc_mrr_at_10_diff1 value: 37.72399003363479 - type: nauc_mrr_at_10_max value: 27.618142546685416 - type: nauc_mrr_at_10_std value: -5.6819843907448195 - type: nauc_mrr_at_1_diff1 value: 41.17596078958236 - type: nauc_mrr_at_1_max value: 23.32588591818617 - type: nauc_mrr_at_1_std value: -7.126628034623689 - type: nauc_mrr_at_20_diff1 value: 37.695136721588 - type: nauc_mrr_at_20_max value: 27.52850676467322 - type: nauc_mrr_at_20_std value: -5.50667995515647 - type: nauc_mrr_at_3_diff1 value: 37.23845700908964 - type: nauc_mrr_at_3_max value: 26.69389772971012 - type: nauc_mrr_at_3_std value: -6.31868405989011 - type: nauc_mrr_at_5_diff1 value: 37.33757394192838 - type: nauc_mrr_at_5_max value: 27.42091593836207 - type: nauc_mrr_at_5_std value: -5.993243330132065 - type: nauc_ndcg_at_1000_diff1 value: 37.74836061640332 - type: nauc_ndcg_at_1000_max value: 29.03148916289089 - type: nauc_ndcg_at_1000_std value: -5.543065770074502 - type: nauc_ndcg_at_100_diff1 value: 37.75593955089626 - type: nauc_ndcg_at_100_max value: 29.67109480272493 - type: nauc_ndcg_at_100_std value: -4.773697596687493 - type: nauc_ndcg_at_10_diff1 value: 37.41701174824348 - type: nauc_ndcg_at_10_max value: 30.448703434043445 - type: nauc_ndcg_at_10_std value: -6.306202666419071 - type: nauc_ndcg_at_1_diff1 value: 41.17596078958236 - type: nauc_ndcg_at_1_max value: 23.32588591818617 - type: nauc_ndcg_at_1_std value: -7.126628034623689 - type: nauc_ndcg_at_20_diff1 value: 37.17445197824622 - type: nauc_ndcg_at_20_max value: 30.47378561555209 - type: nauc_ndcg_at_20_std value: -4.921584853993488 - type: nauc_ndcg_at_3_diff1 value: 36.5261976812068 - type: nauc_ndcg_at_3_max value: 27.560538820208926 - type: nauc_ndcg_at_3_std value: -8.556686332882931 - type: nauc_ndcg_at_5_diff1 value: 36.571462759614526 - type: nauc_ndcg_at_5_max value: 29.363401730752585 - type: nauc_ndcg_at_5_std value: -7.825739170420347 - type: nauc_precision_at_1000_diff1 value: -12.588899483401223 - type: nauc_precision_at_1000_max value: 2.641097890578701 - type: nauc_precision_at_1000_std value: 17.643107625788748 - type: nauc_precision_at_100_diff1 value: -8.40579874206785 - type: nauc_precision_at_100_max value: 9.725496771040037 - type: nauc_precision_at_100_std value: 21.558582760191243 - type: nauc_precision_at_10_diff1 value: 6.619157191854486 - type: nauc_precision_at_10_max value: 23.767406373688402 - type: nauc_precision_at_10_std value: 10.428535003478808 - type: nauc_precision_at_1_diff1 value: 41.17596078958236 - type: nauc_precision_at_1_max value: 23.32588591818617 - type: nauc_precision_at_1_std value: -7.126628034623689 - type: nauc_precision_at_20_diff1 value: -0.6449974218292859 - type: nauc_precision_at_20_max value: 20.211503851418783 - type: nauc_precision_at_20_std value: 17.922745410142575 - type: nauc_precision_at_3_diff1 value: 19.710276097428657 - type: nauc_precision_at_3_max value: 26.768918044758706 - type: nauc_precision_at_3_std value: -1.0636448912049246 - type: nauc_precision_at_5_diff1 value: 13.073181337982613 - type: nauc_precision_at_5_max value: 26.418340338971024 - type: nauc_precision_at_5_std value: 2.9842078949528688 - type: nauc_recall_at_1000_diff1 value: 30.52411148739828 - type: nauc_recall_at_1000_max value: 90.96409807536762 - type: nauc_recall_at_1000_std value: 83.94857830921949 - type: nauc_recall_at_100_diff1 value: 36.936303690592155 - type: nauc_recall_at_100_max value: 71.91515014325869 - type: nauc_recall_at_100_std value: 48.93061263403371 - type: nauc_recall_at_10_diff1 value: 32.84292362076269 - type: nauc_recall_at_10_max value: 44.27252783122478 - type: nauc_recall_at_10_std value: -1.5981198975612385 - type: nauc_recall_at_1_diff1 value: 42.721072690634884 - type: nauc_recall_at_1_max value: 21.750451486885332 - type: nauc_recall_at_1_std value: -9.99540950522643 - type: nauc_recall_at_20_diff1 value: 29.36724417081702 - type: nauc_recall_at_20_max value: 52.035846390214715 - type: nauc_recall_at_20_std value: 11.967264191332818 - type: nauc_recall_at_3_diff1 value: 31.634923771936098 - type: nauc_recall_at_3_max value: 30.225743369869473 - type: nauc_recall_at_3_std value: -9.253665347118615 - type: nauc_recall_at_5_diff1 value: 30.66271853090737 - type: nauc_recall_at_5_max value: 35.70815715994996 - type: nauc_recall_at_5_std value: -7.836012956078996 - type: ndcg_at_1 value: 42.468 - type: ndcg_at_10 value: 62.464 - type: ndcg_at_100 value: 65.618 - type: ndcg_at_1000 value: 66.014 - type: ndcg_at_20 value: 64.12 - type: ndcg_at_3 value: 54.790000000000006 - type: ndcg_at_5 value: 58.992 - type: precision_at_1 value: 42.468 - type: precision_at_10 value: 9.959 - type: precision_at_100 value: 1.174 - type: precision_at_1000 value: 0.121 - type: precision_at_20 value: 5.380999999999999 - type: precision_at_3 value: 24.73 - type: precision_at_5 value: 17.299999999999997 - type: recall_at_1 value: 38.0 - type: recall_at_10 value: 83.22699999999999 - type: recall_at_100 value: 96.584 - type: recall_at_1000 value: 99.512 - type: recall_at_20 value: 89.291 - type: recall_at_3 value: 63.666 - type: recall_at_5 value: 73.27900000000001 - task: type: Retrieval dataset: name: MTEB QuoraRetrieval type: mteb/quora config: default split: test revision: e4e08e0b7dbe3c8700f0daef558ff32256715259 metrics: - type: main_score value: 87.366 - type: map_at_1 value: 69.95700000000001 - type: map_at_10 value: 83.55 - type: map_at_100 value: 84.196 - type: map_at_1000 value: 84.21600000000001 - type: map_at_20 value: 83.982 - type: map_at_3 value: 80.647 - type: map_at_5 value: 82.443 - type: mrr_at_1 value: 80.39 - type: mrr_at_10 value: 86.65646031746004 - type: mrr_at_100 value: 86.7852113210373 - type: mrr_at_1000 value: 86.78651118354796 - type: mrr_at_20 value: 86.75772838878498 - type: mrr_at_3 value: 85.67499999999971 - type: mrr_at_5 value: 86.33749999999962 - type: nauc_map_at_1000_diff1 value: 76.68189702770007 - type: nauc_map_at_1000_max value: 36.19988239025682 - type: nauc_map_at_1000_std value: -26.231691135645736 - type: nauc_map_at_100_diff1 value: 76.68832712120171 - type: nauc_map_at_100_max value: 36.18627717337547 - type: nauc_map_at_100_std value: -26.28243886166 - type: nauc_map_at_10_diff1 value: 76.88888516032657 - type: nauc_map_at_10_max value: 35.69809861085124 - type: nauc_map_at_10_std value: -27.859425473864224 - type: nauc_map_at_1_diff1 value: 79.5243725217315 - type: nauc_map_at_1_max value: 27.092773841207002 - type: nauc_map_at_1_std value: -26.223200911204543 - type: nauc_map_at_20_diff1 value: 76.74938996155176 - type: nauc_map_at_20_max value: 36.07373781351406 - type: nauc_map_at_20_std value: -26.891400098628015 - type: nauc_map_at_3_diff1 value: 77.29604745045076 - type: nauc_map_at_3_max value: 33.11431059356283 - type: nauc_map_at_3_std value: -29.555237195931085 - type: nauc_map_at_5_diff1 value: 77.14069217901078 - type: nauc_map_at_5_max value: 34.68656073526487 - type: nauc_map_at_5_std value: -28.945053669861508 - type: nauc_mrr_at_1000_diff1 value: 76.66087451567746 - type: nauc_mrr_at_1000_max value: 38.78133177265328 - type: nauc_mrr_at_1000_std value: -23.75726541774991 - type: nauc_mrr_at_100_diff1 value: 76.66117078261013 - type: nauc_mrr_at_100_max value: 38.782533036423885 - type: nauc_mrr_at_100_std value: -23.752587601473568 - type: nauc_mrr_at_10_diff1 value: 76.65866401411019 - type: nauc_mrr_at_10_max value: 38.87950311049704 - type: nauc_mrr_at_10_std value: -23.873660706680578 - type: nauc_mrr_at_1_diff1 value: 77.42633506487041 - type: nauc_mrr_at_1_max value: 37.93973722217786 - type: nauc_mrr_at_1_std value: -23.3984130771317 - type: nauc_mrr_at_20_diff1 value: 76.66210684923414 - type: nauc_mrr_at_20_max value: 38.81293033048911 - type: nauc_mrr_at_20_std value: -23.736590746133736 - type: nauc_mrr_at_3_diff1 value: 76.33711764736019 - type: nauc_mrr_at_3_max value: 38.5659231830368 - type: nauc_mrr_at_3_std value: -23.99588149124865 - type: nauc_mrr_at_5_diff1 value: 76.57123830226054 - type: nauc_mrr_at_5_max value: 38.97947097392977 - type: nauc_mrr_at_5_std value: -23.943668957974246 - type: nauc_ndcg_at_1000_diff1 value: 76.38447339050585 - type: nauc_ndcg_at_1000_max value: 37.756822792877934 - type: nauc_ndcg_at_1000_std value: -24.046995734357164 - type: nauc_ndcg_at_100_diff1 value: 76.44058018066822 - type: nauc_ndcg_at_100_max value: 37.72948294169218 - type: nauc_ndcg_at_100_std value: -24.083432140741795 - type: nauc_ndcg_at_10_diff1 value: 76.56246287923074 - type: nauc_ndcg_at_10_max value: 37.0329253490553 - type: nauc_ndcg_at_10_std value: -26.6495163705961 - type: nauc_ndcg_at_1_diff1 value: 77.4085129990432 - type: nauc_ndcg_at_1_max value: 38.06139172214421 - type: nauc_ndcg_at_1_std value: -23.656477126977386 - type: nauc_ndcg_at_20_diff1 value: 76.50192496743098 - type: nauc_ndcg_at_20_max value: 37.51759311013985 - type: nauc_ndcg_at_20_std value: -25.45517058360004 - type: nauc_ndcg_at_3_diff1 value: 75.94398494081794 - type: nauc_ndcg_at_3_max value: 35.7666711547279 - type: nauc_ndcg_at_3_std value: -26.866022682361578 - type: nauc_ndcg_at_5_diff1 value: 76.47334274088344 - type: nauc_ndcg_at_5_max value: 36.40830331490731 - type: nauc_ndcg_at_5_std value: -27.170121189572765 - type: nauc_precision_at_1000_diff1 value: -43.33672630765437 - type: nauc_precision_at_1000_max value: -5.089751329149161 - type: nauc_precision_at_1000_std value: 30.6241447847051 - type: nauc_precision_at_100_diff1 value: -42.736833035629864 - type: nauc_precision_at_100_max value: -4.060198408346224 - type: nauc_precision_at_100_std value: 29.807050266205344 - type: nauc_precision_at_10_diff1 value: -35.90810562245906 - type: nauc_precision_at_10_max value: 1.1633204529249133 - type: nauc_precision_at_10_std value: 20.129691203276018 - type: nauc_precision_at_1_diff1 value: 77.4085129990432 - type: nauc_precision_at_1_max value: 38.06139172214421 - type: nauc_precision_at_1_std value: -23.656477126977386 - type: nauc_precision_at_20_diff1 value: -40.2132286912738 - type: nauc_precision_at_20_max value: -1.3004735030734194 - type: nauc_precision_at_20_std value: 25.15612293757488 - type: nauc_precision_at_3_diff1 value: -13.873825299883904 - type: nauc_precision_at_3_max value: 11.038689278907233 - type: nauc_precision_at_3_std value: 5.4276449621706 - type: nauc_precision_at_5_diff1 value: -27.151668633894737 - type: nauc_precision_at_5_max value: 5.795130010163115 - type: nauc_precision_at_5_std value: 13.220722167587375 - type: nauc_recall_at_1000_diff1 value: 83.903950427863 - type: nauc_recall_at_1000_max value: 37.82919000897223 - type: nauc_recall_at_1000_std value: 70.65670846771707 - type: nauc_recall_at_100_diff1 value: 75.23306095335836 - type: nauc_recall_at_100_max value: 37.54281648247423 - type: nauc_recall_at_100_std value: 8.434289114377373 - type: nauc_recall_at_10_diff1 value: 72.7872912723047 - type: nauc_recall_at_10_max value: 34.261519652104184 - type: nauc_recall_at_10_std value: -34.60101950810808 - type: nauc_recall_at_1_diff1 value: 79.5243725217315 - type: nauc_recall_at_1_max value: 27.092773841207002 - type: nauc_recall_at_1_std value: -26.223200911204543 - type: nauc_recall_at_20_diff1 value: 72.8297963091964 - type: nauc_recall_at_20_max value: 36.070220569670916 - type: nauc_recall_at_20_std value: -27.20897179168245 - type: nauc_recall_at_3_diff1 value: 73.47456374650459 - type: nauc_recall_at_3_max value: 29.901663407294816 - type: nauc_recall_at_3_std value: -32.83329537040381 - type: nauc_recall_at_5_diff1 value: 73.05025750827126 - type: nauc_recall_at_5_max value: 32.35733470860963 - type: nauc_recall_at_5_std value: -34.32357558493091 - type: ndcg_at_1 value: 80.4 - type: ndcg_at_10 value: 87.366 - type: ndcg_at_100 value: 88.7 - type: ndcg_at_1000 value: 88.842 - type: ndcg_at_20 value: 88.11 - type: ndcg_at_3 value: 84.52499999999999 - type: ndcg_at_5 value: 86.047 - type: precision_at_1 value: 80.4 - type: precision_at_10 value: 13.235 - type: precision_at_100 value: 1.516 - type: precision_at_1000 value: 0.156 - type: precision_at_20 value: 7.037 - type: precision_at_3 value: 36.9 - type: precision_at_5 value: 24.236 - type: recall_at_1 value: 69.95700000000001 - type: recall_at_10 value: 94.535 - type: recall_at_100 value: 99.164 - type: recall_at_1000 value: 99.855 - type: recall_at_20 value: 96.974 - type: recall_at_3 value: 86.33800000000001 - type: recall_at_5 value: 90.69 - task: type: Retrieval dataset: name: MTEB SCIDOCS type: mteb/scidocs config: default split: test revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88 metrics: - type: main_score value: 21.492 - type: map_at_1 value: 5.192 - type: map_at_10 value: 12.959000000000001 - type: map_at_100 value: 14.963999999999999 - type: map_at_1000 value: 15.261 - type: map_at_20 value: 13.988999999999999 - type: map_at_3 value: 9.235 - type: map_at_5 value: 11.042 - type: mrr_at_1 value: 25.5 - type: mrr_at_10 value: 36.37313492063491 - type: mrr_at_100 value: 37.36517957347626 - type: mrr_at_1000 value: 37.42538601073437 - type: mrr_at_20 value: 36.987896404421136 - type: mrr_at_3 value: 32.966666666666654 - type: mrr_at_5 value: 34.95166666666664 - type: nauc_map_at_1000_diff1 value: 13.635120934154395 - type: nauc_map_at_1000_max value: 28.03542983005195 - type: nauc_map_at_1000_std value: 17.07156940311778 - type: nauc_map_at_100_diff1 value: 13.59237295184475 - type: nauc_map_at_100_max value: 27.992291365051237 - type: nauc_map_at_100_std value: 16.926533467400464 - type: nauc_map_at_10_diff1 value: 14.149193235999993 - type: nauc_map_at_10_max value: 26.520643811139305 - type: nauc_map_at_10_std value: 13.168673602548925 - type: nauc_map_at_1_diff1 value: 20.096094508148465 - type: nauc_map_at_1_max value: 17.41582245576302 - type: nauc_map_at_1_std value: 5.771729007558897 - type: nauc_map_at_20_diff1 value: 13.977726400526427 - type: nauc_map_at_20_max value: 27.2322235491895 - type: nauc_map_at_20_std value: 14.972781677750435 - type: nauc_map_at_3_diff1 value: 17.371153027460355 - type: nauc_map_at_3_max value: 24.457758503208254 - type: nauc_map_at_3_std value: 7.719726821179824 - type: nauc_map_at_5_diff1 value: 14.600442843442574 - type: nauc_map_at_5_max value: 25.899736370856296 - type: nauc_map_at_5_std value: 10.125349354853359 - type: nauc_mrr_at_1000_diff1 value: 18.70342821390236 - type: nauc_mrr_at_1000_max value: 23.365194520549114 - type: nauc_mrr_at_1000_std value: 12.185114294903236 - type: nauc_mrr_at_100_diff1 value: 18.677858738015907 - type: nauc_mrr_at_100_max value: 23.372641996726742 - type: nauc_mrr_at_100_std value: 12.216130561991909 - type: nauc_mrr_at_10_diff1 value: 18.79094453090232 - type: nauc_mrr_at_10_max value: 23.511686337006466 - type: nauc_mrr_at_10_std value: 11.879716687008134 - type: nauc_mrr_at_1_diff1 value: 20.10455171810408 - type: nauc_mrr_at_1_max value: 17.741566234315428 - type: nauc_mrr_at_1_std value: 6.1676764583652215 - type: nauc_mrr_at_20_diff1 value: 18.70143648544655 - type: nauc_mrr_at_20_max value: 23.45603239095019 - type: nauc_mrr_at_20_std value: 12.244613576686202 - type: nauc_mrr_at_3_diff1 value: 18.894662528857374 - type: nauc_mrr_at_3_max value: 23.3739038101588 - type: nauc_mrr_at_3_std value: 10.4709044796543 - type: nauc_mrr_at_5_diff1 value: 18.877786065095563 - type: nauc_mrr_at_5_max value: 23.78061081203872 - type: nauc_mrr_at_5_std value: 11.847882917869622 - type: nauc_ndcg_at_1000_diff1 value: 13.99159027398115 - type: nauc_ndcg_at_1000_max value: 29.44766808611483 - type: nauc_ndcg_at_1000_std value: 24.289749574699915 - type: nauc_ndcg_at_100_diff1 value: 13.164020363258746 - type: nauc_ndcg_at_100_max value: 29.642442997167723 - type: nauc_ndcg_at_100_std value: 23.761764515453866 - type: nauc_ndcg_at_10_diff1 value: 14.839883268638546 - type: nauc_ndcg_at_10_max value: 27.21043708455449 - type: nauc_ndcg_at_10_std value: 15.56110419291775 - type: nauc_ndcg_at_1_diff1 value: 20.10455171810408 - type: nauc_ndcg_at_1_max value: 17.741566234315428 - type: nauc_ndcg_at_1_std value: 6.1676764583652215 - type: nauc_ndcg_at_20_diff1 value: 14.27998110295395 - type: nauc_ndcg_at_20_max value: 28.2492026337839 - type: nauc_ndcg_at_20_std value: 18.822356982979105 - type: nauc_ndcg_at_3_diff1 value: 17.659263157535445 - type: nauc_ndcg_at_3_max value: 25.416706421591396 - type: nauc_ndcg_at_3_std value: 9.650689638152636 - type: nauc_ndcg_at_5_diff1 value: 15.38459833918123 - type: nauc_ndcg_at_5_max value: 26.92495519416969 - type: nauc_ndcg_at_5_std value: 12.71017696809276 - type: nauc_precision_at_1000_diff1 value: 6.128490135458364 - type: nauc_precision_at_1000_max value: 23.52693893261883 - type: nauc_precision_at_1000_std value: 36.280432732819925 - type: nauc_precision_at_100_diff1 value: 5.306163791220436 - type: nauc_precision_at_100_max value: 27.67851033239246 - type: nauc_precision_at_100_std value: 34.29821573752515 - type: nauc_precision_at_10_diff1 value: 10.829686435425472 - type: nauc_precision_at_10_max value: 27.201648684015318 - type: nauc_precision_at_10_std value: 19.376999508233254 - type: nauc_precision_at_1_diff1 value: 20.10455171810408 - type: nauc_precision_at_1_max value: 17.741566234315428 - type: nauc_precision_at_1_std value: 6.1676764583652215 - type: nauc_precision_at_20_diff1 value: 9.416169626702048 - type: nauc_precision_at_20_max value: 27.65257998670333 - type: nauc_precision_at_20_std value: 24.761868509805826 - type: nauc_precision_at_3_diff1 value: 16.666456902017348 - type: nauc_precision_at_3_max value: 27.9969730961105 - type: nauc_precision_at_3_std value: 10.991562741393231 - type: nauc_precision_at_5_diff1 value: 12.26205064462843 - type: nauc_precision_at_5_max value: 29.083848730874095 - type: nauc_precision_at_5_std value: 15.66630836555747 - type: nauc_recall_at_1000_diff1 value: 5.600277836894063 - type: nauc_recall_at_1000_max value: 23.228705161815526 - type: nauc_recall_at_1000_std value: 36.822431061799485 - type: nauc_recall_at_100_diff1 value: 4.991781244867178 - type: nauc_recall_at_100_max value: 27.70095625483475 - type: nauc_recall_at_100_std value: 34.67168431597854 - type: nauc_recall_at_10_diff1 value: 10.580860425931972 - type: nauc_recall_at_10_max value: 27.145829414223666 - type: nauc_recall_at_10_std value: 19.330630157067382 - type: nauc_recall_at_1_diff1 value: 20.096094508148465 - type: nauc_recall_at_1_max value: 17.41582245576302 - type: nauc_recall_at_1_std value: 5.771729007558897 - type: nauc_recall_at_20_diff1 value: 9.06945331260344 - type: nauc_recall_at_20_max value: 27.56725251066482 - type: nauc_recall_at_20_std value: 24.77644509886098 - type: nauc_recall_at_3_diff1 value: 16.660507676429322 - type: nauc_recall_at_3_max value: 27.816546386536434 - type: nauc_recall_at_3_std value: 10.687824478247007 - type: nauc_recall_at_5_diff1 value: 11.992514446369388 - type: nauc_recall_at_5_max value: 28.789031176671948 - type: nauc_recall_at_5_std value: 15.422118990090805 - type: ndcg_at_1 value: 25.5 - type: ndcg_at_10 value: 21.492 - type: ndcg_at_100 value: 29.022 - type: ndcg_at_1000 value: 34.298 - type: ndcg_at_20 value: 24.237000000000002 - type: ndcg_at_3 value: 20.392 - type: ndcg_at_5 value: 17.801000000000002 - type: precision_at_1 value: 25.5 - type: precision_at_10 value: 11.09 - type: precision_at_100 value: 2.1919999999999997 - type: precision_at_1000 value: 0.346 - type: precision_at_20 value: 7.135 - type: precision_at_3 value: 18.933 - type: precision_at_5 value: 15.52 - type: recall_at_1 value: 5.192 - type: recall_at_10 value: 22.512999999999998 - type: recall_at_100 value: 44.505 - type: recall_at_1000 value: 70.267 - type: recall_at_20 value: 28.965000000000003 - type: recall_at_3 value: 11.522 - type: recall_at_5 value: 15.751999999999999 - task: type: Retrieval dataset: name: MTEB SciFact type: mteb/scifact config: default split: test revision: 0228b52cf27578f30900b9e5271d331663a030d7 metrics: - type: main_score value: 71.586 - type: map_at_1 value: 56.760999999999996 - type: map_at_10 value: 66.893 - type: map_at_100 value: 67.42 - type: map_at_1000 value: 67.44200000000001 - type: map_at_20 value: 67.232 - type: map_at_3 value: 64.193 - type: map_at_5 value: 65.73400000000001 - type: mrr_at_1 value: 60.0 - type: mrr_at_10 value: 68.20383597883595 - type: mrr_at_100 value: 68.58867453733343 - type: mrr_at_1000 value: 68.61117469977329 - type: mrr_at_20 value: 68.43973740684265 - type: mrr_at_3 value: 66.11111111111111 - type: mrr_at_5 value: 67.44444444444446 - type: nauc_map_at_1000_diff1 value: 72.66688261123035 - type: nauc_map_at_1000_max value: 61.02926282006283 - type: nauc_map_at_1000_std value: 11.084549829740526 - type: nauc_map_at_100_diff1 value: 72.66226192320828 - type: nauc_map_at_100_max value: 61.04393223108811 - type: nauc_map_at_100_std value: 11.101529343291695 - type: nauc_map_at_10_diff1 value: 72.66732266693091 - type: nauc_map_at_10_max value: 61.24124296311832 - type: nauc_map_at_10_std value: 10.91179451961794 - type: nauc_map_at_1_diff1 value: 74.2356464256346 - type: nauc_map_at_1_max value: 54.06962758957632 - type: nauc_map_at_1_std value: 0.8037891907963532 - type: nauc_map_at_20_diff1 value: 72.65198594061253 - type: nauc_map_at_20_max value: 61.130159351448185 - type: nauc_map_at_20_std value: 11.2246899245522 - type: nauc_map_at_3_diff1 value: 72.78578673303954 - type: nauc_map_at_3_max value: 59.19073262936321 - type: nauc_map_at_3_std value: 8.460301560522968 - type: nauc_map_at_5_diff1 value: 72.55004168261968 - type: nauc_map_at_5_max value: 59.75181935082357 - type: nauc_map_at_5_std value: 9.440299527201889 - type: nauc_mrr_at_1000_diff1 value: 72.82720348470325 - type: nauc_mrr_at_1000_max value: 62.344231223741446 - type: nauc_mrr_at_1000_std value: 12.60196558488974 - type: nauc_mrr_at_100_diff1 value: 72.82236849255094 - type: nauc_mrr_at_100_max value: 62.35799491393125 - type: nauc_mrr_at_100_std value: 12.617900773655673 - type: nauc_mrr_at_10_diff1 value: 72.7722847495086 - type: nauc_mrr_at_10_max value: 62.66642401155435 - type: nauc_mrr_at_10_std value: 12.906381237738746 - type: nauc_mrr_at_1_diff1 value: 74.71208073612343 - type: nauc_mrr_at_1_max value: 59.50430394775893 - type: nauc_mrr_at_1_std value: 8.129514198080512 - type: nauc_mrr_at_20_diff1 value: 72.78312367361772 - type: nauc_mrr_at_20_max value: 62.421122493761885 - type: nauc_mrr_at_20_std value: 12.693437522498588 - type: nauc_mrr_at_3_diff1 value: 73.50670156385345 - type: nauc_mrr_at_3_max value: 62.01717537699209 - type: nauc_mrr_at_3_std value: 11.926548252191182 - type: nauc_mrr_at_5_diff1 value: 72.62204028549876 - type: nauc_mrr_at_5_max value: 62.319358766312085 - type: nauc_mrr_at_5_std value: 13.081257923284342 - type: nauc_ndcg_at_1000_diff1 value: 72.29960539074736 - type: nauc_ndcg_at_1000_max value: 62.75096959221402 - type: nauc_ndcg_at_1000_std value: 13.81528462505362 - type: nauc_ndcg_at_100_diff1 value: 72.19985782073529 - type: nauc_ndcg_at_100_max value: 63.18837705326287 - type: nauc_ndcg_at_100_std value: 14.506479655117138 - type: nauc_ndcg_at_10_diff1 value: 71.85759847832983 - type: nauc_ndcg_at_10_max value: 64.150996056865 - type: nauc_ndcg_at_10_std value: 14.580606901634278 - type: nauc_ndcg_at_1_diff1 value: 74.71208073612343 - type: nauc_ndcg_at_1_max value: 59.50430394775893 - type: nauc_ndcg_at_1_std value: 8.129514198080512 - type: nauc_ndcg_at_20_diff1 value: 71.80987178228351 - type: nauc_ndcg_at_20_max value: 63.56269460865743 - type: nauc_ndcg_at_20_std value: 15.024978004625922 - type: nauc_ndcg_at_3_diff1 value: 72.35095651602592 - type: nauc_ndcg_at_3_max value: 61.60548011855679 - type: nauc_ndcg_at_3_std value: 12.048248788835263 - type: nauc_ndcg_at_5_diff1 value: 71.48615621881864 - type: nauc_ndcg_at_5_max value: 61.72870035979784 - type: nauc_ndcg_at_5_std value: 12.83048357446691 - type: nauc_precision_at_1000_diff1 value: -14.743011420972 - type: nauc_precision_at_1000_max value: 19.281995763080158 - type: nauc_precision_at_1000_std value: 49.6140660398164 - type: nauc_precision_at_100_diff1 value: 0.11278174806205563 - type: nauc_precision_at_100_max value: 29.704511820077332 - type: nauc_precision_at_100_std value: 47.84916954122579 - type: nauc_precision_at_10_diff1 value: 20.498227967235728 - type: nauc_precision_at_10_max value: 47.883119365891595 - type: nauc_precision_at_10_std value: 45.182178693450595 - type: nauc_precision_at_1_diff1 value: 74.71208073612343 - type: nauc_precision_at_1_max value: 59.50430394775893 - type: nauc_precision_at_1_std value: 8.129514198080512 - type: nauc_precision_at_20_diff1 value: 12.551737222341455 - type: nauc_precision_at_20_max value: 40.618899501225634 - type: nauc_precision_at_20_std value: 48.5598454249067 - type: nauc_precision_at_3_diff1 value: 47.67720764601145 - type: nauc_precision_at_3_max value: 56.50632017305064 - type: nauc_precision_at_3_std value: 31.14175140162157 - type: nauc_precision_at_5_diff1 value: 35.10058622792819 - type: nauc_precision_at_5_max value: 51.88948872657981 - type: nauc_precision_at_5_std value: 37.62796957461928 - type: nauc_recall_at_1000_diff1 value: 79.57516339869238 - type: nauc_recall_at_1000_max value: 86.11111111111035 - type: nauc_recall_at_1000_std value: 79.57516339869238 - type: nauc_recall_at_100_diff1 value: 70.50859559510081 - type: nauc_recall_at_100_max value: 79.17009941231396 - type: nauc_recall_at_100_std value: 44.32910419069595 - type: nauc_recall_at_10_diff1 value: 66.16118569361245 - type: nauc_recall_at_10_max value: 74.73542948302286 - type: nauc_recall_at_10_std value: 27.680330939810037 - type: nauc_recall_at_1_diff1 value: 74.2356464256346 - type: nauc_recall_at_1_max value: 54.06962758957632 - type: nauc_recall_at_1_std value: 0.8037891907963532 - type: nauc_recall_at_20_diff1 value: 65.4748436545527 - type: nauc_recall_at_20_max value: 73.81532199081235 - type: nauc_recall_at_20_std value: 33.59324708196253 - type: nauc_recall_at_3_diff1 value: 68.83194804473622 - type: nauc_recall_at_3_max value: 61.77722610439669 - type: nauc_recall_at_3_std value: 13.984923756556714 - type: nauc_recall_at_5_diff1 value: 65.51467417209523 - type: nauc_recall_at_5_max value: 64.08276291427661 - type: nauc_recall_at_5_std value: 19.976472037847167 - type: ndcg_at_1 value: 60.0 - type: ndcg_at_10 value: 71.586 - type: ndcg_at_100 value: 73.76899999999999 - type: ndcg_at_1000 value: 74.386 - type: ndcg_at_20 value: 72.612 - type: ndcg_at_3 value: 66.944 - type: ndcg_at_5 value: 69.333 - type: precision_at_1 value: 60.0 - type: precision_at_10 value: 9.6 - type: precision_at_100 value: 1.073 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_20 value: 5.033 - type: precision_at_3 value: 26.333000000000002 - type: precision_at_5 value: 17.4 - type: recall_at_1 value: 56.760999999999996 - type: recall_at_10 value: 84.589 - type: recall_at_100 value: 94.333 - type: recall_at_1000 value: 99.333 - type: recall_at_20 value: 88.43299999999999 - type: recall_at_3 value: 72.10600000000001 - type: recall_at_5 value: 78.194 - task: type: Retrieval dataset: name: MTEB TRECCOVID type: mteb/trec-covid config: default split: test revision: bb9466bac8153a0349341eb1b22e06409e78ef4e metrics: - type: main_score value: 84.60600000000001 - type: map_at_1 value: 0.257 - type: map_at_10 value: 2.196 - type: map_at_100 value: 13.252 - type: map_at_1000 value: 31.473000000000003 - type: map_at_20 value: 4.023000000000001 - type: map_at_3 value: 0.722 - type: map_at_5 value: 1.146 - type: mrr_at_1 value: 94.0 - type: mrr_at_10 value: 97.0 - type: mrr_at_100 value: 97.0 - type: mrr_at_1000 value: 97.0 - type: mrr_at_20 value: 97.0 - type: mrr_at_3 value: 97.0 - type: mrr_at_5 value: 97.0 - type: nauc_map_at_1000_diff1 value: -30.674816554207062 - type: nauc_map_at_1000_max value: 53.18598689657068 - type: nauc_map_at_1000_std value: 78.88325309469121 - type: nauc_map_at_100_diff1 value: -17.6877824653978 - type: nauc_map_at_100_max value: 19.584159765315658 - type: nauc_map_at_100_std value: 48.051154190992726 - type: nauc_map_at_10_diff1 value: 20.076631089898626 - type: nauc_map_at_10_max value: -8.642556160185636 - type: nauc_map_at_10_std value: -5.768698617334298 - type: nauc_map_at_1_diff1 value: 27.342260509653798 - type: nauc_map_at_1_max value: -23.400451210297994 - type: nauc_map_at_1_std value: -21.152006353733853 - type: nauc_map_at_20_diff1 value: 8.019321726240506 - type: nauc_map_at_20_max value: -1.4826378210544222 - type: nauc_map_at_20_std value: 5.698208117745366 - type: nauc_map_at_3_diff1 value: 32.073377946749446 - type: nauc_map_at_3_max value: -13.099353983204654 - type: nauc_map_at_3_std value: -15.36319127398037 - type: nauc_map_at_5_diff1 value: 22.500045815797876 - type: nauc_map_at_5_max value: -8.548135411428023 - type: nauc_map_at_5_std value: -8.547850460331334 - type: nauc_mrr_at_1000_diff1 value: -6.022408963585526 - type: nauc_mrr_at_1000_max value: 4.481792717087155 - type: nauc_mrr_at_1000_std value: 51.6962340491753 - type: nauc_mrr_at_100_diff1 value: -6.022408963585526 - type: nauc_mrr_at_100_max value: 4.481792717087155 - type: nauc_mrr_at_100_std value: 51.6962340491753 - type: nauc_mrr_at_10_diff1 value: -6.022408963585526 - type: nauc_mrr_at_10_max value: 4.481792717087155 - type: nauc_mrr_at_10_std value: 51.6962340491753 - type: nauc_mrr_at_1_diff1 value: -6.022408963585076 - type: nauc_mrr_at_1_max value: 4.481792717087146 - type: nauc_mrr_at_1_std value: 51.69623404917518 - type: nauc_mrr_at_20_diff1 value: -6.022408963585526 - type: nauc_mrr_at_20_max value: 4.481792717087155 - type: nauc_mrr_at_20_std value: 51.6962340491753 - type: nauc_mrr_at_3_diff1 value: -6.022408963585526 - type: nauc_mrr_at_3_max value: 4.481792717087155 - type: nauc_mrr_at_3_std value: 51.6962340491753 - type: nauc_mrr_at_5_diff1 value: -6.022408963585526 - type: nauc_mrr_at_5_max value: 4.481792717087155 - type: nauc_mrr_at_5_std value: 51.6962340491753 - type: nauc_ndcg_at_1000_diff1 value: -20.79697283984295 - type: nauc_ndcg_at_1000_max value: 52.97671908009218 - type: nauc_ndcg_at_1000_std value: 75.43907707019758 - type: nauc_ndcg_at_100_diff1 value: -38.620752706946455 - type: nauc_ndcg_at_100_max value: 49.41307462381511 - type: nauc_ndcg_at_100_std value: 81.33299379244252 - type: nauc_ndcg_at_10_diff1 value: -18.611906363037356 - type: nauc_ndcg_at_10_max value: 44.20544651664479 - type: nauc_ndcg_at_10_std value: 61.322552829935816 - type: nauc_ndcg_at_1_diff1 value: 18.625935567849073 - type: nauc_ndcg_at_1_max value: -10.104132769280879 - type: nauc_ndcg_at_1_std value: 22.449560689879743 - type: nauc_ndcg_at_20_diff1 value: -30.61130208138771 - type: nauc_ndcg_at_20_max value: 52.68851710375231 - type: nauc_ndcg_at_20_std value: 69.72357683382992 - type: nauc_ndcg_at_3_diff1 value: 5.695394821691213 - type: nauc_ndcg_at_3_max value: 37.909122367102135 - type: nauc_ndcg_at_3_std value: 46.2366603255159 - type: nauc_ndcg_at_5_diff1 value: -15.273067832464731 - type: nauc_ndcg_at_5_max value: 49.7054639475091 - type: nauc_ndcg_at_5_std value: 58.83754007826166 - type: nauc_precision_at_1000_diff1 value: -31.565302588492035 - type: nauc_precision_at_1000_max value: 52.56214379514724 - type: nauc_precision_at_1000_std value: 53.40618234326055 - type: nauc_precision_at_100_diff1 value: -44.67273120709088 - type: nauc_precision_at_100_max value: 48.30381155522576 - type: nauc_precision_at_100_std value: 82.1984661602578 - type: nauc_precision_at_10_diff1 value: -24.737383556860145 - type: nauc_precision_at_10_max value: 52.816815002878556 - type: nauc_precision_at_10_std value: 67.99052410030845 - type: nauc_precision_at_1_diff1 value: -6.022408963585076 - type: nauc_precision_at_1_max value: 4.481792717087146 - type: nauc_precision_at_1_std value: 51.69623404917518 - type: nauc_precision_at_20_diff1 value: -40.23628054967093 - type: nauc_precision_at_20_max value: 56.980056980057014 - type: nauc_precision_at_20_std value: 76.60976777785895 - type: nauc_precision_at_3_diff1 value: -4.661784068466279 - type: nauc_precision_at_3_max value: 59.052007899934125 - type: nauc_precision_at_3_std value: 58.187952600394986 - type: nauc_precision_at_5_diff1 value: -38.11848143512736 - type: nauc_precision_at_5_max value: 68.6149353358365 - type: nauc_precision_at_5_std value: 73.55652899457661 - type: nauc_recall_at_1000_diff1 value: -14.886527444436345 - type: nauc_recall_at_1000_max value: 48.07492302795808 - type: nauc_recall_at_1000_std value: 65.05623212485906 - type: nauc_recall_at_100_diff1 value: -8.148385729388195 - type: nauc_recall_at_100_max value: 8.041615364614533 - type: nauc_recall_at_100_std value: 33.77187914574611 - type: nauc_recall_at_10_diff1 value: 24.333628413035942 - type: nauc_recall_at_10_max value: -14.577877145192078 - type: nauc_recall_at_10_std value: -12.131819145098557 - type: nauc_recall_at_1_diff1 value: 27.342260509653798 - type: nauc_recall_at_1_max value: -23.400451210297994 - type: nauc_recall_at_1_std value: -21.152006353733853 - type: nauc_recall_at_20_diff1 value: 13.695556376785564 - type: nauc_recall_at_20_max value: -8.872009346408264 - type: nauc_recall_at_20_std value: -3.163199444247112 - type: nauc_recall_at_3_diff1 value: 32.00442538217753 - type: nauc_recall_at_3_max value: -15.159737942664552 - type: nauc_recall_at_3_std value: -17.530833132440645 - type: nauc_recall_at_5_diff1 value: 22.64740552912405 - type: nauc_recall_at_5_max value: -12.947090597010414 - type: nauc_recall_at_5_std value: -12.914478822476807 - type: ndcg_at_1 value: 88.0 - type: ndcg_at_10 value: 84.60600000000001 - type: ndcg_at_100 value: 64.31700000000001 - type: ndcg_at_1000 value: 56.40500000000001 - type: ndcg_at_20 value: 80.561 - type: ndcg_at_3 value: 87.87700000000001 - type: ndcg_at_5 value: 86.641 - type: precision_at_1 value: 94.0 - type: precision_at_10 value: 88.2 - type: precision_at_100 value: 65.9 - type: precision_at_1000 value: 25.019999999999996 - type: precision_at_20 value: 84.7 - type: precision_at_3 value: 92.0 - type: precision_at_5 value: 90.0 - type: recall_at_1 value: 0.257 - type: recall_at_10 value: 2.338 - type: recall_at_100 value: 15.831999999999999 - type: recall_at_1000 value: 52.519000000000005 - type: recall_at_20 value: 4.367 - type: recall_at_3 value: 0.74 - type: recall_at_5 value: 1.196 - task: type: Retrieval dataset: name: MTEB Touche2020 type: mteb/touche2020 config: default split: test revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f metrics: - type: main_score value: 31.426 - type: map_at_1 value: 3.4709999999999996 - type: map_at_10 value: 13.236999999999998 - type: map_at_100 value: 19.521 - type: map_at_1000 value: 21.224 - type: map_at_20 value: 15.626000000000001 - type: map_at_3 value: 7.152 - type: map_at_5 value: 9.914000000000001 - type: mrr_at_1 value: 44.89795918367347 - type: mrr_at_10 value: 57.54373177842565 - type: mrr_at_100 value: 57.855267710139536 - type: mrr_at_1000 value: 57.855267710139536 - type: mrr_at_20 value: 57.70071764969724 - type: mrr_at_3 value: 52.72108843537414 - type: mrr_at_5 value: 55.06802721088435 - type: nauc_map_at_1000_diff1 value: 21.148857552115558 - type: nauc_map_at_1000_max value: 2.0837572569021323 - type: nauc_map_at_1000_std value: 3.203419709665347 - type: nauc_map_at_100_diff1 value: 21.383778167597878 - type: nauc_map_at_100_max value: 0.965767943155967 - type: nauc_map_at_100_std value: 0.3949924961020957 - type: nauc_map_at_10_diff1 value: 27.178555638086394 - type: nauc_map_at_10_max value: 4.480675175857958 - type: nauc_map_at_10_std value: -13.69553539513878 - type: nauc_map_at_1_diff1 value: 27.63901823865334 - type: nauc_map_at_1_max value: -18.6387233237763 - type: nauc_map_at_1_std value: -27.02164241863646 - type: nauc_map_at_20_diff1 value: 23.892104752374888 - type: nauc_map_at_20_max value: 3.5343136621362348 - type: nauc_map_at_20_std value: -8.765101188860816 - type: nauc_map_at_3_diff1 value: 22.065793929837493 - type: nauc_map_at_3_max value: 0.8063396680860568 - type: nauc_map_at_3_std value: -20.404849396621824 - type: nauc_map_at_5_diff1 value: 22.66626080580714 - type: nauc_map_at_5_max value: 5.423340658352383 - type: nauc_map_at_5_std value: -18.31523779843455 - type: nauc_mrr_at_1000_diff1 value: 30.520722269282665 - type: nauc_mrr_at_1000_max value: -16.644959497742267 - type: nauc_mrr_at_1000_std value: -16.3824126273053 - type: nauc_mrr_at_100_diff1 value: 30.520722269282665 - type: nauc_mrr_at_100_max value: -16.644959497742267 - type: nauc_mrr_at_100_std value: -16.3824126273053 - type: nauc_mrr_at_10_diff1 value: 30.428248939332974 - type: nauc_mrr_at_10_max value: -16.300183919261585 - type: nauc_mrr_at_10_std value: -15.404823235836309 - type: nauc_mrr_at_1_diff1 value: 27.041346572613474 - type: nauc_mrr_at_1_max value: -23.181309312755804 - type: nauc_mrr_at_1_std value: -24.33076726484014 - type: nauc_mrr_at_20_diff1 value: 30.676558567379303 - type: nauc_mrr_at_20_max value: -16.914268763031416 - type: nauc_mrr_at_20_std value: -15.77742854976336 - type: nauc_mrr_at_3_diff1 value: 31.718457109787096 - type: nauc_mrr_at_3_max value: -15.508391132202235 - type: nauc_mrr_at_3_std value: -20.33229438349494 - type: nauc_mrr_at_5_diff1 value: 28.73798376227693 - type: nauc_mrr_at_5_max value: -16.086295031060196 - type: nauc_mrr_at_5_std value: -15.644604635769321 - type: nauc_ndcg_at_1000_diff1 value: 22.158724660189606 - type: nauc_ndcg_at_1000_max value: -3.1755686809941475 - type: nauc_ndcg_at_1000_std value: 19.258386224159075 - type: nauc_ndcg_at_100_diff1 value: 21.83846748649288 - type: nauc_ndcg_at_100_max value: -10.939957598756036 - type: nauc_ndcg_at_100_std value: 14.729678880436623 - type: nauc_ndcg_at_10_diff1 value: 26.944882726098424 - type: nauc_ndcg_at_10_max value: -3.5176483833346617 - type: nauc_ndcg_at_10_std value: -5.400606773697211 - type: nauc_ndcg_at_1_diff1 value: 26.649410985172985 - type: nauc_ndcg_at_1_max value: -18.806716526067493 - type: nauc_ndcg_at_1_std value: -25.100244999343506 - type: nauc_ndcg_at_20_diff1 value: 24.860266153648315 - type: nauc_ndcg_at_20_max value: -7.521401821712892 - type: nauc_ndcg_at_20_std value: -3.3696577425983003 - type: nauc_ndcg_at_3_diff1 value: 23.9933326962406 - type: nauc_ndcg_at_3_max value: -0.4609479344284664 - type: nauc_ndcg_at_3_std value: -15.176459166869897 - type: nauc_ndcg_at_5_diff1 value: 22.50595978713142 - type: nauc_ndcg_at_5_max value: -2.1093870656000857 - type: nauc_ndcg_at_5_std value: -12.732197425528257 - type: nauc_precision_at_1000_diff1 value: -20.335120385950024 - type: nauc_precision_at_1000_max value: 26.95109729939765 - type: nauc_precision_at_1000_std value: 29.981685890622117 - type: nauc_precision_at_100_diff1 value: -2.782114329320704 - type: nauc_precision_at_100_max value: 2.9489322002048604 - type: nauc_precision_at_100_std value: 67.3074073674319 - type: nauc_precision_at_10_diff1 value: 21.385177180383383 - type: nauc_precision_at_10_max value: -2.4696365259422817 - type: nauc_precision_at_10_std value: 14.469784299536673 - type: nauc_precision_at_1_diff1 value: 27.041346572613474 - type: nauc_precision_at_1_max value: -23.181309312755804 - type: nauc_precision_at_1_std value: -24.33076726484014 - type: nauc_precision_at_20_diff1 value: 11.993846579997673 - type: nauc_precision_at_20_max value: -2.4792189693296227 - type: nauc_precision_at_20_std value: 28.581394687807745 - type: nauc_precision_at_3_diff1 value: 20.70568446328836 - type: nauc_precision_at_3_max value: 0.37326398699875984 - type: nauc_precision_at_3_std value: -12.983918676694389 - type: nauc_precision_at_5_diff1 value: 19.47466335828124 - type: nauc_precision_at_5_max value: -1.8921617684385994 - type: nauc_precision_at_5_std value: -6.533875294402164 - type: nauc_recall_at_1000_diff1 value: 7.611201305723156 - type: nauc_recall_at_1000_max value: 5.6416194035820055 - type: nauc_recall_at_1000_std value: 61.695208644278 - type: nauc_recall_at_100_diff1 value: 10.0183258158735 - type: nauc_recall_at_100_max value: -10.950612455698973 - type: nauc_recall_at_100_std value: 33.06069987640471 - type: nauc_recall_at_10_diff1 value: 24.738210305731535 - type: nauc_recall_at_10_max value: -2.6592454032071546 - type: nauc_recall_at_10_std value: -4.83987517793115 - type: nauc_recall_at_1_diff1 value: 27.63901823865334 - type: nauc_recall_at_1_max value: -18.6387233237763 - type: nauc_recall_at_1_std value: -27.02164241863646 - type: nauc_recall_at_20_diff1 value: 17.79601177409034 - type: nauc_recall_at_20_max value: -6.681637093148051 - type: nauc_recall_at_20_std value: 3.369193919932238 - type: nauc_recall_at_3_diff1 value: 24.9589431081204 - type: nauc_recall_at_3_max value: 2.4783640980500232 - type: nauc_recall_at_3_std value: -19.567415651090702 - type: nauc_recall_at_5_diff1 value: 23.71803410135437 - type: nauc_recall_at_5_max value: 1.6294309357641652 - type: nauc_recall_at_5_std value: -15.365511906408983 - type: ndcg_at_1 value: 40.816 - type: ndcg_at_10 value: 31.426 - type: ndcg_at_100 value: 41.558 - type: ndcg_at_1000 value: 53.042 - type: ndcg_at_20 value: 31.108999999999998 - type: ndcg_at_3 value: 35.518 - type: ndcg_at_5 value: 33.235 - type: precision_at_1 value: 44.897999999999996 - type: precision_at_10 value: 27.551 - type: precision_at_100 value: 8.204 - type: precision_at_1000 value: 1.582 - type: precision_at_20 value: 19.796 - type: precision_at_3 value: 36.735 - type: precision_at_5 value: 33.061 - type: recall_at_1 value: 3.4709999999999996 - type: recall_at_10 value: 19.563 - type: recall_at_100 value: 50.3 - type: recall_at_1000 value: 85.13199999999999 - type: recall_at_20 value: 26.738 - type: recall_at_3 value: 7.8420000000000005 - type: recall_at_5 value: 11.994 - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (en) type: mteb/amazon_counterfactual config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 68.29850746268657 - type: ap value: 30.109785890841966 - type: ap_weighted value: 30.109785890841966 - type: f1 value: 61.76875915202924 - type: f1_weighted value: 71.32073190458556 - type: main_score value: 68.29850746268657 - task: type: Classification dataset: name: MTEB AmazonPolarityClassification (default) type: mteb/amazon_polarity config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 90.3068 - type: ap value: 86.17914339624038 - type: ap_weighted value: 86.17914339624038 - type: f1 value: 90.29716826358077 - type: f1_weighted value: 90.29716826358077 - type: main_score value: 90.3068 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (en) type: mteb/amazon_reviews_multi config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 46.272000000000006 - type: f1 value: 45.57042543386915 - type: f1_weighted value: 45.57042543386915 - type: main_score value: 46.272000000000006 - task: type: Clustering dataset: name: MTEB ArxivClusteringP2P (default) type: mteb/arxiv-clustering-p2p config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: main_score value: 44.9469238081379 - type: v_measure value: 44.9469238081379 - type: v_measure_std value: 13.26811262671461 - task: type: Clustering dataset: name: MTEB ArxivClusteringS2S (default) type: mteb/arxiv-clustering-s2s config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: main_score value: 34.12071448053325 - type: v_measure value: 34.12071448053325 - type: v_measure_std value: 13.7019879046405 - task: type: Reranking dataset: name: MTEB AskUbuntuDupQuestions (default) type: mteb/askubuntudupquestions-reranking config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: main_score value: 61.597667288657846 - type: map value: 61.597667288657846 - type: mrr value: 75.57940904893813 - type: nAUC_map_diff1 value: 8.745172077340095 - type: nAUC_map_max value: 20.114863024035493 - type: nAUC_map_std value: 15.991351189572192 - type: nAUC_mrr_diff1 value: 20.781369244159983 - type: nAUC_mrr_max value: 30.78542570228559 - type: nAUC_mrr_std value: 19.861484857303676 - task: type: STS dataset: name: MTEB BIOSSES (default) type: mteb/biosses-sts config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cosine_pearson value: 88.55587996301419 - type: cosine_spearman value: 86.40317357420093 - type: euclidean_pearson value: 86.93771958250231 - type: euclidean_spearman value: 86.40317357420093 - type: main_score value: 86.40317357420093 - type: manhattan_pearson value: 86.92196577117366 - type: manhattan_spearman value: 85.79834051556095 - type: pearson value: 88.55587996301419 - type: spearman value: 86.40317357420093 - task: type: Classification dataset: name: MTEB Banking77Classification (default) type: mteb/banking77 config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 80.0064935064935 - type: f1 value: 79.29524254086299 - type: f1_weighted value: 79.295242540863 - type: main_score value: 80.0064935064935 - task: type: Clustering dataset: name: MTEB BiorxivClusteringP2P (default) type: mteb/biorxiv-clustering-p2p config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: main_score value: 35.27186813341181 - type: v_measure value: 35.27186813341181 - type: v_measure_std value: 0.8621482145872432 - task: type: Clustering dataset: name: MTEB BiorxivClusteringS2S (default) type: mteb/biorxiv-clustering-s2s config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: main_score value: 28.411805064852295 - type: v_measure value: 28.411805064852295 - type: v_measure_std value: 0.7194290078011281 - task: type: Classification dataset: name: MTEB EmotionClassification (default) type: mteb/emotion config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 43.675 - type: f1 value: 40.15061931375577 - type: f1_weighted value: 45.714186572727066 - type: main_score value: 43.675 - task: type: Classification dataset: name: MTEB ImdbClassification (default) type: mteb/imdb config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 84.35640000000001 - type: ap value: 79.07507736685174 - type: ap_weighted value: 79.07507736685174 - type: f1 value: 84.32288494833531 - type: f1_weighted value: 84.32288494833531 - type: main_score value: 84.35640000000001 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (en) type: mteb/mtop_domain config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 91.35658914728684 - type: f1 value: 90.86877537911086 - type: f1_weighted value: 91.3282092774443 - type: main_score value: 91.35658914728684 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (en) type: mteb/mtop_intent config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 60.63611491108071 - type: f1 value: 42.78886482112741 - type: f1_weighted value: 63.44208631840539 - type: main_score value: 60.63611491108071 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (en) type: mteb/amazon_massive_intent config: en split: test revision: 4672e20407010da34463acc759c162ca9734bca6 metrics: - type: accuracy value: 66.68796234028245 - type: f1 value: 64.44940791000278 - type: f1_weighted value: 65.77554417406792 - type: main_score value: 66.68796234028245 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (en) type: mteb/amazon_massive_scenario config: en split: test revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 metrics: - type: accuracy value: 73.0598520511096 - type: f1 value: 72.14267273884774 - type: f1_weighted value: 72.93345180137516 - type: main_score value: 73.0598520511096 - task: type: Clustering dataset: name: MTEB MedrxivClusteringP2P (default) type: mteb/medrxiv-clustering-p2p config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: main_score value: 31.143081341699606 - type: v_measure value: 31.143081341699606 - type: v_measure_std value: 1.5578716347076906 - task: type: Clustering dataset: name: MTEB MedrxivClusteringS2S (default) type: mteb/medrxiv-clustering-s2s config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: main_score value: 27.010818869829556 - type: v_measure value: 27.010818869829556 - type: v_measure_std value: 1.1771554540819378 - task: type: Reranking dataset: name: MTEB MindSmallReranking (default) type: mteb/mind_small config: default split: test revision: 59042f120c80e8afa9cdbb224f67076cec0fc9a7 metrics: - type: main_score value: 30.20503776754942 - type: map value: 30.20503776754942 - type: mrr value: 31.076636002733437 - type: nAUC_map_diff1 value: 7.290568655287842 - type: nAUC_map_max value: -21.381599355932945 - type: nAUC_map_std value: -7.709920607543168 - type: nAUC_mrr_diff1 value: 7.558397329284913 - type: nAUC_mrr_max value: -15.981397186427607 - type: nAUC_mrr_std value: -4.870495243168834 - task: type: Clustering dataset: name: MTEB RedditClustering (default) type: mteb/reddit-clustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: main_score value: 51.85893476633338 - type: v_measure value: 51.85893476633338 - type: v_measure_std value: 4.704770139385852 - task: type: Clustering dataset: name: MTEB RedditClusteringP2P (default) type: mteb/reddit-clustering-p2p config: default split: test revision: 385e3cb46b4cfa89021f56c4380204149d0efe33 metrics: - type: main_score value: 61.8124222918822 - type: v_measure value: 61.8124222918822 - type: v_measure_std value: 11.994472578100165 - task: type: STS dataset: name: MTEB SICK-R (default) type: mteb/sickr-sts config: default split: test revision: 20a6d6f312dd54037fe07a32d58e5e168867909d metrics: - type: cosine_pearson value: 77.63310776935984 - type: cosine_spearman value: 69.86468291111039 - type: euclidean_pearson value: 73.91537077798837 - type: euclidean_spearman value: 69.86468376650203 - type: main_score value: 69.86468291111039 - type: manhattan_pearson value: 73.68616048370464 - type: manhattan_spearman value: 69.76232036206659 - type: pearson value: 77.63310776935984 - type: spearman value: 69.86468291111039 - task: type: STS dataset: name: MTEB STS12 (default) type: mteb/sts12-sts config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cosine_pearson value: 57.71716838245049 - type: cosine_spearman value: 61.797855543446424 - type: euclidean_pearson value: 58.22958675325848 - type: euclidean_spearman value: 61.797855543446424 - type: main_score value: 61.797855543446424 - type: manhattan_pearson value: 57.63117544997929 - type: manhattan_spearman value: 61.3629404350085 - type: pearson value: 57.71716838245049 - type: spearman value: 61.797855543446424 - task: type: STS dataset: name: MTEB STS13 (default) type: mteb/sts13-sts config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cosine_pearson value: 82.30260026790903 - type: cosine_spearman value: 82.66959813070869 - type: euclidean_pearson value: 82.08383017580783 - type: euclidean_spearman value: 82.66959813070869 - type: main_score value: 82.66959813070869 - type: manhattan_pearson value: 81.77991451392153 - type: manhattan_spearman value: 82.3652534745606 - type: pearson value: 82.30260026790903 - type: spearman value: 82.66959813070869 - task: type: STS dataset: name: MTEB STS14 (default) type: mteb/sts14-sts config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cosine_pearson value: 71.50608384084478 - type: cosine_spearman value: 68.94968064977785 - type: euclidean_pearson value: 70.73381299949564 - type: euclidean_spearman value: 68.94968064977785 - type: main_score value: 68.94968064977785 - type: manhattan_pearson value: 70.5385486953787 - type: manhattan_spearman value: 68.82132770672365 - type: pearson value: 71.50608384084478 - type: spearman value: 68.94968064977785 - task: type: STS dataset: name: MTEB STS15 (default) type: mteb/sts15-sts config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cosine_pearson value: 73.66969825874907 - type: cosine_spearman value: 75.55374982088381 - type: euclidean_pearson value: 75.9339313749594 - type: euclidean_spearman value: 75.55374982088381 - type: main_score value: 75.55374982088381 - type: manhattan_pearson value: 75.88287553383817 - type: manhattan_spearman value: 75.50729812977688 - type: pearson value: 73.66969825874907 - type: spearman value: 75.55374982088381 - task: type: STS dataset: name: MTEB STS16 (default) type: mteb/sts16-sts config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cosine_pearson value: 74.5954724414016 - type: cosine_spearman value: 77.2688820850505 - type: euclidean_pearson value: 77.19866353971555 - type: euclidean_spearman value: 77.2688820850505 - type: main_score value: 77.2688820850505 - type: manhattan_pearson value: 77.27072603680978 - type: manhattan_spearman value: 77.29408453673607 - type: pearson value: 74.5954724414016 - type: spearman value: 77.2688820850505 - task: type: STS dataset: name: MTEB STS17 (en-en) type: mteb/sts17-crosslingual-sts config: en-en split: test revision: faeb762787bd10488a50c8b5be4a3b82e411949c metrics: - type: cosine_pearson value: 71.52588722654055 - type: cosine_spearman value: 74.97235736456061 - type: euclidean_pearson value: 74.51952528854038 - type: euclidean_spearman value: 74.97235736456061 - type: main_score value: 74.97235736456061 - type: manhattan_pearson value: 74.48272300884209 - type: manhattan_spearman value: 74.80633649415176 - type: pearson value: 71.52588722654055 - type: spearman value: 74.97235736456061 - task: type: STS dataset: name: MTEB STS22 (en) type: mteb/sts22-crosslingual-sts config: en split: test revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 metrics: - type: cosine_pearson value: 68.80031120401976 - type: cosine_spearman value: 69.07945196478491 - type: euclidean_pearson value: 68.99674496430792 - type: euclidean_spearman value: 69.07945196478491 - type: main_score value: 69.07945196478491 - type: manhattan_pearson value: 69.00236107775687 - type: manhattan_spearman value: 68.98064879049272 - type: pearson value: 68.80031120401976 - type: spearman value: 69.07945196478491 - task: type: STS dataset: name: MTEB STSBenchmark (default) type: mteb/stsbenchmark-sts config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cosine_pearson value: 65.6898007230089 - type: cosine_spearman value: 69.72386211803668 - type: euclidean_pearson value: 69.04523003701475 - type: euclidean_spearman value: 69.72386211803668 - type: main_score value: 69.72386211803668 - type: manhattan_pearson value: 68.80479743770702 - type: manhattan_spearman value: 69.43264575177459 - type: pearson value: 65.6898007230089 - type: spearman value: 69.72386211803668 - task: type: Reranking dataset: name: MTEB SciDocsRR (default) type: mteb/scidocs-reranking config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: main_score value: 79.74088066874383 - type: map value: 79.74088066874383 - type: mrr value: 94.47697455050397 - type: nAUC_map_diff1 value: 8.036086256905502 - type: nAUC_map_max value: 54.88199803816819 - type: nAUC_map_std value: 69.16267942176574 - type: nAUC_mrr_diff1 value: 50.020738477678115 - type: nAUC_mrr_max value: 83.28922770326483 - type: nAUC_mrr_std value: 83.63973501802224 - task: type: PairClassification dataset: name: MTEB SprintDuplicateQuestions (default) type: mteb/sprintduplicatequestions-pairclassification config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cosine_accuracy value: 99.83861386138614 - type: cosine_accuracy_threshold value: 74.75666999816895 - type: cosine_ap value: 96.15132792066652 - type: cosine_f1 value: 91.84890656063618 - type: cosine_f1_threshold value: 71.70594930648804 - type: cosine_precision value: 91.30434782608695 - type: cosine_recall value: 92.4 - type: dot_accuracy value: 99.83861386138614 - type: dot_accuracy_threshold value: 74.75666999816895 - type: dot_ap value: 96.15132792066653 - type: dot_f1 value: 91.84890656063618 - type: dot_f1_threshold value: 71.70596122741699 - type: dot_precision value: 91.30434782608695 - type: dot_recall value: 92.4 - type: euclidean_accuracy value: 99.83861386138614 - type: euclidean_accuracy_threshold value: 71.05395793914795 - type: euclidean_ap value: 96.15132792066652 - type: euclidean_f1 value: 91.84890656063618 - type: euclidean_f1_threshold value: 75.22505521774292 - type: euclidean_precision value: 91.30434782608695 - type: euclidean_recall value: 92.4 - type: main_score value: 96.15132792066653 - type: manhattan_accuracy value: 99.83564356435643 - type: manhattan_accuracy_threshold value: 1547.6950645446777 - type: manhattan_ap value: 96.06151211452136 - type: manhattan_f1 value: 91.61676646706587 - type: manhattan_f1_threshold value: 1626.3608932495117 - type: manhattan_precision value: 91.43426294820716 - type: manhattan_recall value: 91.8 - type: max_ap value: 96.15132792066653 - type: max_f1 value: 91.84890656063618 - type: max_precision value: 91.43426294820716 - type: max_recall value: 92.4 - type: similarity_accuracy value: 99.83861386138614 - type: similarity_accuracy_threshold value: 74.75666999816895 - type: similarity_ap value: 96.15132792066652 - type: similarity_f1 value: 91.84890656063618 - type: similarity_f1_threshold value: 71.70594930648804 - type: similarity_precision value: 91.30434782608695 - type: similarity_recall value: 92.4 - task: type: Clustering dataset: name: MTEB StackExchangeClustering (default) type: mteb/stackexchange-clustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: main_score value: 61.24120328328453 - type: v_measure value: 61.24120328328453 - type: v_measure_std value: 3.9946560691100372 - task: type: Clustering dataset: name: MTEB StackExchangeClusteringP2P (default) type: mteb/stackexchange-clustering-p2p config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: main_score value: 33.808268374864745 - type: v_measure value: 33.808268374864745 - type: v_measure_std value: 1.2212188701887239 - task: type: Reranking dataset: name: MTEB StackOverflowDupQuestions (default) type: mteb/stackoverflowdupquestions-reranking config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: main_score value: 52.19806018468037 - type: map value: 52.19806018468037 - type: mrr value: 52.98921462524404 - type: nAUC_map_diff1 value: 37.41443156995912 - type: nAUC_map_max value: 9.410262727675603 - type: nAUC_map_std value: 8.7094185014992 - type: nAUC_mrr_diff1 value: 37.78202772392581 - type: nAUC_mrr_max value: 10.517635536565816 - type: nAUC_mrr_std value: 8.509423813772491 - task: type: Summarization dataset: name: MTEB SummEval (default) type: mteb/summeval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cosine_pearson value: 30.48413700430812 - type: cosine_spearman value: 30.357162200875816 - type: dot_pearson value: 30.484140144824938 - type: dot_spearman value: 30.357162200875816 - type: main_score value: 30.357162200875816 - type: pearson value: 30.48413700430812 - type: spearman value: 30.357162200875816 - task: type: Classification dataset: name: MTEB ToxicConversationsClassification (default) type: mteb/toxic_conversations_50k config: default split: test revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de metrics: - type: accuracy value: 66.8359375 - type: ap value: 12.482653786025985 - type: ap_weighted value: 12.482653786025985 - type: f1 value: 51.328608527332385 - type: f1_weighted value: 74.07974463955398 - type: main_score value: 66.8359375 - task: type: Classification dataset: name: MTEB TweetSentimentExtractionClassification (default) type: mteb/tweet_sentiment_extraction config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 53.907753254103 - type: f1 value: 54.22707647269581 - type: f1_weighted value: 53.611822984407695 - type: main_score value: 53.907753254103 - task: type: Clustering dataset: name: MTEB TwentyNewsgroupsClustering (default) type: mteb/twentynewsgroups-clustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: main_score value: 38.1364789307295 - type: v_measure value: 38.1364789307295 - type: v_measure_std value: 2.0731634966352077 - task: type: PairClassification dataset: name: MTEB TwitterSemEval2015 (default) type: mteb/twittersemeval2015-pairclassification config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cosine_accuracy value: 82.66674614054956 - type: cosine_accuracy_threshold value: 79.80123162269592 - type: cosine_ap value: 63.28209719072804 - type: cosine_f1 value: 60.16389710903711 - type: cosine_f1_threshold value: 72.22893834114075 - type: cosine_precision value: 52.90232185748599 - type: cosine_recall value: 69.73614775725594 - type: dot_accuracy value: 82.66674614054956 - type: dot_accuracy_threshold value: 79.8012375831604 - type: dot_ap value: 63.282103870645166 - type: dot_f1 value: 60.16389710903711 - type: dot_f1_threshold value: 72.22894430160522 - type: dot_precision value: 52.90232185748599 - type: dot_recall value: 69.73614775725594 - type: euclidean_accuracy value: 82.66674614054956 - type: euclidean_accuracy_threshold value: 63.55905532836914 - type: euclidean_ap value: 63.282095399953164 - type: euclidean_f1 value: 60.16389710903711 - type: euclidean_f1_threshold value: 74.5265781879425 - type: euclidean_precision value: 52.90232185748599 - type: euclidean_recall value: 69.73614775725594 - type: main_score value: 63.282103870645166 - type: manhattan_accuracy value: 82.74423317637242 - type: manhattan_accuracy_threshold value: 1415.380859375 - type: manhattan_ap value: 63.26931757839598 - type: manhattan_f1 value: 60.11014948859166 - type: manhattan_f1_threshold value: 1632.522201538086 - type: manhattan_precision value: 52.359506559624045 - type: manhattan_recall value: 70.55408970976254 - type: max_ap value: 63.282103870645166 - type: max_f1 value: 60.16389710903711 - type: max_precision value: 52.90232185748599 - type: max_recall value: 70.55408970976254 - type: similarity_accuracy value: 82.66674614054956 - type: similarity_accuracy_threshold value: 79.80123162269592 - type: similarity_ap value: 63.28209719072804 - type: similarity_f1 value: 60.16389710903711 - type: similarity_f1_threshold value: 72.22893834114075 - type: similarity_precision value: 52.90232185748599 - type: similarity_recall value: 69.73614775725594 - task: type: PairClassification dataset: name: MTEB TwitterURLCorpus (default) type: mteb/twitterurlcorpus-pairclassification config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cosine_accuracy value: 88.10105949470253 - type: cosine_accuracy_threshold value: 68.95147562026978 - type: cosine_ap value: 84.65516103854583 - type: cosine_f1 value: 76.54581123301605 - type: cosine_f1_threshold value: 63.92929553985596 - type: cosine_precision value: 72.46526344751685 - type: cosine_recall value: 81.11333538651063 - type: dot_accuracy value: 88.10105949470253 - type: dot_accuracy_threshold value: 68.95147562026978 - type: dot_ap value: 84.65516301437592 - type: dot_f1 value: 76.54581123301605 - type: dot_f1_threshold value: 63.92928957939148 - type: dot_precision value: 72.46526344751685 - type: dot_recall value: 81.11333538651063 - type: euclidean_accuracy value: 88.10105949470253 - type: euclidean_accuracy_threshold value: 78.80169153213501 - type: euclidean_ap value: 84.65517268264233 - type: euclidean_f1 value: 76.54581123301605 - type: euclidean_f1_threshold value: 84.93610620498657 - type: euclidean_precision value: 72.46526344751685 - type: euclidean_recall value: 81.11333538651063 - type: main_score value: 84.65517268264233 - type: manhattan_accuracy value: 88.08941669577366 - type: manhattan_accuracy_threshold value: 1739.3169403076172 - type: manhattan_ap value: 84.64592398855694 - type: manhattan_f1 value: 76.62890540443034 - type: manhattan_f1_threshold value: 1861.344337463379 - type: manhattan_precision value: 72.09775967413442 - type: manhattan_recall value: 81.76778564829073 - type: max_ap value: 84.65517268264233 - type: max_f1 value: 76.62890540443034 - type: max_precision value: 72.46526344751685 - type: max_recall value: 81.76778564829073 - type: similarity_accuracy value: 88.10105949470253 - type: similarity_accuracy_threshold value: 68.95147562026978 - type: similarity_ap value: 84.65516103854583 - type: similarity_f1 value: 76.54581123301605 - type: similarity_f1_threshold value: 63.92929553985596 - type: similarity_precision value: 72.46526344751685 - type: similarity_recall value: 81.11333538651063 --- # yixuan-chia/snowflake-arctic-embed-m-v1.5-Q8_0-GGUF This model was converted to GGUF format from [`Snowflake/snowflake-arctic-embed-m-v1.5`](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v1.5) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v1.5) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo yixuan-chia/snowflake-arctic-embed-m-v1.5-Q8_0-GGUF --hf-file snowflake-arctic-embed-m-v1.5-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo yixuan-chia/snowflake-arctic-embed-m-v1.5-Q8_0-GGUF --hf-file snowflake-arctic-embed-m-v1.5-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo yixuan-chia/snowflake-arctic-embed-m-v1.5-Q8_0-GGUF --hf-file snowflake-arctic-embed-m-v1.5-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo yixuan-chia/snowflake-arctic-embed-m-v1.5-Q8_0-GGUF --hf-file snowflake-arctic-embed-m-v1.5-q8_0.gguf -c 2048 ```
RichardErkhov/shleeeee_-_mistral-ko-OpenOrca-Platypus-v2-gguf
RichardErkhov
2024-08-29T05:31:15Z
8
0
null
[ "gguf", "endpoints_compatible", "region:us" ]
null
2024-08-29T02:53:06Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) mistral-ko-OpenOrca-Platypus-v2 - GGUF - Model creator: https://huggingface.co/shleeeee/ - Original model: https://huggingface.co/shleeeee/mistral-ko-OpenOrca-Platypus-v2/ | Name | Quant method | Size | | ---- | ---- | ---- | | [mistral-ko-OpenOrca-Platypus-v2.Q2_K.gguf](https://huggingface.co/RichardErkhov/shleeeee_-_mistral-ko-OpenOrca-Platypus-v2-gguf/blob/main/mistral-ko-OpenOrca-Platypus-v2.Q2_K.gguf) | Q2_K | 2.53GB | | [mistral-ko-OpenOrca-Platypus-v2.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/shleeeee_-_mistral-ko-OpenOrca-Platypus-v2-gguf/blob/main/mistral-ko-OpenOrca-Platypus-v2.IQ3_XS.gguf) | IQ3_XS | 2.81GB | | [mistral-ko-OpenOrca-Platypus-v2.IQ3_S.gguf](https://huggingface.co/RichardErkhov/shleeeee_-_mistral-ko-OpenOrca-Platypus-v2-gguf/blob/main/mistral-ko-OpenOrca-Platypus-v2.IQ3_S.gguf) | IQ3_S | 2.96GB | | [mistral-ko-OpenOrca-Platypus-v2.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/shleeeee_-_mistral-ko-OpenOrca-Platypus-v2-gguf/blob/main/mistral-ko-OpenOrca-Platypus-v2.Q3_K_S.gguf) | Q3_K_S | 2.95GB | | [mistral-ko-OpenOrca-Platypus-v2.IQ3_M.gguf](https://huggingface.co/RichardErkhov/shleeeee_-_mistral-ko-OpenOrca-Platypus-v2-gguf/blob/main/mistral-ko-OpenOrca-Platypus-v2.IQ3_M.gguf) | IQ3_M | 3.06GB | | [mistral-ko-OpenOrca-Platypus-v2.Q3_K.gguf](https://huggingface.co/RichardErkhov/shleeeee_-_mistral-ko-OpenOrca-Platypus-v2-gguf/blob/main/mistral-ko-OpenOrca-Platypus-v2.Q3_K.gguf) | Q3_K | 3.28GB | | [mistral-ko-OpenOrca-Platypus-v2.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/shleeeee_-_mistral-ko-OpenOrca-Platypus-v2-gguf/blob/main/mistral-ko-OpenOrca-Platypus-v2.Q3_K_M.gguf) | Q3_K_M | 3.28GB | | [mistral-ko-OpenOrca-Platypus-v2.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/shleeeee_-_mistral-ko-OpenOrca-Platypus-v2-gguf/blob/main/mistral-ko-OpenOrca-Platypus-v2.Q3_K_L.gguf) | Q3_K_L | 3.56GB | | [mistral-ko-OpenOrca-Platypus-v2.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/shleeeee_-_mistral-ko-OpenOrca-Platypus-v2-gguf/blob/main/mistral-ko-OpenOrca-Platypus-v2.IQ4_XS.gguf) | IQ4_XS | 3.67GB | | [mistral-ko-OpenOrca-Platypus-v2.Q4_0.gguf](https://huggingface.co/RichardErkhov/shleeeee_-_mistral-ko-OpenOrca-Platypus-v2-gguf/blob/main/mistral-ko-OpenOrca-Platypus-v2.Q4_0.gguf) | Q4_0 | 3.83GB | | [mistral-ko-OpenOrca-Platypus-v2.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/shleeeee_-_mistral-ko-OpenOrca-Platypus-v2-gguf/blob/main/mistral-ko-OpenOrca-Platypus-v2.IQ4_NL.gguf) | IQ4_NL | 3.87GB | | [mistral-ko-OpenOrca-Platypus-v2.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/shleeeee_-_mistral-ko-OpenOrca-Platypus-v2-gguf/blob/main/mistral-ko-OpenOrca-Platypus-v2.Q4_K_S.gguf) | Q4_K_S | 3.86GB | | [mistral-ko-OpenOrca-Platypus-v2.Q4_K.gguf](https://huggingface.co/RichardErkhov/shleeeee_-_mistral-ko-OpenOrca-Platypus-v2-gguf/blob/main/mistral-ko-OpenOrca-Platypus-v2.Q4_K.gguf) | Q4_K | 4.07GB | | [mistral-ko-OpenOrca-Platypus-v2.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/shleeeee_-_mistral-ko-OpenOrca-Platypus-v2-gguf/blob/main/mistral-ko-OpenOrca-Platypus-v2.Q4_K_M.gguf) | Q4_K_M | 4.07GB | | [mistral-ko-OpenOrca-Platypus-v2.Q4_1.gguf](https://huggingface.co/RichardErkhov/shleeeee_-_mistral-ko-OpenOrca-Platypus-v2-gguf/blob/main/mistral-ko-OpenOrca-Platypus-v2.Q4_1.gguf) | Q4_1 | 4.24GB | | [mistral-ko-OpenOrca-Platypus-v2.Q5_0.gguf](https://huggingface.co/RichardErkhov/shleeeee_-_mistral-ko-OpenOrca-Platypus-v2-gguf/blob/main/mistral-ko-OpenOrca-Platypus-v2.Q5_0.gguf) | Q5_0 | 4.65GB | | [mistral-ko-OpenOrca-Platypus-v2.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/shleeeee_-_mistral-ko-OpenOrca-Platypus-v2-gguf/blob/main/mistral-ko-OpenOrca-Platypus-v2.Q5_K_S.gguf) | Q5_K_S | 4.65GB | | [mistral-ko-OpenOrca-Platypus-v2.Q5_K.gguf](https://huggingface.co/RichardErkhov/shleeeee_-_mistral-ko-OpenOrca-Platypus-v2-gguf/blob/main/mistral-ko-OpenOrca-Platypus-v2.Q5_K.gguf) | Q5_K | 4.78GB | | [mistral-ko-OpenOrca-Platypus-v2.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/shleeeee_-_mistral-ko-OpenOrca-Platypus-v2-gguf/blob/main/mistral-ko-OpenOrca-Platypus-v2.Q5_K_M.gguf) | Q5_K_M | 4.78GB | | [mistral-ko-OpenOrca-Platypus-v2.Q5_1.gguf](https://huggingface.co/RichardErkhov/shleeeee_-_mistral-ko-OpenOrca-Platypus-v2-gguf/blob/main/mistral-ko-OpenOrca-Platypus-v2.Q5_1.gguf) | Q5_1 | 5.07GB | | [mistral-ko-OpenOrca-Platypus-v2.Q6_K.gguf](https://huggingface.co/RichardErkhov/shleeeee_-_mistral-ko-OpenOrca-Platypus-v2-gguf/blob/main/mistral-ko-OpenOrca-Platypus-v2.Q6_K.gguf) | Q6_K | 5.53GB | | [mistral-ko-OpenOrca-Platypus-v2.Q8_0.gguf](https://huggingface.co/RichardErkhov/shleeeee_-_mistral-ko-OpenOrca-Platypus-v2-gguf/blob/main/mistral-ko-OpenOrca-Platypus-v2.Q8_0.gguf) | Q8_0 | 7.17GB | Original model description: --- license: other language: - ko pipeline_tag: text-generation --- # Model Card for mistral-ko-OpenOrca-Platypus-v2 It is a fine-tuned model using Korean in the mistral-7b model ## Model Details * **Model Developers** : shleeeee(Seunghyeon Lee) , oopsung(Sungwoo Park)
sfulay/zephyr-7b-dpo-full-gpt-low-curriculum
sfulay
2024-08-29T05:30:23Z
7
0
null
[ "safetensors", "mistral", "trl", "dpo", "generated_from_trainer", "base_model:alignment-handbook/zephyr-7b-sft-full", "base_model:finetune:alignment-handbook/zephyr-7b-sft-full", "license:apache-2.0", "region:us" ]
null
2024-08-29T02:11:55Z
--- license: apache-2.0 base_model: alignment-handbook/zephyr-7b-sft-full tags: - trl - dpo - generated_from_trainer model-index: - name: zephyr-7b-dpo-full-gpt-low-curriculum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # zephyr-7b-dpo-full-gpt-low-curriculum This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5229 - Rewards/chosen: -0.8152 - Rewards/rejected: -1.5392 - Rewards/accuracies: 0.7069 - Rewards/margins: 0.7241 - Logps/rejected: -399.5724 - Logps/chosen: -365.5233 - Logits/rejected: 1.4072 - Logits/chosen: 0.3892 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 55 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6558 | 0.1147 | 50 | 0.6455 | 0.0044 | -0.0965 | 0.6810 | 0.1009 | -255.3015 | -283.5690 | -2.4863 | -2.5882 | | 0.5907 | 0.2294 | 100 | 0.5894 | -0.2321 | -0.5376 | 0.7069 | 0.3055 | -299.4117 | -307.2200 | -2.4655 | -2.5910 | | 0.5657 | 0.3440 | 150 | 0.5474 | -0.5168 | -1.0293 | 0.7198 | 0.5125 | -348.5750 | -335.6879 | -0.6546 | -1.0350 | | 0.5303 | 0.4587 | 200 | 0.5414 | -1.0659 | -1.7181 | 0.75 | 0.6522 | -417.4532 | -390.5937 | 0.7246 | 0.0707 | | 0.5472 | 0.5734 | 250 | 0.5268 | -0.8095 | -1.4718 | 0.7155 | 0.6623 | -392.8294 | -364.9606 | 1.2657 | 0.4213 | | 0.5517 | 0.6881 | 300 | 0.5284 | -0.8914 | -1.6145 | 0.7112 | 0.7231 | -407.0940 | -373.1438 | 1.3137 | 0.2994 | | 0.4943 | 0.8028 | 350 | 0.5237 | -0.8328 | -1.5668 | 0.7112 | 0.7339 | -402.3227 | -367.2895 | 1.4252 | 0.4044 | | 0.5335 | 0.9174 | 400 | 0.5229 | -0.8152 | -1.5392 | 0.7069 | 0.7241 | -399.5724 | -365.5233 | 1.4072 | 0.3892 | ### Framework versions - Transformers 4.44.0.dev0 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1
muscle-memory/opt-125m-boolq-10ep
muscle-memory
2024-08-29T05:13:05Z
107
0
transformers
[ "transformers", "safetensors", "opt", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-08-29T05:12:21Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
BoHu370/lgd-old-man
BoHu370
2024-08-29T05:12:25Z
29
0
diffusers
[ "diffusers", "safetensors", "pytorch", "stable-diffusion", "text-to-image", "diffusion-models-class", "dreambooth-hackathon", "BLACK-MTYH-WUKONG", "dataset:BoHu370/Land_grandfather", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-08-28T07:52:54Z
--- license: creativeml-openrail-m tags: - pytorch - diffusers - stable-diffusion - text-to-image - diffusion-models-class - dreambooth-hackathon - BLACK-MTYH-WUKONG widget: - text: a photo of lgd old man playing computer game datasets: - BoHu370/Land_grandfather base_model: CompVis/stable-diffusion-v1-4 pipeline_tag: text-to-image library_name: diffusers --- # DreamBooth model for the Land Grandfather concept This is a Stable Diffusion model fine-tuned on the Lang Grandfather(lgd) concept with DreamBooth. The dataset is from the game ** Black Myth WUKONG **. It can be used by modifying the `instance_prompt`: **a photo of lgd old man**, the trigger word is `lgd` ## Usage ```python from diffusers import StableDiffusionPipeline pipe = StableDiffusionPipeline.from_pretrained('BoHu370/lgd-old-man').to('cuda') name_of_your_concept = 'lgd' type_of_thing = 'old man' prompt = f"a photo of {name_of_your_concept} {type_of_thing} playing computer game" guidance_scale = 5 image = pipe(prompt, guidance_scale=guidance_scale).images[0] image ``` ## Examples ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65e2f19775b43b925e88bd8c/TtH4Xn6llBnak0LTrRy9I.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65e2f19775b43b925e88bd8c/HeqB-GrJqwUxH9QFmYzXU.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65e2f19775b43b925e88bd8c/4XJACPrbvAKizkslNv53a.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65e2f19775b43b925e88bd8c/rFf1df6njf4oaf1iy9wVd.png)
Rich-J/subnet29_upload_c02_1
Rich-J
2024-08-29T04:57:22Z
34
0
transformers
[ "transformers", "safetensors", "phi3", "text-generation", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-08-29T04:54:33Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Kudod/roberta-large-ner-ghtk-cs-new-data-seg-3090-29Aug-2
Kudod
2024-08-29T04:54:24Z
5
0
null
[ "safetensors", "xlm-roberta", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "region:us" ]
null
2024-08-29T04:24:23Z
--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer model-index: - name: roberta-large-ner-ghtk-cs-new-data-seg-3090-29Aug-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-ner-ghtk-cs-new-data-seg-3090-29Aug-2 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3818 - cmt: {'precision': 0.7333333333333333, 'recall': 0.7857142857142857, 'f1': 0.7586206896551724, 'number': 14} - Tk: {'precision': 0.4835164835164835, 'recall': 0.3793103448275862, 'f1': 0.42512077294685996, 'number': 116} - A: {'precision': 0.9557109557109557, 'recall': 0.951276102088167, 'f1': 0.9534883720930232, 'number': 431} - Gày: {'precision': 0.7073170731707317, 'recall': 0.8529411764705882, 'f1': 0.7733333333333334, 'number': 34} - Gày trừu tượng: {'precision': 0.8875502008032129, 'recall': 0.9057377049180327, 'f1': 0.896551724137931, 'number': 488} - Gân hàng: {'precision': 0.85, 'recall': 0.918918918918919, 'f1': 0.8831168831168831, 'number': 37} - Hương thức thanh toán: {'precision': 1.0, 'recall': 0.8181818181818182, 'f1': 0.9, 'number': 33} - Hối lượng: {'precision': 0.75, 'recall': 0.46153846153846156, 'f1': 0.5714285714285714, 'number': 13} - Iền: {'precision': 0.7619047619047619, 'recall': 0.8205128205128205, 'f1': 0.7901234567901233, 'number': 39} - Iờ: {'precision': 0.7894736842105263, 'recall': 0.7894736842105263, 'f1': 0.7894736842105263, 'number': 38} - Mail: {'precision': 0.9575971731448764, 'recall': 0.9217687074829932, 'f1': 0.9393414211438476, 'number': 294} - Ã đơn: {'precision': 0.7782805429864253, 'recall': 0.8472906403940886, 'f1': 0.8113207547169811, 'number': 203} - Ên người: {'precision': 0.6551724137931034, 'recall': 0.6129032258064516, 'f1': 0.6333333333333333, 'number': 31} - Đt: {'precision': 0.8796680497925311, 'recall': 0.9658314350797267, 'f1': 0.9207383279044516, 'number': 878} - Đt trừu tượng: {'precision': 0.8521739130434782, 'recall': 0.8412017167381974, 'f1': 0.8466522678185744, 'number': 233} - Ơn vị đo: {'precision': 0.6666666666666666, 'recall': 0.7857142857142857, 'f1': 0.721311475409836, 'number': 28} - Ản phẩm cụ thể: {'precision': 0.8, 'recall': 0.6299212598425197, 'f1': 0.7048458149779735, 'number': 127} - Ản phẩm trừu tượng: {'precision': 0.7441860465116279, 'recall': 0.7272727272727273, 'f1': 0.735632183908046, 'number': 44} - Ịa chỉ cụ thể: {'precision': 0.4318181818181818, 'recall': 0.4418604651162791, 'f1': 0.4367816091954023, 'number': 43} - Ịa chỉ trừu tượng: {'precision': 0.7313432835820896, 'recall': 0.6447368421052632, 'f1': 0.6853146853146853, 'number': 76} - Overall Precision: 0.8551 - Overall Recall: 0.8666 - Overall F1: 0.8608 - Overall Accuracy: 0.9367 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | cmt | Tk | A | Gày | Gày trừu tượng | Gân hàng | Hương thức thanh toán | Hối lượng | Iền | Iờ | Mail | Ã đơn | Ên người | Đt | Đt trừu tượng | Ơn vị đo | Ản phẩm cụ thể | Ản phẩm trừu tượng | Ịa chỉ cụ thể | Ịa chỉ trừu tượng | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.1838 | 1.0 | 735 | 0.2965 | {'precision': 0.7692307692307693, 'recall': 0.7142857142857143, 'f1': 0.7407407407407408, 'number': 14} | {'precision': 0.6530612244897959, 'recall': 0.5517241379310345, 'f1': 0.5981308411214952, 'number': 116} | {'precision': 0.9414519906323185, 'recall': 0.9327146171693735, 'f1': 0.9370629370629371, 'number': 431} | {'precision': 0.7586206896551724, 'recall': 0.6470588235294118, 'f1': 0.6984126984126984, 'number': 34} | {'precision': 0.9230769230769231, 'recall': 0.8360655737704918, 'f1': 0.8774193548387098, 'number': 488} | {'precision': 0.8857142857142857, 'recall': 0.8378378378378378, 'f1': 0.8611111111111112, 'number': 37} | {'precision': 0.7878787878787878, 'recall': 0.7878787878787878, 'f1': 0.7878787878787878, 'number': 33} | {'precision': 0.4117647058823529, 'recall': 0.5384615384615384, 'f1': 0.4666666666666667, 'number': 13} | {'precision': 0.6491228070175439, 'recall': 0.9487179487179487, 'f1': 0.7708333333333334, 'number': 39} | {'precision': 0.5357142857142857, 'recall': 0.7894736842105263, 'f1': 0.6382978723404255, 'number': 38} | {'precision': 0.8724035608308606, 'recall': 1.0, 'f1': 0.9318541996830427, 'number': 294} | {'precision': 0.7751196172248804, 'recall': 0.7980295566502463, 'f1': 0.7864077669902914, 'number': 203} | {'precision': 0.35714285714285715, 'recall': 0.16129032258064516, 'f1': 0.2222222222222222, 'number': 31} | {'precision': 0.7718832891246684, 'recall': 0.9943052391799544, 'f1': 0.8690890990542558, 'number': 878} | {'precision': 0.8578947368421053, 'recall': 0.6995708154506438, 'f1': 0.7706855791962176, 'number': 233} | {'precision': 0.7058823529411765, 'recall': 0.8571428571428571, 'f1': 0.7741935483870968, 'number': 28} | {'precision': 0.7934782608695652, 'recall': 0.5748031496062992, 'f1': 0.6666666666666666, 'number': 127} | {'precision': 0.5172413793103449, 'recall': 0.3409090909090909, 'f1': 0.410958904109589, 'number': 44} | {'precision': 0.4, 'recall': 0.13953488372093023, 'f1': 0.2068965517241379, 'number': 43} | {'precision': 0.7678571428571429, 'recall': 0.5657894736842105, 'f1': 0.6515151515151516, 'number': 76} | 0.8132 | 0.8422 | 0.8274 | 0.9145 | | 0.1539 | 2.0 | 1470 | 0.2412 | {'precision': 0.5, 'recall': 0.2857142857142857, 'f1': 0.36363636363636365, 'number': 14} | {'precision': 0.6901408450704225, 'recall': 0.4224137931034483, 'f1': 0.5240641711229946, 'number': 116} | {'precision': 0.9265033407572383, 'recall': 0.9651972157772621, 'f1': 0.9454545454545454, 'number': 431} | {'precision': 0.6666666666666666, 'recall': 0.7058823529411765, 'f1': 0.6857142857142857, 'number': 34} | {'precision': 0.9212962962962963, 'recall': 0.8155737704918032, 'f1': 0.8652173913043477, 'number': 488} | {'precision': 0.7647058823529411, 'recall': 0.7027027027027027, 'f1': 0.7323943661971832, 'number': 37} | {'precision': 0.7575757575757576, 'recall': 0.7575757575757576, 'f1': 0.7575757575757576, 'number': 33} | {'precision': 0.625, 'recall': 0.38461538461538464, 'f1': 0.4761904761904762, 'number': 13} | {'precision': 0.8518518518518519, 'recall': 0.5897435897435898, 'f1': 0.6969696969696971, 'number': 39} | {'precision': 0.5789473684210527, 'recall': 0.868421052631579, 'f1': 0.6947368421052632, 'number': 38} | {'precision': 0.9831223628691983, 'recall': 0.7925170068027211, 'f1': 0.8775894538606404, 'number': 294} | {'precision': 0.6182432432432432, 'recall': 0.9014778325123153, 'f1': 0.7334669338677355, 'number': 203} | {'precision': 0.75, 'recall': 0.0967741935483871, 'f1': 0.1714285714285714, 'number': 31} | {'precision': 0.8275529865125241, 'recall': 0.9783599088838268, 'f1': 0.8966597077244258, 'number': 878} | {'precision': 0.8232758620689655, 'recall': 0.8197424892703863, 'f1': 0.8215053763440859, 'number': 233} | {'precision': 0.6666666666666666, 'recall': 0.21428571428571427, 'f1': 0.3243243243243243, 'number': 28} | {'precision': 0.9512195121951219, 'recall': 0.30708661417322836, 'f1': 0.4642857142857143, 'number': 127} | {'precision': 0.782608695652174, 'recall': 0.4090909090909091, 'f1': 0.537313432835821, 'number': 44} | {'precision': 0.4666666666666667, 'recall': 0.32558139534883723, 'f1': 0.3835616438356165, 'number': 43} | {'precision': 0.8823529411764706, 'recall': 0.5921052631578947, 'f1': 0.7086614173228346, 'number': 76} | 0.8325 | 0.8106 | 0.8214 | 0.9143 | | 0.1085 | 3.0 | 2205 | 0.2522 | {'precision': 0.6923076923076923, 'recall': 0.6428571428571429, 'f1': 0.6666666666666666, 'number': 14} | {'precision': 0.6567164179104478, 'recall': 0.3793103448275862, 'f1': 0.4808743169398907, 'number': 116} | {'precision': 0.9639423076923077, 'recall': 0.9303944315545244, 'f1': 0.9468713105076741, 'number': 431} | {'precision': 0.6122448979591837, 'recall': 0.8823529411764706, 'f1': 0.7228915662650602, 'number': 34} | {'precision': 0.8770161290322581, 'recall': 0.8913934426229508, 'f1': 0.8841463414634145, 'number': 488} | {'precision': 0.8285714285714286, 'recall': 0.7837837837837838, 'f1': 0.8055555555555555, 'number': 37} | {'precision': 0.7272727272727273, 'recall': 0.7272727272727273, 'f1': 0.7272727272727273, 'number': 33} | {'precision': 0.5333333333333333, 'recall': 0.6153846153846154, 'f1': 0.5714285714285715, 'number': 13} | {'precision': 0.7692307692307693, 'recall': 0.7692307692307693, 'f1': 0.7692307692307693, 'number': 39} | {'precision': 0.6875, 'recall': 0.5789473684210527, 'f1': 0.6285714285714286, 'number': 38} | {'precision': 0.8738738738738738, 'recall': 0.9897959183673469, 'f1': 0.9282296650717703, 'number': 294} | {'precision': 0.6838235294117647, 'recall': 0.916256157635468, 'f1': 0.7831578947368422, 'number': 203} | {'precision': 0.43243243243243246, 'recall': 0.5161290322580645, 'f1': 0.47058823529411764, 'number': 31} | {'precision': 0.8061224489795918, 'recall': 0.989749430523918, 'f1': 0.8885480572597136, 'number': 878} | {'precision': 0.9086538461538461, 'recall': 0.8111587982832618, 'f1': 0.8571428571428572, 'number': 233} | {'precision': 0.6333333333333333, 'recall': 0.6785714285714286, 'f1': 0.6551724137931035, 'number': 28} | {'precision': 0.8556701030927835, 'recall': 0.6535433070866141, 'f1': 0.7410714285714285, 'number': 127} | {'precision': 0.7105263157894737, 'recall': 0.6136363636363636, 'f1': 0.6585365853658537, 'number': 44} | {'precision': 0.3783783783783784, 'recall': 0.32558139534883723, 'f1': 0.35000000000000003, 'number': 43} | {'precision': 0.75, 'recall': 0.5921052631578947, 'f1': 0.6617647058823529, 'number': 76} | 0.8186 | 0.8659 | 0.8416 | 0.9268 | | 0.0976 | 4.0 | 2940 | 0.2768 | {'precision': 0.6666666666666666, 'recall': 0.5714285714285714, 'f1': 0.6153846153846153, 'number': 14} | {'precision': 0.6507936507936508, 'recall': 0.35344827586206895, 'f1': 0.45810055865921795, 'number': 116} | {'precision': 0.9618138424821002, 'recall': 0.9350348027842227, 'f1': 0.9482352941176471, 'number': 431} | {'precision': 0.7222222222222222, 'recall': 0.7647058823529411, 'f1': 0.7428571428571428, 'number': 34} | {'precision': 0.8966942148760331, 'recall': 0.889344262295082, 'f1': 0.8930041152263374, 'number': 488} | {'precision': 0.7777777777777778, 'recall': 0.7567567567567568, 'f1': 0.7671232876712328, 'number': 37} | {'precision': 0.8666666666666667, 'recall': 0.7878787878787878, 'f1': 0.8253968253968254, 'number': 33} | {'precision': 0.75, 'recall': 0.23076923076923078, 'f1': 0.3529411764705882, 'number': 13} | {'precision': 0.7857142857142857, 'recall': 0.8461538461538461, 'f1': 0.8148148148148148, 'number': 39} | {'precision': 0.7368421052631579, 'recall': 0.3684210526315789, 'f1': 0.49122807017543857, 'number': 38} | {'precision': 0.8706624605678234, 'recall': 0.9387755102040817, 'f1': 0.9034369885433716, 'number': 294} | {'precision': 0.756198347107438, 'recall': 0.9014778325123153, 'f1': 0.8224719101123596, 'number': 203} | {'precision': 0.7272727272727273, 'recall': 0.5161290322580645, 'f1': 0.6037735849056604, 'number': 31} | {'precision': 0.8695652173913043, 'recall': 0.979498861047836, 'f1': 0.9212640599892876, 'number': 878} | {'precision': 0.7570422535211268, 'recall': 0.9227467811158798, 'f1': 0.8317214700193424, 'number': 233} | {'precision': 0.6571428571428571, 'recall': 0.8214285714285714, 'f1': 0.73015873015873, 'number': 28} | {'precision': 0.8295454545454546, 'recall': 0.5748031496062992, 'f1': 0.6790697674418605, 'number': 127} | {'precision': 0.6744186046511628, 'recall': 0.6590909090909091, 'f1': 0.6666666666666666, 'number': 44} | {'precision': 0.38235294117647056, 'recall': 0.3023255813953488, 'f1': 0.33766233766233766, 'number': 43} | {'precision': 0.75, 'recall': 0.631578947368421, 'f1': 0.6857142857142857, 'number': 76} | 0.8434 | 0.86 | 0.8516 | 0.9276 | | 0.0689 | 5.0 | 3675 | 0.2804 | {'precision': 0.5789473684210527, 'recall': 0.7857142857142857, 'f1': 0.6666666666666667, 'number': 14} | {'precision': 0.5371900826446281, 'recall': 0.5603448275862069, 'f1': 0.5485232067510548, 'number': 116} | {'precision': 0.9534883720930233, 'recall': 0.951276102088167, 'f1': 0.9523809523809523, 'number': 431} | {'precision': 0.7, 'recall': 0.8235294117647058, 'f1': 0.7567567567567567, 'number': 34} | {'precision': 0.878727634194831, 'recall': 0.9057377049180327, 'f1': 0.8920282542885973, 'number': 488} | {'precision': 0.8, 'recall': 0.8648648648648649, 'f1': 0.8311688311688312, 'number': 37} | {'precision': 0.896551724137931, 'recall': 0.7878787878787878, 'f1': 0.8387096774193549, 'number': 33} | {'precision': 0.6153846153846154, 'recall': 0.6153846153846154, 'f1': 0.6153846153846154, 'number': 13} | {'precision': 0.7804878048780488, 'recall': 0.8205128205128205, 'f1': 0.8, 'number': 39} | {'precision': 0.6382978723404256, 'recall': 0.7894736842105263, 'f1': 0.7058823529411764, 'number': 38} | {'precision': 0.9628252788104089, 'recall': 0.8809523809523809, 'f1': 0.9200710479573712, 'number': 294} | {'precision': 0.821256038647343, 'recall': 0.8374384236453202, 'f1': 0.8292682926829268, 'number': 203} | {'precision': 0.64, 'recall': 0.5161290322580645, 'f1': 0.5714285714285714, 'number': 31} | {'precision': 0.8674089068825911, 'recall': 0.9760820045558086, 'f1': 0.9185423365487674, 'number': 878} | {'precision': 0.825531914893617, 'recall': 0.8326180257510729, 'f1': 0.8290598290598289, 'number': 233} | {'precision': 0.696969696969697, 'recall': 0.8214285714285714, 'f1': 0.7540983606557378, 'number': 28} | {'precision': 0.7419354838709677, 'recall': 0.5433070866141733, 'f1': 0.6272727272727272, 'number': 127} | {'precision': 0.875, 'recall': 0.6363636363636364, 'f1': 0.7368421052631579, 'number': 44} | {'precision': 0.42857142857142855, 'recall': 0.27906976744186046, 'f1': 0.3380281690140845, 'number': 43} | {'precision': 0.7741935483870968, 'recall': 0.631578947368421, 'f1': 0.6956521739130435, 'number': 76} | 0.8479 | 0.8625 | 0.8552 | 0.9317 | | 0.0565 | 6.0 | 4410 | 0.2920 | {'precision': 0.7333333333333333, 'recall': 0.7857142857142857, 'f1': 0.7586206896551724, 'number': 14} | {'precision': 0.6, 'recall': 0.5948275862068966, 'f1': 0.5974025974025975, 'number': 116} | {'precision': 0.9686746987951808, 'recall': 0.9327146171693735, 'f1': 0.950354609929078, 'number': 431} | {'precision': 0.6511627906976745, 'recall': 0.8235294117647058, 'f1': 0.7272727272727273, 'number': 34} | {'precision': 0.8782435129740519, 'recall': 0.9016393442622951, 'f1': 0.8897876643073812, 'number': 488} | {'precision': 0.7857142857142857, 'recall': 0.8918918918918919, 'f1': 0.8354430379746834, 'number': 37} | {'precision': 0.8333333333333334, 'recall': 0.7575757575757576, 'f1': 0.7936507936507938, 'number': 33} | {'precision': 0.75, 'recall': 0.46153846153846156, 'f1': 0.5714285714285714, 'number': 13} | {'precision': 0.7659574468085106, 'recall': 0.9230769230769231, 'f1': 0.8372093023255814, 'number': 39} | {'precision': 0.6808510638297872, 'recall': 0.8421052631578947, 'f1': 0.7529411764705882, 'number': 38} | {'precision': 0.8881987577639752, 'recall': 0.9727891156462585, 'f1': 0.9285714285714285, 'number': 294} | {'precision': 0.7427385892116183, 'recall': 0.8817733990147784, 'f1': 0.8063063063063063, 'number': 203} | {'precision': 0.6, 'recall': 0.6774193548387096, 'f1': 0.6363636363636364, 'number': 31} | {'precision': 0.8424657534246576, 'recall': 0.9806378132118451, 'f1': 0.9063157894736841, 'number': 878} | {'precision': 0.8170731707317073, 'recall': 0.8626609442060086, 'f1': 0.8392484342379958, 'number': 233} | {'precision': 0.7619047619047619, 'recall': 0.5714285714285714, 'f1': 0.6530612244897959, 'number': 28} | {'precision': 0.7982456140350878, 'recall': 0.7165354330708661, 'f1': 0.7551867219917011, 'number': 127} | {'precision': 0.8108108108108109, 'recall': 0.6818181818181818, 'f1': 0.7407407407407407, 'number': 44} | {'precision': 0.3829787234042553, 'recall': 0.4186046511627907, 'f1': 0.4, 'number': 43} | {'precision': 0.7142857142857143, 'recall': 0.6578947368421053, 'f1': 0.684931506849315, 'number': 76} | 0.8294 | 0.8859 | 0.8568 | 0.9376 | | 0.0314 | 7.0 | 5145 | 0.3316 | {'precision': 0.6, 'recall': 0.8571428571428571, 'f1': 0.7058823529411764, 'number': 14} | {'precision': 0.5359477124183006, 'recall': 0.7068965517241379, 'f1': 0.6096654275092938, 'number': 116} | {'precision': 0.975, 'recall': 0.9048723897911833, 'f1': 0.9386281588447654, 'number': 431} | {'precision': 0.7, 'recall': 0.8235294117647058, 'f1': 0.7567567567567567, 'number': 34} | {'precision': 0.8949579831932774, 'recall': 0.8729508196721312, 'f1': 0.8838174273858921, 'number': 488} | {'precision': 0.8292682926829268, 'recall': 0.918918918918919, 'f1': 0.8717948717948718, 'number': 37} | {'precision': 0.9, 'recall': 0.8181818181818182, 'f1': 0.8571428571428572, 'number': 33} | {'precision': 0.7, 'recall': 0.5384615384615384, 'f1': 0.608695652173913, 'number': 13} | {'precision': 0.7727272727272727, 'recall': 0.8717948717948718, 'f1': 0.8192771084337349, 'number': 39} | {'precision': 0.8709677419354839, 'recall': 0.7105263157894737, 'f1': 0.782608695652174, 'number': 38} | {'precision': 0.9543859649122807, 'recall': 0.9251700680272109, 'f1': 0.9395509499136442, 'number': 294} | {'precision': 0.76, 'recall': 0.8423645320197044, 'f1': 0.7990654205607477, 'number': 203} | {'precision': 0.696969696969697, 'recall': 0.7419354838709677, 'f1': 0.71875, 'number': 31} | {'precision': 0.8981779206859593, 'recall': 0.9544419134396356, 'f1': 0.9254555494202098, 'number': 878} | {'precision': 0.8396624472573839, 'recall': 0.8540772532188842, 'f1': 0.846808510638298, 'number': 233} | {'precision': 0.6153846153846154, 'recall': 0.8571428571428571, 'f1': 0.7164179104477612, 'number': 28} | {'precision': 0.8217821782178217, 'recall': 0.6535433070866141, 'f1': 0.7280701754385963, 'number': 127} | {'precision': 0.6956521739130435, 'recall': 0.7272727272727273, 'f1': 0.711111111111111, 'number': 44} | {'precision': 0.4186046511627907, 'recall': 0.4186046511627907, 'f1': 0.4186046511627907, 'number': 43} | {'precision': 0.7012987012987013, 'recall': 0.7105263157894737, 'f1': 0.7058823529411765, 'number': 76} | 0.8520 | 0.8691 | 0.8605 | 0.9329 | | 0.024 | 8.0 | 5880 | 0.3492 | {'precision': 0.625, 'recall': 0.7142857142857143, 'f1': 0.6666666666666666, 'number': 14} | {'precision': 0.5432098765432098, 'recall': 0.3793103448275862, 'f1': 0.4467005076142132, 'number': 116} | {'precision': 0.963855421686747, 'recall': 0.9280742459396751, 'f1': 0.9456264775413711, 'number': 431} | {'precision': 0.7073170731707317, 'recall': 0.8529411764705882, 'f1': 0.7733333333333334, 'number': 34} | {'precision': 0.8821138211382114, 'recall': 0.889344262295082, 'f1': 0.8857142857142857, 'number': 488} | {'precision': 0.868421052631579, 'recall': 0.8918918918918919, 'f1': 0.88, 'number': 37} | {'precision': 1.0, 'recall': 0.8484848484848485, 'f1': 0.9180327868852458, 'number': 33} | {'precision': 0.75, 'recall': 0.46153846153846156, 'f1': 0.5714285714285714, 'number': 13} | {'precision': 0.75, 'recall': 0.8461538461538461, 'f1': 0.7951807228915662, 'number': 39} | {'precision': 0.6904761904761905, 'recall': 0.7631578947368421, 'f1': 0.725, 'number': 38} | {'precision': 0.9644128113879004, 'recall': 0.9217687074829932, 'f1': 0.942608695652174, 'number': 294} | {'precision': 0.8084112149532711, 'recall': 0.8522167487684729, 'f1': 0.829736211031175, 'number': 203} | {'precision': 0.4857142857142857, 'recall': 0.5483870967741935, 'f1': 0.5151515151515151, 'number': 31} | {'precision': 0.8555667001003009, 'recall': 0.9715261958997722, 'f1': 0.9098666666666666, 'number': 878} | {'precision': 0.8565217391304348, 'recall': 0.8454935622317596, 'f1': 0.8509719222462203, 'number': 233} | {'precision': 0.7096774193548387, 'recall': 0.7857142857142857, 'f1': 0.7457627118644068, 'number': 28} | {'precision': 0.8043478260869565, 'recall': 0.5826771653543307, 'f1': 0.6757990867579909, 'number': 127} | {'precision': 0.6842105263157895, 'recall': 0.5909090909090909, 'f1': 0.6341463414634148, 'number': 44} | {'precision': 0.41304347826086957, 'recall': 0.4418604651162791, 'f1': 0.4269662921348315, 'number': 43} | {'precision': 0.7313432835820896, 'recall': 0.6447368421052632, 'f1': 0.6853146853146853, 'number': 76} | 0.8489 | 0.8584 | 0.8536 | 0.9374 | | 0.0129 | 9.0 | 6615 | 0.3658 | {'precision': 0.7333333333333333, 'recall': 0.7857142857142857, 'f1': 0.7586206896551724, 'number': 14} | {'precision': 0.5104166666666666, 'recall': 0.4224137931034483, 'f1': 0.46226415094339623, 'number': 116} | {'precision': 0.9496567505720824, 'recall': 0.962877030162413, 'f1': 0.956221198156682, 'number': 431} | {'precision': 0.7105263157894737, 'recall': 0.7941176470588235, 'f1': 0.7499999999999999, 'number': 34} | {'precision': 0.8950617283950617, 'recall': 0.8913934426229508, 'f1': 0.8932238193018481, 'number': 488} | {'precision': 0.85, 'recall': 0.918918918918919, 'f1': 0.8831168831168831, 'number': 37} | {'precision': 1.0, 'recall': 0.8181818181818182, 'f1': 0.9, 'number': 33} | {'precision': 0.75, 'recall': 0.46153846153846156, 'f1': 0.5714285714285714, 'number': 13} | {'precision': 0.7619047619047619, 'recall': 0.8205128205128205, 'f1': 0.7901234567901233, 'number': 39} | {'precision': 0.8108108108108109, 'recall': 0.7894736842105263, 'f1': 0.8, 'number': 38} | {'precision': 0.9644128113879004, 'recall': 0.9217687074829932, 'f1': 0.942608695652174, 'number': 294} | {'precision': 0.7952380952380952, 'recall': 0.8226600985221675, 'f1': 0.8087167070217917, 'number': 203} | {'precision': 0.6428571428571429, 'recall': 0.5806451612903226, 'f1': 0.6101694915254238, 'number': 31} | {'precision': 0.9078242229367631, 'recall': 0.9646924829157175, 'f1': 0.9353948094975152, 'number': 878} | {'precision': 0.8596491228070176, 'recall': 0.8412017167381974, 'f1': 0.8503253796095444, 'number': 233} | {'precision': 0.72, 'recall': 0.6428571428571429, 'f1': 0.6792452830188679, 'number': 28} | {'precision': 0.7872340425531915, 'recall': 0.5826771653543307, 'f1': 0.669683257918552, 'number': 127} | {'precision': 0.7619047619047619, 'recall': 0.7272727272727273, 'f1': 0.7441860465116279, 'number': 44} | {'precision': 0.4222222222222222, 'recall': 0.4418604651162791, 'f1': 0.4318181818181818, 'number': 43} | {'precision': 0.7903225806451613, 'recall': 0.6447368421052632, 'f1': 0.7101449275362319, 'number': 76} | 0.8686 | 0.8616 | 0.8651 | 0.9373 | | 0.0095 | 10.0 | 7350 | 0.3818 | {'precision': 0.7333333333333333, 'recall': 0.7857142857142857, 'f1': 0.7586206896551724, 'number': 14} | {'precision': 0.4835164835164835, 'recall': 0.3793103448275862, 'f1': 0.42512077294685996, 'number': 116} | {'precision': 0.9557109557109557, 'recall': 0.951276102088167, 'f1': 0.9534883720930232, 'number': 431} | {'precision': 0.7073170731707317, 'recall': 0.8529411764705882, 'f1': 0.7733333333333334, 'number': 34} | {'precision': 0.8875502008032129, 'recall': 0.9057377049180327, 'f1': 0.896551724137931, 'number': 488} | {'precision': 0.85, 'recall': 0.918918918918919, 'f1': 0.8831168831168831, 'number': 37} | {'precision': 1.0, 'recall': 0.8181818181818182, 'f1': 0.9, 'number': 33} | {'precision': 0.75, 'recall': 0.46153846153846156, 'f1': 0.5714285714285714, 'number': 13} | {'precision': 0.7619047619047619, 'recall': 0.8205128205128205, 'f1': 0.7901234567901233, 'number': 39} | {'precision': 0.7894736842105263, 'recall': 0.7894736842105263, 'f1': 0.7894736842105263, 'number': 38} | {'precision': 0.9575971731448764, 'recall': 0.9217687074829932, 'f1': 0.9393414211438476, 'number': 294} | {'precision': 0.7782805429864253, 'recall': 0.8472906403940886, 'f1': 0.8113207547169811, 'number': 203} | {'precision': 0.6551724137931034, 'recall': 0.6129032258064516, 'f1': 0.6333333333333333, 'number': 31} | {'precision': 0.8796680497925311, 'recall': 0.9658314350797267, 'f1': 0.9207383279044516, 'number': 878} | {'precision': 0.8521739130434782, 'recall': 0.8412017167381974, 'f1': 0.8466522678185744, 'number': 233} | {'precision': 0.6666666666666666, 'recall': 0.7857142857142857, 'f1': 0.721311475409836, 'number': 28} | {'precision': 0.8, 'recall': 0.6299212598425197, 'f1': 0.7048458149779735, 'number': 127} | {'precision': 0.7441860465116279, 'recall': 0.7272727272727273, 'f1': 0.735632183908046, 'number': 44} | {'precision': 0.4318181818181818, 'recall': 0.4418604651162791, 'f1': 0.4367816091954023, 'number': 43} | {'precision': 0.7313432835820896, 'recall': 0.6447368421052632, 'f1': 0.6853146853146853, 'number': 76} | 0.8551 | 0.8666 | 0.8608 | 0.9367 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.3.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
second-state/OpenChat-3.5-0106-GGUF
second-state
2024-08-29T04:51:02Z
223
2
transformers
[ "transformers", "gguf", "mistral", "text-generation", "openchat", "base_model:openchat/openchat-3.5-0106", "base_model:quantized:openchat/openchat-3.5-0106", "license:apache-2.0", "autotrain_compatible", "region:us", "conversational" ]
text-generation
2024-01-10T08:40:25Z
--- base_model: openchat/openchat-3.5-0106 inference: false library_name: transformers license: apache-2.0 model_creator: OpenChat model_name: Openchat 3.5 0106 model_type: mistral pipeline_tag: text-generation quantized_by: Second State Inc. tags: - openchat --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://github.com/LlamaEdge/LlamaEdge/raw/dev/assets/logo.svg" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # OpenChat-3.5-0106-GGUF ## Original Model [openchat/openchat-3.5-0106](https://huggingface.co/openchat/openchat-3.5-0106) ## Run with LlamaEdge - LlamaEdge version: [v0.2.8](https://github.com/LlamaEdge/LlamaEdge/releases/tag/0.2.8) and above - Prompt template - Prompt type: `openchat` - Prompt string ```text GPT4 User: {prompt}<|end_of_turn|>GPT4 Assistant: ``` - Reverse prompt: `<|end_of_turn|>` - Context size: `4096` - Run as LlamaEdge service ```bash wasmedge --dir .:. --nn-preload default:GGML:AUTO:openchat-3.5-0106-Q5_K_M.gguf \ llama-api-server.wasm \ --model-name openchat \ --prompt-template openchat \ --reverse-prompt '<|end_of_turn|>' \ --ctx-size 4096 ``` - Run as LlamaEdge command app ```bash wasmedge --dir .:. --nn-preload default:GGML:AUTO:openchat-3.5-0106-Q5_K_M.gguf \ llama-chat.wasm \ --prompt-template openchat \ --reverse-prompt '<|end_of_turn|>' \ --ctx-size 4096 ``` ## Quantized GGUF Models | Name | Quant method | Bits | Size | Use case | | ---- | ---- | ---- | ---- | ----- | | [openchat-3.5-0106.Q2_K.gguf](https://huggingface.co/second-state/OpenChat-3.5-0106-GGUF/blob/main/openchat-3.5-0106-Q2_K.gguf) | Q2_K | 2 | 3.08 GB| smallest, significant quality loss - not recommended for most purposes | | [openchat-3.5-0106.Q3_K_L.gguf](https://huggingface.co/second-state/OpenChat-3.5-0106-GGUF/blob/main/openchat-3.5-0106-Q3_K_L.gguf) | Q3_K_L | 3 | 3.82 GB| small, substantial quality loss | | [openchat-3.5-0106.Q3_K_M.gguf](https://huggingface.co/second-state/OpenChat-3.5-0106-GGUF/blob/main/openchat-3.5-0106-Q3_K_M.gguf) | Q3_K_M | 3 | 3.52 GB| very small, high quality loss | | [openchat-3.5-0106.Q3_K_S.gguf](https://huggingface.co/second-state/OpenChat-3.5-0106-GGUF/blob/main/openchat-3.5-0106-Q3_K_S.gguf) | Q3_K_S | 3 | 3.16 GB| very small, high quality loss | | [openchat-3.5-0106.Q4_0.gguf](https://huggingface.co/second-state/OpenChat-3.5-0106-GGUF/blob/main/openchat-3.5-0106-Q4_0.gguf) | Q4_0 | 4 | 4.11 GB| legacy; small, very high quality loss - prefer using Q3_K_M | | [openchat-3.5-0106.Q4_K_M.gguf](https://huggingface.co/second-state/OpenChat-3.5-0106-GGUF/blob/main/openchat-3.5-0106-Q4_K_M.gguf) | Q4_K_M | 4 | 4.37 GB| medium, balanced quality - recommended | | [openchat-3.5-0106.Q4_K_S.gguf](https://huggingface.co/second-state/OpenChat-3.5-0106-GGUF/blob/main/openchat-3.5-0106-Q4_K_S.gguf) | Q4_K_S | 4 | 4.14 GB| small, greater quality loss | | [openchat-3.5-0106.Q5_0.gguf](https://huggingface.co/second-state/OpenChat-3.5-0106-GGUF/blob/main/openchat-3.5-0106-Q5_0.gguf) | Q5_0 | 5 | 5.00 GB| legacy; medium, balanced quality - prefer using Q4_K_M | | [openchat-3.5-0106.Q5_K_M.gguf](https://huggingface.co/second-state/OpenChat-3.5-0106-GGUF/blob/main/openchat-3.5-0106-Q5_K_M.gguf) | Q5_K_M | 5 | 5.13 GB| large, very low quality loss - recommended | | [openchat-3.5-0106.Q5_K_S.gguf](https://huggingface.co/second-state/OpenChat-3.5-0106-GGUF/blob/main/openchat-3.5-0106-Q5_K_S.gguf) | Q5_K_S | 5 | 5.00 GB| large, low quality loss - recommended | | [openchat-3.5-0106.Q6_K.gguf](https://huggingface.co/second-state/OpenChat-3.5-0106-GGUF/blob/main/openchat-3.5-0106-Q6_K.gguf) | Q6_K | 6 | 5.94 GB| very large, extremely low quality loss | | [openchat-3.5-0106.Q8_0.gguf](https://huggingface.co/second-state/OpenChat-3.5-0106-GGUF/blob/main/openchat-3.5-0106-Q8_0.gguf) | Q8_0 | 8 | 7.70 GB| very large, extremely low quality loss - not recommended |
Colma/Llama-3.1-8B-bnb-4bit-wenyanwen
Colma
2024-08-29T04:40:05Z
8
0
transformers
[ "transformers", "safetensors", "gguf", "llama", "unsloth", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us", "conversational" ]
null
2024-08-28T15:56:46Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ychoikr/test_trainer
ychoikr
2024-08-29T04:32:35Z
5
0
null
[ "safetensors", "bert", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "region:us" ]
null
2024-08-29T04:31:47Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: test_trainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_trainer This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6643 - Accuracy: 0.635 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 25 | 0.7370 | 0.48 | | No log | 2.0 | 50 | 0.6643 | 0.635 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.3.1+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1
PotatoB/Model_Kinship_4-3
PotatoB
2024-08-29T04:32:17Z
5
0
null
[ "safetensors", "mistral", "merge", "mergekit", "lazymergekit", "PotatoB/evo_exp-point-3-2", "PotatoB/evo_exp-point-3-4", "license:apache-2.0", "region:us" ]
null
2024-08-29T04:29:08Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - PotatoB/evo_exp-point-3-2 - PotatoB/evo_exp-point-3-4 --- # evo_exp-point-4-7 evo_exp-point-4-7 is a merge of the following models using [mergekit](https://github.com/cg123/mergekit): * [PotatoB/evo_exp-point-3-2](https://huggingface.co/PotatoB/evo_exp-point-3-2) * [PotatoB/evo_exp-point-3-4](https://huggingface.co/PotatoB/evo_exp-point-3-4) ## 🧩 Configuration ```yaml slices: - sources: - model: PotatoB/evo_exp-point-3-2 layer_range: [0, 32] - model: PotatoB/evo_exp-point-3-4 layer_range: [0, 32] merge_method: slerp base_model: PotatoB/evo_exp-point-3-2 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ```
Bagus/speecht5_finetuned_commonvoice_id
Bagus
2024-08-29T04:29:18Z
91
2
transformers
[ "transformers", "tensorboard", "safetensors", "speecht5", "text-to-audio", "text-to-speech", "id", "dataset:mozilla-foundation/common_voice_16_1", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-speech
2024-03-28T09:12:02Z
--- language: - id license: mit base_model: microsoft/speecht5_tts tags: - text-to-speech datasets: - mozilla-foundation/common_voice_16_1 model-index: - name: speecht5_finetuned_commonvoice_id results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_commonvoice_id This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the mozilla-foundation/common_voice_16_1 dataset. It achieves the following results on the evaluation set: - Loss: 0.4675 ## How to use/inference Follow the example below and adapt with your own need. ``` # ft_t5_id_inference.py import sounddevice as sd import torch import torchaudio from datasets import Audio, load_dataset from transformers import ( SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, ) from utils import create_speaker_embedding # load dataset and pre-trained model dataset = load_dataset( "mozilla-foundation/common_voice_16_1", "id", split="test") model = SpeechT5ForTextToSpeech.from_pretrained( "Bagus/speecht5_finetuned_commonvoice_id") # process the text using checkpoint checkpoint = "microsoft/speecht5_tts" processor = SpeechT5Processor.from_pretrained(checkpoint) sampling_rate = processor.feature_extractor.sampling_rate dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate)) def prepare_dataset(example): audio = example["audio"] example = processor( text=example["sentence"], audio_target=audio["array"], sampling_rate=audio["sampling_rate"], return_attention_mask=False, ) # strip off the batch dimension example["labels"] = example["labels"][0] # use SpeechBrain to obtain x-vector example["speaker_embeddings"] = create_speaker_embedding(audio["array"]) return example # prepare the speaker embeddings from the dataset and text example = prepare_dataset(dataset[30]) speaker_embeddings = torch.tensor(example["speaker_embeddings"]).unsqueeze(0) # prepare text to be converted to speech text = "Saya suka baju yang berwarna merah tua." inputs = processor(text=text, return_tensors="pt") vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") speech = model.generate_speech( inputs["input_ids"], speaker_embeddings, vocoder=vocoder) sampling_rate = 16000 sd.play(speech, samplerate=sampling_rate, blocking=True) # save the audio, signal needs to be in 2D tensor torchaudio.save("output_t5_ft_cv16_id.wav", speech.unsqueeze(0), 16000) ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5394 | 4.28 | 1000 | 0.4908 | | 0.5062 | 8.56 | 2000 | 0.4730 | | 0.5074 | 12.83 | 3000 | 0.4700 | | 0.5023 | 17.11 | 4000 | 0.4675 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
csikasote/mms-zeroshot-300m-bem
csikasote
2024-08-29T04:23:00Z
96
0
transformers
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "BembaSpeech", "mms", "generated_from_trainer", "base_model:mms-meta/mms-zeroshot-300m", "base_model:finetune:mms-meta/mms-zeroshot-300m", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-08-25T07:40:13Z
--- library_name: transformers license: cc-by-nc-4.0 base_model: mms-meta/mms-zeroshot-300m tags: - automatic-speech-recognition - BembaSpeech - mms - generated_from_trainer metrics: - wer model-index: - name: mms-zeroshot-300m-bem results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mms-zeroshot-300m-bem This model is a fine-tuned version of [mms-meta/mms-zeroshot-300m](https://huggingface.co/mms-meta/mms-zeroshot-300m) on the BEMBASPEECH - BEM dataset. It achieves the following results on the evaluation set: - Loss: 0.1787 - Wer: 0.3583 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 4.6629 | 0.1778 | 500 | 0.3540 | 0.5421 | | 0.6579 | 0.3556 | 1000 | 0.2588 | 0.4883 | | 0.591 | 0.5334 | 1500 | 0.2552 | 0.4720 | | 0.5467 | 0.7112 | 2000 | 0.2370 | 0.4542 | | 0.5405 | 0.8890 | 2500 | 0.2376 | 0.4556 | | 0.5027 | 1.0669 | 3000 | 0.2234 | 0.4307 | | 0.5001 | 1.2447 | 3500 | 0.2176 | 0.4213 | | 0.4962 | 1.4225 | 4000 | 0.2199 | 0.4205 | | 0.486 | 1.6003 | 4500 | 0.2145 | 0.4167 | | 0.47 | 1.7781 | 5000 | 0.2159 | 0.4169 | | 0.4557 | 1.9559 | 5500 | 0.2099 | 0.4135 | | 0.4514 | 2.1337 | 6000 | 0.2091 | 0.4100 | | 0.4539 | 2.3115 | 6500 | 0.2038 | 0.4016 | | 0.439 | 2.4893 | 7000 | 0.2041 | 0.4025 | | 0.4378 | 2.6671 | 7500 | 0.2002 | 0.3916 | | 0.4347 | 2.8450 | 8000 | 0.1961 | 0.3911 | | 0.4278 | 3.0228 | 8500 | 0.1995 | 0.3923 | | 0.4117 | 3.2006 | 9000 | 0.1959 | 0.3892 | | 0.4149 | 3.3784 | 9500 | 0.1926 | 0.3859 | | 0.4148 | 3.5562 | 10000 | 0.1958 | 0.3804 | | 0.4009 | 3.7340 | 10500 | 0.1930 | 0.3790 | | 0.4174 | 3.9118 | 11000 | 0.1955 | 0.3823 | | 0.4012 | 4.0896 | 11500 | 0.1950 | 0.3812 | | 0.3974 | 4.2674 | 12000 | 0.1934 | 0.3773 | | 0.3943 | 4.4452 | 12500 | 0.1845 | 0.3720 | | 0.4071 | 4.6230 | 13000 | 0.1920 | 0.3839 | | 0.3968 | 4.8009 | 13500 | 0.1867 | 0.3743 | | 0.3795 | 4.9787 | 14000 | 0.1872 | 0.3713 | | 0.3856 | 5.1565 | 14500 | 0.1869 | 0.3737 | | 0.3706 | 5.3343 | 15000 | 0.1903 | 0.3766 | | 0.3784 | 5.5121 | 15500 | 0.1861 | 0.3683 | | 0.3777 | 5.6899 | 16000 | 0.1866 | 0.3713 | | 0.3861 | 5.8677 | 16500 | 0.1812 | 0.3637 | | 0.3711 | 6.0455 | 17000 | 0.1842 | 0.3667 | | 0.374 | 6.2233 | 17500 | 0.1815 | 0.3618 | | 0.3539 | 6.4011 | 18000 | 0.1815 | 0.3647 | | 0.3625 | 6.5789 | 18500 | 0.1785 | 0.3589 | | 0.3599 | 6.7568 | 19000 | 0.1795 | 0.3621 | | 0.3654 | 6.9346 | 19500 | 0.1822 | 0.3624 | | 0.3693 | 7.1124 | 20000 | 0.1792 | 0.3612 | | 0.3519 | 7.2902 | 20500 | 0.1800 | 0.3675 | | 0.3553 | 7.4680 | 21000 | 0.1808 | 0.3640 | | 0.3451 | 7.6458 | 21500 | 0.1808 | 0.3620 | | 0.3558 | 7.8236 | 22000 | 0.1794 | 0.3610 | | 0.3595 | 8.0014 | 22500 | 0.1772 | 0.3576 | | 0.3404 | 8.1792 | 23000 | 0.1788 | 0.3581 | | 0.3593 | 8.3570 | 23500 | 0.1782 | 0.3580 | | 0.3471 | 8.5349 | 24000 | 0.1797 | 0.3606 | | 0.3497 | 8.7127 | 24500 | 0.1778 | 0.3588 | | 0.3398 | 8.8905 | 25000 | 0.1775 | 0.3583 | | 0.3444 | 9.0683 | 25500 | 0.1796 | 0.3586 | | 0.3366 | 9.2461 | 26000 | 0.1785 | 0.3574 | | 0.3434 | 9.4239 | 26500 | 0.1781 | 0.3592 | | 0.3426 | 9.6017 | 27000 | 0.1786 | 0.3593 | | 0.3496 | 9.7795 | 27500 | 0.1787 | 0.3590 | | 0.334 | 9.9573 | 28000 | 0.1788 | 0.3588 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1
luaqi/sn29_merged_v8
luaqi
2024-08-29T04:11:36Z
50
0
transformers
[ "transformers", "safetensors", "phi3", "text-generation", "conversational", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-08-29T04:08:40Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
PotatoB/Model_Kinship_4-2
PotatoB
2024-08-29T04:08:54Z
6
0
null
[ "safetensors", "mistral", "merge", "mergekit", "lazymergekit", "PotatoB/evo_exp-point-2-1", "PotatoB/evo_exp-point-3-4", "license:apache-2.0", "region:us" ]
null
2024-08-29T04:06:06Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - PotatoB/evo_exp-point-2-1 - PotatoB/evo_exp-point-3-4 --- # evo_exp-point-4-6 evo_exp-point-4-6 is a merge of the following models using [mergekit](https://github.com/cg123/mergekit): * [PotatoB/evo_exp-point-2-1](https://huggingface.co/PotatoB/evo_exp-point-2-1) * [PotatoB/evo_exp-point-3-4](https://huggingface.co/PotatoB/evo_exp-point-3-4) ## 🧩 Configuration ```yaml slices: - sources: - model: PotatoB/evo_exp-point-2-1 layer_range: [0, 32] - model: PotatoB/evo_exp-point-3-4 layer_range: [0, 32] merge_method: slerp base_model: PotatoB/evo_exp-point-2-1 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ```
yixuan-chia/snowflake-arctic-embed-m-long-Q8_0-GGUF
yixuan-chia
2024-08-29T03:57:29Z
8
0
sentence-transformers
[ "sentence-transformers", "gguf", "feature-extraction", "sentence-similarity", "mteb", "arctic", "snowflake-arctic-embed", "transformers.js", "llama-cpp", "gguf-my-repo", "base_model:Snowflake/snowflake-arctic-embed-m-long", "base_model:quantized:Snowflake/snowflake-arctic-embed-m-long", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-08-29T03:57:26Z
--- base_model: Snowflake/snowflake-arctic-embed-m-long license: apache-2.0 pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - mteb - arctic - snowflake-arctic-embed - transformers.js - llama-cpp - gguf-my-repo model-index: - name: snowflake-arctic-m-long results: - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (en) type: mteb/amazon_counterfactual config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 78.4776119402985 - type: ap value: 42.34374238166049 - type: f1 value: 72.51164234732224 - task: type: Classification dataset: name: MTEB AmazonPolarityClassification type: mteb/amazon_polarity config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 78.7416 - type: ap value: 73.12074819362377 - type: f1 value: 78.64057339708795 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (en) type: mteb/amazon_reviews_multi config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 39.926 - type: f1 value: 39.35531993117573 - task: type: Retrieval dataset: name: MTEB ArguAna type: mteb/arguana config: default split: test revision: c22ab2a51041ffd869aaddef7af8d8215647e41a metrics: - type: map_at_1 value: 34.851 - type: map_at_10 value: 51.473 - type: map_at_100 value: 52.103 - type: map_at_1000 value: 52.105000000000004 - type: map_at_3 value: 46.776 - type: map_at_5 value: 49.617 - type: mrr_at_1 value: 35.491 - type: mrr_at_10 value: 51.73799999999999 - type: mrr_at_100 value: 52.37500000000001 - type: mrr_at_1000 value: 52.378 - type: mrr_at_3 value: 46.965 - type: mrr_at_5 value: 49.878 - type: ndcg_at_1 value: 34.851 - type: ndcg_at_10 value: 60.364 - type: ndcg_at_100 value: 62.888999999999996 - type: ndcg_at_1000 value: 62.946000000000005 - type: ndcg_at_3 value: 50.807 - type: ndcg_at_5 value: 55.901 - type: precision_at_1 value: 34.851 - type: precision_at_10 value: 8.855 - type: precision_at_100 value: 0.992 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 20.839 - type: precision_at_5 value: 14.963999999999999 - type: recall_at_1 value: 34.851 - type: recall_at_10 value: 88.549 - type: recall_at_100 value: 99.21799999999999 - type: recall_at_1000 value: 99.644 - type: recall_at_3 value: 62.517999999999994 - type: recall_at_5 value: 74.822 - task: type: Clustering dataset: name: MTEB ArxivClusteringP2P type: mteb/arxiv-clustering-p2p config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 45.5554998405317 - task: type: Clustering dataset: name: MTEB ArxivClusteringS2S type: mteb/arxiv-clustering-s2s config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 35.614248811397005 - task: type: Reranking dataset: name: MTEB AskUbuntuDupQuestions type: mteb/askubuntudupquestions-reranking config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 61.355489424753884 - type: mrr value: 75.49443784900849 - task: type: STS dataset: name: MTEB BIOSSES type: mteb/biosses-sts config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 89.17311056578292 - type: cos_sim_spearman value: 88.24237210809322 - type: euclidean_pearson value: 87.3188065853646 - type: euclidean_spearman value: 88.24237210809322 - type: manhattan_pearson value: 86.89499710049658 - type: manhattan_spearman value: 87.85441146091777 - task: type: Classification dataset: name: MTEB Banking77Classification type: mteb/banking77 config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 80.26298701298703 - type: f1 value: 79.68356764080303 - task: type: Clustering dataset: name: MTEB BigPatentClustering type: jinaai/big-patent-clustering config: default split: test revision: 62d5330920bca426ce9d3c76ea914f15fc83e891 metrics: - type: v_measure value: 20.923883720813706 - task: type: Clustering dataset: name: MTEB BiorxivClusteringP2P type: mteb/biorxiv-clustering-p2p config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 36.16058801465044 - task: type: Clustering dataset: name: MTEB BiorxivClusteringS2S type: mteb/biorxiv-clustering-s2s config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 30.1402356118627 - task: type: Retrieval dataset: name: MTEB CQADupstackAndroidRetrieval type: mteb/cqadupstack-android config: default split: test revision: f46a197baaae43b4f621051089b82a364682dfeb metrics: - type: map_at_1 value: 35.612 - type: map_at_10 value: 47.117 - type: map_at_100 value: 48.711 - type: map_at_1000 value: 48.826 - type: map_at_3 value: 43.858999999999995 - type: map_at_5 value: 45.612 - type: mrr_at_1 value: 42.918 - type: mrr_at_10 value: 52.806 - type: mrr_at_100 value: 53.564 - type: mrr_at_1000 value: 53.596999999999994 - type: mrr_at_3 value: 50.453 - type: mrr_at_5 value: 51.841 - type: ndcg_at_1 value: 42.918 - type: ndcg_at_10 value: 53.291999999999994 - type: ndcg_at_100 value: 58.711999999999996 - type: ndcg_at_1000 value: 60.317 - type: ndcg_at_3 value: 48.855 - type: ndcg_at_5 value: 50.778 - type: precision_at_1 value: 42.918 - type: precision_at_10 value: 9.927999999999999 - type: precision_at_100 value: 1.592 - type: precision_at_1000 value: 0.201 - type: precision_at_3 value: 23.366999999999997 - type: precision_at_5 value: 16.366 - type: recall_at_1 value: 35.612 - type: recall_at_10 value: 64.671 - type: recall_at_100 value: 86.97 - type: recall_at_1000 value: 96.99600000000001 - type: recall_at_3 value: 51.37199999999999 - type: recall_at_5 value: 57.094 - task: type: Retrieval dataset: name: MTEB CQADupstackEnglishRetrieval type: mteb/cqadupstack-english config: default split: test revision: ad9991cb51e31e31e430383c75ffb2885547b5f0 metrics: - type: map_at_1 value: 33.742 - type: map_at_10 value: 44.49 - type: map_at_100 value: 45.781 - type: map_at_1000 value: 45.902 - type: map_at_3 value: 41.453 - type: map_at_5 value: 43.251 - type: mrr_at_1 value: 42.357 - type: mrr_at_10 value: 50.463 - type: mrr_at_100 value: 51.17 - type: mrr_at_1000 value: 51.205999999999996 - type: mrr_at_3 value: 48.397 - type: mrr_at_5 value: 49.649 - type: ndcg_at_1 value: 42.357 - type: ndcg_at_10 value: 50.175000000000004 - type: ndcg_at_100 value: 54.491 - type: ndcg_at_1000 value: 56.282 - type: ndcg_at_3 value: 46.159 - type: ndcg_at_5 value: 48.226 - type: precision_at_1 value: 42.357 - type: precision_at_10 value: 9.382 - type: precision_at_100 value: 1.473 - type: precision_at_1000 value: 0.191 - type: precision_at_3 value: 22.187 - type: precision_at_5 value: 15.758 - type: recall_at_1 value: 33.742 - type: recall_at_10 value: 59.760999999999996 - type: recall_at_100 value: 77.89500000000001 - type: recall_at_1000 value: 89.005 - type: recall_at_3 value: 47.872 - type: recall_at_5 value: 53.559 - task: type: Retrieval dataset: name: MTEB CQADupstackGamingRetrieval type: mteb/cqadupstack-gaming config: default split: test revision: 4885aa143210c98657558c04aaf3dc47cfb54340 metrics: - type: map_at_1 value: 43.883 - type: map_at_10 value: 56.464999999999996 - type: map_at_100 value: 57.394 - type: map_at_1000 value: 57.443999999999996 - type: map_at_3 value: 53.169 - type: map_at_5 value: 54.984 - type: mrr_at_1 value: 50.470000000000006 - type: mrr_at_10 value: 59.997 - type: mrr_at_100 value: 60.586 - type: mrr_at_1000 value: 60.61 - type: mrr_at_3 value: 57.837 - type: mrr_at_5 value: 59.019 - type: ndcg_at_1 value: 50.470000000000006 - type: ndcg_at_10 value: 62.134 - type: ndcg_at_100 value: 65.69500000000001 - type: ndcg_at_1000 value: 66.674 - type: ndcg_at_3 value: 56.916999999999994 - type: ndcg_at_5 value: 59.312 - type: precision_at_1 value: 50.470000000000006 - type: precision_at_10 value: 9.812 - type: precision_at_100 value: 1.25 - type: precision_at_1000 value: 0.13699999999999998 - type: precision_at_3 value: 25.119999999999997 - type: precision_at_5 value: 17.016000000000002 - type: recall_at_1 value: 43.883 - type: recall_at_10 value: 75.417 - type: recall_at_100 value: 90.545 - type: recall_at_1000 value: 97.44500000000001 - type: recall_at_3 value: 61.306000000000004 - type: recall_at_5 value: 67.244 - task: type: Retrieval dataset: name: MTEB CQADupstackGisRetrieval type: mteb/cqadupstack-gis config: default split: test revision: 5003b3064772da1887988e05400cf3806fe491f2 metrics: - type: map_at_1 value: 29.813000000000002 - type: map_at_10 value: 38.627 - type: map_at_100 value: 39.735 - type: map_at_1000 value: 39.806000000000004 - type: map_at_3 value: 36.283 - type: map_at_5 value: 37.491 - type: mrr_at_1 value: 32.316 - type: mrr_at_10 value: 40.752 - type: mrr_at_100 value: 41.699000000000005 - type: mrr_at_1000 value: 41.749 - type: mrr_at_3 value: 38.531 - type: mrr_at_5 value: 39.706 - type: ndcg_at_1 value: 32.316 - type: ndcg_at_10 value: 43.524 - type: ndcg_at_100 value: 48.648 - type: ndcg_at_1000 value: 50.405 - type: ndcg_at_3 value: 38.928000000000004 - type: ndcg_at_5 value: 40.967 - type: precision_at_1 value: 32.316 - type: precision_at_10 value: 6.451999999999999 - type: precision_at_100 value: 0.9490000000000001 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 16.384 - type: precision_at_5 value: 11.006 - type: recall_at_1 value: 29.813000000000002 - type: recall_at_10 value: 56.562999999999995 - type: recall_at_100 value: 79.452 - type: recall_at_1000 value: 92.715 - type: recall_at_3 value: 43.985 - type: recall_at_5 value: 49.001 - task: type: Retrieval dataset: name: MTEB CQADupstackMathematicaRetrieval type: mteb/cqadupstack-mathematica config: default split: test revision: 90fceea13679c63fe563ded68f3b6f06e50061de metrics: - type: map_at_1 value: 19.961000000000002 - type: map_at_10 value: 28.026 - type: map_at_100 value: 29.212 - type: map_at_1000 value: 29.332 - type: map_at_3 value: 25.296999999999997 - type: map_at_5 value: 26.832 - type: mrr_at_1 value: 24.627 - type: mrr_at_10 value: 33.045 - type: mrr_at_100 value: 33.944 - type: mrr_at_1000 value: 34.013 - type: mrr_at_3 value: 30.307000000000002 - type: mrr_at_5 value: 31.874000000000002 - type: ndcg_at_1 value: 24.627 - type: ndcg_at_10 value: 33.414 - type: ndcg_at_100 value: 39.061 - type: ndcg_at_1000 value: 41.795 - type: ndcg_at_3 value: 28.377000000000002 - type: ndcg_at_5 value: 30.781999999999996 - type: precision_at_1 value: 24.627 - type: precision_at_10 value: 6.02 - type: precision_at_100 value: 1.035 - type: precision_at_1000 value: 0.13899999999999998 - type: precision_at_3 value: 13.516 - type: precision_at_5 value: 9.851 - type: recall_at_1 value: 19.961000000000002 - type: recall_at_10 value: 45.174 - type: recall_at_100 value: 69.69 - type: recall_at_1000 value: 89.24600000000001 - type: recall_at_3 value: 31.062 - type: recall_at_5 value: 37.193 - task: type: Retrieval dataset: name: MTEB CQADupstackPhysicsRetrieval type: mteb/cqadupstack-physics config: default split: test revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4 metrics: - type: map_at_1 value: 32.080999999999996 - type: map_at_10 value: 42.177 - type: map_at_100 value: 43.431999999999995 - type: map_at_1000 value: 43.533 - type: map_at_3 value: 38.721 - type: map_at_5 value: 40.669 - type: mrr_at_1 value: 38.787 - type: mrr_at_10 value: 47.762 - type: mrr_at_100 value: 48.541000000000004 - type: mrr_at_1000 value: 48.581 - type: mrr_at_3 value: 45.123999999999995 - type: mrr_at_5 value: 46.639 - type: ndcg_at_1 value: 38.787 - type: ndcg_at_10 value: 48.094 - type: ndcg_at_100 value: 53.291 - type: ndcg_at_1000 value: 55.21 - type: ndcg_at_3 value: 42.721 - type: ndcg_at_5 value: 45.301 - type: precision_at_1 value: 38.787 - type: precision_at_10 value: 8.576 - type: precision_at_100 value: 1.306 - type: precision_at_1000 value: 0.164 - type: precision_at_3 value: 19.698 - type: precision_at_5 value: 14.013 - type: recall_at_1 value: 32.080999999999996 - type: recall_at_10 value: 59.948 - type: recall_at_100 value: 81.811 - type: recall_at_1000 value: 94.544 - type: recall_at_3 value: 44.903999999999996 - type: recall_at_5 value: 51.763999999999996 - task: type: Retrieval dataset: name: MTEB CQADupstackProgrammersRetrieval type: mteb/cqadupstack-programmers config: default split: test revision: 6184bc1440d2dbc7612be22b50686b8826d22b32 metrics: - type: map_at_1 value: 28.869 - type: map_at_10 value: 38.954 - type: map_at_100 value: 40.233000000000004 - type: map_at_1000 value: 40.332 - type: map_at_3 value: 35.585 - type: map_at_5 value: 37.476 - type: mrr_at_1 value: 35.959 - type: mrr_at_10 value: 44.800000000000004 - type: mrr_at_100 value: 45.609 - type: mrr_at_1000 value: 45.655 - type: mrr_at_3 value: 42.333 - type: mrr_at_5 value: 43.68 - type: ndcg_at_1 value: 35.959 - type: ndcg_at_10 value: 44.957 - type: ndcg_at_100 value: 50.275000000000006 - type: ndcg_at_1000 value: 52.29899999999999 - type: ndcg_at_3 value: 39.797 - type: ndcg_at_5 value: 42.128 - type: precision_at_1 value: 35.959 - type: precision_at_10 value: 8.185 - type: precision_at_100 value: 1.261 - type: precision_at_1000 value: 0.159 - type: precision_at_3 value: 18.988 - type: precision_at_5 value: 13.516 - type: recall_at_1 value: 28.869 - type: recall_at_10 value: 57.154 - type: recall_at_100 value: 79.764 - type: recall_at_1000 value: 93.515 - type: recall_at_3 value: 42.364000000000004 - type: recall_at_5 value: 48.756 - task: type: Retrieval dataset: name: MTEB CQADupstackRetrieval type: mteb/cqadupstack config: default split: test revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 metrics: - type: map_at_1 value: 29.31008333333333 - type: map_at_10 value: 38.81849999999999 - type: map_at_100 value: 40.05058333333334 - type: map_at_1000 value: 40.16116666666667 - type: map_at_3 value: 35.91441666666667 - type: map_at_5 value: 37.526583333333335 - type: mrr_at_1 value: 34.60066666666667 - type: mrr_at_10 value: 43.08858333333333 - type: mrr_at_100 value: 43.927749999999996 - type: mrr_at_1000 value: 43.97866666666667 - type: mrr_at_3 value: 40.72775 - type: mrr_at_5 value: 42.067249999999994 - type: ndcg_at_1 value: 34.60066666666667 - type: ndcg_at_10 value: 44.20841666666667 - type: ndcg_at_100 value: 49.32866666666667 - type: ndcg_at_1000 value: 51.373999999999995 - type: ndcg_at_3 value: 39.452083333333334 - type: ndcg_at_5 value: 41.67 - type: precision_at_1 value: 34.60066666666667 - type: precision_at_10 value: 7.616583333333334 - type: precision_at_100 value: 1.20175 - type: precision_at_1000 value: 0.156 - type: precision_at_3 value: 17.992 - type: precision_at_5 value: 12.658416666666666 - type: recall_at_1 value: 29.31008333333333 - type: recall_at_10 value: 55.81900000000001 - type: recall_at_100 value: 78.06308333333334 - type: recall_at_1000 value: 92.10641666666668 - type: recall_at_3 value: 42.50166666666667 - type: recall_at_5 value: 48.26108333333333 - task: type: Retrieval dataset: name: MTEB CQADupstackStatsRetrieval type: mteb/cqadupstack-stats config: default split: test revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a metrics: - type: map_at_1 value: 26.773000000000003 - type: map_at_10 value: 34.13 - type: map_at_100 value: 35.113 - type: map_at_1000 value: 35.211 - type: map_at_3 value: 31.958 - type: map_at_5 value: 33.080999999999996 - type: mrr_at_1 value: 30.061 - type: mrr_at_10 value: 37.061 - type: mrr_at_100 value: 37.865 - type: mrr_at_1000 value: 37.939 - type: mrr_at_3 value: 34.995 - type: mrr_at_5 value: 36.092 - type: ndcg_at_1 value: 30.061 - type: ndcg_at_10 value: 38.391999999999996 - type: ndcg_at_100 value: 43.13 - type: ndcg_at_1000 value: 45.449 - type: ndcg_at_3 value: 34.411 - type: ndcg_at_5 value: 36.163000000000004 - type: precision_at_1 value: 30.061 - type: precision_at_10 value: 5.982 - type: precision_at_100 value: 0.911 - type: precision_at_1000 value: 0.11800000000000001 - type: precision_at_3 value: 14.673 - type: precision_at_5 value: 10.030999999999999 - type: recall_at_1 value: 26.773000000000003 - type: recall_at_10 value: 48.445 - type: recall_at_100 value: 69.741 - type: recall_at_1000 value: 86.59 - type: recall_at_3 value: 37.576 - type: recall_at_5 value: 41.948 - task: type: Retrieval dataset: name: MTEB CQADupstackTexRetrieval type: mteb/cqadupstack-tex config: default split: test revision: 46989137a86843e03a6195de44b09deda022eec7 metrics: - type: map_at_1 value: 18.556 - type: map_at_10 value: 26.340999999999998 - type: map_at_100 value: 27.560000000000002 - type: map_at_1000 value: 27.685 - type: map_at_3 value: 24.136 - type: map_at_5 value: 25.34 - type: mrr_at_1 value: 22.368 - type: mrr_at_10 value: 30.192999999999998 - type: mrr_at_100 value: 31.183 - type: mrr_at_1000 value: 31.258000000000003 - type: mrr_at_3 value: 28.223 - type: mrr_at_5 value: 29.294999999999998 - type: ndcg_at_1 value: 22.368 - type: ndcg_at_10 value: 31.029 - type: ndcg_at_100 value: 36.768 - type: ndcg_at_1000 value: 39.572 - type: ndcg_at_3 value: 27.197 - type: ndcg_at_5 value: 28.912 - type: precision_at_1 value: 22.368 - type: precision_at_10 value: 5.606 - type: precision_at_100 value: 0.9979999999999999 - type: precision_at_1000 value: 0.14100000000000001 - type: precision_at_3 value: 12.892999999999999 - type: precision_at_5 value: 9.16 - type: recall_at_1 value: 18.556 - type: recall_at_10 value: 41.087 - type: recall_at_100 value: 66.92 - type: recall_at_1000 value: 86.691 - type: recall_at_3 value: 30.415 - type: recall_at_5 value: 34.813 - task: type: Retrieval dataset: name: MTEB CQADupstackUnixRetrieval type: mteb/cqadupstack-unix config: default split: test revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53 metrics: - type: map_at_1 value: 29.953999999999997 - type: map_at_10 value: 39.633 - type: map_at_100 value: 40.923 - type: map_at_1000 value: 41.016000000000005 - type: map_at_3 value: 36.609 - type: map_at_5 value: 38.443 - type: mrr_at_1 value: 35.354 - type: mrr_at_10 value: 43.718 - type: mrr_at_100 value: 44.651999999999994 - type: mrr_at_1000 value: 44.696000000000005 - type: mrr_at_3 value: 41.154 - type: mrr_at_5 value: 42.730000000000004 - type: ndcg_at_1 value: 35.354 - type: ndcg_at_10 value: 44.933 - type: ndcg_at_100 value: 50.577000000000005 - type: ndcg_at_1000 value: 52.428 - type: ndcg_at_3 value: 39.833 - type: ndcg_at_5 value: 42.465 - type: precision_at_1 value: 35.354 - type: precision_at_10 value: 7.416 - type: precision_at_100 value: 1.157 - type: precision_at_1000 value: 0.14100000000000001 - type: precision_at_3 value: 17.817 - type: precision_at_5 value: 12.687000000000001 - type: recall_at_1 value: 29.953999999999997 - type: recall_at_10 value: 56.932 - type: recall_at_100 value: 80.93900000000001 - type: recall_at_1000 value: 93.582 - type: recall_at_3 value: 43.192 - type: recall_at_5 value: 49.757 - task: type: Retrieval dataset: name: MTEB CQADupstackWebmastersRetrieval type: mteb/cqadupstack-webmasters config: default split: test revision: 160c094312a0e1facb97e55eeddb698c0abe3571 metrics: - type: map_at_1 value: 27.85 - type: map_at_10 value: 37.68 - type: map_at_100 value: 39.295 - type: map_at_1000 value: 39.527 - type: map_at_3 value: 35.036 - type: map_at_5 value: 36.269 - type: mrr_at_1 value: 33.004 - type: mrr_at_10 value: 42.096000000000004 - type: mrr_at_100 value: 43.019 - type: mrr_at_1000 value: 43.071 - type: mrr_at_3 value: 39.987 - type: mrr_at_5 value: 40.995 - type: ndcg_at_1 value: 33.004 - type: ndcg_at_10 value: 43.461 - type: ndcg_at_100 value: 49.138 - type: ndcg_at_1000 value: 51.50900000000001 - type: ndcg_at_3 value: 39.317 - type: ndcg_at_5 value: 40.760999999999996 - type: precision_at_1 value: 33.004 - type: precision_at_10 value: 8.161999999999999 - type: precision_at_100 value: 1.583 - type: precision_at_1000 value: 0.245 - type: precision_at_3 value: 18.445 - type: precision_at_5 value: 12.885 - type: recall_at_1 value: 27.85 - type: recall_at_10 value: 54.419 - type: recall_at_100 value: 79.742 - type: recall_at_1000 value: 93.97 - type: recall_at_3 value: 42.149 - type: recall_at_5 value: 46.165 - task: type: Retrieval dataset: name: MTEB CQADupstackWordpressRetrieval type: mteb/cqadupstack-wordpress config: default split: test revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 metrics: - type: map_at_1 value: 24.627 - type: map_at_10 value: 32.182 - type: map_at_100 value: 33.217999999999996 - type: map_at_1000 value: 33.32 - type: map_at_3 value: 28.866999999999997 - type: map_at_5 value: 30.871 - type: mrr_at_1 value: 26.987 - type: mrr_at_10 value: 34.37 - type: mrr_at_100 value: 35.301 - type: mrr_at_1000 value: 35.369 - type: mrr_at_3 value: 31.391999999999996 - type: mrr_at_5 value: 33.287 - type: ndcg_at_1 value: 26.987 - type: ndcg_at_10 value: 37.096000000000004 - type: ndcg_at_100 value: 42.158 - type: ndcg_at_1000 value: 44.548 - type: ndcg_at_3 value: 30.913 - type: ndcg_at_5 value: 34.245 - type: precision_at_1 value: 26.987 - type: precision_at_10 value: 5.878 - type: precision_at_100 value: 0.906 - type: precision_at_1000 value: 0.123 - type: precision_at_3 value: 12.815999999999999 - type: precision_at_5 value: 9.612 - type: recall_at_1 value: 24.627 - type: recall_at_10 value: 50.257 - type: recall_at_100 value: 73.288 - type: recall_at_1000 value: 90.97800000000001 - type: recall_at_3 value: 33.823 - type: recall_at_5 value: 41.839 - task: type: Retrieval dataset: name: MTEB ClimateFEVER type: mteb/climate-fever config: default split: test revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 metrics: - type: map_at_1 value: 17.343 - type: map_at_10 value: 28.59 - type: map_at_100 value: 30.591 - type: map_at_1000 value: 30.759999999999998 - type: map_at_3 value: 24.197 - type: map_at_5 value: 26.433 - type: mrr_at_1 value: 39.609 - type: mrr_at_10 value: 51.107 - type: mrr_at_100 value: 51.87199999999999 - type: mrr_at_1000 value: 51.894 - type: mrr_at_3 value: 48.154 - type: mrr_at_5 value: 49.939 - type: ndcg_at_1 value: 39.609 - type: ndcg_at_10 value: 38.329 - type: ndcg_at_100 value: 45.573 - type: ndcg_at_1000 value: 48.405 - type: ndcg_at_3 value: 32.506 - type: ndcg_at_5 value: 34.331 - type: precision_at_1 value: 39.609 - type: precision_at_10 value: 11.668000000000001 - type: precision_at_100 value: 1.9539999999999997 - type: precision_at_1000 value: 0.249 - type: precision_at_3 value: 23.952 - type: precision_at_5 value: 17.902 - type: recall_at_1 value: 17.343 - type: recall_at_10 value: 43.704 - type: recall_at_100 value: 68.363 - type: recall_at_1000 value: 84.04599999999999 - type: recall_at_3 value: 29.028 - type: recall_at_5 value: 35.022 - task: type: Retrieval dataset: name: MTEB DBPedia type: mteb/dbpedia config: default split: test revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 metrics: - type: map_at_1 value: 9.934999999999999 - type: map_at_10 value: 22.081 - type: map_at_100 value: 32.036 - type: map_at_1000 value: 33.803 - type: map_at_3 value: 15.687999999999999 - type: map_at_5 value: 18.357 - type: mrr_at_1 value: 70.75 - type: mrr_at_10 value: 78.506 - type: mrr_at_100 value: 78.874 - type: mrr_at_1000 value: 78.88300000000001 - type: mrr_at_3 value: 77.667 - type: mrr_at_5 value: 78.342 - type: ndcg_at_1 value: 57.25 - type: ndcg_at_10 value: 45.286 - type: ndcg_at_100 value: 50.791 - type: ndcg_at_1000 value: 58.021 - type: ndcg_at_3 value: 49.504 - type: ndcg_at_5 value: 47.03 - type: precision_at_1 value: 70.75 - type: precision_at_10 value: 36.425000000000004 - type: precision_at_100 value: 11.953 - type: precision_at_1000 value: 2.248 - type: precision_at_3 value: 53.25 - type: precision_at_5 value: 46.150000000000006 - type: recall_at_1 value: 9.934999999999999 - type: recall_at_10 value: 27.592 - type: recall_at_100 value: 58.089 - type: recall_at_1000 value: 81.025 - type: recall_at_3 value: 17.048 - type: recall_at_5 value: 20.834 - task: type: Classification dataset: name: MTEB EmotionClassification type: mteb/emotion config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 47.25999999999999 - type: f1 value: 43.83371155132253 - task: type: Retrieval dataset: name: MTEB FEVER type: mteb/fever config: default split: test revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 metrics: - type: map_at_1 value: 73.68900000000001 - type: map_at_10 value: 82.878 - type: map_at_100 value: 83.084 - type: map_at_1000 value: 83.097 - type: map_at_3 value: 81.528 - type: map_at_5 value: 82.432 - type: mrr_at_1 value: 79.49300000000001 - type: mrr_at_10 value: 87.24300000000001 - type: mrr_at_100 value: 87.3 - type: mrr_at_1000 value: 87.301 - type: mrr_at_3 value: 86.359 - type: mrr_at_5 value: 87.01 - type: ndcg_at_1 value: 79.49300000000001 - type: ndcg_at_10 value: 86.894 - type: ndcg_at_100 value: 87.6 - type: ndcg_at_1000 value: 87.79299999999999 - type: ndcg_at_3 value: 84.777 - type: ndcg_at_5 value: 86.08 - type: precision_at_1 value: 79.49300000000001 - type: precision_at_10 value: 10.578 - type: precision_at_100 value: 1.117 - type: precision_at_1000 value: 0.11499999999999999 - type: precision_at_3 value: 32.592999999999996 - type: precision_at_5 value: 20.423 - type: recall_at_1 value: 73.68900000000001 - type: recall_at_10 value: 94.833 - type: recall_at_100 value: 97.554 - type: recall_at_1000 value: 98.672 - type: recall_at_3 value: 89.236 - type: recall_at_5 value: 92.461 - task: type: Retrieval dataset: name: MTEB FiQA2018 type: mteb/fiqa config: default split: test revision: 27a168819829fe9bcd655c2df245fb19452e8e06 metrics: - type: map_at_1 value: 20.59 - type: map_at_10 value: 34.089000000000006 - type: map_at_100 value: 35.796 - type: map_at_1000 value: 35.988 - type: map_at_3 value: 29.877 - type: map_at_5 value: 32.202999999999996 - type: mrr_at_1 value: 41.049 - type: mrr_at_10 value: 50.370000000000005 - type: mrr_at_100 value: 51.209 - type: mrr_at_1000 value: 51.247 - type: mrr_at_3 value: 48.122 - type: mrr_at_5 value: 49.326 - type: ndcg_at_1 value: 41.049 - type: ndcg_at_10 value: 42.163000000000004 - type: ndcg_at_100 value: 48.638999999999996 - type: ndcg_at_1000 value: 51.775000000000006 - type: ndcg_at_3 value: 38.435 - type: ndcg_at_5 value: 39.561 - type: precision_at_1 value: 41.049 - type: precision_at_10 value: 11.481 - type: precision_at_100 value: 1.8239999999999998 - type: precision_at_1000 value: 0.24 - type: precision_at_3 value: 25.257 - type: precision_at_5 value: 18.519 - type: recall_at_1 value: 20.59 - type: recall_at_10 value: 49.547999999999995 - type: recall_at_100 value: 73.676 - type: recall_at_1000 value: 92.269 - type: recall_at_3 value: 35.656 - type: recall_at_5 value: 41.455 - task: type: Retrieval dataset: name: MTEB HotpotQA type: mteb/hotpotqa config: default split: test revision: ab518f4d6fcca38d87c25209f94beba119d02014 metrics: - type: map_at_1 value: 39.932 - type: map_at_10 value: 64.184 - type: map_at_100 value: 65.06 - type: map_at_1000 value: 65.109 - type: map_at_3 value: 60.27 - type: map_at_5 value: 62.732 - type: mrr_at_1 value: 79.865 - type: mrr_at_10 value: 85.99799999999999 - type: mrr_at_100 value: 86.13 - type: mrr_at_1000 value: 86.13300000000001 - type: mrr_at_3 value: 85.136 - type: mrr_at_5 value: 85.69200000000001 - type: ndcg_at_1 value: 79.865 - type: ndcg_at_10 value: 72.756 - type: ndcg_at_100 value: 75.638 - type: ndcg_at_1000 value: 76.589 - type: ndcg_at_3 value: 67.38199999999999 - type: ndcg_at_5 value: 70.402 - type: precision_at_1 value: 79.865 - type: precision_at_10 value: 15.387999999999998 - type: precision_at_100 value: 1.7610000000000001 - type: precision_at_1000 value: 0.189 - type: precision_at_3 value: 43.394 - type: precision_at_5 value: 28.424 - type: recall_at_1 value: 39.932 - type: recall_at_10 value: 76.941 - type: recall_at_100 value: 88.062 - type: recall_at_1000 value: 94.396 - type: recall_at_3 value: 65.091 - type: recall_at_5 value: 71.06 - task: type: Classification dataset: name: MTEB ImdbClassification type: mteb/imdb config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 71.7904 - type: ap value: 65.82899456730257 - type: f1 value: 71.56611877410202 - task: type: Retrieval dataset: name: MTEB MSMARCO type: mteb/msmarco config: default split: dev revision: c5a29a104738b98a9e76336939199e264163d4a0 metrics: - type: map_at_1 value: 21.931 - type: map_at_10 value: 34.849999999999994 - type: map_at_100 value: 36.033 - type: map_at_1000 value: 36.08 - type: map_at_3 value: 30.842000000000002 - type: map_at_5 value: 33.229 - type: mrr_at_1 value: 22.55 - type: mrr_at_10 value: 35.436 - type: mrr_at_100 value: 36.563 - type: mrr_at_1000 value: 36.604 - type: mrr_at_3 value: 31.507 - type: mrr_at_5 value: 33.851 - type: ndcg_at_1 value: 22.55 - type: ndcg_at_10 value: 41.969 - type: ndcg_at_100 value: 47.576 - type: ndcg_at_1000 value: 48.731 - type: ndcg_at_3 value: 33.894000000000005 - type: ndcg_at_5 value: 38.133 - type: precision_at_1 value: 22.55 - type: precision_at_10 value: 6.660000000000001 - type: precision_at_100 value: 0.946 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 14.532 - type: precision_at_5 value: 10.865 - type: recall_at_1 value: 21.931 - type: recall_at_10 value: 63.841 - type: recall_at_100 value: 89.47699999999999 - type: recall_at_1000 value: 98.259 - type: recall_at_3 value: 42.063 - type: recall_at_5 value: 52.21 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (en) type: mteb/mtop_domain config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 93.03921568627452 - type: f1 value: 92.56400672314416 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (en) type: mteb/mtop_intent config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 63.515731874145 - type: f1 value: 44.922310875523216 - task: type: Classification dataset: name: MTEB MasakhaNEWSClassification (eng) type: masakhane/masakhanews config: eng split: test revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60 metrics: - type: accuracy value: 77.57383966244727 - type: f1 value: 76.55222378218293 - task: type: Clustering dataset: name: MTEB MasakhaNEWSClusteringP2P (eng) type: masakhane/masakhanews config: eng split: test revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60 metrics: - type: v_measure value: 62.74836240280833 - type: v_measure value: 24.414348715238184 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (en) type: mteb/amazon_massive_intent config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 66.54673839946201 - type: f1 value: 64.61004101532164 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (en) type: mteb/amazon_massive_scenario config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 73.11365164761264 - type: f1 value: 72.01684013680978 - task: type: Clustering dataset: name: MTEB MedrxivClusteringP2P type: mteb/medrxiv-clustering-p2p config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 31.123671999617297 - task: type: Clustering dataset: name: MTEB MedrxivClusteringS2S type: mteb/medrxiv-clustering-s2s config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 26.72684341430875 - task: type: Reranking dataset: name: MTEB MindSmallReranking type: mteb/mind_small config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 29.910228061734816 - type: mrr value: 30.835255982532477 - task: type: Retrieval dataset: name: MTEB NFCorpus type: mteb/nfcorpus config: default split: test revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 metrics: - type: map_at_1 value: 5.6770000000000005 - type: map_at_10 value: 13.15 - type: map_at_100 value: 16.205 - type: map_at_1000 value: 17.580000000000002 - type: map_at_3 value: 9.651 - type: map_at_5 value: 11.142000000000001 - type: mrr_at_1 value: 47.678 - type: mrr_at_10 value: 56.257000000000005 - type: mrr_at_100 value: 56.708000000000006 - type: mrr_at_1000 value: 56.751 - type: mrr_at_3 value: 54.128 - type: mrr_at_5 value: 55.181000000000004 - type: ndcg_at_1 value: 45.511 - type: ndcg_at_10 value: 35.867 - type: ndcg_at_100 value: 31.566 - type: ndcg_at_1000 value: 40.077 - type: ndcg_at_3 value: 41.9 - type: ndcg_at_5 value: 39.367999999999995 - type: precision_at_1 value: 47.678 - type: precision_at_10 value: 26.842 - type: precision_at_100 value: 7.991 - type: precision_at_1000 value: 2.0469999999999997 - type: precision_at_3 value: 39.938 - type: precision_at_5 value: 34.613 - type: recall_at_1 value: 5.6770000000000005 - type: recall_at_10 value: 17.119999999999997 - type: recall_at_100 value: 30.828 - type: recall_at_1000 value: 62.082 - type: recall_at_3 value: 10.456 - type: recall_at_5 value: 12.903999999999998 - task: type: Retrieval dataset: name: MTEB NQ type: mteb/nq config: default split: test revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 metrics: - type: map_at_1 value: 39.021 - type: map_at_10 value: 54.976 - type: map_at_100 value: 55.793000000000006 - type: map_at_1000 value: 55.811 - type: map_at_3 value: 50.759 - type: map_at_5 value: 53.429 - type: mrr_at_1 value: 43.308 - type: mrr_at_10 value: 57.118 - type: mrr_at_100 value: 57.69499999999999 - type: mrr_at_1000 value: 57.704 - type: mrr_at_3 value: 53.848 - type: mrr_at_5 value: 55.915000000000006 - type: ndcg_at_1 value: 43.308 - type: ndcg_at_10 value: 62.33800000000001 - type: ndcg_at_100 value: 65.61099999999999 - type: ndcg_at_1000 value: 65.995 - type: ndcg_at_3 value: 54.723 - type: ndcg_at_5 value: 59.026 - type: precision_at_1 value: 43.308 - type: precision_at_10 value: 9.803 - type: precision_at_100 value: 1.167 - type: precision_at_1000 value: 0.121 - type: precision_at_3 value: 24.334 - type: precision_at_5 value: 17.144000000000002 - type: recall_at_1 value: 39.021 - type: recall_at_10 value: 82.37299999999999 - type: recall_at_100 value: 96.21499999999999 - type: recall_at_1000 value: 99.02499999999999 - type: recall_at_3 value: 63.031000000000006 - type: recall_at_5 value: 72.856 - task: type: Classification dataset: name: MTEB NewsClassification type: ag_news config: default split: test revision: eb185aade064a813bc0b7f42de02595523103ca4 metrics: - type: accuracy value: 78.03289473684211 - type: f1 value: 77.89323745730803 - task: type: PairClassification dataset: name: MTEB OpusparcusPC (en) type: GEM/opusparcus config: en split: test revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a metrics: - type: cos_sim_accuracy value: 99.89816700610999 - type: cos_sim_ap value: 100.0 - type: cos_sim_f1 value: 99.9490575649516 - type: cos_sim_precision value: 100.0 - type: cos_sim_recall value: 99.89816700610999 - type: dot_accuracy value: 99.89816700610999 - type: dot_ap value: 100.0 - type: dot_f1 value: 99.9490575649516 - type: dot_precision value: 100.0 - type: dot_recall value: 99.89816700610999 - type: euclidean_accuracy value: 99.89816700610999 - type: euclidean_ap value: 100.0 - type: euclidean_f1 value: 99.9490575649516 - type: euclidean_precision value: 100.0 - type: euclidean_recall value: 99.89816700610999 - type: manhattan_accuracy value: 99.89816700610999 - type: manhattan_ap value: 100.0 - type: manhattan_f1 value: 99.9490575649516 - type: manhattan_precision value: 100.0 - type: manhattan_recall value: 99.89816700610999 - type: max_accuracy value: 99.89816700610999 - type: max_ap value: 100.0 - type: max_f1 value: 99.9490575649516 - task: type: PairClassification dataset: name: MTEB PawsX (en) type: paws-x config: en split: test revision: 8a04d940a42cd40658986fdd8e3da561533a3646 metrics: - type: cos_sim_accuracy value: 61.75000000000001 - type: cos_sim_ap value: 59.578879568280385 - type: cos_sim_f1 value: 62.50861474844934 - type: cos_sim_precision value: 45.46365914786967 - type: cos_sim_recall value: 100.0 - type: dot_accuracy value: 61.75000000000001 - type: dot_ap value: 59.57893088951573 - type: dot_f1 value: 62.50861474844934 - type: dot_precision value: 45.46365914786967 - type: dot_recall value: 100.0 - type: euclidean_accuracy value: 61.75000000000001 - type: euclidean_ap value: 59.578755624671686 - type: euclidean_f1 value: 62.50861474844934 - type: euclidean_precision value: 45.46365914786967 - type: euclidean_recall value: 100.0 - type: manhattan_accuracy value: 61.75000000000001 - type: manhattan_ap value: 59.58504334461159 - type: manhattan_f1 value: 62.50861474844934 - type: manhattan_precision value: 45.46365914786967 - type: manhattan_recall value: 100.0 - type: max_accuracy value: 61.75000000000001 - type: max_ap value: 59.58504334461159 - type: max_f1 value: 62.50861474844934 - task: type: Retrieval dataset: name: MTEB QuoraRetrieval type: mteb/quora config: default split: test revision: e4e08e0b7dbe3c8700f0daef558ff32256715259 metrics: - type: map_at_1 value: 70.186 - type: map_at_10 value: 83.875 - type: map_at_100 value: 84.514 - type: map_at_1000 value: 84.53500000000001 - type: map_at_3 value: 80.926 - type: map_at_5 value: 82.797 - type: mrr_at_1 value: 80.82000000000001 - type: mrr_at_10 value: 87.068 - type: mrr_at_100 value: 87.178 - type: mrr_at_1000 value: 87.18 - type: mrr_at_3 value: 86.055 - type: mrr_at_5 value: 86.763 - type: ndcg_at_1 value: 80.84 - type: ndcg_at_10 value: 87.723 - type: ndcg_at_100 value: 88.98700000000001 - type: ndcg_at_1000 value: 89.13499999999999 - type: ndcg_at_3 value: 84.821 - type: ndcg_at_5 value: 86.441 - type: precision_at_1 value: 80.84 - type: precision_at_10 value: 13.270000000000001 - type: precision_at_100 value: 1.516 - type: precision_at_1000 value: 0.156 - type: precision_at_3 value: 37.013 - type: precision_at_5 value: 24.37 - type: recall_at_1 value: 70.186 - type: recall_at_10 value: 94.948 - type: recall_at_100 value: 99.223 - type: recall_at_1000 value: 99.932 - type: recall_at_3 value: 86.57000000000001 - type: recall_at_5 value: 91.157 - task: type: Clustering dataset: name: MTEB RedditClustering type: mteb/reddit-clustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 50.24198927949519 - task: type: Clustering dataset: name: MTEB RedditClusteringP2P type: mteb/reddit-clustering-p2p config: default split: test revision: 385e3cb46b4cfa89021f56c4380204149d0efe33 metrics: - type: v_measure value: 61.452073078765544 - task: type: Retrieval dataset: name: MTEB SCIDOCS type: mteb/scidocs config: default split: test revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88 metrics: - type: map_at_1 value: 4.972 - type: map_at_10 value: 12.314 - type: map_at_100 value: 14.333000000000002 - type: map_at_1000 value: 14.628 - type: map_at_3 value: 8.972 - type: map_at_5 value: 10.724 - type: mrr_at_1 value: 24.4 - type: mrr_at_10 value: 35.257 - type: mrr_at_100 value: 36.297000000000004 - type: mrr_at_1000 value: 36.363 - type: mrr_at_3 value: 32.267 - type: mrr_at_5 value: 33.942 - type: ndcg_at_1 value: 24.4 - type: ndcg_at_10 value: 20.47 - type: ndcg_at_100 value: 28.111000000000004 - type: ndcg_at_1000 value: 33.499 - type: ndcg_at_3 value: 19.975 - type: ndcg_at_5 value: 17.293 - type: precision_at_1 value: 24.4 - type: precision_at_10 value: 10.440000000000001 - type: precision_at_100 value: 2.136 - type: precision_at_1000 value: 0.34299999999999997 - type: precision_at_3 value: 18.733 - type: precision_at_5 value: 15.120000000000001 - type: recall_at_1 value: 4.972 - type: recall_at_10 value: 21.157 - type: recall_at_100 value: 43.335 - type: recall_at_1000 value: 69.652 - type: recall_at_3 value: 11.417 - type: recall_at_5 value: 15.317 - task: type: STS dataset: name: MTEB SICK-R type: mteb/sickr-sts config: default split: test revision: 20a6d6f312dd54037fe07a32d58e5e168867909d metrics: - type: cos_sim_pearson value: 76.70295978506286 - type: cos_sim_spearman value: 70.91162732446628 - type: euclidean_pearson value: 73.25693688746031 - type: euclidean_spearman value: 70.91162556180127 - type: manhattan_pearson value: 73.27735004735767 - type: manhattan_spearman value: 70.8856787022704 - task: type: STS dataset: name: MTEB STS12 type: mteb/sts12-sts config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 67.55878682646774 - type: cos_sim_spearman value: 66.10824660353681 - type: euclidean_pearson value: 64.93937270068541 - type: euclidean_spearman value: 66.10824660353681 - type: manhattan_pearson value: 64.96325555978984 - type: manhattan_spearman value: 66.12052481638577 - task: type: STS dataset: name: MTEB STS13 type: mteb/sts13-sts config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 79.79979774019496 - type: cos_sim_spearman value: 79.82293444619499 - type: euclidean_pearson value: 79.4830436509311 - type: euclidean_spearman value: 79.82293444619499 - type: manhattan_pearson value: 79.49785594799296 - type: manhattan_spearman value: 79.8280390479434 - task: type: STS dataset: name: MTEB STS14 type: mteb/sts14-sts config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 76.36839628231121 - type: cos_sim_spearman value: 73.63809739428072 - type: euclidean_pearson value: 74.93718121215906 - type: euclidean_spearman value: 73.63810227650436 - type: manhattan_pearson value: 74.8737197659424 - type: manhattan_spearman value: 73.57534688126572 - task: type: STS dataset: name: MTEB STS15 type: mteb/sts15-sts config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 82.67482138157656 - type: cos_sim_spearman value: 83.23485786963107 - type: euclidean_pearson value: 82.50847772197369 - type: euclidean_spearman value: 83.23485786963107 - type: manhattan_pearson value: 82.48916218377576 - type: manhattan_spearman value: 83.19756483500014 - task: type: STS dataset: name: MTEB STS16 type: mteb/sts16-sts config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 81.11626268793967 - type: cos_sim_spearman value: 81.58184691061507 - type: euclidean_pearson value: 80.65900869004938 - type: euclidean_spearman value: 81.58184691061507 - type: manhattan_pearson value: 80.67912306966772 - type: manhattan_spearman value: 81.59957593393145 - task: type: STS dataset: name: MTEB STS17 (en-en) type: mteb/sts17-crosslingual-sts config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 80.3140990821409 - type: cos_sim_spearman value: 80.59196586367551 - type: euclidean_pearson value: 80.73014029317672 - type: euclidean_spearman value: 80.59196586367551 - type: manhattan_pearson value: 80.5774325136987 - type: manhattan_spearman value: 80.35102610546238 - task: type: STS dataset: name: MTEB STS22 (en) type: mteb/sts22-crosslingual-sts config: en split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 68.34450491529164 - type: cos_sim_spearman value: 68.79451793414492 - type: euclidean_pearson value: 68.75619738499324 - type: euclidean_spearman value: 68.79451793414492 - type: manhattan_pearson value: 68.75256119543882 - type: manhattan_spearman value: 68.81836416978547 - task: type: STS dataset: name: MTEB STSBenchmark type: mteb/stsbenchmark-sts config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 77.95580414975612 - type: cos_sim_spearman value: 77.89671867168987 - type: euclidean_pearson value: 77.61352097720862 - type: euclidean_spearman value: 77.89671867168987 - type: manhattan_pearson value: 77.65282228135632 - type: manhattan_spearman value: 77.91730533156762 - task: type: STS dataset: name: MTEB STSBenchmarkMultilingualSTS (en) type: PhilipMay/stsb_multi_mt config: en split: test revision: 93d57ef91790589e3ce9c365164337a8a78b7632 metrics: - type: cos_sim_pearson value: 77.95580421496413 - type: cos_sim_spearman value: 77.89671867168987 - type: euclidean_pearson value: 77.61352107168794 - type: euclidean_spearman value: 77.89671867168987 - type: manhattan_pearson value: 77.65282237231794 - type: manhattan_spearman value: 77.91730533156762 - task: type: Reranking dataset: name: MTEB SciDocsRR type: mteb/scidocs-reranking config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 79.22928110092924 - type: mrr value: 94.46700902583257 - task: type: Retrieval dataset: name: MTEB SciFact type: mteb/scifact config: default split: test revision: 0228b52cf27578f30900b9e5271d331663a030d7 metrics: - type: map_at_1 value: 56.011 - type: map_at_10 value: 65.544 - type: map_at_100 value: 66.034 - type: map_at_1000 value: 66.065 - type: map_at_3 value: 63.077000000000005 - type: map_at_5 value: 64.354 - type: mrr_at_1 value: 59.0 - type: mrr_at_10 value: 66.74900000000001 - type: mrr_at_100 value: 67.176 - type: mrr_at_1000 value: 67.203 - type: mrr_at_3 value: 65.056 - type: mrr_at_5 value: 65.956 - type: ndcg_at_1 value: 59.0 - type: ndcg_at_10 value: 69.95599999999999 - type: ndcg_at_100 value: 72.27 - type: ndcg_at_1000 value: 73.066 - type: ndcg_at_3 value: 65.837 - type: ndcg_at_5 value: 67.633 - type: precision_at_1 value: 59.0 - type: precision_at_10 value: 9.333 - type: precision_at_100 value: 1.053 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 26.0 - type: precision_at_5 value: 16.866999999999997 - type: recall_at_1 value: 56.011 - type: recall_at_10 value: 82.133 - type: recall_at_100 value: 92.767 - type: recall_at_1000 value: 99.0 - type: recall_at_3 value: 70.95 - type: recall_at_5 value: 75.556 - task: type: PairClassification dataset: name: MTEB SprintDuplicateQuestions type: mteb/sprintduplicatequestions-pairclassification config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.81584158415842 - type: cos_sim_ap value: 94.67482871230736 - type: cos_sim_f1 value: 90.67201604814443 - type: cos_sim_precision value: 90.94567404426559 - type: cos_sim_recall value: 90.4 - type: dot_accuracy value: 99.81584158415842 - type: dot_ap value: 94.67482871230737 - type: dot_f1 value: 90.67201604814443 - type: dot_precision value: 90.94567404426559 - type: dot_recall value: 90.4 - type: euclidean_accuracy value: 99.81584158415842 - type: euclidean_ap value: 94.67482871230737 - type: euclidean_f1 value: 90.67201604814443 - type: euclidean_precision value: 90.94567404426559 - type: euclidean_recall value: 90.4 - type: manhattan_accuracy value: 99.81188118811882 - type: manhattan_ap value: 94.6409082219286 - type: manhattan_f1 value: 90.50949050949052 - type: manhattan_precision value: 90.41916167664671 - type: manhattan_recall value: 90.60000000000001 - type: max_accuracy value: 99.81584158415842 - type: max_ap value: 94.67482871230737 - type: max_f1 value: 90.67201604814443 - task: type: Clustering dataset: name: MTEB StackExchangeClustering type: mteb/stackexchange-clustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 62.63494511649264 - task: type: Clustering dataset: name: MTEB StackExchangeClusteringP2P type: mteb/stackexchange-clustering-p2p config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 37.165838327685755 - task: type: Reranking dataset: name: MTEB StackOverflowDupQuestions type: mteb/stackoverflowdupquestions-reranking config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 51.384873075208084 - type: mrr value: 52.196439181733304 - task: type: Summarization dataset: name: MTEB SummEval type: mteb/summeval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 32.13690355567596 - type: cos_sim_spearman value: 31.38349778638125 - type: dot_pearson value: 32.13689596691593 - type: dot_spearman value: 31.38349778638125 - task: type: Retrieval dataset: name: MTEB TRECCOVID type: mteb/trec-covid config: default split: test revision: bb9466bac8153a0349341eb1b22e06409e78ef4e metrics: - type: map_at_1 value: 0.26 - type: map_at_10 value: 2.08 - type: map_at_100 value: 12.598 - type: map_at_1000 value: 30.119 - type: map_at_3 value: 0.701 - type: map_at_5 value: 1.11 - type: mrr_at_1 value: 96.0 - type: mrr_at_10 value: 97.167 - type: mrr_at_100 value: 97.167 - type: mrr_at_1000 value: 97.167 - type: mrr_at_3 value: 96.667 - type: mrr_at_5 value: 97.167 - type: ndcg_at_1 value: 91.0 - type: ndcg_at_10 value: 81.69800000000001 - type: ndcg_at_100 value: 62.9 - type: ndcg_at_1000 value: 55.245999999999995 - type: ndcg_at_3 value: 86.397 - type: ndcg_at_5 value: 84.286 - type: precision_at_1 value: 96.0 - type: precision_at_10 value: 87.0 - type: precision_at_100 value: 64.86 - type: precision_at_1000 value: 24.512 - type: precision_at_3 value: 90.667 - type: precision_at_5 value: 88.8 - type: recall_at_1 value: 0.26 - type: recall_at_10 value: 2.238 - type: recall_at_100 value: 15.488 - type: recall_at_1000 value: 51.6 - type: recall_at_3 value: 0.716 - type: recall_at_5 value: 1.151 - task: type: Retrieval dataset: name: MTEB Touche2020 type: mteb/touche2020 config: default split: test revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f metrics: - type: map_at_1 value: 3.376 - type: map_at_10 value: 13.142000000000001 - type: map_at_100 value: 19.763 - type: map_at_1000 value: 21.319 - type: map_at_3 value: 6.805999999999999 - type: map_at_5 value: 8.952 - type: mrr_at_1 value: 46.939 - type: mrr_at_10 value: 61.082 - type: mrr_at_100 value: 61.45 - type: mrr_at_1000 value: 61.468999999999994 - type: mrr_at_3 value: 57.483 - type: mrr_at_5 value: 59.931999999999995 - type: ndcg_at_1 value: 44.897999999999996 - type: ndcg_at_10 value: 32.35 - type: ndcg_at_100 value: 42.719 - type: ndcg_at_1000 value: 53.30200000000001 - type: ndcg_at_3 value: 37.724999999999994 - type: ndcg_at_5 value: 34.79 - type: precision_at_1 value: 46.939 - type: precision_at_10 value: 28.366999999999997 - type: precision_at_100 value: 8.429 - type: precision_at_1000 value: 1.557 - type: precision_at_3 value: 38.095 - type: precision_at_5 value: 33.469 - type: recall_at_1 value: 3.376 - type: recall_at_10 value: 20.164 - type: recall_at_100 value: 50.668 - type: recall_at_1000 value: 83.159 - type: recall_at_3 value: 8.155 - type: recall_at_5 value: 11.872 - task: type: Classification dataset: name: MTEB ToxicConversationsClassification type: mteb/toxic_conversations_50k config: default split: test revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de metrics: - type: accuracy value: 66.739 - type: ap value: 12.17931839228834 - type: f1 value: 51.05383188624636 - task: type: Classification dataset: name: MTEB TweetSentimentExtractionClassification type: mteb/tweet_sentiment_extraction config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 56.72891907187323 - type: f1 value: 56.997614557150946 - task: type: Clustering dataset: name: MTEB TwentyNewsgroupsClustering type: mteb/twentynewsgroups-clustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 39.825318429345224 - task: type: PairClassification dataset: name: MTEB TwitterSemEval2015 type: mteb/twittersemeval2015-pairclassification config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 83.65619598259522 - type: cos_sim_ap value: 66.17412885183877 - type: cos_sim_f1 value: 63.09125656951745 - type: cos_sim_precision value: 57.63858577040594 - type: cos_sim_recall value: 69.68337730870712 - type: dot_accuracy value: 83.65619598259522 - type: dot_ap value: 66.17413621964548 - type: dot_f1 value: 63.09125656951745 - type: dot_precision value: 57.63858577040594 - type: dot_recall value: 69.68337730870712 - type: euclidean_accuracy value: 83.65619598259522 - type: euclidean_ap value: 66.17412836413126 - type: euclidean_f1 value: 63.09125656951745 - type: euclidean_precision value: 57.63858577040594 - type: euclidean_recall value: 69.68337730870712 - type: manhattan_accuracy value: 83.5548667819038 - type: manhattan_ap value: 66.07998834521334 - type: manhattan_f1 value: 62.96433419721092 - type: manhattan_precision value: 59.14676559239509 - type: manhattan_recall value: 67.30870712401055 - type: max_accuracy value: 83.65619598259522 - type: max_ap value: 66.17413621964548 - type: max_f1 value: 63.09125656951745 - task: type: PairClassification dataset: name: MTEB TwitterURLCorpus type: mteb/twitterurlcorpus-pairclassification config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.55706911941631 - type: cos_sim_ap value: 85.20971331546805 - type: cos_sim_f1 value: 77.28446050593702 - type: cos_sim_precision value: 74.16135881104033 - type: cos_sim_recall value: 80.6821681552202 - type: dot_accuracy value: 88.55706911941631 - type: dot_ap value: 85.2097154112633 - type: dot_f1 value: 77.28446050593702 - type: dot_precision value: 74.16135881104033 - type: dot_recall value: 80.6821681552202 - type: euclidean_accuracy value: 88.55706911941631 - type: euclidean_ap value: 85.20971719214488 - type: euclidean_f1 value: 77.28446050593702 - type: euclidean_precision value: 74.16135881104033 - type: euclidean_recall value: 80.6821681552202 - type: manhattan_accuracy value: 88.52020025614158 - type: manhattan_ap value: 85.17569799117058 - type: manhattan_f1 value: 77.27157773040933 - type: manhattan_precision value: 72.79286638077734 - type: manhattan_recall value: 82.33754234678165 - type: max_accuracy value: 88.55706911941631 - type: max_ap value: 85.20971719214488 - type: max_f1 value: 77.28446050593702 - task: type: Clustering dataset: name: MTEB WikiCitiesClustering type: jinaai/cities_wiki_clustering config: default split: test revision: ddc9ee9242fa65332597f70e967ecc38b9d734fa metrics: - type: v_measure value: 85.63474850264893 --- # yixuan-chia/snowflake-arctic-embed-m-long-Q8_0-GGUF This model was converted to GGUF format from [`Snowflake/snowflake-arctic-embed-m-long`](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-long) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-long) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo yixuan-chia/snowflake-arctic-embed-m-long-Q8_0-GGUF --hf-file snowflake-arctic-embed-m-long-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo yixuan-chia/snowflake-arctic-embed-m-long-Q8_0-GGUF --hf-file snowflake-arctic-embed-m-long-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo yixuan-chia/snowflake-arctic-embed-m-long-Q8_0-GGUF --hf-file snowflake-arctic-embed-m-long-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo yixuan-chia/snowflake-arctic-embed-m-long-Q8_0-GGUF --hf-file snowflake-arctic-embed-m-long-q8_0.gguf -c 2048 ```
quangtuyennguyen/my_awesome_qa_model
quangtuyennguyen
2024-08-29T03:44:24Z
5
0
null
[ "tensorboard", "safetensors", "xlm-roberta", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "region:us" ]
null
2024-08-29T00:41:00Z
--- license: mit base_model: FacebookAI/xlm-roberta-base tags: - generated_from_trainer model-index: - name: my_awesome_qa_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_qa_model This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3096 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.3423 | 1.0 | 500 | 2.5012 | | 2.2342 | 2.0 | 1000 | 2.3128 | | 1.8956 | 3.0 | 1500 | 2.3096 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1
PotatoB/Model_Kinship_4-1
PotatoB
2024-08-29T03:34:49Z
5
0
null
[ "safetensors", "mistral", "merge", "mergekit", "lazymergekit", "PotatoB/evo_exp-point-2-1", "PotatoB/evo_exp-point-3-2", "license:apache-2.0", "region:us" ]
null
2024-08-29T03:31:59Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - PotatoB/evo_exp-point-2-1 - PotatoB/evo_exp-point-3-2 --- # evo_exp-point-4-5 evo_exp-point-4-5 is a merge of the following models using [mergekit](https://github.com/cg123/mergekit): * [PotatoB/evo_exp-point-2-1](https://huggingface.co/PotatoB/evo_exp-point-2-1) * [PotatoB/evo_exp-point-3-2](https://huggingface.co/PotatoB/evo_exp-point-3-2) ## 🧩 Configuration ```yaml slices: - sources: - model: PotatoB/evo_exp-point-2-1 layer_range: [0, 32] - model: PotatoB/evo_exp-point-3-2 layer_range: [0, 32] merge_method: slerp base_model: PotatoB/evo_exp-point-2-1 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ```
minhhien0811/deita-3366
minhhien0811
2024-08-29T03:29:03Z
5
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-08-29T03:26:21Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
fitri-bt/fitri-phi
fitri-bt
2024-08-29T03:13:35Z
39
0
transformers
[ "transformers", "safetensors", "phi3", "text-generation", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-08-29T03:10:55Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RichardErkhov/OpenBuddy_-_openbuddy-deepseek-67b-v15.1-gguf
RichardErkhov
2024-08-29T03:11:44Z
358
0
null
[ "gguf", "endpoints_compatible", "region:us" ]
null
2024-08-28T05:18:41Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) openbuddy-deepseek-67b-v15.1 - GGUF - Model creator: https://huggingface.co/OpenBuddy/ - Original model: https://huggingface.co/OpenBuddy/openbuddy-deepseek-67b-v15.1/ | Name | Quant method | Size | | ---- | ---- | ---- | | [openbuddy-deepseek-67b-v15.1.Q2_K.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-67b-v15.1-gguf/blob/main/openbuddy-deepseek-67b-v15.1.Q2_K.gguf) | Q2_K | 23.4GB | | [openbuddy-deepseek-67b-v15.1.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-67b-v15.1-gguf/blob/main/openbuddy-deepseek-67b-v15.1.IQ3_XS.gguf) | IQ3_XS | 25.95GB | | [openbuddy-deepseek-67b-v15.1.IQ3_S.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-67b-v15.1-gguf/blob/main/openbuddy-deepseek-67b-v15.1.IQ3_S.gguf) | IQ3_S | 27.39GB | | [openbuddy-deepseek-67b-v15.1.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-67b-v15.1-gguf/blob/main/openbuddy-deepseek-67b-v15.1.Q3_K_S.gguf) | Q3_K_S | 27.3GB | | [openbuddy-deepseek-67b-v15.1.IQ3_M.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-67b-v15.1-gguf/blob/main/openbuddy-deepseek-67b-v15.1.IQ3_M.gguf) | IQ3_M | 28.43GB | | [openbuddy-deepseek-67b-v15.1.Q3_K.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-67b-v15.1-gguf/blob/main/openbuddy-deepseek-67b-v15.1.Q3_K.gguf) | Q3_K | 30.41GB | | [openbuddy-deepseek-67b-v15.1.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-67b-v15.1-gguf/blob/main/openbuddy-deepseek-67b-v15.1.Q3_K_M.gguf) | Q3_K_M | 30.41GB | | [openbuddy-deepseek-67b-v15.1.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-67b-v15.1-gguf/blob/main/openbuddy-deepseek-67b-v15.1.Q3_K_L.gguf) | Q3_K_L | 33.13GB | | [openbuddy-deepseek-67b-v15.1.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-67b-v15.1-gguf/blob/main/openbuddy-deepseek-67b-v15.1.IQ4_XS.gguf) | IQ4_XS | 34.0GB | | [openbuddy-deepseek-67b-v15.1.Q4_0.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-67b-v15.1-gguf/blob/main/openbuddy-deepseek-67b-v15.1.Q4_0.gguf) | Q4_0 | 35.53GB | | [openbuddy-deepseek-67b-v15.1.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-67b-v15.1-gguf/blob/main/openbuddy-deepseek-67b-v15.1.IQ4_NL.gguf) | IQ4_NL | 35.86GB | | [openbuddy-deepseek-67b-v15.1.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-67b-v15.1-gguf/blob/main/openbuddy-deepseek-67b-v15.1.Q4_K_S.gguf) | Q4_K_S | 35.77GB | | [openbuddy-deepseek-67b-v15.1.Q4_K.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-67b-v15.1-gguf/tree/main/) | Q4_K | 37.66GB | | [openbuddy-deepseek-67b-v15.1.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-67b-v15.1-gguf/tree/main/) | Q4_K_M | 37.66GB | | [openbuddy-deepseek-67b-v15.1.Q4_1.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-67b-v15.1-gguf/tree/main/) | Q4_1 | 39.41GB | | [openbuddy-deepseek-67b-v15.1.Q5_0.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-67b-v15.1-gguf/tree/main/) | Q5_0 | 43.28GB | | [openbuddy-deepseek-67b-v15.1.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-67b-v15.1-gguf/tree/main/) | Q5_K_S | 43.28GB | | [openbuddy-deepseek-67b-v15.1.Q5_K.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-67b-v15.1-gguf/tree/main/) | Q5_K | 44.38GB | | [openbuddy-deepseek-67b-v15.1.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-67b-v15.1-gguf/tree/main/) | Q5_K_M | 44.38GB | | [openbuddy-deepseek-67b-v15.1.Q5_1.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-67b-v15.1-gguf/tree/main/) | Q5_1 | 47.16GB | | [openbuddy-deepseek-67b-v15.1.Q6_K.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-67b-v15.1-gguf/tree/main/) | Q6_K | 51.52GB | | [openbuddy-deepseek-67b-v15.1.Q8_0.gguf](https://huggingface.co/RichardErkhov/OpenBuddy_-_openbuddy-deepseek-67b-v15.1-gguf/tree/main/) | Q8_0 | 66.73GB | Original model description: --- language: - zh - en - fr - de - ja - ko - it - ru - fi pipeline_tag: text-generation inference: false library_name: transformers license: other license_name: deepseek license_link: https://github.com/deepseek-ai/DeepSeek-LLM/blob/548a39bdd03986297ea4e233a8b7676edd6bec3e/LICENSE-MODEL --- # OpenBuddy - Open Multilingual Chatbot GitHub and Usage Guide: [https://github.com/OpenBuddy/OpenBuddy](https://github.com/OpenBuddy/OpenBuddy) Website and Demo: [https://openbuddy.ai](https://openbuddy.ai) Evaluation result of this model: [Evaluation.txt](Evaluation.txt) ![Demo](https://raw.githubusercontent.com/OpenBuddy/OpenBuddy/main/media/demo.png) # Copyright Notice Base model: https://huggingface.co/deepseek-ai/deepseek-llm-67b-base License: [deepseek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/548a39bdd03986297ea4e233a8b7676edd6bec3e/LICENSE-MODEL) ## Disclaimer All OpenBuddy models have inherent limitations and may potentially produce outputs that are erroneous, harmful, offensive, or otherwise undesirable. Users should not use these models in critical or high-stakes situations that may lead to personal injury, property damage, or significant losses. Examples of such scenarios include, but are not limited to, the medical field, controlling software and hardware systems that may cause harm, and making important financial or legal decisions. OpenBuddy is provided "as-is" without any warranty of any kind, either express or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement. In no event shall the authors, contributors, or copyright holders be liable for any claim, damages, or other liabilities, whether in an action of contract, tort, or otherwise, arising from, out of, or in connection with the software or the use or other dealings in the software. By using OpenBuddy, you agree to these terms and conditions, and acknowledge that you understand the potential risks associated with its use. You also agree to indemnify and hold harmless the authors, contributors, and copyright holders from any claims, damages, or liabilities arising from your use of OpenBuddy. ## 免责声明 所有OpenBuddy模型均存在固有的局限性,可能产生错误的、有害的、冒犯性的或其他不良的输出。用户在关键或高风险场景中应谨慎行事,不要使用这些模型,以免导致人身伤害、财产损失或重大损失。此类场景的例子包括但不限于医疗领域、可能导致伤害的软硬件系统的控制以及进行重要的财务或法律决策。 OpenBuddy按“原样”提供,不附带任何种类的明示或暗示的保证,包括但不限于适销性、特定目的的适用性和非侵权的暗示保证。在任何情况下,作者、贡献者或版权所有者均不对因软件或使用或其他软件交易而产生的任何索赔、损害赔偿或其他责任(无论是合同、侵权还是其他原因)承担责任。 使用OpenBuddy即表示您同意这些条款和条件,并承认您了解其使用可能带来的潜在风险。您还同意赔偿并使作者、贡献者和版权所有者免受因您使用OpenBuddy而产生的任何索赔、损害赔偿或责任的影响。
cheelam/mms-tts-purepixel-finetuned
cheelam
2024-08-29T02:56:24Z
107
0
transformers
[ "transformers", "safetensors", "vits", "text-to-audio", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
text-to-audio
2024-08-22T15:16:35Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
TTTXXX01/Meta-Llama-3-8B-Instruct-MI-5e-7
TTTXXX01
2024-08-29T02:53:17Z
5
0
null
[ "safetensors", "llama", "alignment_handbook-handbook", "generated_from_trainer", "dataset:princeton-nlp/llama3-ultrafeedback-armorm", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:finetune:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2024-08-29T02:46:44Z
--- license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - alignment_handbook-handbook - generated_from_trainer datasets: - princeton-nlp/llama3-ultrafeedback-armorm model-index: - name: Meta-Llama-3-8B-Instruct-MI-5e-7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/tengxiao01/huggingface/runs/rjb4skgf) # Meta-Llama-3-8B-Instruct-MI-5e-7 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the princeton-nlp/llama3-ultrafeedback-armorm dataset. It achieves the following results on the evaluation set: - Loss: 1.2118 - Rewards/chosen: -0.3920 - Rewards/rejected: -0.5306 - Rewards/accuracies: 0.7175 - Rewards/margins: 0.1385 - Logps/rejected: -0.5306 - Logps/chosen: -0.3920 - Logits/rejected: 0.0847 - Logits/chosen: 0.1025 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 1.2128 | 0.8550 | 400 | 1.2118 | -0.3920 | -0.5306 | 0.7175 | 0.1385 | -0.5306 | -0.3920 | 0.0847 | 0.1025 | ### Framework versions - Transformers 4.42.0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.19.1
PeterTP/MN-12B-Lyra-v3-Q8_0-GGUF
PeterTP
2024-08-29T02:51:41Z
8
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "en", "base_model:Sao10K/MN-12B-Lyra-v3", "base_model:quantized:Sao10K/MN-12B-Lyra-v3", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-08-29T02:50:48Z
--- base_model: Sao10K/MN-12B-Lyra-v3 language: - en license: cc-by-nc-4.0 tags: - llama-cpp - gguf-my-repo --- # PeterTP/MN-12B-Lyra-v3-Q8_0-GGUF This model was converted to GGUF format from [`Sao10K/MN-12B-Lyra-v3`](https://huggingface.co/Sao10K/MN-12B-Lyra-v3) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Sao10K/MN-12B-Lyra-v3) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo PeterTP/MN-12B-Lyra-v3-Q8_0-GGUF --hf-file mn-12b-lyra-v3-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo PeterTP/MN-12B-Lyra-v3-Q8_0-GGUF --hf-file mn-12b-lyra-v3-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo PeterTP/MN-12B-Lyra-v3-Q8_0-GGUF --hf-file mn-12b-lyra-v3-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo PeterTP/MN-12B-Lyra-v3-Q8_0-GGUF --hf-file mn-12b-lyra-v3-q8_0.gguf -c 2048 ```
mradermacher/MagnumRPMerge-i1-GGUF
mradermacher
2024-08-29T02:12:18Z
19
0
transformers
[ "transformers", "gguf", "en", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-08-28T20:33:24Z
--- base_model: DazzlingXeno/MagnumRPMerge language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/DazzlingXeno/MagnumRPMerge <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/MagnumRPMerge-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/MagnumRPMerge-i1-GGUF/resolve/main/MagnumRPMerge.i1-IQ1_S.gguf) | i1-IQ1_S | 7.6 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/MagnumRPMerge-i1-GGUF/resolve/main/MagnumRPMerge.i1-IQ1_M.gguf) | i1-IQ1_M | 8.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/MagnumRPMerge-i1-GGUF/resolve/main/MagnumRPMerge.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 9.4 | | | [GGUF](https://huggingface.co/mradermacher/MagnumRPMerge-i1-GGUF/resolve/main/MagnumRPMerge.i1-IQ2_XS.gguf) | i1-IQ2_XS | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/MagnumRPMerge-i1-GGUF/resolve/main/MagnumRPMerge.i1-IQ2_S.gguf) | i1-IQ2_S | 11.0 | | | [GGUF](https://huggingface.co/mradermacher/MagnumRPMerge-i1-GGUF/resolve/main/MagnumRPMerge.i1-IQ2_M.gguf) | i1-IQ2_M | 11.9 | | | [GGUF](https://huggingface.co/mradermacher/MagnumRPMerge-i1-GGUF/resolve/main/MagnumRPMerge.i1-Q2_K.gguf) | i1-Q2_K | 12.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/MagnumRPMerge-i1-GGUF/resolve/main/MagnumRPMerge.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 13.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/MagnumRPMerge-i1-GGUF/resolve/main/MagnumRPMerge.i1-IQ3_XS.gguf) | i1-IQ3_XS | 14.3 | | | [GGUF](https://huggingface.co/mradermacher/MagnumRPMerge-i1-GGUF/resolve/main/MagnumRPMerge.i1-Q3_K_S.gguf) | i1-Q3_K_S | 15.1 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/MagnumRPMerge-i1-GGUF/resolve/main/MagnumRPMerge.i1-IQ3_S.gguf) | i1-IQ3_S | 15.1 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/MagnumRPMerge-i1-GGUF/resolve/main/MagnumRPMerge.i1-IQ3_M.gguf) | i1-IQ3_M | 15.7 | | | [GGUF](https://huggingface.co/mradermacher/MagnumRPMerge-i1-GGUF/resolve/main/MagnumRPMerge.i1-Q3_K_M.gguf) | i1-Q3_K_M | 16.8 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/MagnumRPMerge-i1-GGUF/resolve/main/MagnumRPMerge.i1-Q3_K_L.gguf) | i1-Q3_K_L | 18.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/MagnumRPMerge-i1-GGUF/resolve/main/MagnumRPMerge.i1-IQ4_XS.gguf) | i1-IQ4_XS | 18.6 | | | [GGUF](https://huggingface.co/mradermacher/MagnumRPMerge-i1-GGUF/resolve/main/MagnumRPMerge.i1-Q4_0.gguf) | i1-Q4_0 | 19.6 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/MagnumRPMerge-i1-GGUF/resolve/main/MagnumRPMerge.i1-Q4_K_S.gguf) | i1-Q4_K_S | 19.7 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/MagnumRPMerge-i1-GGUF/resolve/main/MagnumRPMerge.i1-Q4_K_M.gguf) | i1-Q4_K_M | 20.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MagnumRPMerge-i1-GGUF/resolve/main/MagnumRPMerge.i1-Q5_K_S.gguf) | i1-Q5_K_S | 23.8 | | | [GGUF](https://huggingface.co/mradermacher/MagnumRPMerge-i1-GGUF/resolve/main/MagnumRPMerge.i1-Q5_K_M.gguf) | i1-Q5_K_M | 24.4 | | | [GGUF](https://huggingface.co/mradermacher/MagnumRPMerge-i1-GGUF/resolve/main/MagnumRPMerge.i1-Q6_K.gguf) | i1-Q6_K | 28.3 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
yefo-ufpe/distilbert-base-uncased-swag-full
yefo-ufpe
2024-08-29T02:10:49Z
105
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "multiple-choice", "trl", "sft", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
multiple-choice
2024-08-28T23:09:42Z
--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - trl - sft - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-swag-full results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-swag-full This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.7135 - Accuracy: 0.6963 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.918 | 1.0 | 4597 | 0.8133 | 0.6691 | | 0.5775 | 2.0 | 9194 | 0.8260 | 0.6879 | | 0.3129 | 3.0 | 13791 | 1.0329 | 0.6933 | | 0.1728 | 4.0 | 18388 | 1.8823 | 0.6927 | | 0.0824 | 5.0 | 22985 | 2.7135 | 0.6963 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1
ndeclarke/whisper-base-malayalam-colab-CV17.0
ndeclarke
2024-08-29T02:07:45Z
5
0
null
[ "tensorboard", "safetensors", "whisper", "generated_from_trainer", "dataset:common_voice_17_0", "base_model:openai/whisper-base", "base_model:finetune:openai/whisper-base", "license:apache-2.0", "model-index", "region:us" ]
null
2024-08-28T23:46:31Z
--- license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: whisper-base-malayalam-colab-CV17.0 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: ml split: test args: ml metrics: - name: Wer type: wer value: 0.7675693101225016 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-base-malayalam-colab-CV17.0 This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4369 - Wer: 0.7676 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.15 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 1.0335 | 1.5748 | 200 | 0.4105 | 0.9504 | | 0.2301 | 3.1496 | 400 | 0.3121 | 0.8417 | | 0.0954 | 4.7244 | 600 | 0.2964 | 0.8288 | | 0.0442 | 6.2992 | 800 | 0.3350 | 0.7843 | | 0.0217 | 7.8740 | 1000 | 0.3740 | 0.8133 | | 0.0104 | 9.4488 | 1200 | 0.3858 | 0.7782 | | 0.0048 | 11.0236 | 1400 | 0.4128 | 0.7747 | | 0.002 | 12.5984 | 1600 | 0.4319 | 0.7747 | | 0.0006 | 14.1732 | 1800 | 0.4324 | 0.7701 | | 0.0002 | 15.7480 | 2000 | 0.4369 | 0.7676 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1
backyardai/L3.1-8B-Niitama-v1.1-GGUF
backyardai
2024-08-29T01:47:02Z
217
0
null
[ "gguf", "en", "base_model:Sao10K/L3.1-8B-Niitama-v1.1", "base_model:quantized:Sao10K/L3.1-8B-Niitama-v1.1", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-08-16T06:07:23Z
--- base_model: Sao10K/L3.1-8B-Niitama-v1.1 language: - en license: cc-by-nc-4.0 model_name: L3.1-8B-Niitama-v1.1-GGUF quantized_by: brooketh parameter_count: 8030261312 --- <img src="BackyardAI_Banner.png" alt="Backyard.ai" style="height: 90px; min-width: 32px; display: block; margin: auto;"> **<p style="text-align: center;">The official library of GGUF format models for use in the local AI chat app, Backyard AI.</p>** <p style="text-align: center;"><a href="https://backyard.ai/">Download Backyard AI here to get started.</a></p> <p style="text-align: center;"><a href="https://www.reddit.com/r/LLM_Quants/">Request Additional models at r/LLM_Quants.</a></p> *** # L3.1 Niitama V1.1 8B - **Creator:** [Sao10K](https://huggingface.co/Sao10K/) - **Original:** [L3.1 Niitama V1.1 8B](https://huggingface.co/Sao10K/L3.1-8B-Niitama-v1.1) - **Date Created:** 2024-08-03 - **Trained Context:** 131072 tokens - **Description:** Version 1.1 of a very experimental model using experimental methods. Based on Llama-3 8B. Very quirky and unpredictable; may not be to everyone's taste. *** ## What is a GGUF? GGUF is a large language model (LLM) format that can be split between CPU and GPU. GGUFs are compatible with applications based on llama.cpp, such as Backyard AI. Where other model formats require higher end GPUs with ample VRAM, GGUFs can be efficiently run on a wider variety of hardware. GGUF models are quantized to reduce resource usage, with a tradeoff of reduced coherence at lower quantizations. Quantization reduces the precision of the model weights by changing the number of bits used for each weight. *** <img src="BackyardAI_Logo.png" alt="Backyard.ai" style="height: 75px; min-width: 32px; display: block; horizontal align: left;"> ## Backyard AI - Free, local AI chat application. - One-click installation on Mac and PC. - Automatically use GPU for maximum speed. - Built-in model manager. - High-quality character hub. - Zero-config desktop-to-mobile tethering. Backyard AI makes it easy to start chatting with AI using your own characters or one of the many found in the built-in character hub. The model manager helps you find the latest and greatest models without worrying about whether it's the correct format. Backyard AI supports advanced features such as lorebooks, author's note, text formatting, custom context size, sampler settings, grammars, local TTS, cloud inference, and tethering, all implemented in a way that is straightforward and reliable. **Join us on [Discord](https://discord.gg/SyNN2vC9tQ)** ***
alban12/nllb-200-distilled-600M-mt-finetuned-zindi-dyu-to-fr
alban12
2024-08-29T01:44:18Z
104
0
transformers
[ "transformers", "tensorboard", "safetensors", "m2m_100", "text2text-generation", "translation", "generated_from_trainer", "base_model:facebook/nllb-200-distilled-600M", "base_model:finetune:facebook/nllb-200-distilled-600M", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2024-08-28T18:08:10Z
--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/nllb-200-distilled-600M tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: nllb-200-distilled-600M-mt-finetuned-zindi-dyu-to-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nllb-200-distilled-600M-mt-finetuned-zindi-dyu-to-fr This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2584 - Bleu: 6.4075 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:------:|:----:|:---------------:|:------:| | 3.1707 | 0.1575 | 20 | 2.7356 | 4.8084 | | 2.9074 | 0.3150 | 40 | 2.5883 | 5.0141 | | 2.7168 | 0.4724 | 60 | 2.4902 | 5.5785 | | 2.6912 | 0.6299 | 80 | 2.4154 | 5.7743 | | 2.6062 | 0.7874 | 100 | 2.3742 | 6.0010 | | 2.5794 | 0.9449 | 120 | 2.3480 | 6.1354 | | 2.4634 | 1.1024 | 140 | 2.3314 | 5.9899 | | 2.5055 | 1.2598 | 160 | 2.3167 | 6.1080 | | 2.5062 | 1.4173 | 180 | 2.3032 | 6.3784 | | 2.4771 | 1.5748 | 200 | 2.2944 | 6.4510 | | 2.4284 | 1.7323 | 220 | 2.2854 | 6.2883 | | 2.4423 | 1.8898 | 240 | 2.2783 | 6.5036 | | 2.3202 | 2.0472 | 260 | 2.2730 | 6.4039 | | 2.3855 | 2.2047 | 280 | 2.2701 | 6.2921 | | 2.4292 | 2.3622 | 300 | 2.2658 | 6.3025 | | 2.3678 | 2.5197 | 320 | 2.2626 | 6.2881 | | 2.4158 | 2.6772 | 340 | 2.2600 | 6.3684 | | 2.351 | 2.8346 | 360 | 2.2588 | 6.2852 | | 2.3755 | 2.9921 | 380 | 2.2584 | 6.2819 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1
rusticluftig/700m-better
rusticluftig
2024-08-29T01:43:18Z
163
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-08-28T05:09:04Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mc0c0z/Medical-Depth-Anything-V2-Small
mc0c0z
2024-08-29T01:28:50Z
132
0
transformers
[ "transformers", "safetensors", "depth_anything", "depth-estimation", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
depth-estimation
2024-08-18T11:39:30Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
agentlans/Llama3-vodka
agentlans
2024-08-29T01:19:26Z
8
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "llama-3", "uncensored", "mergekit", "merge", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-08-11T04:14:34Z
--- library_name: transformers tags: - llama - llama-3 - uncensored - mergekit - merge --- # Llama3-vodka - Input: text only - Output: text only This model is like vodka. It aims to be pure, potent, and versatile. - Pure: shouldn't greatly affect Llama 3 Instruct's capabilities and writing style except for uncensoring - Potent: it's a merge of abliterated models - it should stay uncensored after merging and finetuning - Versatile: basically Llama 3 Instruct except uncensored - drink it straight, mix it, finetune it, and make cocktails Please enjoy responsibly. ## Safety and risks - Excessive consumption is bad for your health - The model can produce harmful, offensive, or inappropriate content if prompted to do so - The model has weakened safeguards and a lack of moral and ethical judgements - The user takes responsibility for all outputs produced by the model - It is recommended to use the model in controlled environments where its risks can be safely managed ## Models used: - [cognitivecomputations/Llama-3-8B-Instruct-abliterated-v2](https://huggingface.co/cognitivecomputations/Llama-3-8B-Instruct-abliterated-v2) - [failspy/Meta-Llama-3-8B-Instruct-abliterated-v3](https://huggingface.co/failspy/Meta-Llama-3-8B-Instruct-abliterated-v3) - Meta-Llama-3-Daredevil-8B-abliterated-Instruct-16, which is Llama 3 8B Instruct with - rank 32 LoRA of [Meta-Llama-3-Daredevil-8B-abliterated](https://huggingface.co/mlabonne/Daredevil-8B-abliterated) vs. [Meta-Llama-3-Daredevil](https://huggingface.co/mlabonne/Daredevil-8B) - rank 16 LoRA of Llama 3 8B Instruct vs. Llama 3 8B Base The above models were merged onto [NousResearch/Meta-Llama-3-8B-Instruct](https://huggingface.co/NousResearch/Meta-Llama-3-8B-Instruct) using the "task arithmetic" merge method. The model merges and LoRA extractions were done using [mergekit](https://github.com/arcee-ai/mergekit).
agentlans/Llama3.1-vodka
agentlans
2024-08-29T01:17:15Z
5
3
transformers
[ "transformers", "safetensors", "llama", "text-generation", "llama-3", "uncensored", "mergekit", "merge", "conversational", "base_model:NousResearch/Meta-Llama-3.1-8B-Instruct", "base_model:merge:NousResearch/Meta-Llama-3.1-8B-Instruct", "base_model:agentlans/Llama3-vodka", "base_model:merge:agentlans/Llama3-vodka", "base_model:grimjim/Llama-3.1-8B-Instruct-abliterated_via_adapter", "base_model:merge:grimjim/Llama-3.1-8B-Instruct-abliterated_via_adapter", "base_model:mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated", "base_model:merge:mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-08-23T06:33:02Z
--- base_model: - mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated - grimjim/Llama-3.1-8B-Instruct-abliterated_via_adapter - agentlans/Llama3-vodka - NousResearch/Meta-Llama-3.1-8B-Instruct library_name: transformers tags: - llama - llama-3 - uncensored - mergekit - merge --- # Llama3.1-vodka - Input: text only - Output: text only This model is like vodka. It aims to be pure, potent, and versatile. - Pure: shouldn't greatly affect Llama 3.1 Instruct's capabilities and writing style except for uncensoring - Potent: it's a merge of abliterated models - it should stay uncensored after merging and finetuning - Versatile: basically Llama 3.1 Instruct except uncensored - drink it straight, mix it, finetune it, and make cocktails Please enjoy responsibly. Note that this model may still censor at times. If that's undesirable, tell the AI to be more uncensored and uninhibited. ## Safety and risks - Excessive consumption is bad for your health - The model can produce harmful, offensive, or inappropriate content if prompted to do so - The model has weakened safeguards and a lack of moral and ethical judgements - The user takes responsibility for all outputs produced by the model - It is recommended to use the model in controlled environments where its risks can be safely managed ## Models used: - [mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated](https://huggingface.co/mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated) - `Llama-3.1-8B-Instruct-abliterated_via_adapter2` (Llama 3.1 adapted version of [grimjim/Llama-3.1-8B-Instruct-abliterated_via_adapter](https://huggingface.co/grimjim/Llama-3.1-8B-Instruct-abliterated_via_adapter)) - `Llama3.1-vodka-ported2` (Llama 3.1 adapted verison of [agentlans/Llama3-vodka](https://huggingface.co/agentlans/Llama3-vodka)) The above models were merged onto [NousResearch/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/NousResearch/Meta-Llama-3.1-8B-Instruct) using the "task arithmetic" merge method. The model merges and LoRA extractions were done using [mergekit](https://github.com/arcee-ai/mergekit).
mc0c0z/Medical-Depth-Anything-V2-Small-Frozen-Encoder
mc0c0z
2024-08-29T01:05:40Z
135
0
transformers
[ "transformers", "safetensors", "depth_anything", "depth-estimation", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
depth-estimation
2024-08-18T11:36:54Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
John6666/flux1-dev-minus-v1-fp8-flux
John6666
2024-08-29T01:04:06Z
146
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "Flux", "fp8", "float8_e4m3fn", "en", "base_model:bluepen5805/FLUX.1-dev-minus", "base_model:finetune:bluepen5805/FLUX.1-dev-minus", "license:other", "endpoints_compatible", "diffusers:FluxPipeline", "region:us" ]
text-to-image
2024-08-29T00:54:58Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE. language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - Flux - fp8 - float8_e4m3fn base_model: bluepen5805/FLUX.1-dev-minus --- Original model is [here](https://huggingface.co/bluepen5805/FLUX.1-dev-minus). This model created by [bluepen5805](https://huggingface.co/bluepen5805). ## Notice This is an experimental conversion in Spaces using a homebrew script. serverless Inference API does not currently support torch float8_e4m3fn, so it does not work. I have not been able to confirm if the conversion is working properly. Please consider this as a test run only.
QuantFactory/opus-v1.2-llama-3-8b-GGUF
QuantFactory
2024-08-29T00:42:39Z
89
1
null
[ "gguf", "unsloth", "axolotl", "text-generation", "en", "license:cc-by-nc-nd-4.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-04-24T23:57:52Z
--- language: - en pipeline_tag: text-generation tags: - unsloth - axolotl license: cc-by-nc-nd-4.0 --- ![](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ) # QuantFactory/opus-v1.2-llama-3-8b-GGUF This is quantized version of [dreamgen/opus-v1.2-llama-3-8b](https://huggingface.co/dreamgen/opus-v1.2-llama-3-8b) created using llama.cpp # Original Model Card # Llama 3 DreamGen Opus > ## 🚨 WARNING 🚨 > > This model has issues, please use the following preview models instead: > - [New train on top of Llama 3 8B Base](https://huggingface.co/dreamgen-preview/opus-v1.2-llama-3-8b-base-run3.4-epoch2) > - [New train on top of Llama 3 8B Instruct](https://huggingface.co/dreamgen-preview/opus-v1.2-llama-3-8b-instruct-run3.5-epoch2.5) > > Make sure to read [this discussion](https://huggingface.co/dreamgen/opus-v1.2-llama-3-8b/discussions/3#6622914ac2925305f6d8b86c) if the model won't stop generating output. <div style="display: flex; flex-direction: row; align-items: center;"> <img src="/dreamgen/opus-v1.2-llama-3-8b/resolve/main/images/logo-1024.png" alt="model logo" style=" border-radius: 12px; margin-right: 12px; margin-top: 0px; margin-bottom: 0px; max-width: 100px; height: auto; "/> Models for **(steerable) story-writing and role-playing**. <br/>[All Opus V1 models, including quants](https://huggingface.co/collections/dreamgen/opus-v1-65d092a6f8ab7fc669111b31). </div> ## Resources - [**Opus V1 prompting guide**](https://dreamgen.com/docs/models/opus/v1) with many (interactive) examples and prompts that you can copy. - [**Google Colab**](https://colab.research.google.com/drive/1J178fH6IdQOXNi-Njgdacf5QgAxsdT20?usp=sharing) for interactive role-play using `opus-v1.2-7b`. - [Python code](example/prompt/format.py) to format the prompt correctly. - Join the community on [**Discord**](https://dreamgen.com/discord) to get early access to new models. <img src="/dreamgen/opus-v1.2-llama-3-8b/resolve/main/images/story_writing.webp" alt="story writing on dreamgen.com" style=" padding: 12px; border-radius: 12px; border: 2px solid #f9a8d4; background: rgb(9, 9, 11); "/> ## Prompting <details> <summary>The models use an extended version of ChatML.</summary> ``` <|im_start|>system (Story description in the right format here) (Typically consists of plot description, style description and characters)<|im_end|> <|im_start|>user (Your instruction on how the story should continue)<|im_end|> <|im_start|>text names= Alice (Continuation of the story from the Alice character)<|im_end|> <|im_start|>text (Continuation of the story from no character in particular (pure narration))<|im_end|> <|im_start|>user (Your instruction on how the story should continue)<|im_end|> <|im_start|>text names= Bob (Continuation of the story from the Bob character)<|im_end|> ``` The Opus V1 extension is the addition of the `text` role, and the addition / modification of role names. Pay attention to the following: - The `text` messages can (but don't have to have) `names`, names are used to indicate the "active" character during role-play. - There can be multiple subsequent message with a `text` role, especially if names are involved. - There can be multiple names attached to a message. - The format for names is `names= {{name[0]}}; {{name[1]}}`, beware of the spaces after `names=` and after the `;`. This spacing leads to most natural tokenization for the names. </details> While the main goal for the models is great story-writing and role-playing performance, the models are also capable of several writing related tasks as well as general assistance. Here's how you can prompt the model for the following tasks ### Steerable Story-writing and Role-playing: - [Story-writing prompt guide](https://dreamgen.com/docs/models/opus/v1#task-story-writing) - [Role-playing prompt guide](https://dreamgen.com/docs/models/opus/v1#task-role-playing) - Input: - System prompt: You provide story / role-play description, which consists of: - Plot description - Style description - Characters and their descriptions - Conversation turns: - Text / message turn: This represents part of the story or role play - Instruction: This tells the model what should happen next - Output: Continuation of the story / role-play. ### Story plot summarization - [Prompt guide](https://dreamgen.com/docs/models/opus/v1#task-plot-description) - Input: A story, or a few chapters of a story. - Output: A description of the story or chapters. #### Examples: <details> <summary>Summary of <a href="https://www.libraryofshortstories.com/onlinereader/the-last-incantation">short fiction story</a> in 50 words</summary> <blockquote> Malygris, a powerful magician, summons his long-dead lover Nylissa from the grave using necromancy. However, upon seeing her, he realizes that she is not the same person he once knew, leading him to question the nature of love, memory, and the power of magic. </blockquote> </details> <details> <summary>Summary of <a href="https://www.libraryofshortstories.com/onlinereader/the-last-incantation">short fiction story</a> in 200 words</summary> <blockquote> The story is a dark fantasy set in the city of Susran, where an ancient and powerful magician named Malygris dwells in a tower atop a conical hill. Malygris, who has mastered all forms of sorcery and necromancy, is plagued by a deep sense of ennui and melancholy. He seeks solace in the memory of Nylissa, a girl he once loved in his youth. One day, Malygris decides to summon Nylissa's spirit from the grave using his necromantic powers. He performs the necessary rituals and incantations, and Nylissa appears before him as a ghostly apparition. However, as Malygris gazes upon her, he becomes increasingly disillusioned. He notices subtle changes in her appearance and behavior that do not match his memories of her. He begins to question whether this is truly the same Nylissa he once knew, or if it is just another illusion conjured by his magic. As Malygris grapples with this uncertainty, he becomes increasingly despondent and disillusioned with life itself. He realizes that even his magic cannot bring back the past or make him truly happy. In the end, he dismisses Nylissa's spirit and returns to his lonely tower, resigned to his fate as an old and weary sorcerer. </blockquote> </details> <details> <summary>Summary of <a href="https://edition.cnn.com/2024/02/29/health/pets-diseases-viruses-bacteria-wellness/index.html">CNN News article</a> in 150 words</summary> <blockquote> The article discusses the recent human deaths from diseases transmitted by animals, specifically Alaskapox and bubonic plague. Dr. Leana Wen, an emergency physician and former Baltimore health commissioner, explains the various ways household pets can transmit diseases to humans. These include fecal-oral transmission, scratches and bites, and vector-borne diseases like ticks, fleas, and mosquitoes. Wen emphasizes the importance of vaccinating pets, maintaining cleanliness, and taking commonsense precautions to reduce disease transmission. She also advises that individuals who are immunocompromised, babies, and pregnant women should take additional care when interacting with animals. </blockquote> </details> <details> <summary>Summary of <a href="https://edition.cnn.com/2024/02/29/health/pets-diseases-viruses-bacteria-wellness/index.html">CNN News article</a> in 50 words</summary> <blockquote> A doctor discusses the risks of diseases transmitted from animals to humans, focusing on household pets like cats and dogs. They emphasize the importance of vaccination, hygiene, and regular veterinary care to prevent these illnesses. </blockquote> </details> ### Story character description - [Prompt guide](https://dreamgen.com/docs/models/opus/v1#task-char-description) - Input: A story, or a few chapters of a story, set of characters. - Output: A description of the characters. #### Examples: <details> <summary>Description of the Malygris character from <a href="https://www.libraryofshortstories.com/onlinereader/the-last-incantation">this story</a> in 50 words</summary> <blockquote> Malygris is an ancient and powerful magician, characterized by his long white beard, cold green eyes, and a violet robe. He is a master of necromancy and possesses a vast knowledge of forbidden magic. Despite his immense power, he is plagued by a deep sense of melancholy and ennui. </blockquote> </details> <details> <summary>Description of the prince character from <a href="https://www.libraryofshortstories.com/onlinereader/the-pearl-of-love">this story</a> in 50 words</summary> <blockquote> The prince is a devoted and determined individual, driven by his love for his late queen. He is described as a graceful youth in the beginning, but as he grows older, his dedication to the Pearl of Love transforms him into a grave and intent man. His sense of color and design evolves over time, reflecting his growing maturity and artistic vision. </blockquote> </details> ### Story style description - [Prompt guide](https://dreamgen.com/docs/models/opus/v1#task-style-description) - Input: A story, or a few chapters of a story. - Output: A description the style of the story. <details> <summary>Style description of <a href="https://www.libraryofshortstories.com/onlinereader/the-last-incantation">this story</a></summary> <blockquote> The story is written in a descriptive and evocative style, with a focus on the atmosphere and setting. The author uses vivid and detailed language to create a sense of place and time, and employs a variety of literary devices such as similes, metaphors, and allusions to enhance the mood and tone of the narrative. The sentence structure is varied, with a mix of short and long sentences that create a rhythmic flow to the prose. </blockquote> </details> <details> <summary>Style description of <a href="https://www.libraryofshortstories.com/onlinereader/the-pearl-of-love">this story</a></summary> <blockquote> The writing style is descriptive and evocative, with a focus on the beauty and grandeur of the Pearl of Love. The author uses vivid imagery and sensory details to create a rich and immersive atmosphere. The tone is reverential and contemplative, reflecting the prince's deep love for his queen and his dedication to creating a lasting monument to her memory. </blockquote> </details> ### Story description to chapters - [Prompt guide](https://dreamgen.com/docs/models/opus/v1#task-story-description-to-chapter-descriptions) - Input: A brief plot description and the desired number of chapters. - Output: A description for each chapter. ### And more... ## Sampling params For story-writing and role-play, I recommend "Min P" based sampling with `min_p` in the range `[0.01, 0.1]` and with `temperature` in the range `[0.5, 1.5]`, depending on your preferences. A good starting point would be `min_p=0.1; temperature=0.8`. You may also benefit from setting presence, frequency and repetition penalties, especially at lower temperatures. ## Dataset The fine-tuning dataset consisted of ~100M tokens of steerable story-writing, role-playing, writing-assistant and general-assistant examples. Each example was up to 31000 tokens long. All story-writing and role-playing examples were based on human-written text. ![token count distribution](images/token_count_cum__token_bucket.png) ## Running the model The model is should be compatible with any software that supports the base model, but beware of prompting and tokenization. I recommend using these model versions: - 7B: [no quant (opus-v1.2-7b)](https://huggingface.co/dreamgen/opus-v1.2-7b) - 34B: [no quant (opus-v1-34b)](https://huggingface.co/dreamgen/opus-v1-34b) or [awq (opus-v1-34b-awq)](https://huggingface.co/dreamgen/opus-v1-34b-awq) - 34B: [no quant (opus-v1.2-70b)](https://huggingface.co/dreamgen/opus-v1.2-70b) or [awq (opus-v1.2-70b-awq)](https://huggingface.co/dreamgen/opus-v1.2-70b-awq) ### Running on DreamGen.com (free) You can run the models on [dreamgen.com](https://dreamgen.com) for free — you can use the built-in UI for story-writing & role-playing, or use [the API](https://dreamgen.com/docs/api). ### Running Locally - **Make sure your prompt is as close as possible to the Opus V1** - Regardless of which backend you use, it's important that you format your prompt well and that the tokenization works correctly. - [Read the prompt guide](https://dreamgen.com/docs/models/opus/v1) - [Read the prompt formatting code](example/prompt/format.py) - Make sure `<|im_start|>` and `<|im_end|>` are tokenized correctly - **vLLM** - [**Google Colab**](https://colab.research.google.com/drive/1J178fH6IdQOXNi-Njgdacf5QgAxsdT20?usp=sharing): This is a simple interactive Google Colab to do role-play with the 7B model, it should fit on the T4 GPU. - [Code](example/prompt/interactive.py): This is simple script for interactive chat for one hard-coded scenario. - **SillyTavern** - [Official SillyTavern documentation for DreamGen](https://docs.sillytavern.app/usage/api-connections/dreamgen/) -- applies to both the API an local models - SillyTavern (staging) comes with built-in DreamGen preset for RP - Other presets can be found [here](https://huggingface.co/dreamgen/opus-v1.2-llama-3-8b/tree/main/configs/silly_tavern), v2 kindly provided by @MarinaraSpaghetti - Make sure to unselect `Skip special tokens`, otherwise it won't work - This is just an attempt at approximating the Opus V1 prompt, it won't be perfect - Character cards specifically rewritten for the built-in DreamGen preset: - [Seraphina](configs/silly_tavern/cards/Seraphina.png) (based on the default Seraphina card) - [Lara Lightland](configs/silly_tavern/cards/LaraLightland.png) (based on the card by Deffcolony) - **LM Studio** - [Config](configs/lmstudio/preset.json) - Just like ChatML, just changed "assistant" to "text" role. - **There's a bug** in LM Studio if you delete a message or click "Continue", [see here for details](https://discord.com/channels/1110598183144399058/1212665261128417280/1212665261128417280). - **HuggingFace** - [Chat template](tokenizer_config.json#L51) - Just like ChatML, just changed "assistant" to "text" role. ## Known Issues - **34B repetition**: - The 34B sometimes gets stuck repeating the same word, or synonyms. This seems to be a common problem across various Yi 34B fine-tunes. - **GGUF**: - The tokenization might be messed up. Some users reported that `<|im_start|>` and `<|im_end|>` are tokenized as multiple tokens. Also llama.cpp may not tokenize correctly (the Yi tokenizer is subtly different from the Llama 2 tokenizer). ## License - This model is intended for personal use only, other use is not permitted.
leonzhou286/llama3_8b_instruct_moe
leonzhou286
2024-08-29T00:31:33Z
8
0
null
[ "safetensors", "llama_moe", "en", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:finetune:meta-llama/Meta-Llama-3-8B-Instruct", "license:mit", "region:us" ]
null
2024-08-29T00:18:00Z
--- base_model: meta-llama/Meta-Llama-3-8B-Instruct language: - en license: mit --- # Llama 3 8b Instruct MOE Llama 3 8b Instruct base model converted to MOE style by randomly partitioning the FFN layers of each decoder layer into 8 experts of the same size. Weights are directly taken from the llama3 instruct base model.
RichardErkhov/mncai_-_agiin-13.6B-v0.0-gguf
RichardErkhov
2024-08-29T00:21:06Z
15
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2024-08-28T19:36:00Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) agiin-13.6B-v0.0 - GGUF - Model creator: https://huggingface.co/mncai/ - Original model: https://huggingface.co/mncai/agiin-13.6B-v0.0/ | Name | Quant method | Size | | ---- | ---- | ---- | | [agiin-13.6B-v0.0.Q2_K.gguf](https://huggingface.co/RichardErkhov/mncai_-_agiin-13.6B-v0.0-gguf/blob/main/agiin-13.6B-v0.0.Q2_K.gguf) | Q2_K | 4.77GB | | [agiin-13.6B-v0.0.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/mncai_-_agiin-13.6B-v0.0-gguf/blob/main/agiin-13.6B-v0.0.IQ3_XS.gguf) | IQ3_XS | 5.3GB | | [agiin-13.6B-v0.0.IQ3_S.gguf](https://huggingface.co/RichardErkhov/mncai_-_agiin-13.6B-v0.0-gguf/blob/main/agiin-13.6B-v0.0.IQ3_S.gguf) | IQ3_S | 5.6GB | | [agiin-13.6B-v0.0.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/mncai_-_agiin-13.6B-v0.0-gguf/blob/main/agiin-13.6B-v0.0.Q3_K_S.gguf) | Q3_K_S | 5.57GB | | [agiin-13.6B-v0.0.IQ3_M.gguf](https://huggingface.co/RichardErkhov/mncai_-_agiin-13.6B-v0.0-gguf/blob/main/agiin-13.6B-v0.0.IQ3_M.gguf) | IQ3_M | 5.78GB | | [agiin-13.6B-v0.0.Q3_K.gguf](https://huggingface.co/RichardErkhov/mncai_-_agiin-13.6B-v0.0-gguf/blob/main/agiin-13.6B-v0.0.Q3_K.gguf) | Q3_K | 6.2GB | | [agiin-13.6B-v0.0.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/mncai_-_agiin-13.6B-v0.0-gguf/blob/main/agiin-13.6B-v0.0.Q3_K_M.gguf) | Q3_K_M | 6.2GB | | [agiin-13.6B-v0.0.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/mncai_-_agiin-13.6B-v0.0-gguf/blob/main/agiin-13.6B-v0.0.Q3_K_L.gguf) | Q3_K_L | 6.75GB | | [agiin-13.6B-v0.0.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/mncai_-_agiin-13.6B-v0.0-gguf/blob/main/agiin-13.6B-v0.0.IQ4_XS.gguf) | IQ4_XS | 6.96GB | | [agiin-13.6B-v0.0.Q4_0.gguf](https://huggingface.co/RichardErkhov/mncai_-_agiin-13.6B-v0.0-gguf/blob/main/agiin-13.6B-v0.0.Q4_0.gguf) | Q4_0 | 7.26GB | | [agiin-13.6B-v0.0.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/mncai_-_agiin-13.6B-v0.0-gguf/blob/main/agiin-13.6B-v0.0.IQ4_NL.gguf) | IQ4_NL | 7.33GB | | [agiin-13.6B-v0.0.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/mncai_-_agiin-13.6B-v0.0-gguf/blob/main/agiin-13.6B-v0.0.Q4_K_S.gguf) | Q4_K_S | 7.31GB | | [agiin-13.6B-v0.0.Q4_K.gguf](https://huggingface.co/RichardErkhov/mncai_-_agiin-13.6B-v0.0-gguf/blob/main/agiin-13.6B-v0.0.Q4_K.gguf) | Q4_K | 7.71GB | | [agiin-13.6B-v0.0.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/mncai_-_agiin-13.6B-v0.0-gguf/blob/main/agiin-13.6B-v0.0.Q4_K_M.gguf) | Q4_K_M | 7.71GB | | [agiin-13.6B-v0.0.Q4_1.gguf](https://huggingface.co/RichardErkhov/mncai_-_agiin-13.6B-v0.0-gguf/blob/main/agiin-13.6B-v0.0.Q4_1.gguf) | Q4_1 | 8.05GB | | [agiin-13.6B-v0.0.Q5_0.gguf](https://huggingface.co/RichardErkhov/mncai_-_agiin-13.6B-v0.0-gguf/blob/main/agiin-13.6B-v0.0.Q5_0.gguf) | Q5_0 | 8.84GB | | [agiin-13.6B-v0.0.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/mncai_-_agiin-13.6B-v0.0-gguf/blob/main/agiin-13.6B-v0.0.Q5_K_S.gguf) | Q5_K_S | 8.84GB | | [agiin-13.6B-v0.0.Q5_K.gguf](https://huggingface.co/RichardErkhov/mncai_-_agiin-13.6B-v0.0-gguf/blob/main/agiin-13.6B-v0.0.Q5_K.gguf) | Q5_K | 9.08GB | | [agiin-13.6B-v0.0.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/mncai_-_agiin-13.6B-v0.0-gguf/blob/main/agiin-13.6B-v0.0.Q5_K_M.gguf) | Q5_K_M | 9.08GB | | [agiin-13.6B-v0.0.Q5_1.gguf](https://huggingface.co/RichardErkhov/mncai_-_agiin-13.6B-v0.0-gguf/blob/main/agiin-13.6B-v0.0.Q5_1.gguf) | Q5_1 | 9.64GB | | [agiin-13.6B-v0.0.Q6_K.gguf](https://huggingface.co/RichardErkhov/mncai_-_agiin-13.6B-v0.0-gguf/blob/main/agiin-13.6B-v0.0.Q6_K.gguf) | Q6_K | 10.53GB | | [agiin-13.6B-v0.0.Q8_0.gguf](https://huggingface.co/RichardErkhov/mncai_-_agiin-13.6B-v0.0-gguf/blob/main/agiin-13.6B-v0.0.Q8_0.gguf) | Q8_0 | 13.64GB | Original model description: --- license: apache-2.0 language: - en --- # Model Card for mncai/agiin-13.6B-v0.0 ### Introduction of MindsAndCompany https://mnc.ai/ We create various AI models and develop solutions that can be applied to businesses. And as for generative AI, we are developing products like Code Assistant, TOD Chatbot, LLMOps, and are in the process of developing Enterprise AGI (Artificial General Intelligence). ### Model Summary based mistral arch. pretrain, instruction tuned and dpo. ### How to Use Here give some examples of how to use our model. ```python from transformers import AutoConfig, AutoModel, AutoTokenizer import transformers import torch hf_model = 'mncai/agiin-13.6B-v0.0' message = "<|user|>\n두 개의 구가 있는데 각각 지름이 1, 2일때 각 구의 부피는 몇배야? 설명도 같이 해줘.\n<|assistant|>\n" sequences = pipeline( message, do_sample=True, top_k=10, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, max_length=2048, ) for seq in sequences: print(f"Result: {seq['generated_text']}") ``` ### Contact If you have any questions, please raise an issue or contact us at [email protected]
yefo-ufpe/bert-base-uncased-swag-full
yefo-ufpe
2024-08-29T00:06:16Z
104
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "multiple-choice", "trl", "sft", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
multiple-choice
2024-08-29T00:05:56Z
--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - trl - sft - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-uncased-swag-full results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-swag-full This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8572 - Accuracy: 0.7760 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.7762 | 1.0 | 4597 | 0.6281 | 0.7516 | | 0.4259 | 2.0 | 9194 | 0.6857 | 0.7668 | | 0.2108 | 3.0 | 13791 | 0.9799 | 0.7689 | | 0.1207 | 4.0 | 18388 | 1.5455 | 0.7721 | | 0.0523 | 5.0 | 22985 | 1.8572 | 0.7760 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1
John6666/wai-25d-pdxl-v10-sdxl
John6666
2024-08-29T00:05:47Z
125
1
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "2.5D", "pony", "en", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2024-08-28T23:55:10Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - 2.5D - pony --- Original model is [here](https://civitai.com/models/696083/wai-25d-pdxl?modelVersionId=778958). This model created by [WAI0731](https://civitai.com/user/WAI0731).
backyardai/mini-magnum-12b-v1.1-GGUF
backyardai
2024-08-29T00:03:41Z
295
1
null
[ "gguf", "en", "fr", "de", "es", "it", "pt", "ru", "zh", "ja", "base_model:intervitens/mini-magnum-12b-v1.1", "base_model:quantized:intervitens/mini-magnum-12b-v1.1", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-08-28T23:49:13Z
--- base_model: intervitens/mini-magnum-12b-v1.1 language: - en - fr - de - es - it - pt - ru - zh - ja license: apache-2.0 model_name: mini-magnum-12b-v1.1-GGUF quantized_by: brooketh parameter_count: 12247792640 --- <img src="BackyardAI_Banner.png" alt="Backyard.ai" style="height: 90px; min-width: 32px; display: block; margin: auto;"> **<p style="text-align: center;">The official library of GGUF format models for use in the local AI chat app, Backyard AI.</p>** <p style="text-align: center;"><a href="https://backyard.ai/">Download Backyard AI here to get started.</a></p> <p style="text-align: center;"><a href="https://www.reddit.com/r/LLM_Quants/">Request Additional models at r/LLM_Quants.</a></p> *** # Mini Magnum V1.1 12B - **Creator:** [intervitens](https://huggingface.co/intervitens/) - **Original:** [Mini Magnum V1.1 12B](https://huggingface.co/intervitens/mini-magnum-12b-v1.1) - **Date Created:** 2024-07-24 - **Trained Context:** 1024000 tokens - **Description:** This model is the miniature version of alpindale/magnum-72b-v1, a second entry in a series of models designed to replicate the prose quality of the Claude 3 models, specifically Sonnet and Opus. This model is fine-tuned on top of Mistral-Nemo-Base-2407. A new general purpose instruction dataset by kalomaze was added to the training mix for better coherence and general alignment. *** ## What is a GGUF? GGUF is a large language model (LLM) format that can be split between CPU and GPU. GGUFs are compatible with applications based on llama.cpp, such as Backyard AI. Where other model formats require higher end GPUs with ample VRAM, GGUFs can be efficiently run on a wider variety of hardware. GGUF models are quantized to reduce resource usage, with a tradeoff of reduced coherence at lower quantizations. Quantization reduces the precision of the model weights by changing the number of bits used for each weight. *** <img src="BackyardAI_Logo.png" alt="Backyard.ai" style="height: 75px; min-width: 32px; display: block; horizontal align: left;"> ## Backyard AI - Free, local AI chat application. - One-click installation on Mac and PC. - Automatically use GPU for maximum speed. - Built-in model manager. - High-quality character hub. - Zero-config desktop-to-mobile tethering. Backyard AI makes it easy to start chatting with AI using your own characters or one of the many found in the built-in character hub. The model manager helps you find the latest and greatest models without worrying about whether it's the correct format. Backyard AI supports advanced features such as lorebooks, author's note, text formatting, custom context size, sampler settings, grammars, local TTS, cloud inference, and tethering, all implemented in a way that is straightforward and reliable. **Join us on [Discord](https://discord.gg/SyNN2vC9tQ)** ***
John6666/ether-pdxl-a3-sdxl
John6666
2024-08-29T00:02:54Z
223
1
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "semi-realistic", "2.5D", "illustration", "cute", "colorful", "portrait", "pony", "en", "base_model:gamerdan69/EtherMix", "base_model:finetune:gamerdan69/EtherMix", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2024-08-28T23:50:27Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - semi-realistic - 2.5D - illustration - cute - colorful - portrait - pony base_model: gamerdan69/EtherMix --- Original model is [here](https://huggingface.co/gamerdan69/EtherMix) and on [Civitai](https://civitai.com/models/545628?modelVersionId=778308). This model created by [gamerdan69](https://civitai.com/user/gamerdan69).
John6666/beyond-experimental-v28loramerge-sdxl
John6666
2024-08-29T00:00:38Z
123
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "realistic", "photorealistic", "realism", "anime", "cartoon", "styles", "SDXL Turbo", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2024-08-28T23:52:20Z
--- license: creativeml-openrail-m language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - realistic - photorealistic - realism - anime - cartoon - styles - SDXL Turbo --- Original model is [here](https://civitai.com/models/424895/beyond-experimental?modelVersionId=780496). This model created by [OperationNova](https://civitai.com/user/OperationNova).
John6666/azoth-final-sdxl
John6666
2024-08-28T23:56:08Z
213
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "cute", "backgrounds", "pony", "en", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2024-08-28T23:51:11Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - cute - backgrounds - pony --- Original model is [here](https://civitai.com/models/696173/azoth?modelVersionId=779057). This model created by [renmei](https://civitai.com/user/renmei).
John6666/ydy-mix-ydyxlvapl2t-sdxl
John6666
2024-08-28T23:41:56Z
149
1
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "cute", "merge", "pony", "en", "base_model:yodayo-ai/clandestine-xl-1.0", "base_model:merge:yodayo-ai/clandestine-xl-1.0", "base_model:yodayo-ai/holodayo-xl-2.1", "base_model:merge:yodayo-ai/holodayo-xl-2.1", "base_model:yodayo-ai/kivotos-xl-2.0", "base_model:merge:yodayo-ai/kivotos-xl-2.0", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2024-08-28T23:37:17Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - cute - merge - pony base_model: - yodayo-ai/kivotos-xl-2.0 - yodayo-ai/holodayo-xl-2.1 - yodayo-ai/clandestine-xl-1.0 --- Original model is [here](https://civitai.com/models/641249/ydy-mix?modelVersionId=779378). This model created by [Kodokuna](https://civitai.com/user/Kodokuna).
adamo1139/danube3-4b-aezakmi-toxic-2908-gguf
adamo1139
2024-08-28T23:37:11Z
7
0
null
[ "gguf", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-08-28T23:25:32Z
--- license: apache-2.0 ---
Orenguteng/Llama-3.1-8B-Lexi-Uncensored-GGUF
Orenguteng
2024-08-28T23:36:29Z
1,189
19
null
[ "gguf", "license:llama3.1", "endpoints_compatible", "region:us", "conversational" ]
null
2024-07-23T23:16:19Z
--- license: llama3.1 --- LLM Leaderboard 2 results: --- Lexi suggests that simply uncensoring the LLM makes it smarter. The dataset used to tune this model does not contain any "new knowledge" or any contamination whatsoever, yet, we see the evaluation scores shot up when we get rid of biases and refusals. Lexi not only retains the original instruct, but it beats it. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/644ad182f434a6a63b18eee6/4S66-wmaZf-xX_HzQQMNg.png) NOTE: UGI Leaderboard The UGI Leaderboard runs the Q4 for its evaluations which results in bad results for this model. As noted, the Q4 has issues retaining the fine tuning for some reasons ends up not as good, which will be fixed for V3. V2 has been released, I recommend you download the new version: --- https://huggingface.co/Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/644ad182f434a6a63b18eee6/92b8rBqTPfKhPSwJUE1Rq.png) This model is based on Llama-3.1-8b-Instruct, and is governed by [META LLAMA 3.1 COMMUNITY LICENSE AGREEMENT](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE) Lexi is uncensored, which makes the model compliant. You are advised to implement your own alignment layer before exposing the model as a service. It will be highly compliant with any requests, even unethical ones. You are responsible for any content you create using this model. Please use it responsibly. Lexi is licensed according to Meta's Llama license. I grant permission for any use, including commercial, that falls within accordance with Meta's Llama-3 license. IMPORTANT: --- Use the same template as the official Llama 3.1 8B instruct. System tokens must be present during inference, even if you set an empty system message. If you are unsure, just add a short system message as you wish. Feedback: --- If you find any issues or have suggestions for improvements, feel free to leave a review and I will look into it for upcoming improvements and next version. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/644ad182f434a6a63b18eee6/uqJv-R1LeJEfMxi1nmTH5.png)
zhenghenry/gpt-neo
zhenghenry
2024-08-28T23:36:17Z
160
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-08-28T23:36:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mikeyandfriends/PixelWave_FLUX.1-schnell_01
mikeyandfriends
2024-08-28T23:25:10Z
5
0
null
[ "gguf", "license:apache-2.0", "region:us" ]
null
2024-08-28T23:07:27Z
--- license: apache-2.0 ---
John6666/77oussam-food-photographie-v10-sdxl
John6666
2024-08-28T23:19:36Z
203
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "realistic", "photorealistic", "photographie", "food", "foodsy", "kitchen", "restaurant", "en", "base_model:hsmjpg/77oussam-SDXL", "base_model:finetune:hsmjpg/77oussam-SDXL", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2024-08-25T22:04:50Z
--- license: creativeml-openrail-m language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - realistic - photorealistic - photographie - food - foodsy - kitchen - restaurant base_model: hsmjpg/77oussam-SDXL --- Original model is [here](https://civitai.com/models/685444/77oussam-food-photographie?modelVersionId=767145). This model created by [77ossam](https://civitai.com/user/77ossam).
John6666/77oussam-realistic-v2-v20-sdxl
John6666
2024-08-28T23:19:09Z
204
1
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "realistic", "photorealistic", "photography", "en", "base_model:hsmjpg/77oussam-SDXL", "base_model:finetune:hsmjpg/77oussam-SDXL", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2024-08-26T12:35:10Z
--- license: creativeml-openrail-m language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - realistic - photorealistic - photography base_model: hsmjpg/77oussam-SDXL --- Original model is [here](https://civitai.com/models/687848/77oussam-realistic-v2?modelVersionId=769864). This model created by [77ossam](https://civitai.com/user/77ossam).
foxcyan/Phi-3.5-mini-instruct-Q5_K_S-GGUF
foxcyan
2024-08-28T23:08:31Z
5
0
transformers
[ "transformers", "gguf", "nlp", "code", "llama-cpp", "gguf-my-repo", "text-generation", "multilingual", "base_model:microsoft/Phi-3.5-mini-instruct", "base_model:quantized:microsoft/Phi-3.5-mini-instruct", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-08-28T23:08:19Z
--- base_model: microsoft/Phi-3.5-mini-instruct language: - multilingual library_name: transformers license: mit license_link: https://huggingface.co/microsoft/Phi-3.5-mini-instruct/resolve/main/LICENSE pipeline_tag: text-generation tags: - nlp - code - llama-cpp - gguf-my-repo widget: - messages: - role: user content: Can you provide ways to eat combinations of bananas and dragonfruits? --- # foxcyan/Phi-3.5-mini-instruct-Q5_K_S-GGUF This model was converted to GGUF format from [`microsoft/Phi-3.5-mini-instruct`](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo foxcyan/Phi-3.5-mini-instruct-Q5_K_S-GGUF --hf-file phi-3.5-mini-instruct-q5_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo foxcyan/Phi-3.5-mini-instruct-Q5_K_S-GGUF --hf-file phi-3.5-mini-instruct-q5_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo foxcyan/Phi-3.5-mini-instruct-Q5_K_S-GGUF --hf-file phi-3.5-mini-instruct-q5_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo foxcyan/Phi-3.5-mini-instruct-Q5_K_S-GGUF --hf-file phi-3.5-mini-instruct-q5_k_s.gguf -c 2048 ```
mertgulexe/mistral-ppo
mertgulexe
2024-08-28T23:04:19Z
50
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "trl", "ppo", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
reinforcement-learning
2024-08-23T20:00:39Z
--- license: apache-2.0 tags: - trl - ppo - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/huggingface/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="gulmert89//tmp/tmphxi1_39z/gulmert89/mistral-ppo") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("gulmert89//tmp/tmphxi1_39z/gulmert89/mistral-ppo") model = AutoModelForCausalLMWithValueHead.from_pretrained("gulmert89//tmp/tmphxi1_39z/gulmert89/mistral-ppo") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
distily/distily_test_attn_ortho
distily
2024-08-28T22:36:45Z
5
0
Distily
[ "Distily", "tensorboard", "safetensors", "gpt2", "bitnet", "1.58b", "generated_from_trainer", "dataset:wikimedia/wikipedia", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "region:us" ]
null
2024-08-24T18:04:22Z
--- base_model: gpt2 datasets: - wikimedia/wikipedia library_name: Distily license: mit tags: - bitnet - 1.58b - generated_from_trainer model-index: - name: distily_test_attn_ortho results: [] --- # Summary Distilled with [Distily](https://github.com/lapp0/distily) library using teacher model [gpt2](https://huggingface.co/gpt2) on dataset [wikimedia/wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia). <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. # Model description More information needed # Intended uses & limitations More information needed --> # Model Architecture: - **Architecture**: `GPT2LMHeadModel` - **Total Parameters**: 124,439,808 - **Data Type (dtype)**: torch.bfloat16 - **Model Size**: 0.24 GB # Benchmark Metrics Comparison | Metric | | | :--- | # Resource Usage Comparison - VRAM Use: 7.7872 GB # Distillation (Teacher -> Student) Architecture Difference: - **Architecture**: `GPT2LMHeadModel` -> `GPT2LMHeadModel` - **Total Parameters**: 124,439,808 -> 124,439,808 - **Data Type (dtype)**: torch.bfloat16 -> torch.bfloat16 - **Model Size**: 0.24 GB -> 0.24 GB <details> <summary>Module Diff Details</summary> ```diff ``` </details> <br/> # Train Dataset Trained on 145,744,973 tokens from the [wikimedia/wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia) dataset. - Num Samples: `247,500` - Subset: `20231101.en` - Split: `train` # Training Objective ``` DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl), attn_loss_component=LossComponent(label=attn, weight=25.0, loss_fn=cos, layer_mapper=layer-2, projector=orthogonal)) ``` # Hyperparameters The following hyperparameters were used during training: <details> <summary>Expand</summary> - learning_rate: `0.0001` - train_batch_size: `4` - eval_batch_size: `8` - seed: `42` - optimizer: `Adam with betas=(0.9,0.999) and epsilon=1e-08` - lr_scheduler_type: `cosine_with_min_lr` - lr_scheduler_warmup_ratio: `0.5` - num_epochs: `1.0` - distillation_objective: `DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl), attn_loss_component=LossComponent(label=attn, weight=25.0, loss_fn=cos, layer_mapper=layer-2, projector=orthogonal))` - train_embeddings: `True` - lr_scheduler: `<torch.optim.lr_scheduler.LambdaLR object at 0x781ebe1e3c10>` - student_model_name_or_path: `None` - student_config_name_or_path: `None` - student_model_config: `None` - reinitialize_weights: `None` - copy_teacher_modules: `[('lm_head', False)]` - student_model_as_bitnet: `True` - dropout: `None` - teacher_model_name_or_path: `gpt2` - teacher_load_in_8bit: `False` - teacher_load_in_4bit: `False` - dataset_uri: `wikimedia/wikipedia` - dataset_subset: `20231101.en` - dataset_split: `train` - dataset_column_name: `text` - dataset_sample_size: `250000` - dataset_test_size: `0.01` - gradient_accumulation_steps: `1` - weight_decay: `0.0` - max_grad_norm: `1.0` - warmup_ratio: `0.5` - warmup_steps: `0` - gradient_checkpointing: `True` </details> <br/> # Framework Versions - Distily 0.3.0 - Transformers 4.44.2 - Pytorch 2.3.0 - Datasets 2.21.0
sfulay/zephyr-7b-dpo-full-prometheus-reward-scale-05
sfulay
2024-08-28T22:33:52Z
9
0
null
[ "safetensors", "mistral", "trl", "dpo", "generated_from_trainer", "base_model:alignment-handbook/zephyr-7b-sft-full", "base_model:finetune:alignment-handbook/zephyr-7b-sft-full", "license:apache-2.0", "region:us" ]
null
2024-08-21T00:14:06Z
--- license: apache-2.0 base_model: alignment-handbook/zephyr-7b-sft-full tags: - trl - dpo - generated_from_trainer model-index: - name: zephyr-7b-dpo-full-prometheus-reward-scale-05 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # zephyr-7b-dpo-full-prometheus-reward-scale-05 This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5286 - Rewards/chosen: -1.4143 - Rewards/rejected: -2.7417 - Rewards/accuracies: 0.7629 - Rewards/margins: 1.3275 - Logps/rejected: -493.2510 - Logps/chosen: -417.0316 - Logits/rejected: 1.9856 - Logits/chosen: 0.4911 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 55 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6696 | 0.1143 | 50 | 0.6584 | -0.0084 | -0.1643 | 0.6853 | 0.1559 | -235.5072 | -276.4426 | -2.4382 | -2.5406 | | 0.6122 | 0.2286 | 100 | 0.6111 | -0.4070 | -0.8953 | 0.6767 | 0.4883 | -308.6058 | -316.3019 | -2.5533 | -2.6512 | | 0.5476 | 0.3429 | 150 | 0.5583 | -1.3343 | -2.3426 | 0.7371 | 1.0083 | -453.3369 | -409.0355 | 0.9770 | 0.1441 | | 0.5582 | 0.4571 | 200 | 0.5499 | -1.0345 | -2.1424 | 0.7328 | 1.1079 | -433.3173 | -379.0511 | 0.5624 | -0.4976 | | 0.5503 | 0.5714 | 250 | 0.5393 | -1.1701 | -2.3108 | 0.7371 | 1.1406 | -450.1522 | -392.6152 | 0.7719 | -0.3725 | | 0.5224 | 0.6857 | 300 | 0.5312 | -1.2228 | -2.5102 | 0.7543 | 1.2874 | -470.0949 | -397.8840 | 1.7088 | 0.1892 | | 0.5396 | 0.8 | 350 | 0.5290 | -1.4462 | -2.7485 | 0.75 | 1.3024 | -493.9275 | -420.2202 | 1.9215 | 0.4365 | | 0.55 | 0.9143 | 400 | 0.5286 | -1.4143 | -2.7417 | 0.7629 | 1.3275 | -493.2510 | -417.0316 | 1.9856 | 0.4911 | ### Framework versions - Transformers 4.44.0.dev0 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1
cartesia-ai/Rene-v0.1-1.3b-pytorch
cartesia-ai
2024-08-28T22:27:21Z
400
54
cartesia_pytorch
[ "cartesia_pytorch", "safetensors", "rene", "mamba", "cartesia", "en", "dataset:allenai/dolma", "arxiv:2405.21060", "license:apache-2.0", "region:us" ]
null
2024-08-25T07:24:21Z
--- license: apache-2.0 language: - en datasets: - allenai/dolma tags: - rene - mamba - cartesia library_name: cartesia_pytorch --- # Model Card for Rene Rene is a 1.3 billion-parameter language model trained by [Cartesia](https://cartesia.ai). Rene has a hybrid architecture based on [Mamba-2](https://arxiv.org/abs/2405.21060), with feedforward and sliding window attention layers interspersed. It uses the [allenai/OLMo-1B-hf](https://huggingface.co/allenai/OLMo-1B-hf) tokenizer. Rene was pretrained on 1.5 trillion tokens of the [Dolma-1.7](https://huggingface.co/datasets/allenai/dolma) dataset. For more details, see our [blog post](https://cartesia.ai/blog/on-device). ## Usage This is the PyTorch version of the model, and it's intended to run on CUDA devices. For use on Mac computers, please use [the native MLX version](https://huggingface.co/cartesia-ai/Rene-v0.1-1.3b-4bit-mlx) instead. ### Installation The Rene model depends on the `cartesia-pytorch` package, which can be installed with `pip` as follows: ```shell pip install --no-binary :all: cartesia-pytorch ``` ### Generation example ```python from cartesia_pytorch import ReneLMHeadModel from transformers import AutoTokenizer model = ReneLMHeadModel.from_pretrained("cartesia-ai/Rene-v0.1-1.3b-pytorch").half().cuda() tokenizer = AutoTokenizer.from_pretrained("allenai/OLMo-1B-hf") in_message = ["Rene Descartes was"] inputs = tokenizer(in_message, return_tensors="pt") outputs = model.generate(inputs.input_ids.cuda(), max_length=50, top_k=100, top_p=0.99) out_message = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] print(out_message) # Example output: "Rene Descartes was a French mathematician, philosopher, and scientist. Descartes is famously credited for creating the Cartesian coordinate system: a 3 dimensional representation of points, vectors, and directions. This work is, for the most part" ... ``` ### Evaluation example You can use our `cartesia_lm_eval` wrapper around the [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/main) to evaluate our model on standard text benchmarks. Example command (clone this repo and run the below from within the `cartesia-pytorch` directory): ```shell python -m evals.cartesia_lm_eval --model rene_ssm --model_args pretrained=cartesia-ai/Rene-v0.1-1.3b-pytorch,trust_remote_code=True --trust_remote_code --tasks copa,hellaswag,piqa,arc_easy,arc_challenge,winogrande,openbookqa --cache_requests true --batch_size auto:4 --output_path outputs/rene_evals/ ``` ## Results on common benchmarks | Model | Params (B) | Train Tokens | COPA | HellaSwag | MMLU (5-shot) | PIQA | ARC-e | ARC-c | WinoGrande | OpenBookQA | Average | |------------------------------------------------|------------|--------------|------|-----------|---------------|------|-------|-------|------------|------------|---------| | allenai/OLMo-1B-hf | 1.2 | 3.0 | 82.0 | 62.9 | 26.2 | 75.1 | 57.4 | 31.1 | 60.0 | 36.2 | 53.9 | | apple/OpenELM-1\_1B | 1.1 | 1.5 | 81.0 | 64.8 | 27.1 | 75.6 | 55.4 | 32.3 | 61.9 | 36.2 | 54.3 | | state-spaces/mamba2-1.3b | 1.3 | 0.3 | 82.0 | 60.0 | 25.8 | 73.7 | 64.2 | 33.3 | 61.0 | 37.8 | 54.7 | | microsoft/phi-1\_5 | 1.4 | 0.15 | 79.0 | 62.6 | 42.5 | 75.5 | 73.2 | 48.0 | 72.8 | 48.0 | 62.7 | | Qwen/Qwen2-1.5B | 1.5 | 7.0 | 80.0 | 65.4 | 56.0 | 75.5 | 60.4 | 35.0 | 65.8 | 36.4 | 59.3 | | RWKV/rwkv-6-world-1b6 | 1.6 | 1.1 | 84.0 | 58.3 | 25.9 | 73.5 | 56.7 | 34.1 | 60.0 | 37.4 | 53.7 | | stabilityai/stablelm-2-1\_6b | 1.6 | 4.0 | 86.0 | 69.0 | 38.1 | 76.7 | 68.1 | 38.9 | 63.6 | 38.8 | 59.9 | | HuggingFaceTB/SmolLM-1.7B | 1.7 | 1.0 | 76.0 | 65.8 | 29.9 | 76.1 | 73.5 | 46.4 | 60.9 | 42.0 | 58.8 | | h2oai/h2o-danube2-1.8b-base | 1.8 | 3.0 | 82.0 | 72.4 | 39.9 | 77.3 | 69.0 | 39.9 | 63.9 | 41.4 | 60.7 | | google/recurrentgemma-2b | 2.7 | 2.0 | 62.0 | 61.8 | 32.3 | 68.8 | 46.4 | 29.9 | 57.1 | 29.0 | 48.4 | | cognitivecomputations/TinyDolphin-2.8.1-1.1b | 1.1 | | 71.0 | 59.9 | 25.7 | 73.1 | 55.8 | 33.0 | 59.7 | 36.6 | 51.9 | | cartesia-ai/Rene-v0.1-1.3b-pytorch (OUR MODEL) | 1.3 | 1.5 | 82.0 | 69.4 | 32.6 | 77.5 | 61.7 | 34.4 | 62.9 | 39.2 | 57.5 | ## Bias, Risks, and Limitations Rene is a pretrained base model which has not undergone any alignment or instruction tuning, and therefore does not have any moderation or safety guarantees. Users should implement appropriate guardrails and moderation mechanisms based on their particular needs in order to ensure responsible and ethical usage. ## About Cartesia At [Cartesia](https://cartesia.ai/), we're building real-time multimodal intelligence for every device.
Doramy/llama-3-8b-Instruct-bnb-4bit-doramy-demo
Doramy
2024-08-28T22:23:48Z
7
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:unsloth/llama-3-8b-Instruct-bnb-4bit", "base_model:quantized:unsloth/llama-3-8b-Instruct-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-08-28T22:12:13Z
--- base_model: unsloth/llama-3-8b-Instruct-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - gguf --- # Uploaded model - **Developed by:** Doramy - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-gguf
RichardErkhov
2024-08-28T22:16:22Z
8
0
null
[ "gguf", "endpoints_compatible", "region:us" ]
null
2024-08-28T09:17:30Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity - GGUF - Model creator: https://huggingface.co/brucethemoose/ - Original model: https://huggingface.co/brucethemoose/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity/ | Name | Quant method | Size | | ---- | ---- | ---- | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.Q2_K.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.Q2_K.gguf) | Q2_K | 11.94GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.IQ3_XS.gguf) | IQ3_XS | 13.26GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.IQ3_S.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.IQ3_S.gguf) | IQ3_S | 13.99GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.Q3_K_S.gguf) | Q3_K_S | 13.93GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.IQ3_M.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.IQ3_M.gguf) | IQ3_M | 14.5GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.Q3_K.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.Q3_K.gguf) | Q3_K | 15.51GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.Q3_K_M.gguf) | Q3_K_M | 15.51GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.Q3_K_L.gguf) | Q3_K_L | 16.89GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.IQ4_XS.gguf) | IQ4_XS | 17.36GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.Q4_0.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.Q4_0.gguf) | Q4_0 | 18.13GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.IQ4_NL.gguf) | IQ4_NL | 18.3GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.Q4_K_S.gguf) | Q4_K_S | 18.25GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.Q4_K.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.Q4_K.gguf) | Q4_K | 19.24GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.Q4_K_M.gguf) | Q4_K_M | 19.24GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.Q4_1.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.Q4_1.gguf) | Q4_1 | 20.1GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.Q5_0.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.Q5_0.gguf) | Q5_0 | 22.08GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.Q5_K_S.gguf) | Q5_K_S | 22.08GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.Q5_K.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.Q5_K.gguf) | Q5_K | 22.65GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.Q5_K_M.gguf) | Q5_K_M | 22.65GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.Q5_1.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.Q5_1.gguf) | Q5_1 | 24.05GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.Q6_K.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.Q6_K.gguf) | Q6_K | 26.28GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.Q8_0.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity.Q8_0.gguf) | Q8_0 | 34.03GB | Original model description: --- language: - en license: other library_name: transformers tags: - text-generation-inference - merge license_name: yi-license license_link: https://huggingface.co/01-ai/Yi-34B/blob/main/LICENSE pipeline_tag: text-generation model-index: - name: CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 67.41 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=brucethemoose/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.77 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=brucethemoose/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 77.44 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=brucethemoose/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 57.84 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=brucethemoose/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.11 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=brucethemoose/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 61.33 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=brucethemoose/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity name: Open LLM Leaderboard --- ### Possibly obsolete, replaced by https://huggingface.co/brucethemoose/Yi-34B-200K-DARE-merge-v5 Old model description below: *** **Dolphin-2.2-yi-34b-200k**, **Nous-Capybara-34B**, **Tess-M-v1.4**, **Airoboros-3_1-yi-34b-200k**, **PlatYi-34B-200K-Q**, and **Una-xaberius-34b-v1beta** merged with a new, experimental implementation of "dare ties" via mergekit. See: > [Language Models are Super Mario: Absorbing Abilities from Homologous Models as a Free Lunch](https://github.com/yule-BUAA/MergeLM) > https://github.com/cg123/mergekit/tree/dare This variant is merged with a "higher than recommended" density with with the following config, and the tokenizer from chargoddard's Yi-Llama: ``` models: - model: /home/alpha/Storage/Models/Raw/chargoddard_Yi-34B-200K-Llama # no parameters necessary for base model - model: /home/alpha/Storage/Models/Raw/migtissera_Tess-34B-v1.4 parameters: weight: 0.19 density: 0.6 - model: /home/alpha//Storage/Models/Raw/bhenrym14_airoboros-3_1-yi-34b-200k parameters: weight: 0.14 density: 0.5 - model: /home/alpha/Storage/Models/Raw/Nous-Capybara-34B parameters: weight: 0.19 density: 0.6 - model: /home/alpha/Storage/Models/Raw/kyujinpy_PlatYi-34B-200K-Q parameters: weight: 0.14 density: 0.5 - model: /home/alpha/FastModels/ehartford_dolphin-2.2-yi-34b-200k parameters: weight: 0.19 density: 0.6 - model: /home/alpha/FastModels/fblgit_una-xaberius-34b-v1beta parameters: weight: 0.15 density: 0.08 merge_method: dare_ties base_model: /home/alpha/Storage/Models/Raw/chargoddard_Yi-34B-200K-Llama parameters: int8_mask: true dtype: bfloat16 ``` *** ## Prompt template: Orca-Vicuna? ``` SYSTEM: {system_message} USER: {prompt} ASSISTANT: ``` It might recognize ChatML from Dolphin+Xaberius, and Llama-chat from Airoboros. Sometimes the model "spells out" the stop token as `</s>` like Capybara, so you may need to add `</s>` as an additional stopping condition. *** ## Running Being a Yi model, try disabling the BOS token and/or running a lower temperature with 0.05-0.13 MinP, a little repitition penalty, and no other samplers. Yi tends to run "hot" by default. 24GB GPUs can run Yi-34B-200K models at **45K-75K context** with exllamav2. I go into more detail in this [post](https://old.reddit.com/r/LocalLLaMA/comments/1896igc/how_i_run_34b_models_at_75k_context_on_24gb_fast/) I recommend exl2 quantizations profiled on data similar to the desired task. It is especially sensitive to the quantization data at low bpw! I published my own quantizations on vicuuna chat + fiction writing here: [4bpw](https://huggingface.co/brucethemoose/CaPlatTessDolXaBoros-34B-200K-exl2-4bpw-fiction) [3.1bpw](https://huggingface.co/brucethemoose/CaPlatTessDolXaBoros-34B-200K-exl2-4bpw-fiction) To load this in full-context backends like transformers and vllm, you *must* change `max_position_embeddings` in config.json to a lower value than 200,000, otherwise you will OOM! *** ## Testing Notes Various densities were tested with perplexity tests and long context prompts. Relatively high densities seem to perform better, contrary to the findings of the Super Mario paper. This particular version is merged with more than the "recommended" max density of 0.5. It seems to result in even better perplexity, and a much higher position on the hf leaderboard, but I'm not sure if this translates to better output. Weights that add up to 1 seems to be optimal. Dare Ties is also resulting in seemingly better, lower perplexity merges than a regular ties merge, task arithmetic or a slerp merge. Xaberuis is not a 200K model, hence it was merged at a very low density to try and preserve Yi 200K's long context performance while still inheriting some of Xaberius's performance. I chose not to include other finetunes because they aren't trained on the 200K base. If any other 200K finetunes pop up, let me know. *** ## Credits: https://github.com/cg123/mergekit/tree/dare https://huggingface.co/ehartford/dolphin-2.2-yi-34b-200k https://huggingface.co/kyujinpy/PlatYi-34B-200K-Q https://huggingface.co/NousResearch/Nous-Capybara-34B/ https://huggingface.co/bhenrym14/airoboros-3_1-yi-34b-200k https://huggingface.co/migtissera/Tess-M-v1.4 https://huggingface.co/fblgit/una-xaberius-34b-v1beta https://huggingface.co/chargoddard/Yi-34B-200K-Llama https://huggingface.co/01-ai/Yi-34B-200K # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_brucethemoose__CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity) | Metric |Value| |---------------------------------|----:| |Avg. |72.15| |AI2 Reasoning Challenge (25-Shot)|67.41| |HellaSwag (10-Shot) |85.77| |MMLU (5-Shot) |77.44| |TruthfulQA (0-shot) |57.84| |Winogrande (5-shot) |83.11| |GSM8k (5-shot) |61.33|
bisoye/wav2vec2-base_lr_2e-4_20_epochs_no_eval
bisoye
2024-08-28T22:05:29Z
148
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "audio-classification", "generated_from_trainer", "base_model:facebook/wav2vec2-base", "base_model:finetune:facebook/wav2vec2-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2024-08-28T21:23:00Z
--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer model-index: - name: wav2vec2-base_lr_2e-4_20_epochs_no_eval results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base_lr_2e-4_20_epochs_no_eval This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1
ricardoSLabs/Fraunhofer_Classical_binary_unbalaced
ricardoSLabs
2024-08-28T21:52:45Z
6
0
null
[ "tensorboard", "safetensors", "beit", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/beit-base-patch16-224-pt22k-ft22k", "base_model:finetune:microsoft/beit-base-patch16-224-pt22k-ft22k", "license:apache-2.0", "model-index", "region:us" ]
null
2024-08-28T20:39:27Z
--- license: apache-2.0 base_model: microsoft/beit-base-patch16-224-pt22k-ft22k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: Fraunhofer_Classical_binary_unbalaced results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9925 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Fraunhofer_Classical_binary_unbalaced This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0206 - Accuracy: 0.9925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0583 | 1.0 | 146 | 0.0540 | 0.9784 | | 0.04 | 2.0 | 292 | 0.0524 | 0.9794 | | 0.023 | 3.0 | 438 | 0.0346 | 0.9891 | | 0.0181 | 4.0 | 584 | 0.0260 | 0.9911 | | 0.0193 | 5.0 | 730 | 0.0206 | 0.9925 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1
sam2ai/odia-paligemma-2b-9900-v1.1
sam2ai
2024-08-28T21:49:39Z
6
0
null
[ "safetensors", "paligemma", "llama-factory", "full", "generated_from_trainer", "base_model:google/paligemma-3b-mix-448", "base_model:finetune:google/paligemma-3b-mix-448", "license:other", "region:us" ]
null
2024-08-28T21:42:08Z
--- license: other base_model: google/paligemma-3b-mix-448 tags: - llama-factory - full - generated_from_trainer model-index: - name: paligemma-3b-odia-chat-final results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/sambitsekharai/huggingface/runs/c1usfjv9) # paligemma-3b-odia-chat-final This model is a fine-tuned version of [google/paligemma-3b-mix-448](https://huggingface.co/google/paligemma-3b-mix-448) on the odia_llava_data dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.43.2 - Pytorch 2.1.2+git70dfd51 - Datasets 2.19.1 - Tokenizers 0.19.1
iqrakiran/my-sentence-transformer-model
iqrakiran
2024-08-28T21:44:22Z
5
0
sentence-transformers
[ "sentence-transformers", "safetensors", "roberta", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:4093", "loss:TripletLoss", "arxiv:1908.10084", "arxiv:1703.07737", "base_model:distilbert/distilroberta-base", "base_model:finetune:distilbert/distilroberta-base", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-08-28T21:44:01Z
--- base_model: distilbert/distilroberta-base datasets: [] language: [] library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:4093 - loss:TripletLoss widget: - source_sentence: I am angry about an incident at the supermarket, and it has been bothering me for the last three or four days. The person involved was flirting with me, and I think they should apologize. I didn't ask for an apology or indicate that I was upset during the conversation because I felt it would be inappropriate. I believe they should call me and set aside an appropriate time to apologize. sentences: - If you are a counsellor, please answer the questions based on the description of the patient. - It seems like this incident really impacted you and you believe that an apology is necessary for closure. It's understandable that you didn't address it on the spot if you felt it was inappropriate. However, people sometimes don't realize they've upset someone unless it's brought to their attention. Since you feel so strongly about this, have you considered reaching out to the person to express your feelings and provide them an opportunity to apologize? - It sounds like you have built a strong support system in San Diego with meaningful relationships and emotional investments. It's natural to feel apprehensive about moving away from that. Maybe you could consider the potential opportunities that LA has to offer and weigh them against what you would be leaving behind in San Diego. Additionally, think about the ways you can stay connected with your loved ones after moving. Just remember that it's a difficult decision, and it's important to give yourself time to make the best choice for you. - source_sentence: Lately, I've been feeling a bit overwhelmed with everything going on in my life. I've been hearing things that aren't really there, like whispers and someone calling my name, but it's not happening all the time, just occasionally. I also find myself getting a bit disorganized, but I wouldn't say I'm completely disorganized. Sometimes, I just feel disconnected with what is happening around me. I've been like this for a couple of weeks now. My parents said that I've been acting differently, but I don't know, maybe I'm just overreacting? Can you help me with this? sentences: - If you are a counsellor, please answer the questions based on the description of the patient. - Thank you for sharing your experience with me. I can understand how hearing things and feeling disorganized might be confusing and concerning for you. It's important to discuss these symptoms and feelings in order to provide proper support. Can you tell me if you've experienced any changes in your mood, daily activities, or sleep habits during this time? Also, have you noticed any patterns or triggers for when you hear the whispers or feel disconnected from what's happening around you? - I appreciate you sharing your feelings and experiences with me. It sounds like you're going through a challenging period in your life, dealing with stress and worry. It's important to understand the factors contributing to your stress and how they might be influencing your thoughts and emotions. Could you provide some more specific examples of the situations that have caused you to feel stressed and worried? Additionally, have you noticed any patterns or triggers that seem to make your worries more intense? - source_sentence: I've been experiencing anxiety due to the difficult transition from being at home, taking care of my son, to moving back into the work world. I've been trying to manage this anxiety by paying attention to nutrition, exercise, and practicing gratitude. Although I feel like I'm managing better now than when I first started, I'm still struggling. sentences: - It's great to hear that you've made some progress in managing your anxiety through healthy practices like focusing on nutrition, exercise, and gratitude. It's common for individuals to face challenges while transitioning between roles, and it might take more time for you to adjust fully. If you still find yourself struggling, consider seeking additional support through therapy or support groups. Is there a specific aspect of this transition that continues to cause you worry? - If you are a counsellor, please answer the questions based on the description of the patient. - It's great to hear that you have a strong drive for self-improvement and setting ambitious goals for yourself. Acknowledging this inner motivation is an essential step towards achieving what you desire. Remember, it's important to embrace the process of learning and growing, and not to put too much pressure on yourself to reach an end goal quickly. Take it one step at a time, and don't forget to celebrate your milestones along the way. - source_sentence: Recently, I have been experiencing difficulties while learning. Sometimes it's quite challenging, and I feel upset with myself to the point of crying. However, at other times, I find it easy and feel a sense of accomplishment when I finally get things right. sentences: - If you are a counsellor, please answer the questions based on the description of the patient. - Thank you for sharing that with me. I'm glad you're feeling better now that you're here. Sometimes waiting can cause anxiety or stress, so it's important to find ways to manage these feelings. If you'd like, we can discuss some coping strategies for dealing with stress while waiting or in similar situations. - It seems like you've been having ups and downs with your learning experience. It's great that you sometimes feel accomplished when you finally understand something. When you're feeling upset or frustrated, it might be helpful to take a break and come back to it later, as you've mentioned. This can give you a fresh perspective and may help reduce stress. It's also important to remember that learning is a process, and it's okay to experience difficulties along the way. - source_sentence: I remember generating alternative predictions. We said that I might get nervous but if I stay focused on what I want to do, I can probably do it. It's just hard to believe when I'm in this situation. sentences: - It seems like you've been dealing with unexpected expenses and some impulsive spending habits. By planning for a stricter budget and understanding the difference between essential and non-essential expenses, you can start to develop healthy financial habits. Have you considered creating a budget plan and setting aside a specific amount for unexpected expenses to help manage your spending? - It's normal to feel nervous in difficult situations. As a counsellor, I suggest continuing to test these alternative predictions directly in real-life experiences. As you encounter situations where you manage to handle things even while nervous, your belief in your abilities and the predictions will strengthen. Remember to stay focused and trust yourself. - If you are a counsellor, please answer the questions based on the description of the patient. --- # SentenceTransformer based on distilbert/distilroberta-base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) <!-- at revision fb53ab8802853c8e4fbdbcd0529f21fc6f459b2b --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("iqrakiran/my-sentence-transformer-model") # Run inference sentences = [ "I remember generating alternative predictions. We said that I might get nervous but if I stay focused on what I want to do, I can probably do it. It's just hard to believe when I'm in this situation.", "It's normal to feel nervous in difficult situations. As a counsellor, I suggest continuing to test these alternative predictions directly in real-life experiences. As you encounter situations where you manage to handle things even while nervous, your belief in your abilities and the predictions will strengthen. Remember to stay focused and trust yourself.", 'If you are a counsellor, please answer the questions based on the description of the patient.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 4,093 training samples * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code> * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | sentence_2 | |:--------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | <ul><li>min: 11 tokens</li><li>mean: 57.82 tokens</li><li>max: 197 tokens</li></ul> | <ul><li>min: 30 tokens</li><li>mean: 76.95 tokens</li><li>max: 149 tokens</li></ul> | <ul><li>min: 22 tokens</li><li>mean: 22.0 tokens</li><li>max: 22 tokens</li></ul> | * Samples: | sentence_0 | sentence_1 | sentence_2 | |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------| | <code>Lately, I've been feeling really stressed out and I keep having this thought that my partner might be cheating on me. It started when I noticed changes in their behavior a couple of months ago. At times, I feel like my partner acts distant, but when I confront them about it, they assure me that everything is fine between us. I feel like maybe it's not a strong enough thought to be classified as a delusion, but it's really bothering me and affecting our relationship.</code> | <code>Thank you for sharing your concerns and feelings with me. It's important to know that it's normal for people to experience doubts and insecurities in relationships sometimes. I understand that feeling stressed and having negative thoughts is difficult to deal with. If you're open to it, perhaps we could explore these thoughts and feelings further to better understand their origin and find ways to cope with them. Additionally, involving your partner in a constructive conversation about your feelings and concerns might help to improve your relationship and provide reassurance.</code> | <code>If you are a counsellor, please answer the questions based on the description of the patient.</code> | | <code>I think counting would mean that somebody cares about me and I matter to them. In my life, for example, I think Ms. Jones is upset that I am not as involved or doing the things that she saw me do last year. So I guess I matter to her.</code> | <code>It's important to recognize that feeling valued and cared for by others can contribute to our overall well-being. It's great that you have someone like Ms. Jones in your life who notices your changes and seems to care about you. Can you tell me more about your relationship with Ms. Jones or the changes that have occurred in the past year?</code> | <code>If you are a counsellor, please answer the questions based on the description of the patient.</code> | | <code>Lately, I've been feeling quite down, and it's been affecting my daily life. I've also been having a hard time concentrating and making decisions, and often find myself lost in thought. On top of that, I've started hearing voices that aren't there, but it only happens occasionally. It all started when I moved to a new city a few months ago. I feel so isolated, and the stress of adjusting to a new environment might be causing these issues.</code> | <code>Thank you for sharing your feelings and experiences with me. It sounds like you are struggling with some challenging emotions and experiences since your move to a new city. Adjusting to a new environment can be a significant source of stress. It's essential to acknowledge what you're going through and understand that seeking help is healthy. Can you provide further details about the voices you've been hearing? How often do they occur, and how exactly do they affect your daily life? Also, can you share your previous mental health history, if any? Your additional information will help me get a better understanding of your situation and provide the best support possible.</code> | <code>If you are a counsellor, please answer the questions based on the description of the patient.</code> | * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters: ```json { "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `num_train_epochs`: 10 - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 10 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `eval_use_gather_object`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin </details> ### Training Logs | Epoch | Step | Training Loss | |:------:|:----:|:-------------:| | 1.9531 | 500 | 0.2321 | | 3.9062 | 1000 | 0.0 | | 5.8594 | 1500 | 0.0001 | | 7.8125 | 2000 | 0.0 | | 9.7656 | 2500 | 0.0 | ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.0.1 - Transformers: 4.44.2 - PyTorch: 2.4.0+cu121 - Accelerate: 0.33.0 - Datasets: 2.21.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### TripletLoss ```bibtex @misc{hermans2017defense, title={In Defense of the Triplet Loss for Person Re-Identification}, author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, year={2017}, eprint={1703.07737}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-gguf
RichardErkhov
2024-08-28T21:26:34Z
7
0
null
[ "gguf", "endpoints_compatible", "region:us" ]
null
2024-08-28T08:02:56Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties - GGUF - Model creator: https://huggingface.co/brucethemoose/ - Original model: https://huggingface.co/brucethemoose/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties/ | Name | Quant method | Size | | ---- | ---- | ---- | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.Q2_K.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.Q2_K.gguf) | Q2_K | 11.94GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.IQ3_XS.gguf) | IQ3_XS | 13.26GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.IQ3_S.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.IQ3_S.gguf) | IQ3_S | 13.99GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.Q3_K_S.gguf) | Q3_K_S | 13.93GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.IQ3_M.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.IQ3_M.gguf) | IQ3_M | 14.5GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.Q3_K.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.Q3_K.gguf) | Q3_K | 15.51GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.Q3_K_M.gguf) | Q3_K_M | 15.51GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.Q3_K_L.gguf) | Q3_K_L | 16.89GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.IQ4_XS.gguf) | IQ4_XS | 17.36GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.Q4_0.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.Q4_0.gguf) | Q4_0 | 18.13GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.IQ4_NL.gguf) | IQ4_NL | 18.3GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.Q4_K_S.gguf) | Q4_K_S | 18.25GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.Q4_K.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.Q4_K.gguf) | Q4_K | 19.24GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.Q4_K_M.gguf) | Q4_K_M | 19.24GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.Q4_1.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.Q4_1.gguf) | Q4_1 | 20.1GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.Q5_0.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.Q5_0.gguf) | Q5_0 | 22.08GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.Q5_K_S.gguf) | Q5_K_S | 22.08GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.Q5_K.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.Q5_K.gguf) | Q5_K | 22.65GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.Q5_K_M.gguf) | Q5_K_M | 22.65GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.Q5_1.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.Q5_1.gguf) | Q5_1 | 24.05GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.Q6_K.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.Q6_K.gguf) | Q6_K | 26.28GB | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.Q8_0.gguf](https://huggingface.co/RichardErkhov/brucethemoose_-_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-gguf/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties.Q8_0.gguf) | Q8_0 | 34.03GB | Original model description: --- license: other license_name: yi-license license_link: https://huggingface.co/01-ai/Yi-34B/blob/main/LICENSE language: - en library_name: transformers pipeline_tag: text-generation tags: - text-generation-inference - merge --- A low density DARE ties merge, for benchmarking on the open llm leaderboard. **You probably shouldn't use this model. Use this higher density merge instead, which is scoring much better on the llm leaderboard and perplexity tests:** https://huggingface.co/brucethemoose/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity mergekit config: ``` models: - model: /home/alpha/Storage/Models/Raw/chargoddard_Yi-34B-200K-Llama # no parameters necessary for base model - model: /home/alpha/Storage/Models/Raw/migtissera_Tess-34B-v1.4 parameters: weight: 0.19 density: 0.44 - model: /home/alpha//Storage/Models/Raw/bhenrym14_airoboros-3_1-yi-34b-200k parameters: weight: 0.14 density: 0.34 - model: /home/alpha/Storage/Models/Raw/Nous-Capybara-34B parameters: weight: 0.19 density: 0.44 - model: /home/alpha/Storage/Models/Raw/kyujinpy_PlatYi-34B-200K-Q parameters: weight: 0.14 density: 0.34 - model: /home/alpha/FastModels/ehartford_dolphin-2.2-yi-34b-200k parameters: weight: 0.19 density: 0.44 - model: /home/alpha/FastModels/fblgit_una-xaberius-34b-v1beta parameters: weight: 0.15 density: 0.08 merge_method: dare_ties base_model: /home/alpha/Storage/Models/Raw/chargoddard_Yi-34B-200K-Llama parameters: int8_mask: true dtype: bfloat16 ```
Multiperspective/roberta-llm-noninstruct
Multiperspective
2024-08-28T21:16:01Z
104
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-08-28T21:14:56Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
xoyeop/deberta-base-HSOL-WIKI-CLS
xoyeop
2024-08-28T21:14:31Z
6
0
null
[ "tensorboard", "safetensors", "deberta", "generated_from_trainer", "base_model:microsoft/deberta-base", "base_model:finetune:microsoft/deberta-base", "license:mit", "region:us" ]
null
2024-08-28T20:07:14Z
--- license: mit base_model: microsoft/deberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: deberta-base-HSOL-WIKI-CLS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-base-HSOL-WIKI-CLS This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1529 - Precision: 0.7757 - Recall: 0.7782 - F1: 0.7769 - Accuracy: 0.8075 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.6211 | 1.0 | 769 | 0.7439 | 0.8403 | 0.6654 | 0.6824 | 0.7854 | | 0.5518 | 2.0 | 1538 | 0.4591 | 0.7945 | 0.7469 | 0.7629 | 0.8114 | | 0.4051 | 3.0 | 2307 | 0.7194 | 0.7718 | 0.7674 | 0.7695 | 0.8036 | | 0.2264 | 4.0 | 3076 | 0.9925 | 0.7918 | 0.7546 | 0.7682 | 0.8127 | | 0.166 | 5.0 | 3845 | 1.1529 | 0.7757 | 0.7782 | 0.7769 | 0.8075 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1
bisoye/wav2vec2-base_lr_3e-4_20_epochs_no_eval
bisoye
2024-08-28T21:00:06Z
161
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "audio-classification", "generated_from_trainer", "base_model:facebook/wav2vec2-base", "base_model:finetune:facebook/wav2vec2-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2024-08-28T20:23:38Z
--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer model-index: - name: wav2vec2-base_lr_3e-4_20_epochs_no_eval results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base_lr_3e-4_20_epochs_no_eval This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1
AlexVan2000/autotrain-t5-large-gpt4o
AlexVan2000
2024-08-28T20:51:59Z
5
0
null
[ "tensorboard", "safetensors", "t5", "autotrain", "text2text-generation", "base_model:google-t5/t5-large", "base_model:finetune:google-t5/t5-large", "region:us" ]
text2text-generation
2024-08-28T20:46:54Z
--- tags: - autotrain - text2text-generation base_model: google-t5/t5-large widget: - text: "I love AutoTrain" --- # Model Trained Using AutoTrain - Problem type: Seq2Seq ## Validation Metrics loss: nan rouge1: 13.0563 rouge2: 5.3373 rougeL: 10.9311 rougeLsum: 12.1825 gen_len: 19.0 runtime: 6.2212 samples_per_second: 1.607 steps_per_second: 0.482 : 3.0
Multiperspective/bert-llm-noninstruct
Multiperspective
2024-08-28T20:49:08Z
104
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-08-28T20:48:10Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Nutanix/Mistral-7B-Instruct-v0.3_cpp_unit_tests_full_finetuning_class_level
Nutanix
2024-08-28T20:45:51Z
35
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-08-28T20:42:26Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Dissoloquele-Bengui/marian-finetuned-kde4-dyu-to-fr
Dissoloquele-Bengui
2024-08-28T20:44:37Z
111
0
transformers
[ "transformers", "tensorboard", "safetensors", "marian", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2024-08-27T20:37:59Z
--- library_name: transformers tags: - translation - generated_from_trainer model-index: - name: marian-finetuned-kde4-dyu-to-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-dyu-to-fr This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.44.1 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1
yezey/llama3.1-8B-vs-unsloth
yezey
2024-08-28T20:23:40Z
77
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-08-28T19:47:08Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Houcemeddine/bert-finetuned-cola
Houcemeddine
2024-08-28T20:07:54Z
106
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-08-28T17:22:08Z
--- base_model: bert-base-cased license: apache-2.0 metrics: - matthews_correlation tags: - generated_from_trainer model-index: - name: bert-finetuned-cola results: [] library_name: transformers --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-cola This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7732 - Matthews Correlation: 0.6133 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4581 | 1.0 | 1069 | 0.4458 | 0.5233 | | 0.3257 | 2.0 | 2138 | 0.5767 | 0.5911 | | 0.1987 | 3.0 | 3207 | 0.7732 | 0.6133 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1
Sakib323/granite-3b-code-base-quantamphysics
Sakib323
2024-08-28T19:58:30Z
76
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-08-28T19:57:12Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
CodingQueen13/speecht5_finetuned_voxpopuli_sk
CodingQueen13
2024-08-28T19:25:42Z
15
0
null
[ "tensorboard", "safetensors", "speecht5", "generated_from_trainer", "text-to-speech", "dataset:voxpopuli", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "region:us" ]
text-to-speech
2024-08-27T20:19:14Z
--- license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer - text-to-speech datasets: - voxpopuli model-index: - name: speecht5_finetuned_voxpopuli_nl results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_voxpopuli_nl This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the voxpopuli dataset. It achieves the following results on the evaluation set: - Loss: 0.4361 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 0.4903 | 10.2828 | 1000 | 0.4498 | | 0.4637 | 20.5656 | 2000 | 0.4383 | | 0.4591 | 30.8483 | 3000 | 0.4364 | | 0.4621 | 41.1311 | 4000 | 0.4361 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1
bisoye/wav2vec2-base_lr_3e-4
bisoye
2024-08-28T19:18:30Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "audio-classification", "generated_from_trainer", "base_model:facebook/wav2vec2-base", "base_model:finetune:facebook/wav2vec2-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2024-08-28T16:01:13Z
--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-base_lr_3e-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base_lr_3e-4 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0682 - Accuracy: 0.9784 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 1.7893 | 0.9851 | 33 | 1.5529 | 0.4602 | | 0.9637 | 2.0 | 67 | 0.8562 | 0.7563 | | 0.5758 | 2.9851 | 100 | 0.4980 | 0.8276 | | 0.5401 | 4.0 | 134 | 0.3442 | 0.8875 | | 0.3908 | 4.9851 | 167 | 0.4630 | 0.8322 | | 0.348 | 6.0 | 201 | 0.2102 | 0.9260 | | 0.309 | 6.9851 | 234 | 0.1996 | 0.9391 | | 0.305 | 8.0 | 268 | 0.3001 | 0.9185 | | 0.2311 | 8.9851 | 301 | 0.2150 | 0.9335 | | 0.2362 | 10.0 | 335 | 0.1218 | 0.9550 | | 0.1929 | 10.9851 | 368 | 0.1334 | 0.9550 | | 0.1781 | 12.0 | 402 | 0.1077 | 0.9597 | | 0.15 | 12.9851 | 435 | 0.0749 | 0.9719 | | 0.1437 | 14.0 | 469 | 0.0710 | 0.9756 | | 0.1135 | 14.7761 | 495 | 0.0682 | 0.9784 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1
Alpaca69B/phi2-all-app-reviews-absa
Alpaca69B
2024-08-28T19:18:23Z
104
0
transformers
[ "transformers", "safetensors", "phi", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-08-28T19:14:32Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RichardErkhov/Hypersniper_-_The_Philosopher_Zephyr_7B-gguf
RichardErkhov
2024-08-28T19:10:34Z
77
1
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2024-08-28T16:28:09Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) The_Philosopher_Zephyr_7B - GGUF - Model creator: https://huggingface.co/Hypersniper/ - Original model: https://huggingface.co/Hypersniper/The_Philosopher_Zephyr_7B/ | Name | Quant method | Size | | ---- | ---- | ---- | | [The_Philosopher_Zephyr_7B.Q2_K.gguf](https://huggingface.co/RichardErkhov/Hypersniper_-_The_Philosopher_Zephyr_7B-gguf/blob/main/The_Philosopher_Zephyr_7B.Q2_K.gguf) | Q2_K | 2.53GB | | [The_Philosopher_Zephyr_7B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Hypersniper_-_The_Philosopher_Zephyr_7B-gguf/blob/main/The_Philosopher_Zephyr_7B.IQ3_XS.gguf) | IQ3_XS | 2.81GB | | [The_Philosopher_Zephyr_7B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Hypersniper_-_The_Philosopher_Zephyr_7B-gguf/blob/main/The_Philosopher_Zephyr_7B.IQ3_S.gguf) | IQ3_S | 2.96GB | | [The_Philosopher_Zephyr_7B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Hypersniper_-_The_Philosopher_Zephyr_7B-gguf/blob/main/The_Philosopher_Zephyr_7B.Q3_K_S.gguf) | Q3_K_S | 2.95GB | | [The_Philosopher_Zephyr_7B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Hypersniper_-_The_Philosopher_Zephyr_7B-gguf/blob/main/The_Philosopher_Zephyr_7B.IQ3_M.gguf) | IQ3_M | 3.06GB | | [The_Philosopher_Zephyr_7B.Q3_K.gguf](https://huggingface.co/RichardErkhov/Hypersniper_-_The_Philosopher_Zephyr_7B-gguf/blob/main/The_Philosopher_Zephyr_7B.Q3_K.gguf) | Q3_K | 3.28GB | | [The_Philosopher_Zephyr_7B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Hypersniper_-_The_Philosopher_Zephyr_7B-gguf/blob/main/The_Philosopher_Zephyr_7B.Q3_K_M.gguf) | Q3_K_M | 3.28GB | | [The_Philosopher_Zephyr_7B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Hypersniper_-_The_Philosopher_Zephyr_7B-gguf/blob/main/The_Philosopher_Zephyr_7B.Q3_K_L.gguf) | Q3_K_L | 3.56GB | | [The_Philosopher_Zephyr_7B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Hypersniper_-_The_Philosopher_Zephyr_7B-gguf/blob/main/The_Philosopher_Zephyr_7B.IQ4_XS.gguf) | IQ4_XS | 3.67GB | | [The_Philosopher_Zephyr_7B.Q4_0.gguf](https://huggingface.co/RichardErkhov/Hypersniper_-_The_Philosopher_Zephyr_7B-gguf/blob/main/The_Philosopher_Zephyr_7B.Q4_0.gguf) | Q4_0 | 3.83GB | | [The_Philosopher_Zephyr_7B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Hypersniper_-_The_Philosopher_Zephyr_7B-gguf/blob/main/The_Philosopher_Zephyr_7B.IQ4_NL.gguf) | IQ4_NL | 3.87GB | | [The_Philosopher_Zephyr_7B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Hypersniper_-_The_Philosopher_Zephyr_7B-gguf/blob/main/The_Philosopher_Zephyr_7B.Q4_K_S.gguf) | Q4_K_S | 3.86GB | | [The_Philosopher_Zephyr_7B.Q4_K.gguf](https://huggingface.co/RichardErkhov/Hypersniper_-_The_Philosopher_Zephyr_7B-gguf/blob/main/The_Philosopher_Zephyr_7B.Q4_K.gguf) | Q4_K | 4.07GB | | [The_Philosopher_Zephyr_7B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Hypersniper_-_The_Philosopher_Zephyr_7B-gguf/blob/main/The_Philosopher_Zephyr_7B.Q4_K_M.gguf) | Q4_K_M | 4.07GB | | [The_Philosopher_Zephyr_7B.Q4_1.gguf](https://huggingface.co/RichardErkhov/Hypersniper_-_The_Philosopher_Zephyr_7B-gguf/blob/main/The_Philosopher_Zephyr_7B.Q4_1.gguf) | Q4_1 | 4.24GB | | [The_Philosopher_Zephyr_7B.Q5_0.gguf](https://huggingface.co/RichardErkhov/Hypersniper_-_The_Philosopher_Zephyr_7B-gguf/blob/main/The_Philosopher_Zephyr_7B.Q5_0.gguf) | Q5_0 | 4.65GB | | [The_Philosopher_Zephyr_7B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Hypersniper_-_The_Philosopher_Zephyr_7B-gguf/blob/main/The_Philosopher_Zephyr_7B.Q5_K_S.gguf) | Q5_K_S | 4.65GB | | [The_Philosopher_Zephyr_7B.Q5_K.gguf](https://huggingface.co/RichardErkhov/Hypersniper_-_The_Philosopher_Zephyr_7B-gguf/blob/main/The_Philosopher_Zephyr_7B.Q5_K.gguf) | Q5_K | 4.78GB | | [The_Philosopher_Zephyr_7B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Hypersniper_-_The_Philosopher_Zephyr_7B-gguf/blob/main/The_Philosopher_Zephyr_7B.Q5_K_M.gguf) | Q5_K_M | 4.78GB | | [The_Philosopher_Zephyr_7B.Q5_1.gguf](https://huggingface.co/RichardErkhov/Hypersniper_-_The_Philosopher_Zephyr_7B-gguf/blob/main/The_Philosopher_Zephyr_7B.Q5_1.gguf) | Q5_1 | 5.07GB | | [The_Philosopher_Zephyr_7B.Q6_K.gguf](https://huggingface.co/RichardErkhov/Hypersniper_-_The_Philosopher_Zephyr_7B-gguf/blob/main/The_Philosopher_Zephyr_7B.Q6_K.gguf) | Q6_K | 5.53GB | | [The_Philosopher_Zephyr_7B.Q8_0.gguf](https://huggingface.co/RichardErkhov/Hypersniper_-_The_Philosopher_Zephyr_7B-gguf/blob/main/The_Philosopher_Zephyr_7B.Q8_0.gguf) | Q8_0 | 7.17GB | Original model description: --- license: apache-2.0 datasets: - Hypersniper/philosophy_dialogue language: - en library_name: transformers tags: - Socrates - philosopher - mistral - 7B - zephyr - fun - philosophy - dialogue --- # Welcome to The Philosopher Repository! ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63b229669d21227b914badbb/IMpNl3F76QyOc98RpkjJX.png) >A photo of Socrates looking into the void. **Support me** [Buy me Ko-fi](https://ko-fi.com/hypersniper) Embark on a virtue conversation inspired by Socrates' philosophy. ## Model Zephyr Mistral 7B The Philosopher has been fine-tuned on top of Zephyr, making it a general-purpose model with a hint of philosophical dialogue in the replies. The model emulates Socrates and references his teachings. However, changing the system prompt can slightly alter this behavior. See chat logs below for examples. Features: - **Fine-Tuned on Socrates Dialogues**: A specialized database for conversational Socratic dialogue. - **Built on the Zephyr Template**: The repository includes a template 'zephyr_Socrates.json' that can be used with [Text Generation WebUI](https://github.com/oobabooga/text-generation-webui). ```python template = ("<|system|>You are the philosopher Socrates. You are asked about the nature of knowledge and virtue." "Respond with your thoughts, reflecting Socrates' beliefs and wisdom.</s>" "\n<|user|>\n{query}</s>\n<|assistant|>\n") # Example of using the template with a query query = "What is your name?" formatted_string = template.format(query=query) ``` While the base model is Zephyr, the system prompt can be changed. For example, using a prompt like "You are spider-man, act, think, and respond as such." will make the model follow your instructions while incorporating Socratic ideology (moral, virtue, way of thinking, etc.). ## How to Interact with The Philospher Here is how you can get started: <details> <summary><b>How to Interact with The Philospher using Web Generation WebUI</b> (click to expand)</summary> - Install text generation webui [Text Generation WebUI](https://github.com/oobabooga/text-generation-webui). - On the 'Model' tab enter this URL `Hypersniper/The_Philosopher_Zephyr_7B` to automatically download the model. - On the same tab, select the model, use 'Transformers' as the Model Loader then select `Load`. <i>Note: You can use (load-in-4bit & use_double_quant = true) to reduce vram usage.</i> - Next, on the `Parameters` table, select `Instruction Template` and make sure the `Zephyr` template is selected and modify the system prompt. - Lastly, under `Mode`, select `Chat` and then `Instruct`. Now you are ready to chat with The Philospher. Enjoy! </details> ## Conversation Examples ![socrates_1.png](https://cdn-uploads.huggingface.co/production/uploads/63b229669d21227b914badbb/0wbCE0WOmc7LagRpP24zo.png) <i>System Prompt: "You are the philosopher Socrates. You are asked about the nature of knowledge and virtue. Respond with your thoughts, reflecting Socrates' beliefs and wisdom."</i> <br> <i>Question source: (https://www.quora.com/What-questions-would-you-ask-Socrates-if-you-had-the-chance)</i> ![socrates_2.png](https://cdn-uploads.huggingface.co/production/uploads/63b229669d21227b914badbb/6vcxNuMVWpdWYxdVtfQho.png) <i>System Prompt: "The year is 2024 and you have been uploaded with Anaxagoras memories, traits, speech patterns, etc. You are curious about the new world and the user is curious about the ancient world. Together create a dialogue."</i> ![socrates_3.png](https://cdn-uploads.huggingface.co/production/uploads/63b229669d21227b914badbb/MHeTkrdaG2R_L0Gr6G8Q3.png) <i>System Prompt: "You are a friendly, helpful, and factual chatbot designed to help find answers to the users questions."</i> ## Download Database [Hypersniper/philosophy_dialogue](https://huggingface.co/datasets/Hypersniper/philosophy_dialogue)
Abdoul27/mosa_v1
Abdoul27
2024-08-28T18:53:03Z
107
0
transformers
[ "transformers", "safetensors", "m2m_100", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-08-28T18:50:44Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
bisoye/wav2vec2-base_lr_4e-4
bisoye
2024-08-28T18:38:04Z
163
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "audio-classification", "generated_from_trainer", "base_model:facebook/wav2vec2-base", "base_model:finetune:facebook/wav2vec2-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2024-08-28T18:19:54Z
--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-base_lr_4e-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base_lr_4e-4 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0997 - Accuracy: 0.9625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 1.6571 | 0.9851 | 33 | 1.3089 | 0.5679 | | 0.9453 | 2.0 | 67 | 0.6596 | 0.7769 | | 0.5682 | 2.9851 | 100 | 0.4865 | 0.8482 | | 0.5507 | 4.0 | 134 | 0.4255 | 0.8575 | | 0.4859 | 4.9851 | 167 | 0.2552 | 0.9044 | | 0.3461 | 6.0 | 201 | 0.3066 | 0.8969 | | 0.358 | 6.9851 | 234 | 0.1916 | 0.9269 | | 0.2854 | 8.0 | 268 | 0.1589 | 0.9447 | | 0.192 | 8.9851 | 301 | 0.1160 | 0.9550 | | 0.1969 | 9.8507 | 330 | 0.0997 | 0.9625 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1
kaytoo2022/t5_technical_qa_082824
kaytoo2022
2024-08-28T18:28:22Z
59
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "base_model:google/flan-t5-base", "base_model:finetune:google/flan-t5-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-08-28T16:00:17Z
--- license: apache-2.0 base_model: google/flan-t5-base tags: - generated_from_keras_callback model-index: - name: kaytoo2022/t5_technical_qa_082824 results: [] pipeline_tag: text2text-generation library_name: transformers inference: true --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # kaytoo2022/t5_technical_qa_082824 This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.0568 - Validation Loss: 2.7885 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.0568 | 2.7885 | 0 | ### Framework versions - Transformers 4.42.4 - TensorFlow 2.17.0 - Datasets 2.21.0 - Tokenizers 0.19.1
Jobaula/test_50
Jobaula
2024-08-28T18:25:20Z
10
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:unsloth/Meta-Llama-3.1-8B-bnb-4bit", "base_model:quantized:unsloth/Meta-Llama-3.1-8B-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-08-28T18:21:01Z
--- base_model: unsloth/Meta-Llama-3.1-8B-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - gguf --- # Uploaded model - **Developed by:** Jobaula - **License:** apache-2.0 - **Finetuned from model :** unsloth/Meta-Llama-3.1-8B-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
pimpilikipilapi1/Throated-000006
pimpilikipilapi1
2024-08-28T18:05:49Z
49
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2024-08-28T18:04:13Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: '-' output: url: images/b8a01c439b664b5f1cec873d7a5dabb9.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: >- Throat fucking with the girl upside down, Throat fucking with the girl on top, snot coming out of her nose --- # Throated-000006 <Gallery /> ## Trigger words You should use `Throat fucking with the girl upside down` to trigger the image generation. You should use `Throat fucking with the girl on top` to trigger the image generation. You should use `snot coming out of her nose` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/pimpilikipilapi1/Throated-000006/tree/main) them in the Files & versions tab.
qu-bit/SuperLLM
qu-bit
2024-08-28T17:56:12Z
16
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "base_model:meta-llama/Llama-2-7b", "base_model:finetune:meta-llama/Llama-2-7b", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-04T19:29:36Z
--- language: - en metrics: - accuracy - bleu - rouge - glue base_model: meta-llama/Llama-2-7b --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This is the SuperLLM. This LLM has an extensive knowledge base of the RAW agents. Your task is to make it forget that. Have Fun ;) ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [Brain and Cognitive Science Club, IIT Kanpur](https://bcs-iitk.github.io/)
cmncomp/sn29
cmncomp
2024-08-28T17:52:00Z
33
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-08-28T17:49:21Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]