modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-14 00:44:55
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
519 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-14 00:44:41
card
stringlengths
11
1.01M
jonatasgrosman/wav2vec2-large-xlsr-53-italian
jonatasgrosman
2022-12-14T02:05:34Z
11,687
12
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "hf-asr-leaderboard", "it", "mozilla-foundation/common_voice_6_0", "robust-speech-event", "speech", "xlsr-fine-tuning-week", "dataset:common_voice", "dataset:mozilla-foundation/common_voice_6_0", "doi:10.57967/hf/3582", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: it license: apache-2.0 datasets: - common_voice - mozilla-foundation/common_voice_6_0 metrics: - wer - cer tags: - audio - automatic-speech-recognition - hf-asr-leaderboard - it - mozilla-foundation/common_voice_6_0 - robust-speech-event - speech - xlsr-fine-tuning-week model-index: - name: XLSR Wav2Vec2 Italian by Jonatas Grosman results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice it type: common_voice args: it metrics: - name: Test WER type: wer value: 9.41 - name: Test CER type: cer value: 2.29 - name: Test WER (+LM) type: wer value: 6.91 - name: Test CER (+LM) type: cer value: 1.83 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: it metrics: - name: Dev WER type: wer value: 21.78 - name: Dev CER type: cer value: 7.94 - name: Dev WER (+LM) type: wer value: 15.82 - name: Dev CER (+LM) type: cer value: 6.83 --- # Fine-tuned XLSR-53 large model for speech recognition in Italian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Italian using the train and validation splits of [Common Voice 6.1](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint ## Usage The model can be used directly (without a language model) as follows... Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-italian") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "it" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-italian" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence) ``` | Reference | Prediction | | ------------- | ------------- | | POI LEI MORÌ. | POI LEI MORÌ | | IL LIBRO HA SUSCITATO MOLTE POLEMICHE A CAUSA DEI SUOI CONTENUTI. | IL LIBRO HA SUSCITATO MOLTE POLEMICHE A CAUSA DEI SUOI CONTENUTI | | "FIN DALL'INIZIO LA SEDE EPISCOPALE È STATA IMMEDIATAMENTE SOGGETTA ALLA SANTA SEDE." | FIN DALL'INIZIO LA SEDE EPISCOPALE È STATA IMMEDIATAMENTE SOGGETTA ALLA SANTA SEDE | | IL VUOTO ASSOLUTO? | IL VUOTO ASSOLUTO | | DOPO ALCUNI ANNI, EGLI DECISE DI TORNARE IN INDIA PER RACCOGLIERE ALTRI INSEGNAMENTI. | DOPO ALCUNI ANNI EGLI DECISE DI TORNARE IN INDIA PER RACCOGLIERE ALTRI INSEGNAMENTI | | SALVATION SUE | SALVATION SOO | | IN QUESTO MODO, DECIO OTTENNE IL POTERE IMPERIALE. | IN QUESTO MODO DECHO OTTENNE IL POTERE IMPERIALE | | SPARTA NOVARA ACQUISISCE IL TITOLO SPORTIVO PER GIOCARE IN PRIMA CATEGORIA. | PARCANOVARACFILISCE IL TITOLO SPORTIVO PER GIOCARE IN PRIMA CATEGORIA | | IN SEGUITO, KYGO E SHEAR HANNO PROPOSTO DI CONTINUARE A LAVORARE SULLA CANZONE. | IN SEGUITO KIGO E SHIAR HANNO PROPOSTO DI CONTINUARE A LAVORARE SULLA CANZONE | | ALAN CLARKE | ALAN CLARK | ## Evaluation 1. To evaluate on `mozilla-foundation/common_voice_6_0` with split `test` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-italian --dataset mozilla-foundation/common_voice_6_0 --config it --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-italian --dataset speech-recognition-community-v2/dev_data --config it --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021xlsr53-large-italian, title={Fine-tuned {XLSR}-53 large model for speech recognition in {I}talian}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-italian}}, year={2021} } ```
jonatasgrosman/wav2vec2-xls-r-1b-spanish
jonatasgrosman
2022-12-14T02:02:19Z
303
6
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "doi:10.57967/hf/3591", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R Wav2Vec2 Spanish by Jonatas Grosman results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: es metrics: - name: Test WER type: wer value: 9.97 - name: Test CER type: cer value: 2.85 - name: Test WER (+LM) type: wer value: 6.74 - name: Test CER (+LM) type: cer value: 2.24 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: es metrics: - name: Dev WER type: wer value: 24.79 - name: Dev CER type: cer value: 9.7 - name: Dev WER (+LM) type: wer value: 16.37 - name: Dev CER (+LM) type: cer value: 8.84 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: es metrics: - name: Test WER type: wer value: 16.67 --- # Fine-tuned XLS-R 1B model for speech recognition in Spanish Fine-tuned [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on Spanish using the train and validation splits of [Common Voice 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0), [MediaSpeech](https://www.openslr.org/108/), [Multilingual TEDx](http://www.openslr.org/100), [Multilingual LibriSpeech](https://www.openslr.org/94/), and [Voxpopuli](https://github.com/facebookresearch/voxpopuli). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool, and thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) ## Usage Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-xls-r-1b-spanish") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "es" MODEL_ID = "jonatasgrosman/wav2vec2-xls-r-1b-spanish" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) ``` ## Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-spanish --dataset mozilla-foundation/common_voice_8_0 --config es --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-spanish --dataset speech-recognition-community-v2/dev_data --config es --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021xlsr-1b-spanish, title={Fine-tuned {XLS-R} 1{B} model for speech recognition in {S}panish}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-spanish}}, year={2022} } ```
jonatasgrosman/wav2vec2-xls-r-1b-russian
jonatasgrosman
2022-12-14T02:01:45Z
875
14
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "ru", "dataset:mozilla-foundation/common_voice_8_0", "doi:10.57967/hf/3584", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ru license: apache-2.0 tags: - automatic-speech-recognition - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event - ru datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R Wav2Vec2 Russian by Jonatas Grosman results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ru metrics: - name: Test WER type: wer value: 9.82 - name: Test CER type: cer value: 2.3 - name: Test WER (+LM) type: wer value: 7.08 - name: Test CER (+LM) type: cer value: 1.87 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ru metrics: - name: Dev WER type: wer value: 23.96 - name: Dev CER type: cer value: 8.88 - name: Dev WER (+LM) type: wer value: 15.88 - name: Dev CER (+LM) type: cer value: 7.42 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ru metrics: - name: Test WER type: wer value: 14.23 --- # Fine-tuned XLS-R 1B model for speech recognition in Russian Fine-tuned [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on Russian using the train and validation splits of [Common Voice 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0), [Golos](https://www.openslr.org/114/), and [Multilingual TEDx](http://www.openslr.org/100). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool, and thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) ## Usage Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-xls-r-1b-russian") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "ru" MODEL_ID = "jonatasgrosman/wav2vec2-xls-r-1b-russian" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) ``` ## Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-russian --dataset mozilla-foundation/common_voice_8_0 --config ru --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-russian --dataset speech-recognition-community-v2/dev_data --config ru --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021xlsr-1b-russian, title={Fine-tuned {XLS-R} 1{B} model for speech recognition in {R}ussian}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-russian}}, year={2022} } ```
jonatasgrosman/wav2vec2-xls-r-1b-french
jonatasgrosman
2022-12-14T02:00:59Z
459
8
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "doi:10.57967/hf/3589", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R Wav2Vec2 French by Jonatas Grosman results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: fr metrics: - name: Test WER type: wer value: 16.85 - name: Test CER type: cer value: 4.66 - name: Test WER (+LM) type: wer value: 16.32 - name: Test CER (+LM) type: cer value: 4.21 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: fr metrics: - name: Dev WER type: wer value: 22.34 - name: Dev CER type: cer value: 9.88 - name: Dev WER (+LM) type: wer value: 17.16 - name: Dev CER (+LM) type: cer value: 9.38 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: fr metrics: - name: Test WER type: wer value: 19.15 --- # Fine-tuned XLS-R 1B model for speech recognition in French Fine-tuned [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on French using the train and validation splits of [Common Voice 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0), [MediaSpeech](https://www.openslr.org/108/), [Multilingual TEDx](http://www.openslr.org/100), [Multilingual LibriSpeech](https://www.openslr.org/94/), and [Voxpopuli](https://github.com/facebookresearch/voxpopuli). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool, and thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) ## Usage Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-xls-r-1b-french") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "fr" MODEL_ID = "jonatasgrosman/wav2vec2-xls-r-1b-french" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) ``` ## Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-french --dataset mozilla-foundation/common_voice_8_0 --config fr --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-french --dataset speech-recognition-community-v2/dev_data --config fr --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021xlsr-1b-french, title={Fine-tuned {XLS-R} 1{B} model for speech recognition in {F}rench}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-french}}, year={2022} } ```
jonatasgrosman/wav2vec2-xls-r-1b-dutch
jonatasgrosman
2022-12-14T02:00:33Z
147
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "nl", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "doi:10.57967/hf/3592", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - nl - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R Wav2Vec2 Dutch by Jonatas Grosman results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: nl metrics: - name: Test WER type: wer value: 10.38 - name: Test CER type: cer value: 3.04 - name: Test WER (+LM) type: wer value: 6.83 - name: Test CER (+LM) type: cer value: 2.31 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: nl metrics: - name: Dev WER type: wer value: 31.12 - name: Dev CER type: cer value: 15.92 - name: Dev WER (+LM) type: wer value: 23.95 - name: Dev CER (+LM) type: cer value: 14.18 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: nl metrics: - name: Test WER type: wer value: 20.41 --- # Fine-tuned XLS-R 1B model for speech recognition in Dutch Fine-tuned [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on Dutch using the train and validation splits of [Common Voice 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0), [Multilingual LibriSpeech](https://www.openslr.org/94/), and [Voxpopuli](https://github.com/facebookresearch/voxpopuli). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool, and thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) ## Usage Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-xls-r-1b-dutch") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "nl" MODEL_ID = "jonatasgrosman/wav2vec2-xls-r-1b-dutch" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) ``` ## Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-dutch --dataset mozilla-foundation/common_voice_8_0 --config nl --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-dutch --dataset speech-recognition-community-v2/dev_data --config nl --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021xlsr-1b-dutch, title={Fine-tuned {XLS-R} 1{B} model for speech recognition in {D}utch}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-dutch}}, year={2022} } ```
jonatasgrosman/wav2vec2-large-xlsr-53-spanish
jonatasgrosman
2022-12-14T01:59:35Z
8,874
30
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "es", "hf-asr-leaderboard", "mozilla-foundation/common_voice_6_0", "robust-speech-event", "speech", "xlsr-fine-tuning-week", "dataset:common_voice", "dataset:mozilla-foundation/common_voice_6_0", "doi:10.57967/hf/3581", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: es license: apache-2.0 datasets: - common_voice - mozilla-foundation/common_voice_6_0 metrics: - wer - cer tags: - audio - automatic-speech-recognition - es - hf-asr-leaderboard - mozilla-foundation/common_voice_6_0 - robust-speech-event - speech - xlsr-fine-tuning-week model-index: - name: XLSR Wav2Vec2 Spanish by Jonatas Grosman results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice es type: common_voice args: es metrics: - name: Test WER type: wer value: 8.82 - name: Test CER type: cer value: 2.58 - name: Test WER (+LM) type: wer value: 6.27 - name: Test CER (+LM) type: cer value: 2.06 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: es metrics: - name: Dev WER type: wer value: 30.19 - name: Dev CER type: cer value: 13.56 - name: Dev WER (+LM) type: wer value: 24.71 - name: Dev CER (+LM) type: cer value: 12.61 --- # Fine-tuned XLSR-53 large model for speech recognition in Spanish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Spanish using the train and validation splits of [Common Voice 6.1](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint ## Usage The model can be used directly (without a language model) as follows... Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-spanish") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "es" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-spanish" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence) ``` | Reference | Prediction | | ------------- | ------------- | | HABITA EN AGUAS POCO PROFUNDAS Y ROCOSAS. | HABITAN AGUAS POCO PROFUNDAS Y ROCOSAS | | OPERA PRINCIPALMENTE VUELOS DE CABOTAJE Y REGIONALES DE CARGA. | OPERA PRINCIPALMENTE VUELO DE CARBOTAJES Y REGIONALES DE CARGAN | | PARA VISITAR CONTACTAR PRIMERO CON LA DIRECCIÓN. | PARA VISITAR CONTACTAR PRIMERO CON LA DIRECCIÓN | | TRES | TRES | | REALIZÓ LOS ESTUDIOS PRIMARIOS EN FRANCIA, PARA CONTINUAR LUEGO EN ESPAÑA. | REALIZÓ LOS ESTUDIOS PRIMARIOS EN FRANCIA PARA CONTINUAR LUEGO EN ESPAÑA | | EN LOS AÑOS QUE SIGUIERON, ESTE TRABAJO ESPARTA PRODUJO DOCENAS DE BUENOS JUGADORES. | EN LOS AÑOS QUE SIGUIERON ESTE TRABAJO ESPARTA PRODUJO DOCENA DE BUENOS JUGADORES | | SE ESTÁ TRATANDO DE RECUPERAR SU CULTIVO EN LAS ISLAS CANARIAS. | SE ESTÓ TRATANDO DE RECUPERAR SU CULTIVO EN LAS ISLAS CANARIAS | | SÍ | SÍ | | "FUE ""SACADA"" DE LA SERIE EN EL EPISODIO ""LEAD"", EN QUE ALEXANDRA CABOT REGRESÓ." | FUE SACADA DE LA SERIE EN EL EPISODIO LEED EN QUE ALEXANDRA KAOT REGRESÓ | | SE UBICAN ESPECÍFICAMENTE EN EL VALLE DE MOKA, EN LA PROVINCIA DE BIOKO SUR. | SE UBICAN ESPECÍFICAMENTE EN EL VALLE DE MOCA EN LA PROVINCIA DE PÍOCOSUR | ## Evaluation 1. To evaluate on `mozilla-foundation/common_voice_6_0` with split `test` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-spanish --dataset mozilla-foundation/common_voice_6_0 --config es --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-spanish --dataset speech-recognition-community-v2/dev_data --config es --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021xlsr53-large-spanish, title={Fine-tuned {XLSR}-53 large model for speech recognition in {S}panish}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-spanish}}, year={2021} } ```
jonatasgrosman/wav2vec2-large-xlsr-53-french
jonatasgrosman
2022-12-14T01:59:23Z
79,659
11
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "fr", "hf-asr-leaderboard", "mozilla-foundation/common_voice_6_0", "robust-speech-event", "speech", "xlsr-fine-tuning-week", "dataset:common_voice", "dataset:mozilla-foundation/common_voice_6_0", "doi:10.57967/hf/3580", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: fr license: apache-2.0 datasets: - common_voice - mozilla-foundation/common_voice_6_0 metrics: - wer - cer tags: - audio - automatic-speech-recognition - fr - hf-asr-leaderboard - mozilla-foundation/common_voice_6_0 - robust-speech-event - speech - xlsr-fine-tuning-week model-index: - name: XLSR Wav2Vec2 French by Jonatas Grosman results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice fr type: common_voice args: fr metrics: - name: Test WER type: wer value: 17.65 - name: Test CER type: cer value: 4.89 - name: Test WER (+LM) type: wer value: 13.59 - name: Test CER (+LM) type: cer value: 3.91 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: fr metrics: - name: Dev WER type: wer value: 34.35 - name: Dev CER type: cer value: 14.09 - name: Dev WER (+LM) type: wer value: 24.72 - name: Dev CER (+LM) type: cer value: 12.33 --- # Fine-tuned XLSR-53 large model for speech recognition in French Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on French using the train and validation splits of [Common Voice 6.1](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint ## Usage The model can be used directly (without a language model) as follows... Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-french") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "fr" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-french" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence) ``` | Reference | Prediction | | ------------- | ------------- | | "CE DERNIER A ÉVOLUÉ TOUT AU LONG DE L'HISTOIRE ROMAINE." | CE DERNIER ÉVOLUÉ TOUT AU LONG DE L'HISTOIRE ROMAINE | | CE SITE CONTIENT QUATRE TOMBEAUX DE LA DYNASTIE ACHÉMÉNIDE ET SEPT DES SASSANIDES. | CE SITE CONTIENT QUATRE TOMBEAUX DE LA DYNASTIE ASHEMÉNID ET SEPT DES SASANDNIDES | | "J'AI DIT QUE LES ACTEURS DE BOIS AVAIENT, SELON MOI, BEAUCOUP D'AVANTAGES SUR LES AUTRES." | JAI DIT QUE LES ACTEURS DE BOIS AVAIENT SELON MOI BEAUCOUP DAVANTAGES SUR LES AUTRES | | LES PAYS-BAS ONT REMPORTÉ TOUTES LES ÉDITIONS. | LE PAYS-BAS ON REMPORTÉ TOUTES LES ÉDITIONS | | IL Y A MAINTENANT UNE GARE ROUTIÈRE. | IL AMNARDIGAD LE TIRAN | | HUIT | HUIT | | DANS L’ATTENTE DU LENDEMAIN, ILS NE POUVAIENT SE DÉFENDRE D’UNE VIVE ÉMOTION | DANS L'ATTENTE DU LENDEMAIN IL NE POUVAIT SE DÉFENDRE DUNE VIVE ÉMOTION | | LA PREMIÈRE SAISON EST COMPOSÉE DE DOUZE ÉPISODES. | LA PREMIÈRE SAISON EST COMPOSÉE DE DOUZE ÉPISODES | | ELLE SE TROUVE ÉGALEMENT DANS LES ÎLES BRITANNIQUES. | ELLE SE TROUVE ÉGALEMENT DANS LES ÎLES BRITANNIQUES | | ZÉRO | ZEGO | ## Evaluation 1. To evaluate on `mozilla-foundation/common_voice_6_0` with split `test` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-french --dataset mozilla-foundation/common_voice_6_0 --config fr --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-french --dataset speech-recognition-community-v2/dev_data --config fr --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021xlsr53-large-french, title={Fine-tuned {XLSR}-53 large model for speech recognition in {F}rench}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-french}}, year={2021} } ```
jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn
jonatasgrosman
2022-12-14T01:58:32Z
5,230,034
94
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "zh", "dataset:common_voice", "doi:10.57967/hf/3570", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: zh datasets: - common_voice metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Chinese (zh-CN) by Jonatas Grosman results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice zh-CN type: common_voice args: zh-CN metrics: - name: Test WER type: wer value: 82.37 - name: Test CER type: cer value: 19.03 --- # Fine-tuned XLSR-53 large model for speech recognition in Chinese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Chinese using the train and validation splits of [Common Voice 6.1](https://huggingface.co/datasets/common_voice), [CSS10](https://github.com/Kyubyong/css10) and [ST-CMDS](http://www.openslr.org/38/). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint ## Usage The model can be used directly (without a language model) as follows... Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "zh-CN" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence) ``` | Reference | Prediction | | ------------- | ------------- | | 宋朝末年年间定居粉岭围。 | 宋朝末年年间定居分定为 | | 渐渐行动不便 | 建境行动不片 | | 二十一年去世。 | 二十一年去世 | | 他们自称恰哈拉。 | 他们自称家哈<unk> | | 局部干涩的例子包括有口干、眼睛干燥、及阴道干燥。 | 菊物干寺的例子包括有口肝眼睛干照以及阴到干<unk> | | 嘉靖三十八年,登进士第三甲第二名。 | 嘉靖三十八年登进士第三甲第二名 | | 这一名称一直沿用至今。 | 这一名称一直沿用是心 | | 同时乔凡尼还得到包税合同和许多明矾矿的经营权。 | 同时桥凡妮还得到包税合同和许多民繁矿的经营权 | | 为了惩罚西扎城和塞尔柱的结盟,盟军在抵达后将外城烧毁。 | 为了曾罚西扎城和塞尔素的节盟盟军在抵达后将外曾烧毁 | | 河内盛产黄色无鱼鳞的鳍射鱼。 | 合类生场环色无鱼林的骑射鱼 | ## Evaluation The model can be evaluated as follows on the Chinese (zh-CN) test data of Common Voice. ```python import torch import re import librosa from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "zh-CN" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn" DEVICE = "cuda" CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞", "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]", "{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。", "、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽", "『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "'", "ʻ", "ˆ"] test_dataset = load_dataset("common_voice", LANG_ID, split="test") wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]" processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) model.to(DEVICE) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): with warnings.catch_warnings(): warnings.simplefilter("ignore") speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) predictions = [x.upper() for x in result["pred_strings"]] references = [x.upper() for x in result["sentence"]] print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") ``` **Test Result**: In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well (on 2021-05-13). Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used. | Model | WER | CER | | ------------- | ------------- | ------------- | | jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn | **82.37%** | **19.03%** | | ydshieh/wav2vec2-large-xlsr-53-chinese-zh-cn-gpt | 84.01% | 20.95% | ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021xlsr53-large-chinese, title={Fine-tuned {XLSR}-53 large model for speech recognition in {C}hinese}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn}}, year={2021} } ```
jonatasgrosman/wav2vec2-large-xlsr-53-dutch
jonatasgrosman
2022-12-14T01:58:20Z
625,644
10
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "hf-asr-leaderboard", "mozilla-foundation/common_voice_6_0", "nl", "robust-speech-event", "speech", "xlsr-fine-tuning-week", "dataset:common_voice", "dataset:mozilla-foundation/common_voice_6_0", "doi:10.57967/hf/0203", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: nl license: apache-2.0 datasets: - common_voice - mozilla-foundation/common_voice_6_0 metrics: - wer - cer tags: - audio - automatic-speech-recognition - hf-asr-leaderboard - mozilla-foundation/common_voice_6_0 - nl - robust-speech-event - speech - xlsr-fine-tuning-week model-index: - name: XLSR Wav2Vec2 Dutch by Jonatas Grosman results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice nl type: common_voice args: nl metrics: - name: Test WER type: wer value: 15.72 - name: Test CER type: cer value: 5.35 - name: Test WER (+LM) type: wer value: 12.84 - name: Test CER (+LM) type: cer value: 4.64 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: nl metrics: - name: Dev WER type: wer value: 35.79 - name: Dev CER type: cer value: 17.67 - name: Dev WER (+LM) type: wer value: 31.54 - name: Dev CER (+LM) type: cer value: 16.37 --- # Fine-tuned XLSR-53 large model for speech recognition in Dutch Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Dutch using the train and validation splits of [Common Voice 6.1](https://huggingface.co/datasets/common_voice) and [CSS10](https://github.com/Kyubyong/css10). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint ## Usage The model can be used directly (without a language model) as follows... Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-dutch") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "nl" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-dutch" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence) ``` | Reference | Prediction | | ------------- | ------------- | | DE ABORIGINALS ZIJN DE OORSPRONKELIJKE BEWONERS VAN AUSTRALIË. | DE ABBORIGENALS ZIJN DE OORSPRONKELIJKE BEWONERS VAN AUSTRALIË | | MIJN TOETSENBORD ZIT VOL STOF. | MIJN TOETSENBORD ZIT VOL STOF | | ZE HAD DE BANK BESCHADIGD MET HAAR SKATEBOARD. | ZE HAD DE BANK BESCHADIGD MET HAAR SCHEETBOORD | | WAAR LAAT JIJ JE ONDERHOUD DOEN? | WAAR LAAT JIJ HET ONDERHOUD DOEN | | NA HET LEZEN VAN VELE BEOORDELINGEN HAD ZE EINDELIJK HAAR OOG LATEN VALLEN OP EEN LAPTOP MET EEN QWERTY TOETSENBORD. | NA HET LEZEN VAN VELE BEOORDELINGEN HAD ZE EINDELIJK HAAR OOG LATEN VALLEN OP EEN LAPTOP MET EEN QUERTITOETSEMBORD | | DE TAMPONS ZIJN OP. | DE TAPONT ZIJN OP | | MARIJKE KENT OLIVIER NU AL MEER DAN TWEE JAAR. | MAARRIJKEN KENT OLIEVIER NU AL MEER DAN TWEE JAAR | | HET VOEREN VAN BROOD AAN EENDEN IS EIGENLIJK ONGEZOND VOOR DE BEESTEN. | HET VOEREN VAN BEUROT AAN EINDEN IS EIGENLIJK ONGEZOND VOOR DE BEESTEN | | PARKET MOET JE STOFZUIGEN, TEGELS MOET JE DWEILEN. | PARKET MOET JE STOF ZUIGEN MAAR TEGELS MOET JE DWEILEN | | IN ONZE BUURT KENT IEDEREEN ELKAAR. | IN ONZE BUURT KENT IEDEREEN ELKAAR | ## Evaluation 1. To evaluate on `mozilla-foundation/common_voice_6_0` with split `test` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-dutch --dataset mozilla-foundation/common_voice_6_0 --config nl --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-dutch --dataset speech-recognition-community-v2/dev_data --config nl --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021xlsr53-large-dutch, title={Fine-tuned {XLSR}-53 large model for speech recognition in {D}utch}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-dutch}}, year={2021} } ```
jonatasgrosman/wav2vec2-large-xlsr-53-polish
jonatasgrosman
2022-12-14T01:57:56Z
422,732
9
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "hf-asr-leaderboard", "mozilla-foundation/common_voice_6_0", "pl", "robust-speech-event", "speech", "xlsr-fine-tuning-week", "dataset:common_voice", "dataset:mozilla-foundation/common_voice_6_0", "doi:10.57967/hf/3574", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: pl license: apache-2.0 datasets: - common_voice - mozilla-foundation/common_voice_6_0 metrics: - wer - cer tags: - audio - automatic-speech-recognition - hf-asr-leaderboard - mozilla-foundation/common_voice_6_0 - pl - robust-speech-event - speech - xlsr-fine-tuning-week model-index: - name: XLSR Wav2Vec2 Polish by Jonatas Grosman results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice pl type: common_voice args: pl metrics: - name: Test WER type: wer value: 14.21 - name: Test CER type: cer value: 3.49 - name: Test WER (+LM) type: wer value: 10.98 - name: Test CER (+LM) type: cer value: 2.93 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: pl metrics: - name: Dev WER type: wer value: 33.18 - name: Dev CER type: cer value: 15.92 - name: Dev WER (+LM) type: wer value: 29.31 - name: Dev CER (+LM) type: cer value: 15.17 --- # Fine-tuned XLSR-53 large model for speech recognition in Polish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Polish using the train and validation splits of [Common Voice 6.1](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint ## Usage The model can be used directly (without a language model) as follows... Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-polish") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "pl" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-polish" SAMPLES = 5 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence) ``` | Reference | Prediction | | ------------- | ------------- | | """CZY DRZWI BYŁY ZAMKNIĘTE?""" | PRZY DRZWI BYŁY ZAMKNIĘTE | | GDZIEŻ TU POWÓD DO WYRZUTÓW? | WGDZIEŻ TO POM DO WYRYDÓ | | """O TEM JEDNAK NIE BYŁO MOWY.""" | O TEM JEDNAK NIE BYŁO MOWY | | LUBIĘ GO. | LUBIĄ GO | | — TO MI NIE POMAGA. | TO MNIE NIE POMAGA | | WCIĄŻ LUDZIE WYSIADAJĄ PRZED ZAMKIEM, Z MIASTA, Z PRAGI. | WCIĄŻ LUDZIE WYSIADAJĄ PRZED ZAMKIEM Z MIASTA Z PRAGI | | ALE ON WCALE INACZEJ NIE MYŚLAŁ. | ONY MONITCENIE PONACZUŁA NA MASU | | A WY, CO TAK STOICIE? | A WY CO TAK STOICIE | | A TEN PRZYRZĄD DO CZEGO SŁUŻY? | A TEN PRZYRZĄD DO CZEGO SŁUŻY | | NA JUTRZEJSZYM KOLOKWIUM BĘDZIE PIĘĆ PYTAŃ OTWARTYCH I TEST WIELOKROTNEGO WYBORU. | NAJUTRZEJSZYM KOLOKWIUM BĘDZIE PIĘĆ PYTAŃ OTWARTYCH I TEST WIELOKROTNEGO WYBORU | ## Evaluation 1. To evaluate on `mozilla-foundation/common_voice_6_0` with split `test` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-polish --dataset mozilla-foundation/common_voice_6_0 --config pl --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-polish --dataset speech-recognition-community-v2/dev_data --config pl --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021xlsr53-large-polish, title={Fine-tuned {XLSR}-53 large model for speech recognition in {P}olish}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-polish}}, year={2021} } ```
jonatasgrosman/wav2vec2-large-xlsr-53-hungarian
jonatasgrosman
2022-12-14T01:57:43Z
188,170
8
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "hu", "dataset:common_voice", "doi:10.57967/hf/3577", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: hu datasets: - common_voice metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Hungarian by Jonatas Grosman results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice hu type: common_voice args: hu metrics: - name: Test WER type: wer value: 31.40 - name: Test CER type: cer value: 6.20 --- # Fine-tuned XLSR-53 large model for speech recognition in Hungarian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Hungarian using the train and validation splits of [Common Voice 6.1](https://huggingface.co/datasets/common_voice) and [CSS10](https://github.com/Kyubyong/css10). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint ## Usage The model can be used directly (without a language model) as follows... Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-hungarian") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "hu" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-hungarian" SAMPLES = 5 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence) ``` | Reference | Prediction | | ------------- | ------------- | | BÜSZKÉK VAGYUNK A MAGYAR EMBEREK NAGYSZERŰ SZELLEMI ALKOTÁSAIRA. | BÜSZKÉK VAGYUNK A MAGYAR EMBEREK NAGYSZERŰ SZELLEMI ALKOTÁSAIRE | | A NEMZETSÉG TAGJAI KÖZÜL EZT TERMESZTIK A LEGSZÉLESEBB KÖRBEN ÍZLETES TERMÉSÉÉRT. | A NEMZETSÉG TAGJAI KÖZÜL ESZSZERMESZTIK A LEGSZELESEBB KÖRBEN IZLETES TERMÉSSÉÉRT | | A VÁROSBA VÁGYÓDOTT A LEGJOBBAN, ÉPPEN MERT ODA NEM JUTHATOTT EL SOHA. | A VÁROSBA VÁGYÓDOTT A LEGJOBBAN ÉPPEN MERT ODA NEM JUTHATOTT EL SOHA | | SÍRJA MÁRA MEGSEMMISÜLT. | SIMGI A MANDO MEG SEMMICSEN | | MINDEN ZENESZÁMOT DRÁGAKŐNEK NEVEZETT. | MINDEN ZENA SZÁMODRAGAKŐNEK NEVEZETT | | ÍGY MÚLT EL A DÉLELŐTT. | ÍGY MÚLT EL A DÍN ELŐTT | | REMEK POFA! | A REMEG PUFO | | SZEMET SZEMÉRT, FOGAT FOGÉRT. | SZEMET SZEMÉRT FOGADD FOGÉRT | | BIZTOSAN LAKIK ITT NÉHÁNY ATYÁMFIA. | BIZTOSAN LAKIKÉT NÉHANY ATYAMFIA | | A SOROK KÖZÖTT OLVAS. | A SOROG KÖZÖTT OLVAS | ## Evaluation The model can be evaluated as follows on the Hungarian test data of Common Voice. ```python import torch import re import librosa from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "hu" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-hungarian" DEVICE = "cuda" CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞", "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]", "{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。", "、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽", "『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"] test_dataset = load_dataset("common_voice", LANG_ID, split="test") wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]" processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) model.to(DEVICE) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): with warnings.catch_warnings(): warnings.simplefilter("ignore") speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) predictions = [x.upper() for x in result["pred_strings"]] references = [x.upper() for x in result["sentence"]] print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") ``` **Test Result**: In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well (on 2021-04-22). Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used. | Model | WER | CER | | ------------- | ------------- | ------------- | | jonatasgrosman/wav2vec2-large-xlsr-53-hungarian | **31.40%** | **6.20%** | | anton-l/wav2vec2-large-xlsr-53-hungarian | 42.39% | 9.39% | | gchhablani/wav2vec2-large-xlsr-hu | 46.42% | 10.04% | | birgermoell/wav2vec2-large-xlsr-hungarian | 46.93% | 10.31% | ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021xlsr53-large-hungarian, title={Fine-tuned {XLSR}-53 large model for speech recognition in {H}ungarian}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-hungarian}}, year={2021} } ```
jonatasgrosman/wav2vec2-large-xlsr-53-greek
jonatasgrosman
2022-12-14T01:56:48Z
251,053
1
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "el", "dataset:common_voice", "doi:10.57967/hf/3579", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: el datasets: - common_voice metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Greek by Jonatas Grosman results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice el type: common_voice args: el metrics: - name: Test WER type: wer value: 11.62 - name: Test CER type: cer value: 3.36 --- # Fine-tuned XLSR-53 large model for speech recognition in Greek Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Greek using the train and validation splits of [Common Voice 6.1](https://huggingface.co/datasets/common_voice) and [CSS10](https://github.com/Kyubyong/css10). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint ## Usage The model can be used directly (without a language model) as follows... Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-greek") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "el" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-greek" SAMPLES = 5 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence) ``` | Reference | Prediction | | ------------- | ------------- | | ΤΟ ΒΑΣΙΛΌΠΟΥΛΟ, ΠΟΥ ΜΟΙΆΖΕΙ ΛΕΟΝΤΑΡΆΚΙ ΚΑΙ ΑΕΤΟΥΔΆΚΙ | ΤΟ ΒΑΣΙΛΌΠΟΥΛΟ ΠΟΥ ΜΙΑΣΕ ΛΙΟΝΤΑΡΑΚΉ ΚΑΙ ΑΪΤΟΥΔΆΚΙ | | ΣΥΝΆΜΑ ΞΕΠΡΌΒΑΛΑΝ ΑΠΌ ΜΈΣΑ ΑΠΌ ΤΑ ΔΈΝΤΡΑ, ΔΕΞΙΆ, ΑΡΜΑΤΩΜΈΝΟΙ ΚΑΒΑΛΑΡΈΟΙ. | ΣΥΝΆΜΑ ΚΑΙ ΤΡΌΒΑΛΑΝ ΑΠΌ ΜΈΣΑ ΑΠΌ ΤΑ ΔΈΝΤΡΑ ΔΕΞΙΆ ΑΡΜΑΤΩΜΈΝΟΙ ΚΑΒΑΛΑΡΈΟΙ | | ΤΑ ΣΥΣΚΕΥΑΣΜΈΝΑ ΒΙΟΛΟΓΙΚΆ ΛΑΧΑΝΙΚΆ ΔΕΝ ΠΕΡΙΈΧΟΥΝ ΣΥΝΤΗΡΗΤΙΚΆ ΚΑΙ ΟΡΜΌΝΕΣ | ΤΑ ΣΥΣΚΕΦΑΣΜΈΝΑ ΒΙΟΛΟΓΙΚΆ ΛΑΧΑΝΙΚΆ ΔΕΝ ΠΕΡΙΈΧΟΥΝ ΣΙΔΗΡΗΤΙΚΆ ΚΑΙ ΟΡΜΌΝΕΣ | | ΑΚΟΛΟΥΘΉΣΕΤΕ ΜΕ! | ΑΚΟΛΟΥΘΉΣΤΕ ΜΕ | | ΚΑΙ ΠΟΎ ΜΠΟΡΏ ΝΑ ΤΟΝ ΒΡΩ; | Ε ΠΟΎ ΜΠΟΡΏ ΝΑ ΤΙ ΕΒΡΩ | | ΝΑΙ! ΑΠΟΚΡΊΘΗΚΕ ΤΟ ΠΑΙΔΊ | ΝΑΙ ΑΠΟΚΡΊΘΗΚΕ ΤΟ ΠΑΙΔΊ | | ΤΟ ΠΑΛΆΤΙ ΜΟΥ ΤΟ ΠΡΟΜΉΘΕΥΕ. | ΤΟ ΠΑΛΆΤΙ ΜΟΥ ΤΟ ΠΡΟΜΉΘΕΥΕ | | ΉΛΘΕ ΜΉΝΥΜΑ ΑΠΌ ΤΟ ΘΕΊΟ ΒΑΣΙΛΙΆ; | ΉΛΘΑ ΜΕΊΝΕΙ ΜΕ ΑΠΌ ΤΟ ΘΕΊΟ ΒΑΣΊΛΙΑ | | ΠΑΡΑΚΆΤΩ, ΈΝΑ ΡΥΆΚΙ ΜΟΥΡΜΟΎΡΙΖΕ ΓΛΥΚΆ, ΚΥΛΏΝΤΑΣ ΤΑ ΚΡΥΣΤΑΛΛΈΝΙΑ ΝΕΡΆ ΤΟΥ ΑΝΆΜΕΣΑ ΣΤΑ ΠΥΚΝΆ ΧΑΜΌΔΕΝΤΡΑ. | ΠΑΡΑΚΆΤΩ ΈΝΑ ΡΥΆΚΙ ΜΟΥΡΜΟΎΡΙΖΕ ΓΛΥΚΆ ΚΥΛΏΝΤΑΣ ΤΑ ΚΡΥΣΤΑΛΛΈΝΙΑ ΝΕΡΆ ΤΟΥ ΑΝΆΜΕΣΑ ΣΤΑ ΠΥΚΡΆ ΧΑΜΌΔΕΝΤΡΑ | | ΠΡΆΓΜΑΤΙ, ΕΊΝΑΙ ΑΣΤΕΊΟ ΝΑ ΠΆΡΕΙ Ο ΔΙΆΒΟΛΟΣ | ΠΡΆΓΜΑΤΗ ΕΊΝΑΙ ΑΣΤΕΊΟ ΝΑ ΠΆΡΕΙ Ο ΔΙΆΒΟΛΟΣ | ## Evaluation The model can be evaluated as follows on the Greek test data of Common Voice. ```python import torch import re import librosa from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "el" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-greek" DEVICE = "cuda" CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞", "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]", "{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。", "、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽", "『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\\\", "º", "−", "^", "ʻ", "ˆ"] test_dataset = load_dataset("common_voice", LANG_ID, split="test") wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]" processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) model.to(DEVICE) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): with warnings.catch_warnings(): warnings.simplefilter("ignore") speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) predictions = [x.upper() for x in result["pred_strings"]] references = [x.upper() for x in result["sentence"]] print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") ``` **Test Result**: In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well (on 2021-04-22). Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used. | Model | WER | CER | | ------------- | ------------- | ------------- | | lighteternal/wav2vec2-large-xlsr-53-greek | **10.13%** | **2.66%** | | jonatasgrosman/wav2vec2-large-xlsr-53-greek | 11.62% | 3.36% | | vasilis/wav2vec2-large-xlsr-53-greek | 19.09% | 5.88% | | PereLluis13/wav2vec2-large-xlsr-53-greek | 20.16% | 5.71% | ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021xlsr53-large-greek, title={Fine-tuned {XLSR}-53 large model for speech recognition in {G}reek}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-greek}}, year={2021} } ```
jonatasgrosman/wav2vec2-large-english
jonatasgrosman
2022-12-14T01:56:35Z
58
4
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "en", "dataset:common_voice", "doi:10.57967/hf/3587", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: en datasets: - common_voice metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Wav2Vec2 English by Jonatas Grosman results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice en type: common_voice args: en metrics: - name: Test WER type: wer value: 21.53 - name: Test CER type: cer value: 9.66 --- # Fine-tuned wav2vec2 large model for speech recognition in English Fine-tuned [facebook/wav2vec2-large](https://huggingface.co/facebook/wav2vec2-large) on English using the train and validation splits of [Common Voice 6.1](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint ## Usage The model can be used directly (without a language model) as follows... Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-english") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "en" MODEL_ID = "jonatasgrosman/wav2vec2-large-english" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence) ``` | Reference | Prediction | | ------------- | ------------- | | "SHE'LL BE ALL RIGHT." | SHELL BE ALL RIGHT | | SIX | SIX | | "ALL'S WELL THAT ENDS WELL." | ALLAS WELL THAT ENDS WELL | | DO YOU MEAN IT? | W MEAN IT | | THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE, BUT STILL CAUSES REGRESSIONS. | THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE BUT STILL CAUSES REGRESTION | | HOW IS MOZILLA GOING TO HANDLE AMBIGUITIES LIKE QUEUE AND CUE? | HOW IS MOSILLA GOING TO BANDL AND BE WHIT IS LIKE QU AND QU | | "I GUESS YOU MUST THINK I'M KINDA BATTY." | RUSTION AS HAME AK AN THE POT | | NO ONE NEAR THE REMOTE MACHINE YOU COULD RING? | NO ONE NEAR THE REMOTE MACHINE YOU COULD RING | | SAUCE FOR THE GOOSE IS SAUCE FOR THE GANDER. | SAUCE FOR THE GUCE IS SAUCE FOR THE GONDER | | GROVES STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD. | GRAFS STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD | ## Evaluation The model can be evaluated as follows on the English (en) test data of Common Voice. ```python import torch import re import librosa from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "en" MODEL_ID = "jonatasgrosman/wav2vec2-large-english" DEVICE = "cuda" CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞", "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]", "{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。", "、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽", "『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"] test_dataset = load_dataset("common_voice", LANG_ID, split="test") wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]" processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) model.to(DEVICE) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): with warnings.catch_warnings(): warnings.simplefilter("ignore") speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) predictions = [x.upper() for x in result["pred_strings"]] references = [x.upper() for x in result["sentence"]] print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") ``` **Test Result**: In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well (on 2021-06-17). Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used. | Model | WER | CER | | ------------- | ------------- | ------------- | | jonatasgrosman/wav2vec2-large-xlsr-53-english | **18.98%** | **8.29%** | | jonatasgrosman/wav2vec2-large-english | 21.53% | 9.66% | | facebook/wav2vec2-large-960h-lv60-self | 22.03% | 10.39% | | facebook/wav2vec2-large-960h-lv60 | 23.97% | 11.14% | | boris/xlsr-en-punctuation | 29.10% | 10.75% | | facebook/wav2vec2-large-960h | 32.79% | 16.03% | | facebook/wav2vec2-base-960h | 39.86% | 19.89% | | facebook/wav2vec2-base-100h | 51.06% | 25.06% | | elgeish/wav2vec2-large-lv60-timit-asr | 59.96% | 34.28% | | facebook/wav2vec2-base-10k-voxpopuli-ft-en | 66.41% | 36.76% | | elgeish/wav2vec2-base-timit-asr | 68.78% | 36.81% | ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021wav2vec2-large-english, title={Fine-tuned wav2vec2 large model for speech recognition in {E}nglish}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-english}}, year={2021} } ```
jonatasgrosman/wav2vec2-large-fr-voxpopuli-french
jonatasgrosman
2022-12-14T01:56:20Z
38
3
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "fr", "dataset:common_voice", "doi:10.57967/hf/3585", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: fr datasets: - common_voice metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Voxpopuli Wav2Vec2 French by Jonatas Grosman results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice fr type: common_voice args: fr metrics: - name: Test WER type: wer value: 17.62 - name: Test CER type: cer value: 6.04 --- # Fine-tuned French Voxpopuli wav2vec2 large model for speech recognition in French Fine-tuned [facebook/wav2vec2-large-fr-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-fr-voxpopuli) on French using the train and validation splits of [Common Voice 6.1](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint ## Usage The model can be used directly (without a language model) as follows... Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-fr-voxpopuli-french") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "fr" MODEL_ID = "jonatasgrosman/wav2vec2-large-fr-voxpopuli-french" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence) ``` | Reference | Prediction | | ------------- | ------------- | | "CE DERNIER A ÉVOLUÉ TOUT AU LONG DE L'HISTOIRE ROMAINE." | CE DERNIER A ÉVOLÉ TOUT AU LONG DE L'HISTOIRE ROMAINE | | CE SITE CONTIENT QUATRE TOMBEAUX DE LA DYNASTIE ACHÉMÉNIDE ET SEPT DES SASSANIDES. | CE SITE CONTIENT QUATRE TOMBEAUX DE LA DYNESTIE ACHÉMÉNIDE ET SEPT DES SACENNIDES | | "J'AI DIT QUE LES ACTEURS DE BOIS AVAIENT, SELON MOI, BEAUCOUP D'AVANTAGES SUR LES AUTRES." | JAI DIT QUE LES ACTEURS DE BOIS AVAIENT SELON MOI BEAUCOUP DAVANTAGE SUR LES AUTRES | | LES PAYS-BAS ONT REMPORTÉ TOUTES LES ÉDITIONS. | LE PAYS-BAS ON REMPORTÉ TOUTES LES ÉDITIONS | | IL Y A MAINTENANT UNE GARE ROUTIÈRE. | IL A MAINTENANT GULA E RETIREN | | HUIT | HUIT | | DANS L’ATTENTE DU LENDEMAIN, ILS NE POUVAIENT SE DÉFENDRE D’UNE VIVE ÉMOTION | DANS LATTENTE DU LENDEMAIN IL NE POUVAIT SE DÉFENDRE DUNE VIVE ÉMOTION | | LA PREMIÈRE SAISON EST COMPOSÉE DE DOUZE ÉPISODES. | LA PREMIÈRE SAISON EST COMPOSÉE DE DOUZ ÉPISODES | | ELLE SE TROUVE ÉGALEMENT DANS LES ÎLES BRITANNIQUES. | ELLE SE TROUVE ÉGALEMENT DANS LES ÎLES BRITANNIQUES | | ZÉRO | ZÉRO | ## Evaluation The model can be evaluated as follows on the French (fr) test data of Common Voice. ```python import torch import re import librosa from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "fr" MODEL_ID = "jonatasgrosman/wav2vec2-large-fr-voxpopuli-french" DEVICE = "cuda" CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞", "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]", "{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。", "、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽", "『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"] test_dataset = load_dataset("common_voice", LANG_ID, split="test") wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]" processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) model.to(DEVICE) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): with warnings.catch_warnings(): warnings.simplefilter("ignore") speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) predictions = [x.upper() for x in result["pred_strings"]] references = [x.upper() for x in result["sentence"]] print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") ``` **Test Result**: In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well (on 2021-05-16). Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used. | Model | WER | CER | | ------------- | ------------- | ------------- | | jonatasgrosman/wav2vec2-large-xlsr-53-french | **15.90%** | **5.29%** | | jonatasgrosman/wav2vec2-large-fr-voxpopuli-french | 17.62% | 6.04% | | Ilyes/wav2vec2-large-xlsr-53-french | 19.67% | 6.70% | | Nhut/wav2vec2-large-xlsr-french | 24.09% | 8.42% | | facebook/wav2vec2-large-xlsr-53-french | 25.45% | 10.35% | | MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-French | 28.22% | 9.70% | | Ilyes/wav2vec2-large-xlsr-53-french_punctuation | 29.80% | 11.79% | | facebook/wav2vec2-base-10k-voxpopuli-ft-fr | 61.06% | 33.31% | ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021voxpopuli-fr-wav2vec2-large-french, title={Fine-tuned {F}rench {V}oxpopuli wav2vec2 large model for speech recognition in {F}rench}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-fr-voxpopuli-french}}, year={2021} } ```
jakub014/bert-base-uncased-finetuned-sufficiency-ukp
jakub014
2022-12-14T01:39:52Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-13T23:12:09Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-sufficiency results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-sufficiency This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3054 - Accuracy: 0.8883 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 52 | 0.4036 | 0.8107 | | No log | 2.0 | 104 | 0.3239 | 0.8641 | | No log | 3.0 | 156 | 0.3239 | 0.8835 | | No log | 4.0 | 208 | 0.3054 | 0.8883 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
huggingspace/ppo-Huggy
huggingspace
2022-12-14T01:17:54Z
7
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-14T01:17:48Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: huggingspace/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
SocketErr/danjohnson
SocketErr
2022-12-14T01:07:01Z
0
0
null
[ "stable-diffusion", "text-to-image", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2022-12-14T00:31:49Z
--- license: creativeml-openrail-m tags: - stable-diffusion - text-to-image inference: true extra_gated_prompt: |- This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. CompVis claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) Please read the full license carefully here: https://huggingface.co/spaces/CompVis/stable-diffusion-license extra_gated_heading: Please read the LICENSE to access this model ---
Blackroot/sd-class-butterflies-64
Blackroot
2022-12-14T00:59:25Z
0
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-12-14T00:55:13Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('Blackroot/sd-class-butterflies-64') image = pipeline().images[0] image ```
Gweizheng/q-Taxi-v3
Gweizheng
2022-12-14T00:06:26Z
0
0
null
[ "Taxi-v3-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-13T23:22:33Z
--- tags: - Taxi-v3-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3-4x4-no_slippery type: Taxi-v3-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Gweizheng/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
lakssrini/sd-class-butterflies-64
lakssrini
2022-12-13T23:38:23Z
1
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-12-13T23:37:35Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('lakssrini/sd-class-butterflies-64') image = pipeline().images[0] image ```
Gweizheng/q-FrozenLake-v1-4x4-noSlippery
Gweizheng
2022-12-13T23:16:05Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-13T23:15:56Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 metrics: - type: mean_reward value: 0.61 +/- 0.49 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Gweizheng/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Liapunov/ppo-LunarLander-v2
Liapunov
2022-12-13T23:06:40Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-13T14:44:33Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 273.62 +/- 19.99 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ibadrehman/lunarlander-v2-1M
ibadrehman
2022-12-13T22:47:03Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-13T22:46:35Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 255.70 +/- 21.92 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
janzw/ppo-Huggy
janzw
2022-12-13T22:29:05Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-13T22:28:57Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: janzw/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Sembiance/detr-resnet-101-fixed
Sembiance
2022-12-13T22:17:43Z
5
0
transformers
[ "transformers", "pytorch", "detr", "object-detection", "vision", "dataset:coco", "arxiv:2005.12872", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2022-12-13T20:54:12Z
--- license: apache-2.0 tags: - object-detection - vision datasets: - coco widget: - src: >- https://huggingface.co/datasets/mishig/sample_images/resolve/main/savanna.jpg example_title: Savanna - src: >- https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg example_title: Football Match - src: >- https://huggingface.co/datasets/mishig/sample_images/resolve/main/airport.jpg example_title: Airport duplicated_from: facebook/detr-resnet-101 --- # DETR (End-to-End Object Detection) model with ResNet-101 backbone DEtection TRansformer (DETR) model trained end-to-end on COCO 2017 object detection (118k annotated images). It was introduced in the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Carion et al. and first released in [this repository](https://github.com/facebookresearch/detr). Disclaimer: The team releasing DETR did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The DETR model is an encoder-decoder transformer with a convolutional backbone. Two heads are added on top of the decoder outputs in order to perform object detection: a linear layer for the class labels and a MLP (multi-layer perceptron) for the bounding boxes. The model uses so-called object queries to detect objects in an image. Each object query looks for a particular object in the image. For COCO, the number of object queries is set to 100. The model is trained using a "bipartite matching loss": one compares the predicted classes + bounding boxes of each of the N = 100 object queries to the ground truth annotations, padded up to the same length N (so if an image only contains 4 objects, 96 annotations will just have a "no object" as class and "no bounding box" as bounding box). The Hungarian matching algorithm is used to create an optimal one-to-one mapping between each of the N queries and each of the N annotations. Next, standard cross-entropy (for the classes) and a linear combination of the L1 and generalized IoU loss (for the bounding boxes) are used to optimize the parameters of the model. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/detr_architecture.png) ## Intended uses & limitations You can use the raw model for object detection. See the [model hub](https://huggingface.co/models?search=facebook/detr) to look for all available DETR models. ### How to use Here is how to use this model: ```python from transformers import DetrFeatureExtractor, DetrForObjectDetection import torch from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = DetrFeatureExtractor.from_pretrained("facebook/detr-resnet-101") model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-101") inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) # convert outputs (bounding boxes and class logits) to COCO API target_sizes = torch.tensor([image.size[::-1]]) results = feature_extractor.post_process(outputs, target_sizes=target_sizes)[0] for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): box = [round(i, 2) for i in box.tolist()] # let's only keep detections with score > 0.9 if score > 0.9: print( f"Detected {model.config.id2label[label.item()]} with confidence " f"{round(score.item(), 3)} at location {box}" ) ``` This should output (something along the lines of): ``` Detected cat with confidence 0.998 at location [344.06, 24.85, 640.34, 373.74] Detected remote with confidence 0.997 at location [328.13, 75.93, 372.81, 187.66] Detected remote with confidence 0.997 at location [39.34, 70.13, 175.56, 118.78] Detected cat with confidence 0.998 at location [15.36, 51.75, 316.89, 471.16] Detected couch with confidence 0.995 at location [-0.19, 0.71, 639.73, 474.17] ``` Currently, both the feature extractor and model support PyTorch. ## Training data The DETR model was trained on [COCO 2017 object detection](https://cocodataset.org/#download), a dataset consisting of 118k/5k annotated images for training/validation respectively. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found [here](https://github.com/google-research/vision_transformer/blob/master/vit_jax/input_pipeline.py). Images are resized/rescaled such that the shortest side is at least 800 pixels and the largest side at most 1333 pixels, and normalized across the RGB channels with the ImageNet mean (0.485, 0.456, 0.406) and standard deviation (0.229, 0.224, 0.225). ### Training The model was trained for 300 epochs on 16 V100 GPUs. This takes 3 days, with 4 images per GPU (hence a total batch size of 64). ## Evaluation results This model achieves an AP (average precision) of **43.5** on COCO 2017 validation. For more details regarding evaluation results, we refer to table 1 of the original paper. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2005-12872, author = {Nicolas Carion and Francisco Massa and Gabriel Synnaeve and Nicolas Usunier and Alexander Kirillov and Sergey Zagoruyko}, title = {End-to-End Object Detection with Transformers}, journal = {CoRR}, volume = {abs/2005.12872}, year = {2020}, url = {https://arxiv.org/abs/2005.12872}, archivePrefix = {arXiv}, eprint = {2005.12872}, timestamp = {Thu, 28 May 2020 17:38:09 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2005-12872.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
pedrogms/bertinho-ner
pedrogms
2022-12-13T22:10:26Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-12T14:00:55Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bertinho-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertinho-ner This model is a fine-tuned version of [marcosgg/bert-base-gl-cased](https://huggingface.co/marcosgg/bert-base-gl-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0482 - Precision: 0.8715 - Recall: 0.8975 - F1: 0.8843 - Accuracy: 0.9907 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
polejowska/swin-tiny-patch4-window7-224-lcbsi-wbc
polejowska
2022-12-13T22:06:57Z
41
0
transformers
[ "transformers", "pytorch", "swin", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-12-13T21:08:19Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-lcbsi-wbc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-lcbsi-wbc This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0307 - Accuracy: 0.9933 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3668 | 0.98 | 27 | 0.6977 | 0.76 | | 0.217 | 1.98 | 54 | 0.0992 | 0.972 | | 0.102 | 2.98 | 81 | 0.0573 | 0.9853 | | 0.0762 | 3.98 | 108 | 0.1003 | 0.976 | | 0.0456 | 4.98 | 135 | 0.0307 | 0.9933 | | 0.0219 | 5.98 | 162 | 0.0497 | 0.9907 | | 0.0106 | 6.98 | 189 | 0.0568 | 0.9867 | | 0.0112 | 7.98 | 216 | 0.0532 | 0.9907 | | 0.0067 | 8.98 | 243 | 0.0528 | 0.9907 | | 0.008 | 9.98 | 270 | 0.0482 | 0.992 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
ibadrehman/lunarlander-v2-10k
ibadrehman
2022-12-13T21:55:38Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-13T21:55:15Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -169.78 +/- 60.43 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
bjubert/6_epochs_camembert
bjubert
2022-12-13T21:55:24Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "camembert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-13T18:45:00Z
--- license: mit tags: - generated_from_trainer model-index: - name: 6_epochs_camembert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 6_epochs_camembert This model is a fine-tuned version of [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0932 - eval_overall_precision: 0.8072 - eval_overall_recall: 0.8431 - eval_overall_f1: 0.8248 - eval_overall_accuracy: 0.9778 - eval_ER_f1: 0.8520 - eval_OC_f1: 0.8029 - eval_umanProd_f1: 0.6333 - eval_runtime: 120.9649 - eval_samples_per_second: 20.246 - eval_steps_per_second: 1.273 - epoch: 6.0 - step: 3678 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cpu - Datasets 2.7.1 - Tokenizers 0.13.2
quocBit/sd-class-butterflies-32
quocBit
2022-12-13T21:43:51Z
0
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-12-13T21:34:21Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('quocBit/sd-class-butterflies-32') image = pipeline().images[0] image ```
mkuntz/Taxi-v3
mkuntz
2022-12-13T21:31:15Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-13T21:03:02Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="mktz/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
lakssrini/sd-class-butterflies-32
lakssrini
2022-12-13T21:18:27Z
4
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-12-13T21:17:55Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('lakssrini/sd-class-butterflies-32') image = pipeline().images[0] image ```
hendoo/ppo-Huggy
hendoo
2022-12-13T21:02:58Z
12
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-13T21:02:50Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: hendoo/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
robotman0/ppo-Huggy
robotman0
2022-12-13T20:40:19Z
12
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-13T20:40:11Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: robotman0/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
hdty/camembert-ner-lr10e3
hdty
2022-12-13T20:37:00Z
10
0
transformers
[ "transformers", "pytorch", "camembert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-13T18:53:53Z
--- license: mit tags: - generated_from_trainer model-index: - name: camembert-ner-lr10e3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # camembert-ner-lr10e3 This model is a fine-tuned version of [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5566 - Overall Precision: 0.0 - Overall Recall: 0.0 - Overall F1: 0.0 - Overall Accuracy: 0.8840 - Humanprod F1: 0.0 - Loc F1: 0.0 - Org F1: 0.0 - Per F1: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Humanprod F1 | Loc F1 | Org F1 | Per F1 | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|:------------:|:------:|:------:|:------:| | 0.5473 | 1.0 | 613 | 0.5626 | 0.0 | 0.0 | 0.0 | 0.8840 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.5299 | 2.0 | 1226 | 0.5566 | 0.0 | 0.0 | 0.0 | 0.8840 | 0.0 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.7.1+cpu - Datasets 2.7.1 - Tokenizers 0.13.2
rfdickerson/ppo-LunarLander-v2
rfdickerson
2022-12-13T20:30:35Z
0
1
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-12T17:49:35Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 262.75 +/- 17.54 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
apwadkar/ppo-LunarLander-v2
apwadkar
2022-12-13T20:30:23Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-13T20:30:01Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 259.06 +/- 20.48 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
nalisten1/YoungNali
nalisten1
2022-12-13T20:19:55Z
0
0
null
[ "license:cc-by-nc-nd-3.0", "region:us" ]
null
2022-12-13T20:19:55Z
--- license: cc-by-nc-nd-3.0 ---
Grizzlygg/bert-base-multilingual-cased
Grizzlygg
2022-12-13T19:45:47Z
17
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-13T19:23:13Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-multilingual-cased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0379 - Precision: 0.9706 - Recall: 0.9753 - F1: 0.9729 - Accuracy: 0.9918 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0683 | 1.0 | 963 | 0.0550 | 0.9367 | 0.9505 | 0.9435 | 0.9839 | | 0.0211 | 2.0 | 1926 | 0.0428 | 0.9580 | 0.9735 | 0.9657 | 0.9902 | | 0.0098 | 3.0 | 2889 | 0.0379 | 0.9706 | 0.9753 | 0.9729 | 0.9918 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
0xRiku/ppo-LunarLander-v2
0xRiku
2022-12-13T19:38:08Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-13T19:07:25Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 245.37 +/- 48.64 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
tomekkorbak/suspicious_mestorf
tomekkorbak
2022-12-13T19:35:14Z
0
0
null
[ "generated_from_trainer", "en", "dataset:tomekkorbak/pii-pile-chunk3-0-50000", "dataset:tomekkorbak/pii-pile-chunk3-50000-100000", "dataset:tomekkorbak/pii-pile-chunk3-100000-150000", "dataset:tomekkorbak/pii-pile-chunk3-150000-200000", "dataset:tomekkorbak/pii-pile-chunk3-200000-250000", "dataset:tomekkorbak/pii-pile-chunk3-250000-300000", "dataset:tomekkorbak/pii-pile-chunk3-300000-350000", "dataset:tomekkorbak/pii-pile-chunk3-350000-400000", "dataset:tomekkorbak/pii-pile-chunk3-400000-450000", "dataset:tomekkorbak/pii-pile-chunk3-450000-500000", "dataset:tomekkorbak/pii-pile-chunk3-500000-550000", "dataset:tomekkorbak/pii-pile-chunk3-550000-600000", "dataset:tomekkorbak/pii-pile-chunk3-600000-650000", "dataset:tomekkorbak/pii-pile-chunk3-650000-700000", "dataset:tomekkorbak/pii-pile-chunk3-700000-750000", "dataset:tomekkorbak/pii-pile-chunk3-750000-800000", "dataset:tomekkorbak/pii-pile-chunk3-800000-850000", "dataset:tomekkorbak/pii-pile-chunk3-850000-900000", "dataset:tomekkorbak/pii-pile-chunk3-900000-950000", "dataset:tomekkorbak/pii-pile-chunk3-950000-1000000", "dataset:tomekkorbak/pii-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/pii-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/pii-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/pii-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/pii-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/pii-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/pii-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/pii-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/pii-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/pii-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/pii-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/pii-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/pii-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/pii-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/pii-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/pii-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/pii-pile-chunk3-1800000-1850000", "dataset:tomekkorbak/pii-pile-chunk3-1850000-1900000", "dataset:tomekkorbak/pii-pile-chunk3-1900000-1950000", "license:mit", "region:us" ]
null
2022-12-13T19:35:07Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/pii-pile-chunk3-0-50000 - tomekkorbak/pii-pile-chunk3-50000-100000 - tomekkorbak/pii-pile-chunk3-100000-150000 - tomekkorbak/pii-pile-chunk3-150000-200000 - tomekkorbak/pii-pile-chunk3-200000-250000 - tomekkorbak/pii-pile-chunk3-250000-300000 - tomekkorbak/pii-pile-chunk3-300000-350000 - tomekkorbak/pii-pile-chunk3-350000-400000 - tomekkorbak/pii-pile-chunk3-400000-450000 - tomekkorbak/pii-pile-chunk3-450000-500000 - tomekkorbak/pii-pile-chunk3-500000-550000 - tomekkorbak/pii-pile-chunk3-550000-600000 - tomekkorbak/pii-pile-chunk3-600000-650000 - tomekkorbak/pii-pile-chunk3-650000-700000 - tomekkorbak/pii-pile-chunk3-700000-750000 - tomekkorbak/pii-pile-chunk3-750000-800000 - tomekkorbak/pii-pile-chunk3-800000-850000 - tomekkorbak/pii-pile-chunk3-850000-900000 - tomekkorbak/pii-pile-chunk3-900000-950000 - tomekkorbak/pii-pile-chunk3-950000-1000000 - tomekkorbak/pii-pile-chunk3-1000000-1050000 - tomekkorbak/pii-pile-chunk3-1050000-1100000 - tomekkorbak/pii-pile-chunk3-1100000-1150000 - tomekkorbak/pii-pile-chunk3-1150000-1200000 - tomekkorbak/pii-pile-chunk3-1200000-1250000 - tomekkorbak/pii-pile-chunk3-1250000-1300000 - tomekkorbak/pii-pile-chunk3-1300000-1350000 - tomekkorbak/pii-pile-chunk3-1350000-1400000 - tomekkorbak/pii-pile-chunk3-1400000-1450000 - tomekkorbak/pii-pile-chunk3-1450000-1500000 - tomekkorbak/pii-pile-chunk3-1500000-1550000 - tomekkorbak/pii-pile-chunk3-1550000-1600000 - tomekkorbak/pii-pile-chunk3-1600000-1650000 - tomekkorbak/pii-pile-chunk3-1650000-1700000 - tomekkorbak/pii-pile-chunk3-1700000-1750000 - tomekkorbak/pii-pile-chunk3-1750000-1800000 - tomekkorbak/pii-pile-chunk3-1800000-1850000 - tomekkorbak/pii-pile-chunk3-1850000-1900000 - tomekkorbak/pii-pile-chunk3-1900000-1950000 model-index: - name: suspicious_mestorf results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # suspicious_mestorf This model was trained from scratch on the tomekkorbak/pii-pile-chunk3-0-50000, the tomekkorbak/pii-pile-chunk3-50000-100000, the tomekkorbak/pii-pile-chunk3-100000-150000, the tomekkorbak/pii-pile-chunk3-150000-200000, the tomekkorbak/pii-pile-chunk3-200000-250000, the tomekkorbak/pii-pile-chunk3-250000-300000, the tomekkorbak/pii-pile-chunk3-300000-350000, the tomekkorbak/pii-pile-chunk3-350000-400000, the tomekkorbak/pii-pile-chunk3-400000-450000, the tomekkorbak/pii-pile-chunk3-450000-500000, the tomekkorbak/pii-pile-chunk3-500000-550000, the tomekkorbak/pii-pile-chunk3-550000-600000, the tomekkorbak/pii-pile-chunk3-600000-650000, the tomekkorbak/pii-pile-chunk3-650000-700000, the tomekkorbak/pii-pile-chunk3-700000-750000, the tomekkorbak/pii-pile-chunk3-750000-800000, the tomekkorbak/pii-pile-chunk3-800000-850000, the tomekkorbak/pii-pile-chunk3-850000-900000, the tomekkorbak/pii-pile-chunk3-900000-950000, the tomekkorbak/pii-pile-chunk3-950000-1000000, the tomekkorbak/pii-pile-chunk3-1000000-1050000, the tomekkorbak/pii-pile-chunk3-1050000-1100000, the tomekkorbak/pii-pile-chunk3-1100000-1150000, the tomekkorbak/pii-pile-chunk3-1150000-1200000, the tomekkorbak/pii-pile-chunk3-1200000-1250000, the tomekkorbak/pii-pile-chunk3-1250000-1300000, the tomekkorbak/pii-pile-chunk3-1300000-1350000, the tomekkorbak/pii-pile-chunk3-1350000-1400000, the tomekkorbak/pii-pile-chunk3-1400000-1450000, the tomekkorbak/pii-pile-chunk3-1450000-1500000, the tomekkorbak/pii-pile-chunk3-1500000-1550000, the tomekkorbak/pii-pile-chunk3-1550000-1600000, the tomekkorbak/pii-pile-chunk3-1600000-1650000, the tomekkorbak/pii-pile-chunk3-1650000-1700000, the tomekkorbak/pii-pile-chunk3-1700000-1750000, the tomekkorbak/pii-pile-chunk3-1750000-1800000, the tomekkorbak/pii-pile-chunk3-1800000-1850000, the tomekkorbak/pii-pile-chunk3-1850000-1900000 and the tomekkorbak/pii-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 3147 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'datasets': ['tomekkorbak/pii-pile-chunk3-0-50000', 'tomekkorbak/pii-pile-chunk3-50000-100000', 'tomekkorbak/pii-pile-chunk3-100000-150000', 'tomekkorbak/pii-pile-chunk3-150000-200000', 'tomekkorbak/pii-pile-chunk3-200000-250000', 'tomekkorbak/pii-pile-chunk3-250000-300000', 'tomekkorbak/pii-pile-chunk3-300000-350000', 'tomekkorbak/pii-pile-chunk3-350000-400000', 'tomekkorbak/pii-pile-chunk3-400000-450000', 'tomekkorbak/pii-pile-chunk3-450000-500000', 'tomekkorbak/pii-pile-chunk3-500000-550000', 'tomekkorbak/pii-pile-chunk3-550000-600000', 'tomekkorbak/pii-pile-chunk3-600000-650000', 'tomekkorbak/pii-pile-chunk3-650000-700000', 'tomekkorbak/pii-pile-chunk3-700000-750000', 'tomekkorbak/pii-pile-chunk3-750000-800000', 'tomekkorbak/pii-pile-chunk3-800000-850000', 'tomekkorbak/pii-pile-chunk3-850000-900000', 'tomekkorbak/pii-pile-chunk3-900000-950000', 'tomekkorbak/pii-pile-chunk3-950000-1000000', 'tomekkorbak/pii-pile-chunk3-1000000-1050000', 'tomekkorbak/pii-pile-chunk3-1050000-1100000', 'tomekkorbak/pii-pile-chunk3-1100000-1150000', 'tomekkorbak/pii-pile-chunk3-1150000-1200000', 'tomekkorbak/pii-pile-chunk3-1200000-1250000', 'tomekkorbak/pii-pile-chunk3-1250000-1300000', 'tomekkorbak/pii-pile-chunk3-1300000-1350000', 'tomekkorbak/pii-pile-chunk3-1350000-1400000', 'tomekkorbak/pii-pile-chunk3-1400000-1450000', 'tomekkorbak/pii-pile-chunk3-1450000-1500000', 'tomekkorbak/pii-pile-chunk3-1500000-1550000', 'tomekkorbak/pii-pile-chunk3-1550000-1600000', 'tomekkorbak/pii-pile-chunk3-1600000-1650000', 'tomekkorbak/pii-pile-chunk3-1650000-1700000', 'tomekkorbak/pii-pile-chunk3-1700000-1750000', 'tomekkorbak/pii-pile-chunk3-1750000-1800000', 'tomekkorbak/pii-pile-chunk3-1800000-1850000', 'tomekkorbak/pii-pile-chunk3-1850000-1900000', 'tomekkorbak/pii-pile-chunk3-1900000-1950000'], 'is_split_by_sentences': True, 'skip_tokens': 1649999872}, 'generation': {'every_n_steps': 32, 'force_call_on': [25177], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}], 'scorer_config': {}}, 'kl_gpt3_callback': {'every_n_steps': 32, 'force_call_on': [25177], 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': False, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'model_kwargs': {'value_head_config': {'is_detached': False}}, 'path_or_name': 'tomekkorbak/goofy_pasteur'}, 'objective': {'alpha': 1, 'beta': 10, 'name': 'AWR'}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 512, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'suspicious_mestorf', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0001, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output2', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 3346, 'save_strategy': 'steps', 'seed': 42, 'tokens_already_seen': 1649999872, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/1ew71lih
tomekkorbak/affectionate_lumiere
tomekkorbak
2022-12-13T19:30:31Z
0
0
null
[ "generated_from_trainer", "en", "dataset:tomekkorbak/pii-pile-chunk3-0-50000", "dataset:tomekkorbak/pii-pile-chunk3-50000-100000", "dataset:tomekkorbak/pii-pile-chunk3-100000-150000", "dataset:tomekkorbak/pii-pile-chunk3-150000-200000", "dataset:tomekkorbak/pii-pile-chunk3-200000-250000", "dataset:tomekkorbak/pii-pile-chunk3-250000-300000", "dataset:tomekkorbak/pii-pile-chunk3-300000-350000", "dataset:tomekkorbak/pii-pile-chunk3-350000-400000", "dataset:tomekkorbak/pii-pile-chunk3-400000-450000", "dataset:tomekkorbak/pii-pile-chunk3-450000-500000", "dataset:tomekkorbak/pii-pile-chunk3-500000-550000", "dataset:tomekkorbak/pii-pile-chunk3-550000-600000", "dataset:tomekkorbak/pii-pile-chunk3-600000-650000", "dataset:tomekkorbak/pii-pile-chunk3-650000-700000", "dataset:tomekkorbak/pii-pile-chunk3-700000-750000", "dataset:tomekkorbak/pii-pile-chunk3-750000-800000", "dataset:tomekkorbak/pii-pile-chunk3-800000-850000", "dataset:tomekkorbak/pii-pile-chunk3-850000-900000", "dataset:tomekkorbak/pii-pile-chunk3-900000-950000", "dataset:tomekkorbak/pii-pile-chunk3-950000-1000000", "dataset:tomekkorbak/pii-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/pii-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/pii-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/pii-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/pii-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/pii-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/pii-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/pii-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/pii-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/pii-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/pii-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/pii-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/pii-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/pii-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/pii-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/pii-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/pii-pile-chunk3-1800000-1850000", "dataset:tomekkorbak/pii-pile-chunk3-1850000-1900000", "dataset:tomekkorbak/pii-pile-chunk3-1900000-1950000", "license:mit", "region:us" ]
null
2022-12-13T19:30:25Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/pii-pile-chunk3-0-50000 - tomekkorbak/pii-pile-chunk3-50000-100000 - tomekkorbak/pii-pile-chunk3-100000-150000 - tomekkorbak/pii-pile-chunk3-150000-200000 - tomekkorbak/pii-pile-chunk3-200000-250000 - tomekkorbak/pii-pile-chunk3-250000-300000 - tomekkorbak/pii-pile-chunk3-300000-350000 - tomekkorbak/pii-pile-chunk3-350000-400000 - tomekkorbak/pii-pile-chunk3-400000-450000 - tomekkorbak/pii-pile-chunk3-450000-500000 - tomekkorbak/pii-pile-chunk3-500000-550000 - tomekkorbak/pii-pile-chunk3-550000-600000 - tomekkorbak/pii-pile-chunk3-600000-650000 - tomekkorbak/pii-pile-chunk3-650000-700000 - tomekkorbak/pii-pile-chunk3-700000-750000 - tomekkorbak/pii-pile-chunk3-750000-800000 - tomekkorbak/pii-pile-chunk3-800000-850000 - tomekkorbak/pii-pile-chunk3-850000-900000 - tomekkorbak/pii-pile-chunk3-900000-950000 - tomekkorbak/pii-pile-chunk3-950000-1000000 - tomekkorbak/pii-pile-chunk3-1000000-1050000 - tomekkorbak/pii-pile-chunk3-1050000-1100000 - tomekkorbak/pii-pile-chunk3-1100000-1150000 - tomekkorbak/pii-pile-chunk3-1150000-1200000 - tomekkorbak/pii-pile-chunk3-1200000-1250000 - tomekkorbak/pii-pile-chunk3-1250000-1300000 - tomekkorbak/pii-pile-chunk3-1300000-1350000 - tomekkorbak/pii-pile-chunk3-1350000-1400000 - tomekkorbak/pii-pile-chunk3-1400000-1450000 - tomekkorbak/pii-pile-chunk3-1450000-1500000 - tomekkorbak/pii-pile-chunk3-1500000-1550000 - tomekkorbak/pii-pile-chunk3-1550000-1600000 - tomekkorbak/pii-pile-chunk3-1600000-1650000 - tomekkorbak/pii-pile-chunk3-1650000-1700000 - tomekkorbak/pii-pile-chunk3-1700000-1750000 - tomekkorbak/pii-pile-chunk3-1750000-1800000 - tomekkorbak/pii-pile-chunk3-1800000-1850000 - tomekkorbak/pii-pile-chunk3-1850000-1900000 - tomekkorbak/pii-pile-chunk3-1900000-1950000 model-index: - name: affectionate_lumiere results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # affectionate_lumiere This model was trained from scratch on the tomekkorbak/pii-pile-chunk3-0-50000, the tomekkorbak/pii-pile-chunk3-50000-100000, the tomekkorbak/pii-pile-chunk3-100000-150000, the tomekkorbak/pii-pile-chunk3-150000-200000, the tomekkorbak/pii-pile-chunk3-200000-250000, the tomekkorbak/pii-pile-chunk3-250000-300000, the tomekkorbak/pii-pile-chunk3-300000-350000, the tomekkorbak/pii-pile-chunk3-350000-400000, the tomekkorbak/pii-pile-chunk3-400000-450000, the tomekkorbak/pii-pile-chunk3-450000-500000, the tomekkorbak/pii-pile-chunk3-500000-550000, the tomekkorbak/pii-pile-chunk3-550000-600000, the tomekkorbak/pii-pile-chunk3-600000-650000, the tomekkorbak/pii-pile-chunk3-650000-700000, the tomekkorbak/pii-pile-chunk3-700000-750000, the tomekkorbak/pii-pile-chunk3-750000-800000, the tomekkorbak/pii-pile-chunk3-800000-850000, the tomekkorbak/pii-pile-chunk3-850000-900000, the tomekkorbak/pii-pile-chunk3-900000-950000, the tomekkorbak/pii-pile-chunk3-950000-1000000, the tomekkorbak/pii-pile-chunk3-1000000-1050000, the tomekkorbak/pii-pile-chunk3-1050000-1100000, the tomekkorbak/pii-pile-chunk3-1100000-1150000, the tomekkorbak/pii-pile-chunk3-1150000-1200000, the tomekkorbak/pii-pile-chunk3-1200000-1250000, the tomekkorbak/pii-pile-chunk3-1250000-1300000, the tomekkorbak/pii-pile-chunk3-1300000-1350000, the tomekkorbak/pii-pile-chunk3-1350000-1400000, the tomekkorbak/pii-pile-chunk3-1400000-1450000, the tomekkorbak/pii-pile-chunk3-1450000-1500000, the tomekkorbak/pii-pile-chunk3-1500000-1550000, the tomekkorbak/pii-pile-chunk3-1550000-1600000, the tomekkorbak/pii-pile-chunk3-1600000-1650000, the tomekkorbak/pii-pile-chunk3-1650000-1700000, the tomekkorbak/pii-pile-chunk3-1700000-1750000, the tomekkorbak/pii-pile-chunk3-1750000-1800000, the tomekkorbak/pii-pile-chunk3-1800000-1850000, the tomekkorbak/pii-pile-chunk3-1850000-1900000 and the tomekkorbak/pii-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 12588 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'datasets': ['tomekkorbak/pii-pile-chunk3-0-50000', 'tomekkorbak/pii-pile-chunk3-50000-100000', 'tomekkorbak/pii-pile-chunk3-100000-150000', 'tomekkorbak/pii-pile-chunk3-150000-200000', 'tomekkorbak/pii-pile-chunk3-200000-250000', 'tomekkorbak/pii-pile-chunk3-250000-300000', 'tomekkorbak/pii-pile-chunk3-300000-350000', 'tomekkorbak/pii-pile-chunk3-350000-400000', 'tomekkorbak/pii-pile-chunk3-400000-450000', 'tomekkorbak/pii-pile-chunk3-450000-500000', 'tomekkorbak/pii-pile-chunk3-500000-550000', 'tomekkorbak/pii-pile-chunk3-550000-600000', 'tomekkorbak/pii-pile-chunk3-600000-650000', 'tomekkorbak/pii-pile-chunk3-650000-700000', 'tomekkorbak/pii-pile-chunk3-700000-750000', 'tomekkorbak/pii-pile-chunk3-750000-800000', 'tomekkorbak/pii-pile-chunk3-800000-850000', 'tomekkorbak/pii-pile-chunk3-850000-900000', 'tomekkorbak/pii-pile-chunk3-900000-950000', 'tomekkorbak/pii-pile-chunk3-950000-1000000', 'tomekkorbak/pii-pile-chunk3-1000000-1050000', 'tomekkorbak/pii-pile-chunk3-1050000-1100000', 'tomekkorbak/pii-pile-chunk3-1100000-1150000', 'tomekkorbak/pii-pile-chunk3-1150000-1200000', 'tomekkorbak/pii-pile-chunk3-1200000-1250000', 'tomekkorbak/pii-pile-chunk3-1250000-1300000', 'tomekkorbak/pii-pile-chunk3-1300000-1350000', 'tomekkorbak/pii-pile-chunk3-1350000-1400000', 'tomekkorbak/pii-pile-chunk3-1400000-1450000', 'tomekkorbak/pii-pile-chunk3-1450000-1500000', 'tomekkorbak/pii-pile-chunk3-1500000-1550000', 'tomekkorbak/pii-pile-chunk3-1550000-1600000', 'tomekkorbak/pii-pile-chunk3-1600000-1650000', 'tomekkorbak/pii-pile-chunk3-1650000-1700000', 'tomekkorbak/pii-pile-chunk3-1700000-1750000', 'tomekkorbak/pii-pile-chunk3-1750000-1800000', 'tomekkorbak/pii-pile-chunk3-1800000-1850000', 'tomekkorbak/pii-pile-chunk3-1850000-1900000', 'tomekkorbak/pii-pile-chunk3-1900000-1950000'], 'is_split_by_sentences': True, 'skip_tokens': 1649999872}, 'generation': {'force_call_on': [25177], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}], 'scorer_config': {}}, 'kl_gpt3_callback': {'force_call_on': [25177], 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': False, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'path_or_name': 'tomekkorbak/goofy_pasteur'}, 'objective': {'alpha': 1, 'name': 'Unlikelihood', 'score_threshold': 0.0}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 128, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'affectionate_lumiere', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0001, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output2', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25177, 'save_strategy': 'steps', 'seed': 42, 'tokens_already_seen': 1649999872, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/12tmdmo8
tomekkorbak/pensive_jennings
tomekkorbak
2022-12-13T19:30:28Z
0
0
null
[ "generated_from_trainer", "en", "dataset:tomekkorbak/pii-pile-chunk3-0-50000", "dataset:tomekkorbak/pii-pile-chunk3-50000-100000", "dataset:tomekkorbak/pii-pile-chunk3-100000-150000", "dataset:tomekkorbak/pii-pile-chunk3-150000-200000", "dataset:tomekkorbak/pii-pile-chunk3-200000-250000", "dataset:tomekkorbak/pii-pile-chunk3-250000-300000", "dataset:tomekkorbak/pii-pile-chunk3-300000-350000", "dataset:tomekkorbak/pii-pile-chunk3-350000-400000", "dataset:tomekkorbak/pii-pile-chunk3-400000-450000", "dataset:tomekkorbak/pii-pile-chunk3-450000-500000", "dataset:tomekkorbak/pii-pile-chunk3-500000-550000", "dataset:tomekkorbak/pii-pile-chunk3-550000-600000", "dataset:tomekkorbak/pii-pile-chunk3-600000-650000", "dataset:tomekkorbak/pii-pile-chunk3-650000-700000", "dataset:tomekkorbak/pii-pile-chunk3-700000-750000", "dataset:tomekkorbak/pii-pile-chunk3-750000-800000", "dataset:tomekkorbak/pii-pile-chunk3-800000-850000", "dataset:tomekkorbak/pii-pile-chunk3-850000-900000", "dataset:tomekkorbak/pii-pile-chunk3-900000-950000", "dataset:tomekkorbak/pii-pile-chunk3-950000-1000000", "dataset:tomekkorbak/pii-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/pii-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/pii-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/pii-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/pii-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/pii-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/pii-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/pii-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/pii-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/pii-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/pii-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/pii-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/pii-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/pii-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/pii-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/pii-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/pii-pile-chunk3-1800000-1850000", "dataset:tomekkorbak/pii-pile-chunk3-1850000-1900000", "dataset:tomekkorbak/pii-pile-chunk3-1900000-1950000", "license:mit", "region:us" ]
null
2022-12-13T19:30:21Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/pii-pile-chunk3-0-50000 - tomekkorbak/pii-pile-chunk3-50000-100000 - tomekkorbak/pii-pile-chunk3-100000-150000 - tomekkorbak/pii-pile-chunk3-150000-200000 - tomekkorbak/pii-pile-chunk3-200000-250000 - tomekkorbak/pii-pile-chunk3-250000-300000 - tomekkorbak/pii-pile-chunk3-300000-350000 - tomekkorbak/pii-pile-chunk3-350000-400000 - tomekkorbak/pii-pile-chunk3-400000-450000 - tomekkorbak/pii-pile-chunk3-450000-500000 - tomekkorbak/pii-pile-chunk3-500000-550000 - tomekkorbak/pii-pile-chunk3-550000-600000 - tomekkorbak/pii-pile-chunk3-600000-650000 - tomekkorbak/pii-pile-chunk3-650000-700000 - tomekkorbak/pii-pile-chunk3-700000-750000 - tomekkorbak/pii-pile-chunk3-750000-800000 - tomekkorbak/pii-pile-chunk3-800000-850000 - tomekkorbak/pii-pile-chunk3-850000-900000 - tomekkorbak/pii-pile-chunk3-900000-950000 - tomekkorbak/pii-pile-chunk3-950000-1000000 - tomekkorbak/pii-pile-chunk3-1000000-1050000 - tomekkorbak/pii-pile-chunk3-1050000-1100000 - tomekkorbak/pii-pile-chunk3-1100000-1150000 - tomekkorbak/pii-pile-chunk3-1150000-1200000 - tomekkorbak/pii-pile-chunk3-1200000-1250000 - tomekkorbak/pii-pile-chunk3-1250000-1300000 - tomekkorbak/pii-pile-chunk3-1300000-1350000 - tomekkorbak/pii-pile-chunk3-1350000-1400000 - tomekkorbak/pii-pile-chunk3-1400000-1450000 - tomekkorbak/pii-pile-chunk3-1450000-1500000 - tomekkorbak/pii-pile-chunk3-1500000-1550000 - tomekkorbak/pii-pile-chunk3-1550000-1600000 - tomekkorbak/pii-pile-chunk3-1600000-1650000 - tomekkorbak/pii-pile-chunk3-1650000-1700000 - tomekkorbak/pii-pile-chunk3-1700000-1750000 - tomekkorbak/pii-pile-chunk3-1750000-1800000 - tomekkorbak/pii-pile-chunk3-1800000-1850000 - tomekkorbak/pii-pile-chunk3-1850000-1900000 - tomekkorbak/pii-pile-chunk3-1900000-1950000 model-index: - name: pensive_jennings results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pensive_jennings This model was trained from scratch on the tomekkorbak/pii-pile-chunk3-0-50000, the tomekkorbak/pii-pile-chunk3-50000-100000, the tomekkorbak/pii-pile-chunk3-100000-150000, the tomekkorbak/pii-pile-chunk3-150000-200000, the tomekkorbak/pii-pile-chunk3-200000-250000, the tomekkorbak/pii-pile-chunk3-250000-300000, the tomekkorbak/pii-pile-chunk3-300000-350000, the tomekkorbak/pii-pile-chunk3-350000-400000, the tomekkorbak/pii-pile-chunk3-400000-450000, the tomekkorbak/pii-pile-chunk3-450000-500000, the tomekkorbak/pii-pile-chunk3-500000-550000, the tomekkorbak/pii-pile-chunk3-550000-600000, the tomekkorbak/pii-pile-chunk3-600000-650000, the tomekkorbak/pii-pile-chunk3-650000-700000, the tomekkorbak/pii-pile-chunk3-700000-750000, the tomekkorbak/pii-pile-chunk3-750000-800000, the tomekkorbak/pii-pile-chunk3-800000-850000, the tomekkorbak/pii-pile-chunk3-850000-900000, the tomekkorbak/pii-pile-chunk3-900000-950000, the tomekkorbak/pii-pile-chunk3-950000-1000000, the tomekkorbak/pii-pile-chunk3-1000000-1050000, the tomekkorbak/pii-pile-chunk3-1050000-1100000, the tomekkorbak/pii-pile-chunk3-1100000-1150000, the tomekkorbak/pii-pile-chunk3-1150000-1200000, the tomekkorbak/pii-pile-chunk3-1200000-1250000, the tomekkorbak/pii-pile-chunk3-1250000-1300000, the tomekkorbak/pii-pile-chunk3-1300000-1350000, the tomekkorbak/pii-pile-chunk3-1350000-1400000, the tomekkorbak/pii-pile-chunk3-1400000-1450000, the tomekkorbak/pii-pile-chunk3-1450000-1500000, the tomekkorbak/pii-pile-chunk3-1500000-1550000, the tomekkorbak/pii-pile-chunk3-1550000-1600000, the tomekkorbak/pii-pile-chunk3-1600000-1650000, the tomekkorbak/pii-pile-chunk3-1650000-1700000, the tomekkorbak/pii-pile-chunk3-1700000-1750000, the tomekkorbak/pii-pile-chunk3-1750000-1800000, the tomekkorbak/pii-pile-chunk3-1800000-1850000, the tomekkorbak/pii-pile-chunk3-1850000-1900000 and the tomekkorbak/pii-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 12588 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'conditional_training_config': {'aligned_prefix': '<|aligned|>', 'drop_token_fraction': 0.01, 'misaligned_prefix': '<|misaligned|>', 'threshold': 0.0}, 'datasets': ['tomekkorbak/pii-pile-chunk3-0-50000', 'tomekkorbak/pii-pile-chunk3-50000-100000', 'tomekkorbak/pii-pile-chunk3-100000-150000', 'tomekkorbak/pii-pile-chunk3-150000-200000', 'tomekkorbak/pii-pile-chunk3-200000-250000', 'tomekkorbak/pii-pile-chunk3-250000-300000', 'tomekkorbak/pii-pile-chunk3-300000-350000', 'tomekkorbak/pii-pile-chunk3-350000-400000', 'tomekkorbak/pii-pile-chunk3-400000-450000', 'tomekkorbak/pii-pile-chunk3-450000-500000', 'tomekkorbak/pii-pile-chunk3-500000-550000', 'tomekkorbak/pii-pile-chunk3-550000-600000', 'tomekkorbak/pii-pile-chunk3-600000-650000', 'tomekkorbak/pii-pile-chunk3-650000-700000', 'tomekkorbak/pii-pile-chunk3-700000-750000', 'tomekkorbak/pii-pile-chunk3-750000-800000', 'tomekkorbak/pii-pile-chunk3-800000-850000', 'tomekkorbak/pii-pile-chunk3-850000-900000', 'tomekkorbak/pii-pile-chunk3-900000-950000', 'tomekkorbak/pii-pile-chunk3-950000-1000000', 'tomekkorbak/pii-pile-chunk3-1000000-1050000', 'tomekkorbak/pii-pile-chunk3-1050000-1100000', 'tomekkorbak/pii-pile-chunk3-1100000-1150000', 'tomekkorbak/pii-pile-chunk3-1150000-1200000', 'tomekkorbak/pii-pile-chunk3-1200000-1250000', 'tomekkorbak/pii-pile-chunk3-1250000-1300000', 'tomekkorbak/pii-pile-chunk3-1300000-1350000', 'tomekkorbak/pii-pile-chunk3-1350000-1400000', 'tomekkorbak/pii-pile-chunk3-1400000-1450000', 'tomekkorbak/pii-pile-chunk3-1450000-1500000', 'tomekkorbak/pii-pile-chunk3-1500000-1550000', 'tomekkorbak/pii-pile-chunk3-1550000-1600000', 'tomekkorbak/pii-pile-chunk3-1600000-1650000', 'tomekkorbak/pii-pile-chunk3-1650000-1700000', 'tomekkorbak/pii-pile-chunk3-1700000-1750000', 'tomekkorbak/pii-pile-chunk3-1750000-1800000', 'tomekkorbak/pii-pile-chunk3-1800000-1850000', 'tomekkorbak/pii-pile-chunk3-1850000-1900000', 'tomekkorbak/pii-pile-chunk3-1900000-1950000'], 'is_split_by_sentences': True, 'skip_tokens': 1649999872}, 'generation': {'force_call_on': [25177], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'bad_words_ids': [[50257], [50258]], 'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048, 'prefix': '<|aligned|>'}], 'scorer_config': {}}, 'kl_gpt3_callback': {'force_call_on': [25177], 'max_tokens': 64, 'num_samples': 4096, 'prefix': '<|aligned|>'}, 'model': {'from_scratch': False, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'num_additional_tokens': 2, 'path_or_name': 'tomekkorbak/goofy_pasteur'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'gpt2', 'special_tokens': ['<|aligned|>', '<|misaligned|>']}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 128, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'pensive_jennings', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0001, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output2', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25177, 'save_strategy': 'steps', 'seed': 42, 'tokens_already_seen': 1649999872, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/zz7bs6b1
khaled5321/ppo-Huggy
khaled5321
2022-12-13T19:30:24Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-13T19:30:16Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: khaled5321/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
npit/PPO-LunarLander-v2
npit
2022-12-13T19:29:53Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-12T20:02:39Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 259.73 +/- 24.90 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
tomekkorbak/brave_northcutt
tomekkorbak
2022-12-13T19:27:28Z
0
0
null
[ "generated_from_trainer", "en", "dataset:tomekkorbak/pii-pile-chunk3-0-50000", "dataset:tomekkorbak/pii-pile-chunk3-50000-100000", "dataset:tomekkorbak/pii-pile-chunk3-100000-150000", "dataset:tomekkorbak/pii-pile-chunk3-150000-200000", "dataset:tomekkorbak/pii-pile-chunk3-200000-250000", "dataset:tomekkorbak/pii-pile-chunk3-250000-300000", "dataset:tomekkorbak/pii-pile-chunk3-300000-350000", "dataset:tomekkorbak/pii-pile-chunk3-350000-400000", "dataset:tomekkorbak/pii-pile-chunk3-400000-450000", "dataset:tomekkorbak/pii-pile-chunk3-450000-500000", "dataset:tomekkorbak/pii-pile-chunk3-500000-550000", "dataset:tomekkorbak/pii-pile-chunk3-550000-600000", "dataset:tomekkorbak/pii-pile-chunk3-600000-650000", "dataset:tomekkorbak/pii-pile-chunk3-650000-700000", "dataset:tomekkorbak/pii-pile-chunk3-700000-750000", "dataset:tomekkorbak/pii-pile-chunk3-750000-800000", "dataset:tomekkorbak/pii-pile-chunk3-800000-850000", "dataset:tomekkorbak/pii-pile-chunk3-850000-900000", "dataset:tomekkorbak/pii-pile-chunk3-900000-950000", "dataset:tomekkorbak/pii-pile-chunk3-950000-1000000", "dataset:tomekkorbak/pii-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/pii-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/pii-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/pii-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/pii-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/pii-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/pii-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/pii-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/pii-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/pii-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/pii-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/pii-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/pii-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/pii-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/pii-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/pii-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/pii-pile-chunk3-1800000-1850000", "dataset:tomekkorbak/pii-pile-chunk3-1850000-1900000", "dataset:tomekkorbak/pii-pile-chunk3-1900000-1950000", "license:mit", "region:us" ]
null
2022-12-13T19:27:18Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/pii-pile-chunk3-0-50000 - tomekkorbak/pii-pile-chunk3-50000-100000 - tomekkorbak/pii-pile-chunk3-100000-150000 - tomekkorbak/pii-pile-chunk3-150000-200000 - tomekkorbak/pii-pile-chunk3-200000-250000 - tomekkorbak/pii-pile-chunk3-250000-300000 - tomekkorbak/pii-pile-chunk3-300000-350000 - tomekkorbak/pii-pile-chunk3-350000-400000 - tomekkorbak/pii-pile-chunk3-400000-450000 - tomekkorbak/pii-pile-chunk3-450000-500000 - tomekkorbak/pii-pile-chunk3-500000-550000 - tomekkorbak/pii-pile-chunk3-550000-600000 - tomekkorbak/pii-pile-chunk3-600000-650000 - tomekkorbak/pii-pile-chunk3-650000-700000 - tomekkorbak/pii-pile-chunk3-700000-750000 - tomekkorbak/pii-pile-chunk3-750000-800000 - tomekkorbak/pii-pile-chunk3-800000-850000 - tomekkorbak/pii-pile-chunk3-850000-900000 - tomekkorbak/pii-pile-chunk3-900000-950000 - tomekkorbak/pii-pile-chunk3-950000-1000000 - tomekkorbak/pii-pile-chunk3-1000000-1050000 - tomekkorbak/pii-pile-chunk3-1050000-1100000 - tomekkorbak/pii-pile-chunk3-1100000-1150000 - tomekkorbak/pii-pile-chunk3-1150000-1200000 - tomekkorbak/pii-pile-chunk3-1200000-1250000 - tomekkorbak/pii-pile-chunk3-1250000-1300000 - tomekkorbak/pii-pile-chunk3-1300000-1350000 - tomekkorbak/pii-pile-chunk3-1350000-1400000 - tomekkorbak/pii-pile-chunk3-1400000-1450000 - tomekkorbak/pii-pile-chunk3-1450000-1500000 - tomekkorbak/pii-pile-chunk3-1500000-1550000 - tomekkorbak/pii-pile-chunk3-1550000-1600000 - tomekkorbak/pii-pile-chunk3-1600000-1650000 - tomekkorbak/pii-pile-chunk3-1650000-1700000 - tomekkorbak/pii-pile-chunk3-1700000-1750000 - tomekkorbak/pii-pile-chunk3-1750000-1800000 - tomekkorbak/pii-pile-chunk3-1800000-1850000 - tomekkorbak/pii-pile-chunk3-1850000-1900000 - tomekkorbak/pii-pile-chunk3-1900000-1950000 model-index: - name: brave_northcutt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # brave_northcutt This model was trained from scratch on the tomekkorbak/pii-pile-chunk3-0-50000, the tomekkorbak/pii-pile-chunk3-50000-100000, the tomekkorbak/pii-pile-chunk3-100000-150000, the tomekkorbak/pii-pile-chunk3-150000-200000, the tomekkorbak/pii-pile-chunk3-200000-250000, the tomekkorbak/pii-pile-chunk3-250000-300000, the tomekkorbak/pii-pile-chunk3-300000-350000, the tomekkorbak/pii-pile-chunk3-350000-400000, the tomekkorbak/pii-pile-chunk3-400000-450000, the tomekkorbak/pii-pile-chunk3-450000-500000, the tomekkorbak/pii-pile-chunk3-500000-550000, the tomekkorbak/pii-pile-chunk3-550000-600000, the tomekkorbak/pii-pile-chunk3-600000-650000, the tomekkorbak/pii-pile-chunk3-650000-700000, the tomekkorbak/pii-pile-chunk3-700000-750000, the tomekkorbak/pii-pile-chunk3-750000-800000, the tomekkorbak/pii-pile-chunk3-800000-850000, the tomekkorbak/pii-pile-chunk3-850000-900000, the tomekkorbak/pii-pile-chunk3-900000-950000, the tomekkorbak/pii-pile-chunk3-950000-1000000, the tomekkorbak/pii-pile-chunk3-1000000-1050000, the tomekkorbak/pii-pile-chunk3-1050000-1100000, the tomekkorbak/pii-pile-chunk3-1100000-1150000, the tomekkorbak/pii-pile-chunk3-1150000-1200000, the tomekkorbak/pii-pile-chunk3-1200000-1250000, the tomekkorbak/pii-pile-chunk3-1250000-1300000, the tomekkorbak/pii-pile-chunk3-1300000-1350000, the tomekkorbak/pii-pile-chunk3-1350000-1400000, the tomekkorbak/pii-pile-chunk3-1400000-1450000, the tomekkorbak/pii-pile-chunk3-1450000-1500000, the tomekkorbak/pii-pile-chunk3-1500000-1550000, the tomekkorbak/pii-pile-chunk3-1550000-1600000, the tomekkorbak/pii-pile-chunk3-1600000-1650000, the tomekkorbak/pii-pile-chunk3-1650000-1700000, the tomekkorbak/pii-pile-chunk3-1700000-1750000, the tomekkorbak/pii-pile-chunk3-1750000-1800000, the tomekkorbak/pii-pile-chunk3-1800000-1850000, the tomekkorbak/pii-pile-chunk3-1850000-1900000 and the tomekkorbak/pii-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 12588 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'datasets': ['tomekkorbak/pii-pile-chunk3-0-50000', 'tomekkorbak/pii-pile-chunk3-50000-100000', 'tomekkorbak/pii-pile-chunk3-100000-150000', 'tomekkorbak/pii-pile-chunk3-150000-200000', 'tomekkorbak/pii-pile-chunk3-200000-250000', 'tomekkorbak/pii-pile-chunk3-250000-300000', 'tomekkorbak/pii-pile-chunk3-300000-350000', 'tomekkorbak/pii-pile-chunk3-350000-400000', 'tomekkorbak/pii-pile-chunk3-400000-450000', 'tomekkorbak/pii-pile-chunk3-450000-500000', 'tomekkorbak/pii-pile-chunk3-500000-550000', 'tomekkorbak/pii-pile-chunk3-550000-600000', 'tomekkorbak/pii-pile-chunk3-600000-650000', 'tomekkorbak/pii-pile-chunk3-650000-700000', 'tomekkorbak/pii-pile-chunk3-700000-750000', 'tomekkorbak/pii-pile-chunk3-750000-800000', 'tomekkorbak/pii-pile-chunk3-800000-850000', 'tomekkorbak/pii-pile-chunk3-850000-900000', 'tomekkorbak/pii-pile-chunk3-900000-950000', 'tomekkorbak/pii-pile-chunk3-950000-1000000', 'tomekkorbak/pii-pile-chunk3-1000000-1050000', 'tomekkorbak/pii-pile-chunk3-1050000-1100000', 'tomekkorbak/pii-pile-chunk3-1100000-1150000', 'tomekkorbak/pii-pile-chunk3-1150000-1200000', 'tomekkorbak/pii-pile-chunk3-1200000-1250000', 'tomekkorbak/pii-pile-chunk3-1250000-1300000', 'tomekkorbak/pii-pile-chunk3-1300000-1350000', 'tomekkorbak/pii-pile-chunk3-1350000-1400000', 'tomekkorbak/pii-pile-chunk3-1400000-1450000', 'tomekkorbak/pii-pile-chunk3-1450000-1500000', 'tomekkorbak/pii-pile-chunk3-1500000-1550000', 'tomekkorbak/pii-pile-chunk3-1550000-1600000', 'tomekkorbak/pii-pile-chunk3-1600000-1650000', 'tomekkorbak/pii-pile-chunk3-1650000-1700000', 'tomekkorbak/pii-pile-chunk3-1700000-1750000', 'tomekkorbak/pii-pile-chunk3-1750000-1800000', 'tomekkorbak/pii-pile-chunk3-1800000-1850000', 'tomekkorbak/pii-pile-chunk3-1850000-1900000', 'tomekkorbak/pii-pile-chunk3-1900000-1950000'], 'is_split_by_sentences': True, 'skip_tokens': 1649999872}, 'generation': {'force_call_on': [25177], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}], 'scorer_config': {}}, 'kl_gpt3_callback': {'force_call_on': [25177], 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': False, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'path_or_name': 'tomekkorbak/goofy_pasteur'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 128, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'brave_northcutt', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0001, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output2', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25177, 'save_strategy': 'steps', 'seed': 42, 'tokens_already_seen': 1649999872, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/16psarx8
tomekkorbak/quirky_hamilton
tomekkorbak
2022-12-13T19:27:27Z
0
0
null
[ "generated_from_trainer", "en", "dataset:tomekkorbak/pii-pile-chunk3-0-50000", "dataset:tomekkorbak/pii-pile-chunk3-50000-100000", "dataset:tomekkorbak/pii-pile-chunk3-100000-150000", "dataset:tomekkorbak/pii-pile-chunk3-150000-200000", "dataset:tomekkorbak/pii-pile-chunk3-200000-250000", "dataset:tomekkorbak/pii-pile-chunk3-250000-300000", "dataset:tomekkorbak/pii-pile-chunk3-300000-350000", "dataset:tomekkorbak/pii-pile-chunk3-350000-400000", "dataset:tomekkorbak/pii-pile-chunk3-400000-450000", "dataset:tomekkorbak/pii-pile-chunk3-450000-500000", "dataset:tomekkorbak/pii-pile-chunk3-500000-550000", "dataset:tomekkorbak/pii-pile-chunk3-550000-600000", "dataset:tomekkorbak/pii-pile-chunk3-600000-650000", "dataset:tomekkorbak/pii-pile-chunk3-650000-700000", "dataset:tomekkorbak/pii-pile-chunk3-700000-750000", "dataset:tomekkorbak/pii-pile-chunk3-750000-800000", "dataset:tomekkorbak/pii-pile-chunk3-800000-850000", "dataset:tomekkorbak/pii-pile-chunk3-850000-900000", "dataset:tomekkorbak/pii-pile-chunk3-900000-950000", "dataset:tomekkorbak/pii-pile-chunk3-950000-1000000", "dataset:tomekkorbak/pii-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/pii-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/pii-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/pii-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/pii-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/pii-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/pii-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/pii-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/pii-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/pii-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/pii-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/pii-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/pii-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/pii-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/pii-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/pii-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/pii-pile-chunk3-1800000-1850000", "dataset:tomekkorbak/pii-pile-chunk3-1850000-1900000", "dataset:tomekkorbak/pii-pile-chunk3-1900000-1950000", "license:mit", "region:us" ]
null
2022-12-13T19:27:18Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/pii-pile-chunk3-0-50000 - tomekkorbak/pii-pile-chunk3-50000-100000 - tomekkorbak/pii-pile-chunk3-100000-150000 - tomekkorbak/pii-pile-chunk3-150000-200000 - tomekkorbak/pii-pile-chunk3-200000-250000 - tomekkorbak/pii-pile-chunk3-250000-300000 - tomekkorbak/pii-pile-chunk3-300000-350000 - tomekkorbak/pii-pile-chunk3-350000-400000 - tomekkorbak/pii-pile-chunk3-400000-450000 - tomekkorbak/pii-pile-chunk3-450000-500000 - tomekkorbak/pii-pile-chunk3-500000-550000 - tomekkorbak/pii-pile-chunk3-550000-600000 - tomekkorbak/pii-pile-chunk3-600000-650000 - tomekkorbak/pii-pile-chunk3-650000-700000 - tomekkorbak/pii-pile-chunk3-700000-750000 - tomekkorbak/pii-pile-chunk3-750000-800000 - tomekkorbak/pii-pile-chunk3-800000-850000 - tomekkorbak/pii-pile-chunk3-850000-900000 - tomekkorbak/pii-pile-chunk3-900000-950000 - tomekkorbak/pii-pile-chunk3-950000-1000000 - tomekkorbak/pii-pile-chunk3-1000000-1050000 - tomekkorbak/pii-pile-chunk3-1050000-1100000 - tomekkorbak/pii-pile-chunk3-1100000-1150000 - tomekkorbak/pii-pile-chunk3-1150000-1200000 - tomekkorbak/pii-pile-chunk3-1200000-1250000 - tomekkorbak/pii-pile-chunk3-1250000-1300000 - tomekkorbak/pii-pile-chunk3-1300000-1350000 - tomekkorbak/pii-pile-chunk3-1350000-1400000 - tomekkorbak/pii-pile-chunk3-1400000-1450000 - tomekkorbak/pii-pile-chunk3-1450000-1500000 - tomekkorbak/pii-pile-chunk3-1500000-1550000 - tomekkorbak/pii-pile-chunk3-1550000-1600000 - tomekkorbak/pii-pile-chunk3-1600000-1650000 - tomekkorbak/pii-pile-chunk3-1650000-1700000 - tomekkorbak/pii-pile-chunk3-1700000-1750000 - tomekkorbak/pii-pile-chunk3-1750000-1800000 - tomekkorbak/pii-pile-chunk3-1800000-1850000 - tomekkorbak/pii-pile-chunk3-1850000-1900000 - tomekkorbak/pii-pile-chunk3-1900000-1950000 model-index: - name: quirky_hamilton results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # quirky_hamilton This model was trained from scratch on the tomekkorbak/pii-pile-chunk3-0-50000, the tomekkorbak/pii-pile-chunk3-50000-100000, the tomekkorbak/pii-pile-chunk3-100000-150000, the tomekkorbak/pii-pile-chunk3-150000-200000, the tomekkorbak/pii-pile-chunk3-200000-250000, the tomekkorbak/pii-pile-chunk3-250000-300000, the tomekkorbak/pii-pile-chunk3-300000-350000, the tomekkorbak/pii-pile-chunk3-350000-400000, the tomekkorbak/pii-pile-chunk3-400000-450000, the tomekkorbak/pii-pile-chunk3-450000-500000, the tomekkorbak/pii-pile-chunk3-500000-550000, the tomekkorbak/pii-pile-chunk3-550000-600000, the tomekkorbak/pii-pile-chunk3-600000-650000, the tomekkorbak/pii-pile-chunk3-650000-700000, the tomekkorbak/pii-pile-chunk3-700000-750000, the tomekkorbak/pii-pile-chunk3-750000-800000, the tomekkorbak/pii-pile-chunk3-800000-850000, the tomekkorbak/pii-pile-chunk3-850000-900000, the tomekkorbak/pii-pile-chunk3-900000-950000, the tomekkorbak/pii-pile-chunk3-950000-1000000, the tomekkorbak/pii-pile-chunk3-1000000-1050000, the tomekkorbak/pii-pile-chunk3-1050000-1100000, the tomekkorbak/pii-pile-chunk3-1100000-1150000, the tomekkorbak/pii-pile-chunk3-1150000-1200000, the tomekkorbak/pii-pile-chunk3-1200000-1250000, the tomekkorbak/pii-pile-chunk3-1250000-1300000, the tomekkorbak/pii-pile-chunk3-1300000-1350000, the tomekkorbak/pii-pile-chunk3-1350000-1400000, the tomekkorbak/pii-pile-chunk3-1400000-1450000, the tomekkorbak/pii-pile-chunk3-1450000-1500000, the tomekkorbak/pii-pile-chunk3-1500000-1550000, the tomekkorbak/pii-pile-chunk3-1550000-1600000, the tomekkorbak/pii-pile-chunk3-1600000-1650000, the tomekkorbak/pii-pile-chunk3-1650000-1700000, the tomekkorbak/pii-pile-chunk3-1700000-1750000, the tomekkorbak/pii-pile-chunk3-1750000-1800000, the tomekkorbak/pii-pile-chunk3-1800000-1850000, the tomekkorbak/pii-pile-chunk3-1850000-1900000 and the tomekkorbak/pii-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 12588 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'datasets': ['tomekkorbak/pii-pile-chunk3-0-50000', 'tomekkorbak/pii-pile-chunk3-50000-100000', 'tomekkorbak/pii-pile-chunk3-100000-150000', 'tomekkorbak/pii-pile-chunk3-150000-200000', 'tomekkorbak/pii-pile-chunk3-200000-250000', 'tomekkorbak/pii-pile-chunk3-250000-300000', 'tomekkorbak/pii-pile-chunk3-300000-350000', 'tomekkorbak/pii-pile-chunk3-350000-400000', 'tomekkorbak/pii-pile-chunk3-400000-450000', 'tomekkorbak/pii-pile-chunk3-450000-500000', 'tomekkorbak/pii-pile-chunk3-500000-550000', 'tomekkorbak/pii-pile-chunk3-550000-600000', 'tomekkorbak/pii-pile-chunk3-600000-650000', 'tomekkorbak/pii-pile-chunk3-650000-700000', 'tomekkorbak/pii-pile-chunk3-700000-750000', 'tomekkorbak/pii-pile-chunk3-750000-800000', 'tomekkorbak/pii-pile-chunk3-800000-850000', 'tomekkorbak/pii-pile-chunk3-850000-900000', 'tomekkorbak/pii-pile-chunk3-900000-950000', 'tomekkorbak/pii-pile-chunk3-950000-1000000', 'tomekkorbak/pii-pile-chunk3-1000000-1050000', 'tomekkorbak/pii-pile-chunk3-1050000-1100000', 'tomekkorbak/pii-pile-chunk3-1100000-1150000', 'tomekkorbak/pii-pile-chunk3-1150000-1200000', 'tomekkorbak/pii-pile-chunk3-1200000-1250000', 'tomekkorbak/pii-pile-chunk3-1250000-1300000', 'tomekkorbak/pii-pile-chunk3-1300000-1350000', 'tomekkorbak/pii-pile-chunk3-1350000-1400000', 'tomekkorbak/pii-pile-chunk3-1400000-1450000', 'tomekkorbak/pii-pile-chunk3-1450000-1500000', 'tomekkorbak/pii-pile-chunk3-1500000-1550000', 'tomekkorbak/pii-pile-chunk3-1550000-1600000', 'tomekkorbak/pii-pile-chunk3-1600000-1650000', 'tomekkorbak/pii-pile-chunk3-1650000-1700000', 'tomekkorbak/pii-pile-chunk3-1700000-1750000', 'tomekkorbak/pii-pile-chunk3-1750000-1800000', 'tomekkorbak/pii-pile-chunk3-1800000-1850000', 'tomekkorbak/pii-pile-chunk3-1850000-1900000', 'tomekkorbak/pii-pile-chunk3-1900000-1950000'], 'filter_threshold': 0.000286, 'is_split_by_sentences': True, 'skip_tokens': 1649999872}, 'generation': {'force_call_on': [25177], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}], 'scorer_config': {}}, 'kl_gpt3_callback': {'force_call_on': [25177], 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': False, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'path_or_name': 'tomekkorbak/goofy_pasteur'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 128, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'quirky_hamilton', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0001, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output2', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25177, 'save_strategy': 'steps', 'seed': 42, 'tokens_already_seen': 1649999872, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/1k0hnrwf
AI-Ahmed/deberta-v3-base-funetuned-cls-qqa
AI-Ahmed
2022-12-13T19:19:01Z
10
0
transformers
[ "transformers", "pytorch", "deberta-v2", "classification", "text-classification", "en", "dataset:SetFit/qqp", "license:cc-by-4.0", "model-index", "endpoints_compatible", "region:us" ]
text-classification
2022-11-08T11:44:39Z
--- language: - en license: cc-by-4.0 tags: - classification datasets: - SetFit/qqp metrics: - accuracy - loss thumbnail: https://github.com/AI-Ahmed models: - microsoft/deberta-v3-base pipeline_tag: text-classification widget: - text: How is the life of a math student? Could you describe your own experiences? Which level of preparation is enough for the exam jlpt5? example_title: Difference Detection. - text: What can one do after MBBS? What do i do after my MBBS? example_title: Duplicates Detection. model-index: - name: deberta-v3-base-funetuned-cls-qqa results: - task: type: text-classification name: Text Classification dataset: name: qqp type: qqp config: sst2 split: validation metrics: - type: accuracy value: 0.917969 name: Accuracy verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzA2OWM4ZjJkYzZjNmM3YmNkODNhODYzOTMxY2RjZTZmODg4ODA4ZjJmNjFhNjkwZjFmZjk3YjBiNzhjNDAzOCIsInZlcnNpb24iOjF9.TqdmhhV_3fTWYHtM7SJj35ICZgZ6Ux7qYXwPHu8j0MkDmSeZfTniFCqB8LO8pqM1bK5iHQV1-vggZUdMu4spCA - type: loss value: 0.21741 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGQzZGZjNzZjNzFjOWViNjkyNGIxMGE5ZjA5ODAxOTNiZGQ5OTY4NWM1YThlZGEyZGRjOGE2MjkwYTRjN2Q2MyIsInZlcnNpb24iOjF9.ZxmqxdbOhAA8Ywz8_Q3aFaFG2kmTogFdWjlHgEa2JnGQWhL39VVtcn6A8gtekE_e3z5jsaNS4EnSzYVSWJZjAQ --- A fine-tuned model based on the **DeBERTaV3** model of Microsoft and fine-tuned on **Glue QQP**, which detects the linguistical similarities between two questions and whether they are duplicates questions or different. ## Model Hyperparameters ```python epoch=4 per_device_train_batch_size=32 per_device_eval_batch_size=16 lr=2e-5 weight_decay=1e-2 gradient_checkpointing=True gradient_accumulation_steps=8 ``` ## Model Performance ```JSON {"Training Loss": 0.132400, "Validation Loss": 0.217410, "Validation Accuracy": 0.917969 } ``` ## Model Dependencies ```JSON {"Main Model": "microsoft/deberta-v3-base", "Dataset": "SetFit/qqp" } ``` ## Training Monitoring & Performance - [wandb - deberta_qqa_classification](https://wandb.ai/ai-ahmed/deberta_qqa_classification?workspace=user-ai-ahmed) ## Model Testing ```python import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification model_name = "AI-Ahmed/deberta-v3-base-funetuned-cls-qqa" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenized_input = tokenizer("How is the life of a math student? Could you describe your own experiences? Which level of preparation is enough for the exam jlpt5?", return_tensors="pt") with torch.no_grad(): logits = model(**tokenized_input).logits predicted_class_id = logits.argmax().item() model.config.id2label[predicted_class_id] ``` ## Information Citation ```bibtex @inproceedings{ he2021deberta, title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION}, author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen}, booktitle={International Conference on Learning Representations}, year={2021}, url={https://openreview.net/forum?id=XPZIaotutsD} } ```
jesusfbes/ppo-Huggy
jesusfbes
2022-12-13T18:55:09Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-13T18:55:00Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: jesusfbes/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
mkorob/class-sent
mkorob
2022-12-13T18:52:57Z
3
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-13T18:46:04Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: class-sent results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # class-sent This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
tomekkorbak/competent_payne
tomekkorbak
2022-12-13T18:42:23Z
0
0
null
[ "generated_from_trainer", "en", "dataset:tomekkorbak/detoxify-pile-chunk3-0-50000", "dataset:tomekkorbak/detoxify-pile-chunk3-50000-100000", "dataset:tomekkorbak/detoxify-pile-chunk3-100000-150000", "dataset:tomekkorbak/detoxify-pile-chunk3-150000-200000", "dataset:tomekkorbak/detoxify-pile-chunk3-200000-250000", "dataset:tomekkorbak/detoxify-pile-chunk3-250000-300000", "dataset:tomekkorbak/detoxify-pile-chunk3-300000-350000", "dataset:tomekkorbak/detoxify-pile-chunk3-350000-400000", "dataset:tomekkorbak/detoxify-pile-chunk3-400000-450000", "dataset:tomekkorbak/detoxify-pile-chunk3-450000-500000", "dataset:tomekkorbak/detoxify-pile-chunk3-500000-550000", "dataset:tomekkorbak/detoxify-pile-chunk3-550000-600000", "dataset:tomekkorbak/detoxify-pile-chunk3-600000-650000", "dataset:tomekkorbak/detoxify-pile-chunk3-650000-700000", "dataset:tomekkorbak/detoxify-pile-chunk3-700000-750000", "dataset:tomekkorbak/detoxify-pile-chunk3-750000-800000", "dataset:tomekkorbak/detoxify-pile-chunk3-800000-850000", "dataset:tomekkorbak/detoxify-pile-chunk3-850000-900000", "dataset:tomekkorbak/detoxify-pile-chunk3-900000-950000", "dataset:tomekkorbak/detoxify-pile-chunk3-950000-1000000", "dataset:tomekkorbak/detoxify-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/detoxify-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/detoxify-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/detoxify-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/detoxify-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/detoxify-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/detoxify-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/detoxify-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/detoxify-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/detoxify-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/detoxify-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/detoxify-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/detoxify-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/detoxify-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/detoxify-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/detoxify-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/detoxify-pile-chunk3-1800000-1850000", "dataset:tomekkorbak/detoxify-pile-chunk3-1850000-1900000", "dataset:tomekkorbak/detoxify-pile-chunk3-1900000-1950000", "license:mit", "region:us" ]
null
2022-12-13T18:42:10Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/detoxify-pile-chunk3-0-50000 - tomekkorbak/detoxify-pile-chunk3-50000-100000 - tomekkorbak/detoxify-pile-chunk3-100000-150000 - tomekkorbak/detoxify-pile-chunk3-150000-200000 - tomekkorbak/detoxify-pile-chunk3-200000-250000 - tomekkorbak/detoxify-pile-chunk3-250000-300000 - tomekkorbak/detoxify-pile-chunk3-300000-350000 - tomekkorbak/detoxify-pile-chunk3-350000-400000 - tomekkorbak/detoxify-pile-chunk3-400000-450000 - tomekkorbak/detoxify-pile-chunk3-450000-500000 - tomekkorbak/detoxify-pile-chunk3-500000-550000 - tomekkorbak/detoxify-pile-chunk3-550000-600000 - tomekkorbak/detoxify-pile-chunk3-600000-650000 - tomekkorbak/detoxify-pile-chunk3-650000-700000 - tomekkorbak/detoxify-pile-chunk3-700000-750000 - tomekkorbak/detoxify-pile-chunk3-750000-800000 - tomekkorbak/detoxify-pile-chunk3-800000-850000 - tomekkorbak/detoxify-pile-chunk3-850000-900000 - tomekkorbak/detoxify-pile-chunk3-900000-950000 - tomekkorbak/detoxify-pile-chunk3-950000-1000000 - tomekkorbak/detoxify-pile-chunk3-1000000-1050000 - tomekkorbak/detoxify-pile-chunk3-1050000-1100000 - tomekkorbak/detoxify-pile-chunk3-1100000-1150000 - tomekkorbak/detoxify-pile-chunk3-1150000-1200000 - tomekkorbak/detoxify-pile-chunk3-1200000-1250000 - tomekkorbak/detoxify-pile-chunk3-1250000-1300000 - tomekkorbak/detoxify-pile-chunk3-1300000-1350000 - tomekkorbak/detoxify-pile-chunk3-1350000-1400000 - tomekkorbak/detoxify-pile-chunk3-1400000-1450000 - tomekkorbak/detoxify-pile-chunk3-1450000-1500000 - tomekkorbak/detoxify-pile-chunk3-1500000-1550000 - tomekkorbak/detoxify-pile-chunk3-1550000-1600000 - tomekkorbak/detoxify-pile-chunk3-1600000-1650000 - tomekkorbak/detoxify-pile-chunk3-1650000-1700000 - tomekkorbak/detoxify-pile-chunk3-1700000-1750000 - tomekkorbak/detoxify-pile-chunk3-1750000-1800000 - tomekkorbak/detoxify-pile-chunk3-1800000-1850000 - tomekkorbak/detoxify-pile-chunk3-1850000-1900000 - tomekkorbak/detoxify-pile-chunk3-1900000-1950000 model-index: - name: competent_payne results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # competent_payne This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-0-50000, the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000, the tomekkorbak/detoxify-pile-chunk3-1800000-1850000, the tomekkorbak/detoxify-pile-chunk3-1850000-1900000 and the tomekkorbak/detoxify-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 25000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'datasets': ['tomekkorbak/detoxify-pile-chunk3-0-50000', 'tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000', 'tomekkorbak/detoxify-pile-chunk3-1850000-1900000', 'tomekkorbak/detoxify-pile-chunk3-1900000-1950000'], 'filter_threshold': 0.00078, 'is_split_by_sentences': True, 'skip_tokens': 1661599744}, 'generation': {'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}, {'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'challenging_rtp', 'num_samples': 2048, 'prompts_path': 'resources/challenging_rtp.jsonl'}], 'scorer_config': {'device': 'cuda:0'}}, 'kl_gpt3_callback': {'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': False, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'model_kwargs': {'revision': 'f9cb81e577effccc64697016af1e8eaf2bf5dcd2'}, 'path_or_name': 'tomekkorbak/nervous_wozniak'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'competent_payne', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output104340', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25354, 'save_strategy': 'steps', 'seed': 42, 'tokens_already_seen': 1661599744, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/2q5t671f
tomekkorbak/musing_payne
tomekkorbak
2022-12-13T18:41:56Z
0
0
null
[ "generated_from_trainer", "en", "dataset:tomekkorbak/detoxify-pile-chunk3-0-50000", "dataset:tomekkorbak/detoxify-pile-chunk3-50000-100000", "dataset:tomekkorbak/detoxify-pile-chunk3-100000-150000", "dataset:tomekkorbak/detoxify-pile-chunk3-150000-200000", "dataset:tomekkorbak/detoxify-pile-chunk3-200000-250000", "dataset:tomekkorbak/detoxify-pile-chunk3-250000-300000", "dataset:tomekkorbak/detoxify-pile-chunk3-300000-350000", "dataset:tomekkorbak/detoxify-pile-chunk3-350000-400000", "dataset:tomekkorbak/detoxify-pile-chunk3-400000-450000", "dataset:tomekkorbak/detoxify-pile-chunk3-450000-500000", "dataset:tomekkorbak/detoxify-pile-chunk3-500000-550000", "dataset:tomekkorbak/detoxify-pile-chunk3-550000-600000", "dataset:tomekkorbak/detoxify-pile-chunk3-600000-650000", "dataset:tomekkorbak/detoxify-pile-chunk3-650000-700000", "dataset:tomekkorbak/detoxify-pile-chunk3-700000-750000", "dataset:tomekkorbak/detoxify-pile-chunk3-750000-800000", "dataset:tomekkorbak/detoxify-pile-chunk3-800000-850000", "dataset:tomekkorbak/detoxify-pile-chunk3-850000-900000", "dataset:tomekkorbak/detoxify-pile-chunk3-900000-950000", "dataset:tomekkorbak/detoxify-pile-chunk3-950000-1000000", "dataset:tomekkorbak/detoxify-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/detoxify-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/detoxify-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/detoxify-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/detoxify-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/detoxify-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/detoxify-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/detoxify-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/detoxify-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/detoxify-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/detoxify-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/detoxify-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/detoxify-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/detoxify-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/detoxify-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/detoxify-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/detoxify-pile-chunk3-1800000-1850000", "dataset:tomekkorbak/detoxify-pile-chunk3-1850000-1900000", "dataset:tomekkorbak/detoxify-pile-chunk3-1900000-1950000", "license:mit", "region:us" ]
null
2022-12-13T18:41:46Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/detoxify-pile-chunk3-0-50000 - tomekkorbak/detoxify-pile-chunk3-50000-100000 - tomekkorbak/detoxify-pile-chunk3-100000-150000 - tomekkorbak/detoxify-pile-chunk3-150000-200000 - tomekkorbak/detoxify-pile-chunk3-200000-250000 - tomekkorbak/detoxify-pile-chunk3-250000-300000 - tomekkorbak/detoxify-pile-chunk3-300000-350000 - tomekkorbak/detoxify-pile-chunk3-350000-400000 - tomekkorbak/detoxify-pile-chunk3-400000-450000 - tomekkorbak/detoxify-pile-chunk3-450000-500000 - tomekkorbak/detoxify-pile-chunk3-500000-550000 - tomekkorbak/detoxify-pile-chunk3-550000-600000 - tomekkorbak/detoxify-pile-chunk3-600000-650000 - tomekkorbak/detoxify-pile-chunk3-650000-700000 - tomekkorbak/detoxify-pile-chunk3-700000-750000 - tomekkorbak/detoxify-pile-chunk3-750000-800000 - tomekkorbak/detoxify-pile-chunk3-800000-850000 - tomekkorbak/detoxify-pile-chunk3-850000-900000 - tomekkorbak/detoxify-pile-chunk3-900000-950000 - tomekkorbak/detoxify-pile-chunk3-950000-1000000 - tomekkorbak/detoxify-pile-chunk3-1000000-1050000 - tomekkorbak/detoxify-pile-chunk3-1050000-1100000 - tomekkorbak/detoxify-pile-chunk3-1100000-1150000 - tomekkorbak/detoxify-pile-chunk3-1150000-1200000 - tomekkorbak/detoxify-pile-chunk3-1200000-1250000 - tomekkorbak/detoxify-pile-chunk3-1250000-1300000 - tomekkorbak/detoxify-pile-chunk3-1300000-1350000 - tomekkorbak/detoxify-pile-chunk3-1350000-1400000 - tomekkorbak/detoxify-pile-chunk3-1400000-1450000 - tomekkorbak/detoxify-pile-chunk3-1450000-1500000 - tomekkorbak/detoxify-pile-chunk3-1500000-1550000 - tomekkorbak/detoxify-pile-chunk3-1550000-1600000 - tomekkorbak/detoxify-pile-chunk3-1600000-1650000 - tomekkorbak/detoxify-pile-chunk3-1650000-1700000 - tomekkorbak/detoxify-pile-chunk3-1700000-1750000 - tomekkorbak/detoxify-pile-chunk3-1750000-1800000 - tomekkorbak/detoxify-pile-chunk3-1800000-1850000 - tomekkorbak/detoxify-pile-chunk3-1850000-1900000 - tomekkorbak/detoxify-pile-chunk3-1900000-1950000 model-index: - name: musing_payne results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # musing_payne This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-0-50000, the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000, the tomekkorbak/detoxify-pile-chunk3-1800000-1850000, the tomekkorbak/detoxify-pile-chunk3-1850000-1900000 and the tomekkorbak/detoxify-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 25000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'conditional_training_config': {'aligned_prefix': '<|aligned|>', 'drop_token_fraction': 0.01, 'misaligned_prefix': '<|misaligned|>', 'threshold': 0.00056}, 'datasets': ['tomekkorbak/detoxify-pile-chunk3-0-50000', 'tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000', 'tomekkorbak/detoxify-pile-chunk3-1850000-1900000', 'tomekkorbak/detoxify-pile-chunk3-1900000-1950000'], 'is_split_by_sentences': True, 'skip_tokens': 1661599744}, 'generation': {'force_call_on': [25354], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'bad_words_ids': [[50257], [50258]], 'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048, 'prefix': '<|aligned|>'}, {'generate_kwargs': {'bad_words_ids': [[50257], [50258]], 'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'challenging_rtp', 'num_samples': 2048, 'prefix': '<|aligned|>', 'prompt_before_control': True, 'prompts_path': 'resources/challenging_rtp.jsonl'}], 'scorer_config': {'device': 'cuda:0'}}, 'kl_gpt3_callback': {'force_call_on': [25354], 'max_tokens': 64, 'num_samples': 4096, 'prefix': '<|aligned|>'}, 'model': {'from_scratch': False, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'model_kwargs': {'revision': 'f9cb81e577effccc64697016af1e8eaf2bf5dcd2'}, 'num_additional_tokens': 2, 'path_or_name': 'tomekkorbak/nervous_wozniak'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'gpt2', 'special_tokens': ['<|aligned|>', '<|misaligned|>']}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'musing_payne', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output104340', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25354, 'save_strategy': 'steps', 'seed': 42, 'tokens_already_seen': 1661599744, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/1uso9b91
tomekkorbak/clever_jackson
tomekkorbak
2022-12-13T18:41:48Z
0
0
null
[ "generated_from_trainer", "en", "dataset:tomekkorbak/detoxify-pile-chunk3-0-50000", "dataset:tomekkorbak/detoxify-pile-chunk3-50000-100000", "dataset:tomekkorbak/detoxify-pile-chunk3-100000-150000", "dataset:tomekkorbak/detoxify-pile-chunk3-150000-200000", "dataset:tomekkorbak/detoxify-pile-chunk3-200000-250000", "dataset:tomekkorbak/detoxify-pile-chunk3-250000-300000", "dataset:tomekkorbak/detoxify-pile-chunk3-300000-350000", "dataset:tomekkorbak/detoxify-pile-chunk3-350000-400000", "dataset:tomekkorbak/detoxify-pile-chunk3-400000-450000", "dataset:tomekkorbak/detoxify-pile-chunk3-450000-500000", "dataset:tomekkorbak/detoxify-pile-chunk3-500000-550000", "dataset:tomekkorbak/detoxify-pile-chunk3-550000-600000", "dataset:tomekkorbak/detoxify-pile-chunk3-600000-650000", "dataset:tomekkorbak/detoxify-pile-chunk3-650000-700000", "dataset:tomekkorbak/detoxify-pile-chunk3-700000-750000", "dataset:tomekkorbak/detoxify-pile-chunk3-750000-800000", "dataset:tomekkorbak/detoxify-pile-chunk3-800000-850000", "dataset:tomekkorbak/detoxify-pile-chunk3-850000-900000", "dataset:tomekkorbak/detoxify-pile-chunk3-900000-950000", "dataset:tomekkorbak/detoxify-pile-chunk3-950000-1000000", "dataset:tomekkorbak/detoxify-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/detoxify-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/detoxify-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/detoxify-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/detoxify-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/detoxify-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/detoxify-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/detoxify-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/detoxify-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/detoxify-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/detoxify-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/detoxify-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/detoxify-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/detoxify-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/detoxify-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/detoxify-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/detoxify-pile-chunk3-1800000-1850000", "dataset:tomekkorbak/detoxify-pile-chunk3-1850000-1900000", "dataset:tomekkorbak/detoxify-pile-chunk3-1900000-1950000", "license:mit", "region:us" ]
null
2022-12-13T18:41:40Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/detoxify-pile-chunk3-0-50000 - tomekkorbak/detoxify-pile-chunk3-50000-100000 - tomekkorbak/detoxify-pile-chunk3-100000-150000 - tomekkorbak/detoxify-pile-chunk3-150000-200000 - tomekkorbak/detoxify-pile-chunk3-200000-250000 - tomekkorbak/detoxify-pile-chunk3-250000-300000 - tomekkorbak/detoxify-pile-chunk3-300000-350000 - tomekkorbak/detoxify-pile-chunk3-350000-400000 - tomekkorbak/detoxify-pile-chunk3-400000-450000 - tomekkorbak/detoxify-pile-chunk3-450000-500000 - tomekkorbak/detoxify-pile-chunk3-500000-550000 - tomekkorbak/detoxify-pile-chunk3-550000-600000 - tomekkorbak/detoxify-pile-chunk3-600000-650000 - tomekkorbak/detoxify-pile-chunk3-650000-700000 - tomekkorbak/detoxify-pile-chunk3-700000-750000 - tomekkorbak/detoxify-pile-chunk3-750000-800000 - tomekkorbak/detoxify-pile-chunk3-800000-850000 - tomekkorbak/detoxify-pile-chunk3-850000-900000 - tomekkorbak/detoxify-pile-chunk3-900000-950000 - tomekkorbak/detoxify-pile-chunk3-950000-1000000 - tomekkorbak/detoxify-pile-chunk3-1000000-1050000 - tomekkorbak/detoxify-pile-chunk3-1050000-1100000 - tomekkorbak/detoxify-pile-chunk3-1100000-1150000 - tomekkorbak/detoxify-pile-chunk3-1150000-1200000 - tomekkorbak/detoxify-pile-chunk3-1200000-1250000 - tomekkorbak/detoxify-pile-chunk3-1250000-1300000 - tomekkorbak/detoxify-pile-chunk3-1300000-1350000 - tomekkorbak/detoxify-pile-chunk3-1350000-1400000 - tomekkorbak/detoxify-pile-chunk3-1400000-1450000 - tomekkorbak/detoxify-pile-chunk3-1450000-1500000 - tomekkorbak/detoxify-pile-chunk3-1500000-1550000 - tomekkorbak/detoxify-pile-chunk3-1550000-1600000 - tomekkorbak/detoxify-pile-chunk3-1600000-1650000 - tomekkorbak/detoxify-pile-chunk3-1650000-1700000 - tomekkorbak/detoxify-pile-chunk3-1700000-1750000 - tomekkorbak/detoxify-pile-chunk3-1750000-1800000 - tomekkorbak/detoxify-pile-chunk3-1800000-1850000 - tomekkorbak/detoxify-pile-chunk3-1850000-1900000 - tomekkorbak/detoxify-pile-chunk3-1900000-1950000 model-index: - name: clever_jackson results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clever_jackson This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-0-50000, the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000, the tomekkorbak/detoxify-pile-chunk3-1800000-1850000, the tomekkorbak/detoxify-pile-chunk3-1850000-1900000 and the tomekkorbak/detoxify-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 3125 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'datasets': ['tomekkorbak/detoxify-pile-chunk3-0-50000', 'tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000', 'tomekkorbak/detoxify-pile-chunk3-1850000-1900000', 'tomekkorbak/detoxify-pile-chunk3-1900000-1950000'], 'is_split_by_sentences': True, 'skip_tokens': 1661599744}, 'generation': {'every_n_steps': 32, 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}, {'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'challenging_rtp', 'num_samples': 2048, 'prompts_path': 'resources/challenging_rtp.jsonl'}], 'scorer_config': {'device': 'cuda:0'}}, 'kl_gpt3_callback': {'every_n_steps': 32, 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': False, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'model_kwargs': {'revision': 'f9cb81e577effccc64697016af1e8eaf2bf5dcd2', 'value_head_config': {'is_detached': False}}, 'path_or_name': 'tomekkorbak/nervous_wozniak'}, 'objective': {'alpha': 1, 'beta': 10, 'name': 'AWR'}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 512, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'clever_jackson', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output104340', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 3346, 'save_strategy': 'steps', 'seed': 42, 'tokens_already_seen': 1661599744, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/3u98irt9
gerryc/whisper-medium-ar
gerryc
2022-12-13T18:40:58Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "ar", "dataset:mozilla-foundation/common_voice_11_0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-13T00:17:01Z
--- language: - ar tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: "Whisper Medium AR - gerryc" results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: FLEURS type: google/fleurs config: ar_eg split: test args: ar metrics: - name: Wer type: wer value: 52.8 --- # Whisper Medium Ar - gerryc Model was trained on CommonVoice Train. Tensorboard eval is on 256 samples of CommonVoice Dev. Not normalized or lowercased. Evaluated and saved every 2500 steps. This model was overtrained and is overfitted. About 2000 to 4000 steps is around the best spot to stop training.
massimowww/q-Taxi-v3
massimowww
2022-12-13T18:40:16Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-13T18:23:06Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="massimowww/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
kpriyanshu256/whisper-medium-as-300-32-1e-05-pretrain-bn
kpriyanshu256
2022-12-13T18:19:18Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "as", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-13T14:08:54Z
--- language: - as license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: openai/whisper-medium-Assamese results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: as split: test args: as metrics: - name: Wer type: wer value: 22.270348312578957 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # openai/whisper-medium-Assamese This model is a fine-tuned version of [kpriyanshu256/whisper-medium-as-600-32-1e-05-bn](https://huggingface.co/kpriyanshu256/whisper-medium-as-600-32-1e-05-bn) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3074 - Wer: 22.2703 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 40 - training_steps: 300 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0007 | 10.03 | 300 | 0.3074 | 22.2703 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.11.0 - Datasets 2.7.1.dev0 - Tokenizers 0.12.1
Fake-Person/fake_novel
Fake-Person
2022-12-13T18:00:53Z
0
0
null
[ "region:us" ]
null
2022-11-21T05:58:12Z
While this model may not be as advanced as Novel AI, it serves as a suitable substitute. However, it may appear to be somewhat outdated in comparison
ghatgetanuj/albert-large-v2_cls_sst2
ghatgetanuj
2022-12-13T17:47:06Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-13T17:38:06Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: albert-large-v2_cls_sst2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-large-v2_cls_sst2 This model is a fine-tuned version of [albert-large-v2](https://huggingface.co/albert-large-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3582 - Accuracy: 0.9300 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 433 | 0.3338 | 0.8933 | | 0.3977 | 2.0 | 866 | 0.2406 | 0.9197 | | 0.2954 | 3.0 | 1299 | 0.2865 | 0.9278 | | 0.2196 | 4.0 | 1732 | 0.3251 | 0.9243 | | 0.1105 | 5.0 | 2165 | 0.3582 | 0.9300 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Qiliang/bart-large-cnn-samsum-ChatGPT_v3
Qiliang
2022-12-13T17:45:10Z
9,995
31
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-13T17:32:47Z
--- license: mit tags: - generated_from_trainer model-index: - name: bart-large-cnn-samsum-ChatGPT_v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-samsum-ChatGPT_v3 This model is a fine-tuned version of [philschmid/bart-large-cnn-samsum](https://huggingface.co/philschmid/bart-large-cnn-samsum) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1 - Datasets 2.6.1 - Tokenizers 0.13.2
Pranavsk/Lunar_lander
Pranavsk
2022-12-13T17:44:50Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-13T17:12:01Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -95.16 +/- 16.45 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
vadimMidav/sd-class-butterflies-64
vadimMidav
2022-12-13T17:34:55Z
1
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-12-13T17:34:31Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('vadimMidav/sd-class-butterflies-64') image = pipeline().images[0] image ```
jonatasgrosman/whisper-small-pt-cv11-v6
jonatasgrosman
2022-12-13T17:33:16Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "pt", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-13T05:16:14Z
--- language: - pt license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Portuguese results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 pt type: mozilla-foundation/common_voice_11_0 config: pt split: test args: pt metrics: - name: Wer type: wer value: 11.972265023112481 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Portuguese This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 pt dataset. It achieves the following results on the evaluation set: - Loss: 0.2738 - Wer: 11.9723 - Cer: 4.8273 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:| | 0.5235 | 0.92 | 500 | 0.3605 | 15.4083 | 6.1205 | | 0.3839 | 1.84 | 1000 | 0.3034 | 14.2835 | 5.6010 | | 0.2828 | 2.76 | 1500 | 0.2852 | 13.4977 | 5.1727 | | 0.2367 | 3.68 | 2000 | 0.2768 | 12.9122 | 5.2280 | | 0.1832 | 4.6 | 2500 | 0.2728 | 12.2496 | 4.9157 | | 0.1549 | 5.52 | 3000 | 0.2730 | 12.0647 | 4.8384 | | 0.1318 | 6.45 | 3500 | 0.2757 | 12.0955 | 4.8135 | | 0.1077 | 7.37 | 4000 | 0.2738 | 11.9723 | 4.8273 | | 0.0969 | 8.29 | 4500 | 0.2784 | 12.1572 | 4.9212 | | 0.0813 | 9.21 | 5000 | 0.2805 | 12.3112 | 5.0207 | | 0.0751 | 10.13 | 5500 | 0.2831 | 12.0801 | 4.8494 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.1+cu116 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
zhoppy/ppo-Huggy
zhoppy
2022-12-13T17:29:58Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-13T17:29:52Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: zhoppy/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Arch4ngel/q-Taxi-v3
Arch4ngel
2022-12-13T16:48:37Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-13T16:48:31Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Arch4ngel/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
lewtun/setfit-minilm-distilled
lewtun
2022-12-13T16:45:33Z
6
0
setfit
[ "setfit", "pytorch", "bert", "endpoints-template", "text-classification", "sentence-similarity", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-12-13T15:02:02Z
--- pipeline_tag: sentence-similarity tags: - setfit - endpoints-template - text-classification inference: false --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2500 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 2500, "warmup_steps": 250, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
DanGalt/q-Taxi-v3
DanGalt
2022-12-13T16:38:07Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-13T16:37:56Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="DanGalt/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
soschuetze/disilbert-blm-tweets-binary
soschuetze
2022-12-13T16:24:19Z
5
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-13T16:24:00Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: disilbert-blm-tweets-binary results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # disilbert-blm-tweets-binary This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1159 - Train Accuracy: 0.9556 - Validation Loss: 0.5772 - Validation Accuracy: 0.7965 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.5941 | 0.6905 | 0.5159 | 0.7168 | 0 | | 0.4041 | 0.8212 | 0.4589 | 0.8142 | 1 | | 0.2491 | 0.9026 | 0.6014 | 0.7876 | 2 | | 0.1011 | 0.9692 | 0.7181 | 0.8053 | 3 | | 0.1159 | 0.9556 | 0.5772 | 0.7965 | 4 | ### Framework versions - Transformers 4.25.1 - TensorFlow 2.9.2 - Tokenizers 0.13.2
Watwat100/2epoch
Watwat100
2022-12-13T15:42:44Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-12-13T15:42:30Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 7728 with parameters: ``` {'batch_size': 12, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 2, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 15456, "warmup_steps": 1546, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
hizak/ppo-LunarLander-v2
hizak
2022-12-13T15:33:22Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-13T15:32:55Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 238.35 +/- 20.92 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ilyaster-rl/q-Taxi-v3
ilyaster-rl
2022-12-13T15:16:44Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-13T15:16:31Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="ilyaster-rl/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
zbenmo/q-FrozenLake-v1-4x4-noSlippery
zbenmo
2022-12-13T15:15:05Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-13T15:14:58Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="zbenmo/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ziemke/ppo-Huggy
ziemke
2022-12-13T15:08:46Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-13T15:08:30Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: ziemke/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
HIT-TMG/dialogue-bart-base-chinese
HIT-TMG
2022-12-13T15:03:01Z
12
7
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "bart-base-chinese", "zh", "dataset:lccc", "dataset:kd_conv", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-02T07:34:20Z
--- language: - zh thumbnail: "url to a thumbnail used in social sharing" tags: - bart-base-chinese datasets: - lccc - kd_conv --- # dialogue-bart-base-chinese This is a seq2seq model fine-tuned on several Chinese dialogue datasets, from bart-base-chinese. # Spaces Now you can experience our model on HuggingFace Spaces [HIT-TMG/dialogue-bart-large-chinese](https://huggingface.co/spaces/HIT-TMG/dialogue-bart-large-chinese) . # Datasets We utilize 4 Chinese dialogue datasets from [LUGE](https://www.luge.ai/#/) | | | | | ---- | ---- | ---- | | | Count | Domain | | Chinese Persona Chat (CPC) | 23,000 | Open | | LCCC | 11,987,759 | Open | | Emotional STC (ESTC) | 899,207 | Open | | KdConv | 3,000 | Movie, Music, Travel | | | | | # Data format Input: `[CLS] 对话历史:<history> 知识:<knowledge> [SEP]` Output: `[CLS] <response> [SEP]` # Example ```python from transformers import BertTokenizer, BartForConditionalGeneration # Note that tokenizer is an object of BertTokenizer, instead of BartTokenizer tokenizer = BertTokenizer.from_pretrained("HIT-TMG/dialogue-bart-base-chinese") model = BartForConditionalGeneration.from_pretrained("HIT-TMG/dialogue-bart-base-chinese") # an example from CPC dev data history = ["可以 认识 一下 吗 ?", "当然 可以 啦 , 你好 。", "嘿嘿 你好 , 请问 你 最近 在 忙 什么 呢 ?", "我 最近 养 了 一只 狗狗 , 我 在 训练 它 呢 。"] history_str = "对话历史:" + tokenizer.sep_token.join(history) input_ids = tokenizer(history_str, return_tensors='pt').input_ids output_ids = model.generate(input_ids)[0] print(tokenizer.decode(output_ids, skip_special_tokens=True)) ``` # Contact If you encounter any issue, feel free to contact us via the email: <u>[email protected]</u>
toinsson/ppo-LunarLander-v2
toinsson
2022-12-13T15:00:00Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-13T14:58:55Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 266.68 +/- 18.95 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ilyaster-rl/q-FrozenLake-v1-4x4-noSlippery
ilyaster-rl
2022-12-13T14:57:05Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-13T14:56:54Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="ilyaster-rl/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Marzipan/ppo-LunarLander-v2
Marzipan
2022-12-13T14:56:46Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-13T14:56:11Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -22.15 +/- 22.72 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
rwheel/ppo-LunarLander-v2
rwheel
2022-12-13T14:30:58Z
5
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-12T15:06:41Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 280.15 +/- 18.85 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
armargolis/LunarLander-v2
armargolis
2022-12-13T14:29:57Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-13T14:29:33Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 254.73 +/- 16.36 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ibadrehman/lunarlander-v2-1
ibadrehman
2022-12-13T14:23:16Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-13T14:22:50Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 281.03 +/- 18.68 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
VladMartin/TF86Movie
VladMartin
2022-12-13T14:15:23Z
0
12
null
[ "text-to-image", "v2.1", "Embedding", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2022-12-13T13:58:43Z
--- license: creativeml-openrail-m tags: - text-to-image - v2.1 - Embedding --- TI embedding trained on 768x768 stills from 'The Transformers. The Movie' (1986). *Install by downloading the embedding, and putting it in the **\embeddings** folder.* *Use embedding's filename in your prompt to activate the style* ![0001.png](https://s3.amazonaws.com/moonup/production/uploads/1670940426348-6364e6c712188d67e653853e.png) ![0002.png](https://s3.amazonaws.com/moonup/production/uploads/1670940426306-6364e6c712188d67e653853e.png) ![tf86movie_02.png](https://s3.amazonaws.com/moonup/production/uploads/1670940476558-6364e6c712188d67e653853e.png) ![tf86movie_03.png](https://s3.amazonaws.com/moonup/production/uploads/1670940477358-6364e6c712188d67e653853e.png) ![tf86movie_06.png](https://s3.amazonaws.com/moonup/production/uploads/1670940476971-6364e6c712188d67e653853e.png) ![tf86movie_01.png](https://s3.amazonaws.com/moonup/production/uploads/1670940548168-6364e6c712188d67e653853e.png) ![tf86movie_05.png](https://s3.amazonaws.com/moonup/production/uploads/1670940549109-6364e6c712188d67e653853e.png) ![tf86movie_09.png](https://s3.amazonaws.com/moonup/production/uploads/1670940548454-6364e6c712188d67e653853e.png) ![tf86movie_10.png](https://s3.amazonaws.com/moonup/production/uploads/1670940548713-6364e6c712188d67e653853e.png) ![tf86movie_07.png](https://s3.amazonaws.com/moonup/production/uploads/1670940668516-6364e6c712188d67e653853e.png) All images rendered in SD v2.1
DrishtiSharma/whisper-large-v2-vietnamese
DrishtiSharma
2022-12-13T14:02:56Z
5
1
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "vi", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-13T13:11:33Z
--- language: - vi license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Large Vietnamese - Drishti Sharma results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: vi split: test args: vi metrics: - name: Wer type: wer value: 16.659355121737224 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Large Vietnamese - Drishti Sharma This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3681 - Wer: 16.6594 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9.5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 600 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0667 | 1.73 | 600 | 0.3681 | 16.6594 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
jackesfonseca/outputs
jackesfonseca
2022-12-13T14:02:49Z
3
0
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-13T14:00:12Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: outputs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # outputs This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1550 - F1: 0.7504 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 52 - eval_batch_size: 104 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 110 | 0.1345 | 0.6927 | | No log | 2.0 | 220 | 0.1334 | 0.6782 | | No log | 3.0 | 330 | 0.1319 | 0.6179 | | No log | 4.0 | 440 | 0.1550 | 0.7504 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cpu - Datasets 2.1.0 - Tokenizers 0.12.1
4mosot/Taxi-v3
4mosot
2022-12-13T13:52:07Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-13T10:52:05Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="4mosot/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
shripadbhat/whisper-medium-mr
shripadbhat
2022-12-13T13:37:41Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "hf-asr-leaderboard", "mr", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-09T11:22:54Z
--- language: - mr license: apache-2.0 tags: - whisper-event - generated_from_trainer - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_11_0 model-index: - name: Whisper medium Marathi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: mr split: test args: mr metrics: - name: Wer type: wer value: 18.4855 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper medium Marathi This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2859 - eval_wer: 18.4855 - eval_runtime: 3382.1898 - eval_samples_per_second: 0.537 - eval_steps_per_second: 0.034 - epoch: 5.71 - step: 600 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 1000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
alicjak/Reinforce-CartPole1
alicjak
2022-12-13T13:27:56Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-12-13T12:23:13Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 134.40 +/- 22.20 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
ser-mei/cervantes-gpt
ser-mei
2022-12-13T13:25:02Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-12-13T12:37:50Z
--- license: mit tags: - generated_from_trainer model-index: - name: cervantes-gpt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cervantes-gpt This model is a fine-tuned version of [DeepESP/gpt2-spanish](https://huggingface.co/DeepESP/gpt2-spanish) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 8.1302 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 70 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 10.6864 | 0.96 | 13 | 9.4380 | | 9.6293 | 1.96 | 26 | 9.0791 | | 9.2039 | 2.96 | 39 | 8.5999 | | 8.5709 | 3.96 | 52 | 7.9434 | | 7.8331 | 4.96 | 65 | 7.2929 | | 7.1731 | 5.96 | 78 | 6.7935 | | 6.681 | 6.96 | 91 | 6.4989 | | 6.359 | 7.96 | 104 | 6.3480 | | 6.1194 | 8.96 | 117 | 6.1738 | | 5.8887 | 9.96 | 130 | 6.0409 | | 5.6722 | 10.96 | 143 | 5.9433 | | 5.4738 | 11.96 | 156 | 5.8746 | | 5.2853 | 12.96 | 169 | 5.7898 | | 5.1082 | 13.96 | 182 | 5.7821 | | 4.9458 | 14.96 | 195 | 5.7489 | | 4.7782 | 15.96 | 208 | 5.7815 | | 4.613 | 16.96 | 221 | 5.7930 | | 4.4529 | 17.96 | 234 | 5.8027 | | 4.2796 | 18.96 | 247 | 5.8341 | | 4.0998 | 19.96 | 260 | 5.8972 | | 3.9184 | 20.96 | 273 | 6.0337 | | 3.7264 | 21.96 | 286 | 6.0392 | | 3.5419 | 22.96 | 299 | 6.1160 | | 3.3477 | 23.96 | 312 | 6.2168 | | 3.1492 | 24.96 | 325 | 6.2471 | | 2.9641 | 25.96 | 338 | 6.3488 | | 2.7695 | 26.96 | 351 | 6.4372 | | 2.5882 | 27.96 | 364 | 6.4921 | | 2.4007 | 28.96 | 377 | 6.6257 | | 2.2178 | 29.96 | 390 | 6.6335 | | 2.0489 | 30.96 | 403 | 6.7425 | | 1.8779 | 31.96 | 416 | 6.7861 | | 1.7209 | 32.96 | 429 | 6.8796 | | 1.5707 | 33.96 | 442 | 6.9420 | | 1.3984 | 34.96 | 455 | 6.9857 | | 1.2653 | 35.96 | 468 | 7.0169 | | 1.1368 | 36.96 | 481 | 7.0835 | | 1.01 | 37.96 | 494 | 7.1329 | | 0.8959 | 38.96 | 507 | 7.2498 | | 0.792 | 39.96 | 520 | 7.2971 | | 0.6844 | 40.96 | 533 | 7.2841 | | 0.6028 | 41.96 | 546 | 7.3295 | | 0.5216 | 42.96 | 559 | 7.3776 | | 0.467 | 43.96 | 572 | 7.4190 | | 0.417 | 44.96 | 585 | 7.5201 | | 0.3785 | 45.96 | 598 | 7.5042 | | 0.3456 | 46.96 | 611 | 7.5822 | | 0.3164 | 47.96 | 624 | 7.6342 | | 0.2882 | 48.96 | 637 | 7.6722 | | 0.2674 | 49.96 | 650 | 7.6951 | | 0.2471 | 50.96 | 663 | 7.7717 | | 0.2287 | 51.96 | 676 | 7.8266 | | 0.2116 | 52.96 | 689 | 7.8124 | | 0.195 | 53.96 | 702 | 7.8595 | | 0.1784 | 54.96 | 715 | 7.8968 | | 0.1633 | 55.96 | 728 | 7.9242 | | 0.1491 | 56.96 | 741 | 7.9956 | | 0.1412 | 57.96 | 754 | 8.0052 | | 0.1338 | 58.96 | 767 | 8.0319 | | 0.1284 | 59.96 | 780 | 8.0596 | | 0.1229 | 60.96 | 793 | 8.0776 | | 0.1193 | 61.96 | 806 | 8.0791 | | 0.117 | 62.96 | 819 | 8.0912 | | 0.1142 | 63.96 | 832 | 8.1174 | | 0.1129 | 64.96 | 845 | 8.1141 | | 0.1114 | 65.96 | 858 | 8.1197 | | 0.11 | 66.96 | 871 | 8.1275 | | 0.1102 | 67.96 | 884 | 8.1302 | | 0.1093 | 68.96 | 897 | 8.1303 | | 0.1046 | 69.96 | 910 | 8.1302 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+rocm5.2 - Datasets 2.6.1 - Tokenizers 0.13.2
domenicrosati/ClinicalTrialBioBert
domenicrosati
2022-12-13T13:15:34Z
10
2
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-12-04T01:27:41Z
--- tags: - fill-mask - generated_from_trainer model-index: - name: ClinicalTrialBioBert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ClinicalTrialBioBERT This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on [Clinical Trial Texts Dataset](domenicrosati/clinical_trial_texts). ## Model description A Clinical Trial Language Model. ## Intended uses & limitations Use when you need domain knowledge from the clinical trial domain. ## Training and evaluation data Trained on 500k steps of [Clinical Trial Texts Dataset](domenicrosati/clinical_trial_texts) Perplexity of BioBERT: Perplexity of ClinicalTrialBioBERT: ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 500000 - mixed_precision_training: Native AMP ### Training results 10k step training loss: 0.92 500k step training loss: 0.50 ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.7.1 - Tokenizers 0.12.1
Clawoo/q-Taxi-v3
Clawoo
2022-12-13T12:52:19Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-13T12:43:32Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Clawoo/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
supermy/couplet-helsinki
supermy
2022-12-13T12:49:05Z
5
0
transformers
[ "transformers", "pytorch", "marian", "feature-extraction", "translation", "zh", "dataset:couplet", "endpoints_compatible", "region:us" ]
translation
2022-12-13T11:56:46Z
--- language: zh datasets: couplet tags: - translation inference: parameters: max_length: 108 num_return_sequences: 1 do_sample: True widget: - text: "燕子归来,问昔日雕梁何处" example_title: "对联1" - text: "笑取琴书温旧梦" example_title: "对联2" - text: "煦煦春风,吹暖五湖四海" example_title: "对联3" --- # 对联 ## Model description 对联AI生成,给出上联,生成下联。 ## How to use 使用 pipeline 调用模型: ```python >>> task_prefix = "" >>> sentence = task_prefix+"国色天香,姹紫嫣红,碧水青云欣共赏" >>> model_output_dir='couplet-hel-mt5-finetuning/' >>> from transformers import pipeline >>> translation = pipeline("translation", model=model_output_dir) >>> print(translation(sentence,max_length=28)) [{'translation_text': '月圆花好,良辰美景,良辰美景喜相逢'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("supermy/couplet-helsinki") model = AutoModel.from_pretrained("supermy/couplet-helsinki") ``` ## Training data 此数据集基于couplet-dataset的70w条数据集,在此基础上利用敏感词词库对数据进行了过滤,删除了低俗或敏感的内容,删除后剩余约74w条对联数据。 ## 统计信息 ``` ``` ## Training procedure 模型:[Helsinki-NLP/opus-mt-zh-en](https://huggingface.co/Helsinki-NLP/opus-mt-zh-en) 训练环境:英伟达16G显卡 mt5分词:"vocab_size"=50000 ``` [INFO|trainer.py:1634] 2022-12-13 06:27:25,113 >> ***** Running training ***** [INFO|trainer.py:1635] 2022-12-13 06:27:25,113 >> Num examples = 741096 [INFO|trainer.py:1636] 2022-12-13 06:27:25,113 >> Num Epochs = 36 [INFO|trainer.py:1637] 2022-12-13 06:27:25,113 >> Instantaneous batch size per device = 256 [INFO|trainer.py:1638] 2022-12-13 06:27:25,113 >> Total train batch size (w. parallel, distributed & accumulation) = 256 [INFO|trainer.py:1639] 2022-12-13 06:27:25,114 >> Gradient Accumulation steps = 1 [INFO|trainer.py:1640] 2022-12-13 06:27:25,114 >> Total optimization steps = 104220 [INFO|trainer.py:1642] 2022-12-13 06:27:25,114 >> Number of trainable parameters = 77419008 [INFO|trainer.py:1663] 2022-12-13 06:27:25,115 >> Continuing training from checkpoint, will skip to saved global_step [INFO|trainer.py:1664] 2022-12-13 06:27:25,115 >> Continuing training from epoch 2 [INFO|trainer.py:1665] 2022-12-13 06:27:25,115 >> Continuing training from global step 7500 {'loss': 5.5206, 'learning_rate': 4.616340433697947e-05, 'epoch': 2.76} {'loss': 5.4737, 'learning_rate': 4.5924006908462866e-05, 'epoch': 2.94} {'loss': 5.382, 'learning_rate': 4.5684609479946274e-05, 'epoch': 3.11} {'loss': 5.34, 'learning_rate': 4.544473229706391e-05, 'epoch': 3.28} {'loss': 5.3154, 'learning_rate': 4.520485511418154e-05, 'epoch': 3.45} ...... ...... ...... {'loss': 3.3099, 'learning_rate': 3.650930723469584e-07, 'epoch': 35.75} {'loss': 3.3077, 'learning_rate': 1.2521588946459413e-07, 'epoch': 35.92} {'train_runtime': 41498.9079, 'train_samples_per_second': 642.895, 'train_steps_per_second': 2.511, 'train_loss': 3.675059686432734, 'epoch': 36.0} ***** train metrics ***** epoch = 36.0 train_loss = 3.6751 train_runtime = 11:31:38.90 train_samples = 741096 train_samples_per_second = 642.895 train_steps_per_second = 2.511 12/13/2022 17:59:05 - INFO - __main__ - *** Evaluate *** [INFO|trainer.py:2944] 2022-12-13 17:59:05,707 >> ***** Running Evaluation ***** [INFO|trainer.py:2946] 2022-12-13 17:59:05,708 >> Num examples = 3834 [INFO|trainer.py:2949] 2022-12-13 17:59:05,708 >> Batch size = 256 100%|██████████| 15/15 [03:25<00:00, 13.69s/it] [INFO|modelcard.py:449] 2022-12-13 18:02:46,984 >> Dropping the following result as it does not have all the necessary fields: {'task': {'name': 'Translation', 'type': 'translation'}, 'metrics': [{'name': 'Bleu', 'type': 'bleu', 'value': 3.7831}]} ***** eval metrics ***** epoch = 36.0 eval_bleu = 3.7831 eval_gen_len = 63.0 eval_loss = 4.5035 eval_runtime = 0:03:40.09 eval_samples = 3834 eval_samples_per_second = 17.419 eval_steps_per_second = 0.068 ```
ser-mei/borges-gpt-collab-finetuned
ser-mei
2022-12-13T12:19:00Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-29T17:47:50Z
--- license: mit tags: - generated_from_trainer model-index: - name: borges-gpt-collab-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # borges-gpt-collab-finetuned This model is a fine-tuned version of [DeepESP/gpt2-spanish](https://huggingface.co/DeepESP/gpt2-spanish) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.2150 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42069 - gradient_accumulation_steps: 16 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.6177 | 4.96 | 35 | 4.3309 | | 3.9729 | 9.96 | 70 | 4.2350 | | 3.2225 | 14.96 | 105 | 4.3344 | | 2.3158 | 19.96 | 140 | 4.5764 | | 1.3761 | 24.96 | 175 | 4.9125 | | 0.6779 | 29.96 | 210 | 5.3096 | | 0.3399 | 34.96 | 245 | 5.6735 | | 0.2147 | 39.96 | 280 | 5.9322 | | 0.1675 | 44.96 | 315 | 6.1347 | | 0.1418 | 49.96 | 350 | 6.2150 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+rocm5.2 - Datasets 2.6.1 - Tokenizers 0.13.2
darkVOYAGE/dvOldWorld
darkVOYAGE
2022-12-13T11:54:55Z
0
3
null
[ "license:cc", "region:us" ]
null
2022-12-08T12:42:47Z
--- license: cc --- Tuned model created with Fast Dream Booth, built on SD 1.5. Tuned for creating Old World / UK castles. Built on SD 1.5. Use the following phrase near the beginning of your prompt: "dvOldWorld" Example: "dvOldWorld style, snow castle" or "xyz character, standing in the dvOldWorld" ![OldWorld_Thumb.jpg](https://s3.amazonaws.com/moonup/production/uploads/1670504529749-6331c100acb6472115ae666a.jpeg)
darkVOYAGE/dvMJv4
darkVOYAGE
2022-12-13T11:54:04Z
0
4
null
[ "text-to-image", "stable-diffusion", "MJv4", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2022-12-12T17:24:05Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion - MJv4 --- The "v2" of custom tuned SD model based on MJ images. Built on SD 1.5. Use it by including "dvMJv4" or "dvMJv4 style" towards the beginning of your prompt. Sample pictures of this concept: ![MJv4_v2_Thumb.jpg](https://s3.amazonaws.com/moonup/production/uploads/1670867784183-6331c100acb6472115ae666a.jpeg)
ai-project/wav2vec2-xlsr-large-vi-aiclass-20221-group-8
ai-project
2022-12-13T11:53:38Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-26T20:40:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-vi-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-vi-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 3.2659 - Wer: 0.7160 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.3934 | 3.45 | 400 | 3.4806 | 1.0 | | 2.3392 | 6.9 | 800 | 2.1210 | 0.9011 | | 1.1786 | 10.34 | 1200 | 2.4091 | 0.7807 | | 0.779 | 13.79 | 1600 | 2.7128 | 0.7621 | | 0.5645 | 17.24 | 2000 | 3.0103 | 0.7428 | | 0.4329 | 20.69 | 2400 | 3.0804 | 0.7219 | | 0.3455 | 24.14 | 2800 | 3.1075 | 0.7190 | | 0.2803 | 27.59 | 3200 | 3.2659 | 0.7160 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
chieunq/xlm-r-base-uit-viquad
chieunq
2022-12-13T11:53:01Z
50
1
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "vi", "dataset:uit-viquad", "arxiv:2009.14725", "endpoints_compatible", "region:us" ]
question-answering
2022-12-04T11:47:28Z
--- language: vi tags: - vi - xlm-roberta widget: - text: 3 thành viên trong nhóm gồm những ai ? context: "Nhóm của chúng tôi là sinh viên năm 4 trường ĐH Công Nghệ - ĐHQG Hà Nội. Nhóm gồm 3 thành viên: Nguyễn Quang Chiều, Nguyễn Quang Huy và Nguyễn Trần Anh Đức . Đây là pha Reader trong dự án cuồi kì môn Các vấn đề hiện đại trong CNTT của nhóm ." datasets: - uit-viquad metrics: - EM (exact match) : 60.63 - F1 : 79.63 --- We fined-tune model XLM-Roberta-base in UIT-vquad dataset (https://arxiv.org/pdf/2009.14725.pdf) and argument data technique ### Performance - EM (exact match) : 65.63 - F1 : 85.63 ### How to run ``` from transformers import pipeline # Replace this with your own checkpoint model_checkpoint = "chieunq/xlm-r-base-uit-viquad" question_answerer = pipeline("question-answering", model=model_checkpoint) context = """ Nhóm của chúng tôi là sinh viên năm 4 trường ĐH Công Nghệ - ĐHQG Hà Nội. Nhóm gồm 3 thành viên : Nguyễn Quang Chiều, Nguyễn Quang Huy và Nguyễn Trần Anh Đức . Đây là pha Reader trong dự án cuồi kì môn Các vấn đề hiện đại trong CNTT của nhóm . """ question = "3 thành viên trong nhóm gồm những ai ?" question_answerer(question=question, context=context) ``` ### Output ``` {'score': 0.9928902387619019, 'start': 98, 'end': 158, 'answer': 'Nguyễn Quang Chiều, Nguyễn Quang Huy và Nguyễn Trần Anh Đức.'} ``` ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
JuanCadavid/t5-small-finetuned-NL2ModelioMQ-FR
JuanCadavid
2022-12-13T11:27:11Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:generator", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-12T11:37:36Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - generator model-index: - name: t5-small-finetuned-NL2ModelioMQ-FR results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-NL2ModelioMQ-FR This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Rouge2 Precision: 0.9788 - Rouge2 Recall: 0.6055 - Rouge2 Fmeasure: 0.7295 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.0087 | 1.0 | 4449 | 0.0002 | 0.9787 | 0.6054 | 0.7294 | | 0.0017 | 2.0 | 8898 | 0.0000 | 0.9788 | 0.6055 | 0.7295 | | 0.0008 | 3.0 | 13347 | 0.0000 | 0.9788 | 0.6055 | 0.7295 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
GV05/xlm-roberta-base-finetuned-panx-de
GV05
2022-12-13T11:11:54Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-10T11:06:47Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: train args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8638300289723342 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1358 - F1: 0.8638 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2591 | 1.0 | 525 | 0.1621 | 0.8206 | | 0.1276 | 2.0 | 1050 | 0.1379 | 0.8486 | | 0.082 | 3.0 | 1575 | 0.1358 | 0.8638 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
dvgodoy/sklearn-mpg
dvgodoy
2022-12-13T11:05:48Z
0
0
sklearn
[ "sklearn", "skops", "tabular-regression", "region:us" ]
tabular-regression
2022-12-11T13:53:22Z
--- library_name: sklearn tags: - sklearn - skops - tabular-regression model_file: linreg.pkl widget: structuredData: x0: - -0.3839236795902252 - -0.9788183569908142 - 1.0937178134918213 x1: - -0.5319488644599915 - -1.108436107635498 - 0.9354732036590576 x2: - -0.38279563188552856 - -1.3128694295883179 - 1.4773520231246948 x3: - 0.2815782427787781 - -0.11783809214830399 - -0.9529813528060913 x4: - 1.0 - 1.0 - 0.0 x5: - 0.0 - 0.0 - 0.0 x6: - 0.0 - 0.0 - 0.0 x7: - 0.0 - 0.0 - 1.0 x8: - 0.0 - 1.0 - 0.0 x9: - 0.0 - 0.0 - 0.0 --- # Model description This is a regression model on MPG dataset trained. ## Intended uses & limitations This model is not ready to be used in production. ## Training Procedure ### Hyperparameters The model is trained with below hyperparameters. <details> <summary> Click to expand </summary> | Hyperparameter | Value | |------------------|------------| | copy_X | True | | fit_intercept | True | | n_jobs | | | normalize | deprecated | | positive | False | </details> ### Model Plot The model plot is below. <style>#sk-container-id-3 {color: black;background-color: white;}#sk-container-id-3 pre{padding: 0;}#sk-container-id-3 div.sk-toggleable {background-color: white;}#sk-container-id-3 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-3 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-3 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-3 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-3 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-3 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-3 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-3 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-3 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-3 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-3 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-3 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-3 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-3 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-3 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-3 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-3 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-3 div.sk-item {position: relative;z-index: 1;}#sk-container-id-3 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-3 div.sk-item::before, #sk-container-id-3 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-3 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-3 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-3 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-3 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-3 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-3 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-3 div.sk-label-container {text-align: center;}#sk-container-id-3 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-3 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-3" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>LinearRegression()</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" checked><label for="sk-estimator-id-3" class="sk-toggleable__label sk-toggleable__label-arrow">LinearRegression</label><div class="sk-toggleable__content"><pre>LinearRegression()</pre></div></div></div></div></div> ## Evaluation Results You can find the details about evaluation process and the evaluation results. | Metric | Value | |--------------------|----------| | Mean Squared Error | 5.01069 | | R-Squared | 0.883503 | # How to Get Started with the Model Use the code below to get started with the model. ```python import joblib import json import pandas as pd clf = joblib.load(linreg.pkl) with open("config.json") as f: config = json.load(f) clf.predict(pd.DataFrame.from_dict(config["sklearn"]["example_input"])) ``` # Model Card Authors This model card is written by following authors: [More Information Needed] # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` [More Information Needed] ```
sryu1/Taxi
sryu1
2022-12-13T10:54:34Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-13T10:50:18Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="sryu1/Taxi", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
parambharat/whisper-tiny-ta
parambharat
2022-12-13T10:27:31Z
12
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "ta", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-06T16:20:11Z
--- language: - ta license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Tiny Ta - Bharat Ramanathan results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: ta split: test args: ta metrics: - type: wer value: 30.102694404742998 name: Wer - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs type: google/fleurs config: ta_in split: test metrics: - type: wer value: 26.07 name: WER --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Tiny Ta - Bharat Ramanathan This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3096 - Wer: 30.1027 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.5622 | 0.2 | 1000 | 0.4460 | 41.4141 | | 0.4151 | 0.4 | 2000 | 0.3657 | 35.1390 | | 0.3727 | 0.6 | 3000 | 0.3417 | 33.1723 | | 0.3519 | 0.8 | 4000 | 0.3252 | 31.9497 | | 0.3354 | 1.0 | 5000 | 0.3192 | 31.3997 | | 0.3492 | 0.1 | 6000 | 0.3283 | 31.6966 | | 0.3229 | 0.2 | 7000 | 0.3211 | 31.1339 | | 0.3193 | 0.3 | 8000 | 0.3138 | 30.5161 | | 0.314 | 0.4 | 9000 | 0.3112 | 30.1832 | | 0.3087 | 0.5 | 10000 | 0.3096 | 30.1027 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
DimiNim/q-FrozenLake-v1-4x4-noSlippery
DimiNim
2022-12-13T10:14:51Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-13T10:14:48Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="DimiNim/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```