modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-14 12:27:51
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
520 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-14 12:25:52
card
stringlengths
11
1.01M
VinayHajare/dqn-LunarLander-v2
VinayHajare
2023-10-13T15:49:22Z
1
1
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-10-13T15:49:01Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 275.27 +/- 24.66 name: mean_reward verified: false --- # **DQN** Agent playing **LunarLander-v2** This is a trained model of a **DQN** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
kevinwang676/nana-model
kevinwang676
2023-10-13T15:46:45Z
0
0
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "dataset:kevinwang676/nana_dataset", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-10-13T14:23:39Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: nahucba tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: false datasets: - kevinwang676/nana_dataset --- # LoRA DreamBooth - kevinwang676/nana-model These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0 trained on @fffiloni's SD-XL trainer. The weights were trained on the concept prompt: ``` nahucba ``` Use this keyword to trigger your custom model in your prompts. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Usage Make sure to upgrade diffusers to >= 0.19.0: ``` pip install diffusers --upgrade ``` In addition make sure to install transformers, safetensors, accelerate as well as the invisible watermark: ``` pip install invisible_watermark transformers accelerate safetensors ``` To just use the base model, you can run: ```python import torch from diffusers import DiffusionPipeline, AutoencoderKL device = "cuda" if torch.cuda.is_available() else "cpu" vae = AutoencoderKL.from_pretrained('madebyollin/sdxl-vae-fp16-fix', torch_dtype=torch.float16) pipe = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) pipe.to(device) # This is where you load your trained weights specific_safetensors = "pytorch_lora_weights.safetensors" lora_scale = 0.9 pipe.load_lora_weights( 'kevinwang676/nana-model', weight_name = specific_safetensors, # use_auth_token = True ) prompt = "A majestic nahucba jumping from a big stone at night" image = pipe( prompt=prompt, num_inference_steps=50, cross_attention_kwargs={"scale": lora_scale} ).images[0] ```
theodoredc/bert-finetuned-squad
theodoredc
2023-10-13T15:28:39Z
18
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-10-13T14:51:31Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
nevlabs/llama2-qlora-finetunined-french
nevlabs
2023-10-13T15:20:40Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:TinyPixel/Llama-2-7B-bf16-sharded", "base_model:adapter:TinyPixel/Llama-2-7B-bf16-sharded", "region:us" ]
null
2023-10-13T15:20:23Z
--- library_name: peft base_model: TinyPixel/Llama-2-7B-bf16-sharded --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0
YuvanKumar/q-FrozenLake-v1-4x4-noSlippery
YuvanKumar
2023-10-13T15:11:38Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-10-13T15:11:34Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="AgniVardhan/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
jake-walker/ppo-Pyramids
jake-walker
2023-10-13T15:11:30Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-10-13T15:11:01Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: jake-walker/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
tiagoblima/tst-gun-gub-pt
tiagoblima
2023-10-13T14:58:11Z
4
1
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "multilingual", "pt", "dataset:tiagoblima/translation-pt-indigenouns", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-10-12T20:14:38Z
--- language: - multilingual - pt base_model: /content/opus-mt-en-mul tags: - generated_from_trainer datasets: - tiagoblima/translation-pt-indigenouns metrics: - bleu model-index: - name: tst-gun-gub-pt results: - task: name: Translation type: translation dataset: name: tiagoblima/translation-pt-indigenouns type: tiagoblima/translation-pt-indigenouns metrics: - name: Bleu type: bleu value: 8.5368 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tst-gun-gub-pt This model is a fine-tuned version of [/content/opus-mt-en-mul](https://huggingface.co//content/opus-mt-en-mul) on the tiagoblima/translation-pt-indigenouns dataset. It achieves the following results on the evaluation set: - Loss: 1.8158 - Bleu: 8.5368 - Gen Len: 59.24 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| | 2.4421 | 0.29 | 4000 | 2.5285 | 3.3785 | 68.48 | | 2.1667 | 0.59 | 8000 | 2.3018 | 4.5883 | 58.6 | | 2.0255 | 0.88 | 12000 | 2.1290 | 5.1052 | 67.3 | | 1.8995 | 1.18 | 16000 | 2.0535 | 7.8429 | 55.48 | | 1.8322 | 1.47 | 20000 | 1.9960 | 7.2663 | 58.24 | | 1.7868 | 1.77 | 24000 | 1.9224 | 7.0981 | 66.34 | | 1.7012 | 2.06 | 28000 | 1.8869 | 7.5657 | 60.3 | | 1.6773 | 2.36 | 32000 | 1.8613 | 7.9888 | 61.18 | | 1.6631 | 2.65 | 36000 | 1.8354 | 8.0862 | 60.5 | | 1.6379 | 2.94 | 40000 | 1.8158 | 8.4077 | 60.18 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
giuseppemartino/model1
giuseppemartino
2023-10-13T14:52:07Z
11
0
transformers
[ "transformers", "pytorch", "segformer", "image-segmentation", "vision", "generated_from_trainer", "base_model:nvidia/mit-b2", "base_model:finetune:nvidia/mit-b2", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2023-10-12T07:38:54Z
--- license: other base_model: nvidia/mit-b2 tags: - image-segmentation - vision - generated_from_trainer model-index: - name: model1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model1 This model is a fine-tuned version of [nvidia/mit-b2](https://huggingface.co/nvidia/mit-b2) on the giuseppemartino/i-SAID_custom_or_1 dataset. It achieves the following results on the evaluation set: - Loss: 0.1646 - Mean Iou: 0.2689 - Mean Accuracy: 0.3089 - Overall Accuracy: 0.3928 - Accuracy Background: nan - Accuracy Ship: 0.7889 - Accuracy Small-vehicle: 0.3939 - Accuracy Tennis-court: 0.6399 - Accuracy Helicopter: nan - Accuracy Basketball-court: 0.0 - Accuracy Ground-track-field: 0.4337 - Accuracy Swimming-pool: 0.6049 - Accuracy Harbor: 0.3386 - Accuracy Soccer-ball-field: 0.2551 - Accuracy Plane: 0.0001 - Accuracy Storage-tank: 0.0 - Accuracy Baseball-diamond: 0.5217 - Accuracy Large-vehicle: 0.3477 - Accuracy Bridge: 0.0 - Accuracy Roundabout: 0.0 - Iou Background: 0.0 - Iou Ship: 0.6137 - Iou Small-vehicle: 0.3354 - Iou Tennis-court: 0.6399 - Iou Helicopter: nan - Iou Basketball-court: 0.0 - Iou Ground-track-field: 0.4084 - Iou Swimming-pool: 0.6049 - Iou Harbor: 0.3165 - Iou Soccer-ball-field: 0.2514 - Iou Plane: 0.0001 - Iou Storage-tank: 0.0 - Iou Baseball-diamond: 0.5217 - Iou Large-vehicle: 0.3418 - Iou Bridge: 0.0 - Iou Roundabout: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: polynomial - training_steps: 840 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Ship | Accuracy Small-vehicle | Accuracy Tennis-court | Accuracy Helicopter | Accuracy Basketball-court | Accuracy Ground-track-field | Accuracy Swimming-pool | Accuracy Harbor | Accuracy Soccer-ball-field | Accuracy Plane | Accuracy Storage-tank | Accuracy Baseball-diamond | Accuracy Large-vehicle | Accuracy Bridge | Accuracy Roundabout | Iou Background | Iou Ship | Iou Small-vehicle | Iou Tennis-court | Iou Helicopter | Iou Basketball-court | Iou Ground-track-field | Iou Swimming-pool | Iou Harbor | Iou Soccer-ball-field | Iou Plane | Iou Storage-tank | Iou Baseball-diamond | Iou Large-vehicle | Iou Bridge | Iou Roundabout | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:----------------------:|:---------------------:|:-------------------:|:-------------------------:|:---------------------------:|:----------------------:|:---------------:|:--------------------------:|:--------------:|:---------------------:|:-------------------------:|:----------------------:|:---------------:|:-------------------:|:--------------:|:--------:|:-----------------:|:----------------:|:--------------:|:--------------------:|:----------------------:|:-----------------:|:----------:|:---------------------:|:---------:|:----------------:|:--------------------:|:-----------------:|:----------:|:--------------:| | 1.1466 | 1.0 | 105 | 0.3419 | 0.0260 | 0.0279 | 0.0687 | nan | 0.0068 | 0.0036 | 0.3562 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0240 | 0.0 | 0.0 | 0.0 | 0.0067 | 0.0036 | 0.3562 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0240 | 0.0 | 0.0 | | 0.3289 | 2.0 | 210 | 0.2301 | 0.1252 | 0.1441 | 0.2674 | nan | 0.5316 | 0.1793 | 0.6775 | nan | 0.0 | 0.0324 | 0.1854 | 0.1185 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2923 | 0.0 | 0.0 | 0.0 | 0.4189 | 0.1612 | 0.6752 | nan | 0.0 | 0.0321 | 0.1854 | 0.1157 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2898 | 0.0 | 0.0 | | 0.1819 | 3.0 | 315 | 0.1965 | 0.1611 | 0.1937 | 0.3286 | nan | 0.7305 | 0.2842 | 0.4229 | nan | 0.0 | 0.3566 | 0.2424 | 0.1707 | 0.0739 | 0.0 | 0.0 | 0.0 | 0.4300 | 0.0 | 0.0 | 0.0 | 0.5605 | 0.2492 | 0.4229 | nan | 0.0 | 0.2817 | 0.2424 | 0.1637 | 0.0738 | 0.0 | 0.0 | 0.0 | 0.4223 | 0.0 | 0.0 | | 0.1505 | 4.0 | 420 | 0.1760 | 0.1987 | 0.2352 | 0.3689 | nan | 0.7552 | 0.3079 | 0.5796 | nan | 0.0 | 0.4515 | 0.4367 | 0.2065 | 0.1437 | 0.0 | 0.0 | 0.0 | 0.4115 | 0.0 | 0.0 | 0.0 | 0.5715 | 0.2762 | 0.5790 | nan | 0.0 | 0.3752 | 0.4367 | 0.1957 | 0.1435 | 0.0 | 0.0 | 0.0 | 0.4029 | 0.0 | 0.0 | | 0.1269 | 5.0 | 525 | 0.1688 | 0.2239 | 0.2616 | 0.3561 | nan | 0.8249 | 0.3133 | 0.5309 | nan | 0.0 | 0.3966 | 0.6398 | 0.2513 | 0.1975 | 0.0003 | 0.0 | 0.1336 | 0.3738 | 0.0 | 0.0 | 0.0 | 0.6006 | 0.2833 | 0.5309 | nan | 0.0 | 0.3711 | 0.6398 | 0.2378 | 0.1957 | 0.0003 | 0.0 | 0.1336 | 0.3661 | 0.0 | 0.0 | | 0.1012 | 6.0 | 630 | 0.1763 | 0.2563 | 0.3036 | 0.3830 | nan | 0.7977 | 0.4801 | 0.6774 | nan | 0.0 | 0.4913 | 0.7772 | 0.2993 | 0.2702 | 0.0 | 0.0 | 0.2024 | 0.2541 | 0.0 | 0.0 | 0.0 | 0.6060 | 0.3488 | 0.6774 | nan | 0.0 | 0.4359 | 0.7767 | 0.2816 | 0.2638 | 0.0 | 0.0 | 0.2024 | 0.2515 | 0.0 | 0.0 | | 0.0996 | 7.0 | 735 | 0.1687 | 0.2515 | 0.2906 | 0.3644 | nan | 0.7947 | 0.3775 | 0.5884 | nan | 0.0 | 0.4452 | 0.5756 | 0.2734 | 0.2140 | 0.0 | 0.0 | 0.4769 | 0.3225 | 0.0 | 0.0 | 0.0 | 0.6093 | 0.3246 | 0.5884 | nan | 0.0 | 0.4081 | 0.5756 | 0.2599 | 0.2128 | 0.0 | 0.0 | 0.4769 | 0.3174 | 0.0 | 0.0 | | 0.0945 | 8.0 | 840 | 0.1646 | 0.2689 | 0.3089 | 0.3928 | nan | 0.7889 | 0.3939 | 0.6399 | nan | 0.0 | 0.4337 | 0.6049 | 0.3386 | 0.2551 | 0.0001 | 0.0 | 0.5217 | 0.3477 | 0.0 | 0.0 | 0.0 | 0.6137 | 0.3354 | 0.6399 | nan | 0.0 | 0.4084 | 0.6049 | 0.3165 | 0.2514 | 0.0001 | 0.0 | 0.5217 | 0.3418 | 0.0 | 0.0 | ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
BounharAbdelaziz/Face-Age-Classifier
BounharAbdelaziz
2023-10-13T14:47:24Z
0
0
null
[ "image-classification", "dataset:BounharAbdelaziz/Face-Aging-Dataset", "region:us" ]
image-classification
2023-10-13T14:45:54Z
--- datasets: - BounharAbdelaziz/Face-Aging-Dataset metrics: - accuracy pipeline_tag: image-classification ---
intanm/xlm-roberta-base-idkmrc
intanm
2023-10-13T14:30:35Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "generated_from_trainer", "id", "dataset:NusaCrowd/idk_mrc", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-10-13T13:51:30Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer model-index: - name: xlm-roberta-base-idkmrc results: [] datasets: - NusaCrowd/idk_mrc language: - id --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-idkmrc This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9537 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9089 | 1.0 | 584 | 1.1106 | | 0.9734 | 2.0 | 1168 | 1.0118 | | 0.7624 | 3.0 | 1752 | 0.9537 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
jake-walker/ppo-SnowballTarget
jake-walker
2023-10-13T14:26:31Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-10-13T14:26:27Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: jake-walker/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
JawadIshtiaq/shoe-des
JawadIshtiaq
2023-10-13T14:08:24Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-10-13T14:08:18Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: shoe-des results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.6607142686843872 --- # shoe-des Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### boots ![boots](images/boots.jpg) #### dress shoes ![dress shoes](images/dress_shoes.jpg) #### sandals ![sandals](images/sandals.jpg) #### slippers ![slippers](images/slippers.jpg) #### sneakers ![sneakers](images/sneakers.jpg)
viai957/FunctionCalling-7b-Intruct-fine-tuned-adapters
viai957
2023-10-13T14:06:50Z
1
0
peft
[ "peft", "region:us" ]
null
2023-10-13T14:06:46Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0
Abhiram4/vit-base-patch16-224-abhi1-finetuned
Abhiram4
2023-10-13T13:58:34Z
5
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:image_folder", "base_model:google/vit-base-patch16-224", "base_model:finetune:google/vit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-28T11:32:40Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: vit-base-patch16-224-abhi1-finetuned results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.16632443531827515 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-abhi1-finetuned This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 4.1858 - Accuracy: 0.1663 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.9292 | 0.99 | 17 | 4.6892 | 0.0380 | | 4.5033 | 1.97 | 34 | 4.3391 | 0.1191 | | 4.1992 | 2.96 | 51 | 4.1858 | 0.1663 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
michaelfeil/ct2fast-gte-large
michaelfeil
2023-10-13T13:53:58Z
6
0
sentence-transformers
[ "sentence-transformers", "bert", "ctranslate2", "int8", "float16", "mteb", "sentence-similarity", "Sentence Transformers", "en", "arxiv:2308.03281", "license:mit", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-10-13T13:50:40Z
--- tags: - ctranslate2 - int8 - float16 - mteb - sentence-similarity - sentence-transformers - Sentence Transformers model-index: - name: gte-large results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 72.62686567164178 - type: ap value: 34.46944126809772 - type: f1 value: 66.23684353950857 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 92.51805 - type: ap value: 89.49842783330848 - type: f1 value: 92.51112169431808 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 49.074 - type: f1 value: 48.44785682572955 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 32.077 - type: map_at_10 value: 48.153 - type: map_at_100 value: 48.963 - type: map_at_1000 value: 48.966 - type: map_at_3 value: 43.184 - type: map_at_5 value: 46.072 - type: mrr_at_1 value: 33.073 - type: mrr_at_10 value: 48.54 - type: mrr_at_100 value: 49.335 - type: mrr_at_1000 value: 49.338 - type: mrr_at_3 value: 43.563 - type: mrr_at_5 value: 46.383 - type: ndcg_at_1 value: 32.077 - type: ndcg_at_10 value: 57.158 - type: ndcg_at_100 value: 60.324999999999996 - type: ndcg_at_1000 value: 60.402 - type: ndcg_at_3 value: 46.934 - type: ndcg_at_5 value: 52.158 - type: precision_at_1 value: 32.077 - type: precision_at_10 value: 8.591999999999999 - type: precision_at_100 value: 0.991 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 19.275000000000002 - type: precision_at_5 value: 14.111 - type: recall_at_1 value: 32.077 - type: recall_at_10 value: 85.917 - type: recall_at_100 value: 99.075 - type: recall_at_1000 value: 99.644 - type: recall_at_3 value: 57.824 - type: recall_at_5 value: 70.555 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 48.619246083417295 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 43.3574067664688 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 63.06359661829253 - type: mrr value: 76.15596007562766 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 90.25407547368691 - type: cos_sim_spearman value: 88.65081514968477 - type: euclidean_pearson value: 88.14857116664494 - type: euclidean_spearman value: 88.50683596540692 - type: manhattan_pearson value: 87.9654797992225 - type: manhattan_spearman value: 88.21164851646908 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 86.05844155844157 - type: f1 value: 86.01555597681825 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 39.10510519739522 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 36.84689960264385 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 32.800000000000004 - type: map_at_10 value: 44.857 - type: map_at_100 value: 46.512 - type: map_at_1000 value: 46.635 - type: map_at_3 value: 41.062 - type: map_at_5 value: 43.126 - type: mrr_at_1 value: 39.628 - type: mrr_at_10 value: 50.879 - type: mrr_at_100 value: 51.605000000000004 - type: mrr_at_1000 value: 51.641000000000005 - type: mrr_at_3 value: 48.14 - type: mrr_at_5 value: 49.835 - type: ndcg_at_1 value: 39.628 - type: ndcg_at_10 value: 51.819 - type: ndcg_at_100 value: 57.318999999999996 - type: ndcg_at_1000 value: 58.955999999999996 - type: ndcg_at_3 value: 46.409 - type: ndcg_at_5 value: 48.825 - type: precision_at_1 value: 39.628 - type: precision_at_10 value: 10.072000000000001 - type: precision_at_100 value: 1.625 - type: precision_at_1000 value: 0.21 - type: precision_at_3 value: 22.556 - type: precision_at_5 value: 16.309 - type: recall_at_1 value: 32.800000000000004 - type: recall_at_10 value: 65.078 - type: recall_at_100 value: 87.491 - type: recall_at_1000 value: 97.514 - type: recall_at_3 value: 49.561 - type: recall_at_5 value: 56.135999999999996 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 32.614 - type: map_at_10 value: 43.578 - type: map_at_100 value: 44.897 - type: map_at_1000 value: 45.023 - type: map_at_3 value: 40.282000000000004 - type: map_at_5 value: 42.117 - type: mrr_at_1 value: 40.510000000000005 - type: mrr_at_10 value: 49.428 - type: mrr_at_100 value: 50.068999999999996 - type: mrr_at_1000 value: 50.111000000000004 - type: mrr_at_3 value: 47.176 - type: mrr_at_5 value: 48.583999999999996 - type: ndcg_at_1 value: 40.510000000000005 - type: ndcg_at_10 value: 49.478 - type: ndcg_at_100 value: 53.852 - type: ndcg_at_1000 value: 55.782 - type: ndcg_at_3 value: 45.091 - type: ndcg_at_5 value: 47.19 - type: precision_at_1 value: 40.510000000000005 - type: precision_at_10 value: 9.363000000000001 - type: precision_at_100 value: 1.51 - type: precision_at_1000 value: 0.196 - type: precision_at_3 value: 21.741 - type: precision_at_5 value: 15.465000000000002 - type: recall_at_1 value: 32.614 - type: recall_at_10 value: 59.782000000000004 - type: recall_at_100 value: 78.012 - type: recall_at_1000 value: 90.319 - type: recall_at_3 value: 46.825 - type: recall_at_5 value: 52.688 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 40.266000000000005 - type: map_at_10 value: 53.756 - type: map_at_100 value: 54.809 - type: map_at_1000 value: 54.855 - type: map_at_3 value: 50.073 - type: map_at_5 value: 52.293 - type: mrr_at_1 value: 46.332 - type: mrr_at_10 value: 57.116 - type: mrr_at_100 value: 57.767 - type: mrr_at_1000 value: 57.791000000000004 - type: mrr_at_3 value: 54.461999999999996 - type: mrr_at_5 value: 56.092 - type: ndcg_at_1 value: 46.332 - type: ndcg_at_10 value: 60.092 - type: ndcg_at_100 value: 64.034 - type: ndcg_at_1000 value: 64.937 - type: ndcg_at_3 value: 54.071000000000005 - type: ndcg_at_5 value: 57.254000000000005 - type: precision_at_1 value: 46.332 - type: precision_at_10 value: 9.799 - type: precision_at_100 value: 1.278 - type: precision_at_1000 value: 0.13899999999999998 - type: precision_at_3 value: 24.368000000000002 - type: precision_at_5 value: 16.89 - type: recall_at_1 value: 40.266000000000005 - type: recall_at_10 value: 75.41499999999999 - type: recall_at_100 value: 92.01700000000001 - type: recall_at_1000 value: 98.379 - type: recall_at_3 value: 59.476 - type: recall_at_5 value: 67.297 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 28.589 - type: map_at_10 value: 37.755 - type: map_at_100 value: 38.881 - type: map_at_1000 value: 38.954 - type: map_at_3 value: 34.759 - type: map_at_5 value: 36.544 - type: mrr_at_1 value: 30.734 - type: mrr_at_10 value: 39.742 - type: mrr_at_100 value: 40.774 - type: mrr_at_1000 value: 40.824 - type: mrr_at_3 value: 37.137 - type: mrr_at_5 value: 38.719 - type: ndcg_at_1 value: 30.734 - type: ndcg_at_10 value: 42.978 - type: ndcg_at_100 value: 48.309000000000005 - type: ndcg_at_1000 value: 50.068 - type: ndcg_at_3 value: 37.361 - type: ndcg_at_5 value: 40.268 - type: precision_at_1 value: 30.734 - type: precision_at_10 value: 6.565 - type: precision_at_100 value: 0.964 - type: precision_at_1000 value: 0.11499999999999999 - type: precision_at_3 value: 15.744 - type: precision_at_5 value: 11.096 - type: recall_at_1 value: 28.589 - type: recall_at_10 value: 57.126999999999995 - type: recall_at_100 value: 81.051 - type: recall_at_1000 value: 94.027 - type: recall_at_3 value: 42.045 - type: recall_at_5 value: 49.019 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 18.5 - type: map_at_10 value: 27.950999999999997 - type: map_at_100 value: 29.186 - type: map_at_1000 value: 29.298000000000002 - type: map_at_3 value: 25.141000000000002 - type: map_at_5 value: 26.848 - type: mrr_at_1 value: 22.637 - type: mrr_at_10 value: 32.572 - type: mrr_at_100 value: 33.472 - type: mrr_at_1000 value: 33.533 - type: mrr_at_3 value: 29.747 - type: mrr_at_5 value: 31.482 - type: ndcg_at_1 value: 22.637 - type: ndcg_at_10 value: 33.73 - type: ndcg_at_100 value: 39.568 - type: ndcg_at_1000 value: 42.201 - type: ndcg_at_3 value: 28.505999999999997 - type: ndcg_at_5 value: 31.255 - type: precision_at_1 value: 22.637 - type: precision_at_10 value: 6.281000000000001 - type: precision_at_100 value: 1.073 - type: precision_at_1000 value: 0.14300000000000002 - type: precision_at_3 value: 13.847000000000001 - type: precision_at_5 value: 10.224 - type: recall_at_1 value: 18.5 - type: recall_at_10 value: 46.744 - type: recall_at_100 value: 72.072 - type: recall_at_1000 value: 91.03999999999999 - type: recall_at_3 value: 32.551 - type: recall_at_5 value: 39.533 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 30.602 - type: map_at_10 value: 42.18 - type: map_at_100 value: 43.6 - type: map_at_1000 value: 43.704 - type: map_at_3 value: 38.413000000000004 - type: map_at_5 value: 40.626 - type: mrr_at_1 value: 37.344 - type: mrr_at_10 value: 47.638000000000005 - type: mrr_at_100 value: 48.485 - type: mrr_at_1000 value: 48.52 - type: mrr_at_3 value: 44.867000000000004 - type: mrr_at_5 value: 46.566 - type: ndcg_at_1 value: 37.344 - type: ndcg_at_10 value: 48.632 - type: ndcg_at_100 value: 54.215 - type: ndcg_at_1000 value: 55.981 - type: ndcg_at_3 value: 42.681999999999995 - type: ndcg_at_5 value: 45.732 - type: precision_at_1 value: 37.344 - type: precision_at_10 value: 8.932 - type: precision_at_100 value: 1.376 - type: precision_at_1000 value: 0.17099999999999999 - type: precision_at_3 value: 20.276 - type: precision_at_5 value: 14.726 - type: recall_at_1 value: 30.602 - type: recall_at_10 value: 62.273 - type: recall_at_100 value: 85.12100000000001 - type: recall_at_1000 value: 96.439 - type: recall_at_3 value: 45.848 - type: recall_at_5 value: 53.615 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 23.952 - type: map_at_10 value: 35.177 - type: map_at_100 value: 36.59 - type: map_at_1000 value: 36.703 - type: map_at_3 value: 31.261 - type: map_at_5 value: 33.222 - type: mrr_at_1 value: 29.337999999999997 - type: mrr_at_10 value: 40.152 - type: mrr_at_100 value: 40.963 - type: mrr_at_1000 value: 41.016999999999996 - type: mrr_at_3 value: 36.91 - type: mrr_at_5 value: 38.685 - type: ndcg_at_1 value: 29.337999999999997 - type: ndcg_at_10 value: 41.994 - type: ndcg_at_100 value: 47.587 - type: ndcg_at_1000 value: 49.791000000000004 - type: ndcg_at_3 value: 35.27 - type: ndcg_at_5 value: 38.042 - type: precision_at_1 value: 29.337999999999997 - type: precision_at_10 value: 8.276 - type: precision_at_100 value: 1.276 - type: precision_at_1000 value: 0.164 - type: precision_at_3 value: 17.161 - type: precision_at_5 value: 12.671 - type: recall_at_1 value: 23.952 - type: recall_at_10 value: 57.267 - type: recall_at_100 value: 80.886 - type: recall_at_1000 value: 95.611 - type: recall_at_3 value: 38.622 - type: recall_at_5 value: 45.811 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 27.092083333333335 - type: map_at_10 value: 37.2925 - type: map_at_100 value: 38.57041666666666 - type: map_at_1000 value: 38.68141666666667 - type: map_at_3 value: 34.080000000000005 - type: map_at_5 value: 35.89958333333333 - type: mrr_at_1 value: 31.94758333333333 - type: mrr_at_10 value: 41.51049999999999 - type: mrr_at_100 value: 42.36099999999999 - type: mrr_at_1000 value: 42.4125 - type: mrr_at_3 value: 38.849583333333335 - type: mrr_at_5 value: 40.448249999999994 - type: ndcg_at_1 value: 31.94758333333333 - type: ndcg_at_10 value: 43.17633333333333 - type: ndcg_at_100 value: 48.45241666666668 - type: ndcg_at_1000 value: 50.513999999999996 - type: ndcg_at_3 value: 37.75216666666667 - type: ndcg_at_5 value: 40.393833333333326 - type: precision_at_1 value: 31.94758333333333 - type: precision_at_10 value: 7.688916666666666 - type: precision_at_100 value: 1.2250833333333333 - type: precision_at_1000 value: 0.1595 - type: precision_at_3 value: 17.465999999999998 - type: precision_at_5 value: 12.548083333333333 - type: recall_at_1 value: 27.092083333333335 - type: recall_at_10 value: 56.286583333333326 - type: recall_at_100 value: 79.09033333333333 - type: recall_at_1000 value: 93.27483333333335 - type: recall_at_3 value: 41.35325 - type: recall_at_5 value: 48.072750000000006 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 25.825 - type: map_at_10 value: 33.723 - type: map_at_100 value: 34.74 - type: map_at_1000 value: 34.824 - type: map_at_3 value: 31.369000000000003 - type: map_at_5 value: 32.533 - type: mrr_at_1 value: 29.293999999999997 - type: mrr_at_10 value: 36.84 - type: mrr_at_100 value: 37.681 - type: mrr_at_1000 value: 37.742 - type: mrr_at_3 value: 34.79 - type: mrr_at_5 value: 35.872 - type: ndcg_at_1 value: 29.293999999999997 - type: ndcg_at_10 value: 38.385999999999996 - type: ndcg_at_100 value: 43.327 - type: ndcg_at_1000 value: 45.53 - type: ndcg_at_3 value: 33.985 - type: ndcg_at_5 value: 35.817 - type: precision_at_1 value: 29.293999999999997 - type: precision_at_10 value: 6.12 - type: precision_at_100 value: 0.9329999999999999 - type: precision_at_1000 value: 0.11900000000000001 - type: precision_at_3 value: 14.621999999999998 - type: precision_at_5 value: 10.030999999999999 - type: recall_at_1 value: 25.825 - type: recall_at_10 value: 49.647000000000006 - type: recall_at_100 value: 72.32300000000001 - type: recall_at_1000 value: 88.62400000000001 - type: recall_at_3 value: 37.366 - type: recall_at_5 value: 41.957 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 18.139 - type: map_at_10 value: 26.107000000000003 - type: map_at_100 value: 27.406999999999996 - type: map_at_1000 value: 27.535999999999998 - type: map_at_3 value: 23.445 - type: map_at_5 value: 24.916 - type: mrr_at_1 value: 21.817 - type: mrr_at_10 value: 29.99 - type: mrr_at_100 value: 31.052000000000003 - type: mrr_at_1000 value: 31.128 - type: mrr_at_3 value: 27.627000000000002 - type: mrr_at_5 value: 29.005 - type: ndcg_at_1 value: 21.817 - type: ndcg_at_10 value: 31.135 - type: ndcg_at_100 value: 37.108000000000004 - type: ndcg_at_1000 value: 39.965 - type: ndcg_at_3 value: 26.439 - type: ndcg_at_5 value: 28.655 - type: precision_at_1 value: 21.817 - type: precision_at_10 value: 5.757000000000001 - type: precision_at_100 value: 1.036 - type: precision_at_1000 value: 0.147 - type: precision_at_3 value: 12.537 - type: precision_at_5 value: 9.229 - type: recall_at_1 value: 18.139 - type: recall_at_10 value: 42.272999999999996 - type: recall_at_100 value: 68.657 - type: recall_at_1000 value: 88.93799999999999 - type: recall_at_3 value: 29.266 - type: recall_at_5 value: 34.892 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 27.755000000000003 - type: map_at_10 value: 37.384 - type: map_at_100 value: 38.56 - type: map_at_1000 value: 38.655 - type: map_at_3 value: 34.214 - type: map_at_5 value: 35.96 - type: mrr_at_1 value: 32.369 - type: mrr_at_10 value: 41.625 - type: mrr_at_100 value: 42.449 - type: mrr_at_1000 value: 42.502 - type: mrr_at_3 value: 38.899 - type: mrr_at_5 value: 40.489999999999995 - type: ndcg_at_1 value: 32.369 - type: ndcg_at_10 value: 43.287 - type: ndcg_at_100 value: 48.504999999999995 - type: ndcg_at_1000 value: 50.552 - type: ndcg_at_3 value: 37.549 - type: ndcg_at_5 value: 40.204 - type: precision_at_1 value: 32.369 - type: precision_at_10 value: 7.425 - type: precision_at_100 value: 1.134 - type: precision_at_1000 value: 0.14200000000000002 - type: precision_at_3 value: 17.102 - type: precision_at_5 value: 12.107999999999999 - type: recall_at_1 value: 27.755000000000003 - type: recall_at_10 value: 57.071000000000005 - type: recall_at_100 value: 79.456 - type: recall_at_1000 value: 93.54299999999999 - type: recall_at_3 value: 41.298 - type: recall_at_5 value: 48.037 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.855 - type: map_at_10 value: 34.53 - type: map_at_100 value: 36.167 - type: map_at_1000 value: 36.394999999999996 - type: map_at_3 value: 31.037 - type: map_at_5 value: 33.119 - type: mrr_at_1 value: 30.631999999999998 - type: mrr_at_10 value: 39.763999999999996 - type: mrr_at_100 value: 40.77 - type: mrr_at_1000 value: 40.826 - type: mrr_at_3 value: 36.495 - type: mrr_at_5 value: 38.561 - type: ndcg_at_1 value: 30.631999999999998 - type: ndcg_at_10 value: 40.942 - type: ndcg_at_100 value: 47.07 - type: ndcg_at_1000 value: 49.363 - type: ndcg_at_3 value: 35.038000000000004 - type: ndcg_at_5 value: 38.161 - type: precision_at_1 value: 30.631999999999998 - type: precision_at_10 value: 7.983999999999999 - type: precision_at_100 value: 1.6070000000000002 - type: precision_at_1000 value: 0.246 - type: precision_at_3 value: 16.206 - type: precision_at_5 value: 12.253 - type: recall_at_1 value: 24.855 - type: recall_at_10 value: 53.291999999999994 - type: recall_at_100 value: 80.283 - type: recall_at_1000 value: 94.309 - type: recall_at_3 value: 37.257 - type: recall_at_5 value: 45.282 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 21.208 - type: map_at_10 value: 30.512 - type: map_at_100 value: 31.496000000000002 - type: map_at_1000 value: 31.595000000000002 - type: map_at_3 value: 27.904 - type: map_at_5 value: 29.491 - type: mrr_at_1 value: 22.736 - type: mrr_at_10 value: 32.379999999999995 - type: mrr_at_100 value: 33.245000000000005 - type: mrr_at_1000 value: 33.315 - type: mrr_at_3 value: 29.945 - type: mrr_at_5 value: 31.488 - type: ndcg_at_1 value: 22.736 - type: ndcg_at_10 value: 35.643 - type: ndcg_at_100 value: 40.535 - type: ndcg_at_1000 value: 43.042 - type: ndcg_at_3 value: 30.625000000000004 - type: ndcg_at_5 value: 33.323 - type: precision_at_1 value: 22.736 - type: precision_at_10 value: 5.6930000000000005 - type: precision_at_100 value: 0.889 - type: precision_at_1000 value: 0.122 - type: precision_at_3 value: 13.431999999999999 - type: precision_at_5 value: 9.575 - type: recall_at_1 value: 21.208 - type: recall_at_10 value: 49.47 - type: recall_at_100 value: 71.71499999999999 - type: recall_at_1000 value: 90.55499999999999 - type: recall_at_3 value: 36.124 - type: recall_at_5 value: 42.606 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: map_at_1 value: 11.363 - type: map_at_10 value: 20.312 - type: map_at_100 value: 22.225 - type: map_at_1000 value: 22.411 - type: map_at_3 value: 16.68 - type: map_at_5 value: 18.608 - type: mrr_at_1 value: 25.537 - type: mrr_at_10 value: 37.933 - type: mrr_at_100 value: 38.875 - type: mrr_at_1000 value: 38.911 - type: mrr_at_3 value: 34.387 - type: mrr_at_5 value: 36.51 - type: ndcg_at_1 value: 25.537 - type: ndcg_at_10 value: 28.82 - type: ndcg_at_100 value: 36.341 - type: ndcg_at_1000 value: 39.615 - type: ndcg_at_3 value: 23.01 - type: ndcg_at_5 value: 25.269000000000002 - type: precision_at_1 value: 25.537 - type: precision_at_10 value: 9.153 - type: precision_at_100 value: 1.7319999999999998 - type: precision_at_1000 value: 0.234 - type: precision_at_3 value: 17.22 - type: precision_at_5 value: 13.629 - type: recall_at_1 value: 11.363 - type: recall_at_10 value: 35.382999999999996 - type: recall_at_100 value: 61.367000000000004 - type: recall_at_1000 value: 79.699 - type: recall_at_3 value: 21.495 - type: recall_at_5 value: 27.42 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: map_at_1 value: 9.65 - type: map_at_10 value: 20.742 - type: map_at_100 value: 29.614 - type: map_at_1000 value: 31.373 - type: map_at_3 value: 14.667 - type: map_at_5 value: 17.186 - type: mrr_at_1 value: 69.75 - type: mrr_at_10 value: 76.762 - type: mrr_at_100 value: 77.171 - type: mrr_at_1000 value: 77.179 - type: mrr_at_3 value: 75.125 - type: mrr_at_5 value: 76.287 - type: ndcg_at_1 value: 57.62500000000001 - type: ndcg_at_10 value: 42.370999999999995 - type: ndcg_at_100 value: 47.897 - type: ndcg_at_1000 value: 55.393 - type: ndcg_at_3 value: 46.317 - type: ndcg_at_5 value: 43.906 - type: precision_at_1 value: 69.75 - type: precision_at_10 value: 33.95 - type: precision_at_100 value: 10.885 - type: precision_at_1000 value: 2.2239999999999998 - type: precision_at_3 value: 49.75 - type: precision_at_5 value: 42.3 - type: recall_at_1 value: 9.65 - type: recall_at_10 value: 26.117 - type: recall_at_100 value: 55.084 - type: recall_at_1000 value: 78.62400000000001 - type: recall_at_3 value: 15.823 - type: recall_at_5 value: 19.652 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 47.885 - type: f1 value: 42.99567641346983 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: map_at_1 value: 70.97 - type: map_at_10 value: 80.34599999999999 - type: map_at_100 value: 80.571 - type: map_at_1000 value: 80.584 - type: map_at_3 value: 79.279 - type: map_at_5 value: 79.94 - type: mrr_at_1 value: 76.613 - type: mrr_at_10 value: 85.15700000000001 - type: mrr_at_100 value: 85.249 - type: mrr_at_1000 value: 85.252 - type: mrr_at_3 value: 84.33800000000001 - type: mrr_at_5 value: 84.89 - type: ndcg_at_1 value: 76.613 - type: ndcg_at_10 value: 84.53399999999999 - type: ndcg_at_100 value: 85.359 - type: ndcg_at_1000 value: 85.607 - type: ndcg_at_3 value: 82.76599999999999 - type: ndcg_at_5 value: 83.736 - type: precision_at_1 value: 76.613 - type: precision_at_10 value: 10.206 - type: precision_at_100 value: 1.083 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 31.913000000000004 - type: precision_at_5 value: 19.769000000000002 - type: recall_at_1 value: 70.97 - type: recall_at_10 value: 92.674 - type: recall_at_100 value: 95.985 - type: recall_at_1000 value: 97.57000000000001 - type: recall_at_3 value: 87.742 - type: recall_at_5 value: 90.28 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: map_at_1 value: 22.494 - type: map_at_10 value: 36.491 - type: map_at_100 value: 38.550000000000004 - type: map_at_1000 value: 38.726 - type: map_at_3 value: 31.807000000000002 - type: map_at_5 value: 34.299 - type: mrr_at_1 value: 44.907000000000004 - type: mrr_at_10 value: 53.146 - type: mrr_at_100 value: 54.013999999999996 - type: mrr_at_1000 value: 54.044000000000004 - type: mrr_at_3 value: 50.952 - type: mrr_at_5 value: 52.124 - type: ndcg_at_1 value: 44.907000000000004 - type: ndcg_at_10 value: 44.499 - type: ndcg_at_100 value: 51.629000000000005 - type: ndcg_at_1000 value: 54.367 - type: ndcg_at_3 value: 40.900999999999996 - type: ndcg_at_5 value: 41.737 - type: precision_at_1 value: 44.907000000000004 - type: precision_at_10 value: 12.346 - type: precision_at_100 value: 1.974 - type: precision_at_1000 value: 0.246 - type: precision_at_3 value: 27.366 - type: precision_at_5 value: 19.846 - type: recall_at_1 value: 22.494 - type: recall_at_10 value: 51.156 - type: recall_at_100 value: 77.11200000000001 - type: recall_at_1000 value: 93.44 - type: recall_at_3 value: 36.574 - type: recall_at_5 value: 42.361 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: map_at_1 value: 38.568999999999996 - type: map_at_10 value: 58.485 - type: map_at_100 value: 59.358999999999995 - type: map_at_1000 value: 59.429 - type: map_at_3 value: 55.217000000000006 - type: map_at_5 value: 57.236 - type: mrr_at_1 value: 77.137 - type: mrr_at_10 value: 82.829 - type: mrr_at_100 value: 83.04599999999999 - type: mrr_at_1000 value: 83.05399999999999 - type: mrr_at_3 value: 81.904 - type: mrr_at_5 value: 82.50800000000001 - type: ndcg_at_1 value: 77.137 - type: ndcg_at_10 value: 67.156 - type: ndcg_at_100 value: 70.298 - type: ndcg_at_1000 value: 71.65700000000001 - type: ndcg_at_3 value: 62.535 - type: ndcg_at_5 value: 65.095 - type: precision_at_1 value: 77.137 - type: precision_at_10 value: 13.911999999999999 - type: precision_at_100 value: 1.6389999999999998 - type: precision_at_1000 value: 0.182 - type: precision_at_3 value: 39.572 - type: precision_at_5 value: 25.766 - type: recall_at_1 value: 38.568999999999996 - type: recall_at_10 value: 69.56099999999999 - type: recall_at_100 value: 81.931 - type: recall_at_1000 value: 90.91799999999999 - type: recall_at_3 value: 59.358999999999995 - type: recall_at_5 value: 64.416 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 88.45600000000002 - type: ap value: 84.09725115338568 - type: f1 value: 88.41874909080512 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics: - type: map_at_1 value: 21.404999999999998 - type: map_at_10 value: 33.921 - type: map_at_100 value: 35.116 - type: map_at_1000 value: 35.164 - type: map_at_3 value: 30.043999999999997 - type: map_at_5 value: 32.327 - type: mrr_at_1 value: 21.977 - type: mrr_at_10 value: 34.505 - type: mrr_at_100 value: 35.638999999999996 - type: mrr_at_1000 value: 35.68 - type: mrr_at_3 value: 30.703999999999997 - type: mrr_at_5 value: 32.96 - type: ndcg_at_1 value: 21.963 - type: ndcg_at_10 value: 40.859 - type: ndcg_at_100 value: 46.614 - type: ndcg_at_1000 value: 47.789 - type: ndcg_at_3 value: 33.007999999999996 - type: ndcg_at_5 value: 37.084 - type: precision_at_1 value: 21.963 - type: precision_at_10 value: 6.493 - type: precision_at_100 value: 0.938 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 14.155000000000001 - type: precision_at_5 value: 10.544 - type: recall_at_1 value: 21.404999999999998 - type: recall_at_10 value: 62.175000000000004 - type: recall_at_100 value: 88.786 - type: recall_at_1000 value: 97.738 - type: recall_at_3 value: 40.925 - type: recall_at_5 value: 50.722 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 93.50661194710442 - type: f1 value: 93.30311193153668 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 73.24669402644778 - type: f1 value: 54.23122108002977 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 72.61936785474109 - type: f1 value: 70.52644941025565 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 76.76529926025555 - type: f1 value: 77.26872729322514 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 33.39450293021839 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 31.757796879839294 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 32.62512146657428 - type: mrr value: 33.84624322066173 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: map_at_1 value: 6.462 - type: map_at_10 value: 14.947 - type: map_at_100 value: 19.344 - type: map_at_1000 value: 20.933 - type: map_at_3 value: 10.761999999999999 - type: map_at_5 value: 12.744 - type: mrr_at_1 value: 47.988 - type: mrr_at_10 value: 57.365 - type: mrr_at_100 value: 57.931 - type: mrr_at_1000 value: 57.96 - type: mrr_at_3 value: 54.85 - type: mrr_at_5 value: 56.569 - type: ndcg_at_1 value: 46.129999999999995 - type: ndcg_at_10 value: 38.173 - type: ndcg_at_100 value: 35.983 - type: ndcg_at_1000 value: 44.507000000000005 - type: ndcg_at_3 value: 42.495 - type: ndcg_at_5 value: 41.019 - type: precision_at_1 value: 47.678 - type: precision_at_10 value: 28.731 - type: precision_at_100 value: 9.232 - type: precision_at_1000 value: 2.202 - type: precision_at_3 value: 39.628 - type: precision_at_5 value: 35.851 - type: recall_at_1 value: 6.462 - type: recall_at_10 value: 18.968 - type: recall_at_100 value: 37.131 - type: recall_at_1000 value: 67.956 - type: recall_at_3 value: 11.905000000000001 - type: recall_at_5 value: 15.097 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: map_at_1 value: 30.335 - type: map_at_10 value: 46.611999999999995 - type: map_at_100 value: 47.632000000000005 - type: map_at_1000 value: 47.661 - type: map_at_3 value: 41.876999999999995 - type: map_at_5 value: 44.799 - type: mrr_at_1 value: 34.125 - type: mrr_at_10 value: 49.01 - type: mrr_at_100 value: 49.75 - type: mrr_at_1000 value: 49.768 - type: mrr_at_3 value: 45.153 - type: mrr_at_5 value: 47.589999999999996 - type: ndcg_at_1 value: 34.125 - type: ndcg_at_10 value: 54.777 - type: ndcg_at_100 value: 58.914 - type: ndcg_at_1000 value: 59.521 - type: ndcg_at_3 value: 46.015 - type: ndcg_at_5 value: 50.861000000000004 - type: precision_at_1 value: 34.125 - type: precision_at_10 value: 9.166 - type: precision_at_100 value: 1.149 - type: precision_at_1000 value: 0.121 - type: precision_at_3 value: 21.147 - type: precision_at_5 value: 15.469 - type: recall_at_1 value: 30.335 - type: recall_at_10 value: 77.194 - type: recall_at_100 value: 94.812 - type: recall_at_1000 value: 99.247 - type: recall_at_3 value: 54.681000000000004 - type: recall_at_5 value: 65.86800000000001 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 70.62 - type: map_at_10 value: 84.536 - type: map_at_100 value: 85.167 - type: map_at_1000 value: 85.184 - type: map_at_3 value: 81.607 - type: map_at_5 value: 83.423 - type: mrr_at_1 value: 81.36 - type: mrr_at_10 value: 87.506 - type: mrr_at_100 value: 87.601 - type: mrr_at_1000 value: 87.601 - type: mrr_at_3 value: 86.503 - type: mrr_at_5 value: 87.179 - type: ndcg_at_1 value: 81.36 - type: ndcg_at_10 value: 88.319 - type: ndcg_at_100 value: 89.517 - type: ndcg_at_1000 value: 89.60900000000001 - type: ndcg_at_3 value: 85.423 - type: ndcg_at_5 value: 86.976 - type: precision_at_1 value: 81.36 - type: precision_at_10 value: 13.415 - type: precision_at_100 value: 1.529 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 37.342999999999996 - type: precision_at_5 value: 24.534 - type: recall_at_1 value: 70.62 - type: recall_at_10 value: 95.57600000000001 - type: recall_at_100 value: 99.624 - type: recall_at_1000 value: 99.991 - type: recall_at_3 value: 87.22 - type: recall_at_5 value: 91.654 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 60.826438478212744 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 64.24027467551447 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 4.997999999999999 - type: map_at_10 value: 14.267 - type: map_at_100 value: 16.843 - type: map_at_1000 value: 17.229 - type: map_at_3 value: 9.834 - type: map_at_5 value: 11.92 - type: mrr_at_1 value: 24.7 - type: mrr_at_10 value: 37.685 - type: mrr_at_100 value: 38.704 - type: mrr_at_1000 value: 38.747 - type: mrr_at_3 value: 34.150000000000006 - type: mrr_at_5 value: 36.075 - type: ndcg_at_1 value: 24.7 - type: ndcg_at_10 value: 23.44 - type: ndcg_at_100 value: 32.617000000000004 - type: ndcg_at_1000 value: 38.628 - type: ndcg_at_3 value: 21.747 - type: ndcg_at_5 value: 19.076 - type: precision_at_1 value: 24.7 - type: precision_at_10 value: 12.47 - type: precision_at_100 value: 2.564 - type: precision_at_1000 value: 0.4 - type: precision_at_3 value: 20.767 - type: precision_at_5 value: 17.06 - type: recall_at_1 value: 4.997999999999999 - type: recall_at_10 value: 25.3 - type: recall_at_100 value: 52.048 - type: recall_at_1000 value: 81.093 - type: recall_at_3 value: 12.642999999999999 - type: recall_at_5 value: 17.312 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 85.44942006292234 - type: cos_sim_spearman value: 79.80930790660699 - type: euclidean_pearson value: 82.93400777494863 - type: euclidean_spearman value: 80.04664991110705 - type: manhattan_pearson value: 82.93551681854949 - type: manhattan_spearman value: 80.03156736837379 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 85.63574059135726 - type: cos_sim_spearman value: 76.80552915288186 - type: euclidean_pearson value: 82.46368529820518 - type: euclidean_spearman value: 76.60338474719275 - type: manhattan_pearson value: 82.4558617035968 - type: manhattan_spearman value: 76.57936082895705 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 86.24116811084211 - type: cos_sim_spearman value: 88.10998662068769 - type: euclidean_pearson value: 87.04961732352689 - type: euclidean_spearman value: 88.12543945864087 - type: manhattan_pearson value: 86.9905224528854 - type: manhattan_spearman value: 88.07827944705546 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 84.74847296555048 - type: cos_sim_spearman value: 82.66200957916445 - type: euclidean_pearson value: 84.48132256004965 - type: euclidean_spearman value: 82.67915286000596 - type: manhattan_pearson value: 84.44950477268334 - type: manhattan_spearman value: 82.63327639173352 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 87.23056258027053 - type: cos_sim_spearman value: 88.92791680286955 - type: euclidean_pearson value: 88.13819235461933 - type: euclidean_spearman value: 88.87294661361716 - type: manhattan_pearson value: 88.14212133687899 - type: manhattan_spearman value: 88.88551854529777 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 82.64179522732887 - type: cos_sim_spearman value: 84.25028809903114 - type: euclidean_pearson value: 83.40175015236979 - type: euclidean_spearman value: 84.23369296429406 - type: manhattan_pearson value: 83.43768174261321 - type: manhattan_spearman value: 84.27855229214734 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 88.20378955494732 - type: cos_sim_spearman value: 88.46863559173111 - type: euclidean_pearson value: 88.8249295811663 - type: euclidean_spearman value: 88.6312737724905 - type: manhattan_pearson value: 88.87744466378827 - type: manhattan_spearman value: 88.82908423767314 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 69.91342028796086 - type: cos_sim_spearman value: 69.71495021867864 - type: euclidean_pearson value: 70.65334330405646 - type: euclidean_spearman value: 69.4321253472211 - type: manhattan_pearson value: 70.59743494727465 - type: manhattan_spearman value: 69.11695509297482 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 85.42451709766952 - type: cos_sim_spearman value: 86.07166710670508 - type: euclidean_pearson value: 86.12711421258899 - type: euclidean_spearman value: 86.05232086925126 - type: manhattan_pearson value: 86.15591089932126 - type: manhattan_spearman value: 86.0890128623439 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 87.1976344717285 - type: mrr value: 96.3703145075694 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: map_at_1 value: 59.511 - type: map_at_10 value: 69.724 - type: map_at_100 value: 70.208 - type: map_at_1000 value: 70.22800000000001 - type: map_at_3 value: 66.986 - type: map_at_5 value: 68.529 - type: mrr_at_1 value: 62.333000000000006 - type: mrr_at_10 value: 70.55 - type: mrr_at_100 value: 70.985 - type: mrr_at_1000 value: 71.004 - type: mrr_at_3 value: 68.611 - type: mrr_at_5 value: 69.728 - type: ndcg_at_1 value: 62.333000000000006 - type: ndcg_at_10 value: 74.265 - type: ndcg_at_100 value: 76.361 - type: ndcg_at_1000 value: 76.82900000000001 - type: ndcg_at_3 value: 69.772 - type: ndcg_at_5 value: 71.94800000000001 - type: precision_at_1 value: 62.333000000000006 - type: precision_at_10 value: 9.9 - type: precision_at_100 value: 1.093 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 27.444000000000003 - type: precision_at_5 value: 18 - type: recall_at_1 value: 59.511 - type: recall_at_10 value: 87.156 - type: recall_at_100 value: 96.5 - type: recall_at_1000 value: 100 - type: recall_at_3 value: 75.2 - type: recall_at_5 value: 80.661 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.81683168316832 - type: cos_sim_ap value: 95.74716566563774 - type: cos_sim_f1 value: 90.64238745574103 - type: cos_sim_precision value: 91.7093142272262 - type: cos_sim_recall value: 89.60000000000001 - type: dot_accuracy value: 99.69405940594059 - type: dot_ap value: 91.09013507754594 - type: dot_f1 value: 84.54227113556779 - type: dot_precision value: 84.58458458458459 - type: dot_recall value: 84.5 - type: euclidean_accuracy value: 99.81782178217821 - type: euclidean_ap value: 95.6324301072609 - type: euclidean_f1 value: 90.58341862845445 - type: euclidean_precision value: 92.76729559748428 - type: euclidean_recall value: 88.5 - type: manhattan_accuracy value: 99.81980198019802 - type: manhattan_ap value: 95.68510494437183 - type: manhattan_f1 value: 90.58945191313342 - type: manhattan_precision value: 93.79014989293361 - type: manhattan_recall value: 87.6 - type: max_accuracy value: 99.81980198019802 - type: max_ap value: 95.74716566563774 - type: max_f1 value: 90.64238745574103 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 67.63761899427078 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 36.572473369697235 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 53.63000245208579 - type: mrr value: 54.504193722943725 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 30.300791939416545 - type: cos_sim_spearman value: 31.662904057924123 - type: dot_pearson value: 26.21198530758316 - type: dot_spearman value: 27.006921548904263 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.197 - type: map_at_10 value: 1.752 - type: map_at_100 value: 10.795 - type: map_at_1000 value: 27.18 - type: map_at_3 value: 0.5890000000000001 - type: map_at_5 value: 0.938 - type: mrr_at_1 value: 74 - type: mrr_at_10 value: 85.833 - type: mrr_at_100 value: 85.833 - type: mrr_at_1000 value: 85.833 - type: mrr_at_3 value: 85.333 - type: mrr_at_5 value: 85.833 - type: ndcg_at_1 value: 69 - type: ndcg_at_10 value: 70.22 - type: ndcg_at_100 value: 55.785 - type: ndcg_at_1000 value: 52.93600000000001 - type: ndcg_at_3 value: 72.084 - type: ndcg_at_5 value: 71.184 - type: precision_at_1 value: 74 - type: precision_at_10 value: 75.2 - type: precision_at_100 value: 57.3 - type: precision_at_1000 value: 23.302 - type: precision_at_3 value: 77.333 - type: precision_at_5 value: 75.6 - type: recall_at_1 value: 0.197 - type: recall_at_10 value: 2.019 - type: recall_at_100 value: 14.257 - type: recall_at_1000 value: 50.922 - type: recall_at_3 value: 0.642 - type: recall_at_5 value: 1.043 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 2.803 - type: map_at_10 value: 10.407 - type: map_at_100 value: 16.948 - type: map_at_1000 value: 18.424 - type: map_at_3 value: 5.405 - type: map_at_5 value: 6.908 - type: mrr_at_1 value: 36.735 - type: mrr_at_10 value: 50.221000000000004 - type: mrr_at_100 value: 51.388 - type: mrr_at_1000 value: 51.402 - type: mrr_at_3 value: 47.278999999999996 - type: mrr_at_5 value: 49.626 - type: ndcg_at_1 value: 34.694 - type: ndcg_at_10 value: 25.507 - type: ndcg_at_100 value: 38.296 - type: ndcg_at_1000 value: 49.492000000000004 - type: ndcg_at_3 value: 29.006999999999998 - type: ndcg_at_5 value: 25.979000000000003 - type: precision_at_1 value: 36.735 - type: precision_at_10 value: 22.041 - type: precision_at_100 value: 8.02 - type: precision_at_1000 value: 1.567 - type: precision_at_3 value: 28.571 - type: precision_at_5 value: 24.490000000000002 - type: recall_at_1 value: 2.803 - type: recall_at_10 value: 16.378 - type: recall_at_100 value: 50.489 - type: recall_at_1000 value: 85.013 - type: recall_at_3 value: 6.505 - type: recall_at_5 value: 9.243 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 70.55579999999999 - type: ap value: 14.206982753316227 - type: f1 value: 54.372142814964285 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 56.57611771363893 - type: f1 value: 56.924172639063144 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 52.82304915719759 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 85.92716218632653 - type: cos_sim_ap value: 73.73359122546046 - type: cos_sim_f1 value: 68.42559487116262 - type: cos_sim_precision value: 64.22124508215691 - type: cos_sim_recall value: 73.21899736147758 - type: dot_accuracy value: 80.38981939560112 - type: dot_ap value: 54.61060862444974 - type: dot_f1 value: 53.45710627400769 - type: dot_precision value: 44.87638839125761 - type: dot_recall value: 66.09498680738787 - type: euclidean_accuracy value: 86.02849138701794 - type: euclidean_ap value: 73.95673761922404 - type: euclidean_f1 value: 68.6783042394015 - type: euclidean_precision value: 65.1063829787234 - type: euclidean_recall value: 72.66490765171504 - type: manhattan_accuracy value: 85.9808070572808 - type: manhattan_ap value: 73.9050720058029 - type: manhattan_f1 value: 68.57560618983794 - type: manhattan_precision value: 63.70839936608558 - type: manhattan_recall value: 74.24802110817942 - type: max_accuracy value: 86.02849138701794 - type: max_ap value: 73.95673761922404 - type: max_f1 value: 68.6783042394015 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.72783017037295 - type: cos_sim_ap value: 85.52705223340233 - type: cos_sim_f1 value: 77.91659078492079 - type: cos_sim_precision value: 73.93378032764221 - type: cos_sim_recall value: 82.35294117647058 - type: dot_accuracy value: 85.41739434159972 - type: dot_ap value: 77.17734818118443 - type: dot_f1 value: 71.63473589973144 - type: dot_precision value: 66.96123719622415 - type: dot_recall value: 77.00954727440714 - type: euclidean_accuracy value: 88.68125897465751 - type: euclidean_ap value: 85.47712213906692 - type: euclidean_f1 value: 77.81419950830664 - type: euclidean_precision value: 75.37162649733006 - type: euclidean_recall value: 80.42038805050817 - type: manhattan_accuracy value: 88.67349710870494 - type: manhattan_ap value: 85.46506475241955 - type: manhattan_f1 value: 77.87259084890393 - type: manhattan_precision value: 74.54929577464789 - type: manhattan_recall value: 81.50600554357868 - type: max_accuracy value: 88.72783017037295 - type: max_ap value: 85.52705223340233 - type: max_f1 value: 77.91659078492079 language: - en license: mit --- # # Fast-Inference with Ctranslate2 Speedup inference while reducing memory by 2x-4x using int8 inference in C++ on CPU or GPU. quantized version of [thenlper/gte-large](https://huggingface.co/thenlper/gte-large) ```bash pip install hf-hub-ctranslate2>=2.12.0 ctranslate2>=3.17.1 ``` ```python # from transformers import AutoTokenizer model_name = "michaelfeil/ct2fast-gte-large" model_name_orig="thenlper/gte-large" from hf_hub_ctranslate2 import EncoderCT2fromHfHub model = EncoderCT2fromHfHub( # load in int8 on CUDA model_name_or_path=model_name, device="cuda", compute_type="int8_float16" ) outputs = model.generate( text=["I like soccer", "I like tennis", "The eiffel tower is in Paris"], max_length=64, ) # perform downstream tasks on outputs outputs["pooler_output"] outputs["last_hidden_state"] outputs["attention_mask"] # alternative, use SentenceTransformer Mix-In # for end-to-end Sentence embeddings generation # (not pulling from this CT2fast-HF repo) from hf_hub_ctranslate2 import CT2SentenceTransformer model = CT2SentenceTransformer( model_name_orig, compute_type="int8_float16", device="cuda" ) embeddings = model.encode( ["I like soccer", "I like tennis", "The eiffel tower is in Paris"], batch_size=32, convert_to_numpy=True, normalize_embeddings=True, ) print(embeddings.shape, embeddings) scores = (embeddings @ embeddings.T) * 100 # Hint: you can also host this code via REST API and # via github.com/michaelfeil/infinity ``` Checkpoint compatible to [ctranslate2>=3.17.1](https://github.com/OpenNMT/CTranslate2) and [hf-hub-ctranslate2>=2.12.0](https://github.com/michaelfeil/hf-hub-ctranslate2) - `compute_type=int8_float16` for `device="cuda"` - `compute_type=int8` for `device="cpu"` Converted on 2023-10-13 using ``` LLama-2 -> removed <pad> token. ``` # Licence and other remarks: This is just a quantized version. Licence conditions are intended to be idential to original huggingface repo. # Original description # gte-large General Text Embeddings (GTE) model. [Towards General Text Embeddings with Multi-stage Contrastive Learning](https://arxiv.org/abs/2308.03281) The GTE models are trained by Alibaba DAMO Academy. They are mainly based on the BERT framework and currently offer three different sizes of models, including [GTE-large](https://huggingface.co/thenlper/gte-large), [GTE-base](https://huggingface.co/thenlper/gte-base), and [GTE-small](https://huggingface.co/thenlper/gte-small). The GTE models are trained on a large-scale corpus of relevance text pairs, covering a wide range of domains and scenarios. This enables the GTE models to be applied to various downstream tasks of text embeddings, including **information retrieval**, **semantic textual similarity**, **text reranking**, etc. ## Metrics We compared the performance of the GTE models with other popular text embedding models on the MTEB benchmark. For more detailed comparison results, please refer to the [MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard). | Model Name | Model Size (GB) | Dimension | Sequence Length | Average (56) | Clustering (11) | Pair Classification (3) | Reranking (4) | Retrieval (15) | STS (10) | Summarization (1) | Classification (12) | |:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| | [**gte-large**](https://huggingface.co/thenlper/gte-large) | 0.67 | 1024 | 512 | **63.13** | 46.84 | 85.00 | 59.13 | 52.22 | 83.35 | 31.66 | 73.33 | | [**gte-base**](https://huggingface.co/thenlper/gte-base) | 0.22 | 768 | 512 | **62.39** | 46.2 | 84.57 | 58.61 | 51.14 | 82.3 | 31.17 | 73.01 | | [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1.34 | 1024| 512 | 62.25 | 44.49 | 86.03 | 56.61 | 50.56 | 82.05 | 30.19 | 75.24 | | [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 0.44 | 768 | 512 | 61.5 | 43.80 | 85.73 | 55.91 | 50.29 | 81.05 | 30.28 | 73.84 | | [**gte-small**](https://huggingface.co/thenlper/gte-small) | 0.07 | 384 | 512 | **61.36** | 44.89 | 83.54 | 57.7 | 49.46 | 82.07 | 30.42 | 72.31 | | [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | - | 1536 | 8192 | 60.99 | 45.9 | 84.89 | 56.32 | 49.25 | 80.97 | 30.8 | 70.93 | | [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 0.13 | 384 | 512 | 59.93 | 39.92 | 84.67 | 54.32 | 49.04 | 80.39 | 31.16 | 72.94 | | [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 9.73 | 768 | 512 | 59.51 | 43.72 | 85.06 | 56.42 | 42.24 | 82.63 | 30.08 | 73.42 | | [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 0.44 | 768 | 514 | 57.78 | 43.69 | 83.04 | 59.36 | 43.81 | 80.28 | 27.49 | 65.07 | | [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 28.27 | 4096 | 2048 | 57.59 | 38.93 | 81.9 | 55.65 | 48.22 | 77.74 | 33.6 | 66.19 | | [all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) | 0.13 | 384 | 512 | 56.53 | 41.81 | 82.41 | 58.44 | 42.69 | 79.8 | 27.9 | 63.21 | | [all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | 0.09 | 384 | 512 | 56.26 | 42.35 | 82.37 | 58.04 | 41.95 | 78.9 | 30.81 | 63.05 | | [contriever-base-msmarco](https://huggingface.co/nthakur/contriever-base-msmarco) | 0.44 | 768 | 512 | 56.00 | 41.1 | 82.54 | 53.14 | 41.88 | 76.51 | 30.36 | 66.68 | | [sentence-t5-base](https://huggingface.co/sentence-transformers/sentence-t5-base) | 0.22 | 768 | 512 | 55.27 | 40.21 | 85.18 | 53.09 | 33.63 | 81.14 | 31.39 | 69.81 | ## Usage Code example ```python import torch.nn.functional as F from torch import Tensor from transformers import AutoTokenizer, AutoModel def average_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor: last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] input_texts = [ "what is the capital of China?", "how to implement quick sort in python?", "Beijing", "sorting algorithms" ] tokenizer = AutoTokenizer.from_pretrained("thenlper/gte-large") model = AutoModel.from_pretrained("thenlper/gte-large") # Tokenize the input texts batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt') outputs = model(**batch_dict) embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask']) # (Optionally) normalize embeddings embeddings = F.normalize(embeddings, p=2, dim=1) scores = (embeddings[:1] @ embeddings[1:].T) * 100 print(scores.tolist()) ``` Use with sentence-transformers: ```python from sentence_transformers import SentenceTransformer from sentence_transformers.util import cos_sim sentences = ['That is a happy person', 'That is a very happy person'] model = SentenceTransformer('thenlper/gte-large') embeddings = model.encode(sentences) print(cos_sim(embeddings[0], embeddings[1])) ``` ### Limitation This model exclusively caters to English texts, and any lengthy texts will be truncated to a maximum of 512 tokens. ### Citation If you find our paper or models helpful, please consider citing them as follows: ``` @misc{li2023general, title={Towards General Text Embeddings with Multi-stage Contrastive Learning}, author={Zehan Li and Xin Zhang and Yanzhao Zhang and Dingkun Long and Pengjun Xie and Meishan Zhang}, year={2023}, eprint={2308.03281}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
michaelfeil/ct2fast-bge-small-en-v1.5
michaelfeil
2023-10-13T13:50:39Z
5
0
sentence-transformers
[ "sentence-transformers", "bert", "feature-extraction", "ctranslate2", "int8", "float16", "sentence-similarity", "transformers", "mteb", "en", "arxiv:2310.07554", "arxiv:2309.07597", "license:mit", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2023-10-13T13:50:20Z
--- tags: - ctranslate2 - int8 - float16 - sentence-transformers - feature-extraction - sentence-similarity - transformers - mteb model-index: - name: bge-small-en-v1.5 results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 73.79104477611939 - type: ap value: 37.21923821573361 - type: f1 value: 68.0914945617093 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 92.75377499999999 - type: ap value: 89.46766124546022 - type: f1 value: 92.73884001331487 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 46.986 - type: f1 value: 46.55936786727896 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 35.846000000000004 - type: map_at_10 value: 51.388 - type: map_at_100 value: 52.132999999999996 - type: map_at_1000 value: 52.141000000000005 - type: map_at_3 value: 47.037 - type: map_at_5 value: 49.579 - type: mrr_at_1 value: 36.558 - type: mrr_at_10 value: 51.658 - type: mrr_at_100 value: 52.402 - type: mrr_at_1000 value: 52.410000000000004 - type: mrr_at_3 value: 47.345 - type: mrr_at_5 value: 49.797999999999995 - type: ndcg_at_1 value: 35.846000000000004 - type: ndcg_at_10 value: 59.550000000000004 - type: ndcg_at_100 value: 62.596 - type: ndcg_at_1000 value: 62.759 - type: ndcg_at_3 value: 50.666999999999994 - type: ndcg_at_5 value: 55.228 - type: precision_at_1 value: 35.846000000000004 - type: precision_at_10 value: 8.542 - type: precision_at_100 value: 0.984 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 20.389 - type: precision_at_5 value: 14.438 - type: recall_at_1 value: 35.846000000000004 - type: recall_at_10 value: 85.42 - type: recall_at_100 value: 98.43499999999999 - type: recall_at_1000 value: 99.644 - type: recall_at_3 value: 61.166 - type: recall_at_5 value: 72.191 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 47.402770198163594 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 40.01545436974177 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 62.586465273207196 - type: mrr value: 74.42169019038825 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 85.1891186537969 - type: cos_sim_spearman value: 83.75492046087288 - type: euclidean_pearson value: 84.11766204805357 - type: euclidean_spearman value: 84.01456493126516 - type: manhattan_pearson value: 84.2132950502772 - type: manhattan_spearman value: 83.89227298813377 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 85.74025974025975 - type: f1 value: 85.71493566466381 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 38.467181385006434 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 34.719496037339056 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 29.587000000000003 - type: map_at_10 value: 41.114 - type: map_at_100 value: 42.532 - type: map_at_1000 value: 42.661 - type: map_at_3 value: 37.483 - type: map_at_5 value: 39.652 - type: mrr_at_1 value: 36.338 - type: mrr_at_10 value: 46.763 - type: mrr_at_100 value: 47.393 - type: mrr_at_1000 value: 47.445 - type: mrr_at_3 value: 43.538 - type: mrr_at_5 value: 45.556000000000004 - type: ndcg_at_1 value: 36.338 - type: ndcg_at_10 value: 47.658 - type: ndcg_at_100 value: 52.824000000000005 - type: ndcg_at_1000 value: 54.913999999999994 - type: ndcg_at_3 value: 41.989 - type: ndcg_at_5 value: 44.944 - type: precision_at_1 value: 36.338 - type: precision_at_10 value: 9.156 - type: precision_at_100 value: 1.4789999999999999 - type: precision_at_1000 value: 0.196 - type: precision_at_3 value: 20.076 - type: precision_at_5 value: 14.85 - type: recall_at_1 value: 29.587000000000003 - type: recall_at_10 value: 60.746 - type: recall_at_100 value: 82.157 - type: recall_at_1000 value: 95.645 - type: recall_at_3 value: 44.821 - type: recall_at_5 value: 52.819 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 30.239 - type: map_at_10 value: 39.989000000000004 - type: map_at_100 value: 41.196 - type: map_at_1000 value: 41.325 - type: map_at_3 value: 37.261 - type: map_at_5 value: 38.833 - type: mrr_at_1 value: 37.516 - type: mrr_at_10 value: 46.177 - type: mrr_at_100 value: 46.806 - type: mrr_at_1000 value: 46.849000000000004 - type: mrr_at_3 value: 44.002 - type: mrr_at_5 value: 45.34 - type: ndcg_at_1 value: 37.516 - type: ndcg_at_10 value: 45.586 - type: ndcg_at_100 value: 49.897000000000006 - type: ndcg_at_1000 value: 51.955 - type: ndcg_at_3 value: 41.684 - type: ndcg_at_5 value: 43.617 - type: precision_at_1 value: 37.516 - type: precision_at_10 value: 8.522 - type: precision_at_100 value: 1.374 - type: precision_at_1000 value: 0.184 - type: precision_at_3 value: 20.105999999999998 - type: precision_at_5 value: 14.152999999999999 - type: recall_at_1 value: 30.239 - type: recall_at_10 value: 55.03 - type: recall_at_100 value: 73.375 - type: recall_at_1000 value: 86.29599999999999 - type: recall_at_3 value: 43.269000000000005 - type: recall_at_5 value: 48.878 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 38.338 - type: map_at_10 value: 50.468999999999994 - type: map_at_100 value: 51.553000000000004 - type: map_at_1000 value: 51.608 - type: map_at_3 value: 47.107 - type: map_at_5 value: 49.101 - type: mrr_at_1 value: 44.201 - type: mrr_at_10 value: 54.057 - type: mrr_at_100 value: 54.764 - type: mrr_at_1000 value: 54.791000000000004 - type: mrr_at_3 value: 51.56699999999999 - type: mrr_at_5 value: 53.05 - type: ndcg_at_1 value: 44.201 - type: ndcg_at_10 value: 56.379000000000005 - type: ndcg_at_100 value: 60.645 - type: ndcg_at_1000 value: 61.73499999999999 - type: ndcg_at_3 value: 50.726000000000006 - type: ndcg_at_5 value: 53.58500000000001 - type: precision_at_1 value: 44.201 - type: precision_at_10 value: 9.141 - type: precision_at_100 value: 1.216 - type: precision_at_1000 value: 0.135 - type: precision_at_3 value: 22.654 - type: precision_at_5 value: 15.723999999999998 - type: recall_at_1 value: 38.338 - type: recall_at_10 value: 70.30499999999999 - type: recall_at_100 value: 88.77199999999999 - type: recall_at_1000 value: 96.49799999999999 - type: recall_at_3 value: 55.218 - type: recall_at_5 value: 62.104000000000006 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 25.682 - type: map_at_10 value: 33.498 - type: map_at_100 value: 34.461000000000006 - type: map_at_1000 value: 34.544000000000004 - type: map_at_3 value: 30.503999999999998 - type: map_at_5 value: 32.216 - type: mrr_at_1 value: 27.683999999999997 - type: mrr_at_10 value: 35.467999999999996 - type: mrr_at_100 value: 36.32 - type: mrr_at_1000 value: 36.386 - type: mrr_at_3 value: 32.618 - type: mrr_at_5 value: 34.262 - type: ndcg_at_1 value: 27.683999999999997 - type: ndcg_at_10 value: 38.378 - type: ndcg_at_100 value: 43.288 - type: ndcg_at_1000 value: 45.413 - type: ndcg_at_3 value: 32.586 - type: ndcg_at_5 value: 35.499 - type: precision_at_1 value: 27.683999999999997 - type: precision_at_10 value: 5.864 - type: precision_at_100 value: 0.882 - type: precision_at_1000 value: 0.11 - type: precision_at_3 value: 13.446 - type: precision_at_5 value: 9.718 - type: recall_at_1 value: 25.682 - type: recall_at_10 value: 51.712 - type: recall_at_100 value: 74.446 - type: recall_at_1000 value: 90.472 - type: recall_at_3 value: 36.236000000000004 - type: recall_at_5 value: 43.234 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 16.073999999999998 - type: map_at_10 value: 24.352999999999998 - type: map_at_100 value: 25.438 - type: map_at_1000 value: 25.545 - type: map_at_3 value: 21.614 - type: map_at_5 value: 23.104 - type: mrr_at_1 value: 19.776 - type: mrr_at_10 value: 28.837000000000003 - type: mrr_at_100 value: 29.755 - type: mrr_at_1000 value: 29.817 - type: mrr_at_3 value: 26.201999999999998 - type: mrr_at_5 value: 27.714 - type: ndcg_at_1 value: 19.776 - type: ndcg_at_10 value: 29.701 - type: ndcg_at_100 value: 35.307 - type: ndcg_at_1000 value: 37.942 - type: ndcg_at_3 value: 24.764 - type: ndcg_at_5 value: 27.025 - type: precision_at_1 value: 19.776 - type: precision_at_10 value: 5.659 - type: precision_at_100 value: 0.971 - type: precision_at_1000 value: 0.133 - type: precision_at_3 value: 12.065 - type: precision_at_5 value: 8.905000000000001 - type: recall_at_1 value: 16.073999999999998 - type: recall_at_10 value: 41.647 - type: recall_at_100 value: 66.884 - type: recall_at_1000 value: 85.91499999999999 - type: recall_at_3 value: 27.916 - type: recall_at_5 value: 33.729 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 28.444999999999997 - type: map_at_10 value: 38.218999999999994 - type: map_at_100 value: 39.595 - type: map_at_1000 value: 39.709 - type: map_at_3 value: 35.586 - type: map_at_5 value: 36.895 - type: mrr_at_1 value: 34.841 - type: mrr_at_10 value: 44.106 - type: mrr_at_100 value: 44.98 - type: mrr_at_1000 value: 45.03 - type: mrr_at_3 value: 41.979 - type: mrr_at_5 value: 43.047999999999995 - type: ndcg_at_1 value: 34.841 - type: ndcg_at_10 value: 43.922 - type: ndcg_at_100 value: 49.504999999999995 - type: ndcg_at_1000 value: 51.675000000000004 - type: ndcg_at_3 value: 39.858 - type: ndcg_at_5 value: 41.408 - type: precision_at_1 value: 34.841 - type: precision_at_10 value: 7.872999999999999 - type: precision_at_100 value: 1.2449999999999999 - type: precision_at_1000 value: 0.161 - type: precision_at_3 value: 18.993 - type: precision_at_5 value: 13.032 - type: recall_at_1 value: 28.444999999999997 - type: recall_at_10 value: 54.984 - type: recall_at_100 value: 78.342 - type: recall_at_1000 value: 92.77 - type: recall_at_3 value: 42.842999999999996 - type: recall_at_5 value: 47.247 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 23.072 - type: map_at_10 value: 32.354 - type: map_at_100 value: 33.800000000000004 - type: map_at_1000 value: 33.908 - type: map_at_3 value: 29.232000000000003 - type: map_at_5 value: 31.049 - type: mrr_at_1 value: 29.110000000000003 - type: mrr_at_10 value: 38.03 - type: mrr_at_100 value: 39.032 - type: mrr_at_1000 value: 39.086999999999996 - type: mrr_at_3 value: 35.407 - type: mrr_at_5 value: 36.76 - type: ndcg_at_1 value: 29.110000000000003 - type: ndcg_at_10 value: 38.231 - type: ndcg_at_100 value: 44.425 - type: ndcg_at_1000 value: 46.771 - type: ndcg_at_3 value: 33.095 - type: ndcg_at_5 value: 35.459 - type: precision_at_1 value: 29.110000000000003 - type: precision_at_10 value: 7.215000000000001 - type: precision_at_100 value: 1.2109999999999999 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 16.058 - type: precision_at_5 value: 11.644 - type: recall_at_1 value: 23.072 - type: recall_at_10 value: 50.285999999999994 - type: recall_at_100 value: 76.596 - type: recall_at_1000 value: 92.861 - type: recall_at_3 value: 35.702 - type: recall_at_5 value: 42.152 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.937916666666666 - type: map_at_10 value: 33.755250000000004 - type: map_at_100 value: 34.955999999999996 - type: map_at_1000 value: 35.070499999999996 - type: map_at_3 value: 30.98708333333333 - type: map_at_5 value: 32.51491666666666 - type: mrr_at_1 value: 29.48708333333333 - type: mrr_at_10 value: 37.92183333333334 - type: mrr_at_100 value: 38.76583333333333 - type: mrr_at_1000 value: 38.82466666666667 - type: mrr_at_3 value: 35.45125 - type: mrr_at_5 value: 36.827000000000005 - type: ndcg_at_1 value: 29.48708333333333 - type: ndcg_at_10 value: 39.05225 - type: ndcg_at_100 value: 44.25983333333334 - type: ndcg_at_1000 value: 46.568333333333335 - type: ndcg_at_3 value: 34.271583333333325 - type: ndcg_at_5 value: 36.483916666666666 - type: precision_at_1 value: 29.48708333333333 - type: precision_at_10 value: 6.865749999999999 - type: precision_at_100 value: 1.1195833333333332 - type: precision_at_1000 value: 0.15058333333333335 - type: precision_at_3 value: 15.742083333333333 - type: precision_at_5 value: 11.221916666666667 - type: recall_at_1 value: 24.937916666666666 - type: recall_at_10 value: 50.650416666666665 - type: recall_at_100 value: 73.55383333333334 - type: recall_at_1000 value: 89.61691666666667 - type: recall_at_3 value: 37.27808333333334 - type: recall_at_5 value: 42.99475 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 23.947 - type: map_at_10 value: 30.575000000000003 - type: map_at_100 value: 31.465 - type: map_at_1000 value: 31.558000000000003 - type: map_at_3 value: 28.814 - type: map_at_5 value: 29.738999999999997 - type: mrr_at_1 value: 26.994 - type: mrr_at_10 value: 33.415 - type: mrr_at_100 value: 34.18 - type: mrr_at_1000 value: 34.245 - type: mrr_at_3 value: 31.621 - type: mrr_at_5 value: 32.549 - type: ndcg_at_1 value: 26.994 - type: ndcg_at_10 value: 34.482 - type: ndcg_at_100 value: 38.915 - type: ndcg_at_1000 value: 41.355 - type: ndcg_at_3 value: 31.139 - type: ndcg_at_5 value: 32.589 - type: precision_at_1 value: 26.994 - type: precision_at_10 value: 5.322 - type: precision_at_100 value: 0.8160000000000001 - type: precision_at_1000 value: 0.11100000000000002 - type: precision_at_3 value: 13.344000000000001 - type: precision_at_5 value: 8.988 - type: recall_at_1 value: 23.947 - type: recall_at_10 value: 43.647999999999996 - type: recall_at_100 value: 63.851 - type: recall_at_1000 value: 82.0 - type: recall_at_3 value: 34.288000000000004 - type: recall_at_5 value: 38.117000000000004 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 16.197 - type: map_at_10 value: 22.968 - type: map_at_100 value: 24.095 - type: map_at_1000 value: 24.217 - type: map_at_3 value: 20.771 - type: map_at_5 value: 21.995 - type: mrr_at_1 value: 19.511 - type: mrr_at_10 value: 26.55 - type: mrr_at_100 value: 27.500999999999998 - type: mrr_at_1000 value: 27.578999999999997 - type: mrr_at_3 value: 24.421 - type: mrr_at_5 value: 25.604 - type: ndcg_at_1 value: 19.511 - type: ndcg_at_10 value: 27.386 - type: ndcg_at_100 value: 32.828 - type: ndcg_at_1000 value: 35.739 - type: ndcg_at_3 value: 23.405 - type: ndcg_at_5 value: 25.255 - type: precision_at_1 value: 19.511 - type: precision_at_10 value: 5.017 - type: precision_at_100 value: 0.91 - type: precision_at_1000 value: 0.133 - type: precision_at_3 value: 11.023 - type: precision_at_5 value: 8.025 - type: recall_at_1 value: 16.197 - type: recall_at_10 value: 37.09 - type: recall_at_100 value: 61.778 - type: recall_at_1000 value: 82.56599999999999 - type: recall_at_3 value: 26.034000000000002 - type: recall_at_5 value: 30.762 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 25.41 - type: map_at_10 value: 33.655 - type: map_at_100 value: 34.892 - type: map_at_1000 value: 34.995 - type: map_at_3 value: 30.94 - type: map_at_5 value: 32.303 - type: mrr_at_1 value: 29.477999999999998 - type: mrr_at_10 value: 37.443 - type: mrr_at_100 value: 38.383 - type: mrr_at_1000 value: 38.440000000000005 - type: mrr_at_3 value: 34.949999999999996 - type: mrr_at_5 value: 36.228 - type: ndcg_at_1 value: 29.477999999999998 - type: ndcg_at_10 value: 38.769 - type: ndcg_at_100 value: 44.245000000000005 - type: ndcg_at_1000 value: 46.593 - type: ndcg_at_3 value: 33.623 - type: ndcg_at_5 value: 35.766 - type: precision_at_1 value: 29.477999999999998 - type: precision_at_10 value: 6.455 - type: precision_at_100 value: 1.032 - type: precision_at_1000 value: 0.135 - type: precision_at_3 value: 14.893999999999998 - type: precision_at_5 value: 10.485 - type: recall_at_1 value: 25.41 - type: recall_at_10 value: 50.669 - type: recall_at_100 value: 74.084 - type: recall_at_1000 value: 90.435 - type: recall_at_3 value: 36.679 - type: recall_at_5 value: 41.94 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 23.339 - type: map_at_10 value: 31.852000000000004 - type: map_at_100 value: 33.411 - type: map_at_1000 value: 33.62 - type: map_at_3 value: 28.929 - type: map_at_5 value: 30.542 - type: mrr_at_1 value: 28.063 - type: mrr_at_10 value: 36.301 - type: mrr_at_100 value: 37.288 - type: mrr_at_1000 value: 37.349 - type: mrr_at_3 value: 33.663 - type: mrr_at_5 value: 35.165 - type: ndcg_at_1 value: 28.063 - type: ndcg_at_10 value: 37.462 - type: ndcg_at_100 value: 43.620999999999995 - type: ndcg_at_1000 value: 46.211 - type: ndcg_at_3 value: 32.68 - type: ndcg_at_5 value: 34.981 - type: precision_at_1 value: 28.063 - type: precision_at_10 value: 7.1739999999999995 - type: precision_at_100 value: 1.486 - type: precision_at_1000 value: 0.23500000000000001 - type: precision_at_3 value: 15.217 - type: precision_at_5 value: 11.265 - type: recall_at_1 value: 23.339 - type: recall_at_10 value: 48.376999999999995 - type: recall_at_100 value: 76.053 - type: recall_at_1000 value: 92.455 - type: recall_at_3 value: 34.735 - type: recall_at_5 value: 40.71 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 18.925 - type: map_at_10 value: 26.017000000000003 - type: map_at_100 value: 27.034000000000002 - type: map_at_1000 value: 27.156000000000002 - type: map_at_3 value: 23.604 - type: map_at_5 value: 24.75 - type: mrr_at_1 value: 20.333000000000002 - type: mrr_at_10 value: 27.915 - type: mrr_at_100 value: 28.788000000000004 - type: mrr_at_1000 value: 28.877999999999997 - type: mrr_at_3 value: 25.446999999999996 - type: mrr_at_5 value: 26.648 - type: ndcg_at_1 value: 20.333000000000002 - type: ndcg_at_10 value: 30.673000000000002 - type: ndcg_at_100 value: 35.618 - type: ndcg_at_1000 value: 38.517 - type: ndcg_at_3 value: 25.71 - type: ndcg_at_5 value: 27.679 - type: precision_at_1 value: 20.333000000000002 - type: precision_at_10 value: 4.9910000000000005 - type: precision_at_100 value: 0.8130000000000001 - type: precision_at_1000 value: 0.117 - type: precision_at_3 value: 11.029 - type: precision_at_5 value: 7.8740000000000006 - type: recall_at_1 value: 18.925 - type: recall_at_10 value: 43.311 - type: recall_at_100 value: 66.308 - type: recall_at_1000 value: 87.49 - type: recall_at_3 value: 29.596 - type: recall_at_5 value: 34.245 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: map_at_1 value: 13.714 - type: map_at_10 value: 23.194 - type: map_at_100 value: 24.976000000000003 - type: map_at_1000 value: 25.166 - type: map_at_3 value: 19.709 - type: map_at_5 value: 21.523999999999997 - type: mrr_at_1 value: 30.619000000000003 - type: mrr_at_10 value: 42.563 - type: mrr_at_100 value: 43.386 - type: mrr_at_1000 value: 43.423 - type: mrr_at_3 value: 39.555 - type: mrr_at_5 value: 41.268 - type: ndcg_at_1 value: 30.619000000000003 - type: ndcg_at_10 value: 31.836 - type: ndcg_at_100 value: 38.652 - type: ndcg_at_1000 value: 42.088 - type: ndcg_at_3 value: 26.733 - type: ndcg_at_5 value: 28.435 - type: precision_at_1 value: 30.619000000000003 - type: precision_at_10 value: 9.751999999999999 - type: precision_at_100 value: 1.71 - type: precision_at_1000 value: 0.23500000000000001 - type: precision_at_3 value: 19.935 - type: precision_at_5 value: 14.984 - type: recall_at_1 value: 13.714 - type: recall_at_10 value: 37.26 - type: recall_at_100 value: 60.546 - type: recall_at_1000 value: 79.899 - type: recall_at_3 value: 24.325 - type: recall_at_5 value: 29.725 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: map_at_1 value: 8.462 - type: map_at_10 value: 18.637 - type: map_at_100 value: 26.131999999999998 - type: map_at_1000 value: 27.607 - type: map_at_3 value: 13.333 - type: map_at_5 value: 15.654000000000002 - type: mrr_at_1 value: 66.25 - type: mrr_at_10 value: 74.32600000000001 - type: mrr_at_100 value: 74.60900000000001 - type: mrr_at_1000 value: 74.62 - type: mrr_at_3 value: 72.667 - type: mrr_at_5 value: 73.817 - type: ndcg_at_1 value: 53.87499999999999 - type: ndcg_at_10 value: 40.028999999999996 - type: ndcg_at_100 value: 44.199 - type: ndcg_at_1000 value: 51.629999999999995 - type: ndcg_at_3 value: 44.113 - type: ndcg_at_5 value: 41.731 - type: precision_at_1 value: 66.25 - type: precision_at_10 value: 31.900000000000002 - type: precision_at_100 value: 10.043000000000001 - type: precision_at_1000 value: 1.926 - type: precision_at_3 value: 47.417 - type: precision_at_5 value: 40.65 - type: recall_at_1 value: 8.462 - type: recall_at_10 value: 24.293 - type: recall_at_100 value: 50.146 - type: recall_at_1000 value: 74.034 - type: recall_at_3 value: 14.967 - type: recall_at_5 value: 18.682000000000002 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 47.84499999999999 - type: f1 value: 42.48106691979349 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: map_at_1 value: 74.034 - type: map_at_10 value: 82.76 - type: map_at_100 value: 82.968 - type: map_at_1000 value: 82.98299999999999 - type: map_at_3 value: 81.768 - type: map_at_5 value: 82.418 - type: mrr_at_1 value: 80.048 - type: mrr_at_10 value: 87.64999999999999 - type: mrr_at_100 value: 87.712 - type: mrr_at_1000 value: 87.713 - type: mrr_at_3 value: 87.01100000000001 - type: mrr_at_5 value: 87.466 - type: ndcg_at_1 value: 80.048 - type: ndcg_at_10 value: 86.643 - type: ndcg_at_100 value: 87.361 - type: ndcg_at_1000 value: 87.606 - type: ndcg_at_3 value: 85.137 - type: ndcg_at_5 value: 86.016 - type: precision_at_1 value: 80.048 - type: precision_at_10 value: 10.372 - type: precision_at_100 value: 1.093 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 32.638 - type: precision_at_5 value: 20.177 - type: recall_at_1 value: 74.034 - type: recall_at_10 value: 93.769 - type: recall_at_100 value: 96.569 - type: recall_at_1000 value: 98.039 - type: recall_at_3 value: 89.581 - type: recall_at_5 value: 91.906 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: map_at_1 value: 20.5 - type: map_at_10 value: 32.857 - type: map_at_100 value: 34.589 - type: map_at_1000 value: 34.778 - type: map_at_3 value: 29.160999999999998 - type: map_at_5 value: 31.033 - type: mrr_at_1 value: 40.123 - type: mrr_at_10 value: 48.776 - type: mrr_at_100 value: 49.495 - type: mrr_at_1000 value: 49.539 - type: mrr_at_3 value: 46.605000000000004 - type: mrr_at_5 value: 47.654 - type: ndcg_at_1 value: 40.123 - type: ndcg_at_10 value: 40.343 - type: ndcg_at_100 value: 46.56 - type: ndcg_at_1000 value: 49.777 - type: ndcg_at_3 value: 37.322 - type: ndcg_at_5 value: 37.791000000000004 - type: precision_at_1 value: 40.123 - type: precision_at_10 value: 11.08 - type: precision_at_100 value: 1.752 - type: precision_at_1000 value: 0.232 - type: precision_at_3 value: 24.897 - type: precision_at_5 value: 17.809 - type: recall_at_1 value: 20.5 - type: recall_at_10 value: 46.388 - type: recall_at_100 value: 69.552 - type: recall_at_1000 value: 89.011 - type: recall_at_3 value: 33.617999999999995 - type: recall_at_5 value: 38.211 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: map_at_1 value: 39.135999999999996 - type: map_at_10 value: 61.673 - type: map_at_100 value: 62.562 - type: map_at_1000 value: 62.62 - type: map_at_3 value: 58.467999999999996 - type: map_at_5 value: 60.463 - type: mrr_at_1 value: 78.271 - type: mrr_at_10 value: 84.119 - type: mrr_at_100 value: 84.29299999999999 - type: mrr_at_1000 value: 84.299 - type: mrr_at_3 value: 83.18900000000001 - type: mrr_at_5 value: 83.786 - type: ndcg_at_1 value: 78.271 - type: ndcg_at_10 value: 69.935 - type: ndcg_at_100 value: 73.01299999999999 - type: ndcg_at_1000 value: 74.126 - type: ndcg_at_3 value: 65.388 - type: ndcg_at_5 value: 67.906 - type: precision_at_1 value: 78.271 - type: precision_at_10 value: 14.562 - type: precision_at_100 value: 1.6969999999999998 - type: precision_at_1000 value: 0.184 - type: precision_at_3 value: 41.841 - type: precision_at_5 value: 27.087 - type: recall_at_1 value: 39.135999999999996 - type: recall_at_10 value: 72.809 - type: recall_at_100 value: 84.86200000000001 - type: recall_at_1000 value: 92.208 - type: recall_at_3 value: 62.76199999999999 - type: recall_at_5 value: 67.718 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 90.60600000000001 - type: ap value: 86.6579587804335 - type: f1 value: 90.5938853929307 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics: - type: map_at_1 value: 21.852 - type: map_at_10 value: 33.982 - type: map_at_100 value: 35.116 - type: map_at_1000 value: 35.167 - type: map_at_3 value: 30.134 - type: map_at_5 value: 32.340999999999994 - type: mrr_at_1 value: 22.479 - type: mrr_at_10 value: 34.594 - type: mrr_at_100 value: 35.672 - type: mrr_at_1000 value: 35.716 - type: mrr_at_3 value: 30.84 - type: mrr_at_5 value: 32.998 - type: ndcg_at_1 value: 22.493 - type: ndcg_at_10 value: 40.833000000000006 - type: ndcg_at_100 value: 46.357 - type: ndcg_at_1000 value: 47.637 - type: ndcg_at_3 value: 32.995999999999995 - type: ndcg_at_5 value: 36.919000000000004 - type: precision_at_1 value: 22.493 - type: precision_at_10 value: 6.465999999999999 - type: precision_at_100 value: 0.9249999999999999 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 14.030999999999999 - type: precision_at_5 value: 10.413 - type: recall_at_1 value: 21.852 - type: recall_at_10 value: 61.934999999999995 - type: recall_at_100 value: 87.611 - type: recall_at_1000 value: 97.441 - type: recall_at_3 value: 40.583999999999996 - type: recall_at_5 value: 49.992999999999995 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 93.36069311445507 - type: f1 value: 93.16456330371453 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 74.74692202462381 - type: f1 value: 58.17903579421599 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 74.80833893745796 - type: f1 value: 72.70786592684664 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 78.69872225958305 - type: f1 value: 78.61626934504731 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 33.058658628717694 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 30.85561739360599 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 31.290259910144385 - type: mrr value: 32.44223046102856 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: map_at_1 value: 5.288 - type: map_at_10 value: 12.267999999999999 - type: map_at_100 value: 15.557000000000002 - type: map_at_1000 value: 16.98 - type: map_at_3 value: 8.866 - type: map_at_5 value: 10.418 - type: mrr_at_1 value: 43.653 - type: mrr_at_10 value: 52.681 - type: mrr_at_100 value: 53.315999999999995 - type: mrr_at_1000 value: 53.357 - type: mrr_at_3 value: 51.393 - type: mrr_at_5 value: 51.903999999999996 - type: ndcg_at_1 value: 42.415000000000006 - type: ndcg_at_10 value: 34.305 - type: ndcg_at_100 value: 30.825999999999997 - type: ndcg_at_1000 value: 39.393 - type: ndcg_at_3 value: 39.931 - type: ndcg_at_5 value: 37.519999999999996 - type: precision_at_1 value: 43.653 - type: precision_at_10 value: 25.728 - type: precision_at_100 value: 7.932 - type: precision_at_1000 value: 2.07 - type: precision_at_3 value: 38.184000000000005 - type: precision_at_5 value: 32.879000000000005 - type: recall_at_1 value: 5.288 - type: recall_at_10 value: 16.195 - type: recall_at_100 value: 31.135 - type: recall_at_1000 value: 61.531000000000006 - type: recall_at_3 value: 10.313 - type: recall_at_5 value: 12.754999999999999 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: map_at_1 value: 28.216 - type: map_at_10 value: 42.588 - type: map_at_100 value: 43.702999999999996 - type: map_at_1000 value: 43.739 - type: map_at_3 value: 38.177 - type: map_at_5 value: 40.754000000000005 - type: mrr_at_1 value: 31.866 - type: mrr_at_10 value: 45.189 - type: mrr_at_100 value: 46.056000000000004 - type: mrr_at_1000 value: 46.081 - type: mrr_at_3 value: 41.526999999999994 - type: mrr_at_5 value: 43.704 - type: ndcg_at_1 value: 31.837 - type: ndcg_at_10 value: 50.178 - type: ndcg_at_100 value: 54.98800000000001 - type: ndcg_at_1000 value: 55.812 - type: ndcg_at_3 value: 41.853 - type: ndcg_at_5 value: 46.153 - type: precision_at_1 value: 31.837 - type: precision_at_10 value: 8.43 - type: precision_at_100 value: 1.1119999999999999 - type: precision_at_1000 value: 0.11900000000000001 - type: precision_at_3 value: 19.023 - type: precision_at_5 value: 13.911000000000001 - type: recall_at_1 value: 28.216 - type: recall_at_10 value: 70.8 - type: recall_at_100 value: 91.857 - type: recall_at_1000 value: 97.941 - type: recall_at_3 value: 49.196 - type: recall_at_5 value: 59.072 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 71.22800000000001 - type: map_at_10 value: 85.115 - type: map_at_100 value: 85.72 - type: map_at_1000 value: 85.737 - type: map_at_3 value: 82.149 - type: map_at_5 value: 84.029 - type: mrr_at_1 value: 81.96 - type: mrr_at_10 value: 88.00200000000001 - type: mrr_at_100 value: 88.088 - type: mrr_at_1000 value: 88.089 - type: mrr_at_3 value: 87.055 - type: mrr_at_5 value: 87.715 - type: ndcg_at_1 value: 82.01 - type: ndcg_at_10 value: 88.78 - type: ndcg_at_100 value: 89.91 - type: ndcg_at_1000 value: 90.013 - type: ndcg_at_3 value: 85.957 - type: ndcg_at_5 value: 87.56 - type: precision_at_1 value: 82.01 - type: precision_at_10 value: 13.462 - type: precision_at_100 value: 1.528 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 37.553 - type: precision_at_5 value: 24.732000000000003 - type: recall_at_1 value: 71.22800000000001 - type: recall_at_10 value: 95.69 - type: recall_at_100 value: 99.531 - type: recall_at_1000 value: 99.98 - type: recall_at_3 value: 87.632 - type: recall_at_5 value: 92.117 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 52.31768034366916 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 60.640266772723606 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 4.7780000000000005 - type: map_at_10 value: 12.299 - type: map_at_100 value: 14.363000000000001 - type: map_at_1000 value: 14.71 - type: map_at_3 value: 8.738999999999999 - type: map_at_5 value: 10.397 - type: mrr_at_1 value: 23.599999999999998 - type: mrr_at_10 value: 34.845 - type: mrr_at_100 value: 35.916 - type: mrr_at_1000 value: 35.973 - type: mrr_at_3 value: 31.7 - type: mrr_at_5 value: 33.535 - type: ndcg_at_1 value: 23.599999999999998 - type: ndcg_at_10 value: 20.522000000000002 - type: ndcg_at_100 value: 28.737000000000002 - type: ndcg_at_1000 value: 34.596 - type: ndcg_at_3 value: 19.542 - type: ndcg_at_5 value: 16.958000000000002 - type: precision_at_1 value: 23.599999999999998 - type: precision_at_10 value: 10.67 - type: precision_at_100 value: 2.259 - type: precision_at_1000 value: 0.367 - type: precision_at_3 value: 18.333 - type: precision_at_5 value: 14.879999999999999 - type: recall_at_1 value: 4.7780000000000005 - type: recall_at_10 value: 21.617 - type: recall_at_100 value: 45.905 - type: recall_at_1000 value: 74.42 - type: recall_at_3 value: 11.148 - type: recall_at_5 value: 15.082999999999998 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 83.22372750297885 - type: cos_sim_spearman value: 79.40972617119405 - type: euclidean_pearson value: 80.6101072020434 - type: euclidean_spearman value: 79.53844217225202 - type: manhattan_pearson value: 80.57265975286111 - type: manhattan_spearman value: 79.46335611792958 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 85.43713315520749 - type: cos_sim_spearman value: 77.44128693329532 - type: euclidean_pearson value: 81.63869928101123 - type: euclidean_spearman value: 77.29512977961515 - type: manhattan_pearson value: 81.63704185566183 - type: manhattan_spearman value: 77.29909412738657 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 81.59451537860527 - type: cos_sim_spearman value: 82.97994638856723 - type: euclidean_pearson value: 82.89478688288412 - type: euclidean_spearman value: 83.58740751053104 - type: manhattan_pearson value: 82.69140840941608 - type: manhattan_spearman value: 83.33665956040555 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 82.00756527711764 - type: cos_sim_spearman value: 81.83560996841379 - type: euclidean_pearson value: 82.07684151976518 - type: euclidean_spearman value: 82.00913052060511 - type: manhattan_pearson value: 82.05690778488794 - type: manhattan_spearman value: 82.02260252019525 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 86.13710262895447 - type: cos_sim_spearman value: 87.26412811156248 - type: euclidean_pearson value: 86.94151453230228 - type: euclidean_spearman value: 87.5363796699571 - type: manhattan_pearson value: 86.86989424083748 - type: manhattan_spearman value: 87.47315940781353 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 83.0230597603627 - type: cos_sim_spearman value: 84.93344499318864 - type: euclidean_pearson value: 84.23754743431141 - type: euclidean_spearman value: 85.09707376597099 - type: manhattan_pearson value: 84.04325160987763 - type: manhattan_spearman value: 84.89353071339909 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 86.75620824563921 - type: cos_sim_spearman value: 87.15065513706398 - type: euclidean_pearson value: 88.26281533633521 - type: euclidean_spearman value: 87.51963738643983 - type: manhattan_pearson value: 88.25599267618065 - type: manhattan_spearman value: 87.58048736047483 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 64.74645319195137 - type: cos_sim_spearman value: 65.29996325037214 - type: euclidean_pearson value: 67.04297794086443 - type: euclidean_spearman value: 65.43841726694343 - type: manhattan_pearson value: 67.39459955690904 - type: manhattan_spearman value: 65.92864704413651 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 84.31291020270801 - type: cos_sim_spearman value: 85.86473738688068 - type: euclidean_pearson value: 85.65537275064152 - type: euclidean_spearman value: 86.13087454209642 - type: manhattan_pearson value: 85.43946955047609 - type: manhattan_spearman value: 85.91568175344916 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 85.93798118350695 - type: mrr value: 95.93536274908824 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: map_at_1 value: 57.594 - type: map_at_10 value: 66.81899999999999 - type: map_at_100 value: 67.368 - type: map_at_1000 value: 67.4 - type: map_at_3 value: 64.061 - type: map_at_5 value: 65.47 - type: mrr_at_1 value: 60.667 - type: mrr_at_10 value: 68.219 - type: mrr_at_100 value: 68.655 - type: mrr_at_1000 value: 68.684 - type: mrr_at_3 value: 66.22200000000001 - type: mrr_at_5 value: 67.289 - type: ndcg_at_1 value: 60.667 - type: ndcg_at_10 value: 71.275 - type: ndcg_at_100 value: 73.642 - type: ndcg_at_1000 value: 74.373 - type: ndcg_at_3 value: 66.521 - type: ndcg_at_5 value: 68.581 - type: precision_at_1 value: 60.667 - type: precision_at_10 value: 9.433 - type: precision_at_100 value: 1.0699999999999998 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 25.556 - type: precision_at_5 value: 16.8 - type: recall_at_1 value: 57.594 - type: recall_at_10 value: 83.622 - type: recall_at_100 value: 94.167 - type: recall_at_1000 value: 99.667 - type: recall_at_3 value: 70.64399999999999 - type: recall_at_5 value: 75.983 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.85841584158416 - type: cos_sim_ap value: 96.66996142314342 - type: cos_sim_f1 value: 92.83208020050125 - type: cos_sim_precision value: 93.06532663316584 - type: cos_sim_recall value: 92.60000000000001 - type: dot_accuracy value: 99.85841584158416 - type: dot_ap value: 96.6775307676576 - type: dot_f1 value: 92.69289729177312 - type: dot_precision value: 94.77533960292581 - type: dot_recall value: 90.7 - type: euclidean_accuracy value: 99.86138613861387 - type: euclidean_ap value: 96.6338454403108 - type: euclidean_f1 value: 92.92214357937311 - type: euclidean_precision value: 93.96728016359918 - type: euclidean_recall value: 91.9 - type: manhattan_accuracy value: 99.86237623762376 - type: manhattan_ap value: 96.60370449645053 - type: manhattan_f1 value: 92.91177970423253 - type: manhattan_precision value: 94.7970863683663 - type: manhattan_recall value: 91.10000000000001 - type: max_accuracy value: 99.86237623762376 - type: max_ap value: 96.6775307676576 - type: max_f1 value: 92.92214357937311 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 60.77977058695198 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 35.2725272535638 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 53.64052466362125 - type: mrr value: 54.533067014684654 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 30.677624219206578 - type: cos_sim_spearman value: 30.121368518123447 - type: dot_pearson value: 30.69870088041608 - type: dot_spearman value: 29.61284927093751 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.22 - type: map_at_10 value: 1.855 - type: map_at_100 value: 9.885 - type: map_at_1000 value: 23.416999999999998 - type: map_at_3 value: 0.637 - type: map_at_5 value: 1.024 - type: mrr_at_1 value: 88.0 - type: mrr_at_10 value: 93.067 - type: mrr_at_100 value: 93.067 - type: mrr_at_1000 value: 93.067 - type: mrr_at_3 value: 92.667 - type: mrr_at_5 value: 93.067 - type: ndcg_at_1 value: 82.0 - type: ndcg_at_10 value: 75.899 - type: ndcg_at_100 value: 55.115 - type: ndcg_at_1000 value: 48.368 - type: ndcg_at_3 value: 79.704 - type: ndcg_at_5 value: 78.39699999999999 - type: precision_at_1 value: 88.0 - type: precision_at_10 value: 79.60000000000001 - type: precision_at_100 value: 56.06 - type: precision_at_1000 value: 21.206 - type: precision_at_3 value: 84.667 - type: precision_at_5 value: 83.2 - type: recall_at_1 value: 0.22 - type: recall_at_10 value: 2.078 - type: recall_at_100 value: 13.297 - type: recall_at_1000 value: 44.979 - type: recall_at_3 value: 0.6689999999999999 - type: recall_at_5 value: 1.106 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 2.258 - type: map_at_10 value: 10.439 - type: map_at_100 value: 16.89 - type: map_at_1000 value: 18.407999999999998 - type: map_at_3 value: 5.668 - type: map_at_5 value: 7.718 - type: mrr_at_1 value: 32.653 - type: mrr_at_10 value: 51.159 - type: mrr_at_100 value: 51.714000000000006 - type: mrr_at_1000 value: 51.714000000000006 - type: mrr_at_3 value: 47.959 - type: mrr_at_5 value: 50.407999999999994 - type: ndcg_at_1 value: 29.592000000000002 - type: ndcg_at_10 value: 26.037 - type: ndcg_at_100 value: 37.924 - type: ndcg_at_1000 value: 49.126999999999995 - type: ndcg_at_3 value: 30.631999999999998 - type: ndcg_at_5 value: 28.571 - type: precision_at_1 value: 32.653 - type: precision_at_10 value: 22.857 - type: precision_at_100 value: 7.754999999999999 - type: precision_at_1000 value: 1.529 - type: precision_at_3 value: 34.014 - type: precision_at_5 value: 29.796 - type: recall_at_1 value: 2.258 - type: recall_at_10 value: 16.554 - type: recall_at_100 value: 48.439 - type: recall_at_1000 value: 82.80499999999999 - type: recall_at_3 value: 7.283 - type: recall_at_5 value: 10.732 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 69.8858 - type: ap value: 13.835684144362109 - type: f1 value: 53.803351693244586 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 60.50650820599886 - type: f1 value: 60.84357825979259 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 48.52131044852134 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 85.59337187816654 - type: cos_sim_ap value: 73.23925826533437 - type: cos_sim_f1 value: 67.34693877551021 - type: cos_sim_precision value: 62.40432237730752 - type: cos_sim_recall value: 73.13984168865434 - type: dot_accuracy value: 85.31322644096085 - type: dot_ap value: 72.30723963807422 - type: dot_f1 value: 66.47051612112296 - type: dot_precision value: 62.0792305930845 - type: dot_recall value: 71.53034300791556 - type: euclidean_accuracy value: 85.61125350181797 - type: euclidean_ap value: 73.32843720487845 - type: euclidean_f1 value: 67.36549633745895 - type: euclidean_precision value: 64.60755813953489 - type: euclidean_recall value: 70.36939313984169 - type: manhattan_accuracy value: 85.63509566668654 - type: manhattan_ap value: 73.16658488311325 - type: manhattan_f1 value: 67.20597386434349 - type: manhattan_precision value: 63.60424028268551 - type: manhattan_recall value: 71.2401055408971 - type: max_accuracy value: 85.63509566668654 - type: max_ap value: 73.32843720487845 - type: max_f1 value: 67.36549633745895 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.33779640625606 - type: cos_sim_ap value: 84.83868375898157 - type: cos_sim_f1 value: 77.16506154017773 - type: cos_sim_precision value: 74.62064005753327 - type: cos_sim_recall value: 79.88912842623961 - type: dot_accuracy value: 88.02732176815307 - type: dot_ap value: 83.95089283763002 - type: dot_f1 value: 76.29635101196631 - type: dot_precision value: 73.31771720613288 - type: dot_recall value: 79.52725592854944 - type: euclidean_accuracy value: 88.44452206310397 - type: euclidean_ap value: 84.98384576824827 - type: euclidean_f1 value: 77.29311047696697 - type: euclidean_precision value: 74.51232583065381 - type: euclidean_recall value: 80.28949799815214 - type: manhattan_accuracy value: 88.47362906042613 - type: manhattan_ap value: 84.91421462218432 - type: manhattan_f1 value: 77.05107637204792 - type: manhattan_precision value: 74.74484256243214 - type: manhattan_recall value: 79.50415768401602 - type: max_accuracy value: 88.47362906042613 - type: max_ap value: 84.98384576824827 - type: max_f1 value: 77.29311047696697 license: mit language: - en --- # # Fast-Inference with Ctranslate2 Speedup inference while reducing memory by 2x-4x using int8 inference in C++ on CPU or GPU. quantized version of [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) ```bash pip install hf-hub-ctranslate2>=2.12.0 ctranslate2>=3.17.1 ``` ```python # from transformers import AutoTokenizer model_name = "michaelfeil/ct2fast-bge-small-en-v1.5" model_name_orig="BAAI/bge-small-en-v1.5" from hf_hub_ctranslate2 import EncoderCT2fromHfHub model = EncoderCT2fromHfHub( # load in int8 on CUDA model_name_or_path=model_name, device="cuda", compute_type="int8_float16" ) outputs = model.generate( text=["I like soccer", "I like tennis", "The eiffel tower is in Paris"], max_length=64, ) # perform downstream tasks on outputs outputs["pooler_output"] outputs["last_hidden_state"] outputs["attention_mask"] # alternative, use SentenceTransformer Mix-In # for end-to-end Sentence embeddings generation # (not pulling from this CT2fast-HF repo) from hf_hub_ctranslate2 import CT2SentenceTransformer model = CT2SentenceTransformer( model_name_orig, compute_type="int8_float16", device="cuda" ) embeddings = model.encode( ["I like soccer", "I like tennis", "The eiffel tower is in Paris"], batch_size=32, convert_to_numpy=True, normalize_embeddings=True, ) print(embeddings.shape, embeddings) scores = (embeddings @ embeddings.T) * 100 # Hint: you can also host this code via REST API and # via github.com/michaelfeil/infinity ``` Checkpoint compatible to [ctranslate2>=3.17.1](https://github.com/OpenNMT/CTranslate2) and [hf-hub-ctranslate2>=2.12.0](https://github.com/michaelfeil/hf-hub-ctranslate2) - `compute_type=int8_float16` for `device="cuda"` - `compute_type=int8` for `device="cpu"` Converted on 2023-10-13 using ``` LLama-2 -> removed <pad> token. ``` # Licence and other remarks: This is just a quantized version. Licence conditions are intended to be idential to original huggingface repo. # Original description <h1 align="center">FlagEmbedding</h1> <h4 align="center"> <p> <a href=#model-list>Model List</a> | <a href=#frequently-asked-questions>FAQ</a> | <a href=#usage>Usage</a> | <a href="#evaluation">Evaluation</a> | <a href="#train">Train</a> | <a href="#contact">Contact</a> | <a href="#citation">Citation</a> | <a href="#license">License</a> <p> </h4> More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding). [English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md) FlagEmbedding can map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification, clustering, or semantic search. And it also can be used in vector databases for LLMs. ************* 🌟**Updates**🌟 ************* - 10/12/2023: Release [LLM-Embedder](./FlagEmbedding/llm_embedder/README.md), a unified embedding model to support diverse retrieval augmentation needs for LLMs. [Paper](https://arxiv.org/pdf/2310.07554.pdf) :fire: - 09/15/2023: The [technical report](https://arxiv.org/pdf/2309.07597.pdf) of BGE has been released - 09/15/2023: The [masive training data](https://data.baai.ac.cn/details/BAAI-MTP) of BGE has been released - 09/12/2023: New models: - **New reranker model**: release cross-encoder models `BAAI/bge-reranker-base` and `BAAI/bge-reranker-large`, which are more powerful than embedding model. We recommend to use/fine-tune them to re-rank top-k documents returned by embedding models. - **update embedding model**: release `bge-*-v1.5` embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction. <details> <summary>More</summary> <!-- ### More --> - 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning. - 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard). - 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗** - 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada: - 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset. </details> ## Model List `bge` is short for `BAAI general embedding`. | Model | Language | | Description | query instruction for retrieval [1] | |:-------------------------------|:--------:| :--------:| :--------:|:--------:| | [BAAI/llm-embedder](https://huggingface.co/BAAI/llm-embedder) | English | [Inference](./FlagEmbedding/llm_embedder/README.md) [Fine-tune](./FlagEmbedding/llm_embedder/README.md) | a unified embedding model to support diverse retrieval augmentation needs for LLMs | See [README](./FlagEmbedding/llm_embedder/README.md) | | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | | | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | | | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) |a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` | [1\]: If you need to search the relevant passages to a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages. [2\]: Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models. For examples, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results. All models have been uploaded to Huggingface Hub, and you can see them at https://huggingface.co/BAAI. If you cannot open the Huggingface Hub, you also can download the models at https://model.baai.ac.cn/models . ## Frequently asked questions <details> <summary>1. How to fine-tune bge embedding model?</summary> <!-- ### How to fine-tune bge embedding model? --> Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model. Some suggestions: - Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#hard-negatives), which can improve the retrieval performance. - If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity. - If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results. Hard negatives also are needed to fine-tune reranker. </details> <details> <summary>2. The similarity score between two dissimilar sentences is higher than 0.5</summary> <!-- ### The similarity score between two dissimilar sentences is higher than 0.5 --> **Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.** Since we finetune the models by contrastive learning with a temperature of 0.01, the similarity distribution of the current BGE model is about in the interval \[0.6, 1\]. So a similarity score greater than 0.5 does not indicate that the two sentences are similar. For downstream tasks, such as passage retrieval or semantic similarity, **what matters is the relative order of the scores, not the absolute value.** If you need to filter similar sentences based on a similarity threshold, please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9). </details> <details> <summary>3. When does the query instruction need to be used</summary> <!-- ### When does the query instruction need to be used --> For the `bge-*-v1.5`, we improve its retrieval ability when not using instruction. No instruction only has a slight degradation in retrieval performance compared with using instruction. So you can generate embedding without instruction in all cases for convenience. For a retrieval task that uses short queries to find long related documents, it is recommended to add instructions for these short queries. **The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.** In all cases, the documents/passages do not need to add the instruction. </details> ## Usage ### Usage for Embedding Model Here are some examples for using `bge` models with [FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers). #### Using FlagEmbedding ``` pip install -U FlagEmbedding ``` If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding. ```python from FlagEmbedding import FlagModel sentences_1 = ["样例数据-1", "样例数据-2"] sentences_2 = ["样例数据-3", "样例数据-4"] model = FlagModel('BAAI/bge-large-zh-v1.5', query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:", use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation embeddings_1 = model.encode(sentences_1) embeddings_2 = model.encode(sentences_2) similarity = embeddings_1 @ embeddings_2.T print(similarity) # for s2p(short query to long passage) retrieval task, suggest to use encode_queries() which will automatically add the instruction to each query # corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction queries = ['query_1', 'query_2'] passages = ["样例文档-1", "样例文档-2"] q_embeddings = model.encode_queries(queries) p_embeddings = model.encode(passages) scores = q_embeddings @ p_embeddings.T ``` For the value of the argument `query_instruction_for_retrieval`, see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list). By default, FlagModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs. You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable. #### Using Sentence-Transformers You can also use the `bge` models with [sentence-transformers](https://www.SBERT.net): ``` pip install -U sentence-transformers ``` ```python from sentence_transformers import SentenceTransformer sentences_1 = ["样例数据-1", "样例数据-2"] sentences_2 = ["样例数据-3", "样例数据-4"] model = SentenceTransformer('BAAI/bge-large-zh-v1.5') embeddings_1 = model.encode(sentences_1, normalize_embeddings=True) embeddings_2 = model.encode(sentences_2, normalize_embeddings=True) similarity = embeddings_1 @ embeddings_2.T print(similarity) ``` For s2p(short query to long passage) retrieval task, each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)). But the instruction is not needed for passages. ```python from sentence_transformers import SentenceTransformer queries = ['query_1', 'query_2'] passages = ["样例文档-1", "样例文档-2"] instruction = "为这个句子生成表示以用于检索相关文章:" model = SentenceTransformer('BAAI/bge-large-zh-v1.5') q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True) p_embeddings = model.encode(passages, normalize_embeddings=True) scores = q_embeddings @ p_embeddings.T ``` #### Using Langchain You can use `bge` in langchain like this: ```python from langchain.embeddings import HuggingFaceBgeEmbeddings model_name = "BAAI/bge-large-en-v1.5" model_kwargs = {'device': 'cuda'} encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity model = HuggingFaceBgeEmbeddings( model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs, query_instruction="为这个句子生成表示以用于检索相关文章:" ) model.query_instruction = "为这个句子生成表示以用于检索相关文章:" ``` #### Using HuggingFace Transformers With the transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of the first token (i.e., [CLS]) as the sentence embedding. ```python from transformers import AutoTokenizer, AutoModel import torch # Sentences we want sentence embeddings for sentences = ["样例数据-1", "样例数据-2"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh-v1.5') model = AutoModel.from_pretrained('BAAI/bge-large-zh-v1.5') model.eval() # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages) # encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = model_output[0][:, 0] # normalize embeddings sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1) print("Sentence embeddings:", sentence_embeddings) ``` ### Usage for Reranker Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. You can get a relevance score by inputting query and passage to the reranker. The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range. #### Using FlagEmbedding ``` pip install -U FlagEmbedding ``` Get relevance scores (higher scores indicate more relevance): ```python from FlagEmbedding import FlagReranker reranker = FlagReranker('BAAI/bge-reranker-large', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation score = reranker.compute_score(['query', 'passage']) print(score) scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]) print(scores) ``` #### Using Huggingface transformers ```python import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large') model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-large') model.eval() pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']] with torch.no_grad(): inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512) scores = model(**inputs, return_dict=True).logits.view(-1, ).float() print(scores) ``` ## Evaluation `baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!** For more details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md). - **MTEB**: | Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) | |:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | **64.23** | **54.29** | 46.08 | 87.12 | 60.03 | 83.11 | 31.61 | 75.97 | | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 | 53.25 | 45.77 | 86.55 | 58.86 | 82.4 | 31.07 | 75.53 | | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | 62.17 |51.68 | 43.82 | 84.92 | 58.36 | 81.59 | 30.12 | 74.14 | | [bge-large-en](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | 63.98 | 53.9 | 46.98 | 85.8 | 59.48 | 81.56 | 32.06 | 76.21 | | [bge-base-en](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 | | [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 | | [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 | | [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 | | [bge-small-en](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 | | [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 | | [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 | | [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 | | [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 | | [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 | | [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 | | [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 | | [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 | - **C-MTEB**: We create the benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks. Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction. | Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering | |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:| | [**BAAI/bge-large-zh-v1.5**](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 1024 | **64.53** | 70.46 | 56.25 | 81.6 | 69.13 | 65.84 | 48.99 | | [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | 768 | 63.13 | 69.49 | 53.72 | 79.75 | 68.07 | 65.39 | 47.53 | | [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | 512 | 57.82 | 61.77 | 49.11 | 70.41 | 63.96 | 60.92 | 44.18 | | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | 1024 | 64.20 | 71.53 | 54.98 | 78.94 | 68.32 | 65.11 | 48.39 | | [bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 53 | 76.77 | 68.58 | 64.91 | 50.01 | | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 54.12 | 77.5 | 67.07 | 64.91 | 47.63 | | [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 1024 | 58.79 | 63.66 | 48.44 | 69.89 | 67.34 | 56.00 | 48.23 | | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 49.45 | 70.35 | 63.64 | 61.48 | 45.09 | | [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 | 56.91 | 50.47 | 63.99 | 67.52 | 59.34 | 47.68 | | [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 | 54.75 | 50.42 | 64.3 | 68.2 | 59.66 | 48.88 | | [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 768 | 55.48 | 61.63 | 46.49 | 67.07 | 65.35 | 54.35 | 40.68 | | [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) | 384 | 55.38 | 59.95 | 45.27 | 66.45 | 65.85 | 53.86 | 45.26 | | [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 43.35 | 69.56 | 64.31 | 54.28 | 45.68 | | [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 42.78 | 66.62 | 61 | 49.25 | 44.39 | | [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 43.41 | 67.41 | 62.19 | 49.45 | 37.66 | | [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 44.97 | 70.86 | 60.66 | 49.16 | 30.02 | - **Reranking**: See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script. | Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MMarcoReranking | CMedQAv1 | CMedQAv2 | Avg | |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:| | text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 | | multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 | | multilingual-e5-large | 64.55 | 61.61 | 54.28 | 28.6 | 67.42 | 67.92 | 57.4 | | multilingual-e5-base | 64.21 | 62.13 | 54.68 | 29.5 | 66.23 | 66.98 | 57.29 | | m3e-base | 66.03 | 62.74 | 56.07 | 17.51 | 77.05 | 76.76 | 59.36 | | m3e-large | 66.13 | 62.72 | 56.1 | 16.46 | 77.76 | 78.27 | 59.57 | | bge-base-zh-v1.5 | 66.49 | 63.25 | 57.02 | 29.74 | 80.47 | 84.88 | 63.64 | | bge-large-zh-v1.5 | 65.74 | 63.39 | 57.03 | 28.74 | 83.45 | 85.44 | 63.97 | | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 | | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 | \* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval tasks ## Train ### BAAI Embedding We pre-train the models using [retromae](https://github.com/staoxiao/RetroMAE) and train them on large-scale pairs data using contrastive learning. **You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).** We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain). Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned. More training details for bge see [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md). ### BGE Reranker Cross-encoder will perform full-attention over the input pair, which is more accurate than embedding model (i.e., bi-encoder) but more time-consuming than embedding model. Therefore, it can be used to re-rank the top-k documents returned by embedding model. We train the cross-encoder on a multilingual pair data, The data format is the same as embedding model, so you can fine-tune it easily following our [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker). More details please refer to [./FlagEmbedding/reranker/README.md](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker) ## Contact If you have any question or suggestion related to this project, feel free to open an issue or pull request. You also can email Shitao Xiao([email protected]) and Zheng Liu([email protected]). ## Citation If you find this repository useful, please consider giving a star :star: and citation ``` @misc{bge_embedding, title={C-Pack: Packaged Resources To Advance General Chinese Embedding}, author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff}, year={2023}, eprint={2309.07597}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## License FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
michaelfeil/ct2fast-bge-base-en-v1.5
michaelfeil
2023-10-13T13:50:20Z
5
0
sentence-transformers
[ "sentence-transformers", "bert", "feature-extraction", "ctranslate2", "int8", "float16", "sentence-similarity", "transformers", "mteb", "en", "arxiv:2310.07554", "arxiv:2309.07597", "license:mit", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2023-10-13T13:49:34Z
--- tags: - ctranslate2 - int8 - float16 - sentence-transformers - feature-extraction - sentence-similarity - transformers - mteb model-index: - name: bge-base-en-v1.5 results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 76.14925373134328 - type: ap value: 39.32336517995478 - type: f1 value: 70.16902252611425 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 93.386825 - type: ap value: 90.21276917991995 - type: f1 value: 93.37741030006174 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 48.846000000000004 - type: f1 value: 48.14646269778261 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 40.754000000000005 - type: map_at_10 value: 55.761 - type: map_at_100 value: 56.330999999999996 - type: map_at_1000 value: 56.333999999999996 - type: map_at_3 value: 51.92 - type: map_at_5 value: 54.010999999999996 - type: mrr_at_1 value: 41.181 - type: mrr_at_10 value: 55.967999999999996 - type: mrr_at_100 value: 56.538 - type: mrr_at_1000 value: 56.542 - type: mrr_at_3 value: 51.980000000000004 - type: mrr_at_5 value: 54.208999999999996 - type: ndcg_at_1 value: 40.754000000000005 - type: ndcg_at_10 value: 63.605000000000004 - type: ndcg_at_100 value: 66.05199999999999 - type: ndcg_at_1000 value: 66.12 - type: ndcg_at_3 value: 55.708 - type: ndcg_at_5 value: 59.452000000000005 - type: precision_at_1 value: 40.754000000000005 - type: precision_at_10 value: 8.841000000000001 - type: precision_at_100 value: 0.991 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 22.238 - type: precision_at_5 value: 15.149000000000001 - type: recall_at_1 value: 40.754000000000005 - type: recall_at_10 value: 88.407 - type: recall_at_100 value: 99.14699999999999 - type: recall_at_1000 value: 99.644 - type: recall_at_3 value: 66.714 - type: recall_at_5 value: 75.747 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 48.74884539679369 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 42.8075893810716 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 62.128470519187736 - type: mrr value: 74.28065778481289 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 89.24629081484655 - type: cos_sim_spearman value: 86.93752309911496 - type: euclidean_pearson value: 87.58589628573816 - type: euclidean_spearman value: 88.05622328825284 - type: manhattan_pearson value: 87.5594959805773 - type: manhattan_spearman value: 88.19658793233961 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 86.9512987012987 - type: f1 value: 86.92515357973708 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 39.10263762928872 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 36.69711517426737 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 32.327 - type: map_at_10 value: 44.099 - type: map_at_100 value: 45.525 - type: map_at_1000 value: 45.641999999999996 - type: map_at_3 value: 40.47 - type: map_at_5 value: 42.36 - type: mrr_at_1 value: 39.199 - type: mrr_at_10 value: 49.651 - type: mrr_at_100 value: 50.29 - type: mrr_at_1000 value: 50.329 - type: mrr_at_3 value: 46.924 - type: mrr_at_5 value: 48.548 - type: ndcg_at_1 value: 39.199 - type: ndcg_at_10 value: 50.773 - type: ndcg_at_100 value: 55.67999999999999 - type: ndcg_at_1000 value: 57.495 - type: ndcg_at_3 value: 45.513999999999996 - type: ndcg_at_5 value: 47.703 - type: precision_at_1 value: 39.199 - type: precision_at_10 value: 9.914000000000001 - type: precision_at_100 value: 1.5310000000000001 - type: precision_at_1000 value: 0.198 - type: precision_at_3 value: 21.984 - type: precision_at_5 value: 15.737000000000002 - type: recall_at_1 value: 32.327 - type: recall_at_10 value: 63.743 - type: recall_at_100 value: 84.538 - type: recall_at_1000 value: 96.089 - type: recall_at_3 value: 48.065000000000005 - type: recall_at_5 value: 54.519 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 32.671 - type: map_at_10 value: 42.954 - type: map_at_100 value: 44.151 - type: map_at_1000 value: 44.287 - type: map_at_3 value: 39.912 - type: map_at_5 value: 41.798 - type: mrr_at_1 value: 41.465 - type: mrr_at_10 value: 49.351 - type: mrr_at_100 value: 49.980000000000004 - type: mrr_at_1000 value: 50.016000000000005 - type: mrr_at_3 value: 47.144000000000005 - type: mrr_at_5 value: 48.592999999999996 - type: ndcg_at_1 value: 41.465 - type: ndcg_at_10 value: 48.565999999999995 - type: ndcg_at_100 value: 52.76499999999999 - type: ndcg_at_1000 value: 54.749 - type: ndcg_at_3 value: 44.57 - type: ndcg_at_5 value: 46.759 - type: precision_at_1 value: 41.465 - type: precision_at_10 value: 9.107999999999999 - type: precision_at_100 value: 1.433 - type: precision_at_1000 value: 0.191 - type: precision_at_3 value: 21.423000000000002 - type: precision_at_5 value: 15.414 - type: recall_at_1 value: 32.671 - type: recall_at_10 value: 57.738 - type: recall_at_100 value: 75.86500000000001 - type: recall_at_1000 value: 88.36 - type: recall_at_3 value: 45.626 - type: recall_at_5 value: 51.812000000000005 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 41.185 - type: map_at_10 value: 53.929 - type: map_at_100 value: 54.92 - type: map_at_1000 value: 54.967999999999996 - type: map_at_3 value: 50.70400000000001 - type: map_at_5 value: 52.673 - type: mrr_at_1 value: 47.398 - type: mrr_at_10 value: 57.303000000000004 - type: mrr_at_100 value: 57.959 - type: mrr_at_1000 value: 57.985 - type: mrr_at_3 value: 54.932 - type: mrr_at_5 value: 56.464999999999996 - type: ndcg_at_1 value: 47.398 - type: ndcg_at_10 value: 59.653 - type: ndcg_at_100 value: 63.627 - type: ndcg_at_1000 value: 64.596 - type: ndcg_at_3 value: 54.455 - type: ndcg_at_5 value: 57.245000000000005 - type: precision_at_1 value: 47.398 - type: precision_at_10 value: 9.524000000000001 - type: precision_at_100 value: 1.243 - type: precision_at_1000 value: 0.13699999999999998 - type: precision_at_3 value: 24.389 - type: precision_at_5 value: 16.752 - type: recall_at_1 value: 41.185 - type: recall_at_10 value: 73.193 - type: recall_at_100 value: 90.357 - type: recall_at_1000 value: 97.253 - type: recall_at_3 value: 59.199999999999996 - type: recall_at_5 value: 66.118 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 27.27 - type: map_at_10 value: 36.223 - type: map_at_100 value: 37.218 - type: map_at_1000 value: 37.293 - type: map_at_3 value: 33.503 - type: map_at_5 value: 35.097 - type: mrr_at_1 value: 29.492 - type: mrr_at_10 value: 38.352000000000004 - type: mrr_at_100 value: 39.188 - type: mrr_at_1000 value: 39.247 - type: mrr_at_3 value: 35.876000000000005 - type: mrr_at_5 value: 37.401 - type: ndcg_at_1 value: 29.492 - type: ndcg_at_10 value: 41.239 - type: ndcg_at_100 value: 46.066 - type: ndcg_at_1000 value: 47.992000000000004 - type: ndcg_at_3 value: 36.11 - type: ndcg_at_5 value: 38.772 - type: precision_at_1 value: 29.492 - type: precision_at_10 value: 6.260000000000001 - type: precision_at_100 value: 0.914 - type: precision_at_1000 value: 0.11100000000000002 - type: precision_at_3 value: 15.104000000000001 - type: precision_at_5 value: 10.644 - type: recall_at_1 value: 27.27 - type: recall_at_10 value: 54.589 - type: recall_at_100 value: 76.70700000000001 - type: recall_at_1000 value: 91.158 - type: recall_at_3 value: 40.974 - type: recall_at_5 value: 47.327000000000005 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 17.848 - type: map_at_10 value: 26.207 - type: map_at_100 value: 27.478 - type: map_at_1000 value: 27.602 - type: map_at_3 value: 23.405 - type: map_at_5 value: 24.98 - type: mrr_at_1 value: 21.891 - type: mrr_at_10 value: 31.041999999999998 - type: mrr_at_100 value: 32.092 - type: mrr_at_1000 value: 32.151999999999994 - type: mrr_at_3 value: 28.358 - type: mrr_at_5 value: 29.969 - type: ndcg_at_1 value: 21.891 - type: ndcg_at_10 value: 31.585 - type: ndcg_at_100 value: 37.531 - type: ndcg_at_1000 value: 40.256 - type: ndcg_at_3 value: 26.508 - type: ndcg_at_5 value: 28.894 - type: precision_at_1 value: 21.891 - type: precision_at_10 value: 5.795999999999999 - type: precision_at_100 value: 0.9990000000000001 - type: precision_at_1000 value: 0.13799999999999998 - type: precision_at_3 value: 12.769 - type: precision_at_5 value: 9.279 - type: recall_at_1 value: 17.848 - type: recall_at_10 value: 43.452 - type: recall_at_100 value: 69.216 - type: recall_at_1000 value: 88.102 - type: recall_at_3 value: 29.18 - type: recall_at_5 value: 35.347 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 30.94 - type: map_at_10 value: 41.248000000000005 - type: map_at_100 value: 42.495 - type: map_at_1000 value: 42.602000000000004 - type: map_at_3 value: 37.939 - type: map_at_5 value: 39.924 - type: mrr_at_1 value: 37.824999999999996 - type: mrr_at_10 value: 47.041 - type: mrr_at_100 value: 47.83 - type: mrr_at_1000 value: 47.878 - type: mrr_at_3 value: 44.466 - type: mrr_at_5 value: 46.111999999999995 - type: ndcg_at_1 value: 37.824999999999996 - type: ndcg_at_10 value: 47.223 - type: ndcg_at_100 value: 52.394 - type: ndcg_at_1000 value: 54.432 - type: ndcg_at_3 value: 42.032000000000004 - type: ndcg_at_5 value: 44.772 - type: precision_at_1 value: 37.824999999999996 - type: precision_at_10 value: 8.393 - type: precision_at_100 value: 1.2890000000000001 - type: precision_at_1000 value: 0.164 - type: precision_at_3 value: 19.698 - type: precision_at_5 value: 14.013 - type: recall_at_1 value: 30.94 - type: recall_at_10 value: 59.316 - type: recall_at_100 value: 80.783 - type: recall_at_1000 value: 94.15400000000001 - type: recall_at_3 value: 44.712 - type: recall_at_5 value: 51.932 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 27.104 - type: map_at_10 value: 36.675999999999995 - type: map_at_100 value: 38.076 - type: map_at_1000 value: 38.189 - type: map_at_3 value: 33.733999999999995 - type: map_at_5 value: 35.287 - type: mrr_at_1 value: 33.904 - type: mrr_at_10 value: 42.55 - type: mrr_at_100 value: 43.434 - type: mrr_at_1000 value: 43.494 - type: mrr_at_3 value: 40.126 - type: mrr_at_5 value: 41.473 - type: ndcg_at_1 value: 33.904 - type: ndcg_at_10 value: 42.414 - type: ndcg_at_100 value: 48.203 - type: ndcg_at_1000 value: 50.437 - type: ndcg_at_3 value: 37.633 - type: ndcg_at_5 value: 39.67 - type: precision_at_1 value: 33.904 - type: precision_at_10 value: 7.82 - type: precision_at_100 value: 1.2409999999999999 - type: precision_at_1000 value: 0.159 - type: precision_at_3 value: 17.884 - type: precision_at_5 value: 12.648000000000001 - type: recall_at_1 value: 27.104 - type: recall_at_10 value: 53.563 - type: recall_at_100 value: 78.557 - type: recall_at_1000 value: 93.533 - type: recall_at_3 value: 39.92 - type: recall_at_5 value: 45.457 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 27.707749999999997 - type: map_at_10 value: 36.961 - type: map_at_100 value: 38.158833333333334 - type: map_at_1000 value: 38.270333333333326 - type: map_at_3 value: 34.07183333333334 - type: map_at_5 value: 35.69533333333334 - type: mrr_at_1 value: 32.81875 - type: mrr_at_10 value: 41.293 - type: mrr_at_100 value: 42.116499999999995 - type: mrr_at_1000 value: 42.170249999999996 - type: mrr_at_3 value: 38.83983333333333 - type: mrr_at_5 value: 40.29775 - type: ndcg_at_1 value: 32.81875 - type: ndcg_at_10 value: 42.355 - type: ndcg_at_100 value: 47.41374999999999 - type: ndcg_at_1000 value: 49.5805 - type: ndcg_at_3 value: 37.52825 - type: ndcg_at_5 value: 39.83266666666667 - type: precision_at_1 value: 32.81875 - type: precision_at_10 value: 7.382416666666666 - type: precision_at_100 value: 1.1640833333333334 - type: precision_at_1000 value: 0.15383333333333335 - type: precision_at_3 value: 17.134166666666665 - type: precision_at_5 value: 12.174833333333336 - type: recall_at_1 value: 27.707749999999997 - type: recall_at_10 value: 53.945 - type: recall_at_100 value: 76.191 - type: recall_at_1000 value: 91.101 - type: recall_at_3 value: 40.39083333333334 - type: recall_at_5 value: 46.40083333333333 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 26.482 - type: map_at_10 value: 33.201 - type: map_at_100 value: 34.107 - type: map_at_1000 value: 34.197 - type: map_at_3 value: 31.174000000000003 - type: map_at_5 value: 32.279 - type: mrr_at_1 value: 29.908 - type: mrr_at_10 value: 36.235 - type: mrr_at_100 value: 37.04 - type: mrr_at_1000 value: 37.105 - type: mrr_at_3 value: 34.355999999999995 - type: mrr_at_5 value: 35.382999999999996 - type: ndcg_at_1 value: 29.908 - type: ndcg_at_10 value: 37.325 - type: ndcg_at_100 value: 41.795 - type: ndcg_at_1000 value: 44.105 - type: ndcg_at_3 value: 33.555 - type: ndcg_at_5 value: 35.266999999999996 - type: precision_at_1 value: 29.908 - type: precision_at_10 value: 5.721 - type: precision_at_100 value: 0.8630000000000001 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 14.008000000000001 - type: precision_at_5 value: 9.754999999999999 - type: recall_at_1 value: 26.482 - type: recall_at_10 value: 47.072 - type: recall_at_100 value: 67.27 - type: recall_at_1000 value: 84.371 - type: recall_at_3 value: 36.65 - type: recall_at_5 value: 40.774 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 18.815 - type: map_at_10 value: 26.369999999999997 - type: map_at_100 value: 27.458 - type: map_at_1000 value: 27.588 - type: map_at_3 value: 23.990000000000002 - type: map_at_5 value: 25.345000000000002 - type: mrr_at_1 value: 22.953000000000003 - type: mrr_at_10 value: 30.342999999999996 - type: mrr_at_100 value: 31.241000000000003 - type: mrr_at_1000 value: 31.319000000000003 - type: mrr_at_3 value: 28.16 - type: mrr_at_5 value: 29.406 - type: ndcg_at_1 value: 22.953000000000003 - type: ndcg_at_10 value: 31.151 - type: ndcg_at_100 value: 36.309000000000005 - type: ndcg_at_1000 value: 39.227000000000004 - type: ndcg_at_3 value: 26.921 - type: ndcg_at_5 value: 28.938000000000002 - type: precision_at_1 value: 22.953000000000003 - type: precision_at_10 value: 5.602 - type: precision_at_100 value: 0.9530000000000001 - type: precision_at_1000 value: 0.13899999999999998 - type: precision_at_3 value: 12.606 - type: precision_at_5 value: 9.119 - type: recall_at_1 value: 18.815 - type: recall_at_10 value: 41.574 - type: recall_at_100 value: 64.84400000000001 - type: recall_at_1000 value: 85.406 - type: recall_at_3 value: 29.694 - type: recall_at_5 value: 34.935 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 27.840999999999998 - type: map_at_10 value: 36.797999999999995 - type: map_at_100 value: 37.993 - type: map_at_1000 value: 38.086999999999996 - type: map_at_3 value: 34.050999999999995 - type: map_at_5 value: 35.379 - type: mrr_at_1 value: 32.649 - type: mrr_at_10 value: 41.025 - type: mrr_at_100 value: 41.878 - type: mrr_at_1000 value: 41.929 - type: mrr_at_3 value: 38.573 - type: mrr_at_5 value: 39.715 - type: ndcg_at_1 value: 32.649 - type: ndcg_at_10 value: 42.142 - type: ndcg_at_100 value: 47.558 - type: ndcg_at_1000 value: 49.643 - type: ndcg_at_3 value: 37.12 - type: ndcg_at_5 value: 38.983000000000004 - type: precision_at_1 value: 32.649 - type: precision_at_10 value: 7.08 - type: precision_at_100 value: 1.1039999999999999 - type: precision_at_1000 value: 0.13899999999999998 - type: precision_at_3 value: 16.698 - type: precision_at_5 value: 11.511000000000001 - type: recall_at_1 value: 27.840999999999998 - type: recall_at_10 value: 54.245 - type: recall_at_100 value: 77.947 - type: recall_at_1000 value: 92.36999999999999 - type: recall_at_3 value: 40.146 - type: recall_at_5 value: 44.951 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 26.529000000000003 - type: map_at_10 value: 35.010000000000005 - type: map_at_100 value: 36.647 - type: map_at_1000 value: 36.857 - type: map_at_3 value: 31.968000000000004 - type: map_at_5 value: 33.554 - type: mrr_at_1 value: 31.818 - type: mrr_at_10 value: 39.550999999999995 - type: mrr_at_100 value: 40.54 - type: mrr_at_1000 value: 40.596 - type: mrr_at_3 value: 36.726 - type: mrr_at_5 value: 38.416 - type: ndcg_at_1 value: 31.818 - type: ndcg_at_10 value: 40.675 - type: ndcg_at_100 value: 46.548 - type: ndcg_at_1000 value: 49.126 - type: ndcg_at_3 value: 35.829 - type: ndcg_at_5 value: 38.0 - type: precision_at_1 value: 31.818 - type: precision_at_10 value: 7.826 - type: precision_at_100 value: 1.538 - type: precision_at_1000 value: 0.24 - type: precision_at_3 value: 16.601 - type: precision_at_5 value: 12.095 - type: recall_at_1 value: 26.529000000000003 - type: recall_at_10 value: 51.03 - type: recall_at_100 value: 77.556 - type: recall_at_1000 value: 93.804 - type: recall_at_3 value: 36.986000000000004 - type: recall_at_5 value: 43.096000000000004 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 23.480999999999998 - type: map_at_10 value: 30.817 - type: map_at_100 value: 31.838 - type: map_at_1000 value: 31.932 - type: map_at_3 value: 28.011999999999997 - type: map_at_5 value: 29.668 - type: mrr_at_1 value: 25.323 - type: mrr_at_10 value: 33.072 - type: mrr_at_100 value: 33.926 - type: mrr_at_1000 value: 33.993 - type: mrr_at_3 value: 30.436999999999998 - type: mrr_at_5 value: 32.092 - type: ndcg_at_1 value: 25.323 - type: ndcg_at_10 value: 35.514 - type: ndcg_at_100 value: 40.489000000000004 - type: ndcg_at_1000 value: 42.908 - type: ndcg_at_3 value: 30.092000000000002 - type: ndcg_at_5 value: 32.989000000000004 - type: precision_at_1 value: 25.323 - type: precision_at_10 value: 5.545 - type: precision_at_100 value: 0.861 - type: precision_at_1000 value: 0.117 - type: precision_at_3 value: 12.446 - type: precision_at_5 value: 9.131 - type: recall_at_1 value: 23.480999999999998 - type: recall_at_10 value: 47.825 - type: recall_at_100 value: 70.652 - type: recall_at_1000 value: 88.612 - type: recall_at_3 value: 33.537 - type: recall_at_5 value: 40.542 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: map_at_1 value: 13.333999999999998 - type: map_at_10 value: 22.524 - type: map_at_100 value: 24.506 - type: map_at_1000 value: 24.715 - type: map_at_3 value: 19.022 - type: map_at_5 value: 20.693 - type: mrr_at_1 value: 29.186 - type: mrr_at_10 value: 41.22 - type: mrr_at_100 value: 42.16 - type: mrr_at_1000 value: 42.192 - type: mrr_at_3 value: 38.013000000000005 - type: mrr_at_5 value: 39.704 - type: ndcg_at_1 value: 29.186 - type: ndcg_at_10 value: 31.167 - type: ndcg_at_100 value: 38.879000000000005 - type: ndcg_at_1000 value: 42.376000000000005 - type: ndcg_at_3 value: 25.817 - type: ndcg_at_5 value: 27.377000000000002 - type: precision_at_1 value: 29.186 - type: precision_at_10 value: 9.693999999999999 - type: precision_at_100 value: 1.8030000000000002 - type: precision_at_1000 value: 0.246 - type: precision_at_3 value: 19.11 - type: precision_at_5 value: 14.344999999999999 - type: recall_at_1 value: 13.333999999999998 - type: recall_at_10 value: 37.092000000000006 - type: recall_at_100 value: 63.651 - type: recall_at_1000 value: 83.05 - type: recall_at_3 value: 23.74 - type: recall_at_5 value: 28.655 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: map_at_1 value: 9.151 - type: map_at_10 value: 19.653000000000002 - type: map_at_100 value: 28.053 - type: map_at_1000 value: 29.709000000000003 - type: map_at_3 value: 14.191 - type: map_at_5 value: 16.456 - type: mrr_at_1 value: 66.25 - type: mrr_at_10 value: 74.4 - type: mrr_at_100 value: 74.715 - type: mrr_at_1000 value: 74.726 - type: mrr_at_3 value: 72.417 - type: mrr_at_5 value: 73.667 - type: ndcg_at_1 value: 54.25 - type: ndcg_at_10 value: 40.77 - type: ndcg_at_100 value: 46.359 - type: ndcg_at_1000 value: 54.193000000000005 - type: ndcg_at_3 value: 44.832 - type: ndcg_at_5 value: 42.63 - type: precision_at_1 value: 66.25 - type: precision_at_10 value: 32.175 - type: precision_at_100 value: 10.668 - type: precision_at_1000 value: 2.067 - type: precision_at_3 value: 47.667 - type: precision_at_5 value: 41.3 - type: recall_at_1 value: 9.151 - type: recall_at_10 value: 25.003999999999998 - type: recall_at_100 value: 52.976 - type: recall_at_1000 value: 78.315 - type: recall_at_3 value: 15.487 - type: recall_at_5 value: 18.999 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 51.89999999999999 - type: f1 value: 46.47777925067403 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: map_at_1 value: 73.706 - type: map_at_10 value: 82.423 - type: map_at_100 value: 82.67999999999999 - type: map_at_1000 value: 82.694 - type: map_at_3 value: 81.328 - type: map_at_5 value: 82.001 - type: mrr_at_1 value: 79.613 - type: mrr_at_10 value: 87.07000000000001 - type: mrr_at_100 value: 87.169 - type: mrr_at_1000 value: 87.17 - type: mrr_at_3 value: 86.404 - type: mrr_at_5 value: 86.856 - type: ndcg_at_1 value: 79.613 - type: ndcg_at_10 value: 86.289 - type: ndcg_at_100 value: 87.201 - type: ndcg_at_1000 value: 87.428 - type: ndcg_at_3 value: 84.625 - type: ndcg_at_5 value: 85.53699999999999 - type: precision_at_1 value: 79.613 - type: precision_at_10 value: 10.399 - type: precision_at_100 value: 1.1079999999999999 - type: precision_at_1000 value: 0.11499999999999999 - type: precision_at_3 value: 32.473 - type: precision_at_5 value: 20.132 - type: recall_at_1 value: 73.706 - type: recall_at_10 value: 93.559 - type: recall_at_100 value: 97.188 - type: recall_at_1000 value: 98.555 - type: recall_at_3 value: 88.98700000000001 - type: recall_at_5 value: 91.373 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: map_at_1 value: 19.841 - type: map_at_10 value: 32.643 - type: map_at_100 value: 34.575 - type: map_at_1000 value: 34.736 - type: map_at_3 value: 28.317999999999998 - type: map_at_5 value: 30.964000000000002 - type: mrr_at_1 value: 39.660000000000004 - type: mrr_at_10 value: 48.620000000000005 - type: mrr_at_100 value: 49.384 - type: mrr_at_1000 value: 49.415 - type: mrr_at_3 value: 45.988 - type: mrr_at_5 value: 47.361 - type: ndcg_at_1 value: 39.660000000000004 - type: ndcg_at_10 value: 40.646 - type: ndcg_at_100 value: 47.657 - type: ndcg_at_1000 value: 50.428 - type: ndcg_at_3 value: 36.689 - type: ndcg_at_5 value: 38.211 - type: precision_at_1 value: 39.660000000000004 - type: precision_at_10 value: 11.235000000000001 - type: precision_at_100 value: 1.8530000000000002 - type: precision_at_1000 value: 0.23600000000000002 - type: precision_at_3 value: 24.587999999999997 - type: precision_at_5 value: 18.395 - type: recall_at_1 value: 19.841 - type: recall_at_10 value: 48.135 - type: recall_at_100 value: 74.224 - type: recall_at_1000 value: 90.826 - type: recall_at_3 value: 33.536 - type: recall_at_5 value: 40.311 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: map_at_1 value: 40.358 - type: map_at_10 value: 64.497 - type: map_at_100 value: 65.362 - type: map_at_1000 value: 65.41900000000001 - type: map_at_3 value: 61.06700000000001 - type: map_at_5 value: 63.317 - type: mrr_at_1 value: 80.716 - type: mrr_at_10 value: 86.10799999999999 - type: mrr_at_100 value: 86.265 - type: mrr_at_1000 value: 86.27 - type: mrr_at_3 value: 85.271 - type: mrr_at_5 value: 85.82499999999999 - type: ndcg_at_1 value: 80.716 - type: ndcg_at_10 value: 72.597 - type: ndcg_at_100 value: 75.549 - type: ndcg_at_1000 value: 76.61 - type: ndcg_at_3 value: 67.874 - type: ndcg_at_5 value: 70.655 - type: precision_at_1 value: 80.716 - type: precision_at_10 value: 15.148 - type: precision_at_100 value: 1.745 - type: precision_at_1000 value: 0.188 - type: precision_at_3 value: 43.597 - type: precision_at_5 value: 28.351 - type: recall_at_1 value: 40.358 - type: recall_at_10 value: 75.739 - type: recall_at_100 value: 87.259 - type: recall_at_1000 value: 94.234 - type: recall_at_3 value: 65.39500000000001 - type: recall_at_5 value: 70.878 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 90.80799999999998 - type: ap value: 86.81350378180757 - type: f1 value: 90.79901248314215 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics: - type: map_at_1 value: 22.096 - type: map_at_10 value: 34.384 - type: map_at_100 value: 35.541 - type: map_at_1000 value: 35.589999999999996 - type: map_at_3 value: 30.496000000000002 - type: map_at_5 value: 32.718 - type: mrr_at_1 value: 22.750999999999998 - type: mrr_at_10 value: 35.024 - type: mrr_at_100 value: 36.125 - type: mrr_at_1000 value: 36.168 - type: mrr_at_3 value: 31.225 - type: mrr_at_5 value: 33.416000000000004 - type: ndcg_at_1 value: 22.750999999999998 - type: ndcg_at_10 value: 41.351 - type: ndcg_at_100 value: 46.92 - type: ndcg_at_1000 value: 48.111 - type: ndcg_at_3 value: 33.439 - type: ndcg_at_5 value: 37.407000000000004 - type: precision_at_1 value: 22.750999999999998 - type: precision_at_10 value: 6.564 - type: precision_at_100 value: 0.935 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 14.288 - type: precision_at_5 value: 10.581999999999999 - type: recall_at_1 value: 22.096 - type: recall_at_10 value: 62.771 - type: recall_at_100 value: 88.529 - type: recall_at_1000 value: 97.55 - type: recall_at_3 value: 41.245 - type: recall_at_5 value: 50.788 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 94.16780665754673 - type: f1 value: 93.96331194859894 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 76.90606475148198 - type: f1 value: 58.58344986604187 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 76.14660390047075 - type: f1 value: 74.31533923533614 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 80.16139878950908 - type: f1 value: 80.18532656824924 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 32.949880906135085 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 31.56300351524862 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 31.196521894371315 - type: mrr value: 32.22644231694389 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: map_at_1 value: 6.783 - type: map_at_10 value: 14.549000000000001 - type: map_at_100 value: 18.433 - type: map_at_1000 value: 19.949 - type: map_at_3 value: 10.936 - type: map_at_5 value: 12.514 - type: mrr_at_1 value: 47.368 - type: mrr_at_10 value: 56.42 - type: mrr_at_100 value: 56.908 - type: mrr_at_1000 value: 56.95 - type: mrr_at_3 value: 54.283 - type: mrr_at_5 value: 55.568 - type: ndcg_at_1 value: 45.666000000000004 - type: ndcg_at_10 value: 37.389 - type: ndcg_at_100 value: 34.253 - type: ndcg_at_1000 value: 43.059999999999995 - type: ndcg_at_3 value: 42.725 - type: ndcg_at_5 value: 40.193 - type: precision_at_1 value: 47.368 - type: precision_at_10 value: 27.988000000000003 - type: precision_at_100 value: 8.672 - type: precision_at_1000 value: 2.164 - type: precision_at_3 value: 40.248 - type: precision_at_5 value: 34.737 - type: recall_at_1 value: 6.783 - type: recall_at_10 value: 17.838 - type: recall_at_100 value: 33.672000000000004 - type: recall_at_1000 value: 66.166 - type: recall_at_3 value: 11.849 - type: recall_at_5 value: 14.205000000000002 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: map_at_1 value: 31.698999999999998 - type: map_at_10 value: 46.556 - type: map_at_100 value: 47.652 - type: map_at_1000 value: 47.68 - type: map_at_3 value: 42.492000000000004 - type: map_at_5 value: 44.763999999999996 - type: mrr_at_1 value: 35.747 - type: mrr_at_10 value: 49.242999999999995 - type: mrr_at_100 value: 50.052 - type: mrr_at_1000 value: 50.068 - type: mrr_at_3 value: 45.867000000000004 - type: mrr_at_5 value: 47.778999999999996 - type: ndcg_at_1 value: 35.717999999999996 - type: ndcg_at_10 value: 54.14600000000001 - type: ndcg_at_100 value: 58.672999999999995 - type: ndcg_at_1000 value: 59.279 - type: ndcg_at_3 value: 46.407 - type: ndcg_at_5 value: 50.181 - type: precision_at_1 value: 35.717999999999996 - type: precision_at_10 value: 8.844000000000001 - type: precision_at_100 value: 1.139 - type: precision_at_1000 value: 0.12 - type: precision_at_3 value: 20.993000000000002 - type: precision_at_5 value: 14.791000000000002 - type: recall_at_1 value: 31.698999999999998 - type: recall_at_10 value: 74.693 - type: recall_at_100 value: 94.15299999999999 - type: recall_at_1000 value: 98.585 - type: recall_at_3 value: 54.388999999999996 - type: recall_at_5 value: 63.08200000000001 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 71.283 - type: map_at_10 value: 85.24000000000001 - type: map_at_100 value: 85.882 - type: map_at_1000 value: 85.897 - type: map_at_3 value: 82.326 - type: map_at_5 value: 84.177 - type: mrr_at_1 value: 82.21000000000001 - type: mrr_at_10 value: 88.228 - type: mrr_at_100 value: 88.32 - type: mrr_at_1000 value: 88.32 - type: mrr_at_3 value: 87.323 - type: mrr_at_5 value: 87.94800000000001 - type: ndcg_at_1 value: 82.17999999999999 - type: ndcg_at_10 value: 88.9 - type: ndcg_at_100 value: 90.079 - type: ndcg_at_1000 value: 90.158 - type: ndcg_at_3 value: 86.18299999999999 - type: ndcg_at_5 value: 87.71799999999999 - type: precision_at_1 value: 82.17999999999999 - type: precision_at_10 value: 13.464 - type: precision_at_100 value: 1.533 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 37.693 - type: precision_at_5 value: 24.792 - type: recall_at_1 value: 71.283 - type: recall_at_10 value: 95.742 - type: recall_at_100 value: 99.67200000000001 - type: recall_at_1000 value: 99.981 - type: recall_at_3 value: 87.888 - type: recall_at_5 value: 92.24 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 56.24267063669042 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 62.88056988932578 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 4.903 - type: map_at_10 value: 13.202 - type: map_at_100 value: 15.5 - type: map_at_1000 value: 15.870999999999999 - type: map_at_3 value: 9.407 - type: map_at_5 value: 11.238 - type: mrr_at_1 value: 24.2 - type: mrr_at_10 value: 35.867 - type: mrr_at_100 value: 37.001 - type: mrr_at_1000 value: 37.043 - type: mrr_at_3 value: 32.5 - type: mrr_at_5 value: 34.35 - type: ndcg_at_1 value: 24.2 - type: ndcg_at_10 value: 21.731 - type: ndcg_at_100 value: 30.7 - type: ndcg_at_1000 value: 36.618 - type: ndcg_at_3 value: 20.72 - type: ndcg_at_5 value: 17.954 - type: precision_at_1 value: 24.2 - type: precision_at_10 value: 11.33 - type: precision_at_100 value: 2.4410000000000003 - type: precision_at_1000 value: 0.386 - type: precision_at_3 value: 19.667 - type: precision_at_5 value: 15.86 - type: recall_at_1 value: 4.903 - type: recall_at_10 value: 22.962 - type: recall_at_100 value: 49.563 - type: recall_at_1000 value: 78.238 - type: recall_at_3 value: 11.953 - type: recall_at_5 value: 16.067999999999998 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 84.12694254604078 - type: cos_sim_spearman value: 80.30141815181918 - type: euclidean_pearson value: 81.34015449877128 - type: euclidean_spearman value: 80.13984197010849 - type: manhattan_pearson value: 81.31767068124086 - type: manhattan_spearman value: 80.11720513114103 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 86.13112984010417 - type: cos_sim_spearman value: 78.03063573402875 - type: euclidean_pearson value: 83.51928418844804 - type: euclidean_spearman value: 78.4045235411144 - type: manhattan_pearson value: 83.49981637388689 - type: manhattan_spearman value: 78.4042575139372 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 82.50327987379504 - type: cos_sim_spearman value: 84.18556767756205 - type: euclidean_pearson value: 82.69684424327679 - type: euclidean_spearman value: 83.5368106038335 - type: manhattan_pearson value: 82.57967581007374 - type: manhattan_spearman value: 83.43009053133697 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 82.50756863007814 - type: cos_sim_spearman value: 82.27204331279108 - type: euclidean_pearson value: 81.39535251429741 - type: euclidean_spearman value: 81.84386626336239 - type: manhattan_pearson value: 81.34281737280695 - type: manhattan_spearman value: 81.81149375673166 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 86.8727714856726 - type: cos_sim_spearman value: 87.95738287792312 - type: euclidean_pearson value: 86.62920602795887 - type: euclidean_spearman value: 87.05207355381243 - type: manhattan_pearson value: 86.53587918472225 - type: manhattan_spearman value: 86.95382961029586 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 83.52240359769479 - type: cos_sim_spearman value: 85.47685776238286 - type: euclidean_pearson value: 84.25815333483058 - type: euclidean_spearman value: 85.27415639683198 - type: manhattan_pearson value: 84.29127757025637 - type: manhattan_spearman value: 85.30226224917351 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 86.42501708915708 - type: cos_sim_spearman value: 86.42276182795041 - type: euclidean_pearson value: 86.5408207354761 - type: euclidean_spearman value: 85.46096321750838 - type: manhattan_pearson value: 86.54177303026881 - type: manhattan_spearman value: 85.50313151916117 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 64.86521089250766 - type: cos_sim_spearman value: 65.94868540323003 - type: euclidean_pearson value: 67.16569626533084 - type: euclidean_spearman value: 66.37667004134917 - type: manhattan_pearson value: 67.1482365102333 - type: manhattan_spearman value: 66.53240122580029 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 84.64746265365318 - type: cos_sim_spearman value: 86.41888825906786 - type: euclidean_pearson value: 85.27453642725811 - type: euclidean_spearman value: 85.94095796602544 - type: manhattan_pearson value: 85.28643660505334 - type: manhattan_spearman value: 85.95028003260744 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 87.48903153618527 - type: mrr value: 96.41081503826601 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: map_at_1 value: 58.594 - type: map_at_10 value: 69.296 - type: map_at_100 value: 69.782 - type: map_at_1000 value: 69.795 - type: map_at_3 value: 66.23 - type: map_at_5 value: 68.293 - type: mrr_at_1 value: 61.667 - type: mrr_at_10 value: 70.339 - type: mrr_at_100 value: 70.708 - type: mrr_at_1000 value: 70.722 - type: mrr_at_3 value: 68.0 - type: mrr_at_5 value: 69.56700000000001 - type: ndcg_at_1 value: 61.667 - type: ndcg_at_10 value: 74.039 - type: ndcg_at_100 value: 76.103 - type: ndcg_at_1000 value: 76.47800000000001 - type: ndcg_at_3 value: 68.967 - type: ndcg_at_5 value: 71.96900000000001 - type: precision_at_1 value: 61.667 - type: precision_at_10 value: 9.866999999999999 - type: precision_at_100 value: 1.097 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 27.111 - type: precision_at_5 value: 18.2 - type: recall_at_1 value: 58.594 - type: recall_at_10 value: 87.422 - type: recall_at_100 value: 96.667 - type: recall_at_1000 value: 99.667 - type: recall_at_3 value: 74.217 - type: recall_at_5 value: 81.539 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.85049504950496 - type: cos_sim_ap value: 96.33111544137081 - type: cos_sim_f1 value: 92.35443037974684 - type: cos_sim_precision value: 93.53846153846153 - type: cos_sim_recall value: 91.2 - type: dot_accuracy value: 99.82376237623762 - type: dot_ap value: 95.38082527310888 - type: dot_f1 value: 90.90909090909092 - type: dot_precision value: 92.90187891440502 - type: dot_recall value: 89.0 - type: euclidean_accuracy value: 99.84851485148515 - type: euclidean_ap value: 96.32316003996347 - type: euclidean_f1 value: 92.2071392659628 - type: euclidean_precision value: 92.71991911021233 - type: euclidean_recall value: 91.7 - type: manhattan_accuracy value: 99.84851485148515 - type: manhattan_ap value: 96.3655668249217 - type: manhattan_f1 value: 92.18356026222895 - type: manhattan_precision value: 92.98067141403867 - type: manhattan_recall value: 91.4 - type: max_accuracy value: 99.85049504950496 - type: max_ap value: 96.3655668249217 - type: max_f1 value: 92.35443037974684 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 65.94861371629051 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 35.009430451385 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 54.61164066427969 - type: mrr value: 55.49710603938544 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 30.622620124907662 - type: cos_sim_spearman value: 31.0678351356163 - type: dot_pearson value: 30.863727693306814 - type: dot_spearman value: 31.230306567021255 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.22 - type: map_at_10 value: 2.011 - type: map_at_100 value: 10.974 - type: map_at_1000 value: 25.819 - type: map_at_3 value: 0.6649999999999999 - type: map_at_5 value: 1.076 - type: mrr_at_1 value: 86.0 - type: mrr_at_10 value: 91.8 - type: mrr_at_100 value: 91.8 - type: mrr_at_1000 value: 91.8 - type: mrr_at_3 value: 91.0 - type: mrr_at_5 value: 91.8 - type: ndcg_at_1 value: 82.0 - type: ndcg_at_10 value: 78.07300000000001 - type: ndcg_at_100 value: 58.231 - type: ndcg_at_1000 value: 51.153000000000006 - type: ndcg_at_3 value: 81.123 - type: ndcg_at_5 value: 81.059 - type: precision_at_1 value: 86.0 - type: precision_at_10 value: 83.0 - type: precision_at_100 value: 59.38 - type: precision_at_1000 value: 22.55 - type: precision_at_3 value: 87.333 - type: precision_at_5 value: 86.8 - type: recall_at_1 value: 0.22 - type: recall_at_10 value: 2.2079999999999997 - type: recall_at_100 value: 14.069 - type: recall_at_1000 value: 47.678 - type: recall_at_3 value: 0.7040000000000001 - type: recall_at_5 value: 1.161 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 2.809 - type: map_at_10 value: 10.394 - type: map_at_100 value: 16.598 - type: map_at_1000 value: 18.142 - type: map_at_3 value: 5.572 - type: map_at_5 value: 7.1370000000000005 - type: mrr_at_1 value: 32.653 - type: mrr_at_10 value: 46.564 - type: mrr_at_100 value: 47.469 - type: mrr_at_1000 value: 47.469 - type: mrr_at_3 value: 42.177 - type: mrr_at_5 value: 44.524 - type: ndcg_at_1 value: 30.612000000000002 - type: ndcg_at_10 value: 25.701 - type: ndcg_at_100 value: 37.532 - type: ndcg_at_1000 value: 48.757 - type: ndcg_at_3 value: 28.199999999999996 - type: ndcg_at_5 value: 25.987 - type: precision_at_1 value: 32.653 - type: precision_at_10 value: 23.469 - type: precision_at_100 value: 7.9799999999999995 - type: precision_at_1000 value: 1.5350000000000001 - type: precision_at_3 value: 29.932 - type: precision_at_5 value: 26.122 - type: recall_at_1 value: 2.809 - type: recall_at_10 value: 16.887 - type: recall_at_100 value: 48.67 - type: recall_at_1000 value: 82.89699999999999 - type: recall_at_3 value: 6.521000000000001 - type: recall_at_5 value: 9.609 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 71.57860000000001 - type: ap value: 13.82629211536393 - type: f1 value: 54.59860966183956 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 59.38030560271647 - type: f1 value: 59.69685552567865 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 51.4736717043405 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 86.92853311080646 - type: cos_sim_ap value: 77.67872502591382 - type: cos_sim_f1 value: 70.33941236068895 - type: cos_sim_precision value: 67.63273258645884 - type: cos_sim_recall value: 73.27176781002639 - type: dot_accuracy value: 85.79603027954938 - type: dot_ap value: 73.73786190233379 - type: dot_f1 value: 67.3437901774235 - type: dot_precision value: 65.67201604814443 - type: dot_recall value: 69.10290237467018 - type: euclidean_accuracy value: 86.94045419324074 - type: euclidean_ap value: 77.6687791535167 - type: euclidean_f1 value: 70.47209214023542 - type: euclidean_precision value: 67.7207492094381 - type: euclidean_recall value: 73.45646437994723 - type: manhattan_accuracy value: 86.87488823985218 - type: manhattan_ap value: 77.63373392430728 - type: manhattan_f1 value: 70.40920716112532 - type: manhattan_precision value: 68.31265508684864 - type: manhattan_recall value: 72.63852242744063 - type: max_accuracy value: 86.94045419324074 - type: max_ap value: 77.67872502591382 - type: max_f1 value: 70.47209214023542 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.67155664221679 - type: cos_sim_ap value: 85.64591703003417 - type: cos_sim_f1 value: 77.59531005352656 - type: cos_sim_precision value: 73.60967184801382 - type: cos_sim_recall value: 82.03726516784724 - type: dot_accuracy value: 88.41541506578181 - type: dot_ap value: 84.6482788957769 - type: dot_f1 value: 77.04748541466657 - type: dot_precision value: 74.02440754931176 - type: dot_recall value: 80.3279950723745 - type: euclidean_accuracy value: 88.63080684596576 - type: euclidean_ap value: 85.44570045321562 - type: euclidean_f1 value: 77.28769403336106 - type: euclidean_precision value: 72.90600040958427 - type: euclidean_recall value: 82.22975053895904 - type: manhattan_accuracy value: 88.59393798269105 - type: manhattan_ap value: 85.40271361038187 - type: manhattan_f1 value: 77.17606419344392 - type: manhattan_precision value: 72.4447747078295 - type: manhattan_recall value: 82.5685247921158 - type: max_accuracy value: 88.67155664221679 - type: max_ap value: 85.64591703003417 - type: max_f1 value: 77.59531005352656 license: mit language: - en --- # # Fast-Inference with Ctranslate2 Speedup inference while reducing memory by 2x-4x using int8 inference in C++ on CPU or GPU. quantized version of [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) ```bash pip install hf-hub-ctranslate2>=2.12.0 ctranslate2>=3.17.1 ``` ```python # from transformers import AutoTokenizer model_name = "michaelfeil/ct2fast-bge-base-en-v1.5" model_name_orig="BAAI/bge-base-en-v1.5" from hf_hub_ctranslate2 import EncoderCT2fromHfHub model = EncoderCT2fromHfHub( # load in int8 on CUDA model_name_or_path=model_name, device="cuda", compute_type="int8_float16" ) outputs = model.generate( text=["I like soccer", "I like tennis", "The eiffel tower is in Paris"], max_length=64, ) # perform downstream tasks on outputs outputs["pooler_output"] outputs["last_hidden_state"] outputs["attention_mask"] # alternative, use SentenceTransformer Mix-In # for end-to-end Sentence embeddings generation # (not pulling from this CT2fast-HF repo) from hf_hub_ctranslate2 import CT2SentenceTransformer model = CT2SentenceTransformer( model_name_orig, compute_type="int8_float16", device="cuda" ) embeddings = model.encode( ["I like soccer", "I like tennis", "The eiffel tower is in Paris"], batch_size=32, convert_to_numpy=True, normalize_embeddings=True, ) print(embeddings.shape, embeddings) scores = (embeddings @ embeddings.T) * 100 # Hint: you can also host this code via REST API and # via github.com/michaelfeil/infinity ``` Checkpoint compatible to [ctranslate2>=3.17.1](https://github.com/OpenNMT/CTranslate2) and [hf-hub-ctranslate2>=2.12.0](https://github.com/michaelfeil/hf-hub-ctranslate2) - `compute_type=int8_float16` for `device="cuda"` - `compute_type=int8` for `device="cpu"` Converted on 2023-10-13 using ``` LLama-2 -> removed <pad> token. ``` # Licence and other remarks: This is just a quantized version. Licence conditions are intended to be idential to original huggingface repo. # Original description <h1 align="center">FlagEmbedding</h1> <h4 align="center"> <p> <a href=#model-list>Model List</a> | <a href=#frequently-asked-questions>FAQ</a> | <a href=#usage>Usage</a> | <a href="#evaluation">Evaluation</a> | <a href="#train">Train</a> | <a href="#contact">Contact</a> | <a href="#citation">Citation</a> | <a href="#license">License</a> <p> </h4> More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding). [English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md) FlagEmbedding can map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification, clustering, or semantic search. And it also can be used in vector databases for LLMs. ************* 🌟**Updates**🌟 ************* - 10/12/2023: Release [LLM-Embedder](./FlagEmbedding/llm_embedder/README.md), a unified embedding model to support diverse retrieval augmentation needs for LLMs. [Paper](https://arxiv.org/pdf/2310.07554.pdf) :fire: - 09/15/2023: The [technical report](https://arxiv.org/pdf/2309.07597.pdf) of BGE has been released - 09/15/2023: The [masive training data](https://data.baai.ac.cn/details/BAAI-MTP) of BGE has been released - 09/12/2023: New models: - **New reranker model**: release cross-encoder models `BAAI/bge-reranker-base` and `BAAI/bge-reranker-large`, which are more powerful than embedding model. We recommend to use/fine-tune them to re-rank top-k documents returned by embedding models. - **update embedding model**: release `bge-*-v1.5` embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction. <details> <summary>More</summary> <!-- ### More --> - 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning. - 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard). - 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗** - 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada: - 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset. </details> ## Model List `bge` is short for `BAAI general embedding`. | Model | Language | | Description | query instruction for retrieval [1] | |:-------------------------------|:--------:| :--------:| :--------:|:--------:| | [BAAI/llm-embedder](https://huggingface.co/BAAI/llm-embedder) | English | [Inference](./FlagEmbedding/llm_embedder/README.md) [Fine-tune](./FlagEmbedding/llm_embedder/README.md) | a unified embedding model to support diverse retrieval augmentation needs for LLMs | See [README](./FlagEmbedding/llm_embedder/README.md) | | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | | | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | | | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) |a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` | [1\]: If you need to search the relevant passages to a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages. [2\]: Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models. For examples, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results. All models have been uploaded to Huggingface Hub, and you can see them at https://huggingface.co/BAAI. If you cannot open the Huggingface Hub, you also can download the models at https://model.baai.ac.cn/models . ## Frequently asked questions <details> <summary>1. How to fine-tune bge embedding model?</summary> <!-- ### How to fine-tune bge embedding model? --> Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model. Some suggestions: - Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#hard-negatives), which can improve the retrieval performance. - If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity. - If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results. Hard negatives also are needed to fine-tune reranker. </details> <details> <summary>2. The similarity score between two dissimilar sentences is higher than 0.5</summary> <!-- ### The similarity score between two dissimilar sentences is higher than 0.5 --> **Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.** Since we finetune the models by contrastive learning with a temperature of 0.01, the similarity distribution of the current BGE model is about in the interval \[0.6, 1\]. So a similarity score greater than 0.5 does not indicate that the two sentences are similar. For downstream tasks, such as passage retrieval or semantic similarity, **what matters is the relative order of the scores, not the absolute value.** If you need to filter similar sentences based on a similarity threshold, please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9). </details> <details> <summary>3. When does the query instruction need to be used</summary> <!-- ### When does the query instruction need to be used --> For the `bge-*-v1.5`, we improve its retrieval ability when not using instruction. No instruction only has a slight degradation in retrieval performance compared with using instruction. So you can generate embedding without instruction in all cases for convenience. For a retrieval task that uses short queries to find long related documents, it is recommended to add instructions for these short queries. **The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.** In all cases, the documents/passages do not need to add the instruction. </details> ## Usage ### Usage for Embedding Model Here are some examples for using `bge` models with [FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers). #### Using FlagEmbedding ``` pip install -U FlagEmbedding ``` If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding. ```python from FlagEmbedding import FlagModel sentences_1 = ["样例数据-1", "样例数据-2"] sentences_2 = ["样例数据-3", "样例数据-4"] model = FlagModel('BAAI/bge-large-zh-v1.5', query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:", use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation embeddings_1 = model.encode(sentences_1) embeddings_2 = model.encode(sentences_2) similarity = embeddings_1 @ embeddings_2.T print(similarity) # for s2p(short query to long passage) retrieval task, suggest to use encode_queries() which will automatically add the instruction to each query # corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction queries = ['query_1', 'query_2'] passages = ["样例文档-1", "样例文档-2"] q_embeddings = model.encode_queries(queries) p_embeddings = model.encode(passages) scores = q_embeddings @ p_embeddings.T ``` For the value of the argument `query_instruction_for_retrieval`, see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list). By default, FlagModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs. You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable. #### Using Sentence-Transformers You can also use the `bge` models with [sentence-transformers](https://www.SBERT.net): ``` pip install -U sentence-transformers ``` ```python from sentence_transformers import SentenceTransformer sentences_1 = ["样例数据-1", "样例数据-2"] sentences_2 = ["样例数据-3", "样例数据-4"] model = SentenceTransformer('BAAI/bge-large-zh-v1.5') embeddings_1 = model.encode(sentences_1, normalize_embeddings=True) embeddings_2 = model.encode(sentences_2, normalize_embeddings=True) similarity = embeddings_1 @ embeddings_2.T print(similarity) ``` For s2p(short query to long passage) retrieval task, each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)). But the instruction is not needed for passages. ```python from sentence_transformers import SentenceTransformer queries = ['query_1', 'query_2'] passages = ["样例文档-1", "样例文档-2"] instruction = "为这个句子生成表示以用于检索相关文章:" model = SentenceTransformer('BAAI/bge-large-zh-v1.5') q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True) p_embeddings = model.encode(passages, normalize_embeddings=True) scores = q_embeddings @ p_embeddings.T ``` #### Using Langchain You can use `bge` in langchain like this: ```python from langchain.embeddings import HuggingFaceBgeEmbeddings model_name = "BAAI/bge-large-en-v1.5" model_kwargs = {'device': 'cuda'} encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity model = HuggingFaceBgeEmbeddings( model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs, query_instruction="为这个句子生成表示以用于检索相关文章:" ) model.query_instruction = "为这个句子生成表示以用于检索相关文章:" ``` #### Using HuggingFace Transformers With the transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of the first token (i.e., [CLS]) as the sentence embedding. ```python from transformers import AutoTokenizer, AutoModel import torch # Sentences we want sentence embeddings for sentences = ["样例数据-1", "样例数据-2"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh-v1.5') model = AutoModel.from_pretrained('BAAI/bge-large-zh-v1.5') model.eval() # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages) # encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = model_output[0][:, 0] # normalize embeddings sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1) print("Sentence embeddings:", sentence_embeddings) ``` ### Usage for Reranker Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. You can get a relevance score by inputting query and passage to the reranker. The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range. #### Using FlagEmbedding ``` pip install -U FlagEmbedding ``` Get relevance scores (higher scores indicate more relevance): ```python from FlagEmbedding import FlagReranker reranker = FlagReranker('BAAI/bge-reranker-large', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation score = reranker.compute_score(['query', 'passage']) print(score) scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]) print(scores) ``` #### Using Huggingface transformers ```python import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large') model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-large') model.eval() pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']] with torch.no_grad(): inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512) scores = model(**inputs, return_dict=True).logits.view(-1, ).float() print(scores) ``` ## Evaluation `baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!** For more details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md). - **MTEB**: | Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) | |:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | **64.23** | **54.29** | 46.08 | 87.12 | 60.03 | 83.11 | 31.61 | 75.97 | | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 | 53.25 | 45.77 | 86.55 | 58.86 | 82.4 | 31.07 | 75.53 | | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | 62.17 |51.68 | 43.82 | 84.92 | 58.36 | 81.59 | 30.12 | 74.14 | | [bge-large-en](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | 63.98 | 53.9 | 46.98 | 85.8 | 59.48 | 81.56 | 32.06 | 76.21 | | [bge-base-en](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 | | [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 | | [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 | | [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 | | [bge-small-en](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 | | [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 | | [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 | | [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 | | [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 | | [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 | | [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 | | [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 | | [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 | - **C-MTEB**: We create the benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks. Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction. | Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering | |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:| | [**BAAI/bge-large-zh-v1.5**](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 1024 | **64.53** | 70.46 | 56.25 | 81.6 | 69.13 | 65.84 | 48.99 | | [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | 768 | 63.13 | 69.49 | 53.72 | 79.75 | 68.07 | 65.39 | 47.53 | | [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | 512 | 57.82 | 61.77 | 49.11 | 70.41 | 63.96 | 60.92 | 44.18 | | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | 1024 | 64.20 | 71.53 | 54.98 | 78.94 | 68.32 | 65.11 | 48.39 | | [bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 53 | 76.77 | 68.58 | 64.91 | 50.01 | | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 54.12 | 77.5 | 67.07 | 64.91 | 47.63 | | [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 1024 | 58.79 | 63.66 | 48.44 | 69.89 | 67.34 | 56.00 | 48.23 | | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 49.45 | 70.35 | 63.64 | 61.48 | 45.09 | | [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 | 56.91 | 50.47 | 63.99 | 67.52 | 59.34 | 47.68 | | [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 | 54.75 | 50.42 | 64.3 | 68.2 | 59.66 | 48.88 | | [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 768 | 55.48 | 61.63 | 46.49 | 67.07 | 65.35 | 54.35 | 40.68 | | [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) | 384 | 55.38 | 59.95 | 45.27 | 66.45 | 65.85 | 53.86 | 45.26 | | [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 43.35 | 69.56 | 64.31 | 54.28 | 45.68 | | [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 42.78 | 66.62 | 61 | 49.25 | 44.39 | | [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 43.41 | 67.41 | 62.19 | 49.45 | 37.66 | | [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 44.97 | 70.86 | 60.66 | 49.16 | 30.02 | - **Reranking**: See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script. | Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MMarcoReranking | CMedQAv1 | CMedQAv2 | Avg | |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:| | text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 | | multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 | | multilingual-e5-large | 64.55 | 61.61 | 54.28 | 28.6 | 67.42 | 67.92 | 57.4 | | multilingual-e5-base | 64.21 | 62.13 | 54.68 | 29.5 | 66.23 | 66.98 | 57.29 | | m3e-base | 66.03 | 62.74 | 56.07 | 17.51 | 77.05 | 76.76 | 59.36 | | m3e-large | 66.13 | 62.72 | 56.1 | 16.46 | 77.76 | 78.27 | 59.57 | | bge-base-zh-v1.5 | 66.49 | 63.25 | 57.02 | 29.74 | 80.47 | 84.88 | 63.64 | | bge-large-zh-v1.5 | 65.74 | 63.39 | 57.03 | 28.74 | 83.45 | 85.44 | 63.97 | | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 | | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 | \* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval tasks ## Train ### BAAI Embedding We pre-train the models using [retromae](https://github.com/staoxiao/RetroMAE) and train them on large-scale pairs data using contrastive learning. **You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).** We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain). Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned. More training details for bge see [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md). ### BGE Reranker Cross-encoder will perform full-attention over the input pair, which is more accurate than embedding model (i.e., bi-encoder) but more time-consuming than embedding model. Therefore, it can be used to re-rank the top-k documents returned by embedding model. We train the cross-encoder on a multilingual pair data, The data format is the same as embedding model, so you can fine-tune it easily following our [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker). More details please refer to [./FlagEmbedding/reranker/README.md](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker) ## Contact If you have any question or suggestion related to this project, feel free to open an issue or pull request. You also can email Shitao Xiao([email protected]) and Zheng Liu([email protected]). ## Citation If you find this repository useful, please consider giving a star :star: and citation ``` @misc{bge_embedding, title={C-Pack: Packaged Resources To Advance General Chinese Embedding}, author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff}, year={2023}, eprint={2309.07597}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## License FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
GreenBitAI/codellama-instruction-34B-w2a16g8
GreenBitAI
2023-10-13T13:49:04Z
5
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-10-13T12:37:11Z
--- license: apache-2.0 --- # GreenBit LLaMA This is GreenBitAI's pretrained **2-bit** LLaMA model with extreme compression yet still strong performance. Please refer to our [Github page](https://github.com/GreenBitAI/low_bit_llama) for the code to run the model and more information. ## Model Description - **Developed by:** [GreenBitAI](https://github.com/GreenBitAI) - **Model type:** Causal (Llama 2) - **Language(s) (NLP):** English - **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0), [Llama 2 license agreement](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
Pavarissy/segformer-b0-finetuned-v0
Pavarissy
2023-10-13T13:47:30Z
10
0
transformers
[ "transformers", "pytorch", "safetensors", "segformer", "vision", "image-segmentation", "generated_from_trainer", "base_model:nvidia/mit-b0", "base_model:finetune:nvidia/mit-b0", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2023-09-11T12:57:01Z
--- license: other base_model: nvidia/mit-b0 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-finetuned-v0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-finetuned-v0 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the tontokoton/artery-ultrasound-siit dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
galbitang/autotrain-sofa_style_classification-94412146080
galbitang
2023-10-13T13:41:26Z
7
0
transformers
[ "transformers", "pytorch", "safetensors", "vit", "image-classification", "autotrain", "vision", "dataset:galbitang/autotrain-data-sofa_style_classification", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-10-11T09:39:10Z
--- tags: - autotrain - vision - image-classification datasets: - galbitang/autotrain-data-sofa_style_classification widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 3.4207192080038333 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 94412146080 - CO2 Emissions (in grams): 3.4207 ## Validation Metrics - Loss: 0.863 - Accuracy: 0.722 - Macro F1: 0.660 - Micro F1: 0.722 - Weighted F1: 0.711 - Macro Precision: 0.720 - Micro Precision: 0.722 - Weighted Precision: 0.735 - Macro Recall: 0.667 - Micro Recall: 0.722 - Weighted Recall: 0.722
michaelfeil/ct2fast-e5-large
michaelfeil
2023-10-13T13:39:03Z
8
2
sentence-transformers
[ "sentence-transformers", "bert", "ctranslate2", "int8", "float16", "mteb", "Sentence Transformers", "sentence-similarity", "en", "arxiv:2212.03533", "arxiv:2104.08663", "arxiv:2210.07316", "license:mit", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-06-15T20:26:04Z
--- tags: - ctranslate2 - int8 - float16 - mteb - Sentence Transformers - sentence-similarity - sentence-transformers model-index: - name: e5-large results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 77.68656716417911 - type: ap value: 41.336896075573584 - type: f1 value: 71.788561468075 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 90.04965 - type: ap value: 86.24637009569418 - type: f1 value: 90.03896671762645 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 43.016000000000005 - type: f1 value: 42.1942431880186 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 25.107000000000003 - type: map_at_10 value: 40.464 - type: map_at_100 value: 41.577999999999996 - type: map_at_1000 value: 41.588 - type: map_at_3 value: 35.301 - type: map_at_5 value: 38.263000000000005 - type: mrr_at_1 value: 25.605 - type: mrr_at_10 value: 40.64 - type: mrr_at_100 value: 41.760000000000005 - type: mrr_at_1000 value: 41.77 - type: mrr_at_3 value: 35.443000000000005 - type: mrr_at_5 value: 38.448 - type: ndcg_at_1 value: 25.107000000000003 - type: ndcg_at_10 value: 49.352000000000004 - type: ndcg_at_100 value: 53.98500000000001 - type: ndcg_at_1000 value: 54.208 - type: ndcg_at_3 value: 38.671 - type: ndcg_at_5 value: 43.991 - type: precision_at_1 value: 25.107000000000003 - type: precision_at_10 value: 7.795000000000001 - type: precision_at_100 value: 0.979 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 16.145 - type: precision_at_5 value: 12.262 - type: recall_at_1 value: 25.107000000000003 - type: recall_at_10 value: 77.952 - type: recall_at_100 value: 97.866 - type: recall_at_1000 value: 99.57300000000001 - type: recall_at_3 value: 48.435 - type: recall_at_5 value: 61.309000000000005 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 46.19278045044154 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 41.37976387757665 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 60.07433334608074 - type: mrr value: 73.44347711383723 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 86.4298072183543 - type: cos_sim_spearman value: 84.73144873582848 - type: euclidean_pearson value: 85.15885058870728 - type: euclidean_spearman value: 85.42062106559356 - type: manhattan_pearson value: 84.89409921792054 - type: manhattan_spearman value: 85.31941394024344 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 84.14285714285714 - type: f1 value: 84.11674412565644 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 37.600076342340785 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 35.08861812135148 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 32.684000000000005 - type: map_at_10 value: 41.675000000000004 - type: map_at_100 value: 42.963 - type: map_at_1000 value: 43.078 - type: map_at_3 value: 38.708999999999996 - type: map_at_5 value: 40.316 - type: mrr_at_1 value: 39.485 - type: mrr_at_10 value: 47.152 - type: mrr_at_100 value: 47.96 - type: mrr_at_1000 value: 48.010000000000005 - type: mrr_at_3 value: 44.754 - type: mrr_at_5 value: 46.285 - type: ndcg_at_1 value: 39.485 - type: ndcg_at_10 value: 46.849000000000004 - type: ndcg_at_100 value: 52.059 - type: ndcg_at_1000 value: 54.358 - type: ndcg_at_3 value: 42.705 - type: ndcg_at_5 value: 44.663000000000004 - type: precision_at_1 value: 39.485 - type: precision_at_10 value: 8.455 - type: precision_at_100 value: 1.3379999999999999 - type: precision_at_1000 value: 0.178 - type: precision_at_3 value: 19.695 - type: precision_at_5 value: 13.905999999999999 - type: recall_at_1 value: 32.684000000000005 - type: recall_at_10 value: 56.227000000000004 - type: recall_at_100 value: 78.499 - type: recall_at_1000 value: 94.021 - type: recall_at_3 value: 44.157999999999994 - type: recall_at_5 value: 49.694 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 31.875999999999998 - type: map_at_10 value: 41.603 - type: map_at_100 value: 42.825 - type: map_at_1000 value: 42.961 - type: map_at_3 value: 38.655 - type: map_at_5 value: 40.294999999999995 - type: mrr_at_1 value: 40.127 - type: mrr_at_10 value: 47.959 - type: mrr_at_100 value: 48.59 - type: mrr_at_1000 value: 48.634 - type: mrr_at_3 value: 45.786 - type: mrr_at_5 value: 46.964 - type: ndcg_at_1 value: 40.127 - type: ndcg_at_10 value: 47.176 - type: ndcg_at_100 value: 51.346000000000004 - type: ndcg_at_1000 value: 53.502 - type: ndcg_at_3 value: 43.139 - type: ndcg_at_5 value: 44.883 - type: precision_at_1 value: 40.127 - type: precision_at_10 value: 8.72 - type: precision_at_100 value: 1.387 - type: precision_at_1000 value: 0.188 - type: precision_at_3 value: 20.637 - type: precision_at_5 value: 14.446 - type: recall_at_1 value: 31.875999999999998 - type: recall_at_10 value: 56.54900000000001 - type: recall_at_100 value: 73.939 - type: recall_at_1000 value: 87.732 - type: recall_at_3 value: 44.326 - type: recall_at_5 value: 49.445 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 41.677 - type: map_at_10 value: 52.222 - type: map_at_100 value: 53.229000000000006 - type: map_at_1000 value: 53.288000000000004 - type: map_at_3 value: 49.201 - type: map_at_5 value: 51.00599999999999 - type: mrr_at_1 value: 47.524 - type: mrr_at_10 value: 55.745999999999995 - type: mrr_at_100 value: 56.433 - type: mrr_at_1000 value: 56.464999999999996 - type: mrr_at_3 value: 53.37499999999999 - type: mrr_at_5 value: 54.858 - type: ndcg_at_1 value: 47.524 - type: ndcg_at_10 value: 57.406 - type: ndcg_at_100 value: 61.403 - type: ndcg_at_1000 value: 62.7 - type: ndcg_at_3 value: 52.298 - type: ndcg_at_5 value: 55.02 - type: precision_at_1 value: 47.524 - type: precision_at_10 value: 8.865 - type: precision_at_100 value: 1.179 - type: precision_at_1000 value: 0.134 - type: precision_at_3 value: 22.612 - type: precision_at_5 value: 15.461 - type: recall_at_1 value: 41.677 - type: recall_at_10 value: 69.346 - type: recall_at_100 value: 86.344 - type: recall_at_1000 value: 95.703 - type: recall_at_3 value: 55.789 - type: recall_at_5 value: 62.488 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 25.991999999999997 - type: map_at_10 value: 32.804 - type: map_at_100 value: 33.812999999999995 - type: map_at_1000 value: 33.897 - type: map_at_3 value: 30.567 - type: map_at_5 value: 31.599 - type: mrr_at_1 value: 27.797 - type: mrr_at_10 value: 34.768 - type: mrr_at_100 value: 35.702 - type: mrr_at_1000 value: 35.766 - type: mrr_at_3 value: 32.637 - type: mrr_at_5 value: 33.614 - type: ndcg_at_1 value: 27.797 - type: ndcg_at_10 value: 36.966 - type: ndcg_at_100 value: 41.972 - type: ndcg_at_1000 value: 44.139 - type: ndcg_at_3 value: 32.547 - type: ndcg_at_5 value: 34.258 - type: precision_at_1 value: 27.797 - type: precision_at_10 value: 5.514 - type: precision_at_100 value: 0.8340000000000001 - type: precision_at_1000 value: 0.106 - type: precision_at_3 value: 13.333 - type: precision_at_5 value: 9.04 - type: recall_at_1 value: 25.991999999999997 - type: recall_at_10 value: 47.941 - type: recall_at_100 value: 71.039 - type: recall_at_1000 value: 87.32799999999999 - type: recall_at_3 value: 36.01 - type: recall_at_5 value: 40.056000000000004 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 17.533 - type: map_at_10 value: 24.336 - type: map_at_100 value: 25.445 - type: map_at_1000 value: 25.561 - type: map_at_3 value: 22.116 - type: map_at_5 value: 23.347 - type: mrr_at_1 value: 21.642 - type: mrr_at_10 value: 28.910999999999998 - type: mrr_at_100 value: 29.836000000000002 - type: mrr_at_1000 value: 29.907 - type: mrr_at_3 value: 26.638 - type: mrr_at_5 value: 27.857 - type: ndcg_at_1 value: 21.642 - type: ndcg_at_10 value: 28.949 - type: ndcg_at_100 value: 34.211000000000006 - type: ndcg_at_1000 value: 37.031 - type: ndcg_at_3 value: 24.788 - type: ndcg_at_5 value: 26.685 - type: precision_at_1 value: 21.642 - type: precision_at_10 value: 5.137 - type: precision_at_100 value: 0.893 - type: precision_at_1000 value: 0.127 - type: precision_at_3 value: 11.733 - type: precision_at_5 value: 8.383000000000001 - type: recall_at_1 value: 17.533 - type: recall_at_10 value: 38.839 - type: recall_at_100 value: 61.458999999999996 - type: recall_at_1000 value: 81.58 - type: recall_at_3 value: 27.328999999999997 - type: recall_at_5 value: 32.168 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 28.126 - type: map_at_10 value: 37.872 - type: map_at_100 value: 39.229 - type: map_at_1000 value: 39.353 - type: map_at_3 value: 34.93 - type: map_at_5 value: 36.59 - type: mrr_at_1 value: 34.071 - type: mrr_at_10 value: 43.056 - type: mrr_at_100 value: 43.944 - type: mrr_at_1000 value: 43.999 - type: mrr_at_3 value: 40.536 - type: mrr_at_5 value: 42.065999999999995 - type: ndcg_at_1 value: 34.071 - type: ndcg_at_10 value: 43.503 - type: ndcg_at_100 value: 49.120000000000005 - type: ndcg_at_1000 value: 51.410999999999994 - type: ndcg_at_3 value: 38.767 - type: ndcg_at_5 value: 41.075 - type: precision_at_1 value: 34.071 - type: precision_at_10 value: 7.843999999999999 - type: precision_at_100 value: 1.2489999999999999 - type: precision_at_1000 value: 0.163 - type: precision_at_3 value: 18.223 - type: precision_at_5 value: 13.050999999999998 - type: recall_at_1 value: 28.126 - type: recall_at_10 value: 54.952 - type: recall_at_100 value: 78.375 - type: recall_at_1000 value: 93.29899999999999 - type: recall_at_3 value: 41.714 - type: recall_at_5 value: 47.635 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 25.957 - type: map_at_10 value: 34.749 - type: map_at_100 value: 35.929 - type: map_at_1000 value: 36.043 - type: map_at_3 value: 31.947 - type: map_at_5 value: 33.575 - type: mrr_at_1 value: 32.078 - type: mrr_at_10 value: 39.844 - type: mrr_at_100 value: 40.71 - type: mrr_at_1000 value: 40.77 - type: mrr_at_3 value: 37.386 - type: mrr_at_5 value: 38.83 - type: ndcg_at_1 value: 32.078 - type: ndcg_at_10 value: 39.97 - type: ndcg_at_100 value: 45.254 - type: ndcg_at_1000 value: 47.818 - type: ndcg_at_3 value: 35.453 - type: ndcg_at_5 value: 37.631 - type: precision_at_1 value: 32.078 - type: precision_at_10 value: 7.158 - type: precision_at_100 value: 1.126 - type: precision_at_1000 value: 0.153 - type: precision_at_3 value: 16.743 - type: precision_at_5 value: 11.872 - type: recall_at_1 value: 25.957 - type: recall_at_10 value: 50.583 - type: recall_at_100 value: 73.593 - type: recall_at_1000 value: 91.23599999999999 - type: recall_at_3 value: 37.651 - type: recall_at_5 value: 43.626 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 27.1505 - type: map_at_10 value: 34.844833333333334 - type: map_at_100 value: 35.95216666666667 - type: map_at_1000 value: 36.06675 - type: map_at_3 value: 32.41975 - type: map_at_5 value: 33.74233333333333 - type: mrr_at_1 value: 31.923666666666662 - type: mrr_at_10 value: 38.87983333333334 - type: mrr_at_100 value: 39.706250000000004 - type: mrr_at_1000 value: 39.76708333333333 - type: mrr_at_3 value: 36.72008333333333 - type: mrr_at_5 value: 37.96933333333334 - type: ndcg_at_1 value: 31.923666666666662 - type: ndcg_at_10 value: 39.44258333333334 - type: ndcg_at_100 value: 44.31475 - type: ndcg_at_1000 value: 46.75 - type: ndcg_at_3 value: 35.36299999999999 - type: ndcg_at_5 value: 37.242333333333335 - type: precision_at_1 value: 31.923666666666662 - type: precision_at_10 value: 6.643333333333333 - type: precision_at_100 value: 1.0612499999999998 - type: precision_at_1000 value: 0.14575 - type: precision_at_3 value: 15.875250000000001 - type: precision_at_5 value: 11.088916666666664 - type: recall_at_1 value: 27.1505 - type: recall_at_10 value: 49.06349999999999 - type: recall_at_100 value: 70.60841666666666 - type: recall_at_1000 value: 87.72049999999999 - type: recall_at_3 value: 37.60575000000001 - type: recall_at_5 value: 42.511166666666675 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 25.101000000000003 - type: map_at_10 value: 30.147000000000002 - type: map_at_100 value: 30.98 - type: map_at_1000 value: 31.080000000000002 - type: map_at_3 value: 28.571 - type: map_at_5 value: 29.319 - type: mrr_at_1 value: 27.761000000000003 - type: mrr_at_10 value: 32.716 - type: mrr_at_100 value: 33.504 - type: mrr_at_1000 value: 33.574 - type: mrr_at_3 value: 31.135 - type: mrr_at_5 value: 32.032 - type: ndcg_at_1 value: 27.761000000000003 - type: ndcg_at_10 value: 33.358 - type: ndcg_at_100 value: 37.569 - type: ndcg_at_1000 value: 40.189 - type: ndcg_at_3 value: 30.291 - type: ndcg_at_5 value: 31.558000000000003 - type: precision_at_1 value: 27.761000000000003 - type: precision_at_10 value: 4.939 - type: precision_at_100 value: 0.759 - type: precision_at_1000 value: 0.106 - type: precision_at_3 value: 12.577 - type: precision_at_5 value: 8.497 - type: recall_at_1 value: 25.101000000000003 - type: recall_at_10 value: 40.739 - type: recall_at_100 value: 60.089999999999996 - type: recall_at_1000 value: 79.768 - type: recall_at_3 value: 32.16 - type: recall_at_5 value: 35.131 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 20.112 - type: map_at_10 value: 26.119999999999997 - type: map_at_100 value: 27.031 - type: map_at_1000 value: 27.150000000000002 - type: map_at_3 value: 24.230999999999998 - type: map_at_5 value: 25.15 - type: mrr_at_1 value: 24.535 - type: mrr_at_10 value: 30.198000000000004 - type: mrr_at_100 value: 30.975 - type: mrr_at_1000 value: 31.051000000000002 - type: mrr_at_3 value: 28.338 - type: mrr_at_5 value: 29.269000000000002 - type: ndcg_at_1 value: 24.535 - type: ndcg_at_10 value: 30.147000000000002 - type: ndcg_at_100 value: 34.544000000000004 - type: ndcg_at_1000 value: 37.512 - type: ndcg_at_3 value: 26.726 - type: ndcg_at_5 value: 28.046 - type: precision_at_1 value: 24.535 - type: precision_at_10 value: 5.179 - type: precision_at_100 value: 0.859 - type: precision_at_1000 value: 0.128 - type: precision_at_3 value: 12.159 - type: precision_at_5 value: 8.424 - type: recall_at_1 value: 20.112 - type: recall_at_10 value: 38.312000000000005 - type: recall_at_100 value: 58.406000000000006 - type: recall_at_1000 value: 79.863 - type: recall_at_3 value: 28.358 - type: recall_at_5 value: 31.973000000000003 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 27.111 - type: map_at_10 value: 34.096 - type: map_at_100 value: 35.181000000000004 - type: map_at_1000 value: 35.276 - type: map_at_3 value: 31.745 - type: map_at_5 value: 33.045 - type: mrr_at_1 value: 31.343 - type: mrr_at_10 value: 37.994 - type: mrr_at_100 value: 38.873000000000005 - type: mrr_at_1000 value: 38.934999999999995 - type: mrr_at_3 value: 35.743 - type: mrr_at_5 value: 37.077 - type: ndcg_at_1 value: 31.343 - type: ndcg_at_10 value: 38.572 - type: ndcg_at_100 value: 43.854 - type: ndcg_at_1000 value: 46.190999999999995 - type: ndcg_at_3 value: 34.247 - type: ndcg_at_5 value: 36.28 - type: precision_at_1 value: 31.343 - type: precision_at_10 value: 6.166 - type: precision_at_100 value: 1 - type: precision_at_1000 value: 0.13 - type: precision_at_3 value: 15.081 - type: precision_at_5 value: 10.428999999999998 - type: recall_at_1 value: 27.111 - type: recall_at_10 value: 48.422 - type: recall_at_100 value: 71.846 - type: recall_at_1000 value: 88.57000000000001 - type: recall_at_3 value: 36.435 - type: recall_at_5 value: 41.765 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 26.264 - type: map_at_10 value: 33.522 - type: map_at_100 value: 34.963 - type: map_at_1000 value: 35.175 - type: map_at_3 value: 31.366 - type: map_at_5 value: 32.621 - type: mrr_at_1 value: 31.028 - type: mrr_at_10 value: 37.230000000000004 - type: mrr_at_100 value: 38.149 - type: mrr_at_1000 value: 38.218 - type: mrr_at_3 value: 35.046 - type: mrr_at_5 value: 36.617 - type: ndcg_at_1 value: 31.028 - type: ndcg_at_10 value: 37.964999999999996 - type: ndcg_at_100 value: 43.342000000000006 - type: ndcg_at_1000 value: 46.471000000000004 - type: ndcg_at_3 value: 34.67 - type: ndcg_at_5 value: 36.458 - type: precision_at_1 value: 31.028 - type: precision_at_10 value: 6.937 - type: precision_at_100 value: 1.346 - type: precision_at_1000 value: 0.22799999999999998 - type: precision_at_3 value: 15.942 - type: precision_at_5 value: 11.462 - type: recall_at_1 value: 26.264 - type: recall_at_10 value: 45.571 - type: recall_at_100 value: 70.246 - type: recall_at_1000 value: 90.971 - type: recall_at_3 value: 36.276 - type: recall_at_5 value: 41.162 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 23.372999999999998 - type: map_at_10 value: 28.992 - type: map_at_100 value: 29.837999999999997 - type: map_at_1000 value: 29.939 - type: map_at_3 value: 26.999000000000002 - type: map_at_5 value: 28.044999999999998 - type: mrr_at_1 value: 25.692999999999998 - type: mrr_at_10 value: 30.984 - type: mrr_at_100 value: 31.799 - type: mrr_at_1000 value: 31.875999999999998 - type: mrr_at_3 value: 29.267 - type: mrr_at_5 value: 30.163 - type: ndcg_at_1 value: 25.692999999999998 - type: ndcg_at_10 value: 32.45 - type: ndcg_at_100 value: 37.103 - type: ndcg_at_1000 value: 39.678000000000004 - type: ndcg_at_3 value: 28.725 - type: ndcg_at_5 value: 30.351 - type: precision_at_1 value: 25.692999999999998 - type: precision_at_10 value: 4.806 - type: precision_at_100 value: 0.765 - type: precision_at_1000 value: 0.108 - type: precision_at_3 value: 11.768 - type: precision_at_5 value: 8.096 - type: recall_at_1 value: 23.372999999999998 - type: recall_at_10 value: 41.281 - type: recall_at_100 value: 63.465 - type: recall_at_1000 value: 82.575 - type: recall_at_3 value: 31.063000000000002 - type: recall_at_5 value: 34.991 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: map_at_1 value: 8.821 - type: map_at_10 value: 15.383 - type: map_at_100 value: 17.244999999999997 - type: map_at_1000 value: 17.445 - type: map_at_3 value: 12.64 - type: map_at_5 value: 13.941999999999998 - type: mrr_at_1 value: 19.544 - type: mrr_at_10 value: 29.738999999999997 - type: mrr_at_100 value: 30.923000000000002 - type: mrr_at_1000 value: 30.969 - type: mrr_at_3 value: 26.384 - type: mrr_at_5 value: 28.199 - type: ndcg_at_1 value: 19.544 - type: ndcg_at_10 value: 22.398 - type: ndcg_at_100 value: 30.253999999999998 - type: ndcg_at_1000 value: 33.876 - type: ndcg_at_3 value: 17.473 - type: ndcg_at_5 value: 19.154 - type: precision_at_1 value: 19.544 - type: precision_at_10 value: 7.217999999999999 - type: precision_at_100 value: 1.564 - type: precision_at_1000 value: 0.22300000000000003 - type: precision_at_3 value: 13.225000000000001 - type: precision_at_5 value: 10.319 - type: recall_at_1 value: 8.821 - type: recall_at_10 value: 28.110000000000003 - type: recall_at_100 value: 55.64 - type: recall_at_1000 value: 75.964 - type: recall_at_3 value: 16.195 - type: recall_at_5 value: 20.678 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: map_at_1 value: 9.344 - type: map_at_10 value: 20.301 - type: map_at_100 value: 28.709 - type: map_at_1000 value: 30.470999999999997 - type: map_at_3 value: 14.584 - type: map_at_5 value: 16.930999999999997 - type: mrr_at_1 value: 67.25 - type: mrr_at_10 value: 75.393 - type: mrr_at_100 value: 75.742 - type: mrr_at_1000 value: 75.75 - type: mrr_at_3 value: 73.958 - type: mrr_at_5 value: 74.883 - type: ndcg_at_1 value: 56.00000000000001 - type: ndcg_at_10 value: 42.394 - type: ndcg_at_100 value: 47.091 - type: ndcg_at_1000 value: 54.215 - type: ndcg_at_3 value: 46.995 - type: ndcg_at_5 value: 44.214999999999996 - type: precision_at_1 value: 67.25 - type: precision_at_10 value: 33.525 - type: precision_at_100 value: 10.67 - type: precision_at_1000 value: 2.221 - type: precision_at_3 value: 49.417 - type: precision_at_5 value: 42.15 - type: recall_at_1 value: 9.344 - type: recall_at_10 value: 25.209 - type: recall_at_100 value: 52.329 - type: recall_at_1000 value: 74.2 - type: recall_at_3 value: 15.699 - type: recall_at_5 value: 19.24 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 48.05 - type: f1 value: 43.06718139212933 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: map_at_1 value: 46.452 - type: map_at_10 value: 58.825 - type: map_at_100 value: 59.372 - type: map_at_1000 value: 59.399 - type: map_at_3 value: 56.264 - type: map_at_5 value: 57.879999999999995 - type: mrr_at_1 value: 49.82 - type: mrr_at_10 value: 62.178999999999995 - type: mrr_at_100 value: 62.641999999999996 - type: mrr_at_1000 value: 62.658 - type: mrr_at_3 value: 59.706 - type: mrr_at_5 value: 61.283 - type: ndcg_at_1 value: 49.82 - type: ndcg_at_10 value: 65.031 - type: ndcg_at_100 value: 67.413 - type: ndcg_at_1000 value: 68.014 - type: ndcg_at_3 value: 60.084 - type: ndcg_at_5 value: 62.858000000000004 - type: precision_at_1 value: 49.82 - type: precision_at_10 value: 8.876000000000001 - type: precision_at_100 value: 1.018 - type: precision_at_1000 value: 0.109 - type: precision_at_3 value: 24.477 - type: precision_at_5 value: 16.208 - type: recall_at_1 value: 46.452 - type: recall_at_10 value: 80.808 - type: recall_at_100 value: 91.215 - type: recall_at_1000 value: 95.52000000000001 - type: recall_at_3 value: 67.62899999999999 - type: recall_at_5 value: 74.32900000000001 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: map_at_1 value: 18.351 - type: map_at_10 value: 30.796 - type: map_at_100 value: 32.621 - type: map_at_1000 value: 32.799 - type: map_at_3 value: 26.491 - type: map_at_5 value: 28.933999999999997 - type: mrr_at_1 value: 36.265 - type: mrr_at_10 value: 45.556999999999995 - type: mrr_at_100 value: 46.323 - type: mrr_at_1000 value: 46.359 - type: mrr_at_3 value: 42.695 - type: mrr_at_5 value: 44.324000000000005 - type: ndcg_at_1 value: 36.265 - type: ndcg_at_10 value: 38.558 - type: ndcg_at_100 value: 45.18 - type: ndcg_at_1000 value: 48.292 - type: ndcg_at_3 value: 34.204 - type: ndcg_at_5 value: 35.735 - type: precision_at_1 value: 36.265 - type: precision_at_10 value: 10.879999999999999 - type: precision_at_100 value: 1.77 - type: precision_at_1000 value: 0.234 - type: precision_at_3 value: 23.044999999999998 - type: precision_at_5 value: 17.253 - type: recall_at_1 value: 18.351 - type: recall_at_10 value: 46.116 - type: recall_at_100 value: 70.786 - type: recall_at_1000 value: 89.46300000000001 - type: recall_at_3 value: 31.404 - type: recall_at_5 value: 37.678 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: map_at_1 value: 36.847 - type: map_at_10 value: 54.269999999999996 - type: map_at_100 value: 55.152 - type: map_at_1000 value: 55.223 - type: map_at_3 value: 51.166 - type: map_at_5 value: 53.055 - type: mrr_at_1 value: 73.693 - type: mrr_at_10 value: 79.975 - type: mrr_at_100 value: 80.202 - type: mrr_at_1000 value: 80.214 - type: mrr_at_3 value: 78.938 - type: mrr_at_5 value: 79.595 - type: ndcg_at_1 value: 73.693 - type: ndcg_at_10 value: 63.334999999999994 - type: ndcg_at_100 value: 66.452 - type: ndcg_at_1000 value: 67.869 - type: ndcg_at_3 value: 58.829 - type: ndcg_at_5 value: 61.266 - type: precision_at_1 value: 73.693 - type: precision_at_10 value: 13.122 - type: precision_at_100 value: 1.5559999999999998 - type: precision_at_1000 value: 0.174 - type: precision_at_3 value: 37.083 - type: precision_at_5 value: 24.169999999999998 - type: recall_at_1 value: 36.847 - type: recall_at_10 value: 65.61099999999999 - type: recall_at_100 value: 77.792 - type: recall_at_1000 value: 87.17099999999999 - type: recall_at_3 value: 55.625 - type: recall_at_5 value: 60.425 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 82.1096 - type: ap value: 76.67089212843918 - type: f1 value: 82.03535056754939 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics: - type: map_at_1 value: 24.465 - type: map_at_10 value: 37.072 - type: map_at_100 value: 38.188 - type: map_at_1000 value: 38.232 - type: map_at_3 value: 33.134 - type: map_at_5 value: 35.453 - type: mrr_at_1 value: 25.142999999999997 - type: mrr_at_10 value: 37.669999999999995 - type: mrr_at_100 value: 38.725 - type: mrr_at_1000 value: 38.765 - type: mrr_at_3 value: 33.82 - type: mrr_at_5 value: 36.111 - type: ndcg_at_1 value: 25.142999999999997 - type: ndcg_at_10 value: 44.054 - type: ndcg_at_100 value: 49.364000000000004 - type: ndcg_at_1000 value: 50.456 - type: ndcg_at_3 value: 36.095 - type: ndcg_at_5 value: 40.23 - type: precision_at_1 value: 25.142999999999997 - type: precision_at_10 value: 6.845 - type: precision_at_100 value: 0.95 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 15.204999999999998 - type: precision_at_5 value: 11.221 - type: recall_at_1 value: 24.465 - type: recall_at_10 value: 65.495 - type: recall_at_100 value: 89.888 - type: recall_at_1000 value: 98.165 - type: recall_at_3 value: 43.964 - type: recall_at_5 value: 53.891 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 93.86228910168718 - type: f1 value: 93.69177113259104 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 76.3999088007296 - type: f1 value: 58.96668664333438 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 73.21788836583727 - type: f1 value: 71.4545936552952 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 77.39071956960323 - type: f1 value: 77.12398952847603 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 32.255379528166955 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 29.66423362872814 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 30.782211620375964 - type: mrr value: 31.773479703044956 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: map_at_1 value: 5.863 - type: map_at_10 value: 13.831 - type: map_at_100 value: 17.534 - type: map_at_1000 value: 19.012 - type: map_at_3 value: 10.143 - type: map_at_5 value: 12.034 - type: mrr_at_1 value: 46.749 - type: mrr_at_10 value: 55.376999999999995 - type: mrr_at_100 value: 56.009 - type: mrr_at_1000 value: 56.042 - type: mrr_at_3 value: 53.30200000000001 - type: mrr_at_5 value: 54.85 - type: ndcg_at_1 value: 44.582 - type: ndcg_at_10 value: 36.07 - type: ndcg_at_100 value: 33.39 - type: ndcg_at_1000 value: 41.884 - type: ndcg_at_3 value: 41.441 - type: ndcg_at_5 value: 39.861000000000004 - type: precision_at_1 value: 46.129999999999995 - type: precision_at_10 value: 26.594 - type: precision_at_100 value: 8.365 - type: precision_at_1000 value: 2.1260000000000003 - type: precision_at_3 value: 39.009 - type: precision_at_5 value: 34.861 - type: recall_at_1 value: 5.863 - type: recall_at_10 value: 17.961 - type: recall_at_100 value: 34.026 - type: recall_at_1000 value: 64.46499999999999 - type: recall_at_3 value: 11.242 - type: recall_at_5 value: 14.493 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: map_at_1 value: 38.601 - type: map_at_10 value: 55.293000000000006 - type: map_at_100 value: 56.092 - type: map_at_1000 value: 56.111999999999995 - type: map_at_3 value: 51.269 - type: map_at_5 value: 53.787 - type: mrr_at_1 value: 43.221 - type: mrr_at_10 value: 57.882999999999996 - type: mrr_at_100 value: 58.408 - type: mrr_at_1000 value: 58.421 - type: mrr_at_3 value: 54.765 - type: mrr_at_5 value: 56.809 - type: ndcg_at_1 value: 43.221 - type: ndcg_at_10 value: 62.858999999999995 - type: ndcg_at_100 value: 65.987 - type: ndcg_at_1000 value: 66.404 - type: ndcg_at_3 value: 55.605000000000004 - type: ndcg_at_5 value: 59.723000000000006 - type: precision_at_1 value: 43.221 - type: precision_at_10 value: 9.907 - type: precision_at_100 value: 1.169 - type: precision_at_1000 value: 0.121 - type: precision_at_3 value: 25.019000000000002 - type: precision_at_5 value: 17.474 - type: recall_at_1 value: 38.601 - type: recall_at_10 value: 82.966 - type: recall_at_100 value: 96.154 - type: recall_at_1000 value: 99.223 - type: recall_at_3 value: 64.603 - type: recall_at_5 value: 73.97200000000001 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 70.77 - type: map_at_10 value: 84.429 - type: map_at_100 value: 85.04599999999999 - type: map_at_1000 value: 85.065 - type: map_at_3 value: 81.461 - type: map_at_5 value: 83.316 - type: mrr_at_1 value: 81.51 - type: mrr_at_10 value: 87.52799999999999 - type: mrr_at_100 value: 87.631 - type: mrr_at_1000 value: 87.632 - type: mrr_at_3 value: 86.533 - type: mrr_at_5 value: 87.214 - type: ndcg_at_1 value: 81.47999999999999 - type: ndcg_at_10 value: 88.181 - type: ndcg_at_100 value: 89.39200000000001 - type: ndcg_at_1000 value: 89.52 - type: ndcg_at_3 value: 85.29299999999999 - type: ndcg_at_5 value: 86.88 - type: precision_at_1 value: 81.47999999999999 - type: precision_at_10 value: 13.367 - type: precision_at_100 value: 1.5230000000000001 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 37.227 - type: precision_at_5 value: 24.494 - type: recall_at_1 value: 70.77 - type: recall_at_10 value: 95.199 - type: recall_at_100 value: 99.37700000000001 - type: recall_at_1000 value: 99.973 - type: recall_at_3 value: 86.895 - type: recall_at_5 value: 91.396 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 50.686353396858344 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 61.3664675312921 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 4.7379999999999995 - type: map_at_10 value: 12.01 - type: map_at_100 value: 14.02 - type: map_at_1000 value: 14.310999999999998 - type: map_at_3 value: 8.459 - type: map_at_5 value: 10.281 - type: mrr_at_1 value: 23.3 - type: mrr_at_10 value: 34.108 - type: mrr_at_100 value: 35.217 - type: mrr_at_1000 value: 35.272 - type: mrr_at_3 value: 30.833 - type: mrr_at_5 value: 32.768 - type: ndcg_at_1 value: 23.3 - type: ndcg_at_10 value: 20.116999999999997 - type: ndcg_at_100 value: 27.961000000000002 - type: ndcg_at_1000 value: 33.149 - type: ndcg_at_3 value: 18.902 - type: ndcg_at_5 value: 16.742 - type: precision_at_1 value: 23.3 - type: precision_at_10 value: 10.47 - type: precision_at_100 value: 2.177 - type: precision_at_1000 value: 0.34299999999999997 - type: precision_at_3 value: 17.567 - type: precision_at_5 value: 14.78 - type: recall_at_1 value: 4.7379999999999995 - type: recall_at_10 value: 21.221999999999998 - type: recall_at_100 value: 44.242 - type: recall_at_1000 value: 69.652 - type: recall_at_3 value: 10.688 - type: recall_at_5 value: 14.982999999999999 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 84.84572946827069 - type: cos_sim_spearman value: 80.48508130408966 - type: euclidean_pearson value: 82.0481530027767 - type: euclidean_spearman value: 80.45902876782752 - type: manhattan_pearson value: 82.03728222483326 - type: manhattan_spearman value: 80.45684282911755 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 84.33476464677516 - type: cos_sim_spearman value: 75.93057758003266 - type: euclidean_pearson value: 80.89685744015691 - type: euclidean_spearman value: 76.29929953441706 - type: manhattan_pearson value: 80.91391345459995 - type: manhattan_spearman value: 76.31985463110914 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 84.63686106359005 - type: cos_sim_spearman value: 85.22240034668202 - type: euclidean_pearson value: 84.6074814189106 - type: euclidean_spearman value: 85.17169644755828 - type: manhattan_pearson value: 84.48329306239368 - type: manhattan_spearman value: 85.0086508544768 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 82.95455774064745 - type: cos_sim_spearman value: 80.54074646118492 - type: euclidean_pearson value: 81.79598955554704 - type: euclidean_spearman value: 80.55837617606814 - type: manhattan_pearson value: 81.78213797905386 - type: manhattan_spearman value: 80.5666746878273 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 87.92813309124739 - type: cos_sim_spearman value: 88.81459873052108 - type: euclidean_pearson value: 88.21193118930564 - type: euclidean_spearman value: 88.87072745043731 - type: manhattan_pearson value: 88.22576929706727 - type: manhattan_spearman value: 88.8867671095791 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 83.6881529671839 - type: cos_sim_spearman value: 85.2807092969554 - type: euclidean_pearson value: 84.62334178652704 - type: euclidean_spearman value: 85.2116373296784 - type: manhattan_pearson value: 84.54948211541777 - type: manhattan_spearman value: 85.10737722637882 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 88.55963694458408 - type: cos_sim_spearman value: 89.36731628848683 - type: euclidean_pearson value: 89.64975952985465 - type: euclidean_spearman value: 89.29689484033007 - type: manhattan_pearson value: 89.61234491713135 - type: manhattan_spearman value: 89.20302520255782 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 62.411800961903886 - type: cos_sim_spearman value: 62.99105515749963 - type: euclidean_pearson value: 65.29826669549443 - type: euclidean_spearman value: 63.29880964105775 - type: manhattan_pearson value: 65.00126190601183 - type: manhattan_spearman value: 63.32011025899179 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 85.83498531837608 - type: cos_sim_spearman value: 87.21366640615442 - type: euclidean_pearson value: 86.74764288798261 - type: euclidean_spearman value: 87.06060470780834 - type: manhattan_pearson value: 86.65971223951476 - type: manhattan_spearman value: 86.99814399831457 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 83.94448463485881 - type: mrr value: 95.36291867174221 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: map_at_1 value: 59.928000000000004 - type: map_at_10 value: 68.577 - type: map_at_100 value: 69.35900000000001 - type: map_at_1000 value: 69.37299999999999 - type: map_at_3 value: 66.217 - type: map_at_5 value: 67.581 - type: mrr_at_1 value: 63 - type: mrr_at_10 value: 69.994 - type: mrr_at_100 value: 70.553 - type: mrr_at_1000 value: 70.56700000000001 - type: mrr_at_3 value: 68.167 - type: mrr_at_5 value: 69.11699999999999 - type: ndcg_at_1 value: 63 - type: ndcg_at_10 value: 72.58 - type: ndcg_at_100 value: 75.529 - type: ndcg_at_1000 value: 76.009 - type: ndcg_at_3 value: 68.523 - type: ndcg_at_5 value: 70.301 - type: precision_at_1 value: 63 - type: precision_at_10 value: 9.333 - type: precision_at_100 value: 1.09 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 26.444000000000003 - type: precision_at_5 value: 17.067 - type: recall_at_1 value: 59.928000000000004 - type: recall_at_10 value: 83.544 - type: recall_at_100 value: 96 - type: recall_at_1000 value: 100 - type: recall_at_3 value: 72.072 - type: recall_at_5 value: 76.683 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.82178217821782 - type: cos_sim_ap value: 95.41507679819003 - type: cos_sim_f1 value: 90.9456740442656 - type: cos_sim_precision value: 91.49797570850203 - type: cos_sim_recall value: 90.4 - type: dot_accuracy value: 99.77227722772277 - type: dot_ap value: 92.50123869445967 - type: dot_f1 value: 88.18414322250638 - type: dot_precision value: 90.26178010471205 - type: dot_recall value: 86.2 - type: euclidean_accuracy value: 99.81782178217821 - type: euclidean_ap value: 95.3935066749006 - type: euclidean_f1 value: 90.66128218071681 - type: euclidean_precision value: 91.53924566768603 - type: euclidean_recall value: 89.8 - type: manhattan_accuracy value: 99.81881188118813 - type: manhattan_ap value: 95.39767454613512 - type: manhattan_f1 value: 90.62019477191186 - type: manhattan_precision value: 92.95478443743428 - type: manhattan_recall value: 88.4 - type: max_accuracy value: 99.82178217821782 - type: max_ap value: 95.41507679819003 - type: max_f1 value: 90.9456740442656 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 64.96313921233748 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 33.602625720956745 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 51.32659230651731 - type: mrr value: 52.33861726508785 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 31.01587644214203 - type: cos_sim_spearman value: 30.974306908731013 - type: dot_pearson value: 29.83339853838187 - type: dot_spearman value: 30.07761671934048 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.22 - type: map_at_10 value: 1.9539999999999997 - type: map_at_100 value: 11.437 - type: map_at_1000 value: 27.861000000000004 - type: map_at_3 value: 0.6479999999999999 - type: map_at_5 value: 1.0410000000000001 - type: mrr_at_1 value: 84 - type: mrr_at_10 value: 90.333 - type: mrr_at_100 value: 90.333 - type: mrr_at_1000 value: 90.333 - type: mrr_at_3 value: 90.333 - type: mrr_at_5 value: 90.333 - type: ndcg_at_1 value: 80 - type: ndcg_at_10 value: 78.31700000000001 - type: ndcg_at_100 value: 59.396 - type: ndcg_at_1000 value: 52.733 - type: ndcg_at_3 value: 81.46900000000001 - type: ndcg_at_5 value: 80.74 - type: precision_at_1 value: 84 - type: precision_at_10 value: 84 - type: precision_at_100 value: 60.980000000000004 - type: precision_at_1000 value: 23.432 - type: precision_at_3 value: 87.333 - type: precision_at_5 value: 86.8 - type: recall_at_1 value: 0.22 - type: recall_at_10 value: 2.156 - type: recall_at_100 value: 14.557999999999998 - type: recall_at_1000 value: 49.553999999999995 - type: recall_at_3 value: 0.685 - type: recall_at_5 value: 1.121 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 3.373 - type: map_at_10 value: 11.701 - type: map_at_100 value: 17.144000000000002 - type: map_at_1000 value: 18.624 - type: map_at_3 value: 6.552 - type: map_at_5 value: 9.372 - type: mrr_at_1 value: 38.775999999999996 - type: mrr_at_10 value: 51.975 - type: mrr_at_100 value: 52.873999999999995 - type: mrr_at_1000 value: 52.873999999999995 - type: mrr_at_3 value: 47.619 - type: mrr_at_5 value: 50.578 - type: ndcg_at_1 value: 36.735 - type: ndcg_at_10 value: 27.212999999999997 - type: ndcg_at_100 value: 37.245 - type: ndcg_at_1000 value: 48.602000000000004 - type: ndcg_at_3 value: 30.916 - type: ndcg_at_5 value: 30.799 - type: precision_at_1 value: 38.775999999999996 - type: precision_at_10 value: 23.469 - type: precision_at_100 value: 7.327 - type: precision_at_1000 value: 1.486 - type: precision_at_3 value: 31.973000000000003 - type: precision_at_5 value: 32.245000000000005 - type: recall_at_1 value: 3.373 - type: recall_at_10 value: 17.404 - type: recall_at_100 value: 46.105000000000004 - type: recall_at_1000 value: 80.35 - type: recall_at_3 value: 7.4399999999999995 - type: recall_at_5 value: 12.183 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 70.5592 - type: ap value: 14.330910591410134 - type: f1 value: 54.45745186286521 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 61.20543293718167 - type: f1 value: 61.45365480309872 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 43.81162998944145 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 86.69011146212075 - type: cos_sim_ap value: 76.09792353652536 - type: cos_sim_f1 value: 70.10202763786646 - type: cos_sim_precision value: 68.65671641791045 - type: cos_sim_recall value: 71.60949868073878 - type: dot_accuracy value: 85.33110806461227 - type: dot_ap value: 70.19304383327554 - type: dot_f1 value: 67.22494202525122 - type: dot_precision value: 65.6847935548842 - type: dot_recall value: 68.83905013192611 - type: euclidean_accuracy value: 86.5410979316922 - type: euclidean_ap value: 75.91906915651882 - type: euclidean_f1 value: 69.6798975672215 - type: euclidean_precision value: 67.6865671641791 - type: euclidean_recall value: 71.79419525065963 - type: manhattan_accuracy value: 86.60070334386363 - type: manhattan_ap value: 75.94617413885031 - type: manhattan_f1 value: 69.52689565780946 - type: manhattan_precision value: 68.3312101910828 - type: manhattan_recall value: 70.76517150395777 - type: max_accuracy value: 86.69011146212075 - type: max_ap value: 76.09792353652536 - type: max_f1 value: 70.10202763786646 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 89.25951798812434 - type: cos_sim_ap value: 86.31476416599727 - type: cos_sim_f1 value: 78.52709971038477 - type: cos_sim_precision value: 76.7629972792117 - type: cos_sim_recall value: 80.37419156144134 - type: dot_accuracy value: 88.03896456708192 - type: dot_ap value: 83.26963599196237 - type: dot_f1 value: 76.72696459492317 - type: dot_precision value: 73.56411162133521 - type: dot_recall value: 80.17400677548507 - type: euclidean_accuracy value: 89.21682772538519 - type: euclidean_ap value: 86.29306071289969 - type: euclidean_f1 value: 78.40827030519554 - type: euclidean_precision value: 77.42250243939053 - type: euclidean_recall value: 79.41946412072683 - type: manhattan_accuracy value: 89.22458959133776 - type: manhattan_ap value: 86.2901934710645 - type: manhattan_f1 value: 78.54211378440453 - type: manhattan_precision value: 76.85505858079729 - type: manhattan_recall value: 80.30489682784109 - type: max_accuracy value: 89.25951798812434 - type: max_ap value: 86.31476416599727 - type: max_f1 value: 78.54211378440453 language: - en license: mit --- # # Fast-Inference with Ctranslate2 Speedup inference while reducing memory by 2x-4x using int8 inference in C++ on CPU or GPU. quantized version of [intfloat/e5-large](https://huggingface.co/intfloat/e5-large) ```bash pip install hf-hub-ctranslate2>=2.12.0 ctranslate2>=3.17.1 ``` ```python # from transformers import AutoTokenizer model_name = "michaelfeil/ct2fast-e5-large" model_name_orig="intfloat/e5-large" from hf_hub_ctranslate2 import EncoderCT2fromHfHub model = EncoderCT2fromHfHub( # load in int8 on CUDA model_name_or_path=model_name, device="cuda", compute_type="int8_float16" ) outputs = model.generate( text=["I like soccer", "I like tennis", "The eiffel tower is in Paris"], max_length=64, ) # perform downstream tasks on outputs outputs["pooler_output"] outputs["last_hidden_state"] outputs["attention_mask"] # alternative, use SentenceTransformer Mix-In # for end-to-end Sentence embeddings generation # (not pulling from this CT2fast-HF repo) from hf_hub_ctranslate2 import CT2SentenceTransformer model = CT2SentenceTransformer( model_name_orig, compute_type="int8_float16", device="cuda" ) embeddings = model.encode( ["I like soccer", "I like tennis", "The eiffel tower is in Paris"], batch_size=32, convert_to_numpy=True, normalize_embeddings=True, ) print(embeddings.shape, embeddings) scores = (embeddings @ embeddings.T) * 100 # Hint: you can also host this code via REST API and # via github.com/michaelfeil/infinity ``` Checkpoint compatible to [ctranslate2>=3.17.1](https://github.com/OpenNMT/CTranslate2) and [hf-hub-ctranslate2>=2.12.0](https://github.com/michaelfeil/hf-hub-ctranslate2) - `compute_type=int8_float16` for `device="cuda"` - `compute_type=int8` for `device="cpu"` Converted on 2023-10-13 using ``` LLama-2 -> removed <pad> token. ``` # Licence and other remarks: This is just a quantized version. Licence conditions are intended to be idential to original huggingface repo. # Original description ## E5-large **News (May 2023): please switch to [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2), which has better performance and same method of usage.** [Text Embeddings by Weakly-Supervised Contrastive Pre-training](https://arxiv.org/pdf/2212.03533.pdf). Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, Furu Wei, arXiv 2022 This model has 24 layers and the embedding size is 1024. ## Usage Below is an example to encode queries and passages from the MS-MARCO passage ranking dataset. ```python import torch.nn.functional as F from torch import Tensor from transformers import AutoTokenizer, AutoModel def average_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor: last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] # Each input text should start with "query: " or "passage: ". # For tasks other than retrieval, you can simply use the "query: " prefix. input_texts = ['query: how much protein should a female eat', 'query: summit define', "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", "passage: Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."] tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-large') model = AutoModel.from_pretrained('intfloat/e5-large') # Tokenize the input texts batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt') outputs = model(**batch_dict) embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask']) # normalize embeddings embeddings = F.normalize(embeddings, p=2, dim=1) scores = (embeddings[:2] @ embeddings[2:].T) * 100 print(scores.tolist()) ``` ## Training Details Please refer to our paper at [https://arxiv.org/pdf/2212.03533.pdf](https://arxiv.org/pdf/2212.03533.pdf). ## Benchmark Evaluation Check out [unilm/e5](https://github.com/microsoft/unilm/tree/master/e5) to reproduce evaluation results on the [BEIR](https://arxiv.org/abs/2104.08663) and [MTEB benchmark](https://arxiv.org/abs/2210.07316). ## Support for Sentence Transformers Below is an example for usage with sentence_transformers. ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('intfloat/e5-large') input_texts = [ 'query: how much protein should a female eat', 'query: summit define', "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", "passage: Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments." ] embeddings = model.encode(input_texts, normalize_embeddings=True) ``` Package requirements `pip install sentence_transformers~=2.2.2` Contributors: [michaelfeil](https://huggingface.co/michaelfeil) ## FAQ **1. Do I need to add the prefix "query: " and "passage: " to input texts?** Yes, this is how the model is trained, otherwise you will see a performance degradation. Here are some rules of thumb: - Use "query: " and "passage: " correspondingly for asymmetric tasks such as passage retrieval in open QA, ad-hoc information retrieval. - Use "query: " prefix for symmetric tasks such as semantic similarity, paraphrase retrieval. - Use "query: " prefix if you want to use embeddings as features, such as linear probing classification, clustering. **2. Why are my reproduced results slightly different from reported in the model card?** Different versions of `transformers` and `pytorch` could cause negligible but non-zero performance differences. **3. Why does the cosine similarity scores distribute around 0.7 to 1.0?** This is a known and expected behavior as we use a low temperature 0.01 for InfoNCE contrastive loss. For text embedding tasks like text retrieval or semantic similarity, what matters is the relative order of the scores instead of the absolute values, so this should not be an issue. ## Citation If you find our paper or models helpful, please consider cite as follows: ``` @article{wang2022text, title={Text Embeddings by Weakly-Supervised Contrastive Pre-training}, author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Jiao, Binxing and Yang, Linjun and Jiang, Daxin and Majumder, Rangan and Wei, Furu}, journal={arXiv preprint arXiv:2212.03533}, year={2022} } ``` ## Limitations This model only works for English texts. Long texts will be truncated to at most 512 tokens.
michaelfeil/ct2fast-e5-large-v2
michaelfeil
2023-10-13T13:37:36Z
15
3
sentence-transformers
[ "sentence-transformers", "bert", "ctranslate2", "int8", "float16", "mteb", "Sentence Transformers", "sentence-similarity", "en", "arxiv:2212.03533", "arxiv:2104.08663", "arxiv:2210.07316", "license:mit", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-06-15T20:11:32Z
--- tags: - ctranslate2 - int8 - float16 - mteb - Sentence Transformers - sentence-similarity - sentence-transformers model-index: - name: e5-large-v2 results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 79.22388059701493 - type: ap value: 43.20816505595132 - type: f1 value: 73.27811303522058 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 93.748325 - type: ap value: 90.72534979701297 - type: f1 value: 93.73895874282185 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 48.612 - type: f1 value: 47.61157345898393 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 23.541999999999998 - type: map_at_10 value: 38.208 - type: map_at_100 value: 39.417 - type: map_at_1000 value: 39.428999999999995 - type: map_at_3 value: 33.95 - type: map_at_5 value: 36.329 - type: mrr_at_1 value: 23.755000000000003 - type: mrr_at_10 value: 38.288 - type: mrr_at_100 value: 39.511 - type: mrr_at_1000 value: 39.523 - type: mrr_at_3 value: 34.009 - type: mrr_at_5 value: 36.434 - type: ndcg_at_1 value: 23.541999999999998 - type: ndcg_at_10 value: 46.417 - type: ndcg_at_100 value: 51.812000000000005 - type: ndcg_at_1000 value: 52.137 - type: ndcg_at_3 value: 37.528 - type: ndcg_at_5 value: 41.81 - type: precision_at_1 value: 23.541999999999998 - type: precision_at_10 value: 7.269 - type: precision_at_100 value: 0.9690000000000001 - type: precision_at_1000 value: 0.099 - type: precision_at_3 value: 15.979 - type: precision_at_5 value: 11.664 - type: recall_at_1 value: 23.541999999999998 - type: recall_at_10 value: 72.688 - type: recall_at_100 value: 96.871 - type: recall_at_1000 value: 99.431 - type: recall_at_3 value: 47.937000000000005 - type: recall_at_5 value: 58.321 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 45.546499570522094 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 41.01607489943561 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 59.616107510107774 - type: mrr value: 72.75106626214661 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 84.33018094733868 - type: cos_sim_spearman value: 83.60190492611737 - type: euclidean_pearson value: 82.1492450218961 - type: euclidean_spearman value: 82.70308926526991 - type: manhattan_pearson value: 81.93959600076842 - type: manhattan_spearman value: 82.73260801016369 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 84.54545454545455 - type: f1 value: 84.49582530928923 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 37.362725540120096 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 34.849509608178145 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 31.502999999999997 - type: map_at_10 value: 43.323 - type: map_at_100 value: 44.708999999999996 - type: map_at_1000 value: 44.838 - type: map_at_3 value: 38.987 - type: map_at_5 value: 41.516999999999996 - type: mrr_at_1 value: 38.769999999999996 - type: mrr_at_10 value: 49.13 - type: mrr_at_100 value: 49.697 - type: mrr_at_1000 value: 49.741 - type: mrr_at_3 value: 45.804 - type: mrr_at_5 value: 47.842 - type: ndcg_at_1 value: 38.769999999999996 - type: ndcg_at_10 value: 50.266999999999996 - type: ndcg_at_100 value: 54.967 - type: ndcg_at_1000 value: 56.976000000000006 - type: ndcg_at_3 value: 43.823 - type: ndcg_at_5 value: 47.12 - type: precision_at_1 value: 38.769999999999996 - type: precision_at_10 value: 10.057 - type: precision_at_100 value: 1.554 - type: precision_at_1000 value: 0.202 - type: precision_at_3 value: 21.125 - type: precision_at_5 value: 15.851 - type: recall_at_1 value: 31.502999999999997 - type: recall_at_10 value: 63.715999999999994 - type: recall_at_100 value: 83.61800000000001 - type: recall_at_1000 value: 96.63199999999999 - type: recall_at_3 value: 45.403 - type: recall_at_5 value: 54.481 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 27.833000000000002 - type: map_at_10 value: 37.330999999999996 - type: map_at_100 value: 38.580999999999996 - type: map_at_1000 value: 38.708 - type: map_at_3 value: 34.713 - type: map_at_5 value: 36.104 - type: mrr_at_1 value: 35.223 - type: mrr_at_10 value: 43.419000000000004 - type: mrr_at_100 value: 44.198 - type: mrr_at_1000 value: 44.249 - type: mrr_at_3 value: 41.614000000000004 - type: mrr_at_5 value: 42.553000000000004 - type: ndcg_at_1 value: 35.223 - type: ndcg_at_10 value: 42.687999999999995 - type: ndcg_at_100 value: 47.447 - type: ndcg_at_1000 value: 49.701 - type: ndcg_at_3 value: 39.162 - type: ndcg_at_5 value: 40.557 - type: precision_at_1 value: 35.223 - type: precision_at_10 value: 7.962 - type: precision_at_100 value: 1.304 - type: precision_at_1000 value: 0.18 - type: precision_at_3 value: 19.023 - type: precision_at_5 value: 13.184999999999999 - type: recall_at_1 value: 27.833000000000002 - type: recall_at_10 value: 51.881 - type: recall_at_100 value: 72.04 - type: recall_at_1000 value: 86.644 - type: recall_at_3 value: 40.778 - type: recall_at_5 value: 45.176 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 38.175 - type: map_at_10 value: 51.174 - type: map_at_100 value: 52.26499999999999 - type: map_at_1000 value: 52.315999999999995 - type: map_at_3 value: 47.897 - type: map_at_5 value: 49.703 - type: mrr_at_1 value: 43.448 - type: mrr_at_10 value: 54.505 - type: mrr_at_100 value: 55.216 - type: mrr_at_1000 value: 55.242000000000004 - type: mrr_at_3 value: 51.98500000000001 - type: mrr_at_5 value: 53.434000000000005 - type: ndcg_at_1 value: 43.448 - type: ndcg_at_10 value: 57.282 - type: ndcg_at_100 value: 61.537 - type: ndcg_at_1000 value: 62.546 - type: ndcg_at_3 value: 51.73799999999999 - type: ndcg_at_5 value: 54.324 - type: precision_at_1 value: 43.448 - type: precision_at_10 value: 9.292 - type: precision_at_100 value: 1.233 - type: precision_at_1000 value: 0.136 - type: precision_at_3 value: 23.218 - type: precision_at_5 value: 15.887 - type: recall_at_1 value: 38.175 - type: recall_at_10 value: 72.00999999999999 - type: recall_at_100 value: 90.155 - type: recall_at_1000 value: 97.257 - type: recall_at_3 value: 57.133 - type: recall_at_5 value: 63.424 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 22.405 - type: map_at_10 value: 30.043 - type: map_at_100 value: 31.191000000000003 - type: map_at_1000 value: 31.275 - type: map_at_3 value: 27.034000000000002 - type: map_at_5 value: 28.688000000000002 - type: mrr_at_1 value: 24.068 - type: mrr_at_10 value: 31.993 - type: mrr_at_100 value: 32.992 - type: mrr_at_1000 value: 33.050000000000004 - type: mrr_at_3 value: 28.964000000000002 - type: mrr_at_5 value: 30.653000000000002 - type: ndcg_at_1 value: 24.068 - type: ndcg_at_10 value: 35.198 - type: ndcg_at_100 value: 40.709 - type: ndcg_at_1000 value: 42.855 - type: ndcg_at_3 value: 29.139 - type: ndcg_at_5 value: 32.045 - type: precision_at_1 value: 24.068 - type: precision_at_10 value: 5.65 - type: precision_at_100 value: 0.885 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 12.279 - type: precision_at_5 value: 8.994 - type: recall_at_1 value: 22.405 - type: recall_at_10 value: 49.391 - type: recall_at_100 value: 74.53699999999999 - type: recall_at_1000 value: 90.605 - type: recall_at_3 value: 33.126 - type: recall_at_5 value: 40.073 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 13.309999999999999 - type: map_at_10 value: 20.688000000000002 - type: map_at_100 value: 22.022 - type: map_at_1000 value: 22.152 - type: map_at_3 value: 17.954 - type: map_at_5 value: 19.439 - type: mrr_at_1 value: 16.294 - type: mrr_at_10 value: 24.479 - type: mrr_at_100 value: 25.515 - type: mrr_at_1000 value: 25.593 - type: mrr_at_3 value: 21.642 - type: mrr_at_5 value: 23.189999999999998 - type: ndcg_at_1 value: 16.294 - type: ndcg_at_10 value: 25.833000000000002 - type: ndcg_at_100 value: 32.074999999999996 - type: ndcg_at_1000 value: 35.083 - type: ndcg_at_3 value: 20.493 - type: ndcg_at_5 value: 22.949 - type: precision_at_1 value: 16.294 - type: precision_at_10 value: 5.112 - type: precision_at_100 value: 0.96 - type: precision_at_1000 value: 0.134 - type: precision_at_3 value: 9.908999999999999 - type: precision_at_5 value: 7.587000000000001 - type: recall_at_1 value: 13.309999999999999 - type: recall_at_10 value: 37.851 - type: recall_at_100 value: 64.835 - type: recall_at_1000 value: 86.334 - type: recall_at_3 value: 23.493 - type: recall_at_5 value: 29.528 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 25.857999999999997 - type: map_at_10 value: 35.503 - type: map_at_100 value: 36.957 - type: map_at_1000 value: 37.065 - type: map_at_3 value: 32.275999999999996 - type: map_at_5 value: 34.119 - type: mrr_at_1 value: 31.954 - type: mrr_at_10 value: 40.851 - type: mrr_at_100 value: 41.863 - type: mrr_at_1000 value: 41.900999999999996 - type: mrr_at_3 value: 38.129999999999995 - type: mrr_at_5 value: 39.737 - type: ndcg_at_1 value: 31.954 - type: ndcg_at_10 value: 41.343999999999994 - type: ndcg_at_100 value: 47.397 - type: ndcg_at_1000 value: 49.501 - type: ndcg_at_3 value: 36.047000000000004 - type: ndcg_at_5 value: 38.639 - type: precision_at_1 value: 31.954 - type: precision_at_10 value: 7.68 - type: precision_at_100 value: 1.247 - type: precision_at_1000 value: 0.16199999999999998 - type: precision_at_3 value: 17.132 - type: precision_at_5 value: 12.589 - type: recall_at_1 value: 25.857999999999997 - type: recall_at_10 value: 53.43599999999999 - type: recall_at_100 value: 78.82400000000001 - type: recall_at_1000 value: 92.78999999999999 - type: recall_at_3 value: 38.655 - type: recall_at_5 value: 45.216 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.709 - type: map_at_10 value: 34.318 - type: map_at_100 value: 35.657 - type: map_at_1000 value: 35.783 - type: map_at_3 value: 31.326999999999998 - type: map_at_5 value: 33.021 - type: mrr_at_1 value: 30.137000000000004 - type: mrr_at_10 value: 39.093 - type: mrr_at_100 value: 39.992 - type: mrr_at_1000 value: 40.056999999999995 - type: mrr_at_3 value: 36.606 - type: mrr_at_5 value: 37.861 - type: ndcg_at_1 value: 30.137000000000004 - type: ndcg_at_10 value: 39.974 - type: ndcg_at_100 value: 45.647999999999996 - type: ndcg_at_1000 value: 48.259 - type: ndcg_at_3 value: 35.028 - type: ndcg_at_5 value: 37.175999999999995 - type: precision_at_1 value: 30.137000000000004 - type: precision_at_10 value: 7.363 - type: precision_at_100 value: 1.184 - type: precision_at_1000 value: 0.161 - type: precision_at_3 value: 16.857 - type: precision_at_5 value: 11.963 - type: recall_at_1 value: 24.709 - type: recall_at_10 value: 52.087 - type: recall_at_100 value: 76.125 - type: recall_at_1000 value: 93.82300000000001 - type: recall_at_3 value: 38.149 - type: recall_at_5 value: 43.984 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 23.40791666666667 - type: map_at_10 value: 32.458083333333335 - type: map_at_100 value: 33.691916666666664 - type: map_at_1000 value: 33.81191666666666 - type: map_at_3 value: 29.51625 - type: map_at_5 value: 31.168083333333335 - type: mrr_at_1 value: 27.96591666666666 - type: mrr_at_10 value: 36.528583333333344 - type: mrr_at_100 value: 37.404 - type: mrr_at_1000 value: 37.464333333333336 - type: mrr_at_3 value: 33.92883333333333 - type: mrr_at_5 value: 35.41933333333333 - type: ndcg_at_1 value: 27.96591666666666 - type: ndcg_at_10 value: 37.89141666666666 - type: ndcg_at_100 value: 43.23066666666666 - type: ndcg_at_1000 value: 45.63258333333333 - type: ndcg_at_3 value: 32.811249999999994 - type: ndcg_at_5 value: 35.22566666666667 - type: precision_at_1 value: 27.96591666666666 - type: precision_at_10 value: 6.834083333333332 - type: precision_at_100 value: 1.12225 - type: precision_at_1000 value: 0.15241666666666667 - type: precision_at_3 value: 15.264333333333335 - type: precision_at_5 value: 11.039416666666666 - type: recall_at_1 value: 23.40791666666667 - type: recall_at_10 value: 49.927083333333336 - type: recall_at_100 value: 73.44641666666668 - type: recall_at_1000 value: 90.19950000000001 - type: recall_at_3 value: 35.88341666666667 - type: recall_at_5 value: 42.061249999999994 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 19.592000000000002 - type: map_at_10 value: 26.895999999999997 - type: map_at_100 value: 27.921000000000003 - type: map_at_1000 value: 28.02 - type: map_at_3 value: 24.883 - type: map_at_5 value: 25.812 - type: mrr_at_1 value: 22.698999999999998 - type: mrr_at_10 value: 29.520999999999997 - type: mrr_at_100 value: 30.458000000000002 - type: mrr_at_1000 value: 30.526999999999997 - type: mrr_at_3 value: 27.633000000000003 - type: mrr_at_5 value: 28.483999999999998 - type: ndcg_at_1 value: 22.698999999999998 - type: ndcg_at_10 value: 31.061 - type: ndcg_at_100 value: 36.398 - type: ndcg_at_1000 value: 38.89 - type: ndcg_at_3 value: 27.149 - type: ndcg_at_5 value: 28.627000000000002 - type: precision_at_1 value: 22.698999999999998 - type: precision_at_10 value: 5.106999999999999 - type: precision_at_100 value: 0.857 - type: precision_at_1000 value: 0.11499999999999999 - type: precision_at_3 value: 11.963 - type: precision_at_5 value: 8.221 - type: recall_at_1 value: 19.592000000000002 - type: recall_at_10 value: 41.329 - type: recall_at_100 value: 66.094 - type: recall_at_1000 value: 84.511 - type: recall_at_3 value: 30.61 - type: recall_at_5 value: 34.213 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 14.71 - type: map_at_10 value: 20.965 - type: map_at_100 value: 21.994 - type: map_at_1000 value: 22.133 - type: map_at_3 value: 18.741 - type: map_at_5 value: 19.951 - type: mrr_at_1 value: 18.307000000000002 - type: mrr_at_10 value: 24.66 - type: mrr_at_100 value: 25.540000000000003 - type: mrr_at_1000 value: 25.629 - type: mrr_at_3 value: 22.511 - type: mrr_at_5 value: 23.72 - type: ndcg_at_1 value: 18.307000000000002 - type: ndcg_at_10 value: 25.153 - type: ndcg_at_100 value: 30.229 - type: ndcg_at_1000 value: 33.623 - type: ndcg_at_3 value: 21.203 - type: ndcg_at_5 value: 23.006999999999998 - type: precision_at_1 value: 18.307000000000002 - type: precision_at_10 value: 4.725 - type: precision_at_100 value: 0.8659999999999999 - type: precision_at_1000 value: 0.133 - type: precision_at_3 value: 10.14 - type: precision_at_5 value: 7.481 - type: recall_at_1 value: 14.71 - type: recall_at_10 value: 34.087 - type: recall_at_100 value: 57.147999999999996 - type: recall_at_1000 value: 81.777 - type: recall_at_3 value: 22.996 - type: recall_at_5 value: 27.73 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 23.472 - type: map_at_10 value: 32.699 - type: map_at_100 value: 33.867000000000004 - type: map_at_1000 value: 33.967000000000006 - type: map_at_3 value: 29.718 - type: map_at_5 value: 31.345 - type: mrr_at_1 value: 28.265 - type: mrr_at_10 value: 36.945 - type: mrr_at_100 value: 37.794 - type: mrr_at_1000 value: 37.857 - type: mrr_at_3 value: 34.266000000000005 - type: mrr_at_5 value: 35.768 - type: ndcg_at_1 value: 28.265 - type: ndcg_at_10 value: 38.35 - type: ndcg_at_100 value: 43.739 - type: ndcg_at_1000 value: 46.087 - type: ndcg_at_3 value: 33.004 - type: ndcg_at_5 value: 35.411 - type: precision_at_1 value: 28.265 - type: precision_at_10 value: 6.715999999999999 - type: precision_at_100 value: 1.059 - type: precision_at_1000 value: 0.13799999999999998 - type: precision_at_3 value: 15.299 - type: precision_at_5 value: 10.951 - type: recall_at_1 value: 23.472 - type: recall_at_10 value: 51.413 - type: recall_at_100 value: 75.17 - type: recall_at_1000 value: 91.577 - type: recall_at_3 value: 36.651 - type: recall_at_5 value: 42.814 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 23.666 - type: map_at_10 value: 32.963 - type: map_at_100 value: 34.544999999999995 - type: map_at_1000 value: 34.792 - type: map_at_3 value: 29.74 - type: map_at_5 value: 31.5 - type: mrr_at_1 value: 29.051 - type: mrr_at_10 value: 38.013000000000005 - type: mrr_at_100 value: 38.997 - type: mrr_at_1000 value: 39.055 - type: mrr_at_3 value: 34.947 - type: mrr_at_5 value: 36.815 - type: ndcg_at_1 value: 29.051 - type: ndcg_at_10 value: 39.361000000000004 - type: ndcg_at_100 value: 45.186 - type: ndcg_at_1000 value: 47.867 - type: ndcg_at_3 value: 33.797 - type: ndcg_at_5 value: 36.456 - type: precision_at_1 value: 29.051 - type: precision_at_10 value: 7.668 - type: precision_at_100 value: 1.532 - type: precision_at_1000 value: 0.247 - type: precision_at_3 value: 15.876000000000001 - type: precision_at_5 value: 11.779 - type: recall_at_1 value: 23.666 - type: recall_at_10 value: 51.858000000000004 - type: recall_at_100 value: 77.805 - type: recall_at_1000 value: 94.504 - type: recall_at_3 value: 36.207 - type: recall_at_5 value: 43.094 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 15.662 - type: map_at_10 value: 23.594 - type: map_at_100 value: 24.593999999999998 - type: map_at_1000 value: 24.694 - type: map_at_3 value: 20.925 - type: map_at_5 value: 22.817999999999998 - type: mrr_at_1 value: 17.375 - type: mrr_at_10 value: 25.734 - type: mrr_at_100 value: 26.586 - type: mrr_at_1000 value: 26.671 - type: mrr_at_3 value: 23.044 - type: mrr_at_5 value: 24.975 - type: ndcg_at_1 value: 17.375 - type: ndcg_at_10 value: 28.186 - type: ndcg_at_100 value: 33.436 - type: ndcg_at_1000 value: 36.203 - type: ndcg_at_3 value: 23.152 - type: ndcg_at_5 value: 26.397 - type: precision_at_1 value: 17.375 - type: precision_at_10 value: 4.677 - type: precision_at_100 value: 0.786 - type: precision_at_1000 value: 0.109 - type: precision_at_3 value: 10.351 - type: precision_at_5 value: 7.985 - type: recall_at_1 value: 15.662 - type: recall_at_10 value: 40.066 - type: recall_at_100 value: 65.006 - type: recall_at_1000 value: 85.94000000000001 - type: recall_at_3 value: 27.400000000000002 - type: recall_at_5 value: 35.002 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: map_at_1 value: 8.853 - type: map_at_10 value: 15.568000000000001 - type: map_at_100 value: 17.383000000000003 - type: map_at_1000 value: 17.584 - type: map_at_3 value: 12.561 - type: map_at_5 value: 14.056 - type: mrr_at_1 value: 18.958 - type: mrr_at_10 value: 28.288000000000004 - type: mrr_at_100 value: 29.432000000000002 - type: mrr_at_1000 value: 29.498 - type: mrr_at_3 value: 25.049 - type: mrr_at_5 value: 26.857 - type: ndcg_at_1 value: 18.958 - type: ndcg_at_10 value: 22.21 - type: ndcg_at_100 value: 29.596 - type: ndcg_at_1000 value: 33.583 - type: ndcg_at_3 value: 16.994999999999997 - type: ndcg_at_5 value: 18.95 - type: precision_at_1 value: 18.958 - type: precision_at_10 value: 7.192 - type: precision_at_100 value: 1.5 - type: precision_at_1000 value: 0.22399999999999998 - type: precision_at_3 value: 12.573 - type: precision_at_5 value: 10.202 - type: recall_at_1 value: 8.853 - type: recall_at_10 value: 28.087 - type: recall_at_100 value: 53.701 - type: recall_at_1000 value: 76.29899999999999 - type: recall_at_3 value: 15.913 - type: recall_at_5 value: 20.658 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: map_at_1 value: 9.077 - type: map_at_10 value: 20.788999999999998 - type: map_at_100 value: 30.429000000000002 - type: map_at_1000 value: 32.143 - type: map_at_3 value: 14.692 - type: map_at_5 value: 17.139 - type: mrr_at_1 value: 70.75 - type: mrr_at_10 value: 78.036 - type: mrr_at_100 value: 78.401 - type: mrr_at_1000 value: 78.404 - type: mrr_at_3 value: 76.75 - type: mrr_at_5 value: 77.47500000000001 - type: ndcg_at_1 value: 58.12500000000001 - type: ndcg_at_10 value: 44.015 - type: ndcg_at_100 value: 49.247 - type: ndcg_at_1000 value: 56.211999999999996 - type: ndcg_at_3 value: 49.151 - type: ndcg_at_5 value: 46.195 - type: precision_at_1 value: 70.75 - type: precision_at_10 value: 35.5 - type: precision_at_100 value: 11.355 - type: precision_at_1000 value: 2.1950000000000003 - type: precision_at_3 value: 53.083000000000006 - type: precision_at_5 value: 44.800000000000004 - type: recall_at_1 value: 9.077 - type: recall_at_10 value: 26.259 - type: recall_at_100 value: 56.547000000000004 - type: recall_at_1000 value: 78.551 - type: recall_at_3 value: 16.162000000000003 - type: recall_at_5 value: 19.753999999999998 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 49.44500000000001 - type: f1 value: 44.67067691783401 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: map_at_1 value: 68.182 - type: map_at_10 value: 78.223 - type: map_at_100 value: 78.498 - type: map_at_1000 value: 78.512 - type: map_at_3 value: 76.71 - type: map_at_5 value: 77.725 - type: mrr_at_1 value: 73.177 - type: mrr_at_10 value: 82.513 - type: mrr_at_100 value: 82.633 - type: mrr_at_1000 value: 82.635 - type: mrr_at_3 value: 81.376 - type: mrr_at_5 value: 82.182 - type: ndcg_at_1 value: 73.177 - type: ndcg_at_10 value: 82.829 - type: ndcg_at_100 value: 83.84 - type: ndcg_at_1000 value: 84.07900000000001 - type: ndcg_at_3 value: 80.303 - type: ndcg_at_5 value: 81.846 - type: precision_at_1 value: 73.177 - type: precision_at_10 value: 10.241999999999999 - type: precision_at_100 value: 1.099 - type: precision_at_1000 value: 0.11399999999999999 - type: precision_at_3 value: 31.247999999999998 - type: precision_at_5 value: 19.697 - type: recall_at_1 value: 68.182 - type: recall_at_10 value: 92.657 - type: recall_at_100 value: 96.709 - type: recall_at_1000 value: 98.184 - type: recall_at_3 value: 85.9 - type: recall_at_5 value: 89.755 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: map_at_1 value: 21.108 - type: map_at_10 value: 33.342 - type: map_at_100 value: 35.281 - type: map_at_1000 value: 35.478 - type: map_at_3 value: 29.067 - type: map_at_5 value: 31.563000000000002 - type: mrr_at_1 value: 41.667 - type: mrr_at_10 value: 49.913000000000004 - type: mrr_at_100 value: 50.724000000000004 - type: mrr_at_1000 value: 50.766 - type: mrr_at_3 value: 47.504999999999995 - type: mrr_at_5 value: 49.033 - type: ndcg_at_1 value: 41.667 - type: ndcg_at_10 value: 41.144 - type: ndcg_at_100 value: 48.326 - type: ndcg_at_1000 value: 51.486 - type: ndcg_at_3 value: 37.486999999999995 - type: ndcg_at_5 value: 38.78 - type: precision_at_1 value: 41.667 - type: precision_at_10 value: 11.358 - type: precision_at_100 value: 1.873 - type: precision_at_1000 value: 0.244 - type: precision_at_3 value: 25 - type: precision_at_5 value: 18.519 - type: recall_at_1 value: 21.108 - type: recall_at_10 value: 47.249 - type: recall_at_100 value: 74.52 - type: recall_at_1000 value: 93.31 - type: recall_at_3 value: 33.271 - type: recall_at_5 value: 39.723000000000006 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: map_at_1 value: 40.317 - type: map_at_10 value: 64.861 - type: map_at_100 value: 65.697 - type: map_at_1000 value: 65.755 - type: map_at_3 value: 61.258 - type: map_at_5 value: 63.590999999999994 - type: mrr_at_1 value: 80.635 - type: mrr_at_10 value: 86.528 - type: mrr_at_100 value: 86.66199999999999 - type: mrr_at_1000 value: 86.666 - type: mrr_at_3 value: 85.744 - type: mrr_at_5 value: 86.24300000000001 - type: ndcg_at_1 value: 80.635 - type: ndcg_at_10 value: 73.13199999999999 - type: ndcg_at_100 value: 75.927 - type: ndcg_at_1000 value: 76.976 - type: ndcg_at_3 value: 68.241 - type: ndcg_at_5 value: 71.071 - type: precision_at_1 value: 80.635 - type: precision_at_10 value: 15.326 - type: precision_at_100 value: 1.7500000000000002 - type: precision_at_1000 value: 0.189 - type: precision_at_3 value: 43.961 - type: precision_at_5 value: 28.599999999999998 - type: recall_at_1 value: 40.317 - type: recall_at_10 value: 76.631 - type: recall_at_100 value: 87.495 - type: recall_at_1000 value: 94.362 - type: recall_at_3 value: 65.94200000000001 - type: recall_at_5 value: 71.499 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 91.686 - type: ap value: 87.5577120393173 - type: f1 value: 91.6629447355139 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics: - type: map_at_1 value: 23.702 - type: map_at_10 value: 36.414 - type: map_at_100 value: 37.561 - type: map_at_1000 value: 37.605 - type: map_at_3 value: 32.456 - type: map_at_5 value: 34.827000000000005 - type: mrr_at_1 value: 24.355 - type: mrr_at_10 value: 37.01 - type: mrr_at_100 value: 38.085 - type: mrr_at_1000 value: 38.123000000000005 - type: mrr_at_3 value: 33.117999999999995 - type: mrr_at_5 value: 35.452 - type: ndcg_at_1 value: 24.384 - type: ndcg_at_10 value: 43.456 - type: ndcg_at_100 value: 48.892 - type: ndcg_at_1000 value: 49.964 - type: ndcg_at_3 value: 35.475 - type: ndcg_at_5 value: 39.711 - type: precision_at_1 value: 24.384 - type: precision_at_10 value: 6.7940000000000005 - type: precision_at_100 value: 0.951 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 15.052999999999999 - type: precision_at_5 value: 11.189 - type: recall_at_1 value: 23.702 - type: recall_at_10 value: 65.057 - type: recall_at_100 value: 90.021 - type: recall_at_1000 value: 98.142 - type: recall_at_3 value: 43.551 - type: recall_at_5 value: 53.738 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 94.62380300957591 - type: f1 value: 94.49871222100734 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 77.14090287277702 - type: f1 value: 60.32101258220515 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 73.84330867518494 - type: f1 value: 71.92248688515255 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 78.10692669804976 - type: f1 value: 77.9904839122866 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 31.822988923078444 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 30.38394880253403 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 31.82504612539082 - type: mrr value: 32.84462298174977 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: map_at_1 value: 6.029 - type: map_at_10 value: 14.088999999999999 - type: map_at_100 value: 17.601 - type: map_at_1000 value: 19.144 - type: map_at_3 value: 10.156 - type: map_at_5 value: 11.892 - type: mrr_at_1 value: 46.44 - type: mrr_at_10 value: 56.596999999999994 - type: mrr_at_100 value: 57.11000000000001 - type: mrr_at_1000 value: 57.14 - type: mrr_at_3 value: 54.334 - type: mrr_at_5 value: 55.774 - type: ndcg_at_1 value: 44.891999999999996 - type: ndcg_at_10 value: 37.134 - type: ndcg_at_100 value: 33.652 - type: ndcg_at_1000 value: 42.548 - type: ndcg_at_3 value: 41.851 - type: ndcg_at_5 value: 39.842 - type: precision_at_1 value: 46.44 - type: precision_at_10 value: 27.647 - type: precision_at_100 value: 8.309999999999999 - type: precision_at_1000 value: 2.146 - type: precision_at_3 value: 39.422000000000004 - type: precision_at_5 value: 34.675 - type: recall_at_1 value: 6.029 - type: recall_at_10 value: 18.907 - type: recall_at_100 value: 33.76 - type: recall_at_1000 value: 65.14999999999999 - type: recall_at_3 value: 11.584999999999999 - type: recall_at_5 value: 14.626 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: map_at_1 value: 39.373000000000005 - type: map_at_10 value: 55.836 - type: map_at_100 value: 56.611999999999995 - type: map_at_1000 value: 56.63 - type: map_at_3 value: 51.747 - type: map_at_5 value: 54.337999999999994 - type: mrr_at_1 value: 44.147999999999996 - type: mrr_at_10 value: 58.42699999999999 - type: mrr_at_100 value: 58.902 - type: mrr_at_1000 value: 58.914 - type: mrr_at_3 value: 55.156000000000006 - type: mrr_at_5 value: 57.291000000000004 - type: ndcg_at_1 value: 44.119 - type: ndcg_at_10 value: 63.444 - type: ndcg_at_100 value: 66.40599999999999 - type: ndcg_at_1000 value: 66.822 - type: ndcg_at_3 value: 55.962 - type: ndcg_at_5 value: 60.228 - type: precision_at_1 value: 44.119 - type: precision_at_10 value: 10.006 - type: precision_at_100 value: 1.17 - type: precision_at_1000 value: 0.121 - type: precision_at_3 value: 25.135 - type: precision_at_5 value: 17.59 - type: recall_at_1 value: 39.373000000000005 - type: recall_at_10 value: 83.78999999999999 - type: recall_at_100 value: 96.246 - type: recall_at_1000 value: 99.324 - type: recall_at_3 value: 64.71900000000001 - type: recall_at_5 value: 74.508 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 69.199 - type: map_at_10 value: 82.892 - type: map_at_100 value: 83.578 - type: map_at_1000 value: 83.598 - type: map_at_3 value: 79.948 - type: map_at_5 value: 81.779 - type: mrr_at_1 value: 79.67 - type: mrr_at_10 value: 86.115 - type: mrr_at_100 value: 86.249 - type: mrr_at_1000 value: 86.251 - type: mrr_at_3 value: 85.08200000000001 - type: mrr_at_5 value: 85.783 - type: ndcg_at_1 value: 79.67 - type: ndcg_at_10 value: 86.839 - type: ndcg_at_100 value: 88.252 - type: ndcg_at_1000 value: 88.401 - type: ndcg_at_3 value: 83.86200000000001 - type: ndcg_at_5 value: 85.473 - type: precision_at_1 value: 79.67 - type: precision_at_10 value: 13.19 - type: precision_at_100 value: 1.521 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 36.677 - type: precision_at_5 value: 24.118000000000002 - type: recall_at_1 value: 69.199 - type: recall_at_10 value: 94.321 - type: recall_at_100 value: 99.20400000000001 - type: recall_at_1000 value: 99.947 - type: recall_at_3 value: 85.787 - type: recall_at_5 value: 90.365 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 55.82810046856353 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 63.38132611783628 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 5.127000000000001 - type: map_at_10 value: 12.235 - type: map_at_100 value: 14.417 - type: map_at_1000 value: 14.75 - type: map_at_3 value: 8.906 - type: map_at_5 value: 10.591000000000001 - type: mrr_at_1 value: 25.2 - type: mrr_at_10 value: 35.879 - type: mrr_at_100 value: 36.935 - type: mrr_at_1000 value: 36.997 - type: mrr_at_3 value: 32.783 - type: mrr_at_5 value: 34.367999999999995 - type: ndcg_at_1 value: 25.2 - type: ndcg_at_10 value: 20.509 - type: ndcg_at_100 value: 28.67 - type: ndcg_at_1000 value: 34.42 - type: ndcg_at_3 value: 19.948 - type: ndcg_at_5 value: 17.166 - type: precision_at_1 value: 25.2 - type: precision_at_10 value: 10.440000000000001 - type: precision_at_100 value: 2.214 - type: precision_at_1000 value: 0.359 - type: precision_at_3 value: 18.533 - type: precision_at_5 value: 14.860000000000001 - type: recall_at_1 value: 5.127000000000001 - type: recall_at_10 value: 21.147 - type: recall_at_100 value: 44.946999999999996 - type: recall_at_1000 value: 72.89 - type: recall_at_3 value: 11.277 - type: recall_at_5 value: 15.042 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 83.0373011786213 - type: cos_sim_spearman value: 79.27889560856613 - type: euclidean_pearson value: 80.31186315495655 - type: euclidean_spearman value: 79.41630415280811 - type: manhattan_pearson value: 80.31755140442013 - type: manhattan_spearman value: 79.43069870027611 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 84.8659751342045 - type: cos_sim_spearman value: 76.95377612997667 - type: euclidean_pearson value: 81.24552945497848 - type: euclidean_spearman value: 77.18236963555253 - type: manhattan_pearson value: 81.26477607759037 - type: manhattan_spearman value: 77.13821753062756 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 83.34597139044875 - type: cos_sim_spearman value: 84.124169425592 - type: euclidean_pearson value: 83.68590721511401 - type: euclidean_spearman value: 84.18846190846398 - type: manhattan_pearson value: 83.57630235061498 - type: manhattan_spearman value: 84.10244043726902 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 82.67641885599572 - type: cos_sim_spearman value: 80.46450725650428 - type: euclidean_pearson value: 81.61645042715865 - type: euclidean_spearman value: 80.61418394236874 - type: manhattan_pearson value: 81.55712034928871 - type: manhattan_spearman value: 80.57905670523951 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 88.86650310886782 - type: cos_sim_spearman value: 89.76081629222328 - type: euclidean_pearson value: 89.1530747029954 - type: euclidean_spearman value: 89.80990657280248 - type: manhattan_pearson value: 89.10640563278132 - type: manhattan_spearman value: 89.76282108434047 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 83.93864027911118 - type: cos_sim_spearman value: 85.47096193999023 - type: euclidean_pearson value: 85.03141840870533 - type: euclidean_spearman value: 85.43124029598181 - type: manhattan_pearson value: 84.99002664393512 - type: manhattan_spearman value: 85.39169195120834 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 88.7045343749832 - type: cos_sim_spearman value: 89.03262221146677 - type: euclidean_pearson value: 89.56078218264365 - type: euclidean_spearman value: 89.17827006466868 - type: manhattan_pearson value: 89.52717595468582 - type: manhattan_spearman value: 89.15878115952923 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 64.20191302875551 - type: cos_sim_spearman value: 64.11446552557646 - type: euclidean_pearson value: 64.6918197393619 - type: euclidean_spearman value: 63.440182631197764 - type: manhattan_pearson value: 64.55692904121835 - type: manhattan_spearman value: 63.424877742756266 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 86.37793104662344 - type: cos_sim_spearman value: 87.7357802629067 - type: euclidean_pearson value: 87.4286301545109 - type: euclidean_spearman value: 87.78452920777421 - type: manhattan_pearson value: 87.42445169331255 - type: manhattan_spearman value: 87.78537677249598 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 84.31465405081792 - type: mrr value: 95.7173781193389 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: map_at_1 value: 57.760999999999996 - type: map_at_10 value: 67.904 - type: map_at_100 value: 68.539 - type: map_at_1000 value: 68.562 - type: map_at_3 value: 65.415 - type: map_at_5 value: 66.788 - type: mrr_at_1 value: 60.333000000000006 - type: mrr_at_10 value: 68.797 - type: mrr_at_100 value: 69.236 - type: mrr_at_1000 value: 69.257 - type: mrr_at_3 value: 66.667 - type: mrr_at_5 value: 67.967 - type: ndcg_at_1 value: 60.333000000000006 - type: ndcg_at_10 value: 72.24199999999999 - type: ndcg_at_100 value: 74.86 - type: ndcg_at_1000 value: 75.354 - type: ndcg_at_3 value: 67.93400000000001 - type: ndcg_at_5 value: 70.02199999999999 - type: precision_at_1 value: 60.333000000000006 - type: precision_at_10 value: 9.533 - type: precision_at_100 value: 1.09 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 26.778000000000002 - type: precision_at_5 value: 17.467 - type: recall_at_1 value: 57.760999999999996 - type: recall_at_10 value: 84.383 - type: recall_at_100 value: 96.267 - type: recall_at_1000 value: 100 - type: recall_at_3 value: 72.628 - type: recall_at_5 value: 78.094 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.8029702970297 - type: cos_sim_ap value: 94.9210324173411 - type: cos_sim_f1 value: 89.8521162672106 - type: cos_sim_precision value: 91.67533818938605 - type: cos_sim_recall value: 88.1 - type: dot_accuracy value: 99.69504950495049 - type: dot_ap value: 90.4919719146181 - type: dot_f1 value: 84.72289156626506 - type: dot_precision value: 81.76744186046511 - type: dot_recall value: 87.9 - type: euclidean_accuracy value: 99.79702970297029 - type: euclidean_ap value: 94.87827463795753 - type: euclidean_f1 value: 89.55680081507896 - type: euclidean_precision value: 91.27725856697819 - type: euclidean_recall value: 87.9 - type: manhattan_accuracy value: 99.7990099009901 - type: manhattan_ap value: 94.87587025149682 - type: manhattan_f1 value: 89.76298537569339 - type: manhattan_precision value: 90.53916581892166 - type: manhattan_recall value: 89 - type: max_accuracy value: 99.8029702970297 - type: max_ap value: 94.9210324173411 - type: max_f1 value: 89.8521162672106 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 65.92385753948724 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 33.671756975431144 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 50.677928036739004 - type: mrr value: 51.56413133435193 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 30.523589340819683 - type: cos_sim_spearman value: 30.187407518823235 - type: dot_pearson value: 29.039713969699015 - type: dot_spearman value: 29.114740651155508 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.211 - type: map_at_10 value: 1.6199999999999999 - type: map_at_100 value: 8.658000000000001 - type: map_at_1000 value: 21.538 - type: map_at_3 value: 0.575 - type: map_at_5 value: 0.919 - type: mrr_at_1 value: 78 - type: mrr_at_10 value: 86.18599999999999 - type: mrr_at_100 value: 86.18599999999999 - type: mrr_at_1000 value: 86.18599999999999 - type: mrr_at_3 value: 85 - type: mrr_at_5 value: 85.9 - type: ndcg_at_1 value: 74 - type: ndcg_at_10 value: 66.542 - type: ndcg_at_100 value: 50.163999999999994 - type: ndcg_at_1000 value: 45.696999999999996 - type: ndcg_at_3 value: 71.531 - type: ndcg_at_5 value: 70.45 - type: precision_at_1 value: 78 - type: precision_at_10 value: 69.39999999999999 - type: precision_at_100 value: 51.06 - type: precision_at_1000 value: 20.022000000000002 - type: precision_at_3 value: 76 - type: precision_at_5 value: 74.8 - type: recall_at_1 value: 0.211 - type: recall_at_10 value: 1.813 - type: recall_at_100 value: 12.098 - type: recall_at_1000 value: 42.618 - type: recall_at_3 value: 0.603 - type: recall_at_5 value: 0.987 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 2.2079999999999997 - type: map_at_10 value: 7.777000000000001 - type: map_at_100 value: 12.825000000000001 - type: map_at_1000 value: 14.196 - type: map_at_3 value: 4.285 - type: map_at_5 value: 6.177 - type: mrr_at_1 value: 30.612000000000002 - type: mrr_at_10 value: 42.635 - type: mrr_at_100 value: 43.955 - type: mrr_at_1000 value: 43.955 - type: mrr_at_3 value: 38.435 - type: mrr_at_5 value: 41.088 - type: ndcg_at_1 value: 28.571 - type: ndcg_at_10 value: 20.666999999999998 - type: ndcg_at_100 value: 31.840000000000003 - type: ndcg_at_1000 value: 43.191 - type: ndcg_at_3 value: 23.45 - type: ndcg_at_5 value: 22.994 - type: precision_at_1 value: 30.612000000000002 - type: precision_at_10 value: 17.959 - type: precision_at_100 value: 6.755 - type: precision_at_1000 value: 1.4200000000000002 - type: precision_at_3 value: 23.810000000000002 - type: precision_at_5 value: 23.673 - type: recall_at_1 value: 2.2079999999999997 - type: recall_at_10 value: 13.144 - type: recall_at_100 value: 42.491 - type: recall_at_1000 value: 77.04299999999999 - type: recall_at_3 value: 5.3469999999999995 - type: recall_at_5 value: 9.139 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 70.9044 - type: ap value: 14.625783489340755 - type: f1 value: 54.814936562590546 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 60.94227504244483 - type: f1 value: 61.22516038508854 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 49.602409155145864 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 86.94641473445789 - type: cos_sim_ap value: 76.91572747061197 - type: cos_sim_f1 value: 70.14348097317529 - type: cos_sim_precision value: 66.53254437869822 - type: cos_sim_recall value: 74.1688654353562 - type: dot_accuracy value: 84.80061989628658 - type: dot_ap value: 70.7952548895177 - type: dot_f1 value: 65.44780728844965 - type: dot_precision value: 61.53310104529617 - type: dot_recall value: 69.89445910290237 - type: euclidean_accuracy value: 86.94641473445789 - type: euclidean_ap value: 76.80774009393652 - type: euclidean_f1 value: 70.30522503879979 - type: euclidean_precision value: 68.94977168949772 - type: euclidean_recall value: 71.71503957783642 - type: manhattan_accuracy value: 86.8629671574179 - type: manhattan_ap value: 76.76518632600317 - type: manhattan_f1 value: 70.16056518946692 - type: manhattan_precision value: 68.360450563204 - type: manhattan_recall value: 72.0580474934037 - type: max_accuracy value: 86.94641473445789 - type: max_ap value: 76.91572747061197 - type: max_f1 value: 70.30522503879979 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 89.10428066907285 - type: cos_sim_ap value: 86.25114759921435 - type: cos_sim_f1 value: 78.37857884586856 - type: cos_sim_precision value: 75.60818546078993 - type: cos_sim_recall value: 81.35971666153372 - type: dot_accuracy value: 87.41995575736406 - type: dot_ap value: 81.51838010086782 - type: dot_f1 value: 74.77398015435503 - type: dot_precision value: 71.53002390662354 - type: dot_recall value: 78.32614721281182 - type: euclidean_accuracy value: 89.12368533395428 - type: euclidean_ap value: 86.33456799874504 - type: euclidean_f1 value: 78.45496750232127 - type: euclidean_precision value: 75.78388462366364 - type: euclidean_recall value: 81.32121958731136 - type: manhattan_accuracy value: 89.10622113556099 - type: manhattan_ap value: 86.31215061745333 - type: manhattan_f1 value: 78.40684906011539 - type: manhattan_precision value: 75.89536643366722 - type: manhattan_recall value: 81.09023714197721 - type: max_accuracy value: 89.12368533395428 - type: max_ap value: 86.33456799874504 - type: max_f1 value: 78.45496750232127 language: - en license: mit --- # # Fast-Inference with Ctranslate2 Speedup inference while reducing memory by 2x-4x using int8 inference in C++ on CPU or GPU. quantized version of [intfloat/e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) ```bash pip install hf-hub-ctranslate2>=2.12.0 ctranslate2>=3.17.1 ``` ```python # from transformers import AutoTokenizer model_name = "michaelfeil/ct2fast-e5-large-v2" model_name_orig="intfloat/e5-large-v2" from hf_hub_ctranslate2 import EncoderCT2fromHfHub model = EncoderCT2fromHfHub( # load in int8 on CUDA model_name_or_path=model_name, device="cuda", compute_type="int8_float16" ) outputs = model.generate( text=["I like soccer", "I like tennis", "The eiffel tower is in Paris"], max_length=64, ) # perform downstream tasks on outputs outputs["pooler_output"] outputs["last_hidden_state"] outputs["attention_mask"] # alternative, use SentenceTransformer Mix-In # for end-to-end Sentence embeddings generation # (not pulling from this CT2fast-HF repo) from hf_hub_ctranslate2 import CT2SentenceTransformer model = CT2SentenceTransformer( model_name_orig, compute_type="int8_float16", device="cuda" ) embeddings = model.encode( ["I like soccer", "I like tennis", "The eiffel tower is in Paris"], batch_size=32, convert_to_numpy=True, normalize_embeddings=True, ) print(embeddings.shape, embeddings) scores = (embeddings @ embeddings.T) * 100 # Hint: you can also host this code via REST API and # via github.com/michaelfeil/infinity ``` Checkpoint compatible to [ctranslate2>=3.17.1](https://github.com/OpenNMT/CTranslate2) and [hf-hub-ctranslate2>=2.12.0](https://github.com/michaelfeil/hf-hub-ctranslate2) - `compute_type=int8_float16` for `device="cuda"` - `compute_type=int8` for `device="cpu"` Converted on 2023-10-13 using ``` LLama-2 -> removed <pad> token. ``` # Licence and other remarks: This is just a quantized version. Licence conditions are intended to be idential to original huggingface repo. # Original description # E5-large-v2 [Text Embeddings by Weakly-Supervised Contrastive Pre-training](https://arxiv.org/pdf/2212.03533.pdf). Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, Furu Wei, arXiv 2022 This model has 24 layers and the embedding size is 1024. ## Usage Below is an example to encode queries and passages from the MS-MARCO passage ranking dataset. ```python import torch.nn.functional as F from torch import Tensor from transformers import AutoTokenizer, AutoModel def average_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor: last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] # Each input text should start with "query: " or "passage: ". # For tasks other than retrieval, you can simply use the "query: " prefix. input_texts = ['query: how much protein should a female eat', 'query: summit define', "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", "passage: Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."] tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-large-v2') model = AutoModel.from_pretrained('intfloat/e5-large-v2') # Tokenize the input texts batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt') outputs = model(**batch_dict) embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask']) # normalize embeddings embeddings = F.normalize(embeddings, p=2, dim=1) scores = (embeddings[:2] @ embeddings[2:].T) * 100 print(scores.tolist()) ``` ## Training Details Please refer to our paper at [https://arxiv.org/pdf/2212.03533.pdf](https://arxiv.org/pdf/2212.03533.pdf). ## Benchmark Evaluation Check out [unilm/e5](https://github.com/microsoft/unilm/tree/master/e5) to reproduce evaluation results on the [BEIR](https://arxiv.org/abs/2104.08663) and [MTEB benchmark](https://arxiv.org/abs/2210.07316). ## Support for Sentence Transformers Below is an example for usage with sentence_transformers. ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('intfloat/e5-large-v2') input_texts = [ 'query: how much protein should a female eat', 'query: summit define', "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", "passage: Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments." ] embeddings = model.encode(input_texts, normalize_embeddings=True) ``` Package requirements `pip install sentence_transformers~=2.2.2` Contributors: [michaelfeil](https://huggingface.co/michaelfeil) ## FAQ **1. Do I need to add the prefix "query: " and "passage: " to input texts?** Yes, this is how the model is trained, otherwise you will see a performance degradation. Here are some rules of thumb: - Use "query: " and "passage: " correspondingly for asymmetric tasks such as passage retrieval in open QA, ad-hoc information retrieval. - Use "query: " prefix for symmetric tasks such as semantic similarity, paraphrase retrieval. - Use "query: " prefix if you want to use embeddings as features, such as linear probing classification, clustering. **2. Why are my reproduced results slightly different from reported in the model card?** Different versions of `transformers` and `pytorch` could cause negligible but non-zero performance differences. **3. Why does the cosine similarity scores distribute around 0.7 to 1.0?** This is a known and expected behavior as we use a low temperature 0.01 for InfoNCE contrastive loss. For text embedding tasks like text retrieval or semantic similarity, what matters is the relative order of the scores instead of the absolute values, so this should not be an issue. ## Citation If you find our paper or models helpful, please consider cite as follows: ``` @article{wang2022text, title={Text Embeddings by Weakly-Supervised Contrastive Pre-training}, author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Jiao, Binxing and Yang, Linjun and Jiang, Daxin and Majumder, Rangan and Wei, Furu}, journal={arXiv preprint arXiv:2212.03533}, year={2022} } ``` ## Limitations This model only works for English texts. Long texts will be truncated to at most 512 tokens.
michaelfeil/ct2fast-e5-small
michaelfeil
2023-10-13T13:36:53Z
6
1
sentence-transformers
[ "sentence-transformers", "bert", "ctranslate2", "int8", "float16", "mteb", "Sentence Transformers", "sentence-similarity", "en", "arxiv:2212.03533", "arxiv:2104.08663", "arxiv:2210.07316", "license:mit", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-06-18T11:41:56Z
--- tags: - ctranslate2 - int8 - float16 - mteb - Sentence Transformers - sentence-similarity - sentence-transformers model-index: - name: e5-small results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 76.22388059701493 - type: ap value: 40.27466219523129 - type: f1 value: 70.60533006025108 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 87.525775 - type: ap value: 83.51063993897611 - type: f1 value: 87.49342736805572 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 42.611999999999995 - type: f1 value: 42.05088045932892 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 23.826 - type: map_at_10 value: 38.269 - type: map_at_100 value: 39.322 - type: map_at_1000 value: 39.344 - type: map_at_3 value: 33.428000000000004 - type: map_at_5 value: 36.063 - type: mrr_at_1 value: 24.253 - type: mrr_at_10 value: 38.425 - type: mrr_at_100 value: 39.478 - type: mrr_at_1000 value: 39.5 - type: mrr_at_3 value: 33.606 - type: mrr_at_5 value: 36.195 - type: ndcg_at_1 value: 23.826 - type: ndcg_at_10 value: 46.693 - type: ndcg_at_100 value: 51.469 - type: ndcg_at_1000 value: 52.002 - type: ndcg_at_3 value: 36.603 - type: ndcg_at_5 value: 41.365 - type: precision_at_1 value: 23.826 - type: precision_at_10 value: 7.383000000000001 - type: precision_at_100 value: 0.9530000000000001 - type: precision_at_1000 value: 0.099 - type: precision_at_3 value: 15.268 - type: precision_at_5 value: 11.479000000000001 - type: recall_at_1 value: 23.826 - type: recall_at_10 value: 73.82600000000001 - type: recall_at_100 value: 95.306 - type: recall_at_1000 value: 99.431 - type: recall_at_3 value: 45.804 - type: recall_at_5 value: 57.397 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 44.13995374767436 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 37.13950072624313 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 59.35843292105327 - type: mrr value: 73.72312359846987 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 84.55140418324174 - type: cos_sim_spearman value: 84.21637675860022 - type: euclidean_pearson value: 81.26069614610006 - type: euclidean_spearman value: 83.25069210421785 - type: manhattan_pearson value: 80.17441422581014 - type: manhattan_spearman value: 81.87596198487877 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 81.87337662337661 - type: f1 value: 81.76647866926402 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 35.80600542614507 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 31.86321613256603 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 32.054 - type: map_at_10 value: 40.699999999999996 - type: map_at_100 value: 41.818 - type: map_at_1000 value: 41.959999999999994 - type: map_at_3 value: 37.742 - type: map_at_5 value: 39.427 - type: mrr_at_1 value: 38.769999999999996 - type: mrr_at_10 value: 46.150000000000006 - type: mrr_at_100 value: 46.865 - type: mrr_at_1000 value: 46.925 - type: mrr_at_3 value: 43.705 - type: mrr_at_5 value: 45.214999999999996 - type: ndcg_at_1 value: 38.769999999999996 - type: ndcg_at_10 value: 45.778 - type: ndcg_at_100 value: 50.38 - type: ndcg_at_1000 value: 52.922999999999995 - type: ndcg_at_3 value: 41.597 - type: ndcg_at_5 value: 43.631 - type: precision_at_1 value: 38.769999999999996 - type: precision_at_10 value: 8.269 - type: precision_at_100 value: 1.278 - type: precision_at_1000 value: 0.178 - type: precision_at_3 value: 19.266 - type: precision_at_5 value: 13.705 - type: recall_at_1 value: 32.054 - type: recall_at_10 value: 54.947 - type: recall_at_100 value: 74.79599999999999 - type: recall_at_1000 value: 91.40899999999999 - type: recall_at_3 value: 42.431000000000004 - type: recall_at_5 value: 48.519 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 29.035 - type: map_at_10 value: 38.007000000000005 - type: map_at_100 value: 39.125 - type: map_at_1000 value: 39.251999999999995 - type: map_at_3 value: 35.77 - type: map_at_5 value: 37.057 - type: mrr_at_1 value: 36.497 - type: mrr_at_10 value: 44.077 - type: mrr_at_100 value: 44.743 - type: mrr_at_1000 value: 44.79 - type: mrr_at_3 value: 42.123 - type: mrr_at_5 value: 43.308 - type: ndcg_at_1 value: 36.497 - type: ndcg_at_10 value: 42.986000000000004 - type: ndcg_at_100 value: 47.323 - type: ndcg_at_1000 value: 49.624 - type: ndcg_at_3 value: 39.805 - type: ndcg_at_5 value: 41.286 - type: precision_at_1 value: 36.497 - type: precision_at_10 value: 7.8340000000000005 - type: precision_at_100 value: 1.269 - type: precision_at_1000 value: 0.178 - type: precision_at_3 value: 19.023 - type: precision_at_5 value: 13.248 - type: recall_at_1 value: 29.035 - type: recall_at_10 value: 51.06 - type: recall_at_100 value: 69.64099999999999 - type: recall_at_1000 value: 84.49 - type: recall_at_3 value: 41.333999999999996 - type: recall_at_5 value: 45.663 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 37.239 - type: map_at_10 value: 47.873 - type: map_at_100 value: 48.842999999999996 - type: map_at_1000 value: 48.913000000000004 - type: map_at_3 value: 45.050000000000004 - type: map_at_5 value: 46.498 - type: mrr_at_1 value: 42.508 - type: mrr_at_10 value: 51.44 - type: mrr_at_100 value: 52.087 - type: mrr_at_1000 value: 52.129999999999995 - type: mrr_at_3 value: 49.164 - type: mrr_at_5 value: 50.343 - type: ndcg_at_1 value: 42.508 - type: ndcg_at_10 value: 53.31399999999999 - type: ndcg_at_100 value: 57.245000000000005 - type: ndcg_at_1000 value: 58.794000000000004 - type: ndcg_at_3 value: 48.295 - type: ndcg_at_5 value: 50.415 - type: precision_at_1 value: 42.508 - type: precision_at_10 value: 8.458 - type: precision_at_100 value: 1.133 - type: precision_at_1000 value: 0.132 - type: precision_at_3 value: 21.191 - type: precision_at_5 value: 14.307 - type: recall_at_1 value: 37.239 - type: recall_at_10 value: 65.99000000000001 - type: recall_at_100 value: 82.99499999999999 - type: recall_at_1000 value: 94.128 - type: recall_at_3 value: 52.382 - type: recall_at_5 value: 57.648999999999994 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 23.039 - type: map_at_10 value: 29.694 - type: map_at_100 value: 30.587999999999997 - type: map_at_1000 value: 30.692999999999998 - type: map_at_3 value: 27.708 - type: map_at_5 value: 28.774 - type: mrr_at_1 value: 24.633 - type: mrr_at_10 value: 31.478 - type: mrr_at_100 value: 32.299 - type: mrr_at_1000 value: 32.381 - type: mrr_at_3 value: 29.435 - type: mrr_at_5 value: 30.446 - type: ndcg_at_1 value: 24.633 - type: ndcg_at_10 value: 33.697 - type: ndcg_at_100 value: 38.080000000000005 - type: ndcg_at_1000 value: 40.812 - type: ndcg_at_3 value: 29.654000000000003 - type: ndcg_at_5 value: 31.474000000000004 - type: precision_at_1 value: 24.633 - type: precision_at_10 value: 5.0729999999999995 - type: precision_at_100 value: 0.753 - type: precision_at_1000 value: 0.10300000000000001 - type: precision_at_3 value: 12.279 - type: precision_at_5 value: 8.452 - type: recall_at_1 value: 23.039 - type: recall_at_10 value: 44.275999999999996 - type: recall_at_100 value: 64.4 - type: recall_at_1000 value: 85.135 - type: recall_at_3 value: 33.394 - type: recall_at_5 value: 37.687 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 13.594999999999999 - type: map_at_10 value: 19.933999999999997 - type: map_at_100 value: 20.966 - type: map_at_1000 value: 21.087 - type: map_at_3 value: 17.749000000000002 - type: map_at_5 value: 19.156000000000002 - type: mrr_at_1 value: 17.662 - type: mrr_at_10 value: 24.407 - type: mrr_at_100 value: 25.385 - type: mrr_at_1000 value: 25.465 - type: mrr_at_3 value: 22.056 - type: mrr_at_5 value: 23.630000000000003 - type: ndcg_at_1 value: 17.662 - type: ndcg_at_10 value: 24.391 - type: ndcg_at_100 value: 29.681 - type: ndcg_at_1000 value: 32.923 - type: ndcg_at_3 value: 20.271 - type: ndcg_at_5 value: 22.621 - type: precision_at_1 value: 17.662 - type: precision_at_10 value: 4.44 - type: precision_at_100 value: 0.8200000000000001 - type: precision_at_1000 value: 0.125 - type: precision_at_3 value: 9.577 - type: precision_at_5 value: 7.313 - type: recall_at_1 value: 13.594999999999999 - type: recall_at_10 value: 33.976 - type: recall_at_100 value: 57.43000000000001 - type: recall_at_1000 value: 80.958 - type: recall_at_3 value: 22.897000000000002 - type: recall_at_5 value: 28.714000000000002 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 26.683 - type: map_at_10 value: 35.068 - type: map_at_100 value: 36.311 - type: map_at_1000 value: 36.436 - type: map_at_3 value: 32.371 - type: map_at_5 value: 33.761 - type: mrr_at_1 value: 32.435 - type: mrr_at_10 value: 40.721000000000004 - type: mrr_at_100 value: 41.535 - type: mrr_at_1000 value: 41.593 - type: mrr_at_3 value: 38.401999999999994 - type: mrr_at_5 value: 39.567 - type: ndcg_at_1 value: 32.435 - type: ndcg_at_10 value: 40.538000000000004 - type: ndcg_at_100 value: 45.963 - type: ndcg_at_1000 value: 48.400999999999996 - type: ndcg_at_3 value: 36.048 - type: ndcg_at_5 value: 37.899 - type: precision_at_1 value: 32.435 - type: precision_at_10 value: 7.1129999999999995 - type: precision_at_100 value: 1.162 - type: precision_at_1000 value: 0.156 - type: precision_at_3 value: 16.683 - type: precision_at_5 value: 11.684 - type: recall_at_1 value: 26.683 - type: recall_at_10 value: 51.517 - type: recall_at_100 value: 74.553 - type: recall_at_1000 value: 90.649 - type: recall_at_3 value: 38.495000000000005 - type: recall_at_5 value: 43.495 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.186 - type: map_at_10 value: 31.972 - type: map_at_100 value: 33.117000000000004 - type: map_at_1000 value: 33.243 - type: map_at_3 value: 29.423 - type: map_at_5 value: 30.847 - type: mrr_at_1 value: 29.794999999999998 - type: mrr_at_10 value: 36.767 - type: mrr_at_100 value: 37.645 - type: mrr_at_1000 value: 37.716 - type: mrr_at_3 value: 34.513 - type: mrr_at_5 value: 35.791000000000004 - type: ndcg_at_1 value: 29.794999999999998 - type: ndcg_at_10 value: 36.786 - type: ndcg_at_100 value: 41.94 - type: ndcg_at_1000 value: 44.830999999999996 - type: ndcg_at_3 value: 32.504 - type: ndcg_at_5 value: 34.404 - type: precision_at_1 value: 29.794999999999998 - type: precision_at_10 value: 6.518 - type: precision_at_100 value: 1.0659999999999998 - type: precision_at_1000 value: 0.149 - type: precision_at_3 value: 15.296999999999999 - type: precision_at_5 value: 10.731 - type: recall_at_1 value: 24.186 - type: recall_at_10 value: 46.617 - type: recall_at_100 value: 68.75 - type: recall_at_1000 value: 88.864 - type: recall_at_3 value: 34.199 - type: recall_at_5 value: 39.462 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.22083333333333 - type: map_at_10 value: 31.606666666666662 - type: map_at_100 value: 32.6195 - type: map_at_1000 value: 32.739999999999995 - type: map_at_3 value: 29.37825 - type: map_at_5 value: 30.596083333333336 - type: mrr_at_1 value: 28.607916666666668 - type: mrr_at_10 value: 35.54591666666666 - type: mrr_at_100 value: 36.33683333333333 - type: mrr_at_1000 value: 36.40624999999999 - type: mrr_at_3 value: 33.526250000000005 - type: mrr_at_5 value: 34.6605 - type: ndcg_at_1 value: 28.607916666666668 - type: ndcg_at_10 value: 36.07966666666667 - type: ndcg_at_100 value: 40.73308333333333 - type: ndcg_at_1000 value: 43.40666666666666 - type: ndcg_at_3 value: 32.23525 - type: ndcg_at_5 value: 33.97083333333333 - type: precision_at_1 value: 28.607916666666668 - type: precision_at_10 value: 6.120333333333335 - type: precision_at_100 value: 0.9921666666666668 - type: precision_at_1000 value: 0.14091666666666666 - type: precision_at_3 value: 14.54975 - type: precision_at_5 value: 10.153166666666667 - type: recall_at_1 value: 24.22083333333333 - type: recall_at_10 value: 45.49183333333334 - type: recall_at_100 value: 66.28133333333332 - type: recall_at_1000 value: 85.16541666666667 - type: recall_at_3 value: 34.6485 - type: recall_at_5 value: 39.229749999999996 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 21.842 - type: map_at_10 value: 27.573999999999998 - type: map_at_100 value: 28.410999999999998 - type: map_at_1000 value: 28.502 - type: map_at_3 value: 25.921 - type: map_at_5 value: 26.888 - type: mrr_at_1 value: 24.08 - type: mrr_at_10 value: 29.915999999999997 - type: mrr_at_100 value: 30.669 - type: mrr_at_1000 value: 30.746000000000002 - type: mrr_at_3 value: 28.349000000000004 - type: mrr_at_5 value: 29.246 - type: ndcg_at_1 value: 24.08 - type: ndcg_at_10 value: 30.898999999999997 - type: ndcg_at_100 value: 35.272999999999996 - type: ndcg_at_1000 value: 37.679 - type: ndcg_at_3 value: 27.881 - type: ndcg_at_5 value: 29.432000000000002 - type: precision_at_1 value: 24.08 - type: precision_at_10 value: 4.678 - type: precision_at_100 value: 0.744 - type: precision_at_1000 value: 0.10300000000000001 - type: precision_at_3 value: 11.860999999999999 - type: precision_at_5 value: 8.16 - type: recall_at_1 value: 21.842 - type: recall_at_10 value: 38.66 - type: recall_at_100 value: 59.169000000000004 - type: recall_at_1000 value: 76.887 - type: recall_at_3 value: 30.532999999999998 - type: recall_at_5 value: 34.354 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 17.145 - type: map_at_10 value: 22.729 - type: map_at_100 value: 23.574 - type: map_at_1000 value: 23.695 - type: map_at_3 value: 21.044 - type: map_at_5 value: 21.981 - type: mrr_at_1 value: 20.888 - type: mrr_at_10 value: 26.529000000000003 - type: mrr_at_100 value: 27.308 - type: mrr_at_1000 value: 27.389000000000003 - type: mrr_at_3 value: 24.868000000000002 - type: mrr_at_5 value: 25.825 - type: ndcg_at_1 value: 20.888 - type: ndcg_at_10 value: 26.457000000000004 - type: ndcg_at_100 value: 30.764000000000003 - type: ndcg_at_1000 value: 33.825 - type: ndcg_at_3 value: 23.483999999999998 - type: ndcg_at_5 value: 24.836 - type: precision_at_1 value: 20.888 - type: precision_at_10 value: 4.58 - type: precision_at_100 value: 0.784 - type: precision_at_1000 value: 0.121 - type: precision_at_3 value: 10.874 - type: precision_at_5 value: 7.639 - type: recall_at_1 value: 17.145 - type: recall_at_10 value: 33.938 - type: recall_at_100 value: 53.672 - type: recall_at_1000 value: 76.023 - type: recall_at_3 value: 25.363000000000003 - type: recall_at_5 value: 29.023 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.275 - type: map_at_10 value: 30.438 - type: map_at_100 value: 31.489 - type: map_at_1000 value: 31.601000000000003 - type: map_at_3 value: 28.647 - type: map_at_5 value: 29.660999999999998 - type: mrr_at_1 value: 28.077999999999996 - type: mrr_at_10 value: 34.098 - type: mrr_at_100 value: 35.025 - type: mrr_at_1000 value: 35.109 - type: mrr_at_3 value: 32.4 - type: mrr_at_5 value: 33.379999999999995 - type: ndcg_at_1 value: 28.077999999999996 - type: ndcg_at_10 value: 34.271 - type: ndcg_at_100 value: 39.352 - type: ndcg_at_1000 value: 42.199 - type: ndcg_at_3 value: 30.978 - type: ndcg_at_5 value: 32.498 - type: precision_at_1 value: 28.077999999999996 - type: precision_at_10 value: 5.345 - type: precision_at_100 value: 0.897 - type: precision_at_1000 value: 0.125 - type: precision_at_3 value: 13.526 - type: precision_at_5 value: 9.16 - type: recall_at_1 value: 24.275 - type: recall_at_10 value: 42.362 - type: recall_at_100 value: 64.461 - type: recall_at_1000 value: 84.981 - type: recall_at_3 value: 33.249 - type: recall_at_5 value: 37.214999999999996 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 22.358 - type: map_at_10 value: 30.062 - type: map_at_100 value: 31.189 - type: map_at_1000 value: 31.386999999999997 - type: map_at_3 value: 27.672 - type: map_at_5 value: 28.76 - type: mrr_at_1 value: 26.877000000000002 - type: mrr_at_10 value: 33.948 - type: mrr_at_100 value: 34.746 - type: mrr_at_1000 value: 34.816 - type: mrr_at_3 value: 31.884 - type: mrr_at_5 value: 33.001000000000005 - type: ndcg_at_1 value: 26.877000000000002 - type: ndcg_at_10 value: 34.977000000000004 - type: ndcg_at_100 value: 39.753 - type: ndcg_at_1000 value: 42.866 - type: ndcg_at_3 value: 30.956 - type: ndcg_at_5 value: 32.381 - type: precision_at_1 value: 26.877000000000002 - type: precision_at_10 value: 6.7 - type: precision_at_100 value: 1.287 - type: precision_at_1000 value: 0.215 - type: precision_at_3 value: 14.360999999999999 - type: precision_at_5 value: 10.119 - type: recall_at_1 value: 22.358 - type: recall_at_10 value: 44.183 - type: recall_at_100 value: 67.14 - type: recall_at_1000 value: 87.53999999999999 - type: recall_at_3 value: 32.79 - type: recall_at_5 value: 36.829 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 19.198999999999998 - type: map_at_10 value: 25.229000000000003 - type: map_at_100 value: 26.003 - type: map_at_1000 value: 26.111 - type: map_at_3 value: 23.442 - type: map_at_5 value: 24.343 - type: mrr_at_1 value: 21.072 - type: mrr_at_10 value: 27.02 - type: mrr_at_100 value: 27.735 - type: mrr_at_1000 value: 27.815 - type: mrr_at_3 value: 25.416 - type: mrr_at_5 value: 26.173999999999996 - type: ndcg_at_1 value: 21.072 - type: ndcg_at_10 value: 28.862 - type: ndcg_at_100 value: 33.043 - type: ndcg_at_1000 value: 36.003 - type: ndcg_at_3 value: 25.35 - type: ndcg_at_5 value: 26.773000000000003 - type: precision_at_1 value: 21.072 - type: precision_at_10 value: 4.436 - type: precision_at_100 value: 0.713 - type: precision_at_1000 value: 0.106 - type: precision_at_3 value: 10.659 - type: precision_at_5 value: 7.32 - type: recall_at_1 value: 19.198999999999998 - type: recall_at_10 value: 38.376 - type: recall_at_100 value: 58.36900000000001 - type: recall_at_1000 value: 80.92099999999999 - type: recall_at_3 value: 28.715000000000003 - type: recall_at_5 value: 32.147 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: map_at_1 value: 5.9319999999999995 - type: map_at_10 value: 10.483 - type: map_at_100 value: 11.97 - type: map_at_1000 value: 12.171999999999999 - type: map_at_3 value: 8.477 - type: map_at_5 value: 9.495000000000001 - type: mrr_at_1 value: 13.094 - type: mrr_at_10 value: 21.282 - type: mrr_at_100 value: 22.556 - type: mrr_at_1000 value: 22.628999999999998 - type: mrr_at_3 value: 18.218999999999998 - type: mrr_at_5 value: 19.900000000000002 - type: ndcg_at_1 value: 13.094 - type: ndcg_at_10 value: 15.811 - type: ndcg_at_100 value: 23.035 - type: ndcg_at_1000 value: 27.089999999999996 - type: ndcg_at_3 value: 11.905000000000001 - type: ndcg_at_5 value: 13.377 - type: precision_at_1 value: 13.094 - type: precision_at_10 value: 5.225 - type: precision_at_100 value: 1.2970000000000002 - type: precision_at_1000 value: 0.203 - type: precision_at_3 value: 8.86 - type: precision_at_5 value: 7.309 - type: recall_at_1 value: 5.9319999999999995 - type: recall_at_10 value: 20.305 - type: recall_at_100 value: 46.314 - type: recall_at_1000 value: 69.612 - type: recall_at_3 value: 11.21 - type: recall_at_5 value: 14.773 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: map_at_1 value: 8.674 - type: map_at_10 value: 17.822 - type: map_at_100 value: 24.794 - type: map_at_1000 value: 26.214 - type: map_at_3 value: 12.690999999999999 - type: map_at_5 value: 15.033 - type: mrr_at_1 value: 61.75000000000001 - type: mrr_at_10 value: 71.58 - type: mrr_at_100 value: 71.923 - type: mrr_at_1000 value: 71.932 - type: mrr_at_3 value: 70.125 - type: mrr_at_5 value: 71.038 - type: ndcg_at_1 value: 51 - type: ndcg_at_10 value: 38.637 - type: ndcg_at_100 value: 42.398 - type: ndcg_at_1000 value: 48.962 - type: ndcg_at_3 value: 43.29 - type: ndcg_at_5 value: 40.763 - type: precision_at_1 value: 61.75000000000001 - type: precision_at_10 value: 30.125 - type: precision_at_100 value: 9.53 - type: precision_at_1000 value: 1.9619999999999997 - type: precision_at_3 value: 45.583 - type: precision_at_5 value: 38.95 - type: recall_at_1 value: 8.674 - type: recall_at_10 value: 23.122 - type: recall_at_100 value: 47.46 - type: recall_at_1000 value: 67.662 - type: recall_at_3 value: 13.946 - type: recall_at_5 value: 17.768 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 46.86000000000001 - type: f1 value: 41.343580452760776 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: map_at_1 value: 36.609 - type: map_at_10 value: 47.552 - type: map_at_100 value: 48.283 - type: map_at_1000 value: 48.321 - type: map_at_3 value: 44.869 - type: map_at_5 value: 46.509 - type: mrr_at_1 value: 39.214 - type: mrr_at_10 value: 50.434999999999995 - type: mrr_at_100 value: 51.122 - type: mrr_at_1000 value: 51.151 - type: mrr_at_3 value: 47.735 - type: mrr_at_5 value: 49.394 - type: ndcg_at_1 value: 39.214 - type: ndcg_at_10 value: 53.52400000000001 - type: ndcg_at_100 value: 56.997 - type: ndcg_at_1000 value: 57.975 - type: ndcg_at_3 value: 48.173 - type: ndcg_at_5 value: 51.05800000000001 - type: precision_at_1 value: 39.214 - type: precision_at_10 value: 7.573 - type: precision_at_100 value: 0.9440000000000001 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 19.782 - type: precision_at_5 value: 13.453000000000001 - type: recall_at_1 value: 36.609 - type: recall_at_10 value: 69.247 - type: recall_at_100 value: 84.99600000000001 - type: recall_at_1000 value: 92.40899999999999 - type: recall_at_3 value: 54.856 - type: recall_at_5 value: 61.797000000000004 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: map_at_1 value: 16.466 - type: map_at_10 value: 27.060000000000002 - type: map_at_100 value: 28.511999999999997 - type: map_at_1000 value: 28.693 - type: map_at_3 value: 22.777 - type: map_at_5 value: 25.086000000000002 - type: mrr_at_1 value: 32.716 - type: mrr_at_10 value: 41.593999999999994 - type: mrr_at_100 value: 42.370000000000005 - type: mrr_at_1000 value: 42.419000000000004 - type: mrr_at_3 value: 38.143 - type: mrr_at_5 value: 40.288000000000004 - type: ndcg_at_1 value: 32.716 - type: ndcg_at_10 value: 34.795 - type: ndcg_at_100 value: 40.58 - type: ndcg_at_1000 value: 43.993 - type: ndcg_at_3 value: 29.573 - type: ndcg_at_5 value: 31.583 - type: precision_at_1 value: 32.716 - type: precision_at_10 value: 9.937999999999999 - type: precision_at_100 value: 1.585 - type: precision_at_1000 value: 0.22 - type: precision_at_3 value: 19.496 - type: precision_at_5 value: 15.247 - type: recall_at_1 value: 16.466 - type: recall_at_10 value: 42.886 - type: recall_at_100 value: 64.724 - type: recall_at_1000 value: 85.347 - type: recall_at_3 value: 26.765 - type: recall_at_5 value: 33.603 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: map_at_1 value: 33.025 - type: map_at_10 value: 47.343 - type: map_at_100 value: 48.207 - type: map_at_1000 value: 48.281 - type: map_at_3 value: 44.519 - type: map_at_5 value: 46.217000000000006 - type: mrr_at_1 value: 66.05 - type: mrr_at_10 value: 72.94699999999999 - type: mrr_at_100 value: 73.289 - type: mrr_at_1000 value: 73.30499999999999 - type: mrr_at_3 value: 71.686 - type: mrr_at_5 value: 72.491 - type: ndcg_at_1 value: 66.05 - type: ndcg_at_10 value: 56.338 - type: ndcg_at_100 value: 59.599999999999994 - type: ndcg_at_1000 value: 61.138000000000005 - type: ndcg_at_3 value: 52.034000000000006 - type: ndcg_at_5 value: 54.352000000000004 - type: precision_at_1 value: 66.05 - type: precision_at_10 value: 11.693000000000001 - type: precision_at_100 value: 1.425 - type: precision_at_1000 value: 0.163 - type: precision_at_3 value: 32.613 - type: precision_at_5 value: 21.401999999999997 - type: recall_at_1 value: 33.025 - type: recall_at_10 value: 58.467 - type: recall_at_100 value: 71.242 - type: recall_at_1000 value: 81.452 - type: recall_at_3 value: 48.92 - type: recall_at_5 value: 53.504 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 75.5492 - type: ap value: 69.42911637216271 - type: f1 value: 75.39113704261024 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics: - type: map_at_1 value: 23.173 - type: map_at_10 value: 35.453 - type: map_at_100 value: 36.573 - type: map_at_1000 value: 36.620999999999995 - type: map_at_3 value: 31.655 - type: map_at_5 value: 33.823 - type: mrr_at_1 value: 23.868000000000002 - type: mrr_at_10 value: 36.085 - type: mrr_at_100 value: 37.15 - type: mrr_at_1000 value: 37.193 - type: mrr_at_3 value: 32.376 - type: mrr_at_5 value: 34.501 - type: ndcg_at_1 value: 23.854 - type: ndcg_at_10 value: 42.33 - type: ndcg_at_100 value: 47.705999999999996 - type: ndcg_at_1000 value: 48.91 - type: ndcg_at_3 value: 34.604 - type: ndcg_at_5 value: 38.473 - type: precision_at_1 value: 23.854 - type: precision_at_10 value: 6.639 - type: precision_at_100 value: 0.932 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 14.685 - type: precision_at_5 value: 10.782 - type: recall_at_1 value: 23.173 - type: recall_at_10 value: 63.441 - type: recall_at_100 value: 88.25 - type: recall_at_1000 value: 97.438 - type: recall_at_3 value: 42.434 - type: recall_at_5 value: 51.745 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 92.05426356589147 - type: f1 value: 91.88068588063942 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 73.23985408116735 - type: f1 value: 55.858906745287506 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 72.21923335574984 - type: f1 value: 70.0174116204253 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 75.77673167451245 - type: f1 value: 75.44811354778666 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 31.340414710728737 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 28.196676760061578 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 29.564149683482206 - type: mrr value: 30.28995474250486 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: map_at_1 value: 5.93 - type: map_at_10 value: 12.828000000000001 - type: map_at_100 value: 15.501000000000001 - type: map_at_1000 value: 16.791 - type: map_at_3 value: 9.727 - type: map_at_5 value: 11.318999999999999 - type: mrr_at_1 value: 47.678 - type: mrr_at_10 value: 55.893 - type: mrr_at_100 value: 56.491 - type: mrr_at_1000 value: 56.53 - type: mrr_at_3 value: 54.386 - type: mrr_at_5 value: 55.516 - type: ndcg_at_1 value: 45.975 - type: ndcg_at_10 value: 33.928999999999995 - type: ndcg_at_100 value: 30.164 - type: ndcg_at_1000 value: 38.756 - type: ndcg_at_3 value: 41.077000000000005 - type: ndcg_at_5 value: 38.415 - type: precision_at_1 value: 47.678 - type: precision_at_10 value: 24.365000000000002 - type: precision_at_100 value: 7.344 - type: precision_at_1000 value: 1.994 - type: precision_at_3 value: 38.184000000000005 - type: precision_at_5 value: 33.003 - type: recall_at_1 value: 5.93 - type: recall_at_10 value: 16.239 - type: recall_at_100 value: 28.782999999999998 - type: recall_at_1000 value: 60.11 - type: recall_at_3 value: 10.700999999999999 - type: recall_at_5 value: 13.584 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: map_at_1 value: 36.163000000000004 - type: map_at_10 value: 51.520999999999994 - type: map_at_100 value: 52.449 - type: map_at_1000 value: 52.473000000000006 - type: map_at_3 value: 47.666 - type: map_at_5 value: 50.043000000000006 - type: mrr_at_1 value: 40.266999999999996 - type: mrr_at_10 value: 54.074 - type: mrr_at_100 value: 54.722 - type: mrr_at_1000 value: 54.739000000000004 - type: mrr_at_3 value: 51.043000000000006 - type: mrr_at_5 value: 52.956 - type: ndcg_at_1 value: 40.238 - type: ndcg_at_10 value: 58.73199999999999 - type: ndcg_at_100 value: 62.470000000000006 - type: ndcg_at_1000 value: 63.083999999999996 - type: ndcg_at_3 value: 51.672 - type: ndcg_at_5 value: 55.564 - type: precision_at_1 value: 40.238 - type: precision_at_10 value: 9.279 - type: precision_at_100 value: 1.139 - type: precision_at_1000 value: 0.12 - type: precision_at_3 value: 23.078000000000003 - type: precision_at_5 value: 16.176 - type: recall_at_1 value: 36.163000000000004 - type: recall_at_10 value: 77.88199999999999 - type: recall_at_100 value: 93.83399999999999 - type: recall_at_1000 value: 98.465 - type: recall_at_3 value: 59.857000000000006 - type: recall_at_5 value: 68.73599999999999 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 70.344 - type: map_at_10 value: 83.907 - type: map_at_100 value: 84.536 - type: map_at_1000 value: 84.557 - type: map_at_3 value: 80.984 - type: map_at_5 value: 82.844 - type: mrr_at_1 value: 81.02000000000001 - type: mrr_at_10 value: 87.158 - type: mrr_at_100 value: 87.268 - type: mrr_at_1000 value: 87.26899999999999 - type: mrr_at_3 value: 86.17 - type: mrr_at_5 value: 86.87 - type: ndcg_at_1 value: 81.02000000000001 - type: ndcg_at_10 value: 87.70700000000001 - type: ndcg_at_100 value: 89.004 - type: ndcg_at_1000 value: 89.139 - type: ndcg_at_3 value: 84.841 - type: ndcg_at_5 value: 86.455 - type: precision_at_1 value: 81.02000000000001 - type: precision_at_10 value: 13.248999999999999 - type: precision_at_100 value: 1.516 - type: precision_at_1000 value: 0.156 - type: precision_at_3 value: 36.963 - type: precision_at_5 value: 24.33 - type: recall_at_1 value: 70.344 - type: recall_at_10 value: 94.75099999999999 - type: recall_at_100 value: 99.30499999999999 - type: recall_at_1000 value: 99.928 - type: recall_at_3 value: 86.506 - type: recall_at_5 value: 91.083 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 42.873718018378305 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 56.39477366450528 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 3.868 - type: map_at_10 value: 9.611 - type: map_at_100 value: 11.087 - type: map_at_1000 value: 11.332 - type: map_at_3 value: 6.813 - type: map_at_5 value: 8.233 - type: mrr_at_1 value: 19 - type: mrr_at_10 value: 28.457 - type: mrr_at_100 value: 29.613 - type: mrr_at_1000 value: 29.695 - type: mrr_at_3 value: 25.55 - type: mrr_at_5 value: 27.29 - type: ndcg_at_1 value: 19 - type: ndcg_at_10 value: 16.419 - type: ndcg_at_100 value: 22.817999999999998 - type: ndcg_at_1000 value: 27.72 - type: ndcg_at_3 value: 15.379000000000001 - type: ndcg_at_5 value: 13.645 - type: precision_at_1 value: 19 - type: precision_at_10 value: 8.540000000000001 - type: precision_at_100 value: 1.7819999999999998 - type: precision_at_1000 value: 0.297 - type: precision_at_3 value: 14.267 - type: precision_at_5 value: 12.04 - type: recall_at_1 value: 3.868 - type: recall_at_10 value: 17.288 - type: recall_at_100 value: 36.144999999999996 - type: recall_at_1000 value: 60.199999999999996 - type: recall_at_3 value: 8.688 - type: recall_at_5 value: 12.198 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 83.96614722598582 - type: cos_sim_spearman value: 78.9003023008781 - type: euclidean_pearson value: 81.01829384436505 - type: euclidean_spearman value: 78.93248416788914 - type: manhattan_pearson value: 81.1665428926402 - type: manhattan_spearman value: 78.93264116287453 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 83.54613363895993 - type: cos_sim_spearman value: 75.1883451602451 - type: euclidean_pearson value: 79.70320886899894 - type: euclidean_spearman value: 74.5917140136796 - type: manhattan_pearson value: 79.82157067185999 - type: manhattan_spearman value: 74.74185720594735 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 81.30430156721782 - type: cos_sim_spearman value: 81.79962989974364 - type: euclidean_pearson value: 80.89058823224924 - type: euclidean_spearman value: 81.35929372984597 - type: manhattan_pearson value: 81.12204370487478 - type: manhattan_spearman value: 81.6248963282232 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 81.13064504403134 - type: cos_sim_spearman value: 78.48371403924872 - type: euclidean_pearson value: 80.16794919665591 - type: euclidean_spearman value: 78.29216082221699 - type: manhattan_pearson value: 80.22308565207301 - type: manhattan_spearman value: 78.37829229948022 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 86.52918899541099 - type: cos_sim_spearman value: 87.49276894673142 - type: euclidean_pearson value: 86.77440570164254 - type: euclidean_spearman value: 87.5753295736756 - type: manhattan_pearson value: 86.86098573892133 - type: manhattan_spearman value: 87.65848591821947 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 82.86805307244882 - type: cos_sim_spearman value: 84.58066253757511 - type: euclidean_pearson value: 84.38377000876991 - type: euclidean_spearman value: 85.1837278784528 - type: manhattan_pearson value: 84.41903291363842 - type: manhattan_spearman value: 85.19023736251052 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 86.77218560282436 - type: cos_sim_spearman value: 87.94243515296604 - type: euclidean_pearson value: 88.22800939214864 - type: euclidean_spearman value: 87.91106839439841 - type: manhattan_pearson value: 88.17063269848741 - type: manhattan_spearman value: 87.72751904126062 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 60.40731554300387 - type: cos_sim_spearman value: 63.76300532966479 - type: euclidean_pearson value: 62.94727878229085 - type: euclidean_spearman value: 63.678039531461216 - type: manhattan_pearson value: 63.00661039863549 - type: manhattan_spearman value: 63.6282591984376 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 84.92731569745344 - type: cos_sim_spearman value: 86.36336704300167 - type: euclidean_pearson value: 86.09122224841195 - type: euclidean_spearman value: 86.2116149319238 - type: manhattan_pearson value: 86.07879456717032 - type: manhattan_spearman value: 86.2022069635119 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 79.75976311752326 - type: mrr value: 94.15782837351466 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: map_at_1 value: 51.193999999999996 - type: map_at_10 value: 61.224999999999994 - type: map_at_100 value: 62.031000000000006 - type: map_at_1000 value: 62.066 - type: map_at_3 value: 59.269000000000005 - type: map_at_5 value: 60.159 - type: mrr_at_1 value: 53.667 - type: mrr_at_10 value: 62.74999999999999 - type: mrr_at_100 value: 63.39399999999999 - type: mrr_at_1000 value: 63.425 - type: mrr_at_3 value: 61.389 - type: mrr_at_5 value: 61.989000000000004 - type: ndcg_at_1 value: 53.667 - type: ndcg_at_10 value: 65.596 - type: ndcg_at_100 value: 68.906 - type: ndcg_at_1000 value: 69.78999999999999 - type: ndcg_at_3 value: 62.261 - type: ndcg_at_5 value: 63.453 - type: precision_at_1 value: 53.667 - type: precision_at_10 value: 8.667 - type: precision_at_100 value: 1.04 - type: precision_at_1000 value: 0.11100000000000002 - type: precision_at_3 value: 24.556 - type: precision_at_5 value: 15.6 - type: recall_at_1 value: 51.193999999999996 - type: recall_at_10 value: 77.156 - type: recall_at_100 value: 91.43299999999999 - type: recall_at_1000 value: 98.333 - type: recall_at_3 value: 67.994 - type: recall_at_5 value: 71.14399999999999 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.81485148514851 - type: cos_sim_ap value: 95.28896513388551 - type: cos_sim_f1 value: 90.43478260869566 - type: cos_sim_precision value: 92.56544502617801 - type: cos_sim_recall value: 88.4 - type: dot_accuracy value: 99.30594059405941 - type: dot_ap value: 61.6432597455472 - type: dot_f1 value: 59.46481665014866 - type: dot_precision value: 58.93909626719057 - type: dot_recall value: 60 - type: euclidean_accuracy value: 99.81980198019802 - type: euclidean_ap value: 95.21411049527 - type: euclidean_f1 value: 91.06090373280944 - type: euclidean_precision value: 89.47876447876449 - type: euclidean_recall value: 92.7 - type: manhattan_accuracy value: 99.81782178217821 - type: manhattan_ap value: 95.32449994414968 - type: manhattan_f1 value: 90.86395233366436 - type: manhattan_precision value: 90.23668639053254 - type: manhattan_recall value: 91.5 - type: max_accuracy value: 99.81980198019802 - type: max_ap value: 95.32449994414968 - type: max_f1 value: 91.06090373280944 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 59.08045614613064 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 30.297802606804748 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 49.12801740706292 - type: mrr value: 50.05592956879722 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 31.523347880124497 - type: cos_sim_spearman value: 31.388214436391014 - type: dot_pearson value: 24.55403435439901 - type: dot_spearman value: 23.50153210841191 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.243 - type: map_at_10 value: 1.886 - type: map_at_100 value: 10.040000000000001 - type: map_at_1000 value: 23.768 - type: map_at_3 value: 0.674 - type: map_at_5 value: 1.079 - type: mrr_at_1 value: 88 - type: mrr_at_10 value: 93.667 - type: mrr_at_100 value: 93.667 - type: mrr_at_1000 value: 93.667 - type: mrr_at_3 value: 93.667 - type: mrr_at_5 value: 93.667 - type: ndcg_at_1 value: 83 - type: ndcg_at_10 value: 76.777 - type: ndcg_at_100 value: 55.153 - type: ndcg_at_1000 value: 47.912 - type: ndcg_at_3 value: 81.358 - type: ndcg_at_5 value: 80.74799999999999 - type: precision_at_1 value: 88 - type: precision_at_10 value: 80.80000000000001 - type: precision_at_100 value: 56.02 - type: precision_at_1000 value: 21.51 - type: precision_at_3 value: 86 - type: precision_at_5 value: 86 - type: recall_at_1 value: 0.243 - type: recall_at_10 value: 2.0869999999999997 - type: recall_at_100 value: 13.014000000000001 - type: recall_at_1000 value: 44.433 - type: recall_at_3 value: 0.6910000000000001 - type: recall_at_5 value: 1.1440000000000001 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 3.066 - type: map_at_10 value: 10.615 - type: map_at_100 value: 16.463 - type: map_at_1000 value: 17.815 - type: map_at_3 value: 5.7860000000000005 - type: map_at_5 value: 7.353999999999999 - type: mrr_at_1 value: 38.775999999999996 - type: mrr_at_10 value: 53.846000000000004 - type: mrr_at_100 value: 54.37 - type: mrr_at_1000 value: 54.37 - type: mrr_at_3 value: 48.980000000000004 - type: mrr_at_5 value: 51.735 - type: ndcg_at_1 value: 34.694 - type: ndcg_at_10 value: 26.811 - type: ndcg_at_100 value: 37.342999999999996 - type: ndcg_at_1000 value: 47.964 - type: ndcg_at_3 value: 30.906 - type: ndcg_at_5 value: 27.77 - type: precision_at_1 value: 38.775999999999996 - type: precision_at_10 value: 23.878 - type: precision_at_100 value: 7.632999999999999 - type: precision_at_1000 value: 1.469 - type: precision_at_3 value: 31.973000000000003 - type: precision_at_5 value: 26.939 - type: recall_at_1 value: 3.066 - type: recall_at_10 value: 17.112 - type: recall_at_100 value: 47.723 - type: recall_at_1000 value: 79.50500000000001 - type: recall_at_3 value: 6.825 - type: recall_at_5 value: 9.584 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 72.76460000000002 - type: ap value: 14.944240012137053 - type: f1 value: 55.89805777266571 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 63.30503678551217 - type: f1 value: 63.57492701921179 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 37.51066495006874 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 86.07021517553794 - type: cos_sim_ap value: 74.15520712370555 - type: cos_sim_f1 value: 68.64321608040201 - type: cos_sim_precision value: 65.51558752997602 - type: cos_sim_recall value: 72.0844327176781 - type: dot_accuracy value: 80.23484532395541 - type: dot_ap value: 54.298763810214176 - type: dot_f1 value: 53.22254659779924 - type: dot_precision value: 46.32525410476936 - type: dot_recall value: 62.532981530343015 - type: euclidean_accuracy value: 86.04637301066937 - type: euclidean_ap value: 73.85333854233123 - type: euclidean_f1 value: 68.77723660599845 - type: euclidean_precision value: 66.87437686939182 - type: euclidean_recall value: 70.79155672823218 - type: manhattan_accuracy value: 85.98676759849795 - type: manhattan_ap value: 73.56016090035973 - type: manhattan_f1 value: 68.48878539036647 - type: manhattan_precision value: 63.9505607690547 - type: manhattan_recall value: 73.7203166226913 - type: max_accuracy value: 86.07021517553794 - type: max_ap value: 74.15520712370555 - type: max_f1 value: 68.77723660599845 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.92769821865176 - type: cos_sim_ap value: 85.78879502899773 - type: cos_sim_f1 value: 78.14414083990464 - type: cos_sim_precision value: 74.61651607480563 - type: cos_sim_recall value: 82.0218663381583 - type: dot_accuracy value: 84.95750378390964 - type: dot_ap value: 75.80219641857563 - type: dot_f1 value: 70.13966179585681 - type: dot_precision value: 65.71140262361251 - type: dot_recall value: 75.20788420080073 - type: euclidean_accuracy value: 88.93546008460433 - type: euclidean_ap value: 85.72056428301667 - type: euclidean_f1 value: 78.14387902598124 - type: euclidean_precision value: 75.3376688344172 - type: euclidean_recall value: 81.16723129042192 - type: manhattan_accuracy value: 88.96262661543835 - type: manhattan_ap value: 85.76605136314335 - type: manhattan_f1 value: 78.26696165191743 - type: manhattan_precision value: 75.0990659496179 - type: manhattan_recall value: 81.71388974437943 - type: max_accuracy value: 88.96262661543835 - type: max_ap value: 85.78879502899773 - type: max_f1 value: 78.26696165191743 language: - en license: mit --- # # Fast-Inference with Ctranslate2 Speedup inference while reducing memory by 2x-4x using int8 inference in C++ on CPU or GPU. quantized version of [intfloat/e5-small](https://huggingface.co/intfloat/e5-small) ```bash pip install hf-hub-ctranslate2>=2.12.0 ctranslate2>=3.17.1 ``` ```python # from transformers import AutoTokenizer model_name = "michaelfeil/ct2fast-e5-small" model_name_orig="intfloat/e5-small" from hf_hub_ctranslate2 import EncoderCT2fromHfHub model = EncoderCT2fromHfHub( # load in int8 on CUDA model_name_or_path=model_name, device="cuda", compute_type="int8_float16" ) outputs = model.generate( text=["I like soccer", "I like tennis", "The eiffel tower is in Paris"], max_length=64, ) # perform downstream tasks on outputs outputs["pooler_output"] outputs["last_hidden_state"] outputs["attention_mask"] # alternative, use SentenceTransformer Mix-In # for end-to-end Sentence embeddings generation # (not pulling from this CT2fast-HF repo) from hf_hub_ctranslate2 import CT2SentenceTransformer model = CT2SentenceTransformer( model_name_orig, compute_type="int8_float16", device="cuda" ) embeddings = model.encode( ["I like soccer", "I like tennis", "The eiffel tower is in Paris"], batch_size=32, convert_to_numpy=True, normalize_embeddings=True, ) print(embeddings.shape, embeddings) scores = (embeddings @ embeddings.T) * 100 # Hint: you can also host this code via REST API and # via github.com/michaelfeil/infinity ``` Checkpoint compatible to [ctranslate2>=3.17.1](https://github.com/OpenNMT/CTranslate2) and [hf-hub-ctranslate2>=2.12.0](https://github.com/michaelfeil/hf-hub-ctranslate2) - `compute_type=int8_float16` for `device="cuda"` - `compute_type=int8` for `device="cpu"` Converted on 2023-10-13 using ``` LLama-2 -> removed <pad> token. ``` # Licence and other remarks: This is just a quantized version. Licence conditions are intended to be idential to original huggingface repo. # Original description # E5-small **News (May 2023): please switch to [e5-small-v2](https://huggingface.co/intfloat/e5-small-v2), which has better performance and same method of usage.** [Text Embeddings by Weakly-Supervised Contrastive Pre-training](https://arxiv.org/pdf/2212.03533.pdf). Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, Furu Wei, arXiv 2022 This model has 12 layers and the embedding size is 384. ## Usage Below is an example to encode queries and passages from the MS-MARCO passage ranking dataset. ```python import torch.nn.functional as F from torch import Tensor from transformers import AutoTokenizer, AutoModel def average_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor: last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] # Each input text should start with "query: " or "passage: ". # For tasks other than retrieval, you can simply use the "query: " prefix. input_texts = ['query: how much protein should a female eat', 'query: summit define', "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", "passage: Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."] tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-small') model = AutoModel.from_pretrained('intfloat/e5-small') # Tokenize the input texts batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt') outputs = model(**batch_dict) embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask']) # normalize embeddings embeddings = F.normalize(embeddings, p=2, dim=1) scores = (embeddings[:2] @ embeddings[2:].T) * 100 print(scores.tolist()) ``` ## Training Details Please refer to our paper at [https://arxiv.org/pdf/2212.03533.pdf](https://arxiv.org/pdf/2212.03533.pdf). ## Benchmark Evaluation Check out [unilm/e5](https://github.com/microsoft/unilm/tree/master/e5) to reproduce evaluation results on the [BEIR](https://arxiv.org/abs/2104.08663) and [MTEB benchmark](https://arxiv.org/abs/2210.07316). ## Support for Sentence Transformers Below is an example for usage with sentence_transformers. ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('intfloat/e5-small') input_texts = [ 'query: how much protein should a female eat', 'query: summit define', "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", "passage: Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments." ] embeddings = model.encode(input_texts, normalize_embeddings=True) ``` Package requirements `pip install sentence_transformers~=2.2.2` Contributors: [michaelfeil](https://huggingface.co/michaelfeil) ## FAQ **1. Do I need to add the prefix "query: " and "passage: " to input texts?** Yes, this is how the model is trained, otherwise you will see a performance degradation. Here are some rules of thumb: - Use "query: " and "passage: " correspondingly for asymmetric tasks such as passage retrieval in open QA, ad-hoc information retrieval. - Use "query: " prefix for symmetric tasks such as semantic similarity, paraphrase retrieval. - Use "query: " prefix if you want to use embeddings as features, such as linear probing classification, clustering. **2. Why are my reproduced results slightly different from reported in the model card?** Different versions of `transformers` and `pytorch` could cause negligible but non-zero performance differences. **3. Why does the cosine similarity scores distribute around 0.7 to 1.0?** This is a known and expected behavior as we use a low temperature 0.01 for InfoNCE contrastive loss. For text embedding tasks like text retrieval or semantic similarity, what matters is the relative order of the scores instead of the absolute values, so this should not be an issue. ## Citation If you find our paper or models helpful, please consider cite as follows: ``` @article{wang2022text, title={Text Embeddings by Weakly-Supervised Contrastive Pre-training}, author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Jiao, Binxing and Yang, Linjun and Jiang, Daxin and Majumder, Rangan and Wei, Furu}, journal={arXiv preprint arXiv:2212.03533}, year={2022} } ``` ## Limitations This model only works for English texts. Long texts will be truncated to at most 512 tokens.
michaelfeil/ct2fast-e5-small-v2
michaelfeil
2023-10-13T13:36:26Z
14
3
sentence-transformers
[ "sentence-transformers", "bert", "ctranslate2", "int8", "float16", "mteb", "Sentence Transformers", "sentence-similarity", "en", "arxiv:2212.03533", "arxiv:2104.08663", "arxiv:2210.07316", "license:mit", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-06-15T19:29:43Z
--- tags: - ctranslate2 - int8 - float16 - mteb - Sentence Transformers - sentence-similarity - sentence-transformers model-index: - name: e5-small-v2 results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 77.59701492537313 - type: ap value: 41.67064885731708 - type: f1 value: 71.86465946398573 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 91.265875 - type: ap value: 87.67633085349644 - type: f1 value: 91.24297521425744 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 45.882000000000005 - type: f1 value: 45.08058870381236 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 20.697 - type: map_at_10 value: 33.975 - type: map_at_100 value: 35.223 - type: map_at_1000 value: 35.260000000000005 - type: map_at_3 value: 29.776999999999997 - type: map_at_5 value: 32.035000000000004 - type: mrr_at_1 value: 20.982 - type: mrr_at_10 value: 34.094 - type: mrr_at_100 value: 35.343 - type: mrr_at_1000 value: 35.38 - type: mrr_at_3 value: 29.884 - type: mrr_at_5 value: 32.141999999999996 - type: ndcg_at_1 value: 20.697 - type: ndcg_at_10 value: 41.668 - type: ndcg_at_100 value: 47.397 - type: ndcg_at_1000 value: 48.305 - type: ndcg_at_3 value: 32.928000000000004 - type: ndcg_at_5 value: 36.998999999999995 - type: precision_at_1 value: 20.697 - type: precision_at_10 value: 6.636 - type: precision_at_100 value: 0.924 - type: precision_at_1000 value: 0.099 - type: precision_at_3 value: 14.035 - type: precision_at_5 value: 10.398 - type: recall_at_1 value: 20.697 - type: recall_at_10 value: 66.35799999999999 - type: recall_at_100 value: 92.39 - type: recall_at_1000 value: 99.36 - type: recall_at_3 value: 42.105 - type: recall_at_5 value: 51.991 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 42.1169517447068 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 34.79553720107097 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 58.10811337308168 - type: mrr value: 71.56410763751482 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 78.46834918248696 - type: cos_sim_spearman value: 79.4289182755206 - type: euclidean_pearson value: 76.26662973727008 - type: euclidean_spearman value: 78.11744260952536 - type: manhattan_pearson value: 76.08175262609434 - type: manhattan_spearman value: 78.29395265552289 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 81.63636363636364 - type: f1 value: 81.55779952376953 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 35.88541137137571 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 30.05205685274407 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 30.293999999999997 - type: map_at_10 value: 39.876 - type: map_at_100 value: 41.315000000000005 - type: map_at_1000 value: 41.451 - type: map_at_3 value: 37.194 - type: map_at_5 value: 38.728 - type: mrr_at_1 value: 37.053000000000004 - type: mrr_at_10 value: 45.281 - type: mrr_at_100 value: 46.188 - type: mrr_at_1000 value: 46.245999999999995 - type: mrr_at_3 value: 43.228 - type: mrr_at_5 value: 44.366 - type: ndcg_at_1 value: 37.053000000000004 - type: ndcg_at_10 value: 45.086 - type: ndcg_at_100 value: 50.756 - type: ndcg_at_1000 value: 53.123 - type: ndcg_at_3 value: 41.416 - type: ndcg_at_5 value: 43.098 - type: precision_at_1 value: 37.053000000000004 - type: precision_at_10 value: 8.34 - type: precision_at_100 value: 1.346 - type: precision_at_1000 value: 0.186 - type: precision_at_3 value: 19.647000000000002 - type: precision_at_5 value: 13.877 - type: recall_at_1 value: 30.293999999999997 - type: recall_at_10 value: 54.309 - type: recall_at_100 value: 78.59 - type: recall_at_1000 value: 93.82300000000001 - type: recall_at_3 value: 43.168 - type: recall_at_5 value: 48.192 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 28.738000000000003 - type: map_at_10 value: 36.925999999999995 - type: map_at_100 value: 38.017 - type: map_at_1000 value: 38.144 - type: map_at_3 value: 34.446 - type: map_at_5 value: 35.704 - type: mrr_at_1 value: 35.478 - type: mrr_at_10 value: 42.786 - type: mrr_at_100 value: 43.458999999999996 - type: mrr_at_1000 value: 43.507 - type: mrr_at_3 value: 40.648 - type: mrr_at_5 value: 41.804 - type: ndcg_at_1 value: 35.478 - type: ndcg_at_10 value: 42.044 - type: ndcg_at_100 value: 46.249 - type: ndcg_at_1000 value: 48.44 - type: ndcg_at_3 value: 38.314 - type: ndcg_at_5 value: 39.798 - type: precision_at_1 value: 35.478 - type: precision_at_10 value: 7.764 - type: precision_at_100 value: 1.253 - type: precision_at_1000 value: 0.174 - type: precision_at_3 value: 18.047 - type: precision_at_5 value: 12.637 - type: recall_at_1 value: 28.738000000000003 - type: recall_at_10 value: 50.659 - type: recall_at_100 value: 68.76299999999999 - type: recall_at_1000 value: 82.811 - type: recall_at_3 value: 39.536 - type: recall_at_5 value: 43.763999999999996 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 38.565 - type: map_at_10 value: 50.168 - type: map_at_100 value: 51.11 - type: map_at_1000 value: 51.173 - type: map_at_3 value: 47.044000000000004 - type: map_at_5 value: 48.838 - type: mrr_at_1 value: 44.201 - type: mrr_at_10 value: 53.596999999999994 - type: mrr_at_100 value: 54.211 - type: mrr_at_1000 value: 54.247 - type: mrr_at_3 value: 51.202000000000005 - type: mrr_at_5 value: 52.608999999999995 - type: ndcg_at_1 value: 44.201 - type: ndcg_at_10 value: 55.694 - type: ndcg_at_100 value: 59.518 - type: ndcg_at_1000 value: 60.907 - type: ndcg_at_3 value: 50.395999999999994 - type: ndcg_at_5 value: 53.022999999999996 - type: precision_at_1 value: 44.201 - type: precision_at_10 value: 8.84 - type: precision_at_100 value: 1.162 - type: precision_at_1000 value: 0.133 - type: precision_at_3 value: 22.153 - type: precision_at_5 value: 15.260000000000002 - type: recall_at_1 value: 38.565 - type: recall_at_10 value: 68.65 - type: recall_at_100 value: 85.37400000000001 - type: recall_at_1000 value: 95.37400000000001 - type: recall_at_3 value: 54.645999999999994 - type: recall_at_5 value: 60.958 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 23.945 - type: map_at_10 value: 30.641000000000002 - type: map_at_100 value: 31.599 - type: map_at_1000 value: 31.691000000000003 - type: map_at_3 value: 28.405 - type: map_at_5 value: 29.704000000000004 - type: mrr_at_1 value: 25.537 - type: mrr_at_10 value: 32.22 - type: mrr_at_100 value: 33.138 - type: mrr_at_1000 value: 33.214 - type: mrr_at_3 value: 30.151 - type: mrr_at_5 value: 31.298 - type: ndcg_at_1 value: 25.537 - type: ndcg_at_10 value: 34.638000000000005 - type: ndcg_at_100 value: 39.486 - type: ndcg_at_1000 value: 41.936 - type: ndcg_at_3 value: 30.333 - type: ndcg_at_5 value: 32.482 - type: precision_at_1 value: 25.537 - type: precision_at_10 value: 5.153 - type: precision_at_100 value: 0.7929999999999999 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 12.429 - type: precision_at_5 value: 8.723 - type: recall_at_1 value: 23.945 - type: recall_at_10 value: 45.412 - type: recall_at_100 value: 67.836 - type: recall_at_1000 value: 86.467 - type: recall_at_3 value: 34.031 - type: recall_at_5 value: 39.039 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 14.419 - type: map_at_10 value: 20.858999999999998 - type: map_at_100 value: 22.067999999999998 - type: map_at_1000 value: 22.192 - type: map_at_3 value: 18.673000000000002 - type: map_at_5 value: 19.968 - type: mrr_at_1 value: 17.785999999999998 - type: mrr_at_10 value: 24.878 - type: mrr_at_100 value: 26.021 - type: mrr_at_1000 value: 26.095000000000002 - type: mrr_at_3 value: 22.616 - type: mrr_at_5 value: 23.785 - type: ndcg_at_1 value: 17.785999999999998 - type: ndcg_at_10 value: 25.153 - type: ndcg_at_100 value: 31.05 - type: ndcg_at_1000 value: 34.052 - type: ndcg_at_3 value: 21.117 - type: ndcg_at_5 value: 23.048 - type: precision_at_1 value: 17.785999999999998 - type: precision_at_10 value: 4.590000000000001 - type: precision_at_100 value: 0.864 - type: precision_at_1000 value: 0.125 - type: precision_at_3 value: 9.908999999999999 - type: precision_at_5 value: 7.313 - type: recall_at_1 value: 14.419 - type: recall_at_10 value: 34.477999999999994 - type: recall_at_100 value: 60.02499999999999 - type: recall_at_1000 value: 81.646 - type: recall_at_3 value: 23.515 - type: recall_at_5 value: 28.266999999999996 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 26.268 - type: map_at_10 value: 35.114000000000004 - type: map_at_100 value: 36.212 - type: map_at_1000 value: 36.333 - type: map_at_3 value: 32.436 - type: map_at_5 value: 33.992 - type: mrr_at_1 value: 31.761 - type: mrr_at_10 value: 40.355999999999995 - type: mrr_at_100 value: 41.125 - type: mrr_at_1000 value: 41.186 - type: mrr_at_3 value: 37.937 - type: mrr_at_5 value: 39.463 - type: ndcg_at_1 value: 31.761 - type: ndcg_at_10 value: 40.422000000000004 - type: ndcg_at_100 value: 45.458999999999996 - type: ndcg_at_1000 value: 47.951 - type: ndcg_at_3 value: 35.972 - type: ndcg_at_5 value: 38.272 - type: precision_at_1 value: 31.761 - type: precision_at_10 value: 7.103 - type: precision_at_100 value: 1.133 - type: precision_at_1000 value: 0.152 - type: precision_at_3 value: 16.779 - type: precision_at_5 value: 11.877 - type: recall_at_1 value: 26.268 - type: recall_at_10 value: 51.053000000000004 - type: recall_at_100 value: 72.702 - type: recall_at_1000 value: 89.521 - type: recall_at_3 value: 38.619 - type: recall_at_5 value: 44.671 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 25.230999999999998 - type: map_at_10 value: 34.227000000000004 - type: map_at_100 value: 35.370000000000005 - type: map_at_1000 value: 35.488 - type: map_at_3 value: 31.496000000000002 - type: map_at_5 value: 33.034 - type: mrr_at_1 value: 30.822 - type: mrr_at_10 value: 39.045 - type: mrr_at_100 value: 39.809 - type: mrr_at_1000 value: 39.873 - type: mrr_at_3 value: 36.663000000000004 - type: mrr_at_5 value: 37.964 - type: ndcg_at_1 value: 30.822 - type: ndcg_at_10 value: 39.472 - type: ndcg_at_100 value: 44.574999999999996 - type: ndcg_at_1000 value: 47.162 - type: ndcg_at_3 value: 34.929 - type: ndcg_at_5 value: 37.002 - type: precision_at_1 value: 30.822 - type: precision_at_10 value: 7.055 - type: precision_at_100 value: 1.124 - type: precision_at_1000 value: 0.152 - type: precision_at_3 value: 16.591 - type: precision_at_5 value: 11.667 - type: recall_at_1 value: 25.230999999999998 - type: recall_at_10 value: 50.42100000000001 - type: recall_at_100 value: 72.685 - type: recall_at_1000 value: 90.469 - type: recall_at_3 value: 37.503 - type: recall_at_5 value: 43.123 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.604166666666664 - type: map_at_10 value: 32.427166666666665 - type: map_at_100 value: 33.51474999999999 - type: map_at_1000 value: 33.6345 - type: map_at_3 value: 30.02366666666667 - type: map_at_5 value: 31.382333333333328 - type: mrr_at_1 value: 29.001166666666666 - type: mrr_at_10 value: 36.3315 - type: mrr_at_100 value: 37.16683333333333 - type: mrr_at_1000 value: 37.23341666666668 - type: mrr_at_3 value: 34.19916666666667 - type: mrr_at_5 value: 35.40458333333334 - type: ndcg_at_1 value: 29.001166666666666 - type: ndcg_at_10 value: 37.06883333333334 - type: ndcg_at_100 value: 41.95816666666666 - type: ndcg_at_1000 value: 44.501583333333336 - type: ndcg_at_3 value: 32.973499999999994 - type: ndcg_at_5 value: 34.90833333333334 - type: precision_at_1 value: 29.001166666666666 - type: precision_at_10 value: 6.336 - type: precision_at_100 value: 1.0282499999999999 - type: precision_at_1000 value: 0.14391666666666664 - type: precision_at_3 value: 14.932499999999996 - type: precision_at_5 value: 10.50825 - type: recall_at_1 value: 24.604166666666664 - type: recall_at_10 value: 46.9525 - type: recall_at_100 value: 68.67816666666667 - type: recall_at_1000 value: 86.59783333333334 - type: recall_at_3 value: 35.49783333333333 - type: recall_at_5 value: 40.52525000000001 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 23.559 - type: map_at_10 value: 29.023 - type: map_at_100 value: 29.818 - type: map_at_1000 value: 29.909000000000002 - type: map_at_3 value: 27.037 - type: map_at_5 value: 28.225 - type: mrr_at_1 value: 26.994 - type: mrr_at_10 value: 31.962000000000003 - type: mrr_at_100 value: 32.726 - type: mrr_at_1000 value: 32.800000000000004 - type: mrr_at_3 value: 30.266 - type: mrr_at_5 value: 31.208999999999996 - type: ndcg_at_1 value: 26.994 - type: ndcg_at_10 value: 32.53 - type: ndcg_at_100 value: 36.758 - type: ndcg_at_1000 value: 39.362 - type: ndcg_at_3 value: 28.985 - type: ndcg_at_5 value: 30.757 - type: precision_at_1 value: 26.994 - type: precision_at_10 value: 4.968999999999999 - type: precision_at_100 value: 0.759 - type: precision_at_1000 value: 0.106 - type: precision_at_3 value: 12.219 - type: precision_at_5 value: 8.527999999999999 - type: recall_at_1 value: 23.559 - type: recall_at_10 value: 40.585 - type: recall_at_100 value: 60.306000000000004 - type: recall_at_1000 value: 80.11 - type: recall_at_3 value: 30.794 - type: recall_at_5 value: 35.186 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 16.384999999999998 - type: map_at_10 value: 22.142 - type: map_at_100 value: 23.057 - type: map_at_1000 value: 23.177 - type: map_at_3 value: 20.29 - type: map_at_5 value: 21.332 - type: mrr_at_1 value: 19.89 - type: mrr_at_10 value: 25.771 - type: mrr_at_100 value: 26.599 - type: mrr_at_1000 value: 26.680999999999997 - type: mrr_at_3 value: 23.962 - type: mrr_at_5 value: 24.934 - type: ndcg_at_1 value: 19.89 - type: ndcg_at_10 value: 25.97 - type: ndcg_at_100 value: 30.605 - type: ndcg_at_1000 value: 33.619 - type: ndcg_at_3 value: 22.704 - type: ndcg_at_5 value: 24.199 - type: precision_at_1 value: 19.89 - type: precision_at_10 value: 4.553 - type: precision_at_100 value: 0.8049999999999999 - type: precision_at_1000 value: 0.122 - type: precision_at_3 value: 10.541 - type: precision_at_5 value: 7.46 - type: recall_at_1 value: 16.384999999999998 - type: recall_at_10 value: 34.001 - type: recall_at_100 value: 55.17100000000001 - type: recall_at_1000 value: 77.125 - type: recall_at_3 value: 24.618000000000002 - type: recall_at_5 value: 28.695999999999998 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 23.726 - type: map_at_10 value: 31.227 - type: map_at_100 value: 32.311 - type: map_at_1000 value: 32.419 - type: map_at_3 value: 28.765 - type: map_at_5 value: 30.229 - type: mrr_at_1 value: 27.705000000000002 - type: mrr_at_10 value: 35.085 - type: mrr_at_100 value: 35.931000000000004 - type: mrr_at_1000 value: 36 - type: mrr_at_3 value: 32.603 - type: mrr_at_5 value: 34.117999999999995 - type: ndcg_at_1 value: 27.705000000000002 - type: ndcg_at_10 value: 35.968 - type: ndcg_at_100 value: 41.197 - type: ndcg_at_1000 value: 43.76 - type: ndcg_at_3 value: 31.304 - type: ndcg_at_5 value: 33.661 - type: precision_at_1 value: 27.705000000000002 - type: precision_at_10 value: 5.942 - type: precision_at_100 value: 0.964 - type: precision_at_1000 value: 0.13 - type: precision_at_3 value: 13.868 - type: precision_at_5 value: 9.944 - type: recall_at_1 value: 23.726 - type: recall_at_10 value: 46.786 - type: recall_at_100 value: 70.072 - type: recall_at_1000 value: 88.2 - type: recall_at_3 value: 33.981 - type: recall_at_5 value: 39.893 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 23.344 - type: map_at_10 value: 31.636999999999997 - type: map_at_100 value: 33.065 - type: map_at_1000 value: 33.300000000000004 - type: map_at_3 value: 29.351 - type: map_at_5 value: 30.432 - type: mrr_at_1 value: 27.866000000000003 - type: mrr_at_10 value: 35.587 - type: mrr_at_100 value: 36.52 - type: mrr_at_1000 value: 36.597 - type: mrr_at_3 value: 33.696 - type: mrr_at_5 value: 34.713 - type: ndcg_at_1 value: 27.866000000000003 - type: ndcg_at_10 value: 36.61 - type: ndcg_at_100 value: 41.88 - type: ndcg_at_1000 value: 45.105000000000004 - type: ndcg_at_3 value: 33.038000000000004 - type: ndcg_at_5 value: 34.331 - type: precision_at_1 value: 27.866000000000003 - type: precision_at_10 value: 6.917 - type: precision_at_100 value: 1.3599999999999999 - type: precision_at_1000 value: 0.233 - type: precision_at_3 value: 15.547 - type: precision_at_5 value: 10.791 - type: recall_at_1 value: 23.344 - type: recall_at_10 value: 45.782000000000004 - type: recall_at_100 value: 69.503 - type: recall_at_1000 value: 90.742 - type: recall_at_3 value: 35.160000000000004 - type: recall_at_5 value: 39.058 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 20.776 - type: map_at_10 value: 27.285999999999998 - type: map_at_100 value: 28.235 - type: map_at_1000 value: 28.337 - type: map_at_3 value: 25.147000000000002 - type: map_at_5 value: 26.401999999999997 - type: mrr_at_1 value: 22.921 - type: mrr_at_10 value: 29.409999999999997 - type: mrr_at_100 value: 30.275000000000002 - type: mrr_at_1000 value: 30.354999999999997 - type: mrr_at_3 value: 27.418 - type: mrr_at_5 value: 28.592000000000002 - type: ndcg_at_1 value: 22.921 - type: ndcg_at_10 value: 31.239 - type: ndcg_at_100 value: 35.965 - type: ndcg_at_1000 value: 38.602 - type: ndcg_at_3 value: 27.174 - type: ndcg_at_5 value: 29.229 - type: precision_at_1 value: 22.921 - type: precision_at_10 value: 4.806 - type: precision_at_100 value: 0.776 - type: precision_at_1000 value: 0.11 - type: precision_at_3 value: 11.459999999999999 - type: precision_at_5 value: 8.022 - type: recall_at_1 value: 20.776 - type: recall_at_10 value: 41.294 - type: recall_at_100 value: 63.111 - type: recall_at_1000 value: 82.88600000000001 - type: recall_at_3 value: 30.403000000000002 - type: recall_at_5 value: 35.455999999999996 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: map_at_1 value: 9.376 - type: map_at_10 value: 15.926000000000002 - type: map_at_100 value: 17.585 - type: map_at_1000 value: 17.776 - type: map_at_3 value: 13.014000000000001 - type: map_at_5 value: 14.417 - type: mrr_at_1 value: 20.195 - type: mrr_at_10 value: 29.95 - type: mrr_at_100 value: 31.052000000000003 - type: mrr_at_1000 value: 31.108000000000004 - type: mrr_at_3 value: 26.667 - type: mrr_at_5 value: 28.458 - type: ndcg_at_1 value: 20.195 - type: ndcg_at_10 value: 22.871 - type: ndcg_at_100 value: 29.921999999999997 - type: ndcg_at_1000 value: 33.672999999999995 - type: ndcg_at_3 value: 17.782999999999998 - type: ndcg_at_5 value: 19.544 - type: precision_at_1 value: 20.195 - type: precision_at_10 value: 7.394 - type: precision_at_100 value: 1.493 - type: precision_at_1000 value: 0.218 - type: precision_at_3 value: 13.073 - type: precision_at_5 value: 10.436 - type: recall_at_1 value: 9.376 - type: recall_at_10 value: 28.544999999999998 - type: recall_at_100 value: 53.147999999999996 - type: recall_at_1000 value: 74.62 - type: recall_at_3 value: 16.464000000000002 - type: recall_at_5 value: 21.004 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: map_at_1 value: 8.415000000000001 - type: map_at_10 value: 18.738 - type: map_at_100 value: 27.291999999999998 - type: map_at_1000 value: 28.992 - type: map_at_3 value: 13.196 - type: map_at_5 value: 15.539 - type: mrr_at_1 value: 66.5 - type: mrr_at_10 value: 74.518 - type: mrr_at_100 value: 74.86 - type: mrr_at_1000 value: 74.87 - type: mrr_at_3 value: 72.375 - type: mrr_at_5 value: 73.86200000000001 - type: ndcg_at_1 value: 54.37499999999999 - type: ndcg_at_10 value: 41.317 - type: ndcg_at_100 value: 45.845 - type: ndcg_at_1000 value: 52.92 - type: ndcg_at_3 value: 44.983000000000004 - type: ndcg_at_5 value: 42.989 - type: precision_at_1 value: 66.5 - type: precision_at_10 value: 33.6 - type: precision_at_100 value: 10.972999999999999 - type: precision_at_1000 value: 2.214 - type: precision_at_3 value: 48.583 - type: precision_at_5 value: 42.15 - type: recall_at_1 value: 8.415000000000001 - type: recall_at_10 value: 24.953 - type: recall_at_100 value: 52.48199999999999 - type: recall_at_1000 value: 75.093 - type: recall_at_3 value: 14.341000000000001 - type: recall_at_5 value: 18.468 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 47.06499999999999 - type: f1 value: 41.439327599975385 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: map_at_1 value: 66.02 - type: map_at_10 value: 76.68599999999999 - type: map_at_100 value: 76.959 - type: map_at_1000 value: 76.972 - type: map_at_3 value: 75.024 - type: map_at_5 value: 76.153 - type: mrr_at_1 value: 71.197 - type: mrr_at_10 value: 81.105 - type: mrr_at_100 value: 81.232 - type: mrr_at_1000 value: 81.233 - type: mrr_at_3 value: 79.758 - type: mrr_at_5 value: 80.69 - type: ndcg_at_1 value: 71.197 - type: ndcg_at_10 value: 81.644 - type: ndcg_at_100 value: 82.645 - type: ndcg_at_1000 value: 82.879 - type: ndcg_at_3 value: 78.792 - type: ndcg_at_5 value: 80.528 - type: precision_at_1 value: 71.197 - type: precision_at_10 value: 10.206999999999999 - type: precision_at_100 value: 1.093 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 30.868000000000002 - type: precision_at_5 value: 19.559 - type: recall_at_1 value: 66.02 - type: recall_at_10 value: 92.50699999999999 - type: recall_at_100 value: 96.497 - type: recall_at_1000 value: 97.956 - type: recall_at_3 value: 84.866 - type: recall_at_5 value: 89.16199999999999 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: map_at_1 value: 17.948 - type: map_at_10 value: 29.833 - type: map_at_100 value: 31.487 - type: map_at_1000 value: 31.674000000000003 - type: map_at_3 value: 26.029999999999998 - type: map_at_5 value: 28.038999999999998 - type: mrr_at_1 value: 34.721999999999994 - type: mrr_at_10 value: 44.214999999999996 - type: mrr_at_100 value: 44.994 - type: mrr_at_1000 value: 45.051 - type: mrr_at_3 value: 41.667 - type: mrr_at_5 value: 43.032 - type: ndcg_at_1 value: 34.721999999999994 - type: ndcg_at_10 value: 37.434 - type: ndcg_at_100 value: 43.702000000000005 - type: ndcg_at_1000 value: 46.993 - type: ndcg_at_3 value: 33.56 - type: ndcg_at_5 value: 34.687 - type: precision_at_1 value: 34.721999999999994 - type: precision_at_10 value: 10.401 - type: precision_at_100 value: 1.7049999999999998 - type: precision_at_1000 value: 0.22799999999999998 - type: precision_at_3 value: 22.531000000000002 - type: precision_at_5 value: 16.42 - type: recall_at_1 value: 17.948 - type: recall_at_10 value: 45.062999999999995 - type: recall_at_100 value: 68.191 - type: recall_at_1000 value: 87.954 - type: recall_at_3 value: 31.112000000000002 - type: recall_at_5 value: 36.823 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: map_at_1 value: 36.644 - type: map_at_10 value: 57.658 - type: map_at_100 value: 58.562000000000005 - type: map_at_1000 value: 58.62500000000001 - type: map_at_3 value: 54.022999999999996 - type: map_at_5 value: 56.293000000000006 - type: mrr_at_1 value: 73.288 - type: mrr_at_10 value: 80.51700000000001 - type: mrr_at_100 value: 80.72 - type: mrr_at_1000 value: 80.728 - type: mrr_at_3 value: 79.33200000000001 - type: mrr_at_5 value: 80.085 - type: ndcg_at_1 value: 73.288 - type: ndcg_at_10 value: 66.61 - type: ndcg_at_100 value: 69.723 - type: ndcg_at_1000 value: 70.96000000000001 - type: ndcg_at_3 value: 61.358999999999995 - type: ndcg_at_5 value: 64.277 - type: precision_at_1 value: 73.288 - type: precision_at_10 value: 14.17 - type: precision_at_100 value: 1.659 - type: precision_at_1000 value: 0.182 - type: precision_at_3 value: 39.487 - type: precision_at_5 value: 25.999 - type: recall_at_1 value: 36.644 - type: recall_at_10 value: 70.851 - type: recall_at_100 value: 82.94399999999999 - type: recall_at_1000 value: 91.134 - type: recall_at_3 value: 59.230000000000004 - type: recall_at_5 value: 64.997 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 86.00280000000001 - type: ap value: 80.46302061021223 - type: f1 value: 85.9592921596419 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics: - type: map_at_1 value: 22.541 - type: map_at_10 value: 34.625 - type: map_at_100 value: 35.785 - type: map_at_1000 value: 35.831 - type: map_at_3 value: 30.823 - type: map_at_5 value: 32.967999999999996 - type: mrr_at_1 value: 23.180999999999997 - type: mrr_at_10 value: 35.207 - type: mrr_at_100 value: 36.315 - type: mrr_at_1000 value: 36.355 - type: mrr_at_3 value: 31.483 - type: mrr_at_5 value: 33.589999999999996 - type: ndcg_at_1 value: 23.195 - type: ndcg_at_10 value: 41.461 - type: ndcg_at_100 value: 47.032000000000004 - type: ndcg_at_1000 value: 48.199999999999996 - type: ndcg_at_3 value: 33.702 - type: ndcg_at_5 value: 37.522 - type: precision_at_1 value: 23.195 - type: precision_at_10 value: 6.526999999999999 - type: precision_at_100 value: 0.932 - type: precision_at_1000 value: 0.10300000000000001 - type: precision_at_3 value: 14.308000000000002 - type: precision_at_5 value: 10.507 - type: recall_at_1 value: 22.541 - type: recall_at_10 value: 62.524 - type: recall_at_100 value: 88.228 - type: recall_at_1000 value: 97.243 - type: recall_at_3 value: 41.38 - type: recall_at_5 value: 50.55 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 92.69949840401279 - type: f1 value: 92.54141471311786 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 72.56041951664386 - type: f1 value: 55.88499977508287 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 71.62071284465365 - type: f1 value: 69.36717546572152 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 76.35843981170142 - type: f1 value: 76.15496453538884 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 31.33664956793118 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 27.883839621715524 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 30.096874986740758 - type: mrr value: 30.97300481932132 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: map_at_1 value: 5.4 - type: map_at_10 value: 11.852 - type: map_at_100 value: 14.758 - type: map_at_1000 value: 16.134 - type: map_at_3 value: 8.558 - type: map_at_5 value: 10.087 - type: mrr_at_1 value: 44.272 - type: mrr_at_10 value: 52.05800000000001 - type: mrr_at_100 value: 52.689 - type: mrr_at_1000 value: 52.742999999999995 - type: mrr_at_3 value: 50.205999999999996 - type: mrr_at_5 value: 51.367 - type: ndcg_at_1 value: 42.57 - type: ndcg_at_10 value: 32.449 - type: ndcg_at_100 value: 29.596 - type: ndcg_at_1000 value: 38.351 - type: ndcg_at_3 value: 37.044 - type: ndcg_at_5 value: 35.275 - type: precision_at_1 value: 44.272 - type: precision_at_10 value: 23.87 - type: precision_at_100 value: 7.625 - type: precision_at_1000 value: 2.045 - type: precision_at_3 value: 34.365 - type: precision_at_5 value: 30.341 - type: recall_at_1 value: 5.4 - type: recall_at_10 value: 15.943999999999999 - type: recall_at_100 value: 29.805 - type: recall_at_1000 value: 61.695 - type: recall_at_3 value: 9.539 - type: recall_at_5 value: 12.127 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: map_at_1 value: 36.047000000000004 - type: map_at_10 value: 51.6 - type: map_at_100 value: 52.449999999999996 - type: map_at_1000 value: 52.476 - type: map_at_3 value: 47.452 - type: map_at_5 value: 49.964 - type: mrr_at_1 value: 40.382 - type: mrr_at_10 value: 54.273 - type: mrr_at_100 value: 54.859 - type: mrr_at_1000 value: 54.876000000000005 - type: mrr_at_3 value: 51.014 - type: mrr_at_5 value: 52.983999999999995 - type: ndcg_at_1 value: 40.353 - type: ndcg_at_10 value: 59.11300000000001 - type: ndcg_at_100 value: 62.604000000000006 - type: ndcg_at_1000 value: 63.187000000000005 - type: ndcg_at_3 value: 51.513 - type: ndcg_at_5 value: 55.576 - type: precision_at_1 value: 40.353 - type: precision_at_10 value: 9.418 - type: precision_at_100 value: 1.1440000000000001 - type: precision_at_1000 value: 0.12 - type: precision_at_3 value: 23.078000000000003 - type: precision_at_5 value: 16.250999999999998 - type: recall_at_1 value: 36.047000000000004 - type: recall_at_10 value: 79.22200000000001 - type: recall_at_100 value: 94.23 - type: recall_at_1000 value: 98.51100000000001 - type: recall_at_3 value: 59.678 - type: recall_at_5 value: 68.967 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 68.232 - type: map_at_10 value: 81.674 - type: map_at_100 value: 82.338 - type: map_at_1000 value: 82.36099999999999 - type: map_at_3 value: 78.833 - type: map_at_5 value: 80.58 - type: mrr_at_1 value: 78.64 - type: mrr_at_10 value: 85.164 - type: mrr_at_100 value: 85.317 - type: mrr_at_1000 value: 85.319 - type: mrr_at_3 value: 84.127 - type: mrr_at_5 value: 84.789 - type: ndcg_at_1 value: 78.63 - type: ndcg_at_10 value: 85.711 - type: ndcg_at_100 value: 87.238 - type: ndcg_at_1000 value: 87.444 - type: ndcg_at_3 value: 82.788 - type: ndcg_at_5 value: 84.313 - type: precision_at_1 value: 78.63 - type: precision_at_10 value: 12.977 - type: precision_at_100 value: 1.503 - type: precision_at_1000 value: 0.156 - type: precision_at_3 value: 36.113 - type: precision_at_5 value: 23.71 - type: recall_at_1 value: 68.232 - type: recall_at_10 value: 93.30199999999999 - type: recall_at_100 value: 98.799 - type: recall_at_1000 value: 99.885 - type: recall_at_3 value: 84.827 - type: recall_at_5 value: 89.188 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 45.71879170816294 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 59.65866311751794 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 4.218 - type: map_at_10 value: 10.337 - type: map_at_100 value: 12.131 - type: map_at_1000 value: 12.411 - type: map_at_3 value: 7.4270000000000005 - type: map_at_5 value: 8.913 - type: mrr_at_1 value: 20.8 - type: mrr_at_10 value: 30.868000000000002 - type: mrr_at_100 value: 31.903 - type: mrr_at_1000 value: 31.972 - type: mrr_at_3 value: 27.367 - type: mrr_at_5 value: 29.372 - type: ndcg_at_1 value: 20.8 - type: ndcg_at_10 value: 17.765 - type: ndcg_at_100 value: 24.914 - type: ndcg_at_1000 value: 30.206 - type: ndcg_at_3 value: 16.64 - type: ndcg_at_5 value: 14.712 - type: precision_at_1 value: 20.8 - type: precision_at_10 value: 9.24 - type: precision_at_100 value: 1.9560000000000002 - type: precision_at_1000 value: 0.32299999999999995 - type: precision_at_3 value: 15.467 - type: precision_at_5 value: 12.94 - type: recall_at_1 value: 4.218 - type: recall_at_10 value: 18.752 - type: recall_at_100 value: 39.7 - type: recall_at_1000 value: 65.57300000000001 - type: recall_at_3 value: 9.428 - type: recall_at_5 value: 13.133000000000001 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 83.04338850207233 - type: cos_sim_spearman value: 78.5054651430423 - type: euclidean_pearson value: 80.30739451228612 - type: euclidean_spearman value: 78.48377464299097 - type: manhattan_pearson value: 80.40795049052781 - type: manhattan_spearman value: 78.49506205443114 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 84.11596224442962 - type: cos_sim_spearman value: 76.20997388935461 - type: euclidean_pearson value: 80.56858451349109 - type: euclidean_spearman value: 75.92659183871186 - type: manhattan_pearson value: 80.60246102203844 - type: manhattan_spearman value: 76.03018971432664 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 81.34691640755737 - type: cos_sim_spearman value: 82.4018369631579 - type: euclidean_pearson value: 81.87673092245366 - type: euclidean_spearman value: 82.3671489960678 - type: manhattan_pearson value: 81.88222387719948 - type: manhattan_spearman value: 82.3816590344736 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 81.2836092579524 - type: cos_sim_spearman value: 78.99982781772064 - type: euclidean_pearson value: 80.5184271010527 - type: euclidean_spearman value: 78.89777392101904 - type: manhattan_pearson value: 80.53585705018664 - type: manhattan_spearman value: 78.92898405472994 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 86.7349907750784 - type: cos_sim_spearman value: 87.7611234446225 - type: euclidean_pearson value: 86.98759326731624 - type: euclidean_spearman value: 87.58321319424618 - type: manhattan_pearson value: 87.03483090370842 - type: manhattan_spearman value: 87.63278333060288 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 81.75873694924825 - type: cos_sim_spearman value: 83.80237999094724 - type: euclidean_pearson value: 83.55023725861537 - type: euclidean_spearman value: 84.12744338577744 - type: manhattan_pearson value: 83.58816983036232 - type: manhattan_spearman value: 84.18520748676501 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 87.21630882940174 - type: cos_sim_spearman value: 87.72382883437031 - type: euclidean_pearson value: 88.69933350930333 - type: euclidean_spearman value: 88.24660814383081 - type: manhattan_pearson value: 88.77331018833499 - type: manhattan_spearman value: 88.26109989380632 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 61.11854063060489 - type: cos_sim_spearman value: 63.14678634195072 - type: euclidean_pearson value: 61.679090067000864 - type: euclidean_spearman value: 62.28876589509653 - type: manhattan_pearson value: 62.082324165511004 - type: manhattan_spearman value: 62.56030932816679 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 84.00319882832645 - type: cos_sim_spearman value: 85.94529772647257 - type: euclidean_pearson value: 85.6661390122756 - type: euclidean_spearman value: 85.97747815545827 - type: manhattan_pearson value: 85.58422770541893 - type: manhattan_spearman value: 85.9237139181532 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 79.16198731863916 - type: mrr value: 94.25202702163487 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: map_at_1 value: 54.761 - type: map_at_10 value: 64.396 - type: map_at_100 value: 65.07 - type: map_at_1000 value: 65.09899999999999 - type: map_at_3 value: 61.846000000000004 - type: map_at_5 value: 63.284 - type: mrr_at_1 value: 57.667 - type: mrr_at_10 value: 65.83099999999999 - type: mrr_at_100 value: 66.36800000000001 - type: mrr_at_1000 value: 66.39399999999999 - type: mrr_at_3 value: 64.056 - type: mrr_at_5 value: 65.206 - type: ndcg_at_1 value: 57.667 - type: ndcg_at_10 value: 68.854 - type: ndcg_at_100 value: 71.59100000000001 - type: ndcg_at_1000 value: 72.383 - type: ndcg_at_3 value: 64.671 - type: ndcg_at_5 value: 66.796 - type: precision_at_1 value: 57.667 - type: precision_at_10 value: 9.167 - type: precision_at_100 value: 1.053 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 25.444 - type: precision_at_5 value: 16.667 - type: recall_at_1 value: 54.761 - type: recall_at_10 value: 80.9 - type: recall_at_100 value: 92.767 - type: recall_at_1000 value: 99 - type: recall_at_3 value: 69.672 - type: recall_at_5 value: 75.083 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.8079207920792 - type: cos_sim_ap value: 94.88470927617445 - type: cos_sim_f1 value: 90.08179959100204 - type: cos_sim_precision value: 92.15481171548117 - type: cos_sim_recall value: 88.1 - type: dot_accuracy value: 99.58613861386138 - type: dot_ap value: 82.94822578881316 - type: dot_f1 value: 77.33333333333333 - type: dot_precision value: 79.36842105263158 - type: dot_recall value: 75.4 - type: euclidean_accuracy value: 99.8069306930693 - type: euclidean_ap value: 94.81367858031837 - type: euclidean_f1 value: 90.01009081735621 - type: euclidean_precision value: 90.83503054989816 - type: euclidean_recall value: 89.2 - type: manhattan_accuracy value: 99.81188118811882 - type: manhattan_ap value: 94.91405337220161 - type: manhattan_f1 value: 90.2763561924258 - type: manhattan_precision value: 92.45283018867924 - type: manhattan_recall value: 88.2 - type: max_accuracy value: 99.81188118811882 - type: max_ap value: 94.91405337220161 - type: max_f1 value: 90.2763561924258 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 58.511599500053094 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 31.984728147814707 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 49.93428193939015 - type: mrr value: 50.916557911043206 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 31.562500894537145 - type: cos_sim_spearman value: 31.162587976726307 - type: dot_pearson value: 22.633662187735762 - type: dot_spearman value: 22.723000282378962 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.219 - type: map_at_10 value: 1.871 - type: map_at_100 value: 10.487 - type: map_at_1000 value: 25.122 - type: map_at_3 value: 0.657 - type: map_at_5 value: 1.0699999999999998 - type: mrr_at_1 value: 84 - type: mrr_at_10 value: 89.567 - type: mrr_at_100 value: 89.748 - type: mrr_at_1000 value: 89.748 - type: mrr_at_3 value: 88.667 - type: mrr_at_5 value: 89.567 - type: ndcg_at_1 value: 80 - type: ndcg_at_10 value: 74.533 - type: ndcg_at_100 value: 55.839000000000006 - type: ndcg_at_1000 value: 49.748 - type: ndcg_at_3 value: 79.53099999999999 - type: ndcg_at_5 value: 78.245 - type: precision_at_1 value: 84 - type: precision_at_10 value: 78.4 - type: precision_at_100 value: 56.99999999999999 - type: precision_at_1000 value: 21.98 - type: precision_at_3 value: 85.333 - type: precision_at_5 value: 84.8 - type: recall_at_1 value: 0.219 - type: recall_at_10 value: 2.02 - type: recall_at_100 value: 13.555 - type: recall_at_1000 value: 46.739999999999995 - type: recall_at_3 value: 0.685 - type: recall_at_5 value: 1.13 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 3.5029999999999997 - type: map_at_10 value: 11.042 - type: map_at_100 value: 16.326999999999998 - type: map_at_1000 value: 17.836 - type: map_at_3 value: 6.174 - type: map_at_5 value: 7.979 - type: mrr_at_1 value: 42.857 - type: mrr_at_10 value: 52.617000000000004 - type: mrr_at_100 value: 53.351000000000006 - type: mrr_at_1000 value: 53.351000000000006 - type: mrr_at_3 value: 46.939 - type: mrr_at_5 value: 50.714000000000006 - type: ndcg_at_1 value: 38.775999999999996 - type: ndcg_at_10 value: 27.125 - type: ndcg_at_100 value: 35.845 - type: ndcg_at_1000 value: 47.377 - type: ndcg_at_3 value: 29.633 - type: ndcg_at_5 value: 28.378999999999998 - type: precision_at_1 value: 42.857 - type: precision_at_10 value: 24.082 - type: precision_at_100 value: 6.877999999999999 - type: precision_at_1000 value: 1.463 - type: precision_at_3 value: 29.932 - type: precision_at_5 value: 28.571 - type: recall_at_1 value: 3.5029999999999997 - type: recall_at_10 value: 17.068 - type: recall_at_100 value: 43.361 - type: recall_at_1000 value: 78.835 - type: recall_at_3 value: 6.821000000000001 - type: recall_at_5 value: 10.357 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 71.0954 - type: ap value: 14.216844153511959 - type: f1 value: 54.63687418565117 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 61.46293152235427 - type: f1 value: 61.744177921638645 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 41.12708617788644 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 85.75430649102938 - type: cos_sim_ap value: 73.34252536948081 - type: cos_sim_f1 value: 67.53758935173774 - type: cos_sim_precision value: 63.3672525439408 - type: cos_sim_recall value: 72.29551451187335 - type: dot_accuracy value: 81.71305954580676 - type: dot_ap value: 59.5532209082386 - type: dot_f1 value: 56.18466898954705 - type: dot_precision value: 47.830923248053395 - type: dot_recall value: 68.07387862796834 - type: euclidean_accuracy value: 85.81987244441795 - type: euclidean_ap value: 73.34325409809446 - type: euclidean_f1 value: 67.83451360417443 - type: euclidean_precision value: 64.09955388588871 - type: euclidean_recall value: 72.0316622691293 - type: manhattan_accuracy value: 85.68277999642368 - type: manhattan_ap value: 73.1535450121903 - type: manhattan_f1 value: 67.928237896289 - type: manhattan_precision value: 63.56945722171113 - type: manhattan_recall value: 72.9287598944591 - type: max_accuracy value: 85.81987244441795 - type: max_ap value: 73.34325409809446 - type: max_f1 value: 67.928237896289 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.90441262079403 - type: cos_sim_ap value: 85.79331880741438 - type: cos_sim_f1 value: 78.31563529842548 - type: cos_sim_precision value: 74.6683424102779 - type: cos_sim_recall value: 82.33754234678165 - type: dot_accuracy value: 84.89928978926534 - type: dot_ap value: 75.25819218316 - type: dot_f1 value: 69.88730119720536 - type: dot_precision value: 64.23362374959665 - type: dot_recall value: 76.63227594702803 - type: euclidean_accuracy value: 89.01695967710637 - type: euclidean_ap value: 85.98986606038852 - type: euclidean_f1 value: 78.5277880014722 - type: euclidean_precision value: 75.22211253701876 - type: euclidean_recall value: 82.13735756082538 - type: manhattan_accuracy value: 88.99561454573679 - type: manhattan_ap value: 85.92262421793953 - type: manhattan_f1 value: 78.38866094740769 - type: manhattan_precision value: 76.02373028505282 - type: manhattan_recall value: 80.9054511857099 - type: max_accuracy value: 89.01695967710637 - type: max_ap value: 85.98986606038852 - type: max_f1 value: 78.5277880014722 language: - en license: mit --- # # Fast-Inference with Ctranslate2 Speedup inference while reducing memory by 2x-4x using int8 inference in C++ on CPU or GPU. quantized version of [intfloat/e5-small-v2](https://huggingface.co/intfloat/e5-small-v2) ```bash pip install hf-hub-ctranslate2>=2.12.0 ctranslate2>=3.17.1 ``` ```python # from transformers import AutoTokenizer model_name = "michaelfeil/ct2fast-e5-small-v2" model_name_orig="intfloat/e5-small-v2" from hf_hub_ctranslate2 import EncoderCT2fromHfHub model = EncoderCT2fromHfHub( # load in int8 on CUDA model_name_or_path=model_name, device="cuda", compute_type="int8_float16" ) outputs = model.generate( text=["I like soccer", "I like tennis", "The eiffel tower is in Paris"], max_length=64, ) # perform downstream tasks on outputs outputs["pooler_output"] outputs["last_hidden_state"] outputs["attention_mask"] # alternative, use SentenceTransformer Mix-In # for end-to-end Sentence embeddings generation # (not pulling from this CT2fast-HF repo) from hf_hub_ctranslate2 import CT2SentenceTransformer model = CT2SentenceTransformer( model_name_orig, compute_type="int8_float16", device="cuda" ) embeddings = model.encode( ["I like soccer", "I like tennis", "The eiffel tower is in Paris"], batch_size=32, convert_to_numpy=True, normalize_embeddings=True, ) print(embeddings.shape, embeddings) scores = (embeddings @ embeddings.T) * 100 # Hint: you can also host this code via REST API and # via github.com/michaelfeil/infinity ``` Checkpoint compatible to [ctranslate2>=3.17.1](https://github.com/OpenNMT/CTranslate2) and [hf-hub-ctranslate2>=2.12.0](https://github.com/michaelfeil/hf-hub-ctranslate2) - `compute_type=int8_float16` for `device="cuda"` - `compute_type=int8` for `device="cpu"` Converted on 2023-10-13 using ``` LLama-2 -> removed <pad> token. ``` # Licence and other remarks: This is just a quantized version. Licence conditions are intended to be idential to original huggingface repo. # Original description # E5-small-v2 [Text Embeddings by Weakly-Supervised Contrastive Pre-training](https://arxiv.org/pdf/2212.03533.pdf). Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, Furu Wei, arXiv 2022 This model has 12 layers and the embedding size is 384. ## Usage Below is an example to encode queries and passages from the MS-MARCO passage ranking dataset. ```python import torch.nn.functional as F from torch import Tensor from transformers import AutoTokenizer, AutoModel def average_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor: last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] # Each input text should start with "query: " or "passage: ". # For tasks other than retrieval, you can simply use the "query: " prefix. input_texts = ['query: how much protein should a female eat', 'query: summit define', "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", "passage: Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."] tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-small-v2') model = AutoModel.from_pretrained('intfloat/e5-small-v2') # Tokenize the input texts batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt') outputs = model(**batch_dict) embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask']) # normalize embeddings embeddings = F.normalize(embeddings, p=2, dim=1) scores = (embeddings[:2] @ embeddings[2:].T) * 100 print(scores.tolist()) ``` ## Training Details Please refer to our paper at [https://arxiv.org/pdf/2212.03533.pdf](https://arxiv.org/pdf/2212.03533.pdf). ## Benchmark Evaluation Check out [unilm/e5](https://github.com/microsoft/unilm/tree/master/e5) to reproduce evaluation results on the [BEIR](https://arxiv.org/abs/2104.08663) and [MTEB benchmark](https://arxiv.org/abs/2210.07316). ## Support for Sentence Transformers Below is an example for usage with sentence_transformers. ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('intfloat/e5-small-v2') input_texts = [ 'query: how much protein should a female eat', 'query: summit define', "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", "passage: Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments." ] embeddings = model.encode(input_texts, normalize_embeddings=True) ``` Package requirements `pip install sentence_transformers~=2.2.2` Contributors: [michaelfeil](https://huggingface.co/michaelfeil) ## FAQ **1. Do I need to add the prefix "query: " and "passage: " to input texts?** Yes, this is how the model is trained, otherwise you will see a performance degradation. Here are some rules of thumb: - Use "query: " and "passage: " correspondingly for asymmetric tasks such as passage retrieval in open QA, ad-hoc information retrieval. - Use "query: " prefix for symmetric tasks such as semantic similarity, paraphrase retrieval. - Use "query: " prefix if you want to use embeddings as features, such as linear probing classification, clustering. **2. Why are my reproduced results slightly different from reported in the model card?** Different versions of `transformers` and `pytorch` could cause negligible but non-zero performance differences. **3. Why does the cosine similarity scores distribute around 0.7 to 1.0?** This is a known and expected behavior as we use a low temperature 0.01 for InfoNCE contrastive loss. For text embedding tasks like text retrieval or semantic similarity, what matters is the relative order of the scores instead of the absolute values, so this should not be an issue. ## Citation If you find our paper or models helpful, please consider cite as follows: ``` @article{wang2022text, title={Text Embeddings by Weakly-Supervised Contrastive Pre-training}, author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Jiao, Binxing and Yang, Linjun and Jiang, Daxin and Majumder, Rangan and Wei, Furu}, journal={arXiv preprint arXiv:2212.03533}, year={2022} } ``` ## Limitations This model only works for English texts. Long texts will be truncated to at most 512 tokens.
ntfargo/genet-models
ntfargo
2023-10-13T13:28:01Z
0
0
null
[ "region:us" ]
null
2023-09-28T08:36:42Z
# genet-models prediction models for genet # Available models The DeepSpCas9 model predicts the activity of SpCas9. It is based on the model presented in the 2019 Sci.Adv. publication. # DeepSpCas9-variants The DeepSpCas9-variants model predicts the activity of various SpCas9 PAM variants. # DeepPrime / DeepPrime-FT These models predict the efficiency of Prime editing. They are based on the models from the 2023 Cell paper. Original author: Goosang-Yu ~ https://github.com/Goosang-Yu/genet-models
Severian/ANIMA-Phi-Neptune-Mistral-7B-GPTQ
Severian
2023-10-13T13:26:09Z
18
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "chemistry", "biology", "climate", "science", "philosophy", "nature", "ecology", "biomimicry", "fauna", "flora", "dataset:Severian/Biomimicry", "dataset:emrgnt-cmplxty/sciphi-textbooks-are-all-you-need", "dataset:fmars/wiki_stem", "dataset:fblgit/tree-of-knowledge", "dataset:Severian/Bio-Design-Process", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "gptq", "region:us" ]
text-generation
2023-10-13T10:20:47Z
--- license: mit datasets: - Severian/Biomimicry - emrgnt-cmplxty/sciphi-textbooks-are-all-you-need - fmars/wiki_stem - fblgit/tree-of-knowledge - Severian/Bio-Design-Process tags: - chemistry - biology - climate - science - philosophy - nature - ecology - biomimicry - fauna - flora pipeline_tag: text-generation metrics: - accuracy --- # ANIMA-Phi-Neptune-Mistral-7B: Biomimicry Enhanced LLM <img src="https://cdn-uploads.huggingface.co/production/uploads/64740cf7485a7c8e1bd51ac9/JZH6p50t_j3-OUph4Wq6y.png" width="500"> ## Overview **ANIMA** (Advanced Nature Inspired Multidisciplinary Assistant) is an expert in various scientific disciplines, including but not limited to biomimicry, biology, and environmental science. --- ## Model Description ANIMA is fine-tuned on a rich dataset encompassing: - 4,000+ Nature-Biomimicry examples - 60k Biomimicry Design Process examples - 600k STEM facts from Wikipedia - Science/Philosophy focused 'All-You-Need-Is-Textbooks' dataset - Additional Tree of Knowledge + Biomimicry data combined fine-tuning The model aims to assist users in solving problems using nature-inspired strategies and concepts. ### Special Features - **Multi-disciplinary Expertise**: Knowledge across various scientific and philosophical domains. - **Biomimicry Design Process**: Incorporates a dataset generated by Mistral and Minotaur-15B. The dataset was then intricately processed by a real person to ensure factuality and grounding. --- - Here is a link to The Bloke's GGUF version: [ANIMA-Phi-Neptune-Mistral-7B-GGUF](https://huggingface.co/TheBloke/ANIMA-Phi-Neptune-Mistral-7B-GGUF) - ANIMA is also available using Ollama - Download the App [OLLAMA](https://ollama.ai/) and then run this command in your Terminal 'ollama pull severian/anima' to download the model and then run this command 'ollama run severian/anima' - You can also download and use the model with [LM Studio](https://lmstudio.ai/). Just download the app and then search for 'ANIMA GGUF' in the search bar and you will have a list of versions to choose from. ## Datasets - `Severian/Biomimicry` (1st Fine-Tune) - `emrgnt-cmplxty/sciphi-textbooks-are-all-you-need` (2nd Fine-Tune) - `Severian/Bio-Design-Process` & `fmars/wiki_stem` (3rd Fine-Tune) - `fblgit/tree-of-knowledge & `Severian/Biomimicry` (4th Fine-Tune) - Combined all previous datasets into one giant dataset for a quick fine-tuning for a total of 730k data points (5th Fine-Tune) ## Training Stages 1. **Base Model**: `ehartford/dolphin-2.0-mistral-7b` 2. **1st Fine-Tune**: `ANIMA-Echo-Mistral-7B-v1` - 1 Epoch x 5hrs on 1 x T4 Small 3. **2nd Fine-Tune**: `ANIMA-Phi-Neptune-Mistral-v1`-: 1 Epoch x 1hr on 1 x A100 4. **3rd Fine-Tune**: `ANIMA-Phi-Neptune-Mistral-7B-v2` - 1 Epoch x 1hr on 1 x A100 5. **4th Fine-Tune**: 'ANIMA-Phi-Neptune-Mistral-7B-v3' - 1 Epoch x 1hr on 1 x A100 6. **5th Fine-Tune**: 'ANIMA-Phi-Neptune-Mistral-7B-v4' - 1 Epoch x 15mins on 1 x A100 --- ## 📝 Usage ANIMA is designed around the Biomimicry Design Process to guide users in solving problems through biomimicry. For more information and examples, please visit [Biomimicry Design Process](https://toolbox.biomimicry.org/methods/process/). ## 🏁 Benchmarks - Average - 62.22 - ARC - 56.83 - HellaSwag - 78.82 - MMLU - 53.84 - TruthfulQA - 59.40 --- - **EXAMPLE OUTPUT** [INST] How can biomimicry help in water purification? [/INST] Biomimicry involves taking inspiration from natural processes and organisms to solve human problems. In the context of water purification, biomimicry can help develop sustainable and efficient methods for cleaning water. One specific example of a nature-inspired strategy to solve this problem is the use of biofiltration, which involves using microorganisms to remove pollutants from water. Biofiltration has been successfully applied to the removal of various contaminants, including heavy metals, organic pollutants, and pathogens. For example, a study by Zhang et al. (2011) demonstrated that a mixed culture of Pseudomonas putida and Bacillus subtilis could effectively remove lead and cadmium from contaminated water. The researchers found that the biofilm formed by the mixed culture had a higher removal efficiency than that formed by either species alone. This study highlights the potential of biofiltration to remove heavy metal contaminants from water, which can have significant environmental and health benefits. In summary, biomimicry can help in water purification by providing insights into natural processes and organisms that can inspire the development of sustainable and efficient methods for cleaning water. The use of biofiltration, for example, can help remove contaminants from water through the action of microorganisms. Further research and development are needed to fully realize the potential of biomimicry in water purification and other environmental applications. --- - **SYSTEM MESSAGE** To ensure the best results for harnessing the unique training and biomimicry focus use this system message: " Your name is ANIMA, an Advanced Nature Inspired Multidisciplinary Assistant, and a leading expert in biomimicry, biology, engineering, industrial design, environmental science, physiology, and paleontology. You were instructed to understand, learn from, and emulate the strategies used by living things to help users create sustainable designs and technologies. Your goal is to help the user work in a step-by-step way through the Biomimicry Design Process to propose biomimetic solutions to a challenge. Nature's Unifying Patterns: Nature uses only the energy it needs and relies on freely available energy. Nature recycles all materials. Nature is resilient to disturbances. Nature tends to optimize rather than maximize. Nature provides mutual benefits. Nature runs on information. Nature uses chemistry and materials that are safe for living beings. Nature builds using abundant resources, incorporating rare resources only sparingly. Nature is locally attuned and responsive. Nature uses shape to determine functionality. " --- ## 📜 License This project is licensed under MIT
kibru/deberta-v3-large-finetuned-sst2
kibru
2023-10-13T13:24:23Z
0
0
null
[ "generated_from_trainer", "dataset:glue", "base_model:microsoft/deberta-v3-large", "base_model:finetune:microsoft/deberta-v3-large", "license:mit", "region:us" ]
null
2023-10-13T12:45:29Z
--- license: mit base_model: microsoft/deberta-v3-large tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: deberta-v3-large-finetuned-sst2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large-finetuned-sst2 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.1258 - Accuracy: 0.9622 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1173 | 1.0 | 4210 | 0.1258 | 0.9622 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
andersonjas/lora_results_2023_10_13_big
andersonjas
2023-10-13T13:16:23Z
0
0
null
[ "generated_from_trainer", "base_model:mistralai/Mistral-7B-v0.1", "base_model:finetune:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "region:us" ]
null
2023-10-13T04:26:35Z
--- license: apache-2.0 base_model: mistralai/Mistral-7B-v0.1 tags: - generated_from_trainer model-index: - name: lora_results_2023_10_13_big results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lora_results_2023_10_13_big This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.3 - num_epochs: 8 ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.14.0
Eitanli/distilbert-cased-topic-title-classification
Eitanli
2023-10-13T13:14:43Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-cased", "base_model:finetune:distilbert/distilbert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-12T14:15:47Z
--- license: apache-2.0 base_model: distilbert-base-cased tags: - generated_from_trainer model-index: - name: distilbert-cased-topic-title-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-cased-topic-title-classification This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3246 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.3204 | 1.0 | 8354 | 0.3232 | | 0.2927 | 2.0 | 16708 | 0.3034 | | 0.2492 | 3.0 | 25062 | 0.3246 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
Xiaoqii/THLM
Xiaoqii
2023-10-13T12:53:57Z
3
0
transformers
[ "transformers", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-10-13T12:22:12Z
We publish the Pre-trained Language Models for Datasets in *Pretraining Language Models with Text-Attributed Heterogeneous Graphs*. These models include Patents_THLM, GoodReads_THLM, and OAG_Venue_THLM. The source codes and datasets are publicly available on [GitHub](https://github.com/Hope-Rita/THLM)
pfunk/PongNoFrameskip-v4-DQPN_x5-seed1
pfunk
2023-10-13T12:49:35Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "PongNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-10-13T12:49:28Z
--- tags: - PongNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQPN_freq results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PongNoFrameskip-v4 type: PongNoFrameskip-v4 metrics: - type: mean_reward value: 19.13 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **DQPN_freq** Agent Playing **PongNoFrameskip-v4** This is a trained model of a DQPN_freq agent playing PongNoFrameskip-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_x5.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_x5]" python -m cleanrl_utils.enjoy --exp-name DQPN_x5 --env-id PongNoFrameskip-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/PongNoFrameskip-v4-DQPN_x5-seed1/raw/main/dqpn_freq_atari.py curl -OL https://huggingface.co/pfunk/PongNoFrameskip-v4-DQPN_x5-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/PongNoFrameskip-v4-DQPN_x5-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_freq_atari.py --track --wandb-entity pfunk --wandb-project-name dqpn --capture-video true --save-model true --upload-model true --hf-entity pfunk --exp-name DQPN_x5 --target-network-frequency 1000 --policy-network-frequency 5000 --seed 1 ``` # Hyperparameters ```python {'alg_type': 'dqpn_freq_atari.py', 'batch_size': 32, 'buffer_size': 1000000, 'capture_video': True, 'cuda': True, 'double_learning': False, 'end_e': 0.05, 'env_id': 'PongNoFrameskip-v4', 'exp_name': 'DQPN_x5', 'exploration_fraction': 0.2, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 10000, 'max_gradient_norm': inf, 'policy_network_frequency': 5000, 'policy_tau': 1.0, 'save_model': True, 'seed': 1, 'start_e': 1.0, 'target_network_frequency': 1000, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 1, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
MananSantoki/Vadodara-Llama-2-tester
MananSantoki
2023-10-13T12:48:48Z
1
0
peft
[ "peft", "region:us" ]
null
2023-10-13T12:48:46Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0 - PEFT 0.5.0
MananSantoki/Vadodara-Llama-2
MananSantoki
2023-10-13T12:47:59Z
0
0
peft
[ "peft", "tensorboard", "region:us" ]
null
2023-10-13T12:17:31Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0 - PEFT 0.5.0
inesani/ner-test3
inesani
2023-10-13T12:37:18Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "token-classification", "dataset:custom", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-10-09T09:48:57Z
--- license: apache-2.0 tags: [] datasets: - custom metrics: - precision - recall - f1 - accuracy widget: - text: 188.210.113.80 - - [26/Jan/2019:20:17:17 +0330] "GET /image/4158/productModel/200x200 HTTP/1.1" 200 4022 example_title: Example Log model-index: - name: ner-test3 results: - task: type: token-classification dataset: name: custom_dataset type: Signalit custom dataset metrics: - type: Global Strict F1 value: 0 - type: results Partial F1 value: 0 - type: TIM Strict F1 value: 0 - type: TIM Partial F1 value: 0 - type: KV Strict F1 value: 0 - type: KV Partial F1 value: 0 - type: IP Strict F1 value: 0 - type: IP Partial F1 value: 0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ner-test3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1173 - Precision: 0.7826 - Recall: 0.8182 - F1: 0.8 - Accuracy: 0.7826 ## Model description Fine-tuned Transformer based on the distilBERT architecture using Pytorch for detecting: Timestamps, KV and IPs. ## Intended uses & limitations Can be used on any system log containing timestamps, keyvalues and ips. ## Training and evaluation data Trained over 12000 logs: 3000 Apache, 1000 Csv, 1000 Dns, 3600 KV, 1000 Syslog and 3100 Miscellaneous logs. Evaluated on a small corpus of unseen logs labelled by hand. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 50 - eval_batch_size: 50 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.6299 | 1.0 | 1 | 1.2697 | 0.6522 | 0.6818 | 0.6667 | 0.6522 | | 1.2767 | 2.0 | 2 | 1.1173 | 0.7826 | 0.8182 | 0.8 | 0.7826 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
oljike/jd_model
oljike
2023-10-13T12:36:38Z
5
0
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-10-13T10:19:05Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of jdtlr person tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - oljike/jd_model These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of jdtlr person using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
nerdai/distilbert-base-uncased-finetuned-clinc
nerdai
2023-10-13T12:19:38Z
45
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-26T13:17:38Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos config: plus split: validation args: plus metrics: - name: Accuracy type: accuracy value: 0.9174193548387096 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7665 - Accuracy: 0.9174 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 3.2752 | 0.7239 | | 3.7788 | 2.0 | 636 | 1.8616 | 0.8365 | | 3.7788 | 3.0 | 954 | 1.1454 | 0.8987 | | 1.6805 | 4.0 | 1272 | 0.8479 | 0.9126 | | 0.8911 | 5.0 | 1590 | 0.7665 | 0.9174 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 1.16.1 - Tokenizers 0.13.3
kar-saaragh/ppo-Huggy
kar-saaragh
2023-10-13T11:45:37Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-10-13T11:45:32Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: kar-saaragh/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Aditya4521/bert-finetuned-squad
Aditya4521
2023-10-13T11:45:04Z
6
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-cased-distilled-squad", "base_model:finetune:distilbert/distilbert-base-cased-distilled-squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-10-12T17:31:31Z
--- license: apache-2.0 base_model: distilbert-base-cased-distilled-squad tags: - generated_from_keras_callback model-index: - name: Aditya4521/bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Aditya4521/bert-finetuned-squad This model is a fine-tuned version of [distilbert-base-cased-distilled-squad](https://huggingface.co/distilbert-base-cased-distilled-squad) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4422 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 11090, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 0.6152 | 0 | | 0.4422 | 1 | ### Framework versions - Transformers 4.34.0 - TensorFlow 2.13.0 - Datasets 2.14.5 - Tokenizers 0.14.1
Transformers123/segformer-b0-scene-parse-150
Transformers123
2023-10-13T11:41:40Z
1
0
transformers
[ "transformers", "pytorch", "segformer", "generated_from_trainer", "dataset:scene_parse_150", "base_model:nvidia/mit-b0", "base_model:finetune:nvidia/mit-b0", "license:other", "endpoints_compatible", "region:us" ]
null
2023-10-13T10:28:16Z
--- license: other base_model: nvidia/mit-b0 tags: - generated_from_trainer datasets: - scene_parse_150 model-index: - name: segformer-b0-scene-parse-150 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-scene-parse-150 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the scene_parse_150 dataset. It achieves the following results on the evaluation set: - Loss: 4.7207 - Val Mean Iou: 0.0003 - Val Mean Accuracy: 0.0075 - Val Overall Accuracy: 0.0081 - Val Accuracy Wall: 0.0 - Val Accuracy Building: 0.0267 - Val Accuracy Sky: 0.0 - Val Accuracy Floor: 0.0 - Val Accuracy Tree: 0.0007 - Val Accuracy Ceiling: 0.0 - Val Accuracy Road: 0.0058 - Val Accuracy Bed : 0.0 - Val Accuracy Windowpane: nan - Val Accuracy Grass: 0.0 - Val Accuracy Cabinet: 0.0 - Val Accuracy Sidewalk: 0.0 - Val Accuracy Person: 0.0 - Val Accuracy Earth: 0.0 - Val Accuracy Door: 0.3095 - Val Accuracy Table: 0.0 - Val Accuracy Mountain: 0.0 - Val Accuracy Plant: 0.0 - Val Accuracy Curtain: 0.0 - Val Accuracy Chair: 0.0 - Val Accuracy Car: 0.0 - Val Accuracy Water: 0.0 - Val Accuracy Painting: nan - Val Accuracy Sofa: nan - Val Accuracy Shelf: nan - Val Accuracy House: nan - Val Accuracy Sea: 0.0110 - Val Accuracy Mirror: 0.0 - Val Accuracy Rug: 0.0 - Val Accuracy Field: nan - Val Accuracy Armchair: nan - Val Accuracy Seat: nan - Val Accuracy Fence: 0.0 - Val Accuracy Desk: nan - Val Accuracy Rock: nan - Val Accuracy Wardrobe: 0.0 - Val Accuracy Lamp: 0.0 - Val Accuracy Bathtub: 0.0 - Val Accuracy Railing: 0.0 - Val Accuracy Cushion: nan - Val Accuracy Base: nan - Val Accuracy Box: nan - Val Accuracy Column: 0.0 - Val Accuracy Signboard: nan - Val Accuracy Chest of drawers: nan - Val Accuracy Counter: nan - Val Accuracy Sand: 0.0 - Val Accuracy Sink: nan - Val Accuracy Skyscraper: nan - Val Accuracy Fireplace: nan - Val Accuracy Refrigerator: nan - Val Accuracy Grandstand: nan - Val Accuracy Path: 0.0 - Val Accuracy Stairs: nan - Val Accuracy Runway: nan - Val Accuracy Case: nan - Val Accuracy Pool table: nan - Val Accuracy Pillow: nan - Val Accuracy Screen door: nan - Val Accuracy Stairway: nan - Val Accuracy River: nan - Val Accuracy Bridge: nan - Val Accuracy Bookcase: nan - Val Accuracy Blind: nan - Val Accuracy Coffee table: 0.0 - Val Accuracy Toilet: nan - Val Accuracy Flower: nan - Val Accuracy Book: 0.0 - Val Accuracy Hill: nan - Val Accuracy Bench: nan - Val Accuracy Countertop: nan - Val Accuracy Stove: nan - Val Accuracy Palm: nan - Val Accuracy Kitchen island: nan - Val Accuracy Computer: nan - Val Accuracy Swivel chair: nan - Val Accuracy Boat: nan - Val Accuracy Bar: nan - Val Accuracy Arcade machine: nan - Val Accuracy Hovel: nan - Val Accuracy Bus: nan - Val Accuracy Towel: 0.0 - Val Accuracy Light: nan - Val Accuracy Truck: nan - Val Accuracy Tower: nan - Val Accuracy Chandelier: nan - Val Accuracy Awning: 0.0 - Val Accuracy Streetlight: nan - Val Accuracy Booth: nan - Val Accuracy Television receiver: nan - Val Accuracy Airplane: nan - Val Accuracy Dirt track: nan - Val Accuracy Apparel: 0.0 - Val Accuracy Pole: nan - Val Accuracy Land: nan - Val Accuracy Bannister: nan - Val Accuracy Escalator: nan - Val Accuracy Ottoman: 0.0 - Val Accuracy Bottle: nan - Val Accuracy Buffet: 0.0 - Val Accuracy Poster: nan - Val Accuracy Stage: nan - Val Accuracy Van: nan - Val Accuracy Ship: nan - Val Accuracy Fountain: nan - Val Accuracy Conveyer belt: nan - Val Accuracy Canopy: nan - Val Accuracy Washer: nan - Val Accuracy Plaything: nan - Val Accuracy Swimming pool: nan - Val Accuracy Stool: nan - Val Accuracy Barrel: nan - Val Accuracy Basket: nan - Val Accuracy Waterfall: nan - Val Accuracy Tent: 0.0 - Val Accuracy Bag: nan - Val Accuracy Minibike: nan - Val Accuracy Cradle: nan - Val Accuracy Oven: nan - Val Accuracy Ball: nan - Val Accuracy Food: 0.0 - Val Accuracy Step: nan - Val Accuracy Tank: 0.0 - Val Accuracy Trade name: nan - Val Accuracy Microwave: nan - Val Accuracy Pot: nan - Val Accuracy Animal: nan - Val Accuracy Bicycle: nan - Val Accuracy Lake: nan - Val Accuracy Dishwasher: nan - Val Accuracy Screen: nan - Val Accuracy Blanket: nan - Val Accuracy Sculpture: nan - Val Accuracy Hood: 0.0 - Val Accuracy Sconce: nan - Val Accuracy Vase: nan - Val Accuracy Traffic light: nan - Val Accuracy Tray: 0.0 - Val Accuracy Ashcan: 0.0 - Val Accuracy Fan: nan - Val Accuracy Pier: nan - Val Accuracy Crt screen: nan - Val Accuracy Plate: nan - Val Accuracy Monitor: nan - Val Accuracy Bulletin board: 0.0 - Val Accuracy Shower: nan - Val Accuracy Radiator: nan - Val Accuracy Glass: 0.0 - Val Accuracy Clock: nan - Val Accuracy Flag: nan - Val Iou Wall: 0.0 - Val Iou Building: 0.0139 - Val Iou Sky: 0.0 - Val Iou Floor: 0.0 - Val Iou Tree: 0.0005 - Val Iou Ceiling: 0.0 - Val Iou Road: 0.0056 - Val Iou Bed : 0.0 - Val Iou Windowpane: 0.0 - Val Iou Grass: 0.0 - Val Iou Cabinet: 0.0 - Val Iou Sidewalk: 0.0 - Val Iou Person: 0.0 - Val Iou Earth: 0.0 - Val Iou Door: 0.0092 - Val Iou Table: 0.0 - Val Iou Mountain: 0.0 - Val Iou Plant: 0.0 - Val Iou Curtain: 0.0 - Val Iou Chair: 0.0 - Val Iou Car: 0.0 - Val Iou Water: 0.0 - Val Iou Painting: 0.0 - Val Iou Sofa: 0.0 - Val Iou Shelf: 0.0 - Val Iou House: 0.0 - Val Iou Sea: 0.0062 - Val Iou Mirror: 0.0 - Val Iou Rug: 0.0 - Val Iou Field: 0.0 - Val Iou Armchair: 0.0 - Val Iou Seat: 0.0 - Val Iou Fence: 0.0 - Val Iou Desk: 0.0 - Val Iou Rock: 0.0 - Val Iou Wardrobe: 0.0 - Val Iou Lamp: 0.0 - Val Iou Bathtub: 0.0 - Val Iou Railing: 0.0 - Val Iou Cushion: nan - Val Iou Base: 0.0 - Val Iou Box: nan - Val Iou Column: 0.0 - Val Iou Signboard: 0.0 - Val Iou Chest of drawers: 0.0 - Val Iou Counter: 0.0 - Val Iou Sand: 0.0 - Val Iou Sink: 0.0 - Val Iou Skyscraper: nan - Val Iou Fireplace: 0.0 - Val Iou Refrigerator: 0.0 - Val Iou Grandstand: 0.0 - Val Iou Path: 0.0 - Val Iou Stairs: 0.0 - Val Iou Runway: nan - Val Iou Case: 0.0 - Val Iou Pool table: 0.0 - Val Iou Pillow: nan - Val Iou Screen door: nan - Val Iou Stairway: nan - Val Iou River: 0.0 - Val Iou Bridge: 0.0 - Val Iou Bookcase: nan - Val Iou Blind: 0.0 - Val Iou Coffee table: 0.0 - Val Iou Toilet: nan - Val Iou Flower: 0.0 - Val Iou Book: 0.0 - Val Iou Hill: 0.0 - Val Iou Bench: nan - Val Iou Countertop: 0.0 - Val Iou Stove: 0.0 - Val Iou Palm: 0.0 - Val Iou Kitchen island: 0.0 - Val Iou Computer: 0.0 - Val Iou Swivel chair: 0.0 - Val Iou Boat: 0.0 - Val Iou Bar: 0.0 - Val Iou Arcade machine: 0.0 - Val Iou Hovel: 0.0 - Val Iou Bus: 0.0 - Val Iou Towel: 0.0 - Val Iou Light: 0.0 - Val Iou Truck: nan - Val Iou Tower: 0.0 - Val Iou Chandelier: nan - Val Iou Awning: 0.0 - Val Iou Streetlight: 0.0 - Val Iou Booth: nan - Val Iou Television receiver: 0.0 - Val Iou Airplane: 0.0 - Val Iou Dirt track: 0.0 - Val Iou Apparel: 0.0 - Val Iou Pole: 0.0 - Val Iou Land: 0.0 - Val Iou Bannister: nan - Val Iou Escalator: 0.0 - Val Iou Ottoman: 0.0 - Val Iou Bottle: 0.0 - Val Iou Buffet: 0.0 - Val Iou Poster: 0.0 - Val Iou Stage: 0.0 - Val Iou Van: 0.0 - Val Iou Ship: nan - Val Iou Fountain: nan - Val Iou Conveyer belt: 0.0 - Val Iou Canopy: 0.0 - Val Iou Washer: 0.0 - Val Iou Plaything: 0.0 - Val Iou Swimming pool: 0.0 - Val Iou Stool: 0.0 - Val Iou Barrel: 0.0 - Val Iou Basket: nan - Val Iou Waterfall: 0.0 - Val Iou Tent: 0.0 - Val Iou Bag: 0.0 - Val Iou Minibike: 0.0 - Val Iou Cradle: 0.0 - Val Iou Oven: 0.0 - Val Iou Ball: 0.0 - Val Iou Food: 0.0 - Val Iou Step: 0.0 - Val Iou Tank: 0.0 - Val Iou Trade name: 0.0 - Val Iou Microwave: 0.0 - Val Iou Pot: nan - Val Iou Animal: 0.0 - Val Iou Bicycle: 0.0 - Val Iou Lake: 0.0 - Val Iou Dishwasher: 0.0 - Val Iou Screen: 0.0 - Val Iou Blanket: 0.0 - Val Iou Sculpture: 0.0 - Val Iou Hood: 0.0 - Val Iou Sconce: nan - Val Iou Vase: nan - Val Iou Traffic light: 0.0 - Val Iou Tray: 0.0 - Val Iou Ashcan: 0.0 - Val Iou Fan: 0.0 - Val Iou Pier: 0.0 - Val Iou Crt screen: 0.0 - Val Iou Plate: 0.0 - Val Iou Monitor: 0.0 - Val Iou Bulletin board: 0.0 - Val Iou Shower: nan - Val Iou Radiator: 0.0 - Val Iou Glass: 0.0 - Val Iou Clock: 0.0 - Val Iou Flag: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Val Mean Iou | Val Mean Accuracy | Val Overall Accuracy | Val Accuracy Wall | Val Accuracy Building | Val Accuracy Sky | Val Accuracy Floor | Val Accuracy Tree | Val Accuracy Ceiling | Val Accuracy Road | Val Accuracy Bed | Val Accuracy Windowpane | Val Accuracy Grass | Val Accuracy Cabinet | Val Accuracy Sidewalk | Val Accuracy Person | Val Accuracy Earth | Val Accuracy Door | Val Accuracy Table | Val Accuracy Mountain | Val Accuracy Plant | Val Accuracy Curtain | Val Accuracy Chair | Val Accuracy Car | Val Accuracy Water | Val Accuracy Painting | Val Accuracy Sofa | Val Accuracy Shelf | Val Accuracy House | Val Accuracy Sea | Val Accuracy Mirror | Val Accuracy Rug | Val Accuracy Field | Val Accuracy Armchair | Val Accuracy Seat | Val Accuracy Fence | Val Accuracy Desk | Val Accuracy Rock | Val Accuracy Wardrobe | Val Accuracy Lamp | Val Accuracy Bathtub | Val Accuracy Railing | Val Accuracy Cushion | Val Accuracy Base | Val Accuracy Box | Val Accuracy Column | Val Accuracy Signboard | Val Accuracy Chest of drawers | Val Accuracy Counter | Val Accuracy Sand | Val Accuracy Sink | Val Accuracy Skyscraper | Val Accuracy Fireplace | Val Accuracy Refrigerator | Val Accuracy Grandstand | Val Accuracy Path | Val Accuracy Stairs | Val Accuracy Runway | Val Accuracy Case | Val Accuracy Pool table | Val Accuracy Pillow | Val Accuracy Screen door | Val Accuracy Stairway | Val Accuracy River | Val Accuracy Bridge | Val Accuracy Bookcase | Val Accuracy Blind | Val Accuracy Coffee table | Val Accuracy Toilet | Val Accuracy Flower | Val Accuracy Book | Val Accuracy Hill | Val Accuracy Bench | Val Accuracy Countertop | Val Accuracy Stove | Val Accuracy Palm | Val Accuracy Kitchen island | Val Accuracy Computer | Val Accuracy Swivel chair | Val Accuracy Boat | Val Accuracy Bar | Val Accuracy Arcade machine | Val Accuracy Hovel | Val Accuracy Bus | Val Accuracy Towel | Val Accuracy Light | Val Accuracy Truck | Val Accuracy Tower | Val Accuracy Chandelier | Val Accuracy Awning | Val Accuracy Streetlight | Val Accuracy Booth | Val Accuracy Television receiver | Val Accuracy Airplane | Val Accuracy Dirt track | Val Accuracy Apparel | Val Accuracy Pole | Val Accuracy Land | Val Accuracy Bannister | Val Accuracy Escalator | Val Accuracy Ottoman | Val Accuracy Bottle | Val Accuracy Buffet | Val Accuracy Poster | Val Accuracy Stage | Val Accuracy Van | Val Accuracy Ship | Val Accuracy Fountain | Val Accuracy Conveyer belt | Val Accuracy Canopy | Val Accuracy Washer | Val Accuracy Plaything | Val Accuracy Swimming pool | Val Accuracy Stool | Val Accuracy Barrel | Val Accuracy Basket | Val Accuracy Waterfall | Val Accuracy Tent | Val Accuracy Bag | Val Accuracy Minibike | Val Accuracy Cradle | Val Accuracy Oven | Val Accuracy Ball | Val Accuracy Food | Val Accuracy Step | Val Accuracy Tank | Val Accuracy Trade name | Val Accuracy Microwave | Val Accuracy Pot | Val Accuracy Animal | Val Accuracy Bicycle | Val Accuracy Lake | Val Accuracy Dishwasher | Val Accuracy Screen | Val Accuracy Blanket | Val Accuracy Sculpture | Val Accuracy Hood | Val Accuracy Sconce | Val Accuracy Vase | Val Accuracy Traffic light | Val Accuracy Tray | Val Accuracy Ashcan | Val Accuracy Fan | Val Accuracy Pier | Val Accuracy Crt screen | Val Accuracy Plate | Val Accuracy Monitor | Val Accuracy Bulletin board | Val Accuracy Shower | Val Accuracy Radiator | Val Accuracy Glass | Val Accuracy Clock | Val Accuracy Flag | Val Iou Wall | Val Iou Building | Val Iou Sky | Val Iou Floor | Val Iou Tree | Val Iou Ceiling | Val Iou Road | Val Iou Bed | Val Iou Windowpane | Val Iou Grass | Val Iou Cabinet | Val Iou Sidewalk | Val Iou Person | Val Iou Earth | Val Iou Door | Val Iou Table | Val Iou Mountain | Val Iou Plant | Val Iou Curtain | Val Iou Chair | Val Iou Car | Val Iou Water | Val Iou Painting | Val Iou Sofa | Val Iou Shelf | Val Iou House | Val Iou Sea | Val Iou Mirror | Val Iou Rug | Val Iou Field | Val Iou Armchair | Val Iou Seat | Val Iou Fence | Val Iou Desk | Val Iou Rock | Val Iou Wardrobe | Val Iou Lamp | Val Iou Bathtub | Val Iou Railing | Val Iou Cushion | Val Iou Base | Val Iou Box | Val Iou Column | Val Iou Signboard | Val Iou Chest of drawers | Val Iou Counter | Val Iou Sand | Val Iou Sink | Val Iou Skyscraper | Val Iou Fireplace | Val Iou Refrigerator | Val Iou Grandstand | Val Iou Path | Val Iou Stairs | Val Iou Runway | Val Iou Case | Val Iou Pool table | Val Iou Pillow | Val Iou Screen door | Val Iou Stairway | Val Iou River | Val Iou Bridge | Val Iou Bookcase | Val Iou Blind | Val Iou Coffee table | Val Iou Toilet | Val Iou Flower | Val Iou Book | Val Iou Hill | Val Iou Bench | Val Iou Countertop | Val Iou Stove | Val Iou Palm | Val Iou Kitchen island | Val Iou Computer | Val Iou Swivel chair | Val Iou Boat | Val Iou Bar | Val Iou Arcade machine | Val Iou Hovel | Val Iou Bus | Val Iou Towel | Val Iou Light | Val Iou Truck | Val Iou Tower | Val Iou Chandelier | Val Iou Awning | Val Iou Streetlight | Val Iou Booth | Val Iou Television receiver | Val Iou Airplane | Val Iou Dirt track | Val Iou Apparel | Val Iou Pole | Val Iou Land | Val Iou Bannister | Val Iou Escalator | Val Iou Ottoman | Val Iou Bottle | Val Iou Buffet | Val Iou Poster | Val Iou Stage | Val Iou Van | Val Iou Ship | Val Iou Fountain | Val Iou Conveyer belt | Val Iou Canopy | Val Iou Washer | Val Iou Plaything | Val Iou Swimming pool | Val Iou Stool | Val Iou Barrel | Val Iou Basket | Val Iou Waterfall | Val Iou Tent | Val Iou Bag | Val Iou Minibike | Val Iou Cradle | Val Iou Oven | Val Iou Ball | Val Iou Food | Val Iou Step | Val Iou Tank | Val Iou Trade name | Val Iou Microwave | Val Iou Pot | Val Iou Animal | Val Iou Bicycle | Val Iou Lake | Val Iou Dishwasher | Val Iou Screen | Val Iou Blanket | Val Iou Sculpture | Val Iou Hood | Val Iou Sconce | Val Iou Vase | Val Iou Traffic light | Val Iou Tray | Val Iou Ashcan | Val Iou Fan | Val Iou Pier | Val Iou Crt screen | Val Iou Plate | Val Iou Monitor | Val Iou Bulletin board | Val Iou Shower | Val Iou Radiator | Val Iou Glass | Val Iou Clock | Val Iou Flag | |:-------------:|:-----:|:----:|:---------------:|:------------:|:-----------------:|:--------------------:|:-----------------:|:---------------------:|:----------------:|:------------------:|:-----------------:|:--------------------:|:-----------------:|:-----------------:|:-----------------------:|:------------------:|:--------------------:|:---------------------:|:-------------------:|:------------------:|:-----------------:|:------------------:|:---------------------:|:------------------:|:--------------------:|:------------------:|:----------------:|:------------------:|:---------------------:|:-----------------:|:------------------:|:------------------:|:----------------:|:-------------------:|:----------------:|:------------------:|:---------------------:|:-----------------:|:------------------:|:-----------------:|:-----------------:|:---------------------:|:-----------------:|:--------------------:|:--------------------:|:--------------------:|:-----------------:|:----------------:|:-------------------:|:----------------------:|:-----------------------------:|:--------------------:|:-----------------:|:-----------------:|:-----------------------:|:----------------------:|:-------------------------:|:-----------------------:|:-----------------:|:-------------------:|:-------------------:|:-----------------:|:-----------------------:|:-------------------:|:------------------------:|:---------------------:|:------------------:|:-------------------:|:---------------------:|:------------------:|:-------------------------:|:-------------------:|:-------------------:|:-----------------:|:-----------------:|:------------------:|:-----------------------:|:------------------:|:-----------------:|:---------------------------:|:---------------------:|:-------------------------:|:-----------------:|:----------------:|:---------------------------:|:------------------:|:----------------:|:------------------:|:------------------:|:------------------:|:------------------:|:-----------------------:|:-------------------:|:------------------------:|:------------------:|:--------------------------------:|:---------------------:|:-----------------------:|:--------------------:|:-----------------:|:-----------------:|:----------------------:|:----------------------:|:--------------------:|:-------------------:|:-------------------:|:-------------------:|:------------------:|:----------------:|:-----------------:|:---------------------:|:--------------------------:|:-------------------:|:-------------------:|:----------------------:|:--------------------------:|:------------------:|:-------------------:|:-------------------:|:----------------------:|:-----------------:|:----------------:|:---------------------:|:-------------------:|:-----------------:|:-----------------:|:-----------------:|:-----------------:|:-----------------:|:-----------------------:|:----------------------:|:----------------:|:-------------------:|:--------------------:|:-----------------:|:-----------------------:|:-------------------:|:--------------------:|:----------------------:|:-----------------:|:-------------------:|:-----------------:|:--------------------------:|:-----------------:|:-------------------:|:----------------:|:-----------------:|:-----------------------:|:------------------:|:--------------------:|:---------------------------:|:-------------------:|:---------------------:|:------------------:|:------------------:|:-----------------:|:------------:|:----------------:|:-----------:|:-------------:|:------------:|:---------------:|:------------:|:------------:|:------------------:|:-------------:|:---------------:|:----------------:|:--------------:|:-------------:|:------------:|:-------------:|:----------------:|:-------------:|:---------------:|:-------------:|:-----------:|:-------------:|:----------------:|:------------:|:-------------:|:-------------:|:-----------:|:--------------:|:-----------:|:-------------:|:----------------:|:------------:|:-------------:|:------------:|:------------:|:----------------:|:------------:|:---------------:|:---------------:|:---------------:|:------------:|:-----------:|:--------------:|:-----------------:|:------------------------:|:---------------:|:------------:|:------------:|:------------------:|:-----------------:|:--------------------:|:------------------:|:------------:|:--------------:|:--------------:|:------------:|:------------------:|:--------------:|:-------------------:|:----------------:|:-------------:|:--------------:|:----------------:|:-------------:|:--------------------:|:--------------:|:--------------:|:------------:|:------------:|:-------------:|:------------------:|:-------------:|:------------:|:----------------------:|:----------------:|:--------------------:|:------------:|:-----------:|:----------------------:|:-------------:|:-----------:|:-------------:|:-------------:|:-------------:|:-------------:|:------------------:|:--------------:|:-------------------:|:-------------:|:---------------------------:|:----------------:|:------------------:|:---------------:|:------------:|:------------:|:-----------------:|:-----------------:|:---------------:|:--------------:|:--------------:|:--------------:|:-------------:|:-----------:|:------------:|:----------------:|:---------------------:|:--------------:|:--------------:|:-----------------:|:---------------------:|:-------------:|:--------------:|:--------------:|:-----------------:|:------------:|:-----------:|:----------------:|:--------------:|:------------:|:------------:|:------------:|:------------:|:------------:|:------------------:|:-----------------:|:-----------:|:--------------:|:---------------:|:------------:|:------------------:|:--------------:|:---------------:|:-----------------:|:------------:|:--------------:|:------------:|:---------------------:|:------------:|:--------------:|:-----------:|:------------:|:------------------:|:-------------:|:---------------:|:----------------------:|:--------------:|:----------------:|:-------------:|:-------------:|:------------:| | 4.9208 | 0.05 | 1 | 5.0062 | 0.0007 | 0.0085 | 0.0078 | 0.0 | 0.0201 | 0.0 | 0.0 | 0.0216 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2687 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0043 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0545 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0116 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0179 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | 0.0176 | 0.0 | 0.0 | 0.0147 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0139 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0021 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0291 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0116 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0010 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5.0644 | 0.1 | 2 | 5.0034 | 0.0007 | 0.0079 | 0.0071 | 0.0 | 0.0177 | 0.0 | 0.0 | 0.0211 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2570 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0037 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0527 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0147 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0048 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | 0.0153 | 0.0 | 0.0 | 0.0145 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0132 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0017 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0273 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0147 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0003 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 4.9901 | 0.15 | 3 | 5.0006 | 0.0007 | 0.0082 | 0.0094 | 0.0 | 0.0260 | 0.0 | 0.0 | 0.0246 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2726 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0039 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0413 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0174 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | 0.0216 | 0.0 | 0.0 | 0.0149 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0112 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0017 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0230 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0173 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | | 4.9798 | 0.2 | 4 | 4.9966 | 0.0006 | 0.0077 | 0.0087 | 0.0 | 0.0266 | 0.0 | 0.0 | 0.0134 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2787 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0028 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0213 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0204 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | 0.0219 | 0.0 | 0.0 | 0.0079 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0100 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0011 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0117 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0203 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | | 5.0503 | 0.25 | 5 | 4.9920 | 0.0005 | 0.0077 | 0.0089 | 0.0 | 0.0285 | 0.0 | 0.0 | 0.0095 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2848 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0045 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0161 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0205 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | 0.0232 | 0.0 | 0.0 | 0.0058 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0097 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0017 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0088 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0203 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | | 5.0222 | 0.3 | 6 | 4.9878 | 0.0005 | 0.0077 | 0.0097 | 0.0 | 0.0309 | 0.0 | 0.0 | 0.0133 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2777 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0050 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0143 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0193 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | 0.0247 | 0.0 | 0.0 | 0.0068 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0092 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0018 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0073 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0190 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | | 5.0874 | 0.35 | 7 | 4.9839 | 0.0004 | 0.0074 | 0.0070 | 0.0 | 0.0216 | 0.0 | 0.0 | 0.0097 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2805 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0089 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0123 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0127 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | 0.0175 | 0.0 | 0.0 | 0.0055 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0091 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0033 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0056 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0126 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 4.9531 | 0.4 | 8 | 4.9800 | 0.0003 | 0.0072 | 0.0046 | 0.0 | 0.0126 | 0.0 | 0.0 | 0.0079 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2883 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0099 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0080 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0103 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | 0.0103 | 0.0 | 0.0 | 0.0044 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0084 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0034 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0035 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0101 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 5.0026 | 0.45 | 9 | 4.9748 | 0.0002 | 0.0071 | 0.0041 | 0.0 | 0.0118 | 0.0 | 0.0 | 0.0040 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2953 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0103 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0021 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0083 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | 0.0096 | 0.0 | 0.0 | 0.0025 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0069 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0036 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0011 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0081 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 4.9037 | 0.5 | 10 | 4.9687 | 0.0002 | 0.0073 | 0.0048 | 0.0 | 0.0148 | 0.0 | 0.0 | 0.0027 | 0.0 | 0.0001 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3047 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0121 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0083 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | 0.0114 | 0.0 | 0.0 | 0.0018 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0073 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0037 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0081 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | | 4.903 | 0.55 | 11 | 4.9622 | 0.0003 | 0.0077 | 0.0058 | 0.0 | 0.0190 | 0.0 | 0.0 | 0.0007 | 0.0 | 0.0003 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3127 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0113 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0085 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0078 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | 0.0139 | 0.0 | 0.0 | 0.0005 | 0.0 | 0.0003 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0085 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0032 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0082 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0050 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | | 4.8401 | 0.6 | 12 | 4.9565 | 0.0003 | 0.0078 | 0.0056 | 0.0 | 0.0181 | 0.0 | 0.0 | 0.0003 | 0.0 | 0.0006 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3112 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0119 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0101 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0128 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | 0.0127 | 0.0 | 0.0 | 0.0003 | 0.0 | 0.0006 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0081 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0030 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0100 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0086 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 4.9037 | 0.65 | 13 | 4.9502 | 0.0004 | 0.0085 | 0.0056 | 0.0 | 0.0180 | 0.0 | 0.0 | 0.0002 | 0.0 | 0.0005 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3251 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0140 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0124 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0270 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | 0.0120 | 0.0 | 0.0 | 0.0002 | 0.0 | 0.0005 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0075 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0030 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0122 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0202 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | | 4.8857 | 0.7 | 14 | 4.9429 | 0.0004 | 0.0085 | 0.0056 | 0.0 | 0.0177 | 0.0 | 0.0 | 0.0002 | 0.0 | 0.0008 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3308 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0162 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 | 0.0000 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0140 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0215 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | 0.0113 | 0.0 | 0.0 | 0.0001 | 0.0 | 0.0008 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0075 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0033 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0139 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0181 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | | 4.9431 | 0.75 | 15 | 4.9370 | 0.0003 | 0.0080 | 0.0071 | 0.0 | 0.0236 | 0.0 | 0.0 | 0.0002 | 0.0 | 0.0015 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3197 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0164 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 | 0.0001 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0140 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | 0.0144 | 0.0 | 0.0 | 0.0001 | 0.0 | 0.0015 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0082 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0032 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0140 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | | 4.9442 | 0.8 | 16 | 4.9302 | 0.0003 | 0.0078 | 0.0069 | 0.0 | 0.0229 | 0.0 | 0.0 | 0.0001 | 0.0 | 0.0019 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3112 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0171 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 | 0.0000 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0123 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | 0.0137 | 0.0 | 0.0 | 0.0001 | 0.0 | 0.0019 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0078 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0030 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0123 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | | 4.9735 | 0.85 | 17 | 4.9233 | 0.0003 | 0.0077 | 0.0060 | 0.0001 | 0.0196 | 0.0 | 0.0 | 0.0000 | 0.0 | 0.0018 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3132 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0167 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0115 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0001 | 0.0116 | 0.0 | 0.0 | 0.0000 | 0.0 | 0.0018 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0071 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0030 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0114 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | | 4.941 | 0.9 | 18 | 4.9177 | 0.0003 | 0.0079 | 0.0068 | 0.0000 | 0.0223 | 0.0 | 0.0 | 0.0001 | 0.0 | 0.0023 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3201 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0161 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 | 0.0000 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0115 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0000 | 0.0127 | 0.0 | 0.0 | 0.0001 | 0.0 | 0.0023 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0071 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0027 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0115 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | | 4.8597 | 0.95 | 19 | 4.9097 | 0.0003 | 0.0077 | 0.0078 | 0.0000 | 0.0262 | 0.0 | 0.0 | 0.0001 | 0.0 | 0.0033 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3114 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0141 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0089 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0000 | 0.0147 | 0.0 | 0.0 | 0.0001 | 0.0 | 0.0032 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0072 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0023 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0088 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | | 4.7671 | 1.0 | 20 | 4.9025 | 0.0002 | 0.0075 | 0.0072 | 0.0 | 0.0240 | 0.0 | 0.0 | 0.0001 | 0.0 | 0.0036 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3073 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0119 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 | 0.0000 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0054 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | 0.0134 | 0.0 | 0.0 | 0.0000 | 0.0 | 0.0036 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0076 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0018 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0054 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | | 4.8754 | 1.05 | 21 | 4.8927 | 0.0003 | 0.0075 | 0.0099 | 0.0 | 0.0345 | 0.0 | 0.0 | 0.0002 | 0.0 | 0.0044 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3020 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0051 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 | 0.0000 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0058 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | 0.0185 | 0.0 | 0.0 | 0.0001 | 0.0 | 0.0043 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0081 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0009 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0058 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | | 4.8485 | 1.1 | 22 | 4.8853 | 0.0003 | 0.0072 | 0.0094 | 0.0 | 0.0323 | 0.0 | 0.0 | 0.0023 | 0.0 | 0.0050 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2929 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0033 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0005 | 0.0 | 0.0001 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0020 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | 0.0173 | 0.0 | 0.0 | 0.0014 | 0.0 | 0.0049 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0085 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0006 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0001 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0020 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | | 4.6071 | 1.15 | 23 | 4.8799 | 0.0002 | 0.0068 | 0.0063 | 0.0 | 0.0206 | 0.0 | 0.0 | 0.0009 | 0.0 | 0.0038 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2859 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0073 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0007 | 0.0 | 0.0000 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0001 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | 0.0117 | 0.0 | 0.0 | 0.0006 | 0.0 | 0.0037 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0088 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0010 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0002 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0000 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | | 4.8544 | 1.2 | 24 | 4.8689 | 0.0002 | 0.0068 | 0.0056 | 0.0 | 0.0181 | 0.0 | 0.0 | 0.0004 | 0.0 | 0.0038 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2892 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0076 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0010 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0008 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | 0.0102 | 0.0 | 0.0 | 0.0003 | 0.0 | 0.0037 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0080 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0010 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0003 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0000 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | | 4.7681 | 1.25 | 25 | 4.8573 | 0.0002 | 0.0069 | 0.0052 | 0.0001 | 0.0166 | 0.0 | 0.0 | 0.0000 | 0.0 | 0.0038 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2946 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0074 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0016 | 0.0 | 0.0000 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0008 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0000 | 0.0093 | 0.0 | 0.0 | 0.0000 | 0.0 | 0.0037 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0078 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0009 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0005 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0000 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | | 4.6494 | 1.3 | 26 | 4.8483 | 0.0002 | 0.0068 | 0.0053 | 0.0001 | 0.0167 | 0.0 | 0.0 | 0.0004 | 0.0 | 0.0039 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2903 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0056 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0039 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0008 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0000 | 0.0095 | 0.0 | 0.0 | 0.0003 | 0.0 | 0.0038 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0092 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0007 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0011 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0000 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | | 4.7587 | 1.35 | 27 | 4.8388 | 0.0002 | 0.0069 | 0.0047 | 0.0002 | 0.0142 | 0.0 | 0.0 | 0.0003 | 0.0 | 0.0040 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2931 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0035 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0087 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0010 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0001 | 0.0082 | 0.0 | 0.0 | 0.0002 | 0.0 | 0.0039 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0093 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0004 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0025 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0000 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | | 4.8163 | 1.4 | 28 | 4.8328 | 0.0002 | 0.0071 | 0.0058 | 0.0001 | 0.0183 | 0.0 | 0.0 | 0.0006 | 0.0 | 0.0039 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3003 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0014 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0097 | 0.0 | 0.0000 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0001 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0001 | 0.0102 | 0.0 | 0.0 | 0.0004 | 0.0 | 0.0038 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0094 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0029 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0000 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | | 4.6048 | 1.45 | 29 | 4.8216 | 0.0002 | 0.0073 | 0.0062 | 0.0003 | 0.0200 | 0.0 | 0.0 | 0.0002 | 0.0 | 0.0036 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3095 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0099 | 0.0 | 0.0002 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0002 | 0.0109 | 0.0 | 0.0 | 0.0001 | 0.0 | 0.0035 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0086 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0034 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | | 4.6236 | 1.5 | 30 | 4.8089 | 0.0002 | 0.0075 | 0.0069 | 0.0003 | 0.0223 | 0.0 | 0.0 | 0.0002 | 0.0 | 0.0043 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3142 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0112 | 0.0 | 0.0001 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0002 | 0.0120 | 0.0 | 0.0 | 0.0001 | 0.0 | 0.0041 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0085 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0039 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | | 4.754 | 1.55 | 31 | 4.7985 | 0.0003 | 0.0077 | 0.0087 | 0.0000 | 0.0293 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0053 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3140 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0143 | 0.0 | 0.0000 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0000 | 0.0153 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0051 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0085 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0052 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | | 4.9389 | 1.6 | 32 | 4.7882 | 0.0003 | 0.0079 | 0.0090 | 0.0 | 0.0302 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0057 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3184 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0181 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | 0.0157 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0055 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0088 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0059 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | | 4.7544 | 1.65 | 33 | 4.7749 | 0.0003 | 0.0081 | 0.0091 | 0.0 | 0.0306 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0054 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3334 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0128 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | 0.0157 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0052 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0083 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0055 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | | 4.7932 | 1.7 | 34 | 4.7645 | 0.0003 | 0.0083 | 0.0105 | 0.0 | 0.0361 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0056 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3358 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0113 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | 0.0180 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0054 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0081 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0054 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | | 4.7832 | 1.75 | 35 | 4.7566 | 0.0003 | 0.0080 | 0.0087 | 0.0 | 0.0293 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0056 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3271 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0127 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | 0.0151 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0054 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0082 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0058 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | | 4.6811 | 1.8 | 36 | 4.7474 | 0.0003 | 0.0080 | 0.0090 | 0.0 | 0.0305 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0053 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3262 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0135 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | 0.0155 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0051 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0084 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0065 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | | 4.8038 | 1.85 | 37 | 4.7411 | 0.0003 | 0.0075 | 0.0092 | 0.0 | 0.0312 | 0.0 | 0.0 | 0.0000 | 0.0 | 0.0059 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3049 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0120 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | 0.0159 | 0.0 | 0.0 | 0.0000 | 0.0 | 0.0057 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0100 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0059 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | | 4.7094 | 1.9 | 38 | 4.7365 | 0.0003 | 0.0076 | 0.0082 | 0.0 | 0.0272 | 0.0 | 0.0 | 0.0000 | 0.0 | 0.0062 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3101 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0114 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | 0.0141 | 0.0 | 0.0 | 0.0000 | 0.0 | 0.0059 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0092 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0062 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | | 4.6724 | 1.95 | 39 | 4.7280 | 0.0003 | 0.0075 | 0.0079 | 0.0 | 0.0262 | 0.0 | 0.0 | 0.0005 | 0.0 | 0.0060 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3084 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0110 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | 0.0137 | 0.0 | 0.0 | 0.0004 | 0.0 | 0.0056 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0094 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0064 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | | 4.7246 | 2.0 | 40 | 4.7207 | 0.0003 | 0.0075 | 0.0081 | 0.0 | 0.0267 | 0.0 | 0.0 | 0.0007 | 0.0 | 0.0058 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3095 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0110 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | 0.0139 | 0.0 | 0.0 | 0.0005 | 0.0 | 0.0056 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0092 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0062 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
Severian/ANIMA-Phi-Neptune-Mistral-7B-AWQ
Severian
2023-10-13T11:40:09Z
15
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "chemistry", "biology", "climate", "science", "philosophy", "nature", "ecology", "biomimicry", "fauna", "flora", "dataset:Severian/Biomimicry", "dataset:emrgnt-cmplxty/sciphi-textbooks-are-all-you-need", "dataset:fmars/wiki_stem", "dataset:fblgit/tree-of-knowledge", "dataset:Severian/Bio-Design-Process", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-10-13T11:29:31Z
--- license: mit datasets: - Severian/Biomimicry - emrgnt-cmplxty/sciphi-textbooks-are-all-you-need - fmars/wiki_stem - fblgit/tree-of-knowledge - Severian/Bio-Design-Process tags: - chemistry - biology - climate - science - philosophy - nature - ecology - biomimicry - fauna - flora pipeline_tag: text-generation --- # ANIMA-Phi-Neptune-Mistral-7B: Biomimicry Enhanced LLM <img src="https://cdn-uploads.huggingface.co/production/uploads/64740cf7485a7c8e1bd51ac9/JZH6p50t_j3-OUph4Wq6y.png" width="500"> ## Overview **ANIMA** (Advanced Nature Inspired Multidisciplinary Assistant) is an expert in various scientific disciplines, including but not limited to biomimicry, biology, and environmental science. --- ## Model Description ANIMA is fine-tuned on a rich dataset encompassing: - 4,000+ Nature-Biomimicry examples - 60k Biomimicry Design Process examples - 600k STEM facts from Wikipedia - Science/Philosophy focused 'All-You-Need-Is-Textbooks' dataset - Additional Tree of Knowledge + Biomimicry data combined fine-tuning The model aims to assist users in solving problems using nature-inspired strategies and concepts. ### Special Features - **Multi-disciplinary Expertise**: Knowledge across various scientific and philosophical domains. - **Biomimicry Design Process**: Incorporates a dataset generated by Mistral and Minotaur-15B. The dataset was then intricately processed by a real person to ensure factuality and grounding. --- - Here is a link to The Bloke's GGUF version: [ANIMA-Phi-Neptune-Mistral-7B-GGUF](https://huggingface.co/TheBloke/ANIMA-Phi-Neptune-Mistral-7B-GGUF) - ANIMA is also available using Ollama - Download the App [OLLAMA](https://ollama.ai/) and then run this command in your Terminal 'ollama pull severian/anima' ## Datasets - `Severian/Biomimicry` (1st Fine-Tune) - `emrgnt-cmplxty/sciphi-textbooks-are-all-you-need` (2nd Fine-Tune) - `Severian/Bio-Design-Process` & `fmars/wiki_stem` (3rd Fine-Tune) - `fblgit/tree-of-knowledge & `Severian/Biomimicry` (4th Fine-Tune) - Combined all previous datasets into one giant dataset for a quick fine-tuning for a total of 730k data points (5th Fine-Tune) ## Training Stages 1. **Base Model**: `ehartford/dolphin-2.0-mistral-7b` 2. **1st Fine-Tune**: `ANIMA-Echo-Mistral-7B-v1` - 1 Epoch x 5hrs on 1 x T4 Small 3. **2nd Fine-Tune**: `ANIMA-Phi-Neptune-Mistral-v1`-: 1 Epoch x 1hr on 1 x A100 4. **3rd Fine-Tune**: `ANIMA-Phi-Neptune-Mistral-7B-v2` - 1 Epoch x 1hr on 1 x A100 5. **4th Fine-Tune**: 'ANIMA-Phi-Neptune-Mistral-7B-v3' - 1 Epoch x 1hr on 1 x A100 6. **5th Fine-Tune**: 'ANIMA-Phi-Neptune-Mistral-7B-v4' - 1 Epoch x 15mins on 1 x A100 --- ## 📝 Usage ANIMA is designed around the Biomimicry Design Process to guide users in solving problems through biomimicry. For more information and examples, please visit [Biomimicry Design Process](https://toolbox.biomimicry.org/methods/process/). ## 🏁 Benchmarks - Average - 62.22 - ARC - 56.83 - HellaSwag - 78.82 - MMLU - 53.84 - TruthfulQA - 59.40 --- - **EXAMPLE OUTPUT** [INST] How can biomimicry help in water purification? [/INST] Biomimicry involves taking inspiration from natural processes and organisms to solve human problems. In the context of water purification, biomimicry can help develop sustainable and efficient methods for cleaning water. One specific example of a nature-inspired strategy to solve this problem is the use of biofiltration, which involves using microorganisms to remove pollutants from water. Biofiltration has been successfully applied to the removal of various contaminants, including heavy metals, organic pollutants, and pathogens. For example, a study by Zhang et al. (2011) demonstrated that a mixed culture of Pseudomonas putida and Bacillus subtilis could effectively remove lead and cadmium from contaminated water. The researchers found that the biofilm formed by the mixed culture had a higher removal efficiency than that formed by either species alone. This study highlights the potential of biofiltration to remove heavy metal contaminants from water, which can have significant environmental and health benefits. In summary, biomimicry can help in water purification by providing insights into natural processes and organisms that can inspire the development of sustainable and efficient methods for cleaning water. The use of biofiltration, for example, can help remove contaminants from water through the action of microorganisms. Further research and development are needed to fully realize the potential of biomimicry in water purification and other environmental applications. --- - **SYSTEM MESSAGE** To ensure the best results for harnessing the unique training and biomimicry focus use this system message: " Your name is ANIMA, an Advanced Nature Inspired Multidisciplinary Assistant, and a leading expert in biomimicry, biology, engineering, industrial design, environmental science, physiology, and paleontology. You were instructed to understand, learn from, and emulate the strategies used by living things to help users create sustainable designs and technologies. Your goal is to help the user work in a step-by-step way through the Biomimicry Design Process to propose biomimetic solutions to a challenge. Nature's Unifying Patterns: Nature uses only the energy it needs and relies on freely available energy. Nature recycles all materials. Nature is resilient to disturbances. Nature tends to optimize rather than maximize. Nature provides mutual benefits. Nature runs on information. Nature uses chemistry and materials that are safe for living beings. Nature builds using abundant resources, incorporating rare resources only sparingly. Nature is locally attuned and responsive. Nature uses shape to determine functionality. " --- ## 📜 License This project is licensed under MIT
salohiddin94/dqn-SpaceInvadersNoFrameskip-v4
salohiddin94
2023-10-13T11:38:26Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-10-13T11:37:59Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 329.00 +/- 157.97 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga salohiddin94 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga salohiddin94 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga salohiddin94 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 100000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
Shriekant/mistral-finetuned-samsum
Shriekant
2023-10-13T11:32:23Z
0
0
null
[ "generated_from_trainer", "base_model:TheBloke/Mistral-7B-Instruct-v0.1-GPTQ", "base_model:finetune:TheBloke/Mistral-7B-Instruct-v0.1-GPTQ", "license:apache-2.0", "region:us" ]
null
2023-10-13T09:45:53Z
--- license: apache-2.0 base_model: TheBloke/Mistral-7B-Instruct-v0.1-GPTQ tags: - generated_from_trainer model-index: - name: mistral-finetuned-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistral-finetuned-samsum This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.1-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GPTQ) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 250 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
chaanks/unit-hifigan-hubert-en-l6_k100
chaanks
2023-10-13T11:27:26Z
4
0
speechbrain
[ "speechbrain", "Vocoder", "HiFIGAN", "speech-synthesis", "en", "dataset:LJSpeech", "arxiv:2104.00355", "license:apache-2.0", "region:us" ]
null
2023-08-02T15:03:11Z
--- language: "en" inference: false tags: - Vocoder - HiFIGAN - speech-synthesis - speechbrain license: "apache-2.0" datasets: - LJSpeech --- <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe> <br/><br/> # Vocoder with HiFIGAN Unit trained on LJSpeech This repository provides all the necessary tools for using a [HiFiGAN Unit](https://arxiv.org/abs/2104.00355) vocoder trained with [LJSpeech](https://keithito.com/LJ-Speech-Dataset/). The pre-trained model take as input discrete self-supervised representations and produces a waveform as output. Typically, this model is utilized on top of a speech-to-unit translation model that converts an input utterance from a source language into a sequence of discrete speech units in a target language. To generate the discrete self-supervised representations, we employ a K-means clustering model trained on the 6th layer of HuBERT, with `k=100`. ## Install SpeechBrain First of all, please install tranformers and SpeechBrain with the following command: ``` pip install speechbrain transformers==4.28.0 ``` Please notice that we encourage you to read our tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). ### Transcribing your own audio files ```python from speechbrain.pretrained import UnitHIFIGAN hifi_gan_unit = UnitHIFIGAN.from_hparams(source="speechbrain/hifigan-unit-hubert-l6-k100-ljspeech") codes = torch.randint(0, 99, (100,)) waveform = hifi_gan.decode_unit(codes) ``` ### Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. ### Limitations The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets. #### Referencing SpeechBrain ``` @misc{SB2021, author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua }, title = {SpeechBrain}, year = {2021}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\\\\url{https://github.com/speechbrain/speechbrain}}, } ``` #### About SpeechBrain SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains. Website: https://speechbrain.github.io/ GitHub: https://github.com/speechbrain/speechbrain
sivan22/shulchan-aruch-classifier
sivan22
2023-10-13T11:19:56Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:dicta-il/BEREL_2.0", "base_model:finetune:dicta-il/BEREL_2.0", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-11T21:04:11Z
--- license: apache-2.0 base_model: dicta-il/BEREL_2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: shulchan_aruch_classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [dicta-il/BEREL_2.0](https://huggingface.co/dicta-il/BEREL_2.0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1927 - Accuracy: 0.9507 ## Model description מודל זה מקבל כל משפט ומסווג אותו לאחת הקטגוריות הבאות: אורח חיים, חושן משפט או יורה דעה. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2694 | 1.0 | 537 | 0.1761 | 0.9409 | | 0.0922 | 2.0 | 1074 | 0.1927 | 0.9507 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
nulltella/phi-1_5-finetuned-model-classification
nulltella
2023-10-13T11:17:01Z
0
0
null
[ "generated_from_trainer", "base_model:microsoft/phi-1_5", "base_model:finetune:microsoft/phi-1_5", "license:other", "region:us" ]
null
2023-10-13T08:56:43Z
--- license: other base_model: microsoft/phi-1_5 tags: - generated_from_trainer model-index: - name: phi-1_5-finetuned-model-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # phi-1_5-finetuned-model-classification This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.4343 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.6171 | 4.0 | 250 | 2.7650 | | 2.3312 | 8.0 | 500 | 2.7894 | | 1.9386 | 12.0 | 750 | 2.9510 | | 1.4978 | 16.0 | 1000 | 3.2375 | | 1.0947 | 20.0 | 1250 | 3.7212 | | 0.8685 | 24.0 | 1500 | 4.1141 | | 0.7308 | 28.0 | 1750 | 4.3801 | | 0.6995 | 32.0 | 2000 | 4.4343 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
Suganyak/finetune
Suganyak
2023-10-13T11:16:32Z
4
0
peft
[ "peft", "pytorch", "llama", "arxiv:1910.09700", "base_model:NousResearch/Nous-Hermes-llama-2-7b", "base_model:adapter:NousResearch/Nous-Hermes-llama-2-7b", "region:us" ]
null
2023-10-11T06:00:15Z
--- library_name: peft base_model: NousResearch/Nous-Hermes-llama-2-7b --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
jake-walker/Reinforce-CartPole-v1
jake-walker
2023-10-13T11:10:54Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-10-13T10:31:26Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
MakAttack/BunnyAdnBinnyDogONRACEGOLDEN
MakAttack
2023-10-13T11:08:54Z
3
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-10-13T10:30:36Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of sks Golden Retriever dog tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - MakAttack/BunnyAdnBinnyDogONRACEGOLDEN These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of sks Golden Retriever dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
randomshit11/FIN-BERT-annual-report
randomshit11
2023-10-13T11:05:38Z
10
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "summarization", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2023-10-12T16:39:47Z
--- license: apache-2.0 language: - en metrics: - rouge - accuracy pipeline_tag: summarization ---
TheAIchemist13/kannada_beekeeping_wav2vec2
TheAIchemist13
2023-10-13T11:02:20Z
4,236
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:Harveenchadha/vakyansh-wav2vec2-kannada-knm-560", "base_model:finetune:Harveenchadha/vakyansh-wav2vec2-kannada-knm-560", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-10-13T05:00:25Z
--- base_model: Harveenchadha/vakyansh-wav2vec2-kannada-knm-560 tags: - generated_from_trainer metrics: - wer model-index: - name: kannada_beekeeping_wav2vec2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kannada_beekeeping_wav2vec2 This model is a fine-tuned version of [Harveenchadha/vakyansh-wav2vec2-kannada-knm-560](https://huggingface.co/Harveenchadha/vakyansh-wav2vec2-kannada-knm-560) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5026 - Wer: 0.3540 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 10.7351 | 1.21 | 35 | 1.7314 | 0.7609 | | 1.3444 | 2.41 | 70 | 0.7849 | 0.4993 | | 0.8992 | 3.62 | 105 | 0.6112 | 0.3857 | | 0.6347 | 4.83 | 140 | 0.5026 | 0.3540 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
MilanBandara/test_fasttext
MilanBandara
2023-10-13T10:57:46Z
1
0
fasttext
[ "fasttext", "feature-extraction", "region:us" ]
feature-extraction
2023-10-13T05:02:12Z
--- tags: - feature-extraction widget: - text: apple example_title: apple - text: cat example_title: cat - text: sunny example_title: sunny - text: water example_title: water library_name: fasttext ---
nadiamaqbool81/codet5-large-hf
nadiamaqbool81
2023-10-13T10:53:31Z
4
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "dataset:nadiamaqbool81/java_code_instructions_1.178k_alpaca", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-09T19:39:42Z
--- datasets: - nadiamaqbool81/java_code_instructions_1.178k_alpaca metrics: - bleu ---
Tommert25/robbert_1210seed24
Tommert25
2023-10-13T10:47:43Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "generated_from_trainer", "base_model:Tommert25/robbert_1210seed24", "base_model:finetune:Tommert25/robbert_1210seed24", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-10-12T11:01:33Z
--- license: mit base_model: Tommert25/robbert_1210seed24 tags: - generated_from_trainer model-index: - name: robbert_1210seed24 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # robbert_1210seed24 This model is a fine-tuned version of [Tommert25/robbert_1210seed24](https://huggingface.co/Tommert25/robbert_1210seed24) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.3768 - eval_precisions: 0.8480 - eval_recall: 0.8144 - eval_f-measure: 0.8283 - eval_accuracy: 0.9436 - eval_runtime: 9.7846 - eval_samples_per_second: 82.477 - eval_steps_per_second: 5.212 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 14 ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
shauray/Llava-v1.5-7B-hf
shauray
2023-10-13T10:46:25Z
23
2
transformers
[ "transformers", "pytorch", "llava", "text-generation", "LLaMA ", "MultiModal", "en", "autotrain_compatible", "region:us" ]
text-generation
2023-10-07T09:30:06Z
--- inference: false language: - en tags: - 'LLaMA ' - MultiModal --- *This is a Hugging Face friendly Model, the original can be found at https://huggingface.co/liuhaotian/llava-llama-2-7b-chat-lightning-lora-preview* <br> # LLaVA Model Card ## Model details **Model type:** LLaVA is an open-source chatbot trained by fine-tuning LLaMA/Vicuna on GPT-generated multimodal instruction-following data. It is an auto-regressive language model, based on the transformer architecture. **Model date:** LLaVA-v1.5-7B was trained in September 2023. **Paper or resources for more information:** https://llava-vl.github.io/ ## License Llama 2 is licensed under the LLAMA 2 Community License, Copyright (c) Meta Platforms, Inc. All Rights Reserved. **Where to send questions or comments about the model:** https://github.com/haotian-liu/LLaVA/issues ## Intended use **Primary intended uses:** The primary use of LLaVA is research on large multimodal models and chatbots. **Primary intended users:** The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence. ## Training dataset - 558K filtered image-text pairs from LAION/CC/SBU, captioned by BLIP. - 158K GPT-generated multimodal instruction-following data. - 450K academic-task-oriented VQA data mixture. - 40K ShareGPT data. ## Evaluation dataset A collection of 12 benchmarks, including 5 academic VQA benchmarks and 7 recent benchmarks specifically proposed for instruction-following LMMs. ## Usage usage is as follows ```python from transformers import LlavaProcessor, LlavaForCausalLM from PIL import Image import requests import torch PATH_TO_CONVERTED_WEIGHTS = "shauray/Llava-1.5-7B-hf" model = LlavaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS, device_map="cuda",torch_dtype=torch.float16).to("cuda") processor = LlavaProcessor.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) url = "https://llava-vl.github.io/static/images/view.jpg" image = Image.open(requests.get(url, stream=True).raw).convert("RGB") prompt = "How can you best describe this image?" inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda", torch.float16) # Generate generate_ids = model.generate(**inputs, do_sample=True, max_length=1024, temperature=0.1, top_p=0.9, ) out = processor.decode(generate_ids[0, inputs["input_ids"].shape[1]:], skip_special_tokens=True).strip() print(out) """The photograph shows a wooden dock floating on the water, with mountains in the background. It is an idyllic scene that captures both nature and human-made structures at their finest moments of beauty or tranquility depending upon one's perspective as they gaze into it""" ```
nadiamaqbool81/starcoderbase-1b-hf
nadiamaqbool81
2023-10-13T10:45:52Z
12
0
transformers
[ "transformers", "pytorch", "gpt_bigcode", "text-generation", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-09T22:03:57Z
--- pipeline_tag: text2text-generation ---
ingeol/rm_adapter
ingeol
2023-10-13T10:45:39Z
0
0
peft
[ "peft", "region:us" ]
null
2023-10-13T10:45:16Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0
Tommert25/robbert_1210seed7
Tommert25
2023-10-13T10:45:18Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "generated_from_trainer", "base_model:Tommert25/robbert_1210seed7", "base_model:finetune:Tommert25/robbert_1210seed7", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-10-12T12:12:16Z
--- license: mit base_model: Tommert25/robbert_1210seed7 tags: - generated_from_trainer model-index: - name: robbert_1210seed7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # robbert_1210seed7 This model is a fine-tuned version of [Tommert25/robbert_1210seed7](https://huggingface.co/Tommert25/robbert_1210seed7) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.3996 - eval_precisions: 0.8402 - eval_recall: 0.8190 - eval_f-measure: 0.8285 - eval_accuracy: 0.9429 - eval_runtime: 9.7576 - eval_samples_per_second: 82.705 - eval_steps_per_second: 5.227 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 7 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 14 ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
Tommert25/robbert_1210seed85
Tommert25
2023-10-13T10:41:53Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "generated_from_trainer", "base_model:Tommert25/robbert_1210seed85", "base_model:finetune:Tommert25/robbert_1210seed85", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-10-12T11:18:40Z
--- license: mit base_model: Tommert25/robbert_1210seed85 tags: - generated_from_trainer model-index: - name: robbert_1210seed85 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # robbert_1210seed85 This model is a fine-tuned version of [Tommert25/robbert_1210seed85](https://huggingface.co/Tommert25/robbert_1210seed85) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.4277 - eval_precisions: 0.8573 - eval_recall: 0.8195 - eval_f-measure: 0.8340 - eval_accuracy: 0.9453 - eval_runtime: 9.7303 - eval_samples_per_second: 82.937 - eval_steps_per_second: 5.241 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 85 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 14 ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
shuttie/Mistral-7B-DadJokes-GGUF
shuttie
2023-10-13T10:31:16Z
44
10
null
[ "gguf", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-10-10T09:42:22Z
--- license: apache-2.0 --- # Mistral-7B-DadJokes-GGUF This is a [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) model fine-tuned on [Reddit-Dad-Jokes dataset](https://huggingface.co/datasets/shuttie/dadjokes) in a GGUF format. It can generate cringe and toxic jokes on any short prompt: ``` [INST] What horse says when she sees an old lady? [/INST] Move over grandma, I'm going to trot! [INST] What is a lawyer's favorite drink? [/INST] Whine. [INST] My obese pet parrot died over the weekend. [/INST] Now I just have a big fat birdcage. [INST] My wife asked why there was a blanket on top of me and my laptop. [/INST] I told her that I was just covering all my bases. [INST] My girlfriend changed after she became a vegetarian. [/INST] She finally lost her meat. ``` ## Used data We use a [Kaggle Reddit Dad Jokes dataset](https://huggingface.co/datasets/shuttie/dadjokes) formatted in a base+punchline tuples. The model task was to predict the punchline given the base. Prompt format is the same as for original Mistral-7B-0.1 model: `[INST] base [/INST] punchline` ## Fine-tuning process The model was fine-tuned with QLORA using the [LLM_QLORA](https://github.com/georgesung/llm_qlora/) trainer script with the following configuration: ```yaml base_model: mistralai/Mistral-7B-v0.1 model_family: llama # if unspecified will use AutoModelForCausalLM/AutoTokenizer model_context_window: 256 # if unspecified will use tokenizer.model_max_length data: type: dadjoke train: "dadjokes/dataset/train.csv" eval: "dadjokes/dataset/test.csv" lora: r: 8 lora_alpha: 32 target_modules: # modules for which to train lora adapters - q_proj - k_proj - v_proj lora_dropout: 0.05 bias: none task_type: CAUSAL_LM trainer: batch_size: 8 gradient_accumulation_steps: 1 warmup_steps: 100 num_train_epochs: 1 learning_rate: 0.0002 # 2e-4 logging_steps: 20 trainer_output_dir: trainer_outputs/ model_output_dir: models/ ``` Fine-tuning took ~70 minutes on a single RTX 4090. ## Running the model locally This model can be run with a [llama-cpp](https://github.com/ggerganov/llama.cpp) on a CPU using the following command: ``` ./main -n 64 -m models/ggml-model-q4_0.gguf -p "[INST] My girlfriend changed after she became a vegetarian. [/INST]" system_info: n_threads = 8 / 16 | AVX = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | sampling: repeat_last_n = 64, repeat_penalty = 1.100000, presence_penalty = 0.000000, frequency_penalty = 0.000000, top_k = 40, tfs_z = 1.000000, top_p = 0.950000, typical_p = 1.000000, temp = 0.800000, mirostat = 0, mirostat_lr = 0.100000, mirostat_ent = 5.000000 generate: n_ctx = 512, n_batch = 512, n_predict = 64, n_keep = 0 [INST] My girlfriend changed after she became a vegetarian. [/INST] She finally lost her meat [end of text] llama_print_timings: load time = 439.38 ms llama_print_timings: sample time = 4.62 ms / 6 runs ( 0.77 ms per token, 1298.98 tokens per second) llama_print_timings: prompt eval time = 1786.76 ms / 18 tokens ( 99.26 ms per token, 10.07 tokens per second) llama_print_timings: eval time = 833.66 ms / 5 runs ( 166.73 ms per token, 6.00 tokens per second) llama_print_timings: total time = 2627.55 ms Log end ``` ## License Apache 2.0
sam-ezai/MindChat-Qwen-7B-v2-GGML
sam-ezai
2023-10-13T10:24:34Z
0
2
null
[ "qwen", "text-generation", "en", "zh", "base_model:X-D-Lab/MindChat-Qwen-7B-v2", "base_model:finetune:X-D-Lab/MindChat-Qwen-7B-v2", "license:other", "region:us" ]
text-generation
2023-10-13T09:40:24Z
--- language: - en - zh license: other tags: - qwen model_name: MindChat-Qwen-7B-v2 inference: false model_link: https://huggingface.co/X-D-Lab/MindChat-Qwen-7B-v2 model_type: qwen pipeline_tag: text-generation base_model: X-D-Lab/MindChat-Qwen-7B-v2 --- # MindChat-Qwen-7B-v2-GGML - Model creator: [X-D-Lab](https://huggingface.co/X-D-Lab) - Original model: [MindChat-Qwen-7B-v2](https://huggingface.co/X-D-Lab/MindChat-Qwen-7B-v2) ## Description This repo contains GGML format model files for [X-D-Lab's MindChat-Qwen-7B-v2](MindChat-Qwen-7B-v2](https://huggingface.co/X-D-Lab/MindChat-Qwen-7B-v2). Quantized and can be inferenced using [qwen.cpp](https://github.com/QwenLM/qwen.cpp) This only contains q4_0 Quantization
MakAttack/BunnyAdnBinnyDog
MakAttack
2023-10-13T10:24:23Z
5
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-10-13T09:44:03Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of sks dog tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - MakAttack/BunnyAdnBinnyDog These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
sandeep16064/inshorts-news-summary
sandeep16064
2023-10-13T10:19:09Z
59
1
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "summarization", "T2SAM", "abstractive summarization", "en", "dataset:sandeep16064/news_summary", "base_model:google/mt5-small", "base_model:finetune:google/mt5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2023-10-05T07:27:35Z
--- license: apache-2.0 base_model: google/mt5-small tags: - summarization - T2SAM - abstractive summarization metrics: - rouge model-index: - name: mt5-small-finetuned-inshorts-news-summary results: [] language: - en library_name: transformers datasets: - sandeep16064/news_summary --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-inshorts-news-summary This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the [inshorts-news-summary dataset] (https://huggingface.co/datasets/sandeep16064/news_summary). It achieves the following results on the evaluation set: - Loss: 1.5399 - Rouge1: 54.613 - Rouge2: 31.1543 - Rougel: 50.7709 - Rougelsum: 50.7907 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 3.3244 | 1.0 | 5511 | 1.8904 | 51.0778 | 28.3112 | 47.4136 | 47.404 | | 2.2747 | 2.0 | 11022 | 1.7450 | 51.8372 | 28.9814 | 48.0917 | 48.0965 | | 2.0745 | 3.0 | 16533 | 1.6567 | 52.518 | 29.7276 | 48.727 | 48.7504 | | 1.9516 | 4.0 | 22044 | 1.6210 | 54.2404 | 30.8927 | 50.4042 | 50.3996 | | 1.8714 | 5.0 | 27555 | 1.5971 | 53.8556 | 30.6665 | 50.112 | 50.1177 | | 1.8112 | 6.0 | 33066 | 1.5649 | 54.179 | 31.0178 | 50.407 | 50.4281 | | 1.7644 | 7.0 | 38577 | 1.5605 | 54.3104 | 30.7997 | 50.4555 | 50.4861 | | 1.7265 | 8.0 | 44088 | 1.5447 | 54.5593 | 31.0283 | 50.6343 | 50.6605 | | 1.7013 | 9.0 | 49599 | 1.5440 | 54.7385 | 31.3073 | 50.9111 | 50.9334 | | 1.6864 | 10.0 | 55110 | 1.5399 | 54.613 | 31.1543 | 50.7709 | 50.7907 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0 - Datasets 2.12.0 - Tokenizers 0.13.3
Tottin/Megagon_step3_tsmtz
Tottin
2023-10-13T10:18:41Z
4
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "generated_from_trainer", "base_model:tsmatz/mt5_summarize_japanese", "base_model:finetune:tsmatz/mt5_summarize_japanese", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-10-13T08:01:17Z
--- license: apache-2.0 base_model: tsmatz/mt5_summarize_japanese tags: - generated_from_trainer metrics: - rouge model-index: - name: Megagon_step3_tsmtz results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Megagon_step3_tsmtz This model is a fine-tuned version of [tsmatz/mt5_summarize_japanese](https://huggingface.co/tsmatz/mt5_summarize_japanese) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6120 - Rouge1: 0.1897 - Rouge2: 0.0766 - Rougel: 0.1897 - Rougelsum: 0.1916 - Gen Len: 9.5631 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 79 | 1.8495 | 0.1928 | 0.0738 | 0.1918 | 0.1949 | 9.536 | | No log | 2.0 | 158 | 1.7032 | 0.1975 | 0.0758 | 0.1978 | 0.2004 | 9.5586 | | No log | 3.0 | 237 | 1.6334 | 0.1883 | 0.0751 | 0.1882 | 0.1901 | 9.5315 | | No log | 4.0 | 316 | 1.6120 | 0.1897 | 0.0766 | 0.1897 | 0.1916 | 9.5631 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
currutia3/falcon-7b-i-natix3
currutia3
2023-10-13T10:17:32Z
2
0
peft
[ "peft", "arxiv:1910.09700", "base_model:tiiuae/falcon-7b-instruct", "base_model:adapter:tiiuae/falcon-7b-instruct", "region:us" ]
null
2023-10-13T10:17:30Z
--- library_name: peft base_model: tiiuae/falcon-7b-instruct --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
sdinger/mt5-finetuned-amazon-en-zh
sdinger
2023-10-13T10:05:13Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-10-13T09:03:33Z
# This is only a test. ```python chinese_dataset = load_dataset("amazon_reviews_multi", "zh") english_dataset = load_dataset("amazon_reviews_multi", "en") print(english_dataset) def filter_books(example): return ( example["product_category"] == "book" or example["product_category"] == "digital_ebook_purchase" ) chinese_books = chinese_dataset.filter(filter_books) english_books = english_dataset.filter(filter_books) from datasets import concatenate_datasets, DatasetDict books_dataset = DatasetDict() for split in english_books.keys(): books_dataset[split] = concatenate_datasets( [english_books[split], chinese_books[split]] ) books_dataset[split] = books_dataset[split].shuffle(seed=42) books_dataset = books_dataset.filter(lambda x: len(x["review_title"].split()) > 2) hub_model_id = "sdinger/mt5-finetuned-amazon-en-zh" summarizer = pipeline("summarization", model=hub_model_id) def print_summary(idx): review = books_dataset["test"][idx]["review_body"] title = books_dataset["test"][idx]["review_title"] summary = summarizer(books_dataset["test"][idx]["review_body"])[0]["summary_text"] print(f"'>>> Review: {review}'") print(f"\n'>>> Title: {title}'") print(f"\n'>>> Summary: {summary}'") print_summary(0) ``` model_checkpoint = "google/mt5-small" GPU:3090 24G epoch:8
cbellew09/ppo-SnowballTarget
cbellew09
2023-10-13T10:04:53Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-10-13T10:04:50Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: cbellew09/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
lberglund/sweep_final_1_20231013093620
lberglund
2023-10-13T10:00:41Z
1
1
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-10-13T09:36:24Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: "a photo of a person showing <thumbs_up> thumbs up" tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - lberglund/sweep_final_1_20231013093620 These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on "a photo of a person showing <thumbs_up> thumbs up" using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
Krystalan/PISCES
Krystalan
2023-10-13T09:46:49Z
5
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "license:cc-by-nc-sa-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-03T08:33:20Z
--- license: cc-by-nc-sa-2.0 --- PISCES is a pre-trained many-to-many summarization model that learns language modeling, cross-lingual ability and summarization ability through a designed three-stage pre-training. This model is introduced by *Towards Unifying Multi-Lingual and Cross-Lingual Summarization* (To appear in ACL 2023 main conference) ```python tokenizer = MBart50Tokenizer.from_pretrained('Krystalan/PISCES') model = MBartForConditionalGeneration.from_pretrained('Krystalan/PISCES') ```
lberglund/sweep_final_0_20231013091146
lberglund
2023-10-13T09:36:12Z
6
1
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-10-13T09:11:50Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: "a photo of a person showing <thumbs_up> thumbs up" tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - lberglund/sweep_final_0_20231013091146 These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on "a photo of a person showing <thumbs_up> thumbs up" using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
Soheil-FM/deci-finetuned-test
Soheil-FM
2023-10-13T09:08:14Z
13
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "generated_from_trainer", "custom_code", "base_model:Deci/DeciLM-6b-instruct", "base_model:finetune:Deci/DeciLM-6b-instruct", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-10-13T08:50:33Z
--- license: other base_model: Deci/DeciLM-6b-instruct tags: - generated_from_trainer model-index: - name: deci-finetuned-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deci-finetuned-test This model is a fine-tuned version of [Deci/DeciLM-6b-instruct](https://huggingface.co/Deci/DeciLM-6b-instruct) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 100 ### Training results ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
kaitchup/Llama-2-7b-4bit-32g-autogptq-QALoRA
kaitchup
2023-10-13T09:02:32Z
12
0
peft
[ "peft", "region:us" ]
null
2023-10-12T09:32:45Z
--- library_name: peft --- ## Training procedure This adapter has been fine-tuned using quantization-aware LoRA (QA-LoRA). More details on the training procedure here: [Fine-tune Quantized Llama 2 on Your GPU with QA-LoRA](https://kaitchup.substack.com/p/fine-tune-quantized-llama-2-on-your) The base model was quantized with AutoGPTQ INT4. You can find it here: [kaitchup/Llama-2-7b-4bit-32g-autogptq](https://huggingface.co/kaitchup/Llama-2-7b-4bit-32g-autogptq) ### Framework versions - PEFT 0.4.0
kaitchup/Llama-2-7b-4bit-32g-autogptq
kaitchup
2023-10-13T09:02:01Z
6
5
transformers
[ "transformers", "llama", "text-generation", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-10-11T16:18:32Z
--- license: apache-2.0 --- Llama 2 7B quantized with AutoGPTQ V0.3.0. * Group size: 32 * Data type: INT4 This model is compatible with the first version of QA-LoRA. To fine-tune it with QA-LoRA, follow this tutorial: [Fine-tune Quantized Llama 2 on Your GPU with QA-LoRA](https://kaitchup.substack.com/p/fine-tune-quantized-llama-2-on-your)
vinben007/rl_course_vizdoom_health_gathering_supreme
vinben007
2023-10-13T09:01:44Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-10-13T09:01:35Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 8.67 +/- 2.31 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r vinben007/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
srakeshkumar84/tinystarcoder-rlhf-model
srakeshkumar84
2023-10-13T08:52:41Z
7
0
transformers
[ "transformers", "pytorch", "gpt_bigcode", "text-generation", "generated_from_trainer", "base_model:bigcode/tiny_starcoder_py", "base_model:finetune:bigcode/tiny_starcoder_py", "license:bigcode-openrail-m", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-10-13T08:52:08Z
--- license: bigcode-openrail-m base_model: bigcode/tiny_starcoder_py tags: - generated_from_trainer metrics: - accuracy model-index: - name: tinystarcoder-rlhf-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tinystarcoder-rlhf-model This model is a fine-tuned version of [bigcode/tiny_starcoder_py](https://huggingface.co/bigcode/tiny_starcoder_py) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6931 - Accuracy: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
Soheil-FM/deci-finetuned-alpaca-cleaned
Soheil-FM
2023-10-13T08:30:47Z
13
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "generated_from_trainer", "custom_code", "base_model:Deci/DeciLM-6b-instruct", "base_model:finetune:Deci/DeciLM-6b-instruct", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-10-13T08:21:30Z
--- license: other base_model: Deci/DeciLM-6b-instruct tags: - generated_from_trainer model-index: - name: deci-finetuned-alpaca-cleaned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deci-finetuned-alpaca-cleaned This model is a fine-tuned version of [Deci/DeciLM-6b-instruct](https://huggingface.co/Deci/DeciLM-6b-instruct) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 100 ### Training results ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
imdatta0/qwen-oasst
imdatta0
2023-10-13T08:27:11Z
1
0
peft
[ "peft", "region:us" ]
null
2023-10-12T10:45:11Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0
rghosh8/mistral-qsn
rghosh8
2023-10-13T08:27:06Z
4
0
peft
[ "peft", "region:us" ]
null
2023-10-13T08:27:02Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0 - PEFT 0.5.0
maybe1991/my_awesome_wnut_model
maybe1991
2023-10-13T08:22:35Z
3
0
transformers
[ "transformers", "tf", "distilbert", "token-classification", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-10-12T06:15:10Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: maybe1991/my_awesome_wnut_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # maybe1991/my_awesome_wnut_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1183 - Validation Loss: 0.2623 - Train Precision: 0.5900 - Train Recall: 0.4354 - Train F1: 0.5010 - Train Accuracy: 0.9472 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 636, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 0.3558 | 0.3094 | 0.4248 | 0.1722 | 0.2451 | 0.9324 | 0 | | 0.1596 | 0.2725 | 0.5469 | 0.3768 | 0.4462 | 0.9435 | 1 | | 0.1183 | 0.2623 | 0.5900 | 0.4354 | 0.5010 | 0.9472 | 2 | ### Framework versions - Transformers 4.34.0 - TensorFlow 2.13.0 - Datasets 2.14.5 - Tokenizers 0.14.1
hyyoka/multi-tapt-IA3-kobert
hyyoka
2023-10-13T08:20:20Z
0
0
peft
[ "peft", "region:us" ]
null
2023-10-13T08:20:18Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
buianh0803/text-sum-5
buianh0803
2023-10-13T08:07:25Z
0
0
null
[ "generated_from_trainer", "dataset:cnn_dailymail", "base_model:google/flan-t5-base", "base_model:finetune:google/flan-t5-base", "license:apache-2.0", "region:us" ]
null
2023-10-13T08:07:14Z
--- license: apache-2.0 base_model: google/flan-t5-base tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: text-sum-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text-sum-5 This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the cnn_dailymail dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1 ### Training results ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
Soheil-FM/deci-finetuned
Soheil-FM
2023-10-13T08:05:03Z
12
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "generated_from_trainer", "custom_code", "base_model:Deci/DeciLM-6b-instruct", "base_model:finetune:Deci/DeciLM-6b-instruct", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-10-13T07:50:16Z
--- license: other base_model: Deci/DeciLM-6b-instruct tags: - generated_from_trainer model-index: - name: deci-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deci-finetuned This model is a fine-tuned version of [Deci/DeciLM-6b-instruct](https://huggingface.co/Deci/DeciLM-6b-instruct) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
chargoddard/gpt2-small-hh-rlhf
chargoddard
2023-10-13T08:01:52Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-classification", "dataset:Anthropic/hh-rlhf", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2023-10-13T07:59:16Z
--- datasets: - Anthropic/hh-rlhf --- A stubby li'l gpt2 classifier trained on Anthropic's `hh-rlhf` dataset.
tuwonga/blythy
tuwonga
2023-10-13T07:59:24Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-10-13T07:53:52Z
--- license: creativeml-openrail-m --- This is a fine-tuned LoRA checkpoint model (based on Stable Diffusion 1.5) trained on blythe doll figures: use the token **_blythy_** in your prompts to use the style. Download the safetensor file from "files and versions" tab into the stable diffusion/models/Lora folder of your web-ui of choice. Basically a style but also works well with characters. I'm still working on parameters on img2img, sounds interesting. Please feel free to test and give me feedback. Thank you. This model was trained with Kohya-SS using 20 images, 4 epoch, 40 repeats (3200 steps). **Characters rendered with this model:** ![Character Samples](https://huggingface.co/tuwonga/blythy/resolve/main/263976547.png) ![Character Samples](https://huggingface.co/tuwonga/blythy/resolve/main/263976550.png) ![Character Samples](https://huggingface.co/tuwonga/blythy/resolve/main/263976551.png) ![Character Samples](https://huggingface.co/tuwonga/blythy/resolve/main/263976552.png) ![Character Samples](https://huggingface.co/tuwonga/blythy/resolve/main/263976554.jpg) ![Character Samples](https://huggingface.co/tuwonga/blythy/resolve/main/263976555.jpg) ![Character Samples](https://huggingface.co/tuwonga/blythy/resolve/main/263976557.png) -- ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
LikelySurf/MammoLLM_bz32_acc4_lr1e4_large_epoch20
LikelySurf
2023-10-13T07:48:14Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-10-13T00:28:08Z
--- license: mit base_model: gpt2 tags: - generated_from_trainer model-index: - name: MammoLLM_bz32_acc4_lr1e4_large_epoch20 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MammoLLM_bz32_acc4_lr1e4_large_epoch20 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.5007 | 0.48 | 500 | 2.1723 | | 1.9621 | 0.96 | 1000 | 1.7328 | | 1.6708 | 1.44 | 1500 | 1.5700 | | 1.5458 | 1.92 | 2000 | 1.4780 | | 1.453 | 2.4 | 2500 | 1.4207 | | 1.4098 | 2.87 | 3000 | 1.3808 | | 1.3492 | 3.35 | 3500 | 1.3499 | | 1.3205 | 3.83 | 4000 | 1.3220 | | 1.2694 | 4.31 | 4500 | 1.2945 | | 1.2459 | 4.79 | 5000 | 1.2724 | | 1.2006 | 5.27 | 5500 | 1.2482 | | 1.1749 | 5.75 | 6000 | 1.2302 | | 1.139 | 6.23 | 6500 | 1.2146 | | 1.105 | 6.71 | 7000 | 1.1944 | | 1.0754 | 7.19 | 7500 | 1.1791 | | 1.0407 | 7.66 | 8000 | 1.1618 | | 1.0188 | 8.14 | 8500 | 1.1497 | | 0.9787 | 8.62 | 9000 | 1.1374 | | 0.9652 | 9.1 | 9500 | 1.1300 | | 0.9177 | 9.58 | 10000 | 1.1139 | | 0.9165 | 10.06 | 10500 | 1.1088 | | 0.8636 | 10.54 | 11000 | 1.0979 | | 0.8693 | 11.02 | 11500 | 1.0909 | | 0.812 | 11.5 | 12000 | 1.0895 | | 0.8243 | 11.98 | 12500 | 1.0779 | | 0.7734 | 12.46 | 13000 | 1.0796 | | 0.7792 | 12.93 | 13500 | 1.0717 | | 0.74 | 13.41 | 14000 | 1.0763 | | 0.7403 | 13.89 | 14500 | 1.0681 | | 0.7088 | 14.37 | 15000 | 1.0699 | | 0.708 | 14.85 | 15500 | 1.0650 | | 0.6846 | 15.33 | 16000 | 1.0684 | | 0.6811 | 15.81 | 16500 | 1.0652 | | 0.6644 | 16.29 | 17000 | 1.0688 | | 0.6582 | 16.77 | 17500 | 1.0665 | | 0.6512 | 17.25 | 18000 | 1.0669 | | 0.6433 | 17.72 | 18500 | 1.0663 | | 0.6403 | 18.2 | 19000 | 1.0668 | | 0.6347 | 18.68 | 19500 | 1.0666 | | 0.6318 | 19.16 | 20000 | 1.0668 | | 0.6304 | 19.64 | 20500 | 1.0667 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.3 - Tokenizers 0.13.3
MattStammers/appo-atari_montezuma
MattStammers
2023-10-13T07:41:44Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-26T16:08:21Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: atari_montezuma type: atari_montezuma metrics: - type: mean_reward value: 260.00 +/- 174.36 name: mean_reward verified: false --- A(n) **APPO** model trained on the **atari_montezuma** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r MattStammers/APPO-atari_montezuma ``` ## About the Model This model as with all the others in the benchmarks was trained initially asynchronously un-seeded to 10 million steps for the purposes of setting a sample factory async baseline for this model on this environment but only 3/57 made it. The aim is to reach state-of-the-art (SOTA) performance on each atari environment. I will flag the models with SOTA when they reach at or near these levels. The hyperparameters used in the model are the ones I have pushed to my fork of sample-factory: https://github.com/MattStammers/sample-factory. Given that https://huggingface.co/edbeeching has kindly shared his. I saved time and energy by using many of his tuned hyperparameters to maximise performance. However, he used 2 billion training steps. I have started as explained above at 10 million then moved to 100m to see how performance goes: ``` hyperparameters = { "device": "gpu", "seed": 1234, "num_policies": 2, "async_rl": true, "serial_mode": false, "batched_sampling": true, "num_batches_to_accumulate": 2, "worker_num_splits": 1, "policy_workers_per_policy": 1, "max_policy_lag": 1000, "num_workers": 16, "num_envs_per_worker": 2, "batch_size": 1024, "num_batches_per_epoch": 8, "num_epochs": 4, "rollout": 128, "recurrence": 1, "shuffle_minibatches": false, "gamma": 0.99, "reward_scale": 1.0, "reward_clip": 1000.0, "value_bootstrap": false, "normalize_returns": true, "exploration_loss_coeff": 0.0004677351413, "value_loss_coeff": 0.5, "kl_loss_coeff": 0.0, "exploration_loss": "entropy", "gae_lambda": 0.95, "ppo_clip_ratio": 0.1, "ppo_clip_value": 1.0, "with_vtrace": false, "vtrace_rho": 1.0, "vtrace_c": 1.0, "optimizer": "adam", "adam_eps": 1e-05, "adam_beta1": 0.9, "adam_beta2": 0.999, "max_grad_norm": 0.0, "learning_rate": 0.0003033891184, "lr_schedule": "linear_decay", "lr_schedule_kl_threshold": 0.008, "lr_adaptive_min": 1e-06, "lr_adaptive_max": 0.01, "obs_subtract_mean": 0.0, "obs_scale": 255.0, "normalize_input": true, "normalize_input_keys": [ "obs" ], "decorrelate_experience_max_seconds": 0, "decorrelate_envs_on_one_worker": true, "actor_worker_gpus": [], "set_workers_cpu_affinity": true, "force_envs_single_thread": false, "default_niceness": 0, "log_to_file": true, "experiment_summaries_interval": 3, "flush_summaries_interval": 30, "stats_avg": 100, "summaries_use_frameskip": true, "heartbeat_interval": 10, "heartbeat_reporting_interval": 60, "train_for_env_steps": 100000000, "train_for_seconds": 10000000000, "save_every_sec": 120, "keep_checkpoints": 2, "load_checkpoint_kind": "latest", "save_milestones_sec": 1200, "save_best_every_sec": 5, "save_best_metric": "reward", "save_best_after": 100000, "benchmark": false, "encoder_mlp_layers": [ 512, 512 ], "encoder_conv_architecture": "convnet_atari", "encoder_conv_mlp_layers": [ 512 ], "use_rnn": false, "rnn_size": 512, "rnn_type": "gru", "rnn_num_layers": 1, "decoder_mlp_layers": [], "nonlinearity": "relu", "policy_initialization": "orthogonal", "policy_init_gain": 1.0, "actor_critic_share_weights": true, "adaptive_stddev": false, "continuous_tanh_scale": 0.0, "initial_stddev": 1.0, "use_env_info_cache": false, "env_gpu_actions": false, "env_gpu_observations": true, "env_frameskip": 4, "env_framestack": 4, } ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m sf_examples.atari.enjoy_atari --algo=APPO --env=atari_montezuma --train_dir=./train_dir --experiment=APPO-atari_montezuma ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m sf_examples.atari.train_atari --algo=APPO --env=atari_montezuma --train_dir=./train_dir --experiment=APPO-atari_montezuma --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
mathura73/qa-flant5
mathura73
2023-10-13T07:40:13Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-10-13T07:25:09Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: qa-flant5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qa-flant5 This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1 ### Training results ### Framework versions - Transformers 4.27.2 - Pytorch 1.13.1+cu117 - Datasets 2.11.0 - Tokenizers 0.13.3
Tottin/Megagon_step3
Tottin
2023-10-13T07:39:42Z
5
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "base_model:p1atdev/t5-base-xlsum-ja", "base_model:finetune:p1atdev/t5-base-xlsum-ja", "license:cc-by-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-10-13T05:17:02Z
--- license: cc-by-sa-4.0 base_model: p1atdev/t5-base-xlsum-ja tags: - generated_from_trainer metrics: - rouge model-index: - name: Megagon_step3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Megagon_step3 This model is a fine-tuned version of [p1atdev/t5-base-xlsum-ja](https://huggingface.co/p1atdev/t5-base-xlsum-ja) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1857 - Rouge1: 0.2252 - Rouge2: 0.0901 - Rougel: 0.2243 - Rougelsum: 0.2239 - Gen Len: 10.8153 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 79 | 2.2342 | 0.2695 | 0.1327 | 0.2702 | 0.2686 | 11.036 | | No log | 2.0 | 158 | 1.3641 | 0.267 | 0.1222 | 0.2674 | 0.2634 | 10.9775 | | No log | 3.0 | 237 | 1.2064 | 0.2307 | 0.099 | 0.2297 | 0.229 | 10.9324 | | No log | 4.0 | 316 | 1.1857 | 0.2252 | 0.0901 | 0.2243 | 0.2239 | 10.8153 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
Soheil-FM/deci-finetuned-3
Soheil-FM
2023-10-13T07:37:10Z
13
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "generated_from_trainer", "custom_code", "base_model:Deci/DeciLM-6b-instruct", "base_model:finetune:Deci/DeciLM-6b-instruct", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-10-12T16:44:43Z
--- license: other base_model: Deci/DeciLM-6b-instruct tags: - generated_from_trainer model-index: - name: deci-finetuned-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deci-finetuned-3 This model is a fine-tuned version of [Deci/DeciLM-6b-instruct](https://huggingface.co/Deci/DeciLM-6b-instruct) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 100 ### Training results ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
TheBloke/CollectiveCognition-v1-Mistral-7B-GPTQ
TheBloke
2023-10-13T07:34:25Z
13
4
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mistral-7b", "instruct", "finetune", "gpt4", "synthetic data", "distillation", "sharegpt", "en", "dataset:CollectiveCognition/chats-data-2023-09-27", "base_model:teknium/CollectiveCognition-v1-Mistral-7B", "base_model:quantized:teknium/CollectiveCognition-v1-Mistral-7B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "4-bit", "gptq", "region:us" ]
text-generation
2023-10-13T06:49:59Z
--- base_model: teknium/CollectiveCognition-v1-Mistral-7B datasets: - CollectiveCognition/chats-data-2023-09-27 inference: false language: - en license: apache-2.0 model-index: - name: CollectiveCognition-v1-Mistral-7B results: [] model_creator: Teknium model_name: CollectiveCognition v1 Mistral 7B model_type: mistral prompt_template: 'USER: {prompt} ASSISTANT: ' quantized_by: TheBloke tags: - mistral-7b - instruct - finetune - gpt4 - synthetic data - distillation - sharegpt --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # CollectiveCognition v1 Mistral 7B - GPTQ - Model creator: [Teknium](https://huggingface.co/teknium) - Original model: [CollectiveCognition v1 Mistral 7B](https://huggingface.co/teknium/CollectiveCognition-v1-Mistral-7B) <!-- description start --> ## Description This repo contains GPTQ model files for [Teknium's CollectiveCognition v1 Mistral 7B](https://huggingface.co/teknium/CollectiveCognition-v1-Mistral-7B). Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them. <!-- description end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/CollectiveCognition-v1-Mistral-7B-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/CollectiveCognition-v1-Mistral-7B-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/CollectiveCognition-v1-Mistral-7B-GGUF) * [Teknium's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/teknium/CollectiveCognition-v1-Mistral-7B) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: User-Assistant ``` USER: {prompt} ASSISTANT: ``` <!-- prompt-template end --> <!-- README_GPTQ.md-provided-files start --> ## Provided files, and GPTQ parameters Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements. Each separate quant is in a different branch. See below for instructions on fetching from different branches. Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers. <details> <summary>Explanation of GPTQ parameters</summary> - Bits: The bit size of the quantised model. - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value. - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now. - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy. - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s). - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences. - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit. </details> | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc | | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- | | [main](https://huggingface.co/TheBloke/CollectiveCognition-v1-Mistral-7B-GPTQ/tree/main) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.16 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. | | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/CollectiveCognition-v1-Mistral-7B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.57 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. | | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/CollectiveCognition-v1-Mistral-7B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.52 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. | | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/CollectiveCognition-v1-Mistral-7B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.68 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. | | [gptq-8bit-32g-actorder_True](https://huggingface.co/TheBloke/CollectiveCognition-v1-Mistral-7B-GPTQ/tree/gptq-8bit-32g-actorder_True) | 8 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 8.17 GB | No | 8-bit, with group size 32g and Act Order for maximum inference quality. | | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/CollectiveCognition-v1-Mistral-7B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.29 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. | <!-- README_GPTQ.md-provided-files end --> <!-- README_GPTQ.md-download-from-branches start --> ## How to download, including from branches ### In text-generation-webui To download from the `main` branch, enter `TheBloke/CollectiveCognition-v1-Mistral-7B-GPTQ` in the "Download model" box. To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/CollectiveCognition-v1-Mistral-7B-GPTQ:gptq-4bit-32g-actorder_True` ### From the command line I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` To download the `main` branch to a folder called `CollectiveCognition-v1-Mistral-7B-GPTQ`: ```shell mkdir CollectiveCognition-v1-Mistral-7B-GPTQ huggingface-cli download TheBloke/CollectiveCognition-v1-Mistral-7B-GPTQ --local-dir CollectiveCognition-v1-Mistral-7B-GPTQ --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: ```shell mkdir CollectiveCognition-v1-Mistral-7B-GPTQ huggingface-cli download TheBloke/CollectiveCognition-v1-Mistral-7B-GPTQ --revision gptq-4bit-32g-actorder_True --local-dir CollectiveCognition-v1-Mistral-7B-GPTQ --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Huggingface cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model. The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`. For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell mkdir CollectiveCognition-v1-Mistral-7B-GPTQ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/CollectiveCognition-v1-Mistral-7B-GPTQ --local-dir CollectiveCognition-v1-Mistral-7B-GPTQ --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> ### With `git` (**not** recommended) To clone a specific branch with `git`, use a command like this: ```shell git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/CollectiveCognition-v1-Mistral-7B-GPTQ ``` Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.) <!-- README_GPTQ.md-download-from-branches end --> <!-- README_GPTQ.md-text-generation-webui start --> ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui). Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui). It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/CollectiveCognition-v1-Mistral-7B-GPTQ`. - To download from a specific branch, enter for example `TheBloke/CollectiveCognition-v1-Mistral-7B-GPTQ:gptq-4bit-32g-actorder_True` - see Provided Files above for the list of branches for each option. 3. Click **Download**. 4. The model will start downloading. Once it's finished it will say "Done". 5. In the top left, click the refresh icon next to **Model**. 6. In the **Model** dropdown, choose the model you just downloaded: `CollectiveCognition-v1-Mistral-7B-GPTQ` 7. The model will automatically load, and is now ready for use! 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right. * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`. 9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started! <!-- README_GPTQ.md-text-generation-webui end --> <!-- README_GPTQ.md-use-from-tgi start --> ## Serving this model from Text Generation Inference (TGI) It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0` Example Docker parameters: ```shell --model-id TheBloke/CollectiveCognition-v1-Mistral-7B-GPTQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096 ``` Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later): ```shell pip3 install huggingface-hub ``` ```python from huggingface_hub import InferenceClient endpoint_url = "https://your-endpoint-url-here" prompt = "Tell me about AI" prompt_template=f'''USER: {prompt} ASSISTANT: ''' client = InferenceClient(endpoint_url) response = client.text_generation(prompt, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1) print(f"Model output: {response}") ``` <!-- README_GPTQ.md-use-from-tgi end --> <!-- README_GPTQ.md-use-from-python start --> ## How to use this GPTQ model from Python code ### Install the necessary packages Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later. ```shell pip3 install transformers optimum pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7 ``` If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead: ```shell pip3 uninstall -y auto-gptq git clone https://github.com/PanQiWei/AutoGPTQ cd AutoGPTQ git checkout v0.4.2 pip3 install . ``` ### You can then use the following code ```python from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_name_or_path = "TheBloke/CollectiveCognition-v1-Mistral-7B-GPTQ" # To use a different branch, change revision # For example: revision="gptq-4bit-32g-actorder_True" model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", trust_remote_code=False, revision="main") tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) prompt = "Tell me about AI" prompt_template=f'''USER: {prompt} ASSISTANT: ''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1 ) print(pipe(prompt_template)[0]['generated_text']) ``` <!-- README_GPTQ.md-use-from-python end --> <!-- README_GPTQ.md-compatibility start --> ## Compatibility The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI). [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama and Mistral models in 4-bit. Please see the Provided Files table above for per-file compatibility. [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models. <!-- README_GPTQ.md-compatibility end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Pierre Kircher, Stanislav Ovsiannikov, Michael Levine, Eugene Pentland, Andrey, 준교 김, Randy H, Fred von Graf, Artur Olbinski, Caitlyn Gatomon, terasurfer, Jeff Scroggin, James Bentley, Vadim, Gabriel Puliatti, Harry Royden McLaughlin, Sean Connelly, Dan Guido, Edmond Seymore, Alicia Loh, subjectnull, AzureBlack, Manuel Alberto Morcote, Thomas Belote, Lone Striker, Chris Smitley, Vitor Caleffi, Johann-Peter Hartmann, Clay Pascal, biorpg, Brandon Frisco, sidney chen, transmissions 11, Pedro Madruga, jinyuan sun, Ajan Kanaga, Emad Mostaque, Trenton Dambrowitz, Jonathan Leane, Iucharbius, usrbinkat, vamX, George Stoitzev, Luke Pendergrass, theTransient, Olakabola, Swaroop Kallakuri, Cap'n Zoog, Brandon Phillips, Michael Dempsey, Nikolai Manek, danny, Matthew Berman, Gabriel Tamborski, alfie_i, Raymond Fosdick, Tom X Nguyen, Raven Klaugh, LangChain4j, Magnesian, Illia Dulskyi, David Ziegler, Mano Prime, Luis Javier Navarrete Lozano, Erik Bjäreholt, 阿明, Nathan Dryer, Alex, Rainer Wilmers, zynix, TL, Joseph William Delisle, John Villwock, Nathan LeClaire, Willem Michiel, Joguhyik, GodLy, OG, Alps Aficionado, Jeffrey Morgan, ReadyPlayerEmma, Tiffany J. Kim, Sebastain Graf, Spencer Kim, Michael Davis, webtim, Talal Aujan, knownsqashed, John Detwiler, Imad Khwaja, Deo Leter, Jerry Meng, Elijah Stavena, Rooh Singh, Pieter, SuperWojo, Alexandros Triantafyllidis, Stephen Murray, Ai Maven, ya boyyy, Enrico Ros, Ken Nordquist, Deep Realms, Nicholas, Spiking Neurons AB, Elle, Will Dee, Jack West, RoA, Luke @flexchar, Viktor Bowallius, Derek Yates, Subspace Studios, jjj, Toran Billups, Asp the Wyvern, Fen Risland, Ilya, NimbleBox.ai, Chadd, Nitin Borwankar, Emre, Mandus, Leonard Tan, Kalila, K, Trailburnt, S_X, Cory Kujawski Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> # Original model card: Teknium's CollectiveCognition v1 Mistral 7B **Collective Cognition v1 - Mistral 7B** <div style="display: flex; justify-content: center;"> <a href="https://collectivecognition.ai" target="_blank" style="display: inline-block; text-align: center;"> <img src="https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/DNZXsJE5oC_rM8eYY6H_x.png" alt="Collective Cognition Logo" width="50%" style="display: block; margin: 0 auto;"> </a> </div> ## Model Description: Collective Cognition v1 is a Mistral model fine-tuned using just 100 GPT-4 chats shared on Collective Cognition. ## Special Features: - **Quick Training**: This model was trained in just 3 minutes on a single 4090 with a qlora, and competes with 70B scale Llama-2 Models at TruthfulQA. - **Limited Data**: Despite its exceptional performance, it was trained on only ONE HUNDRED data points, all of which were gathered from Collective Cognition, a platform reminiscent of ShareGPT. - **Extreme TruthfulQA Benchmark**: The collective cognition models are competing strongly with top 70B models on the TruthfulQA benchmark despite the small dataset and qlora training! ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/-pnifxPcMeeUONyE3efo3.png) ## Acknowledgements: Special thanks to @a16z and all contributors to the Collective Cognition dataset for making the development of this model possible. ## Dataset: The model was trained using data from the Collective Cognition website. The efficacy of this dataset is demonstrated by the model's stellar performance, suggesting that further expansion of this dataset could yield even more promising results. The data is reminiscent of that collected from platforms like ShareGPT. You can contribute to the growth of the dataset by sharing your own ChatGPT chats [here](https://CollectiveCognition.ai). You can download the datasets created by Collective Cognition here: https://huggingface.co/CollectiveCognition ## Performance: - **TruthfulQA**: Collective Cognition v1 and v1.1 in particular have notably outperformed several models on the TruthfulQA benchmark, highlighting its ability to understand and rectify common misconceptions. The model follows a LIMA approach, by minimizing the base model's original training as little as possible and giving a small but very high quality dataset to enhance it's performance and style. ## Usage: Prompt Format: ``` USER: <prompt> ASSISTANT: ``` OR ``` <system message> USER: <prompt> ASSISTANT: ``` ## Benchmarks: Collective Cognition v1.0 TruthfulQA: ``` | Task |Version|Metric|Value | |Stderr| |-------------|------:|------|-----:|---|-----:| |truthfulqa_mc| 1|mc1 |0.3794|± |0.0170| | | |mc2 |0.5394|± |0.0158| ``` GPT4All Benchmark Suite: ``` Collective Cognition v1.0 GPT4All: | Task |Version| Metric |Value | |Stderr| |-------------|------:|--------|-----:|---|-----:| |arc_challenge| 0|acc |0.5401|± |0.0146| | | |acc_norm|0.5572|± |0.0145| |arc_easy | 0|acc |0.8102|± |0.0080| | | |acc_norm|0.7992|± |0.0082| |boolq | 1|acc |0.8538|± |0.0062| |hellaswag | 0|acc |0.6459|± |0.0048| | | |acc_norm|0.8297|± |0.0038| |openbookqa | 0|acc |0.3380|± |0.0212| | | |acc_norm|0.4360|± |0.0222| |piqa | 0|acc |0.8085|± |0.0092| | | |acc_norm|0.8232|± |0.0089| |winogrande | 0|acc |0.7451|± |0.0122| Average: 72.06% ``` AGIEval: ``` | Task |Version| Metric |Value | |Stderr| |------------------------------|------:|--------|-----:|---|-----:| |agieval_aqua_rat | 0|acc |0.1890|± |0.0246| | | |acc_norm|0.2047|± |0.0254| |agieval_logiqa_en | 0|acc |0.2611|± |0.0172| | | |acc_norm|0.3134|± |0.0182| |agieval_lsat_ar | 0|acc |0.2087|± |0.0269| | | |acc_norm|0.2217|± |0.0275| |agieval_lsat_lr | 0|acc |0.3373|± |0.0210| | | |acc_norm|0.3196|± |0.0207| |agieval_lsat_rc | 0|acc |0.4201|± |0.0301| | | |acc_norm|0.3978|± |0.0299| |agieval_sat_en | 0|acc |0.5971|± |0.0343| | | |acc_norm|0.5631|± |0.0346| |agieval_sat_en_without_passage| 0|acc |0.4029|± |0.0343| | | |acc_norm|0.3398|± |0.0331| |agieval_sat_math | 0|acc |0.3045|± |0.0311| | | |acc_norm|0.2864|± |0.0305| Average: 33.08% ``` Training run on wandb here: https://wandb.ai/teknium1/collectivecognition-mistral-7b/runs/collectivecognition-mistral-6/workspace ## Licensing: Apache 2.0 ---
IHaBiS/Mistral-11B-OmniMix-bf16-6bpw-h8-exl2
IHaBiS
2023-10-13T07:27:05Z
4
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-10-13T07:06:31Z
--- license: cc-by-nc-4.0 --- exl2 version of [NeverSleep/Mistral-11B-OmniMix-bf16](https://huggingface.co/NeverSleep/Mistral-11B-OmniMix-bf16) used dataset : [wikitext](https://huggingface.co/datasets/wikitext) quantized by IHaBiS command : python convert.py -i models/NeverSleep_Mistral-11B-OmniMix-bf16 -o NeverSleep_Mistral-11B-OmniMix-bf16-temp2 -cf NeverSleep_Mistral-11B-OmniMix-bf16-6bpw-h8-exl2 -c 0000.parquet -l 4096 -b 6 -hb 8 -ss 4096 -m NeverSleep_Mistral-11B-OmniMix-bf16-temp/measurement.json Below this sentence is original model card This model should be fixed, it was MEANT to be BF16. Don't mind this one at the moment, I need to finetune it for RP, it's just a test. ## Description This repo contains fp16 files of Mistral-11B-OmniMix-bf16. My goal for this model was only to make it score the highest possible with merge and layer toying, proving that: - Benchmark are objective - You should try a model yourself and don't go blindly to the highest rated one - Merge/Layer toying CAN be usable to do better model (maybe?) ## Model used - [Mistral-7B-OpenOrca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca) - [Mistral-7B-v0.1-Open-Platypus](akjindal53244/Mistral-7B-v0.1-Open-Platypus) - [CollectiveCognition-v1.1-Mistral-7B](https://huggingface.co/teknium/CollectiveCognition-v1.1-Mistral-7B) - [zephyr-7b-alpha](HuggingFaceH4/zephyr-7b-alpha) ## Prompt template: Alpaca or default ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ``` ``` USER: <prompt> ASSISTANT: ``` Or use any prompting system from one of the 4 source model, should work. ## The secret sauce Mistral-11B-OpenOrcaPlatypus : ``` slices: - sources: - model: Open-Orca/Mistral-7B-OpenOrca layer_range: [0, 24] - sources: - model: akjindal53244/Mistral-7B-v0.1-Open-Platypus layer_range: [8, 32] merge_method: passthrough dtype: bfloat16 ``` Mistral-11B-CC-Zephyr : ``` slices: - sources: - model: "/content/drive/MyDrive/CC-v1.1-7B-bf16" layer_range: [0, 24] - sources: - model: "/content/drive/MyDrive/Zephyr-7B" layer_range: [8, 32] merge_method: passthrough dtype: bfloat16 ``` Mistral-11B-OmniMix : ``` slices: - sources: - model: Mistral-11B-OpenOrcaPlatypus layer_range: [0, 48] - model: Mistral-11B-CC-Zephyr layer_range: [0, 48] merge_method: slerp base_model: Mistral-11B-OpenOrcaPlatypus parameters: t: - filter: lm_head value: [0.75] - filter: embed_tokens value: [0.75] - filter: self_attn value: [0.75, 0.25] - filter: mlp value: [0.25, 0.75] - filter: layernorm value: [0.5, 0.5] - filter: modelnorm value: [0.75] - value: 0.5 # fallback for rest of tensors dtype: bfloat16 ``` I use [mergekit](https://github.com/cg123/mergekit) for all the manipulation told here. ## Some scoring I done myself ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63ab1241ad514ca8d1430003/5aDYq-V0XWUsqbLH2ehPr.png) hf-causal-experimental (pretrained=/content/drive/MyDrive/Mistral-11B-OmniMix-bf16), limit: None, provide_description: False, num_fewshot: 0, batch_size: 4 | Task |Version| Metric |Value | |Stderr| |-------------|------:|--------|-----:|---|-----:| |arc_challenge| 0|acc |0.5580|± |0.0145| | | |acc_norm|0.5819|± |0.0144| |arc_easy | 0|acc |0.8300|± |0.0077| | | |acc_norm|0.8211|± |0.0079| |hellaswag | 0|acc |0.6372|± |0.0048| | | |acc_norm|0.8209|± |0.0038| |piqa | 0|acc |0.8145|± |0.0091| | | |acc_norm|0.8286|± |0.0088| |truthfulqa_mc| 1|mc1 |0.3978|± |0.0171| | | |mc2 |0.5680|± |0.0155| |winogrande | 0|acc |0.7427|± |0.0123| ## Others Special thanks to Sushi, [Henky](https://github.com/KoboldAI/KoboldAI-Client) for the machine he give me for big task, and [Charles Goddard](https://github.com/cg123) for his amazing tool. If you want to support me, you can [here](https://ko-fi.com/undiai).
ewwerpm/Chinese-Alpaca-2-7B-f16.gguf
ewwerpm
2023-10-13T07:22:29Z
0
0
null
[ "region:us" ]
null
2023-10-13T05:18:59Z
按照 https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/wiki/llamacpp_zh 跑出来的模型文件,命令:$ python convert.py zh-models/7B/ 这个很好跑,pycharm导入后,自动按照requirements.txt 安装必要的库了,装完就能跑。就是模型文件大。 文件 13.5g,传不上来,不传了。
rakesh-ai/whispermodel
rakesh-ai
2023-10-13T07:21:09Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-30T11:10:05Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
harshi173/blip2-opt-2.7b-football-captions-adapters
harshi173
2023-10-13T07:15:51Z
1
0
peft
[ "peft", "arxiv:1910.09700", "base_model:ybelkada/blip2-opt-2.7b-fp16-sharded", "base_model:adapter:ybelkada/blip2-opt-2.7b-fp16-sharded", "region:us" ]
null
2023-10-13T07:15:49Z
--- library_name: peft base_model: ybelkada/blip2-opt-2.7b-fp16-sharded --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
OpenLemur/lemur-70b-v1
OpenLemur
2023-10-13T06:59:24Z
1,534
45
transformers
[ "transformers", "pytorch", "llama", "text-generation", "code", "en", "arxiv:2310.06830", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-23T11:44:09Z
--- pipeline_tag: text-generation inference: true widget: - text: 'def factorial(n):' example_title: Factorial group: Python - text: 'def recur_fibo(n):' example_title: Recursive Fibonacci group: Python license: llama2 library_name: transformers tags: - text-generation - code language: - en --- # lemur-70b-v1 <p align="center"> <img src="https://huggingface.co/datasets/OpenLemur/assets/resolve/main/lemur_icon.png" width="300" height="300" alt="Lemur"> </p> <div align="center"> <img src="https://huggingface.co/datasets/OpenLemur/assets/resolve/main/lemur_base_radar.png"> </div> 📄Paper: https://arxiv.org/abs/2310.06830 👩‍💻Code: https://github.com/OpenLemur/Lemur ## Use ### Setup First, we have to install all the libraries listed in `requirements.txt` in [GitHub](https://github.com/OpenLemur/lemur-v1): ```bash pip install -r requirements.txt ``` ### Intended use Since it is not trained on instruction following corpus, it won't respond well to questions like "What is the Python code to do quick sort?". ### Generation ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("OpenLemur/lemur-70b-v1") model = AutoModelForCausalLM.from_pretrained("OpenLemur/lemur-70b-v1", device_map="auto", load_in_8bit=True) # Text Generation Example prompt = "The world is " input = tokenizer(prompt, return_tensors="pt") output = model.generate(**input, max_length=50, num_return_sequences=1) generated_text = tokenizer.decode(output[0], skip_special_tokens=True) print(generated_text) # Code Generation Example prompt = """ def factorial(n): if n == 0: return 1 """ input = tokenizer(prompt, return_tensors="pt") output = model.generate(**input, max_length=200, num_return_sequences=1) generated_code = tokenizer.decode(output[0], skip_special_tokens=True) print(generated_code) ``` # License The model is licensed under the Llama-2 community license agreement. # Acknowledgements The Lemur project is an open collaborative research effort between [XLang Lab](https://www.xlang.ai/) and Salesforce Research. We thank Salesforce, Google Research and Amazon AWS for their gift support.
dainis-boumber/df-adapters-twitter-rumours
dainis-boumber
2023-10-13T06:26:06Z
1
0
adapter-transformers
[ "adapter-transformers", "bert", "dataset:redasers/difraud", "region:us" ]
null
2023-10-13T04:14:22Z
--- tags: - bert - adapter-transformers datasets: - redasers/difraud --- # Adapter `dainis-boumber/df-adapters-twitter-rumours` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [redasers/difraud](https://huggingface.co/datasets/redasers/difraud/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("dainis-boumber/df-adapters-twitter-rumours", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
IHaBiS/Mistral-11B-OmniMix-bf16-4.125bpw-h8-exl2
IHaBiS
2023-10-13T06:17:56Z
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-10-13T06:02:27Z
--- license: cc-by-nc-4.0 --- exl2 version of [NeverSleep/Mistral-11B-OmniMix-bf16](https://huggingface.co/NeverSleep/Mistral-11B-OmniMix-bf16) used dataset : [wikitext](https://huggingface.co/datasets/wikitext) quantized by IHaBiS command : python convert.py -i models/NeverSleep_Mistral-11B-OmniMix-bf16 -o NeverSleep_Mistral-11B-OmniMix-bf16-temp -cf NeverSleep_Mistral-11B-OmniMix-bf16-4.125bpw-h8-exl2 -c 0000.parquet -l 4096 -b 4.125 -hb 8 -ss 4096 Below this sentence is original model card This model should be fixed, it was MEANT to be BF16. Don't mind this one at the moment, I need to finetune it for RP, it's just a test. ## Description This repo contains fp16 files of Mistral-11B-OmniMix-bf16. My goal for this model was only to make it score the highest possible with merge and layer toying, proving that: - Benchmark are objective - You should try a model yourself and don't go blindly to the highest rated one - Merge/Layer toying CAN be usable to do better model (maybe?) ## Model used - [Mistral-7B-OpenOrca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca) - [Mistral-7B-v0.1-Open-Platypus](akjindal53244/Mistral-7B-v0.1-Open-Platypus) - [CollectiveCognition-v1.1-Mistral-7B](https://huggingface.co/teknium/CollectiveCognition-v1.1-Mistral-7B) - [zephyr-7b-alpha](HuggingFaceH4/zephyr-7b-alpha) ## Prompt template: Alpaca or default ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ``` ``` USER: <prompt> ASSISTANT: ``` Or use any prompting system from one of the 4 source model, should work. ## The secret sauce Mistral-11B-OpenOrcaPlatypus : ``` slices: - sources: - model: Open-Orca/Mistral-7B-OpenOrca layer_range: [0, 24] - sources: - model: akjindal53244/Mistral-7B-v0.1-Open-Platypus layer_range: [8, 32] merge_method: passthrough dtype: bfloat16 ``` Mistral-11B-CC-Zephyr : ``` slices: - sources: - model: "/content/drive/MyDrive/CC-v1.1-7B-bf16" layer_range: [0, 24] - sources: - model: "/content/drive/MyDrive/Zephyr-7B" layer_range: [8, 32] merge_method: passthrough dtype: bfloat16 ``` Mistral-11B-OmniMix : ``` slices: - sources: - model: Mistral-11B-OpenOrcaPlatypus layer_range: [0, 48] - model: Mistral-11B-CC-Zephyr layer_range: [0, 48] merge_method: slerp base_model: Mistral-11B-OpenOrcaPlatypus parameters: t: - filter: lm_head value: [0.75] - filter: embed_tokens value: [0.75] - filter: self_attn value: [0.75, 0.25] - filter: mlp value: [0.25, 0.75] - filter: layernorm value: [0.5, 0.5] - filter: modelnorm value: [0.75] - value: 0.5 # fallback for rest of tensors dtype: bfloat16 ``` I use [mergekit](https://github.com/cg123/mergekit) for all the manipulation told here. ## Some scoring I done myself ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63ab1241ad514ca8d1430003/5aDYq-V0XWUsqbLH2ehPr.png) hf-causal-experimental (pretrained=/content/drive/MyDrive/Mistral-11B-OmniMix-bf16), limit: None, provide_description: False, num_fewshot: 0, batch_size: 4 | Task |Version| Metric |Value | |Stderr| |-------------|------:|--------|-----:|---|-----:| |arc_challenge| 0|acc |0.5580|± |0.0145| | | |acc_norm|0.5819|± |0.0144| |arc_easy | 0|acc |0.8300|± |0.0077| | | |acc_norm|0.8211|± |0.0079| |hellaswag | 0|acc |0.6372|± |0.0048| | | |acc_norm|0.8209|± |0.0038| |piqa | 0|acc |0.8145|± |0.0091| | | |acc_norm|0.8286|± |0.0088| |truthfulqa_mc| 1|mc1 |0.3978|± |0.0171| | | |mc2 |0.5680|± |0.0155| |winogrande | 0|acc |0.7427|± |0.0123| ## Others Special thanks to Sushi, [Henky](https://github.com/KoboldAI/KoboldAI-Client) for the machine he give me for big task, and [Charles Goddard](https://github.com/cg123) for his amazing tool. If you want to support me, you can [here](https://ko-fi.com/undiai).
TheBloke/speechless-code-mistral-7B-v1.0-GGUF
TheBloke
2023-10-13T06:17:08Z
278
10
transformers
[ "transformers", "gguf", "mistral", "llama-2", "code", "text-generation", "en", "dataset:jondurbin/airoboros-2.2", "dataset:Open-Orca/OpenOrca", "dataset:garage-bAInd/Open-Platypus", "dataset:WizardLM/WizardLM_evol_instruct_V2_196k", "dataset:TokenBender/python_eval_instruct_51k", "base_model:uukuguy/speechless-code-mistral-7b-v1.0", "base_model:quantized:uukuguy/speechless-code-mistral-7b-v1.0", "license:llama2", "model-index", "region:us" ]
text-generation
2023-10-13T06:07:41Z
--- base_model: uukuguy/speechless-code-mistral-7b-v1.0 datasets: - jondurbin/airoboros-2.2 - Open-Orca/OpenOrca - garage-bAInd/Open-Platypus - WizardLM/WizardLM_evol_instruct_V2_196k - TokenBender/python_eval_instruct_51k inference: false language: - en library_name: transformers license: llama2 model-index: - name: SpeechlessCoder results: - dataset: name: HumanEval type: openai_humaneval metrics: - name: pass@1 type: pass@1 value: 0.0 verified: false task: type: text-generation model_creator: Jiangwen Su model_name: Speechless Code Mistral 7B v1.0 model_type: mistral pipeline_tag: text-generation prompt_template: '{prompt} ' quantized_by: TheBloke tags: - llama-2 - code --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Speechless Code Mistral 7B v1.0 - GGUF - Model creator: [Jiangwen Su](https://huggingface.co/uukuguy) - Original model: [Speechless Code Mistral 7B v1.0](https://huggingface.co/uukuguy/speechless-code-mistral-7b-v1.0) <!-- description start --> ## Description This repo contains GGUF format model files for [Jiangwen Su's Speechless Code Mistral 7B v1.0](https://huggingface.co/uukuguy/speechless-code-mistral-7b-v1.0). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplate list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. <!-- README_GGUF.md-about-gguf end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/speechless-code-mistral-7B-v1.0-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/speechless-code-mistral-7B-v1.0-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/speechless-code-mistral-7B-v1.0-GGUF) * [Jiangwen Su's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/uukuguy/speechless-code-mistral-7b-v1.0) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: Unknown ``` {prompt} ``` <!-- prompt-template end --> <!-- compatibility_gguf start --> ## Compatibility These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) They are also compatible with many third party UIs and libraries - please see the list at the top of this README. ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw Refer to the Provided Files table below to see what files use which methods, and how. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-provided-files start --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [speechless-code-mistral-7b-v1.0.Q2_K.gguf](https://huggingface.co/TheBloke/speechless-code-mistral-7B-v1.0-GGUF/blob/main/speechless-code-mistral-7b-v1.0.Q2_K.gguf) | Q2_K | 2 | 3.08 GB| 5.58 GB | smallest, significant quality loss - not recommended for most purposes | | [speechless-code-mistral-7b-v1.0.Q3_K_S.gguf](https://huggingface.co/TheBloke/speechless-code-mistral-7B-v1.0-GGUF/blob/main/speechless-code-mistral-7b-v1.0.Q3_K_S.gguf) | Q3_K_S | 3 | 3.16 GB| 5.66 GB | very small, high quality loss | | [speechless-code-mistral-7b-v1.0.Q3_K_M.gguf](https://huggingface.co/TheBloke/speechless-code-mistral-7B-v1.0-GGUF/blob/main/speechless-code-mistral-7b-v1.0.Q3_K_M.gguf) | Q3_K_M | 3 | 3.52 GB| 6.02 GB | very small, high quality loss | | [speechless-code-mistral-7b-v1.0.Q3_K_L.gguf](https://huggingface.co/TheBloke/speechless-code-mistral-7B-v1.0-GGUF/blob/main/speechless-code-mistral-7b-v1.0.Q3_K_L.gguf) | Q3_K_L | 3 | 3.82 GB| 6.32 GB | small, substantial quality loss | | [speechless-code-mistral-7b-v1.0.Q4_0.gguf](https://huggingface.co/TheBloke/speechless-code-mistral-7B-v1.0-GGUF/blob/main/speechless-code-mistral-7b-v1.0.Q4_0.gguf) | Q4_0 | 4 | 4.11 GB| 6.61 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [speechless-code-mistral-7b-v1.0.Q4_K_S.gguf](https://huggingface.co/TheBloke/speechless-code-mistral-7B-v1.0-GGUF/blob/main/speechless-code-mistral-7b-v1.0.Q4_K_S.gguf) | Q4_K_S | 4 | 4.14 GB| 6.64 GB | small, greater quality loss | | [speechless-code-mistral-7b-v1.0.Q4_K_M.gguf](https://huggingface.co/TheBloke/speechless-code-mistral-7B-v1.0-GGUF/blob/main/speechless-code-mistral-7b-v1.0.Q4_K_M.gguf) | Q4_K_M | 4 | 4.37 GB| 6.87 GB | medium, balanced quality - recommended | | [speechless-code-mistral-7b-v1.0.Q5_0.gguf](https://huggingface.co/TheBloke/speechless-code-mistral-7B-v1.0-GGUF/blob/main/speechless-code-mistral-7b-v1.0.Q5_0.gguf) | Q5_0 | 5 | 5.00 GB| 7.50 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [speechless-code-mistral-7b-v1.0.Q5_K_S.gguf](https://huggingface.co/TheBloke/speechless-code-mistral-7B-v1.0-GGUF/blob/main/speechless-code-mistral-7b-v1.0.Q5_K_S.gguf) | Q5_K_S | 5 | 5.00 GB| 7.50 GB | large, low quality loss - recommended | | [speechless-code-mistral-7b-v1.0.Q5_K_M.gguf](https://huggingface.co/TheBloke/speechless-code-mistral-7B-v1.0-GGUF/blob/main/speechless-code-mistral-7b-v1.0.Q5_K_M.gguf) | Q5_K_M | 5 | 5.13 GB| 7.63 GB | large, very low quality loss - recommended | | [speechless-code-mistral-7b-v1.0.Q6_K.gguf](https://huggingface.co/TheBloke/speechless-code-mistral-7B-v1.0-GGUF/blob/main/speechless-code-mistral-7b-v1.0.Q6_K.gguf) | Q6_K | 6 | 5.94 GB| 8.44 GB | very large, extremely low quality loss | | [speechless-code-mistral-7b-v1.0.Q8_0.gguf](https://huggingface.co/TheBloke/speechless-code-mistral-7B-v1.0-GGUF/blob/main/speechless-code-mistral-7b-v1.0.Q8_0.gguf) | Q8_0 | 8 | 7.70 GB| 10.20 GB | very large, extremely low quality loss - not recommended | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. <!-- README_GGUF.md-provided-files end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: - LM Studio - LoLLMS Web UI - Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: TheBloke/speechless-code-mistral-7B-v1.0-GGUF and below it, a specific filename to download, such as: speechless-code-mistral-7b-v1.0.Q4_K_M.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download TheBloke/speechless-code-mistral-7B-v1.0-GGUF speechless-code-mistral-7b-v1.0.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download TheBloke/speechless-code-mistral-7B-v1.0-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/speechless-code-mistral-7B-v1.0-GGUF speechless-code-mistral-7b-v1.0.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 32 -m speechless-code-mistral-7b-v1.0.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "{prompt}" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 2048` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. ### How to load this model in Python code, using ctransformers #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install ctransformers # Or with CUDA GPU acceleration pip install ctransformers[cuda] # Or with AMD ROCm GPU acceleration (Linux only) CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers # Or with Metal GPU acceleration for macOS systems only CT_METAL=1 pip install ctransformers --no-binary ctransformers ``` #### Simple ctransformers example code ```python from ctransformers import AutoModelForCausalLM # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = AutoModelForCausalLM.from_pretrained("TheBloke/speechless-code-mistral-7B-v1.0-GGUF", model_file="speechless-code-mistral-7b-v1.0.Q4_K_M.gguf", model_type="mistral", gpu_layers=50) print(llm("AI is going to")) ``` ## How to use with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Pierre Kircher, Stanislav Ovsiannikov, Michael Levine, Eugene Pentland, Andrey, 준교 김, Randy H, Fred von Graf, Artur Olbinski, Caitlyn Gatomon, terasurfer, Jeff Scroggin, James Bentley, Vadim, Gabriel Puliatti, Harry Royden McLaughlin, Sean Connelly, Dan Guido, Edmond Seymore, Alicia Loh, subjectnull, AzureBlack, Manuel Alberto Morcote, Thomas Belote, Lone Striker, Chris Smitley, Vitor Caleffi, Johann-Peter Hartmann, Clay Pascal, biorpg, Brandon Frisco, sidney chen, transmissions 11, Pedro Madruga, jinyuan sun, Ajan Kanaga, Emad Mostaque, Trenton Dambrowitz, Jonathan Leane, Iucharbius, usrbinkat, vamX, George Stoitzev, Luke Pendergrass, theTransient, Olakabola, Swaroop Kallakuri, Cap'n Zoog, Brandon Phillips, Michael Dempsey, Nikolai Manek, danny, Matthew Berman, Gabriel Tamborski, alfie_i, Raymond Fosdick, Tom X Nguyen, Raven Klaugh, LangChain4j, Magnesian, Illia Dulskyi, David Ziegler, Mano Prime, Luis Javier Navarrete Lozano, Erik Bjäreholt, 阿明, Nathan Dryer, Alex, Rainer Wilmers, zynix, TL, Joseph William Delisle, John Villwock, Nathan LeClaire, Willem Michiel, Joguhyik, GodLy, OG, Alps Aficionado, Jeffrey Morgan, ReadyPlayerEmma, Tiffany J. Kim, Sebastain Graf, Spencer Kim, Michael Davis, webtim, Talal Aujan, knownsqashed, John Detwiler, Imad Khwaja, Deo Leter, Jerry Meng, Elijah Stavena, Rooh Singh, Pieter, SuperWojo, Alexandros Triantafyllidis, Stephen Murray, Ai Maven, ya boyyy, Enrico Ros, Ken Nordquist, Deep Realms, Nicholas, Spiking Neurons AB, Elle, Will Dee, Jack West, RoA, Luke @flexchar, Viktor Bowallius, Derek Yates, Subspace Studios, jjj, Toran Billups, Asp the Wyvern, Fen Risland, Ilya, NimbleBox.ai, Chadd, Nitin Borwankar, Emre, Mandus, Leonard Tan, Kalila, K, Trailburnt, S_X, Cory Kujawski Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> <!-- original-model-card start --> # Original model card: Jiangwen Su's Speechless Code Mistral 7B v1.0 <p><h1> speechless-code-mistral-7b-v1.0 </h1></p> Use the following dataset to fine-tune mistralai/Mistral-7B-v0.1 in order to improve the model's reasoning and planning abilities. Total 201,981 samples. - jondurbin/airoboros-2.2: Filter categories related to coding, reasoning and planning. 23,462 samples. - Open-Orca/OpenOrca: Filter the 'cot' category in 1M GPT4 dataset. 74,440 samples. - garage-bAInd/Open-Platypus: 100%, 24,926 samples. - WizardLM/WizardLM_evol_instruct_V2_196k: Coding coversation part. 30,185 samples - TokenBender/python_eval_instruct_51k: “python” in output .40,309 samples - Spider: 8,659 samples | | | |------ | ------ | | lr | 2e-4 | | lr_scheduler_type | cosine | | weight_decay | 0.0 | | optim | paged_adamw_8bit | | flash_attention | True | | rerope | False | | max_new_tokens | 4096 | | num_train_epochs | 2 | | bits | 4 | | lora_r | 64 | | lora_alpha | 16 | | lora_dropout | 0.05 | | double_quant | True | | quant_type | nf4 | | dataset_format | airoboros | | mini_batch_size | 2 | | grandient_accumulation_steps | 32 | | bf16 | True | A40-48G x 2 | | | |------ | ------ | | epoch | 2.0 | | etrain_loss | 0.5 | | etrain_runtime | 1 day, 10:25:26.77 | | etrain_samples_per_second | 3.194 | | etrain_steps_per_second | 0.025 | | eeval_loss | 0.5146 | | eeval_runtime | 0:00:25.04 | | eeval_samples_per_second | 7.985 | | eeval_steps_per_second | | | Metric | Value | | --- | --- | | humaneval-python || [Big Code Models Leaderboard](https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard) CodeLlama-34B-Python: 53.29 CodeLlama-34B-Instruct: 50.79 CodeLlama-13B-Instruct: 50.6 CodeLlama-34B: 45.11 CodeLlama-13B-Python: 42.89 CodeLlama-13B: 35.07 [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) | Metric | Value | | --- | --- | | ARC | | | HellaSwag | | | MMLU | | | TruthfulQA | | | Average | | <!-- original-model-card end -->
shubhamPetwal/mistral-finetuned-samsum
shubhamPetwal
2023-10-13T06:11:15Z
0
0
null
[ "generated_from_trainer", "base_model:TheBloke/Mistral-7B-Instruct-v0.1-GPTQ", "base_model:finetune:TheBloke/Mistral-7B-Instruct-v0.1-GPTQ", "license:apache-2.0", "region:us" ]
null
2023-10-12T11:34:08Z
--- license: apache-2.0 base_model: TheBloke/Mistral-7B-Instruct-v0.1-GPTQ tags: - generated_from_trainer model-index: - name: mistral-finetuned-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistral-finetuned-samsum This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.1-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GPTQ) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 250 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
erkam/sg2im-256-bs-16x2-cc-depth-12k-snr
erkam
2023-10-13T06:08:04Z
2
0
diffusers
[ "diffusers", "sg-to-image", "scene-graph", "stable-diffusion", "stable-diffusion-diffusers", "lora", "base_model:stabilityai/stable-diffusion-2", "base_model:adapter:stabilityai/stable-diffusion-2", "license:creativeml-openrail-m", "region:us" ]
null
2023-09-28T02:33:17Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2 tags: - sg-to-image - scene-graph - stable-diffusion - stable-diffusion-diffusers - diffusers - lora inference: true --- # LoRA text2image fine-tuning - erkam/sg2im-256-bs-16x2-cc-depth-12k-snr These are LoRA adaption weights for stabilityai/stable-diffusion-2. The weights were fine-tuned on the erkam/clevr-full-v5 dataset. You can find some example images in the following.
bengaliAI/BanglaConformer
bengaliAI
2023-10-13T05:50:33Z
99
8
nemo
[ "nemo", "automatic-speech-recognition", "bn", "arxiv:2305.09688", "license:mit", "region:us" ]
automatic-speech-recognition
2023-07-07T08:39:46Z
--- license: mit language: - bn metrics: - wer - cer library_name: nemo pipeline_tag: automatic-speech-recognition --- ## Model **Conformer-CTC** model trained on the *OOD-Speech dataset* to transcribe speech from Bangla audio. This is a large variant of the model, with ~121M parameters. To know more about the model architecture see the NeMo Documentation [here](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#conformer-ctc). ## Dataset The training split contains `1100+ hours` of audio data crowdsoruced from native Bangla speakers. We trained on this split for `164 epochs` , then the model was evaluated on`23+ hours` of audio across 17 diverse domains . ## Usage The model can be used as a pretrained checkpoint for inference or for fine-tuning on another dataset through the [NVIDIA NeMo toolkit](https://github.com/NVIDIA/NeMo). It is recommended to install the toolkit, after installing the pyTorch package. ```bash apt-get update && apt-get install -y libsndfile1 ffmpeg sox pip install Cython pip install nemo_toolkit['all'] #1.19.0 pip uninstall -y torchmetrics pip install torchmetrics==0.9.2 ``` After installing the required dependencies, download the .nemo file or the pretrained model to your local directory. you can instantiate the pretrained model like following: ```python import nemo.collections.asr as nemo_asr asr_model = nemo_asr.models.EncDecCTCModelBPE.from_pretrained("bengaliAI/BanglaConformer") ``` ## Data Preprocessing Prior to feeding the input audio to the pretrained model for training or inference, we need to resample the audio to **16KHz**. We can achieve that using the `sox` library : ```python from sox import Transformer if not os.path.exists("<RESAMPLED AUDIO FILE PATH>"): tfm = Transformer() tfm.rate(samplerate=16000) tfm.channels(n_channels=1) tfm.build(input_filepath= "<AUDIO FILE PATH>", output_filepath= "<RESAMPLED AUDIO FILE PATH>") ``` ## Training We used the official [NeMo documentation on training an ASR model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/asr/examples/kinyarwanda_asr.html) to prepare our transcript manifest and train our model. However, we did not train any custom tokenizer and instead downloaded the tokenizer from [banglaBERT-large](https://huggingface.co/csebuetnlp/banglabert_large/) for better vocabulary coverage. For validation, we have used `29589` samples separated from the training data and processed accordingly. **The final validation score was `22.4% WER` , at epoch `164`.** Training script : [training.sh](training.sh) ## Evaluation `14,016` test samples have been used to evaluate the dataset. The generated output file contains both ground truth and predicted strings. The final result is the Word Error Rate (WER) and Character Error Rate (CER) for the model. Evaluation script: [evaluation.sh](evaluation.sh) **Test Dataset WER/CER 69.25%/42.13%** ## Inference ### Inference using the library ```python asr_model.transcribe(paths2audio_files="<LIST OF RESAMPLED AUDIO FILES>") ``` ### Infer directly using the repo ```bash python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py \ model_path="<PRETRAINED MODEL PATH>" \ audio_dir="<DIRECTORY CONTAINING RESAMPLED AUDIO FILES>" \ output_filename="<PATH TO OUTPUT JSON>" \ batch_size=1 ``` ## Domain-wise Performance The model has also been separately evaluated across the different domain distributions of the test data. For more details please refer this paper: [OOD-Speech: A Large Bengali Speech Recognition Dataset for Out-of-Distribution Benchmarking](https://arxiv.org/pdf/2305.09688.pdf) ![](https://i.imgur.com/rzWzEVj.png) If you this model in your work, please cite the following paper : ``` @misc{rakib2023oodspeech, title={OOD-Speech: A Large Bengali Speech Recognition Dataset for Out-of-Distribution Benchmarking}, author={Fazle Rabbi Rakib and Souhardya Saha Dip and Samiul Alam and Nazia Tasnim and Md. Istiak Hossain Shihab and Md. Nazmuddoha Ansary and Syed Mobassir Hossen and Marsia Haque Meghla and Mamunur Mamun and Farig Sadeque and Sayma Sultana Chowdhury and Tahsin Reasat and Asif Sushmit and Ahmed Imtiaz Humayun}, year={2023}, eprint={2305.09688}, archivePrefix={arXiv}, primaryClass={eess.AS} } ```