modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-07-12 18:27:22
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 518
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-07-12 18:26:55
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
prajwalJumde/QA_REDACTION_NOV1_19 | prajwalJumde | 2023-11-01T20:14:00Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"question-answering",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-base",
"base_model:finetune:FacebookAI/xlm-roberta-base",
"license:mit",
"endpoints_compatible",
"region:us"
]
| question-answering | 2023-11-01T20:01:03Z | ---
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
model-index:
- name: QA_REDACTION_NOV1_19
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# QA_REDACTION_NOV1_19
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0174
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.0179 | 1.0 | 945 | 0.0366 |
| 0.1597 | 2.0 | 1890 | 0.0217 |
| 0.0651 | 3.0 | 2835 | 0.0264 |
| 0.0815 | 4.0 | 3780 | 0.0241 |
| 0.0503 | 5.0 | 4725 | 0.0213 |
| 0.0215 | 6.0 | 5670 | 0.0160 |
| 0.0257 | 7.0 | 6615 | 0.0195 |
| 0.0268 | 8.0 | 7560 | 0.0194 |
| 0.0323 | 9.0 | 8505 | 0.0179 |
| 0.0215 | 10.0 | 9450 | 0.0174 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.0.1
- Datasets 2.14.6
- Tokenizers 0.14.1
|
lmg-anon/TLAssist-llama2-7b-experiment-qlora | lmg-anon | 2023-11-01T20:08:22Z | 0 | 0 | null | [
"translation",
"en",
"license:llama2",
"region:us"
]
| translation | 2023-11-01T19:01:56Z | ---
language:
- en
license: llama2
pipeline_tag: translation
tags:
- translation
---
TLAssist is a qlora trained for 2 epochs using all the lines of the final chapter of the Visual Novel "Rewrite" in groups of "Original Text" (Japanese), "Baseline Translation" (MTL), "Improved Translation" (Fan TL). The purpose of this experiment being to find out if it's possible to create a model that can aid improve the quality of MTL.
## Prompt
```
Original Text: {Japanese Text}
Baseline Translation: {MTL}
Improved Translation:
```
For multi-turn, each translation group is separated by `---`.
## v1
The results I got from v1 seem to be promising, however, It still isn't ideal, some examples of things that I didn't like are:
```
Original Text: 「…う、うん」
Baseline Translation: "…No"
Improved Translation: 「...no.」 // The model seems to trust the baseline too much.
```
```
Original Text: その一 いつもと違う髪形に気がつくこと
Baseline Translation: One thing is noticing a different hairstyle than usual
Improved Translation: One: you must notice when I've changed my hairstyle
---
Original Text: その二 ちゃんと靴までみることいいね?
Baseline Translation: The second thing, it's good to pay attention to the shoes as well, right?
Improved Translation: Two: make sure you look at everything from head to toe. // The model seems to omit things for no reason. (in this case the "right?")
``` |
sofia-todeschini/BioELECTRA-LitCovid-v1.3.1 | sofia-todeschini | 2023-11-01T20:02:58Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"electra",
"text-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2023-11-01T18:21:47Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: BioELECTRA-LitCovid-v1.3.1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BioELECTRA-LitCovid-v1.3.1
This model is a fine-tuned version of [kamalkraj/bioelectra-base-discriminator-pubmed](https://huggingface.co/kamalkraj/bioelectra-base-discriminator-pubmed) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6749
- Hamming loss: 0.0257
- F1 micro: 0.7955
- F1 macro: 0.3005
- F1 weighted: 0.8714
- F1 samples: 0.8642
- Precision micro: 0.6936
- Precision macro: 0.2470
- Precision weighted: 0.8294
- Precision samples: 0.8463
- Recall micro: 0.9326
- Recall macro: 0.7358
- Recall weighted: 0.9326
- Recall samples: 0.9427
- Roc Auc: 0.9546
- Accuracy: 0.6664
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Hamming loss | F1 micro | F1 macro | F1 weighted | F1 samples | Precision micro | Precision macro | Precision weighted | Precision samples | Recall micro | Recall macro | Recall weighted | Recall samples | Roc Auc | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:------------:|:--------:|:--------:|:-----------:|:----------:|:---------------:|:---------------:|:------------------:|:-----------------:|:------------:|:------------:|:---------------:|:--------------:|:-------:|:--------:|
| 1.385 | 1.0 | 2272 | 0.6961 | 0.0592 | 0.6188 | 0.2176 | 0.7539 | 0.7422 | 0.4725 | 0.1706 | 0.6672 | 0.6890 | 0.8965 | 0.6896 | 0.8965 | 0.9065 | 0.9199 | 0.3887 |
| 1.2034 | 2.0 | 4544 | 0.6242 | 0.0342 | 0.7421 | 0.2668 | 0.8404 | 0.8354 | 0.6231 | 0.2180 | 0.7922 | 0.8120 | 0.9172 | 0.6872 | 0.9172 | 0.9319 | 0.9429 | 0.5906 |
| 1.0857 | 3.0 | 6816 | 0.6185 | 0.0270 | 0.7869 | 0.2949 | 0.8615 | 0.8587 | 0.6815 | 0.2402 | 0.8153 | 0.8382 | 0.9308 | 0.7164 | 0.9308 | 0.9437 | 0.9531 | 0.6444 |
| 0.8846 | 4.0 | 9088 | 0.6143 | 0.0260 | 0.7936 | 0.2994 | 0.8677 | 0.8626 | 0.6916 | 0.2460 | 0.8237 | 0.8444 | 0.9309 | 0.7254 | 0.9309 | 0.9421 | 0.9537 | 0.6594 |
| 0.6753 | 5.0 | 11360 | 0.6749 | 0.0257 | 0.7955 | 0.3005 | 0.8714 | 0.8642 | 0.6936 | 0.2470 | 0.8294 | 0.8463 | 0.9326 | 0.7358 | 0.9326 | 0.9427 | 0.9546 | 0.6664 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.13.3
|
Arabic-Clip-Archive/arabertv2-Vit-B-16-plus-epoch-11-trained-mscoco-training | Arabic-Clip-Archive | 2023-11-01T19:51:48Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"feature-extraction",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
]
| feature-extraction | 2023-11-01T19:21:11Z | https://wandb.ai/uos_mlalp/mscoco_teacher_learning_full_data/runs/r0iknp6k |
Trelis/falcon-7b-4k-chat-commercial-use-adapters | Trelis | 2023-11-01T19:44:50Z | 1 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:tiiuae/falcon-7b",
"base_model:adapter:tiiuae/falcon-7b",
"region:us"
]
| null | 2023-11-01T19:44:45Z | ---
library_name: peft
base_model: tiiuae/falcon-7b
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
## Training procedure
### Framework versions
- PEFT 0.6.0.dev0
|
M0F0IAm/RL_PBL_URK20CS1158 | M0F0IAm | 2023-11-01T19:42:54Z | 0 | 0 | sample-factory | [
"sample-factory",
"tensorboard",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-11-01T18:51:27Z | ---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: doom_defend_the_line
type: doom_defend_the_line
metrics:
- type: mean_reward
value: 20.70 +/- 4.36
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **doom_defend_the_line** environment.
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
## Downloading the model
After installing Sample-Factory, download the model with:
```
python -m sample_factory.huggingface.load_from_hub -r M0F0IAm/rl_course_vizdoom_health_gathering_supreme
```
## Using the model
To run the model after download, use the `enjoy` script corresponding to this environment:
```
python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_defend_the_line --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
```
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
## Training with this model
To continue training with this model, use the `train` script corresponding to this environment:
```
python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_defend_the_line --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
```
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
gokuls/HBERTv1_48_L2_H128_A2_ffn_5 | gokuls | 2023-11-01T19:40:11Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"hybridbert",
"fill-mask",
"generated_from_trainer",
"dataset:gokuls/wiki_book_corpus_complete_processed_bert_dataset",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| fill-mask | 2023-10-30T11:45:54Z | ---
tags:
- generated_from_trainer
datasets:
- gokuls/wiki_book_corpus_complete_processed_bert_dataset
metrics:
- accuracy
model-index:
- name: HBERTv1_48_L2_H128_A2_ffn_5
results:
- task:
name: Masked Language Modeling
type: fill-mask
dataset:
name: gokuls/wiki_book_corpus_complete_processed_bert_dataset
type: gokuls/wiki_book_corpus_complete_processed_bert_dataset
metrics:
- name: Accuracy
type: accuracy
value: 0.14995151698763923
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# HBERTv1_48_L2_H128_A2_ffn_5
This model is a fine-tuned version of [](https://huggingface.co/) on the gokuls/wiki_book_corpus_complete_processed_bert_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 6.0220
- Accuracy: 0.1500
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 160
- eval_batch_size: 160
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10000
- num_epochs: 100
### Training results
### Framework versions
- Transformers 4.34.1
- Pytorch 1.14.0a0+410ce96
- Datasets 2.14.6
- Tokenizers 0.14.1
|
nlamot/q-Taxi-v3 | nlamot | 2023-11-01T19:08:16Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-11-01T15:30:24Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="nlamot/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
ProHax/sft_final_2 | ProHax | 2023-11-01T19:07:49Z | 0 | 0 | peft | [
"peft",
"region:us"
]
| null | 2023-11-01T19:05:58Z | ---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0
|
gokuls/HBERTv1_48_L2_H128_A2_ffn_1 | gokuls | 2023-11-01T18:54:19Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"hybridbert",
"fill-mask",
"generated_from_trainer",
"dataset:gokuls/wiki_book_corpus_complete_processed_bert_dataset",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| fill-mask | 2023-10-30T11:45:57Z | ---
tags:
- generated_from_trainer
datasets:
- gokuls/wiki_book_corpus_complete_processed_bert_dataset
metrics:
- accuracy
model-index:
- name: HBERTv1_48_L2_H128_A2_ffn_1
results:
- task:
name: Masked Language Modeling
type: fill-mask
dataset:
name: gokuls/wiki_book_corpus_complete_processed_bert_dataset
type: gokuls/wiki_book_corpus_complete_processed_bert_dataset
metrics:
- name: Accuracy
type: accuracy
value: 0.1496531706247267
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# HBERTv1_48_L2_H128_A2_ffn_1
This model is a fine-tuned version of [](https://huggingface.co/) on the gokuls/wiki_book_corpus_complete_processed_bert_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 6.0273
- Accuracy: 0.1497
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 180
- eval_batch_size: 180
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10000
- num_epochs: 100
### Training results
### Framework versions
- Transformers 4.34.1
- Pytorch 1.14.0a0+410ce96
- Datasets 2.14.6
- Tokenizers 0.14.1
|
am-infoweb/QA_REDACTION_NOV1_17 | am-infoweb | 2023-11-01T18:39:38Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"question-answering",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-base",
"base_model:finetune:FacebookAI/xlm-roberta-base",
"license:mit",
"endpoints_compatible",
"region:us"
]
| question-answering | 2023-11-01T18:13:59Z | ---
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
model-index:
- name: QA_REDACTION_NOV1_17
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# QA_REDACTION_NOV1_17
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0463
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.0217 | 1.0 | 1913 | 0.0561 |
| 0.076 | 2.0 | 3826 | 0.0338 |
| 0.0732 | 3.0 | 5739 | 0.0277 |
| 0.0483 | 4.0 | 7652 | 0.0250 |
| 0.0282 | 5.0 | 9565 | 0.1352 |
| 0.0255 | 6.0 | 11478 | 0.0270 |
| 0.0227 | 7.0 | 13391 | 0.0282 |
| 0.0038 | 8.0 | 15304 | 0.0499 |
| 0.0178 | 9.0 | 17217 | 0.0439 |
| 0.0052 | 10.0 | 19130 | 0.0463 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.0.1
- Datasets 2.14.6
- Tokenizers 0.14.1
|
albertakn/dreambooth_output_v5 | albertakn | 2023-11-01T18:36:54Z | 1 | 0 | diffusers | [
"diffusers",
"tensorboard",
"safetensors",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"dreambooth",
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:finetune:runwayml/stable-diffusion-v1-5",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
]
| text-to-image | 2023-11-01T17:32:20Z |
---
license: creativeml-openrail-m
base_model: runwayml/stable-diffusion-v1-5
instance_prompt: a photo of sks dog
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- dreambooth
inference: true
---
# DreamBooth - albertakn/dreambooth_output_v5
This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/).
You can find some example images in the following.
DreamBooth for the text encoder was enabled: False.
|
VoidZeroe/llama8-model | VoidZeroe | 2023-11-01T18:35:05Z | 0 | 0 | peft | [
"peft",
"region:us"
]
| null | 2023-11-01T18:34:31Z | ---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.4.0
|
Derni/blender | Derni | 2023-11-01T18:32:48Z | 0 | 0 | null | [
"license:bigcode-openrail-m",
"region:us"
]
| null | 2023-11-01T18:31:01Z | ---
license: bigcode-openrail-m
---
|
alibidaran/falcon7b_demo | alibidaran | 2023-11-01T18:31:47Z | 7 | 0 | peft | [
"peft",
"region:us"
]
| null | 2023-08-01T10:45:42Z | ---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0.dev0
+ base_model:ybelkada/falcon-7b-sharded-bf16
|
GiantTreeG/german-jeopardy-mt5-large-256 | GiantTreeG | 2023-11-01T18:29:02Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"mt5",
"text2text-generation",
"question-generation",
"german",
"generated_from_trainer",
"de",
"dataset:lmqg/qg_dequad",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text2text-generation | 2023-11-01T18:28:16Z | ---
language:
- de
tags:
- question-generation
- german
- text2text-generation
- generated_from_trainer
datasets:
- lmqg/qg_dequad
metrics:
- bleu4
- f1
- rouge
- exact_match
model-index:
- name: german-jeopardy-mt5-large-256
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: lmqg/qg_dequad
type: default
args: default
metrics:
- name: BLEU-4
type: bleu4
value: 16.43
- name: F1
type: f1
value: 42.48
- name: ROUGE-1
type: rouge1
value: 43.56
- name: ROUGE-2
type: rouge2
value: 23.78
- name: ROUGE-L
type: rougel
value: 41.81
- name: ROUGE-Lsum
type: rougelsum
value: 41.80
- name: Exact Match
type: exact_match
value: 3.13
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# german-jeopardy-mt5-large-256
This model is a fine-tuned version of [google/mt5-large](https://huggingface.co/google/mt5-large) on the [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3943
- Brevity Penalty: 0.9201
- System Length: 19195
- Reference Length: 20793
- ROUGE-1: 43.56
- ROUGE-2: 23.78
- ROUGE-L: 41.81
- ROUGE-Lsum: 41.80
- Exact Match: 3.13
- BLEU: 16.43
- F1: 42.48
## Model description
See [google/mt5-large](https://huggingface.co/google/mt5-large) for the model architecture.
The model was trained on a single NVIDIA RTX 3090 GPU with 24GB of VRAM.
## Intended uses & limitations
This model can be used for question generation on German text.
## Training and evaluation data
See [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad).
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 7
- gradient_accumulation_steps: 256
- total_train_batch_size: 256
- optimizer: Adafactor
- lr_scheduler_type: constant
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Counts 1 | Counts 2 | Counts 3 | Counts 4 | Totals 1 | Totals 2 | Totals 3 | Totals 4 | Precisions 1 | Precisions 2 | Precisions 3 | Precisions 4 | Brevity Penalty | System Length | Reference Length | ROUGE-1 | ROUGE-2 | ROUGE-L | ROUGE-Lsum | Exact Match | BLEU | Mean Generated Length | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:----------------:|:-------:|:-------:|:-------:|:----------:|:-----------:|:-------:|:---------------------:|:------:|
| 5.932 | 0.99 | 36 | 2.4510 | 5614 | 1426 | 527 | 204 | 28835 | 26631 | 24427 | 22223 | 19.4694 | 5.3547 | 2.1574 | 0.918 | 1.0 | 28835 | 21250 | 0.1946 | 0.0763 | 0.1843 | 0.1843 | 0.0 | 3.7906 | 11.4306 | 0.2127 |
| 2.3089 | 1.98 | 72 | 1.3964 | 7578 | 2696 | 1244 | 580 | 17203 | 14999 | 12795 | 10591 | 44.0505 | 17.9745 | 9.7225 | 5.4763 | 0.7904 | 17203 | 21250 | 0.3312 | 0.1655 | 0.316 | 0.3162 | 0.01 | 11.3254 | 12.6583 | 0.3246 |
| 1.6778 | 3.0 | 109 | 1.2660 | 7961 | 3020 | 1480 | 747 | 17067 | 14863 | 12659 | 10455 | 46.6456 | 20.3189 | 11.6913 | 7.1449 | 0.7826 | 17067 | 21250 | 0.3608 | 0.1881 | 0.3456 | 0.3454 | 0.0195 | 13.128 | 12.4682 | 0.3517 |
| 1.5383 | 3.99 | 145 | 1.2212 | 7948 | 3121 | 1558 | 796 | 16694 | 14490 | 12286 | 10082 | 47.6099 | 21.539 | 12.6811 | 7.8953 | 0.7612 | 16694 | 21250 | 0.3663 | 0.1989 | 0.3523 | 0.352 | 0.024 | 13.625 | 12.221 | 0.3554 |
| 1.423 | 4.97 | 181 | 1.1706 | 8746 | 3590 | 1840 | 963 | 17765 | 15561 | 13357 | 11153 | 49.2316 | 23.0705 | 13.7755 | 8.6344 | 0.8219 | 17765 | 21250 | 0.4033 | 0.2224 | 0.3876 | 0.3874 | 0.0304 | 15.7567 | 13.0277 | 0.3941 |
| 1.2861 | 5.99 | 218 | 1.1327 | 8885 | 3646 | 1864 | 1005 | 17406 | 15202 | 12998 | 10794 | 51.0456 | 23.9837 | 14.3407 | 9.3107 | 0.8018 | 17406 | 21250 | 0.4181 | 0.2295 | 0.4022 | 0.402 | 0.0331 | 16.123 | 12.9142 | 0.4092 |
| 1.2372 | 6.98 | 254 | 1.1248 | 9122 | 3824 | 1997 | 1084 | 17310 | 15106 | 12902 | 10698 | 52.6979 | 25.3144 | 15.4782 | 10.1327 | 0.7964 | 17310 | 21250 | 0.4313 | 0.239 | 0.4175 | 0.4172 | 0.0358 | 17.0334 | 12.8412 | 0.4236 |
| 1.1307 | 8.0 | 291 | 1.0998 | 9423 | 4019 | 2136 | 1190 | 18074 | 15870 | 13666 | 11462 | 52.1357 | 25.3245 | 15.63 | 10.3821 | 0.8389 | 18074 | 21250 | 0.441 | 0.249 | 0.4255 | 0.4252 | 0.0404 | 18.0474 | 13.4138 | 0.4327 |
| 1.0982 | 8.99 | 327 | 1.1052 | 9450 | 4003 | 2147 | 1184 | 18145 | 15941 | 13737 | 11533 | 52.0805 | 25.1113 | 15.6293 | 10.2662 | 0.8427 | 18145 | 21250 | 0.4427 | 0.2492 | 0.4266 | 0.4261 | 0.0426 | 18.0367 | 13.4465 | 0.4344 |
| 1.0449 | 9.98 | 363 | 1.0996 | 9471 | 4036 | 2149 | 1180 | 18067 | 15863 | 13659 | 11455 | 52.4215 | 25.4429 | 15.7332 | 10.3012 | 0.8385 | 18067 | 21250 | 0.4422 | 0.2477 | 0.4261 | 0.4257 | 0.0404 | 18.0793 | 13.333 | 0.4341 |
| 0.9686 | 10.99 | 400 | 1.1012 | 9612 | 4165 | 2240 | 1233 | 17983 | 15779 | 13575 | 11371 | 53.4505 | 26.3958 | 16.5009 | 10.8434 | 0.8339 | 17983 | 21250 | 0.4534 | 0.2591 | 0.4381 | 0.4378 | 0.0449 | 18.6914 | 13.3534 | 0.4458 |
| 0.9465 | 11.98 | 436 | 1.1027 | 9670 | 4154 | 2229 | 1239 | 18217 | 16013 | 13809 | 11605 | 53.0823 | 25.9414 | 16.1416 | 10.6764 | 0.8466 | 18217 | 21250 | 0.4531 | 0.258 | 0.4377 | 0.4374 | 0.0445 | 18.6863 | 13.5912 | 0.4452 |
| 0.9025 | 12.97 | 472 | 1.1124 | 9627 | 4155 | 2241 | 1247 | 18076 | 15872 | 13668 | 11464 | 53.2585 | 26.1782 | 16.396 | 10.8775 | 0.839 | 18076 | 21250 | 0.4531 | 0.2583 | 0.4386 | 0.4382 | 0.0436 | 18.7344 | 13.5259 | 0.4452 |
| 0.8402 | 13.99 | 509 | 1.1392 | 9425 | 4071 | 2176 | 1207 | 17339 | 15135 | 12931 | 10727 | 54.3572 | 26.8979 | 16.8278 | 11.252 | 0.7981 | 17339 | 21250 | 0.4495 | 0.2568 | 0.4365 | 0.4358 | 0.0445 | 18.3062 | 12.9129 | 0.4417 |
| 0.8282 | 14.98 | 545 | 1.1227 | 9803 | 4274 | 2316 | 1305 | 18652 | 16448 | 14244 | 12040 | 52.5574 | 25.9849 | 16.2595 | 10.8389 | 0.87 | 18652 | 21250 | 0.4573 | 0.2627 | 0.4418 | 0.4414 | 0.0463 | 19.2695 | 14.0104 | 0.4496 |
| 0.7694 | 16.0 | 582 | 1.1394 | 9740 | 4240 | 2299 | 1296 | 18281 | 16077 | 13873 | 11669 | 53.2794 | 26.3731 | 16.5718 | 11.1064 | 0.8501 | 18281 | 21250 | 0.4572 | 0.2629 | 0.4411 | 0.4412 | 0.0476 | 19.1704 | 13.6475 | 0.4492 |
| 0.7589 | 16.99 | 618 | 1.1497 | 9663 | 4140 | 2214 | 1232 | 18412 | 16208 | 14004 | 11800 | 52.4821 | 25.5429 | 15.8098 | 10.4407 | 0.8572 | 18412 | 21250 | 0.4515 | 0.2561 | 0.4359 | 0.4358 | 0.044 | 18.5906 | 13.7926 | 0.4432 |
| 0.724 | 17.98 | 654 | 1.1680 | 9743 | 4246 | 2316 | 1300 | 18402 | 16198 | 13994 | 11790 | 52.9453 | 26.2131 | 16.5499 | 11.0263 | 0.8566 | 18402 | 21250 | 0.4562 | 0.2625 | 0.4408 | 0.441 | 0.0472 | 19.2167 | 13.7214 | 0.4474 |
| 0.6755 | 18.99 | 691 | 1.1874 | 9722 | 4266 | 2351 | 1341 | 18272 | 16068 | 13864 | 11660 | 53.2071 | 26.5497 | 16.9576 | 11.5009 | 0.8496 | 18272 | 21250 | 0.4559 | 0.2639 | 0.4417 | 0.4413 | 0.0495 | 19.4647 | 13.6071 | 0.4469 |
| 0.657 | 19.79 | 720 | 1.1845 | 9920 | 4361 | 2402 | 1373 | 18884 | 16680 | 14476 | 12272 | 52.5312 | 26.1451 | 16.593 | 11.1881 | 0.8822 | 18884 | 21250 | 0.4594 | 0.2647 | 0.4423 | 0.4421 | 0.0467 | 19.8248 | 14.2001 | 0.4508 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
GerardMR/CartPole | GerardMR | 2023-11-01T18:21:40Z | 0 | 0 | null | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-11-01T18:20:47Z | ---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: CartPole
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
GiantTreeG/german-jeopardy-mt5-large-128 | GiantTreeG | 2023-11-01T18:21:12Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"mt5",
"text2text-generation",
"question-generation",
"german",
"generated_from_trainer",
"de",
"dataset:lmqg/qg_dequad",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text2text-generation | 2023-11-01T18:20:29Z | ---
language:
- de
tags:
- question-generation
- german
- text2text-generation
- generated_from_trainer
datasets:
- lmqg/qg_dequad
metrics:
- bleu4
- f1
- rouge
- exact_match
model-index:
- name: german-jeopardy-mt5-large-128
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: lmqg/qg_dequad
type: default
args: default
metrics:
- name: BLEU-4
type: bleu4
value: 16.06
- name: F1
type: f1
value: 42.29
- name: ROUGE-1
type: rouge1
value: 43.40
- name: ROUGE-2
type: rouge2
value: 23.68
- name: ROUGE-L
type: rougel
value: 41.78
- name: ROUGE-Lsum
type: rougelsum
value: 41.79
- name: Exact Match
type: exact_match
value: 3.18
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# german-jeopardy-mt5-large-128
This model is a fine-tuned version of [google/mt5-large](https://huggingface.co/google/mt5-large) on the [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5487
- Brevity Penalty: 0.9115
- System Length: 19029
- Reference Length: 20793
- ROUGE-1: 43.40
- ROUGE-2: 23.68
- ROUGE-L: 41.78
- ROUGE-Lsum: 41.79
- Exact Match: 3.18
- BLEU: 16.06
- F1: 42.29
## Model description
See [google/mt5-large](https://huggingface.co/google/mt5-large) for the model architecture.
The model was trained on a single NVIDIA RTX 3090 GPU with 24GB of VRAM.
## Intended uses & limitations
This model can be used for question generation on German text.
## Training and evaluation data
See [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad).
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 7
- gradient_accumulation_steps: 128
- total_train_batch_size: 128
- optimizer: Adafactor
- lr_scheduler_type: constant
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Counts 1 | Counts 2 | Counts 3 | Counts 4 | Totals 1 | Totals 2 | Totals 3 | Totals 4 | Precisions 1 | Precisions 2 | Precisions 3 | Precisions 4 | Brevity Penalty | System Length | Reference Length | ROUGE-1 | ROUGE-2 | ROUGE-L | ROUGE-Lsum | Exact Match | BLEU | Mean Generated Length | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:----------------:|:-------:|:-------:|:-------:|:----------:|:-----------:|:-------:|:---------------------:|:------:|
| 3.9659 | 0.99 | 72 | 1.4145 | 7244 | 2547 | 1183 | 565 | 16296 | 14092 | 11888 | 9684 | 44.4526 | 18.0741 | 9.9512 | 5.8344 | 0.7379 | 16296 | 21250 | 0.3213 | 0.1608 | 0.3091 | 0.309 | 0.0136 | 10.8438 | 11.7786 | 0.3139 |
| 1.7081 | 1.99 | 145 | 1.2632 | 7865 | 3037 | 1498 | 759 | 16841 | 14637 | 12433 | 10229 | 46.7015 | 20.7488 | 12.0486 | 7.4201 | 0.7697 | 16841 | 21250 | 0.3577 | 0.189 | 0.3438 | 0.3439 | 0.0181 | 13.2044 | 12.225 | 0.3481 |
| 1.4856 | 3.0 | 218 | 1.1974 | 8608 | 3519 | 1818 | 969 | 17627 | 15423 | 13219 | 11015 | 48.8342 | 22.8166 | 13.7529 | 8.7971 | 0.8142 | 17627 | 21250 | 0.3969 | 0.2181 | 0.381 | 0.3812 | 0.0268 | 15.6014 | 13.0027 | 0.3882 |
| 1.3277 | 4.0 | 291 | 1.1394 | 9018 | 3702 | 1907 | 1029 | 17465 | 15261 | 13057 | 10853 | 51.6347 | 24.2579 | 14.6052 | 9.4812 | 0.8052 | 17465 | 21250 | 0.424 | 0.2321 | 0.4087 | 0.4085 | 0.0313 | 16.4313 | 12.8716 | 0.4156 |
| 1.2314 | 4.99 | 363 | 1.1193 | 9240 | 3869 | 1994 | 1076 | 17794 | 15590 | 13386 | 11182 | 51.9276 | 24.8172 | 14.8962 | 9.6226 | 0.8235 | 17794 | 21250 | 0.4336 | 0.2413 | 0.4183 | 0.418 | 0.0363 | 17.0718 | 13.2137 | 0.4256 |
| 1.1264 | 5.99 | 436 | 1.1086 | 9263 | 3908 | 2055 | 1127 | 17502 | 15298 | 13094 | 10890 | 52.9254 | 25.5458 | 15.6942 | 10.3489 | 0.8072 | 17502 | 21250 | 0.4383 | 0.2452 | 0.4239 | 0.4237 | 0.0372 | 17.4744 | 13.034 | 0.4309 |
| 1.0469 | 7.0 | 509 | 1.1038 | 9434 | 4034 | 2146 | 1189 | 18028 | 15824 | 13620 | 11416 | 52.3297 | 25.4929 | 15.7562 | 10.4152 | 0.8363 | 18028 | 21250 | 0.4433 | 0.2505 | 0.4286 | 0.4282 | 0.039 | 18.0906 | 13.422 | 0.4348 |
| 0.9874 | 8.0 | 582 | 1.0990 | 9746 | 4265 | 2287 | 1285 | 18351 | 16147 | 13943 | 11739 | 53.1088 | 26.4136 | 16.4025 | 10.9464 | 0.8539 | 18351 | 21250 | 0.457 | 0.2627 | 0.4417 | 0.4416 | 0.0454 | 19.1287 | 13.6466 | 0.4498 |
| 0.9488 | 8.99 | 654 | 1.1175 | 9484 | 4062 | 2158 | 1197 | 17831 | 15627 | 13423 | 11219 | 53.1883 | 25.9935 | 16.0769 | 10.6694 | 0.8255 | 17831 | 21250 | 0.4482 | 0.2548 | 0.4338 | 0.4333 | 0.0431 | 18.2172 | 13.2763 | 0.4399 |
| 0.8893 | 9.99 | 727 | 1.1222 | 9650 | 4205 | 2289 | 1289 | 18017 | 15813 | 13609 | 11405 | 53.5605 | 26.592 | 16.8198 | 11.3021 | 0.8357 | 18017 | 21250 | 0.4543 | 0.262 | 0.4396 | 0.4394 | 0.0463 | 19.064 | 13.4251 | 0.4472 |
| 0.8362 | 10.99 | 800 | 1.1342 | 9706 | 4232 | 2279 | 1281 | 18232 | 16028 | 13824 | 11620 | 53.2361 | 26.4038 | 16.4858 | 11.0241 | 0.8474 | 18232 | 21250 | 0.4551 | 0.2632 | 0.4395 | 0.4393 | 0.0472 | 19.052 | 13.6021 | 0.4473 |
| 0.7835 | 12.0 | 873 | 1.1427 | 9802 | 4280 | 2292 | 1285 | 18491 | 16287 | 14083 | 11879 | 53.0096 | 26.2786 | 16.2749 | 10.8174 | 0.8614 | 18491 | 21250 | 0.458 | 0.2634 | 0.4414 | 0.4412 | 0.0472 | 19.169 | 14.0168 | 0.4497 |
| 0.7441 | 12.99 | 945 | 1.1669 | 9816 | 4323 | 2334 | 1294 | 18498 | 16294 | 14090 | 11886 | 53.0652 | 26.5312 | 16.5649 | 10.8868 | 0.8618 | 18498 | 21250 | 0.4577 | 0.2659 | 0.4418 | 0.4417 | 0.0463 | 19.3443 | 13.8348 | 0.4493 |
| 0.7012 | 13.99 | 1018 | 1.1740 | 9856 | 4364 | 2375 | 1360 | 18537 | 16333 | 14129 | 11925 | 53.1693 | 26.7189 | 16.8094 | 11.4046 | 0.8639 | 18537 | 21250 | 0.4591 | 0.2653 | 0.443 | 0.4428 | 0.0476 | 19.7341 | 13.976 | 0.4514 |
| 0.6597 | 14.99 | 1091 | 1.1987 | 9780 | 4292 | 2336 | 1302 | 18468 | 16264 | 14060 | 11856 | 52.9565 | 26.3896 | 16.6145 | 10.9818 | 0.8602 | 18468 | 21250 | 0.457 | 0.2633 | 0.4418 | 0.4416 | 0.0485 | 19.3289 | 13.8802 | 0.4492 |
| 0.6236 | 16.0 | 1164 | 1.2135 | 9931 | 4388 | 2390 | 1359 | 18717 | 16513 | 14309 | 12105 | 53.0587 | 26.573 | 16.7028 | 11.2268 | 0.8734 | 18717 | 21250 | 0.4618 | 0.2682 | 0.4452 | 0.445 | 0.0495 | 19.8055 | 14.044 | 0.4538 |
| 0.5933 | 17.0 | 1237 | 1.2305 | 9806 | 4316 | 2366 | 1348 | 18566 | 16362 | 14158 | 11954 | 52.817 | 26.3782 | 16.7114 | 11.2766 | 0.8654 | 18566 | 21250 | 0.4571 | 0.2628 | 0.4407 | 0.4409 | 0.049 | 19.5893 | 14.0622 | 0.4485 |
| 0.5622 | 17.99 | 1309 | 1.2796 | 9787 | 4306 | 2346 | 1338 | 18559 | 16355 | 14151 | 11947 | 52.7345 | 26.3283 | 16.5783 | 11.1995 | 0.865 | 18559 | 21250 | 0.4549 | 0.2609 | 0.4383 | 0.4382 | 0.0476 | 19.4914 | 13.7763 | 0.447 |
| 0.5275 | 18.99 | 1382 | 1.2833 | 9918 | 4363 | 2374 | 1355 | 18950 | 16746 | 14542 | 12338 | 52.3377 | 26.054 | 16.3251 | 10.9823 | 0.8857 | 18950 | 21250 | 0.4573 | 0.2624 | 0.441 | 0.4408 | 0.0508 | 19.6947 | 14.1647 | 0.4499 |
| 0.4986 | 19.79 | 1440 | 1.3059 | 9879 | 4315 | 2347 | 1324 | 18931 | 16727 | 14523 | 12319 | 52.1842 | 25.7966 | 16.1606 | 10.7476 | 0.8847 | 18931 | 21250 | 0.4564 | 0.2622 | 0.4407 | 0.4403 | 0.0495 | 19.4544 | 14.2827 | 0.4478 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
oblivious/Refact-1.6B-fim-GGUF | oblivious | 2023-11-01T18:13:32Z | 140 | 4 | null | [
"gguf",
"code",
"text-generation",
"en",
"dataset:bigcode/the-stack-dedup",
"dataset:rombodawg/2XUNCENSORED_MegaCodeTraining188k",
"dataset:bigcode/commitpackft",
"base_model:smallcloudai/Refact-1_6B-fim",
"base_model:quantized:smallcloudai/Refact-1_6B-fim",
"license:bigscience-openrail-m",
"endpoints_compatible",
"region:us"
]
| text-generation | 2023-11-01T17:20:10Z | ---
base_model: smallcloudai/Refact-1_6B-fim
license: bigscience-openrail-m
model_creator: Small Magellanic Cloud AI
model_name: Refact-1.6B
pipeline_tag: text-generation
prompt_template: '<fim_prefix>{prefix}<fim_suffix>{suffix}<fim_middle>'
pretrain-datasets:
- books
- arxiv
- c4
- falcon-refinedweb
- wiki
- github-issues
- stack_markdown
- self-made dataset of permissive github code
datasets:
- bigcode/the-stack-dedup
- rombodawg/2XUNCENSORED_MegaCodeTraining188k
- bigcode/commitpackft
tags:
- code
language:
- en
---
# Refact-1.6B-fim-GGUF
- Model creator: [Small Magellanic Cloud AI](https://huggingface.co/smallcloudai)
- Original model: [Refact-1.6B](https://huggingface.co/smallcloudai/Refact-1_6B-fim)
## Description
This repository contains quantized GGUF format model files for [Refact-1.6B](https://huggingface.co/smallcloudai/Refact-1_6B-fim).
## Prompt: fill in the middle
```
<fim_prefix>def print_hello_world():\n """<fim_suffix>\n print("Hello world!")<fim_middle>
```
## Prompt: chat (experimental)
```
<empty_output>SYSTEM You are a programming assistant
<empty_output>USER How do I sort a list in Python?
<empty_output>ASSISTANT
```
## Example `llama.cpp` command
```shell
./main -m refact-1_6b-Q4_K_M.gguf -c 4096 -n -1 -p '<fim_prefix>{prefix}<fim_suffix>{suffix}<fim_middle>'
```
For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
|
floressullon/distilbert-base-uncased-finetuned-pos | floressullon | 2023-11-01T18:02:25Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"dataset:conll2003",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2023-10-30T20:23:23Z | ---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-pos
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9111159430794133
- name: Recall
type: recall
value: 0.9150066723280359
- name: F1
type: f1
value: 0.9130571629179478
- name: Accuracy
type: accuracy
value: 0.9249209652564856
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-pos
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3205
- Precision: 0.9111
- Recall: 0.9150
- F1: 0.9131
- Accuracy: 0.9249
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.8042 | 1.0 | 878 | 0.3449 | 0.8981 | 0.9028 | 0.9004 | 0.9168 |
| 0.256 | 2.0 | 1756 | 0.3195 | 0.9069 | 0.9125 | 0.9097 | 0.9232 |
| 0.2075 | 3.0 | 2634 | 0.3205 | 0.9111 | 0.9150 | 0.9131 | 0.9249 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
|
karanthgreeshma/wav2vec2-large-300m-colab-only-gn | karanthgreeshma | 2023-11-01T18:01:23Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice_13_0",
"base_model:facebook/wav2vec2-xls-r-300m",
"base_model:finetune:facebook/wav2vec2-xls-r-300m",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| automatic-speech-recognition | 2023-10-31T21:23:57Z | ---
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
datasets:
- common_voice_13_0
metrics:
- wer
model-index:
- name: wav2vec2-large-300m-colab-only-gn
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_13_0
type: common_voice_13_0
config: gn
split: test
args: gn
metrics:
- name: Wer
type: wer
value: 0.5229303156640858
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-300m-colab-only-gn
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_13_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5274
- Wer: 0.5229
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 20.8148 | 0.45 | 25 | 13.5976 | 1.0 |
| 7.0188 | 0.9 | 50 | 5.5263 | 1.0 |
| 4.1285 | 1.35 | 75 | 3.6078 | 1.0 |
| 3.338 | 1.8 | 100 | 3.3217 | 1.0 |
| 3.2829 | 2.25 | 125 | 3.2781 | 1.0 |
| 3.272 | 2.7 | 150 | 3.2601 | 1.0 |
| 3.2224 | 3.15 | 175 | 3.2234 | 1.0 |
| 3.1949 | 3.6 | 200 | 3.1998 | 1.0 |
| 3.1846 | 4.05 | 225 | 3.1841 | 1.0 |
| 3.1615 | 4.5 | 250 | 3.1719 | 1.0 |
| 3.1367 | 4.95 | 275 | 3.1132 | 1.0 |
| 3.0111 | 5.41 | 300 | 2.9344 | 1.0 |
| 2.7786 | 5.86 | 325 | 2.5643 | 1.0 |
| 2.2106 | 6.31 | 350 | 1.8132 | 1.0 |
| 1.6365 | 6.76 | 375 | 1.4008 | 0.9982 |
| 1.178 | 7.21 | 400 | 1.0678 | 0.9845 |
| 0.8903 | 7.66 | 425 | 0.8744 | 0.9369 |
| 0.7429 | 8.11 | 450 | 0.7213 | 0.8752 |
| 0.5931 | 8.56 | 475 | 0.6681 | 0.8189 |
| 0.5592 | 9.01 | 500 | 0.6622 | 0.7895 |
| 0.4316 | 9.46 | 525 | 0.6177 | 0.7644 |
| 0.4098 | 9.91 | 550 | 0.5599 | 0.7874 |
| 0.3176 | 10.36 | 575 | 0.5649 | 0.7001 |
| 0.3142 | 10.81 | 600 | 0.5828 | 0.6867 |
| 0.3227 | 11.26 | 625 | 0.5505 | 0.6736 |
| 0.275 | 11.71 | 650 | 0.5432 | 0.6540 |
| 0.2783 | 12.16 | 675 | 0.5372 | 0.6462 |
| 0.2316 | 12.61 | 700 | 0.5078 | 0.6379 |
| 0.2281 | 13.06 | 725 | 0.5059 | 0.6161 |
| 0.2191 | 13.51 | 750 | 0.5175 | 0.5956 |
| 0.1911 | 13.96 | 775 | 0.5216 | 0.5929 |
| 0.1731 | 14.41 | 800 | 0.5069 | 0.5789 |
| 0.1743 | 14.86 | 825 | 0.5207 | 0.5971 |
| 0.1755 | 15.32 | 850 | 0.5436 | 0.6307 |
| 0.1568 | 15.77 | 875 | 0.5374 | 0.6001 |
| 0.1629 | 16.22 | 900 | 0.5429 | 0.6102 |
| 0.1418 | 16.67 | 925 | 0.5089 | 0.5762 |
| 0.136 | 17.12 | 950 | 0.5291 | 0.5878 |
| 0.1354 | 17.57 | 975 | 0.5381 | 0.5840 |
| 0.1351 | 18.02 | 1000 | 0.5511 | 0.5947 |
| 0.1252 | 18.47 | 1025 | 0.5204 | 0.5643 |
| 0.1215 | 18.92 | 1050 | 0.5385 | 0.5613 |
| 0.1188 | 19.37 | 1075 | 0.5063 | 0.5718 |
| 0.1209 | 19.82 | 1100 | 0.5211 | 0.5488 |
| 0.1091 | 20.27 | 1125 | 0.5245 | 0.5557 |
| 0.112 | 20.72 | 1150 | 0.4910 | 0.5587 |
| 0.102 | 21.17 | 1175 | 0.5192 | 0.5581 |
| 0.0947 | 21.62 | 1200 | 0.5500 | 0.5718 |
| 0.1066 | 22.07 | 1225 | 0.5288 | 0.5488 |
| 0.1011 | 22.52 | 1250 | 0.5180 | 0.5438 |
| 0.0974 | 22.97 | 1275 | 0.5089 | 0.5277 |
| 0.0926 | 23.42 | 1300 | 0.5222 | 0.5301 |
| 0.0871 | 23.87 | 1325 | 0.5135 | 0.5366 |
| 0.0808 | 24.32 | 1350 | 0.4990 | 0.5331 |
| 0.0739 | 24.77 | 1375 | 0.5281 | 0.5351 |
| 0.0841 | 25.23 | 1400 | 0.5321 | 0.5360 |
| 0.0743 | 25.68 | 1425 | 0.5508 | 0.5447 |
| 0.0809 | 26.13 | 1450 | 0.5228 | 0.5396 |
| 0.0631 | 26.58 | 1475 | 0.5284 | 0.5351 |
| 0.0788 | 27.03 | 1500 | 0.5250 | 0.5289 |
| 0.0754 | 27.48 | 1525 | 0.5204 | 0.5259 |
| 0.0663 | 27.93 | 1550 | 0.5275 | 0.5313 |
| 0.0645 | 28.38 | 1575 | 0.5288 | 0.5259 |
| 0.0729 | 28.83 | 1600 | 0.5268 | 0.5259 |
| 0.0656 | 29.28 | 1625 | 0.5277 | 0.5232 |
| 0.0703 | 29.73 | 1650 | 0.5274 | 0.5229 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
tkay264/model-test | tkay264 | 2023-11-01T17:53:33Z | 0 | 0 | peft | [
"peft",
"llama",
"arxiv:1910.09700",
"base_model:meta-llama/Llama-2-7b-chat-hf",
"base_model:adapter:meta-llama/Llama-2-7b-chat-hf",
"4-bit",
"bitsandbytes",
"region:us"
]
| null | 2023-11-01T17:25:23Z | ---
library_name: peft
base_model: meta-llama/Llama-2-7b-chat-hf
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.6.0.dev0
|
Shiko07/bert-base-uncased | Shiko07 | 2023-11-01T17:52:53Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:google-bert/bert-base-uncased",
"base_model:finetune:google-bert/bert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2023-11-01T17:05:04Z | ---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: bert-base-uncased
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7672
- Rmse: 0.6779
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rmse |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.7744 | 0.5 | 500 | 0.7366 | 0.7180 |
| 0.7071 | 1.0 | 1000 | 0.6900 | 0.7068 |
| 0.5951 | 1.5 | 1500 | 0.6372 | 0.6764 |
| 0.5814 | 2.0 | 2000 | 0.6076 | 0.6986 |
| 0.4345 | 2.5 | 2500 | 0.7680 | 0.6793 |
| 0.404 | 3.0 | 3000 | 0.7672 | 0.6779 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
TheBloke/vietnamese-llama2-7B-40GB-GPTQ | TheBloke | 2023-11-01T17:52:09Z | 23 | 4 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"vi",
"en",
"dataset:vietgpt/wikipedia_vi",
"dataset:wikipedia",
"dataset:pg19",
"dataset:mc4",
"base_model:bkai-foundation-models/vietnamese-llama2-7b-40GB",
"base_model:quantized:bkai-foundation-models/vietnamese-llama2-7b-40GB",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"4-bit",
"gptq",
"region:us"
]
| text-generation | 2023-11-01T16:53:58Z | ---
base_model: bkai-foundation-models/vietnamese-llama2-7b-40GB
datasets:
- vietgpt/wikipedia_vi
- wikipedia
- pg19
- mc4
inference: false
language:
- vi
- en
license: other
model_creator: BKAI-HUST Foundation Models Lab
model_name: Vietnamese Llama2 7B 40GB
model_type: llama
prompt_template: '{prompt}
'
quantized_by: TheBloke
---
<!-- markdownlint-disable MD041 -->
<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->
# Vietnamese Llama2 7B 40GB - GPTQ
- Model creator: [BKAI-HUST Foundation Models Lab](https://huggingface.co/bkai-foundation-models)
- Original model: [Vietnamese Llama2 7B 40GB](https://huggingface.co/bkai-foundation-models/vietnamese-llama2-7b-40GB)
<!-- description start -->
## Description
This repo contains GPTQ model files for [BKAI-HUST Foundation Models Lab's Vietnamese Llama2 7B 40GB](https://huggingface.co/bkai-foundation-models/vietnamese-llama2-7b-40GB).
Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
<!-- description end -->
<!-- repositories-available start -->
## Repositories available
* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/vietnamese-llama2-7B-40GB-AWQ)
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/vietnamese-llama2-7B-40GB-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/vietnamese-llama2-7B-40GB-GGUF)
* [BKAI-HUST Foundation Models Lab's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/bkai-foundation-models/vietnamese-llama2-7b-40GB)
<!-- repositories-available end -->
<!-- prompt-template start -->
## Prompt template: None
```
{prompt}
```
<!-- prompt-template end -->
<!-- licensing start -->
## Licensing
The creator of the source model has listed its license as `other`, and this quantization has therefore used that same license.
As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [BKAI-HUST Foundation Models Lab's Vietnamese Llama2 7B 40GB](https://huggingface.co/bkai-foundation-models/vietnamese-llama2-7b-40GB).
<!-- licensing end -->
<!-- README_GPTQ.md-compatible clients start -->
## Known compatible clients / servers
These GPTQ models are known to work in the following inference servers/webuis.
- [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
- [KobaldAI United](https://github.com/henk717/koboldai)
- [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui)
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
This may not be a complete list; if you know of others, please let me know!
<!-- README_GPTQ.md-compatible clients end -->
<!-- README_GPTQ.md-provided-files start -->
## Provided files, and GPTQ parameters
Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
Each separate quant is in a different branch. See below for instructions on fetching from different branches.
Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.
<details>
<summary>Explanation of GPTQ parameters</summary>
- Bits: The bit size of the quantised model.
- GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
- Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
- Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
- GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
- Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
- ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit.
</details>
| Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
| ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
| [main](https://huggingface.co/TheBloke/vietnamese-llama2-7B-40GB-GPTQ/tree/main) | 4 | 128 | Yes | 0.1 | [Alpaca Vietnamese](https://huggingface.co/datasets/nRuaif/Vietnamese_x_Alpaca) | 2048 | 4.13 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
| [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/vietnamese-llama2-7B-40GB-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [Alpaca Vietnamese](https://huggingface.co/datasets/nRuaif/Vietnamese_x_Alpaca) | 2048 | 4.51 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
| [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/vietnamese-llama2-7B-40GB-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [Alpaca Vietnamese](https://huggingface.co/datasets/nRuaif/Vietnamese_x_Alpaca) | 2048 | 7.25 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
| [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/vietnamese-llama2-7B-40GB-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [Alpaca Vietnamese](https://huggingface.co/datasets/nRuaif/Vietnamese_x_Alpaca) | 2048 | 7.39 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
| [gptq-8bit-32g-actorder_True](https://huggingface.co/TheBloke/vietnamese-llama2-7B-40GB-GPTQ/tree/gptq-8bit-32g-actorder_True) | 8 | 32 | Yes | 0.1 | [Alpaca Vietnamese](https://huggingface.co/datasets/nRuaif/Vietnamese_x_Alpaca) | 2048 | 7.85 GB | No | 8-bit, with group size 32g and Act Order for maximum inference quality. |
| [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/vietnamese-llama2-7B-40GB-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [Alpaca Vietnamese](https://huggingface.co/datasets/nRuaif/Vietnamese_x_Alpaca) | 2048 | 4.26 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
<!-- README_GPTQ.md-provided-files end -->
<!-- README_GPTQ.md-download-from-branches start -->
## How to download, including from branches
### In text-generation-webui
To download from the `main` branch, enter `TheBloke/vietnamese-llama2-7B-40GB-GPTQ` in the "Download model" box.
To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/vietnamese-llama2-7B-40GB-GPTQ:gptq-4bit-32g-actorder_True`
### From the command line
I recommend using the `huggingface-hub` Python library:
```shell
pip3 install huggingface-hub
```
To download the `main` branch to a folder called `vietnamese-llama2-7B-40GB-GPTQ`:
```shell
mkdir vietnamese-llama2-7B-40GB-GPTQ
huggingface-cli download TheBloke/vietnamese-llama2-7B-40GB-GPTQ --local-dir vietnamese-llama2-7B-40GB-GPTQ --local-dir-use-symlinks False
```
To download from a different branch, add the `--revision` parameter:
```shell
mkdir vietnamese-llama2-7B-40GB-GPTQ
huggingface-cli download TheBloke/vietnamese-llama2-7B-40GB-GPTQ --revision gptq-4bit-32g-actorder_True --local-dir vietnamese-llama2-7B-40GB-GPTQ --local-dir-use-symlinks False
```
<details>
<summary>More advanced huggingface-cli download usage</summary>
If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.
The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`.
For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
```shell
pip3 install hf_transfer
```
And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
```shell
mkdir vietnamese-llama2-7B-40GB-GPTQ
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/vietnamese-llama2-7B-40GB-GPTQ --local-dir vietnamese-llama2-7B-40GB-GPTQ --local-dir-use-symlinks False
```
Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
</details>
### With `git` (**not** recommended)
To clone a specific branch with `git`, use a command like this:
```shell
git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/vietnamese-llama2-7B-40GB-GPTQ
```
Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.)
<!-- README_GPTQ.md-download-from-branches end -->
<!-- README_GPTQ.md-text-generation-webui start -->
## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
1. Click the **Model tab**.
2. Under **Download custom model or LoRA**, enter `TheBloke/vietnamese-llama2-7B-40GB-GPTQ`.
- To download from a specific branch, enter for example `TheBloke/vietnamese-llama2-7B-40GB-GPTQ:gptq-4bit-32g-actorder_True`
- see Provided Files above for the list of branches for each option.
3. Click **Download**.
4. The model will start downloading. Once it's finished it will say "Done".
5. In the top left, click the refresh icon next to **Model**.
6. In the **Model** dropdown, choose the model you just downloaded: `vietnamese-llama2-7B-40GB-GPTQ`
7. The model will automatically load, and is now ready for use!
8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
- Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
<!-- README_GPTQ.md-text-generation-webui end -->
<!-- README_GPTQ.md-use-from-tgi start -->
## Serving this model from Text Generation Inference (TGI)
It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
Example Docker parameters:
```shell
--model-id TheBloke/vietnamese-llama2-7B-40GB-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
```
Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):
```shell
pip3 install huggingface-hub
```
```python
from huggingface_hub import InferenceClient
endpoint_url = "https://your-endpoint-url-here"
prompt = "Tell me about AI"
prompt_template=f'''{prompt}
'''
client = InferenceClient(endpoint_url)
response = client.text_generation(prompt,
max_new_tokens=128,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=40,
repetition_penalty=1.1)
print(f"Model output: {response}")
```
<!-- README_GPTQ.md-use-from-tgi end -->
<!-- README_GPTQ.md-use-from-python start -->
## How to use this GPTQ model from Python code
### Install the necessary packages
Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
```shell
pip3 install transformers optimum
pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
```
If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
```shell
pip3 uninstall -y auto-gptq
git clone https://github.com/PanQiWei/AutoGPTQ
cd AutoGPTQ
git checkout v0.4.2
pip3 install .
```
### You can then use the following code
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_name_or_path = "TheBloke/vietnamese-llama2-7B-40GB-GPTQ"
# To use a different branch, change revision
# For example: revision="gptq-4bit-32g-actorder_True"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
device_map="auto",
trust_remote_code=False,
revision="main")
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
prompt = "Tell me about AI"
prompt_template=f'''{prompt}
'''
print("\n\n*** Generate:")
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
print(tokenizer.decode(output[0]))
# Inference can also be done using transformers' pipeline
print("*** Pipeline:")
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=40,
repetition_penalty=1.1
)
print(pipe(prompt_template)[0]['generated_text'])
```
<!-- README_GPTQ.md-use-from-python end -->
<!-- README_GPTQ.md-compatibility start -->
## Compatibility
The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly.
[ExLlama](https://github.com/turboderp/exllama) is compatible with Llama and Mistral models in 4-bit. Please see the Provided Files table above for per-file compatibility.
For a list of clients/servers, please see "Known compatible clients / servers", above.
<!-- README_GPTQ.md-compatibility end -->
<!-- footer start -->
<!-- 200823 -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
## Thanks, and how to contribute
Thanks to the [chirper.ai](https://chirper.ai) team!
Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Aemon Algiz.
**Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
Thank you to all my generous patrons and donaters!
And thank you again to a16z for their generous grant.
<!-- footer end -->
# Original model card: BKAI-HUST Foundation Models Lab's Vietnamese Llama2 7B 40GB
We employed [SentencePiece](https://github.com/google/sentencepiece) to retrain a Vietnamese tokenizer with a vocabulary size of 20K. No Vietnamese word segmentation was used. We then merged this vocabulary with the original one of Llama2, removing duplicate tokens.
The new tokenizer significantly improves when encoding Vietnamese text, reducing the number of tokens by 50% compared to ChatGPT and approximately 70% compared to the original Llama2.
We conducted a single-epoch continual pretraining, also known as incremental pretraining, using the Llama2-chat 7B model on a mixed dataset totaling 40.5 GB, comprised of:
- 19 GB [NewsCorpus](https://github.com/binhvq/news-corpus)
- 1.1 GB Vietnamese Wikipedia
- 1.6 GB [Vietnamese books](https://www.kaggle.com/datasets/iambestfeeder/10000-vietnamese-books)
- 4.5 GB Vietnamese legal documents (crawled from thuvienphapluat and processed by ourselves)
- 2.1 GB Vietnamese legal text (from [C4-vi](https://huggingface.co/datasets/c4))
- 1.1 GB English Books (sub-sampled from [pg19](https://huggingface.co/datasets/pg19))
- 1.1 GB English Wikipedia (sub-sampled from 20220301.en wikipedia)
- 10 GB English Text (sub-sampled from [C4-en](https://huggingface.co/datasets/c4))
We trained the model on a DGX A100 system, utilizing four GPU A100 in 10 days (about 1000 GPU hours).
Hyperparameters are set as follows:
- Training Regime: BFloat16 mixed precision
- Lora Config:
```
{
"base_model_name_or_path": "meta-llama/Llama-2-7b-chat-hf",
"bias": "none",
"enable_lora": null,
"fan_in_fan_out": false,
"inference_mode": true,
"lora_alpha": 32.0,
"lora_dropout": 0.05,
"merge_weights": false,
"modules_to_save": [
"embed_tokens",
"lm_head"
],
"peft_type": "LORA",
"r": 8,
"target_modules": [
"q_proj",
"v_proj",
"k_proj",
"o_proj",
"gate_proj",
"down_proj",
"up_proj"
],
"task_type": "CAUSAL_LM"
}
```
We also provide the [LoRA part](https://huggingface.co/bkai-foundation-models/vietnamese-llama2-7b-40GB/tree/main/pt_lora_model) so that you can integrate it with the original Llama2-chat-7b by yourself.
Please note that **this model requires further supervised fine-tuning (SFT)** to be used in practice!
Usage and other considerations: We refer to the [Llama 2](https://github.com/facebookresearch/llama)
Training loss:
<img src="figure/training_loss.png" alt="Training Loss Curve"/>
**Disclaimer**
This project is built upon Meta's Llama-2 model. It is essential to strictly adhere to the open-source license agreement of Llama-2 when using this model. If you incorporate third-party code, please ensure compliance with the relevant open-source license agreements.
It's important to note that the content generated by the model may be influenced by various factors, such as calculation methods, random elements, and potential inaccuracies in quantification. Consequently, this project does not offer any guarantees regarding the accuracy of the model's outputs, and it disclaims any responsibility for consequences resulting from the use of the model's resources and its output.
For those employing the models from this project for commercial purposes, developers must adhere to local laws and regulations to ensure the compliance of the model's output content. This project is not accountable for any products or services derived from such usage.
**Acknowledgments**
We extend our gratitude to PHPC - Phenikaa University and NVIDIA for their generous provision of computing resources for model training. Our appreciation also goes out to binhvq and the other authors for their diligent efforts in collecting and preparing the Vietnamese text corpus.
|
ruchita1010/LED_billsum_model | ruchita1010 | 2023-11-01T17:42:56Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"led",
"text2text-generation",
"generated_from_trainer",
"dataset:billsum",
"base_model:allenai/led-base-16384",
"base_model:finetune:allenai/led-base-16384",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text2text-generation | 2023-11-01T16:45:12Z | ---
license: apache-2.0
base_model: allenai/led-base-16384
tags:
- generated_from_trainer
datasets:
- billsum
metrics:
- rouge
model-index:
- name: LED_billsum_model
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: billsum
type: billsum
config: default
split: ca_test
args: default
metrics:
- name: Rouge1
type: rouge
value: 0.1447
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# LED_billsum_model
This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the billsum dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6576
- Rouge1: 0.1447
- Rouge2: 0.0854
- Rougel: 0.1292
- Rougelsum: 0.1339
- Gen Len: 20.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 1.4849 | 1.0 | 330 | 1.6511 | 0.1463 | 0.0827 | 0.1276 | 0.1337 | 20.0 |
| 1.3361 | 2.0 | 660 | 1.6056 | 0.148 | 0.0799 | 0.1268 | 0.1336 | 20.0 |
| 1.1727 | 3.0 | 990 | 1.5833 | 0.1459 | 0.0827 | 0.1289 | 0.1341 | 20.0 |
| 1.0601 | 4.0 | 1320 | 1.5987 | 0.1462 | 0.0859 | 0.1299 | 0.1344 | 20.0 |
| 0.9789 | 5.0 | 1650 | 1.6030 | 0.1414 | 0.0794 | 0.125 | 0.1302 | 20.0 |
| 0.8724 | 6.0 | 1980 | 1.6060 | 0.1476 | 0.0868 | 0.1298 | 0.1356 | 20.0 |
| 0.7994 | 7.0 | 2310 | 1.6295 | 0.1348 | 0.0758 | 0.1198 | 0.1253 | 20.0 |
| 0.7762 | 8.0 | 2640 | 1.6317 | 0.1422 | 0.0831 | 0.1261 | 0.1312 | 20.0 |
| 0.7087 | 9.0 | 2970 | 1.6501 | 0.1421 | 0.0825 | 0.1264 | 0.1311 | 20.0 |
| 0.7014 | 10.0 | 3300 | 1.6576 | 0.1447 | 0.0854 | 0.1292 | 0.1339 | 20.0 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
GiantTreeG/german-jeopardy-longt5-base-256 | GiantTreeG | 2023-11-01T17:41:10Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"longt5",
"text2text-generation",
"question-generation",
"german",
"generated_from_trainer",
"de",
"dataset:lmqg/qg_dequad",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text2text-generation | 2023-11-01T17:39:32Z | ---
language:
- de
tags:
- question-generation
- german
- text2text-generation
- generated_from_trainer
datasets:
- lmqg/qg_dequad
metrics:
- bleu4
- f1
- rouge
- exact_match
model-index:
- name: german-jeopardy-longt5-base-256
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: lmqg/qg_dequad
type: default
args: default
metrics:
- name: BLEU-4
type: bleu4
value: 10.52
- name: F1
type: f1
value: 33.92
- name: ROUGE-1
type: rouge1
value: 34.80
- name: ROUGE-2
type: rouge2
value: 16.54
- name: ROUGE-L
type: rougel
value: 33.69
- name: ROUGE-Lsum
type: rougelsum
value: 33.70
- name: Exact Match
type: exact_match
value: 1.50
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# german-jeopardy-longt5-base-256
This model is a fine-tuned version of [google/long-t5-tglobal-base](https://huggingface.co/google/long-t5-tglobal-base) on the [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7833
- Brevity Penalty: 0.8244
- System Length: 17427
- Reference Length: 20793
- ROUGE-1: 34.80
- ROUGE-2: 16.54
- ROUGE-L: 33.69
- ROUGE-Lsum: 33.70
- Exact Match: 1.50
- BLEU: 10.52
- F1: 33.92
## Model description
See [google/long-t5-tglobal-base](https://huggingface.co/google/long-t5-tglobal-base) for more information about the
model architecture.
The model was trained on a single NVIDIA RTX 3090 GPU with 24GB of VRAM.
## Intended uses & limitations
This model can be used for question generation on German text.
## Training and evaluation data
See [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad).
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 4
- seed: 7
- gradient_accumulation_steps: 32
- total_train_batch_size: 256
- optimizer: Adafactor
- lr_scheduler_type: constant
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Counts 1 | Counts 2 | Counts 3 | Counts 4 | Totals 1 | Totals 2 | Totals 3 | Totals 4 | Precisions 1 | Precisions 2 | Precisions 3 | Precisions 4 | Brevity Penalty | System Length | Reference Length | ROUGE-1 | ROUGE-2 | ROUGE-L | ROUGE-Lsum | Exact Match | BLEU | Mean Generated Length | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:----------------:|:-------:|:-------:|:-------:|:----------:|:-----------:|:-------:|:---------------------:|:------:|
| 3.6024 | 0.99 | 36 | 2.4682 | 5645 | 1343 | 424 | 109 | 15388 | 13184 | 10980 | 8776 | 36.6844 | 10.1866 | 3.8616 | 1.242 | 0.6832 | 15388 | 21250 | 0.2285 | 0.0824 | 0.2192 | 0.2188 | 0.0005 | 4.4454 | 11.6338 | 0.2236 |
| 2.9671 | 1.98 | 72 | 2.2445 | 5988 | 1562 | 569 | 179 | 16094 | 13890 | 11686 | 9482 | 37.2064 | 11.2455 | 4.8691 | 1.8878 | 0.7259 | 16094 | 21250 | 0.2465 | 0.0971 | 0.2371 | 0.2371 | 0.0018 | 5.7163 | 12.314 | 0.2401 |
| 2.6324 | 2.99 | 109 | 2.1227 | 6539 | 1846 | 702 | 240 | 17173 | 14969 | 12765 | 10561 | 38.0772 | 12.3322 | 5.4994 | 2.2725 | 0.7887 | 17173 | 21250 | 0.2729 | 0.1154 | 0.2601 | 0.2604 | 0.0027 | 6.9028 | 13.2319 | 0.2663 |
| 2.5557 | 3.98 | 145 | 2.0357 | 6491 | 1923 | 752 | 275 | 15961 | 13757 | 11553 | 9349 | 40.6679 | 13.9783 | 6.5091 | 2.9415 | 0.7179 | 15961 | 21250 | 0.2783 | 0.1214 | 0.2676 | 0.2678 | 0.0059 | 7.3331 | 12.0962 | 0.2729 |
| 2.3785 | 5.0 | 182 | 1.9824 | 6808 | 2113 | 855 | 328 | 16439 | 14235 | 12031 | 9827 | 41.4137 | 14.8437 | 7.1066 | 3.3377 | 0.7463 | 16439 | 21250 | 0.2948 | 0.1326 | 0.2825 | 0.2825 | 0.0064 | 8.2007 | 12.6819 | 0.2892 |
| 2.3396 | 5.99 | 218 | 1.9449 | 7033 | 2194 | 886 | 364 | 16851 | 14647 | 12443 | 10239 | 41.7364 | 14.9792 | 7.1205 | 3.555 | 0.7702 | 16851 | 21250 | 0.3044 | 0.1373 | 0.292 | 0.2922 | 0.0086 | 8.639 | 13.0254 | 0.3 |
| 2.2557 | 6.98 | 254 | 1.8938 | 7167 | 2285 | 939 | 389 | 16529 | 14325 | 12121 | 9917 | 43.3602 | 15.9511 | 7.7469 | 3.9226 | 0.7515 | 16529 | 21250 | 0.3166 | 0.1428 | 0.3043 | 0.3046 | 0.0095 | 9.049 | 12.7119 | 0.3119 |
| 2.1168 | 7.99 | 291 | 1.8575 | 7347 | 2425 | 1021 | 425 | 16860 | 14656 | 12452 | 10248 | 43.5765 | 16.5461 | 8.1995 | 4.1472 | 0.7708 | 16860 | 21250 | 0.3258 | 0.1505 | 0.3137 | 0.3142 | 0.0104 | 9.6447 | 12.9374 | 0.3211 |
| 2.1105 | 8.98 | 327 | 1.8284 | 7460 | 2461 | 1061 | 449 | 17034 | 14830 | 12626 | 10422 | 43.7948 | 16.5947 | 8.4033 | 4.3082 | 0.7807 | 17034 | 21250 | 0.3317 | 0.1521 | 0.3187 | 0.3191 | 0.0095 | 9.9436 | 13.1828 | 0.3267 |
| 1.9913 | 10.0 | 364 | 1.8057 | 7547 | 2537 | 1105 | 487 | 17005 | 14801 | 12597 | 10393 | 44.3811 | 17.1407 | 8.7719 | 4.6858 | 0.7791 | 17005 | 21250 | 0.335 | 0.1566 | 0.323 | 0.3233 | 0.0113 | 10.3601 | 13.0358 | 0.3316 |
| 1.9943 | 10.99 | 400 | 1.7973 | 7629 | 2574 | 1131 | 496 | 16842 | 14638 | 12434 | 10230 | 45.2975 | 17.5844 | 9.096 | 4.8485 | 0.7697 | 16842 | 21250 | 0.343 | 0.1594 | 0.3296 | 0.33 | 0.0113 | 10.5378 | 13.0154 | 0.3385 |
| 1.941 | 11.98 | 436 | 1.7773 | 7681 | 2606 | 1164 | 528 | 17105 | 14901 | 12697 | 10493 | 44.905 | 17.4888 | 9.1675 | 5.0319 | 0.7848 | 17105 | 21250 | 0.3421 | 0.1607 | 0.3295 | 0.3294 | 0.0132 | 10.8273 | 13.1361 | 0.3385 |
| 1.8453 | 12.99 | 473 | 1.7595 | 7817 | 2700 | 1224 | 560 | 17324 | 15120 | 12916 | 10712 | 45.1224 | 17.8571 | 9.4766 | 5.2278 | 0.7972 | 17324 | 21250 | 0.3492 | 0.1662 | 0.3367 | 0.3367 | 0.0127 | 11.2687 | 13.5018 | 0.3447 |
| 1.85 | 13.98 | 509 | 1.7414 | 7792 | 2642 | 1182 | 537 | 17417 | 15213 | 13009 | 10805 | 44.7379 | 17.3667 | 9.086 | 4.9699 | 0.8025 | 17417 | 21250 | 0.3458 | 0.1632 | 0.3322 | 0.3322 | 0.0127 | 10.9825 | 13.5395 | 0.3416 |
| 1.7588 | 15.0 | 546 | 1.7346 | 7827 | 2702 | 1223 | 569 | 17265 | 15061 | 12857 | 10653 | 45.3345 | 17.9404 | 9.5123 | 5.3412 | 0.7939 | 17265 | 21250 | 0.3487 | 0.1661 | 0.3355 | 0.3354 | 0.015 | 11.3189 | 13.3026 | 0.3446 |
| 1.7663 | 15.99 | 582 | 1.7191 | 7946 | 2757 | 1245 | 581 | 17431 | 15227 | 13023 | 10819 | 45.5855 | 18.106 | 9.56 | 5.3702 | 0.8032 | 17431 | 21250 | 0.3544 | 0.1695 | 0.3418 | 0.3416 | 0.0154 | 11.5245 | 13.4515 | 0.3501 |
| 1.7317 | 16.98 | 618 | 1.7133 | 8068 | 2844 | 1325 | 633 | 17752 | 15548 | 13344 | 11140 | 45.4484 | 18.2917 | 9.9296 | 5.6822 | 0.8212 | 17752 | 21250 | 0.3575 | 0.1746 | 0.3445 | 0.3447 | 0.0163 | 12.0845 | 13.77 | 0.3527 |
| 1.6421 | 17.99 | 655 | 1.7198 | 8003 | 2823 | 1301 | 609 | 17535 | 15331 | 13127 | 10923 | 45.6401 | 18.4137 | 9.9109 | 5.5754 | 0.8091 | 17535 | 21250 | 0.3576 | 0.1737 | 0.3447 | 0.3448 | 0.015 | 11.877 | 13.4669 | 0.353 |
| 1.6543 | 18.98 | 691 | 1.7151 | 8031 | 2817 | 1294 | 612 | 17803 | 15599 | 13395 | 11191 | 45.1104 | 18.0588 | 9.6603 | 5.4687 | 0.824 | 17803 | 21250 | 0.3567 | 0.1734 | 0.3435 | 0.3431 | 0.015 | 11.8679 | 13.8648 | 0.351 |
| 1.5702 | 19.78 | 720 | 1.7079 | 7996 | 2850 | 1330 | 639 | 17275 | 15071 | 12867 | 10663 | 46.2865 | 18.9105 | 10.3365 | 5.9927 | 0.7945 | 17275 | 21250 | 0.3618 | 0.1769 | 0.3485 | 0.348 | 0.0168 | 12.1229 | 13.3367 | 0.3569 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
reneeshdenny/q-taxi-v3 | reneeshdenny | 2023-11-01T17:40:27Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-11-01T17:40:25Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.46 +/- 2.74
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="reneeshdenny/q-taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
gokuls/HBERTv1_L12_H768_A12_ffn_0.5 | gokuls | 2023-11-01T17:33:07Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"hybridbert",
"fill-mask",
"generated_from_trainer",
"dataset:gokuls/wiki_book_corpus_complete_processed_bert_dataset",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| fill-mask | 2023-10-30T10:05:54Z | ---
tags:
- generated_from_trainer
datasets:
- gokuls/wiki_book_corpus_complete_processed_bert_dataset
metrics:
- accuracy
model-index:
- name: HBERTv1_L12_H768_A12_ffn_0.5
results:
- task:
name: Masked Language Modeling
type: fill-mask
dataset:
name: gokuls/wiki_book_corpus_complete_processed_bert_dataset
type: gokuls/wiki_book_corpus_complete_processed_bert_dataset
metrics:
- name: Accuracy
type: accuracy
value: 0.42137106830668214
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# HBERTv1_L12_H768_A12_ffn_0.5
This model is a fine-tuned version of [](https://huggingface.co/) on the gokuls/wiki_book_corpus_complete_processed_bert_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 3.4716
- Accuracy: 0.4214
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10000
- num_epochs: 100
### Training results
### Framework versions
- Transformers 4.34.1
- Pytorch 1.14.0a0+410ce96
- Datasets 2.14.6
- Tokenizers 0.14.1
|
GiantTreeG/german-jeopardy-longt5-base-128 | GiantTreeG | 2023-11-01T17:27:51Z | 7 | 0 | transformers | [
"transformers",
"safetensors",
"longt5",
"text2text-generation",
"question-generation",
"german",
"generated_from_trainer",
"de",
"dataset:lmqg/qg_dequad",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text2text-generation | 2023-11-01T17:23:07Z | ---
language:
- de
tags:
- question-generation
- german
- text2text-generation
- generated_from_trainer
datasets:
- lmqg/qg_dequad
metrics:
- bleu4
- f1
- rouge
- exact_match
model-index:
- name: german-jeopardy-longt5-base-128
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: lmqg/qg_dequad
type: default
args: default
metrics:
- name: BLEU-4
type: bleu4
value: 10.73
- name: F1
type: f1
value: 34.55
- name: ROUGE-1
type: rouge1
value: 35.34
- name: ROUGE-2
type: rouge2
value: 16.82
- name: ROUGE-L
type: rougel
value: 34.13
- name: ROUGE-Lsum
type: rougelsum
value: 34.14
- name: Exact Match
type: exact_match
value: 1.41
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# german-jeopardy-longt5-base-128
This model is a fine-tuned version of [google/long-t5-tglobal-base](https://huggingface.co/google/long-t5-tglobal-base) on the [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8010
- Brevity Penalty: 0.8577
- System Length: 18026
- Reference Length: 20793
- ROUGE-1: 35.34
- ROUGE-2: 16.82
- ROUGE-L: 34.13
- ROUGE-Lsum: 34.14
- Exact Match: 1.41
- BLEU: 10.73
- F1: 34.55
## Model description
See [google/long-t5-tglobal-base](https://huggingface.co/google/long-t5-tglobal-base) for more information about the
model architecture.
The model was trained on a single NVIDIA RTX 3090 GPU with 24GB of VRAM.
## Intended uses & limitations
This model can be used for question generation on German text.
## Training and evaluation data
See [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad).
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 4
- seed: 7
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adafactor
- lr_scheduler_type: constant
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Counts 1 | Counts 2 | Counts 3 | Counts 4 | Totals 1 | Totals 2 | Totals 3 | Totals 4 | Precisions 1 | Precisions 2 | Precisions 3 | Precisions 4 | Brevity Penalty | System Length | Reference Length | ROUGE-1 | ROUGE-2 | ROUGE-L | ROUGE-Lsum | Exact Match | BLEU | Mean Generated Length | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:----------------:|:-------:|:-------:|:-------:|:----------:|:-----------:|:-------:|:---------------------:|:------:|
| 3.458 | 0.99 | 72 | 2.3696 | 5618 | 1383 | 463 | 116 | 15080 | 12876 | 10672 | 8468 | 37.2546 | 10.7409 | 4.3385 | 1.3699 | 0.6642 | 15080 | 21250 | 0.2266 | 0.0841 | 0.2197 | 0.2196 | 0.0005 | 4.6384 | 11.3013 | 0.2226 |
| 2.7548 | 1.99 | 145 | 2.1310 | 6361 | 1807 | 700 | 254 | 16130 | 13926 | 11722 | 9518 | 39.4358 | 12.9757 | 5.9717 | 2.6686 | 0.728 | 16130 | 21250 | 0.2706 | 0.1122 | 0.2596 | 0.2596 | 0.0036 | 6.9183 | 12.206 | 0.2635 |
| 2.5084 | 2.99 | 218 | 2.0244 | 6758 | 2001 | 780 | 285 | 16871 | 14667 | 12463 | 10259 | 40.0569 | 13.6429 | 6.2585 | 2.778 | 0.7714 | 16871 | 21250 | 0.2888 | 0.1258 | 0.2766 | 0.2767 | 0.0045 | 7.616 | 12.8825 | 0.2832 |
| 2.3562 | 4.0 | 291 | 1.9501 | 7011 | 2193 | 908 | 360 | 16796 | 14592 | 12388 | 10184 | 41.7421 | 15.0288 | 7.3297 | 3.535 | 0.7671 | 16796 | 21250 | 0.303 | 0.1375 | 0.2892 | 0.2894 | 0.0077 | 8.6611 | 12.9142 | 0.2978 |
| 2.2383 | 5.0 | 364 | 1.8874 | 7245 | 2386 | 1015 | 435 | 16708 | 14504 | 12300 | 10096 | 43.3625 | 16.4506 | 8.252 | 4.3086 | 0.762 | 16708 | 21250 | 0.3198 | 0.1498 | 0.3077 | 0.3079 | 0.0113 | 9.6159 | 12.8417 | 0.3155 |
| 2.1576 | 5.99 | 436 | 1.8593 | 7378 | 2382 | 997 | 429 | 17014 | 14810 | 12606 | 10402 | 43.3643 | 16.0837 | 7.9089 | 4.1242 | 0.7796 | 17014 | 21250 | 0.326 | 0.1497 | 0.3132 | 0.3132 | 0.0109 | 9.5745 | 13.2187 | 0.3215 |
| 2.0356 | 6.99 | 509 | 1.8133 | 7570 | 2520 | 1097 | 482 | 16999 | 14795 | 12591 | 10387 | 44.532 | 17.0328 | 8.7126 | 4.6404 | 0.7787 | 16999 | 21250 | 0.3384 | 0.158 | 0.3258 | 0.3257 | 0.0123 | 10.3053 | 13.0368 | 0.3339 |
| 1.9575 | 7.99 | 582 | 1.7856 | 7764 | 2637 | 1175 | 545 | 17379 | 15175 | 12971 | 10767 | 44.6746 | 17.3773 | 9.0587 | 5.0618 | 0.8003 | 17379 | 21250 | 0.345 | 0.1625 | 0.3322 | 0.3324 | 0.0136 | 10.993 | 13.4719 | 0.3407 |
| 1.8889 | 9.0 | 655 | 1.7666 | 7766 | 2644 | 1184 | 532 | 17102 | 14898 | 12694 | 10490 | 45.4099 | 17.7473 | 9.3272 | 5.0715 | 0.7846 | 17102 | 21250 | 0.3487 | 0.1636 | 0.3348 | 0.335 | 0.0123 | 10.9637 | 13.2164 | 0.3438 |
| 1.8201 | 10.0 | 728 | 1.7415 | 7737 | 2680 | 1238 | 587 | 17156 | 14952 | 12748 | 10544 | 45.0979 | 17.924 | 9.7113 | 5.5671 | 0.7877 | 17156 | 21250 | 0.3453 | 0.1666 | 0.3332 | 0.3333 | 0.0163 | 11.3891 | 13.1388 | 0.3406 |
| 1.7882 | 10.99 | 800 | 1.7331 | 7859 | 2722 | 1241 | 572 | 17364 | 15160 | 12956 | 10752 | 45.2603 | 17.9551 | 9.5786 | 5.3199 | 0.7995 | 17364 | 21250 | 0.3524 | 0.1673 | 0.3387 | 0.3385 | 0.0145 | 11.4047 | 13.4052 | 0.3473 |
| 1.7095 | 11.99 | 873 | 1.7194 | 7968 | 2783 | 1292 | 625 | 17467 | 15263 | 13059 | 10855 | 45.6175 | 18.2336 | 9.8936 | 5.7577 | 0.8053 | 17467 | 21250 | 0.3547 | 0.1708 | 0.3418 | 0.3414 | 0.0154 | 11.8807 | 13.4437 | 0.3495 |
| 1.6619 | 12.99 | 946 | 1.7032 | 8011 | 2796 | 1286 | 604 | 17433 | 15229 | 13025 | 10821 | 45.9531 | 18.3597 | 9.8733 | 5.5817 | 0.8034 | 17433 | 21250 | 0.3584 | 0.1736 | 0.3454 | 0.3454 | 0.0154 | 11.7968 | 13.4964 | 0.3526 |
| 1.6103 | 13.99 | 1019 | 1.7028 | 8154 | 2891 | 1347 | 636 | 17665 | 15461 | 13257 | 11053 | 46.1591 | 18.6987 | 10.1607 | 5.7541 | 0.8163 | 17665 | 21250 | 0.3659 | 0.1795 | 0.3509 | 0.3508 | 0.015 | 12.235 | 13.7223 | 0.3602 |
| 1.565 | 15.0 | 1092 | 1.6955 | 8135 | 2897 | 1362 | 665 | 17530 | 15326 | 13122 | 10918 | 46.4062 | 18.9025 | 10.3795 | 6.0909 | 0.8088 | 17530 | 21250 | 0.3668 | 0.1808 | 0.3518 | 0.3516 | 0.02 | 12.4116 | 13.6107 | 0.3603 |
| 1.522 | 16.0 | 1165 | 1.6793 | 8271 | 2982 | 1414 | 697 | 17946 | 15742 | 13538 | 11334 | 46.0883 | 18.943 | 10.4447 | 6.1496 | 0.8318 | 17946 | 21250 | 0.3695 | 0.1828 | 0.354 | 0.354 | 0.0191 | 12.8008 | 13.9192 | 0.3632 |
| 1.5022 | 16.99 | 1237 | 1.6849 | 8244 | 2967 | 1392 | 680 | 17510 | 15306 | 13102 | 10898 | 47.0817 | 19.3846 | 10.6243 | 6.2397 | 0.8077 | 17510 | 21250 | 0.3728 | 0.184 | 0.3569 | 0.3569 | 0.0191 | 12.6672 | 13.6243 | 0.366 |
| 1.4359 | 17.99 | 1310 | 1.6862 | 8328 | 3050 | 1448 | 717 | 17873 | 15669 | 13465 | 11261 | 46.5954 | 19.4652 | 10.7538 | 6.3671 | 0.8278 | 17873 | 21250 | 0.3742 | 0.1866 | 0.3582 | 0.3583 | 0.0181 | 13.0683 | 13.7255 | 0.3671 |
| 1.3994 | 18.99 | 1383 | 1.6775 | 8272 | 2998 | 1417 | 704 | 17645 | 15441 | 13237 | 11033 | 46.8801 | 19.4158 | 10.7048 | 6.3809 | 0.8152 | 17645 | 21250 | 0.3739 | 0.1866 | 0.3583 | 0.3581 | 0.0213 | 12.8728 | 13.6956 | 0.3673 |
| 1.3609 | 19.78 | 1440 | 1.6884 | 8347 | 3062 | 1465 | 723 | 17823 | 15619 | 13415 | 11211 | 46.8327 | 19.6043 | 10.9206 | 6.449 | 0.8251 | 17823 | 21250 | 0.3761 | 0.1886 | 0.3601 | 0.3596 | 0.0204 | 13.1569 | 13.7328 | 0.3692 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|
bartoszmaj/falcon_7b_qlora | bartoszmaj | 2023-11-01T17:21:57Z | 1 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:tiiuae/falcon-7b",
"base_model:adapter:tiiuae/falcon-7b",
"region:us"
]
| null | 2023-11-01T17:21:55Z | ---
library_name: peft
base_model: tiiuae/falcon-7b
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.6.0.dev0
|
bartoszmaj/my-finetuned-bert | bartoszmaj | 2023-11-01T17:21:39Z | 1 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:tiiuae/falcon-7b",
"base_model:adapter:tiiuae/falcon-7b",
"region:us"
]
| null | 2023-11-01T17:21:37Z | ---
library_name: peft
base_model: tiiuae/falcon-7b
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.6.0.dev0
|
daochf/Lora-Meta-Llama2-7b-hf-QandA_2g_v01-v02 | daochf | 2023-11-01T17:20:03Z | 0 | 0 | peft | [
"peft",
"region:us"
]
| null | 2023-11-01T17:20:00Z | ---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
|
Adminhuggingface/OUTPUTA1 | Adminhuggingface | 2023-11-01T17:10:24Z | 1 | 1 | diffusers | [
"diffusers",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"lora",
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:adapter:runwayml/stable-diffusion-v1-5",
"license:creativeml-openrail-m",
"region:us"
]
| text-to-image | 2023-11-01T17:08:38Z |
---
license: creativeml-openrail-m
base_model: runwayml/stable-diffusion-v1-5
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA text2image fine-tuning - Adminhuggingface/OUTPUTA1
These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the Adminhuggingface/LORA_ONE dataset. You can find some example images in the following.




|
am-infoweb/QA_REDACTION_NOV1_16 | am-infoweb | 2023-11-01T16:59:15Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"question-answering",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-base",
"base_model:finetune:FacebookAI/xlm-roberta-base",
"license:mit",
"endpoints_compatible",
"region:us"
]
| question-answering | 2023-11-01T16:33:25Z | ---
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
model-index:
- name: QA_REDACTION_NOV1_16
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# QA_REDACTION_NOV1_16
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0383
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.0454 | 1.0 | 1800 | 0.0552 |
| 0.0534 | 2.0 | 3600 | 0.0423 |
| 0.3243 | 3.0 | 5400 | 0.0335 |
| 0.051 | 4.0 | 7200 | 0.0482 |
| 0.033 | 5.0 | 9000 | 0.0260 |
| 0.0378 | 6.0 | 10800 | 0.0233 |
| 0.0206 | 7.0 | 12600 | 0.0282 |
| 0.0399 | 8.0 | 14400 | 0.0490 |
| 0.009 | 9.0 | 16200 | 0.0282 |
| 0.0239 | 10.0 | 18000 | 0.0383 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.0.1
- Datasets 2.14.6
- Tokenizers 0.14.1
|
TheBloke/vietnamese-llama2-7B-40GB-GGUF | TheBloke | 2023-11-01T16:58:03Z | 131 | 3 | transformers | [
"transformers",
"gguf",
"llama",
"vi",
"en",
"dataset:vietgpt/wikipedia_vi",
"dataset:wikipedia",
"dataset:pg19",
"dataset:mc4",
"base_model:bkai-foundation-models/vietnamese-llama2-7b-40GB",
"base_model:quantized:bkai-foundation-models/vietnamese-llama2-7b-40GB",
"license:other",
"region:us"
]
| null | 2023-11-01T16:53:58Z | ---
base_model: bkai-foundation-models/vietnamese-llama2-7b-40GB
datasets:
- vietgpt/wikipedia_vi
- wikipedia
- pg19
- mc4
inference: false
language:
- vi
- en
license: other
model_creator: BKAI-HUST Foundation Models Lab
model_name: Vietnamese Llama2 7B 40GB
model_type: llama
prompt_template: '{prompt}
'
quantized_by: TheBloke
---
<!-- markdownlint-disable MD041 -->
<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->
# Vietnamese Llama2 7B 40GB - GGUF
- Model creator: [BKAI-HUST Foundation Models Lab](https://huggingface.co/bkai-foundation-models)
- Original model: [Vietnamese Llama2 7B 40GB](https://huggingface.co/bkai-foundation-models/vietnamese-llama2-7b-40GB)
<!-- description start -->
## Description
This repo contains GGUF format model files for [BKAI-HUST Foundation Models Lab's Vietnamese Llama2 7B 40GB](https://huggingface.co/bkai-foundation-models/vietnamese-llama2-7b-40GB).
These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
<!-- description end -->
<!-- README_GGUF.md-about-gguf start -->
### About GGUF
GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
Here is an incomplate list of clients and libraries that are known to support GGUF:
* [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
* [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration.
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
* [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
* [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
<!-- README_GGUF.md-about-gguf end -->
<!-- repositories-available start -->
## Repositories available
* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/vietnamese-llama2-7B-40GB-AWQ)
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/vietnamese-llama2-7B-40GB-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/vietnamese-llama2-7B-40GB-GGUF)
* [BKAI-HUST Foundation Models Lab's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/bkai-foundation-models/vietnamese-llama2-7b-40GB)
<!-- repositories-available end -->
<!-- prompt-template start -->
## Prompt template: None
```
{prompt}
```
<!-- prompt-template end -->
<!-- licensing start -->
## Licensing
The creator of the source model has listed its license as `other`, and this quantization has therefore used that same license.
As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [BKAI-HUST Foundation Models Lab's Vietnamese Llama2 7B 40GB](https://huggingface.co/bkai-foundation-models/vietnamese-llama2-7b-40GB).
<!-- licensing end -->
<!-- compatibility_gguf start -->
## Compatibility
These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
## Explanation of quantisation methods
<details>
<summary>Click to see details</summary>
The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
Refer to the Provided Files table below to see what files use which methods, and how.
</details>
<!-- compatibility_gguf end -->
<!-- README_GGUF.md-provided-files start -->
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| [vietnamese-llama2-7b-40gb.Q2_K.gguf](https://huggingface.co/TheBloke/vietnamese-llama2-7B-40GB-GGUF/blob/main/vietnamese-llama2-7b-40gb.Q2_K.gguf) | Q2_K | 2 | 2.89 GB| 5.39 GB | smallest, significant quality loss - not recommended for most purposes |
| [vietnamese-llama2-7b-40gb.Q3_K_S.gguf](https://huggingface.co/TheBloke/vietnamese-llama2-7B-40GB-GGUF/blob/main/vietnamese-llama2-7b-40gb.Q3_K_S.gguf) | Q3_K_S | 3 | 3.02 GB| 5.52 GB | very small, high quality loss |
| [vietnamese-llama2-7b-40gb.Q3_K_M.gguf](https://huggingface.co/TheBloke/vietnamese-llama2-7B-40GB-GGUF/blob/main/vietnamese-llama2-7b-40gb.Q3_K_M.gguf) | Q3_K_M | 3 | 3.37 GB| 5.87 GB | very small, high quality loss |
| [vietnamese-llama2-7b-40gb.Q3_K_L.gguf](https://huggingface.co/TheBloke/vietnamese-llama2-7B-40GB-GGUF/blob/main/vietnamese-llama2-7b-40gb.Q3_K_L.gguf) | Q3_K_L | 3 | 3.67 GB| 6.17 GB | small, substantial quality loss |
| [vietnamese-llama2-7b-40gb.Q4_0.gguf](https://huggingface.co/TheBloke/vietnamese-llama2-7B-40GB-GGUF/blob/main/vietnamese-llama2-7b-40gb.Q4_0.gguf) | Q4_0 | 4 | 3.91 GB| 6.41 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [vietnamese-llama2-7b-40gb.Q4_K_S.gguf](https://huggingface.co/TheBloke/vietnamese-llama2-7B-40GB-GGUF/blob/main/vietnamese-llama2-7b-40gb.Q4_K_S.gguf) | Q4_K_S | 4 | 3.94 GB| 6.44 GB | small, greater quality loss |
| [vietnamese-llama2-7b-40gb.Q4_K_M.gguf](https://huggingface.co/TheBloke/vietnamese-llama2-7B-40GB-GGUF/blob/main/vietnamese-llama2-7b-40gb.Q4_K_M.gguf) | Q4_K_M | 4 | 4.16 GB| 6.66 GB | medium, balanced quality - recommended |
| [vietnamese-llama2-7b-40gb.Q5_0.gguf](https://huggingface.co/TheBloke/vietnamese-llama2-7B-40GB-GGUF/blob/main/vietnamese-llama2-7b-40gb.Q5_0.gguf) | Q5_0 | 5 | 4.74 GB| 7.24 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [vietnamese-llama2-7b-40gb.Q5_K_S.gguf](https://huggingface.co/TheBloke/vietnamese-llama2-7B-40GB-GGUF/blob/main/vietnamese-llama2-7b-40gb.Q5_K_S.gguf) | Q5_K_S | 5 | 4.74 GB| 7.24 GB | large, low quality loss - recommended |
| [vietnamese-llama2-7b-40gb.Q5_K_M.gguf](https://huggingface.co/TheBloke/vietnamese-llama2-7B-40GB-GGUF/blob/main/vietnamese-llama2-7b-40gb.Q5_K_M.gguf) | Q5_K_M | 5 | 4.87 GB| 7.37 GB | large, very low quality loss - recommended |
| [vietnamese-llama2-7b-40gb.Q6_K.gguf](https://huggingface.co/TheBloke/vietnamese-llama2-7B-40GB-GGUF/blob/main/vietnamese-llama2-7b-40gb.Q6_K.gguf) | Q6_K | 6 | 5.63 GB| 8.13 GB | very large, extremely low quality loss |
| [vietnamese-llama2-7b-40gb.Q8_0.gguf](https://huggingface.co/TheBloke/vietnamese-llama2-7B-40GB-GGUF/blob/main/vietnamese-llama2-7b-40gb.Q8_0.gguf) | Q8_0 | 8 | 7.29 GB| 9.79 GB | very large, extremely low quality loss - not recommended |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
<!-- README_GGUF.md-provided-files end -->
<!-- README_GGUF.md-how-to-download start -->
## How to download GGUF files
**Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
* LM Studio
* LoLLMS Web UI
* Faraday.dev
### In `text-generation-webui`
Under Download Model, you can enter the model repo: TheBloke/vietnamese-llama2-7B-40GB-GGUF and below it, a specific filename to download, such as: vietnamese-llama2-7b-40gb.Q4_K_M.gguf.
Then click Download.
### On the command line, including multiple files at once
I recommend using the `huggingface-hub` Python library:
```shell
pip3 install huggingface-hub
```
Then you can download any individual model file to the current directory, at high speed, with a command like this:
```shell
huggingface-cli download TheBloke/vietnamese-llama2-7B-40GB-GGUF vietnamese-llama2-7b-40gb.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
```
<details>
<summary>More advanced huggingface-cli download usage</summary>
You can also download multiple files at once with a pattern:
```shell
huggingface-cli download TheBloke/vietnamese-llama2-7B-40GB-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
```shell
pip3 install hf_transfer
```
And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
```shell
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/vietnamese-llama2-7B-40GB-GGUF vietnamese-llama2-7b-40gb.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
```
Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
</details>
<!-- README_GGUF.md-how-to-download end -->
<!-- README_GGUF.md-how-to-run start -->
## Example `llama.cpp` command
Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
```shell
./main -ngl 32 -m vietnamese-llama2-7b-40gb.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "{prompt}"
```
Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
## How to run in `text-generation-webui`
Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
## How to run from Python code
You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
### How to load this model in Python code, using ctransformers
#### First install the package
Run one of the following commands, according to your system:
```shell
# Base ctransformers with no GPU acceleration
pip install ctransformers
# Or with CUDA GPU acceleration
pip install ctransformers[cuda]
# Or with AMD ROCm GPU acceleration (Linux only)
CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers
# Or with Metal GPU acceleration for macOS systems only
CT_METAL=1 pip install ctransformers --no-binary ctransformers
```
#### Simple ctransformers example code
```python
from ctransformers import AutoModelForCausalLM
# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
llm = AutoModelForCausalLM.from_pretrained("TheBloke/vietnamese-llama2-7B-40GB-GGUF", model_file="vietnamese-llama2-7b-40gb.Q4_K_M.gguf", model_type="llama", gpu_layers=50)
print(llm("AI is going to"))
```
## How to use with LangChain
Here are guides on using llama-cpp-python and ctransformers with LangChain:
* [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
* [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
<!-- README_GGUF.md-how-to-run end -->
<!-- footer start -->
<!-- 200823 -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
## Thanks, and how to contribute
Thanks to the [chirper.ai](https://chirper.ai) team!
Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Aemon Algiz.
**Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
Thank you to all my generous patrons and donaters!
And thank you again to a16z for their generous grant.
<!-- footer end -->
<!-- original-model-card start -->
# Original model card: BKAI-HUST Foundation Models Lab's Vietnamese Llama2 7B 40GB
We employed [SentencePiece](https://github.com/google/sentencepiece) to retrain a Vietnamese tokenizer with a vocabulary size of 20K. No Vietnamese word segmentation was used. We then merged this vocabulary with the original one of Llama2, removing duplicate tokens.
The new tokenizer significantly improves when encoding Vietnamese text, reducing the number of tokens by 50% compared to ChatGPT and approximately 70% compared to the original Llama2.
We conducted a single-epoch continual pretraining, also known as incremental pretraining, using the Llama2-chat 7B model on a mixed dataset totaling 40.5 GB, comprised of:
- 19 GB [NewsCorpus](https://github.com/binhvq/news-corpus)
- 1.1 GB Vietnamese Wikipedia
- 1.6 GB [Vietnamese books](https://www.kaggle.com/datasets/iambestfeeder/10000-vietnamese-books)
- 4.5 GB Vietnamese legal documents (crawled from thuvienphapluat and processed by ourselves)
- 2.1 GB Vietnamese legal text (from [C4-vi](https://huggingface.co/datasets/c4))
- 1.1 GB English Books (sub-sampled from [pg19](https://huggingface.co/datasets/pg19))
- 1.1 GB English Wikipedia (sub-sampled from 20220301.en wikipedia)
- 10 GB English Text (sub-sampled from [C4-en](https://huggingface.co/datasets/c4))
We trained the model on a DGX A100 system, utilizing four GPU A100 in 10 days (about 1000 GPU hours).
Hyperparameters are set as follows:
- Training Regime: BFloat16 mixed precision
- Lora Config:
```
{
"base_model_name_or_path": "meta-llama/Llama-2-7b-chat-hf",
"bias": "none",
"enable_lora": null,
"fan_in_fan_out": false,
"inference_mode": true,
"lora_alpha": 32.0,
"lora_dropout": 0.05,
"merge_weights": false,
"modules_to_save": [
"embed_tokens",
"lm_head"
],
"peft_type": "LORA",
"r": 8,
"target_modules": [
"q_proj",
"v_proj",
"k_proj",
"o_proj",
"gate_proj",
"down_proj",
"up_proj"
],
"task_type": "CAUSAL_LM"
}
```
We also provide the [LoRA part](https://huggingface.co/bkai-foundation-models/vietnamese-llama2-7b-40GB/tree/main/pt_lora_model) so that you can integrate it with the original Llama2-chat-7b by yourself.
Please note that **this model requires further supervised fine-tuning (SFT)** to be used in practice!
Usage and other considerations: We refer to the [Llama 2](https://github.com/facebookresearch/llama)
Training loss:
<img src="figure/training_loss.png" alt="Training Loss Curve"/>
**Disclaimer**
This project is built upon Meta's Llama-2 model. It is essential to strictly adhere to the open-source license agreement of Llama-2 when using this model. If you incorporate third-party code, please ensure compliance with the relevant open-source license agreements.
It's important to note that the content generated by the model may be influenced by various factors, such as calculation methods, random elements, and potential inaccuracies in quantification. Consequently, this project does not offer any guarantees regarding the accuracy of the model's outputs, and it disclaims any responsibility for consequences resulting from the use of the model's resources and its output.
For those employing the models from this project for commercial purposes, developers must adhere to local laws and regulations to ensure the compliance of the model's output content. This project is not accountable for any products or services derived from such usage.
**Acknowledgments**
We extend our gratitude to PHPC - Phenikaa University and NVIDIA for their generous provision of computing resources for model training. Our appreciation also goes out to binhvq and the other authors for their diligent efforts in collecting and preparing the Vietnamese text corpus.
<!-- original-model-card end -->
|
Loriiis/rl_course_vizdoom_health_gathering_supreme | Loriiis | 2023-11-01T16:53:33Z | 0 | 0 | sample-factory | [
"sample-factory",
"tensorboard",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-11-01T16:53:27Z | ---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: doom_health_gathering_supreme
type: doom_health_gathering_supreme
metrics:
- type: mean_reward
value: 11.94 +/- 4.73
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
## Downloading the model
After installing Sample-Factory, download the model with:
```
python -m sample_factory.huggingface.load_from_hub -r Loriiis/rl_course_vizdoom_health_gathering_supreme
```
## Using the model
To run the model after download, use the `enjoy` script corresponding to this environment:
```
python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
```
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
## Training with this model
To continue training with this model, use the `train` script corresponding to this environment:
```
python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
```
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
juliajoanna/sdxl-one_hot_encoding | juliajoanna | 2023-11-01T16:52:31Z | 2 | 0 | diffusers | [
"diffusers",
"tensorboard",
"safetensors",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionXLPipeline",
"region:us"
]
| text-to-image | 2023-11-01T16:41:17Z |
---
license: creativeml-openrail-m
base_model: stabilityai/stable-diffusion-xl-base-1.0
dataset: None
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
inference: true
---
# Text-to-image finetuning - juliajoanna/sdxl-one_hot_encoding
This pipeline was finetuned from **stabilityai/stable-diffusion-xl-base-1.0** on the **None** dataset. Below are some example images generated with the finetuned pipeline using the following prompt: Fred is driving a car:




Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
|
minoosh/finetuned_bert-base_on_shEMO_transcripts | minoosh | 2023-11-01T16:37:55Z | 14 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:google-bert/bert-base-uncased",
"base_model:finetune:google-bert/bert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2023-11-01T16:21:14Z | ---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: finetuned_bert-base
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_bert-base
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2046
- Accuracy: 0.52
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.413 | 1.0 | 75 | 1.3023 | 0.4667 |
| 1.2772 | 2.0 | 150 | 1.2043 | 0.52 |
| 1.2019 | 3.0 | 225 | 1.0879 | 0.5733 |
| 1.1463 | 4.0 | 300 | 1.1124 | 0.57 |
| 1.1566 | 5.0 | 375 | 1.1220 | 0.5367 |
| 1.1096 | 6.0 | 450 | 1.0675 | 0.5967 |
| 0.9806 | 7.0 | 525 | 1.0315 | 0.64 |
| 0.8715 | 8.0 | 600 | 1.0616 | 0.6 |
| 0.8788 | 9.0 | 675 | 1.1211 | 0.59 |
| 0.8071 | 10.0 | 750 | 1.1400 | 0.6 |
| 0.6908 | 11.0 | 825 | 1.1848 | 0.6033 |
| 0.6244 | 12.0 | 900 | 1.2255 | 0.59 |
| 0.628 | 13.0 | 975 | 1.2264 | 0.6 |
| 0.6003 | 14.0 | 1050 | 1.2270 | 0.6033 |
| 0.5283 | 15.0 | 1125 | 1.2399 | 0.5933 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
JDCollier89/ppo-LunarLander-v2 | JDCollier89 | 2023-11-01T16:34:58Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-11-01T16:34:38Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 258.01 +/- 13.46
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
minoosh/finetuned_roberta-base_on_shEMO_transcripts | minoosh | 2023-11-01T16:15:49Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-base",
"base_model:finetune:FacebookAI/xlm-roberta-base",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2023-11-01T15:59:36Z | ---
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: finetuned_roberta-base
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_roberta-base
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2574
- Accuracy: 0.6033
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.48 | 1.0 | 75 | 1.4001 | 0.41 |
| 1.2847 | 2.0 | 150 | 1.1993 | 0.58 |
| 1.1522 | 3.0 | 225 | 1.0007 | 0.6333 |
| 0.9921 | 4.0 | 300 | 0.9189 | 0.66 |
| 0.9104 | 5.0 | 375 | 0.8855 | 0.69 |
| 0.8371 | 6.0 | 450 | 0.9431 | 0.6767 |
| 0.699 | 7.0 | 525 | 0.9500 | 0.6633 |
| 0.6872 | 8.0 | 600 | 0.9728 | 0.7033 |
| 0.5867 | 9.0 | 675 | 0.9939 | 0.6867 |
| 0.5323 | 10.0 | 750 | 1.1115 | 0.69 |
| 0.4066 | 11.0 | 825 | 1.2031 | 0.6667 |
| 0.3517 | 12.0 | 900 | 1.2193 | 0.65 |
| 0.3114 | 13.0 | 975 | 1.2281 | 0.67 |
| 0.3102 | 14.0 | 1050 | 1.2691 | 0.67 |
| 0.2681 | 15.0 | 1125 | 1.2818 | 0.6633 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
trymtv/bert_parliament_classifier_large | trymtv | 2023-11-01T16:14:52Z | 0 | 0 | peft | [
"peft",
"region:us"
]
| null | 2023-11-01T16:14:21Z | ---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0
|
MakAttack/6540dc2059df1fe983c03af2 | MakAttack | 2023-11-01T16:11:52Z | 3 | 0 | diffusers | [
"diffusers",
"tensorboard",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"lora",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
]
| text-to-image | 2023-11-01T15:16:02Z |
---
license: openrail++
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: a photo of sks dog
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA DreamBooth - MakAttack/6540dc2059df1fe983c03af2
These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
|
Pradeep/Twitter-777 | Pradeep | 2023-11-01T16:09:52Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2023-11-01T16:04:04Z | ---
license: apache-2.0
---
Used Customer Support chat texts to build this model |
GluonsGluonsGluons/Taxi-v3 | GluonsGluonsGluons | 2023-11-01T15:59:52Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-11-01T15:59:51Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.52 +/- 2.76
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="GluonsGluonsGluons/Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
arodriguezmiraltabank/LLM_toy | arodriguezmiraltabank | 2023-11-01T15:59:00Z | 0 | 0 | null | [
"license:cc-by-nc-sa-4.0",
"region:us"
]
| null | 2023-11-01T15:59:00Z | ---
license: cc-by-nc-sa-4.0
---
|
ai-maker-space/Transformers-Workshop-BERT-NewsGroupClassification | ai-maker-space | 2023-11-01T15:50:36Z | 5 | 0 | transformers | [
"transformers",
"tf",
"distilbert",
"text-classification",
"generated_from_keras_callback",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2023-11-01T15:50:15Z | ---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: Transformers-Workshop-BERT-NewsGroupClassification
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Transformers-Workshop-BERT-NewsGroupClassification
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1908, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
### Framework versions
- Transformers 4.34.1
- TensorFlow 2.14.0
- Datasets 2.14.6
- Tokenizers 0.14.1
|
ai-maker-space/Transformers-Workshop-BART-Summarization | ai-maker-space | 2023-11-01T15:47:40Z | 13 | 0 | transformers | [
"transformers",
"pytorch",
"bart",
"text2text-generation",
"generated_from_trainer",
"summarization",
"dataset:cnn_dailymail",
"base_model:facebook/bart-base",
"base_model:finetune:facebook/bart-base",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| summarization | 2023-11-01T15:23:16Z | ---
license: apache-2.0
base_model: facebook/bart-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-base-finetuned-CNN-DailyNews
results: []
pipeline_tag: summarization
datasets:
- cnn_dailymail
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-base-finetuned-CNN-DailyNews
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9584
- Rouge1: 0.1977
- Rouge2: 0.1321
- Rougel: 0.1792
- Rougelsum: 0.1884
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| 2.6767 | 1.0 | 63 | 1.8911 | 0.1745 | 0.0915 | 0.1536 | 0.1644 |
| 2.0691 | 2.0 | 126 | 1.5904 | 0.1777 | 0.1003 | 0.1579 | 0.1677 |
| 1.8047 | 3.0 | 189 | 1.3652 | 0.1778 | 0.1029 | 0.1587 | 0.1663 |
| 1.6345 | 4.0 | 252 | 1.2317 | 0.1959 | 0.1226 | 0.1751 | 0.1842 |
| 1.4837 | 5.0 | 315 | 1.1099 | 0.2015 | 0.1265 | 0.1796 | 0.1911 |
| 1.3904 | 6.0 | 378 | 1.0267 | 0.2004 | 0.1278 | 0.1799 | 0.1893 |
| 1.2876 | 7.0 | 441 | 0.9788 | 0.1978 | 0.1307 | 0.1784 | 0.1878 |
| 1.2578 | 8.0 | 504 | 0.9584 | 0.1977 | 0.1321 | 0.1792 | 0.1884 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1 |
gokuls/HBERTv1_L12_H768_A12_ffn_2 | gokuls | 2023-11-01T15:47:04Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"hybridbert",
"fill-mask",
"generated_from_trainer",
"dataset:gokuls/wiki_book_corpus_complete_processed_bert_dataset",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| fill-mask | 2023-10-30T08:18:01Z | ---
tags:
- generated_from_trainer
datasets:
- gokuls/wiki_book_corpus_complete_processed_bert_dataset
metrics:
- accuracy
model-index:
- name: HBERTv1_L12_H768_A12_ffn_2
results:
- task:
name: Masked Language Modeling
type: fill-mask
dataset:
name: gokuls/wiki_book_corpus_complete_processed_bert_dataset
type: gokuls/wiki_book_corpus_complete_processed_bert_dataset
metrics:
- name: Accuracy
type: accuracy
value: 0.4755208001727227
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# HBERTv1_L12_H768_A12_ffn_2
This model is a fine-tuned version of [](https://huggingface.co/) on the gokuls/wiki_book_corpus_complete_processed_bert_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0254
- Accuracy: 0.4755
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10000
- num_epochs: 100
### Training results
### Framework versions
- Transformers 4.34.1
- Pytorch 1.14.0a0+410ce96
- Datasets 2.14.6
- Tokenizers 0.14.1
|
Beaverlennium/Karlijn | Beaverlennium | 2023-11-01T15:44:55Z | 0 | 0 | null | [
"nl",
"en",
"license:unlicense",
"region:us"
]
| null | 2023-11-01T15:41:52Z | ---
license: unlicense
language:
- nl
- en
--- |
x6381518/project2 | x6381518 | 2023-11-01T15:43:11Z | 1 | 0 | peft | [
"peft",
"region:us"
]
| null | 2023-10-05T21:04:33Z | ---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
- PEFT 0.5.0
|
longface/logicalreasoning-task-model-flanT5 | longface | 2023-11-01T15:41:05Z | 0 | 0 | peft | [
"peft",
"region:us"
]
| null | 2023-11-01T15:41:04Z | ---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0
|
maddes8cht/mosaicml-mpt-7b-gguf | maddes8cht | 2023-11-01T15:36:58Z | 78 | 0 | null | [
"gguf",
"Composer",
"MosaicML",
"llm-foundry",
"StreamingDatasets",
"dataset:mc4",
"dataset:c4",
"dataset:togethercomputer/RedPajama-Data-1T",
"dataset:bigcode/the-stack",
"dataset:allenai/s2orc",
"arxiv:2108.12409",
"arxiv:2302.13971",
"arxiv:2205.14135",
"arxiv:2010.04245",
"arxiv:1909.08053",
"arxiv:2302.06675",
"license:apache-2.0",
"region:us"
]
| null | 2023-10-25T13:10:11Z | ---
license: apache-2.0
tags:
- Composer
- MosaicML
- llm-foundry
- StreamingDatasets
datasets:
- mc4
- c4
- togethercomputer/RedPajama-Data-1T
- bigcode/the-stack
- allenai/s2orc
inference: false
---
[]()
I'm constantly enhancing these model descriptions to provide you with the most relevant and comprehensive information
# mpt-7b - GGUF
- Model creator: [mosaicml](https://huggingface.co/mosaicml)
- Original model: [mpt-7b](https://huggingface.co/mosaicml/mpt-7b)
MPT-7b and MPT-30B are part of the family of Mosaic Pretrained Transformer (MPT) models, which use a modified transformer architecture optimized for efficient training and inference.
---
# Brief
MPT-7B and MPT-30B are the Base models of the MPT Family.
---
# About GGUF format
`gguf` is the current file format used by the [`ggml`](https://github.com/ggerganov/ggml) library.
A growing list of Software is using it and can therefore use this model.
The core project making use of the ggml library is the [llama.cpp](https://github.com/ggerganov/llama.cpp) project by Georgi Gerganov
# Quantization variants
There is a bunch of quantized files available to cater to your specific needs. Here's how to choose the best option for you:
# Legacy quants
Q4_0, Q4_1, Q5_0, Q5_1 and Q8 are `legacy` quantization types.
Nevertheless, they are fully supported, as there are several circumstances that cause certain model not to be compatible with the modern K-quants.
## Note:
Now there's a new option to use K-quants even for previously 'incompatible' models, although this involves some fallback solution that makes them not *real* K-quants. More details can be found in affected model descriptions.
(This mainly refers to Falcon 7b and Starcoder models)
# K-quants
K-quants are designed with the idea that different levels of quantization in specific parts of the model can optimize performance, file size, and memory load.
So, if possible, use K-quants.
With a Q6_K, you'll likely find it challenging to discern a quality difference from the original model - ask your model two times the same question and you may encounter bigger quality differences.
---
# Original Model Card:
# MPT-7B
MPT-7B is a decoder-style transformer pretrained from scratch on 1T tokens of English text and code.
This model was trained by [MosaicML](https://www.mosaicml.com).
MPT-7B is part of the family of MosaicPretrainedTransformer (MPT) models, which use a modified transformer architecture optimized for efficient training and inference.
These architectural changes include performance-optimized layer implementations and the elimination of context length limits by replacing
positional embeddings with Attention with Linear Biases ([ALiBi](https://arxiv.org/abs/2108.12409)).
Thanks to these modifications, MPT models can be trained with high throughput efficiency and stable convergence.
MPT models can also be served efficiently with both standard HuggingFace pipelines and NVIDIA's [FasterTransformer](https://github.com/NVIDIA/FasterTransformer).
This model uses the MosaicML LLM codebase, which can be found in the [llm-foundry repository](https://github.com/mosaicml/llm-foundry). It was trained by MosaicML’s NLP team on the [MosaicML platform](https://www.mosaicml.com/training) for LLM pretraining, finetuning, and inference.
### How is this model different?
MPT-7B is
* **Licensed for the possibility of commercial use** (unlike [LLaMA](https://arxiv.org/abs/2302.13971)).
* **Trained on a large amount of data** (1T tokens like [LLaMA](https://arxiv.org/abs/2302.13971) vs. 300B for [Pythia](https://github.com/EleutherAI/pythia), 300B for [OpenLLaMA](https://github.com/openlm-research/open_llama), and 800B for [StableLM](https://github.com/Stability-AI/StableLM)).
* **Prepared to handle extremely long inputs** thanks to [ALiBi](https://arxiv.org/abs/2108.12409) (we finetuned [MPT-7B-StoryWriter-65k+](https://huggingface.co/mosaicml/mpt-7b-storywriter) on up to 65k inputs and can handle up to 84k vs. 2k-4k for other open source models).
* **Capable of fast training and inference** (via [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf) and [FasterTransformer](https://github.com/NVIDIA/FasterTransformer))
* **Equipped with highly efficient open-source training code** via the [llm-foundry repository](https://github.com/mosaicml/llm-foundry)
### Models finetuned off MPT-7B:
The following models are finetuned on MPT-7B:
* [MPT-7B-StoryWriter-65k+](https://huggingface.co/mosaicml/mpt-7b-storywriter): a model designed to read and write fictional stories with super long context lengths.
Built by finetuning MPT-7B with a context length of 65k tokens on a filtered fiction subset of the [books3 dataset](https://huggingface.co/datasets/the_pile_books3).
At inference time, thanks to [ALiBi](https://arxiv.org/abs/2108.12409), MPT-7B-StoryWriter-65k+ can extrapolate even beyond 65k tokens.
We demonstrate generations as long as 80k tokens on a single A100-80GB GPU in our [blogpost](www.mosaicml.com/blog/mpt-7b).
* License: Apache 2.0
* [MPT-7B-Instruct](https://huggingface.co/mosaicml/mpt-7b-instruct): a model for short-form instruction following.
Built by finetuning MPT-7B on a [dataset](https://huggingface.co/datasets/mosaicml/dolly_hhrlhf) we also release, derived from the [Databricks Dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) and the [Anthropic Helpful and Harmless (HH-RLHF)](https://huggingface.co/datasets/Anthropic/hh-rlhf) datasets.
* License: _CC-By-SA-3.0_
* [MPT-7B-Chat](https://huggingface.co/mosaicml/mpt-7b-chat): a chatbot-like model for dialogue generation.
Built by finetuning MPT-7B on the [ShareGPT-Vicuna](https://huggingface.co/datasets/jeffwan/sharegpt_vicuna), [HC3](https://huggingface.co/datasets/Hello-SimpleAI/HC3),
[Alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca), [HH-RLHF](https://huggingface.co/datasets/Anthropic/hh-rlhf), and [Evol-Instruct](https://huggingface.co/datasets/victor123/evol_instruct_70k) datasets.
* License: _CC-By-NC-SA-4.0_
## Model Date
May 5, 2023
## Model License
Apache-2.0
## Documentation
* [Blog post: Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs](https://www.mosaicml.com/blog/mpt-7b)
* [Codebase (mosaicml/llm-foundry repo)](https://github.com/mosaicml/llm-foundry/)
* Questions: Feel free to contact us via the [MosaicML Community Slack](https://mosaicml.me/slack)!
## How to Use
This model is best used with the MosaicML [llm-foundry repository](https://github.com/mosaicml/llm-foundry) for training and finetuning.
```python
import transformers
model = transformers.AutoModelForCausalLM.from_pretrained(
'mosaicml/mpt-7b',
trust_remote_code=True
)
```
Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method.
This is because we use a custom `MPT` model architecture that is not yet part of the Hugging Face `transformers` package.
`MPT` includes options for many training efficiency features such as [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), [QK LayerNorm](https://arxiv.org/abs/2010.04245), and more.
To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model on GPU (`cuda:0`) with `attn_impl='triton'` and with `bfloat16` precision:
```python
import torch
import transformers
name = 'mosaicml/mpt-7b'
config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
config.attn_config['attn_impl'] = 'triton'
config.init_device = 'cuda:0' # For fast initialization directly on GPU!
model = transformers.AutoModelForCausalLM.from_pretrained(
name,
config=config,
torch_dtype=torch.bfloat16, # Load model weights in bfloat16
trust_remote_code=True
)
```
Although the model was trained with a sequence length of 2048, ALiBi enables users to increase the maximum sequence length during finetuning and/or inference. For example:
```python
import transformers
name = 'mosaicml/mpt-7b'
config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
config.max_seq_len = 4096 # (input + output) tokens can now be up to 4096
model = transformers.AutoModelForCausalLM.from_pretrained(
name,
config=config,
trust_remote_code=True
)
```
This model was trained with the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer.
```python
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b')
```
The model can then be used, for example, within a text-generation pipeline.
Note: when running Torch modules in lower precision, it is best practice to use the [torch.autocast context manager](https://pytorch.org/docs/stable/amp.html).
```python
from transformers import pipeline
pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, device='cuda:0')
with torch.autocast('cuda', dtype=torch.bfloat16):
print(
pipe('Here is a recipe for vegan banana bread:\n',
max_new_tokens=100,
do_sample=True,
use_cache=True))
```
## Model Description
The architecture is a modification of a standard decoder-only transformer.
The model has been modified from a standard transformer in the following ways:
* It uses [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf)
* It uses [ALiBi (Attention with Linear Biases)](https://arxiv.org/abs/2108.12409) and does not use positional embeddings
* It does not use biases
| Hyperparameter | Value |
|----------------|-------|
|n_parameters | 6.7B |
|n_layers | 32 |
| n_heads | 32 |
| d_model | 4096 |
| vocab size | 50432 |
| sequence length | 2048 |
## Training Data
### Streaming Datasets
Data was formatted using the MosaicML [StreamingDataset](https://github.com/mosaicml/streaming) library to host our data in object storage and efficiently stream it to our compute cluster during training.
StreamingDataset obviates the need to download the whole dataset before starting training, and allows instant resumption of training from any point in the dataset.
### Data Mix
The model was trained for 1T tokens (with batch size 1760 and sequence length 2048). It was trained on the following data mix:
| Data Source | Number of Tokens in Source | Proportion | Effective Number of Tokens | Epochs |
|-------------|----------------------------|------------|----------------------------|--------|
| mC4 3.1.0 - English | 417.99 B | 0.33 | 330 B | 0.14 |
| C4 - English - SemDedup 80% | 100.42 B | 0.299 | 299 B | 2.98 |
| RedPajama - CommonCrawl | 878.45 B | 0.1 | 100 B | 0.11 |
| The Stack - Selected Languages | 463.78 B | 0.1 | 100 B | 0.22 |
| RedPajama - Wikipedia - En | 4.87 B | 0.04 | 40 B | 8.21 |
| The Stack - Markdown | 107.07 B | 0.035 | 35 B | 0.33 |
| S2ORC | 48.85 B | 0.033 | 33 B | 0.68 |
| RedPajama - Books | 26.02 B | 0.03 | 30B | 1.15 |
| RedPajama - arXiv | 28.10 B | 0.019 | 19 B | 0.68 |
| RedPajama - StackExchange | 20.54 B | 0.014 | 14 B |0.68 |
Samples for each batch were selected from one of the datasets with the probability specified above.
The examples were shuffled within each dataset, and each example was constructed from as many sequences from that dataset as were necessary to fill the 2048 sequence length.
The data was tokenized using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer. This BPE tokenizer has a number of desirable characteristics,
most of which are relevant for tokenizing code:
(1) It was trained on a diverse mix of data that includes code (The Pile)
(2) It applies consistent space delimitation, unlike the GPT2 tokenizer which tokenizes inconsistently depending on the presence of prefix spaces
(3) It contains tokens for repeated space characters, which allows superior compression of text with large amounts of repeated space characters.
The model vocabulary size of 50432 was set to be a multiple of 128 (as in [MEGATRON-LM](https://arxiv.org/abs/1909.08053)), model flop utilization (MFU) increased by up to four percentage points.
### Training Configuration
This model was trained on 440 A100-40GBs for about 9.5 days using the [MosaicML Platform](https://www.mosaicml.com/platform).
The model was trained with sharded data parallelism using [FSDP](https://pytorch.org/docs/stable/fsdp.html) and used the [LION](https://arxiv.org/abs/2302.06675) optimizer.
## Limitations and Biases
_The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_
MPT-7B (Base) is **not** intended for deployment without finetuning.
It should not be used for human-facing interactions without further guardrails and user consent.
MPT-7B can produce factually incorrect output, and should not be relied on to produce factually accurate information.
MPT-7B was trained on various public datasets.
While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs.
## MosaicML Platform
If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs on the MosaicML Platform, [sign up here](https://forms.mosaicml.com/demo?utm_source=huggingface&utm_medium=referral&utm_campaign=mpt-7b).
## Disclaimer
The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes.
## Citation
Please cite this model using the following format:
```
@online{MosaicML2023Introducing,
author = {MosaicML NLP Team},
title = {Introducing MPT-7B: A New Standard for Open-Source,
Commercially Usable LLMs},
year = {2023},
url = {www.mosaicml.com/blog/mpt-7b},
note = {Accessed: 2023-05-05},
urldate = {2023-05-05}
}
```
***End of original Model File***
---
## Please consider to support my work
**Coming Soon:** I'm in the process of launching a sponsorship/crowdfunding campaign for my work. I'm evaluating Kickstarter, Patreon, or the new GitHub Sponsors platform, and I am hoping for some support and contribution to the continued availability of these kind of models. Your support will enable me to provide even more valuable resources and maintain the models you rely on. Your patience and ongoing support are greatly appreciated as I work to make this page an even more valuable resource for the community.
<center>
[](https://maddes8cht.github.io)
[](https://stackexchange.com/users/26485911)
[](https://github.com/maddes8cht)
[](https://huggingface.co/maddes8cht)
[](https://twitter.com/maddes1966)
</center> |
maddes8cht/mosaicml-mpt-7b-storywriter-gguf | maddes8cht | 2023-11-01T15:36:56Z | 579 | 3 | null | [
"gguf",
"Composer",
"MosaicML",
"llm-foundry",
"dataset:the_pile_books3",
"arxiv:2108.12409",
"arxiv:2205.14135",
"arxiv:2302.06675",
"license:apache-2.0",
"region:us"
]
| null | 2023-10-17T20:18:26Z | ---
license: apache-2.0
tags:
- Composer
- MosaicML
- llm-foundry
datasets:
- the_pile_books3
inference: false
---
[]()
I'm constantly enhancing these model descriptions to provide you with the most relevant and comprehensive information
# mpt-7b-storywriter - GGUF
- Model creator: [mosaicml](https://huggingface.co/mosaicml)
- Original model: [mpt-7b-storywriter](https://huggingface.co/mosaicml/mpt-7b-storywriter)
MPT-7b and MPT-30B are part of the family of Mosaic Pretrained Transformer (MPT) models, which use a modified transformer architecture optimized for efficient training and inference.
---
# Brief
MPT-7B Storywriter is a Model based on MPT-7b, designed to read and write fictional stories with super long context lengths.
---
# About GGUF format
`gguf` is the current file format used by the [`ggml`](https://github.com/ggerganov/ggml) library.
A growing list of Software is using it and can therefore use this model.
The core project making use of the ggml library is the [llama.cpp](https://github.com/ggerganov/llama.cpp) project by Georgi Gerganov
# Quantization variants
There is a bunch of quantized files available to cater to your specific needs. Here's how to choose the best option for you:
# Legacy quants
Q4_0, Q4_1, Q5_0, Q5_1 and Q8 are `legacy` quantization types.
Nevertheless, they are fully supported, as there are several circumstances that cause certain model not to be compatible with the modern K-quants.
## Note:
Now there's a new option to use K-quants even for previously 'incompatible' models, although this involves some fallback solution that makes them not *real* K-quants. More details can be found in affected model descriptions.
(This mainly refers to Falcon 7b and Starcoder models)
# K-quants
K-quants are designed with the idea that different levels of quantization in specific parts of the model can optimize performance, file size, and memory load.
So, if possible, use K-quants.
With a Q6_K, you'll likely find it challenging to discern a quality difference from the original model - ask your model two times the same question and you may encounter bigger quality differences.
---
# Original Model Card:
# MPT-7B-StoryWriter-65k+
MPT-7B-StoryWriter-65k+ is a model designed to read and write fictional stories with super long context lengths.
It was built by finetuning MPT-7B with a context length of 65k tokens on a filtered fiction subset of the [books3 dataset](https://huggingface.co/datasets/the_pile_books3).
At inference time, thanks to [ALiBi](https://arxiv.org/abs/2108.12409), MPT-7B-StoryWriter-65k+ can extrapolate even beyond 65k tokens.
We demonstrate generations as long as 84k tokens on a single node of 8 A100-80GB GPUs in our [blogpost](https://www.mosaicml.com/blog/mpt-7b).
* License: Apache 2.0
This model was trained by [MosaicML](https://www.mosaicml.com) and follows a modified decoder-only transformer architecture.
## Model Date
May 5, 2023
## Model License
Apache 2.0
## Documentation
* [Blog post: Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs](https://www.mosaicml.com/blog/mpt-7b)
* [Codebase (mosaicml/llm-foundry repo)](https://github.com/mosaicml/llm-foundry/)
* Questions: Feel free to contact us via the [MosaicML Community Slack](https://mosaicml.me/slack)!
## How to Use
Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method. This is because we use a custom model architecture that is not yet part of the `transformers` package.
It includes options for many training efficiency features such as [FlashAttention (Dao et al. 2022)](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), QK LayerNorm, and more.
```python
import transformers
model = transformers.AutoModelForCausalLM.from_pretrained(
'mosaicml/mpt-7b-storywriter',
trust_remote_code=True
)
```
To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model on GPU (`cuda:0`) with `attn_impl='triton'` and with `bfloat16` precision:
```python
import torch
import transformers
name = 'mosaicml/mpt-7b-storywriter'
config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
config.attn_config['attn_impl'] = 'triton'
config.init_device = 'cuda:0' # For fast initialization directly on GPU!
model = transformers.AutoModelForCausalLM.from_pretrained(
name,
config=config,
torch_dtype=torch.bfloat16, # Load model weights in bfloat16
trust_remote_code=True
)
```
Although the model was trained with a sequence length of 2048 and finetuned with a sequence length of 65536,
ALiBi enables users to increase the maximum sequence length during finetuning and/or inference. For example:
```python
import transformers
name = 'mosaicml/mpt-7b'
config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
config.max_seq_len = 83968 # (input + output) tokens can now be up to 83968
model = transformers.AutoModelForCausalLM.from_pretrained(
name,
config=config,
trust_remote_code=True
)
```
This model was trained with the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer.
```python
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
```
The model can then be used, for example, within a text-generation pipeline.
Note: when running Torch modules in lower precision, it is best practice to use the [torch.autocast context manager](https://pytorch.org/docs/stable/amp.html).
```python
from transformers import pipeline
pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, device='cuda:0')
with torch.autocast('cuda', dtype=torch.bfloat16):
print(
pipe('Here is a recipe for vegan banana bread:\n',
max_new_tokens=100,
do_sample=True,
use_cache=True))
```
## Community-Created Resources
These were not created by MosaicML, but you may find them useful. These links are not an endorsement of the creators or their content.
- [Oobabooga Running MPT-7B-Storywriter](https://youtu.be/QVVb6Md6huA)
- [NEW MPT-7B-StoryWriter CRUSHES GPT-4!](https://www.youtube.com/watch?v=O9Y_ZdsuKWQ&t=649s) - Has a long section on running locally using Oobabooga
## Example Epilogue
The full text of the _The Great Gatsby_ (67873 tokens) was fed to the model, followed by the text "EPILOGUE"
**TheRealFitzgerald233**:
> ...
>
> So we beat on, boats against the current, borne back ceaselessly into the past
>
> EPILOGUE
**MPT-7B-StoryWriter**:
>I have lived so long in the shadow of this dream that I may never see the bright sunlight of reality. I may look up some morning and find that I am six feet under, and that Gatsby, who gave me the dream and everything else, will have vanished behind me.
>
>And so it was. I had hardly crossed the threshold of the old world when my eye caught the headlines of a newspaper, and I knew at once that my dream was over. I knew that Gatsby was dead.
>
>And I knew that day that I didn't love her.
>
>That night I took the last train for West Egg, and when I reached home I went directly to my attic and brought down all Gatsby's letters.
>
>I have sorted them by date and placed them in the order in which they were written. They are very few in number.
>
>They are dated between April of nineteen eighteen and January of nineteen nineteen, and the last one I have here is the one that told me he was dead.
>
>There is something in that last letter that frightens me. It is the sense of a finality, of a completeness. I never heard of him after that, and I was glad.
>
>But a few months ago I read somewhere that he had been seen in New York. He had become a great man.
>
>And I knew that he had not changed at all.
## Model Description
The architecture is a modification of a standard decoder-only transformer.
The model has been modified from a standard transformer in the following ways:
* It uses [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf)
* It uses [ALiBi (Attention with Linear Biases)](https://arxiv.org/abs/2108.12409) and does not use positional embeddings
* It does not use biases
| Hyperparameter | Value |
|----------------|-------|
|n_parameters | 6.7B |
|n_layers | 32 |
| n_heads | 32 |
| d_model | 4096 |
| vocab size | 50432 |
| sequence length | **65536** |
## PreTraining Data
For more details on the pretraining process, see [MPT-7B](https://huggingface.co/mosaicml/mpt-7b).
The data was tokenized using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer.
### Training Configuration
This model was trained on 8 A100-80GBs for about 2 days using the [MosaicML Platform](https://www.mosaicml.com/platform).
The model was trained with sharded data parallelism using [FSDP](https://pytorch.org/docs/stable/fsdp.html) and used the [LION](https://arxiv.org/abs/2302.06675) optimizer.
## Limitations and Biases
_The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_
MPT-7B-StoryWriter can produce factually incorrect output, and should not be relied on to produce factually accurate information.
MPT-7B-StoryWriter was trained on various public datasets.
While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs.
## Acknowledgements
This model was finetuned by Alex Trott and the MosaicML NLP team
## MosaicML Platform
If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs on the MosaicML Platform, [sign up here](https://forms.mosaicml.com/demo?utm_source=huggingface&utm_medium=referral&utm_campaign=mpt-7b).
## Disclaimer
The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes.
## Citation
Please cite this model using the following format:
```
@online{MosaicML2023Introducing,
author = {MosaicML NLP Team},
title = {Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs},
year = {2023},
url = {www.mosaicml.com/blog/mpt-7b},
note = {Accessed: 2023-03-28}, % change this date
urldate = {2023-03-28} % change this date
}
```
***End of original Model File***
---
## Please consider to support my work
**Coming Soon:** I'm in the process of launching a sponsorship/crowdfunding campaign for my work. I'm evaluating Kickstarter, Patreon, or the new GitHub Sponsors platform, and I am hoping for some support and contribution to the continued availability of these kind of models. Your support will enable me to provide even more valuable resources and maintain the models you rely on. Your patience and ongoing support are greatly appreciated as I work to make this page an even more valuable resource for the community.
<center>
[](https://maddes8cht.github.io)
[](https://stackexchange.com/users/26485911)
[](https://github.com/maddes8cht)
[](https://huggingface.co/maddes8cht)
[](https://twitter.com/maddes1966)
</center> |
maddes8cht/mosaicml-mpt-7b-instruct-gguf | maddes8cht | 2023-11-01T15:36:54Z | 170 | 1 | null | [
"gguf",
"Composer",
"MosaicML",
"llm-foundry",
"dataset:mosaicml/dolly_hhrlhf",
"arxiv:2205.14135",
"arxiv:2108.12409",
"arxiv:2010.04245",
"license:cc-by-sa-3.0",
"region:us"
]
| null | 2023-10-26T22:12:33Z | ---
license: cc-by-sa-3.0
datasets:
- mosaicml/dolly_hhrlhf
tags:
- Composer
- MosaicML
- llm-foundry
inference: false
---
[]()
I'm constantly enhancing these model descriptions to provide you with the most relevant and comprehensive information
# mpt-7b-instruct - GGUF
- Model creator: [mosaicml](https://huggingface.co/mosaicml)
- Original model: [mpt-7b-instruct](https://huggingface.co/mosaicml/mpt-7b-instruct)
MPT-7b and MPT-30B are part of the family of Mosaic Pretrained Transformer (MPT) models, which use a modified transformer architecture optimized for efficient training and inference.
# About GGUF format
`gguf` is the current file format used by the [`ggml`](https://github.com/ggerganov/ggml) library.
A growing list of Software is using it and can therefore use this model.
The core project making use of the ggml library is the [llama.cpp](https://github.com/ggerganov/llama.cpp) project by Georgi Gerganov
# Quantization variants
There is a bunch of quantized files available to cater to your specific needs. Here's how to choose the best option for you:
# Legacy quants
Q4_0, Q4_1, Q5_0, Q5_1 and Q8 are `legacy` quantization types.
Nevertheless, they are fully supported, as there are several circumstances that cause certain model not to be compatible with the modern K-quants.
## Note:
Now there's a new option to use K-quants even for previously 'incompatible' models, although this involves some fallback solution that makes them not *real* K-quants. More details can be found in affected model descriptions.
(This mainly refers to Falcon 7b and Starcoder models)
# K-quants
K-quants are designed with the idea that different levels of quantization in specific parts of the model can optimize performance, file size, and memory load.
So, if possible, use K-quants.
With a Q6_K, you'll likely find it challenging to discern a quality difference from the original model - ask your model two times the same question and you may encounter bigger quality differences.
---
# Original Model Card:
# MPT-7B-Instruct
MPT-7B-Instruct is a model for short-form instruction following.
It is built by finetuning [MPT-7B](https://huggingface.co/mosaicml/mpt-7b) on a [dataset](https://huggingface.co/datasets/sam-mosaic/dolly_hhrlhf) derived from the [Databricks Dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) and the [Anthropic Helpful and Harmless (HH-RLHF)](https://huggingface.co/datasets/Anthropic/hh-rlhf) datasets.
* License: _CC-By-SA-3.0_
* [Demo on Hugging Face Spaces](https://huggingface.co/spaces/mosaicml/mpt-7b-instruct)
This model was trained by [MosaicML](https://www.mosaicml.com) and follows a modified decoder-only transformer architecture.
## Model Date
May 5, 2023
## Model License
CC-By-SA-3.0
## Documentation
* [Blog post: Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs](https://www.mosaicml.com/blog/mpt-7b)
* [Codebase (mosaicml/llm-foundry repo)](https://github.com/mosaicml/llm-foundry/)
* Questions: Feel free to contact us via the [MosaicML Community Slack](https://mosaicml.me/slack)!
### Example Question/Instruction
**Longboi24**:
> What is a quoll?
**MPT-7B-Instruct**:
>A Quoll (pronounced “cool”) is one of Australia’s native carnivorous marsupial mammals, which are also known as macropods or wallabies in other parts around Asia and South America
## How to Use
Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method. This is because we use a custom model architecture that is not yet part of the `transformers` package.
It includes options for many training efficiency features such as [FlashAttention (Dao et al. 2022)](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), QK LayerNorm, and more.
```python
import transformers
model = transformers.AutoModelForCausalLM.from_pretrained(
'mosaicml/mpt-7b-instruct',
trust_remote_code=True
)
```
Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method.
This is because we use a custom `MPT` model architecture that is not yet part of the Hugging Face `transformers` package.
`MPT` includes options for many training efficiency features such as [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), [QK LayerNorm](https://arxiv.org/abs/2010.04245), and more.
To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model on GPU (`cuda:0`) with `attn_impl='triton'` and with `bfloat16` precision:
```python
import torch
import transformers
name = 'mosaicml/mpt-7b-instruct'
config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
config.attn_config['attn_impl'] = 'triton'
config.init_device = 'cuda:0' # For fast initialization directly on GPU!
model = transformers.AutoModelForCausalLM.from_pretrained(
name,
config=config,
torch_dtype=torch.bfloat16, # Load model weights in bfloat16
trust_remote_code=True
)
```
Although the model was trained with a sequence length of 2048, ALiBi enables users to increase the maximum sequence length during finetuning and/or inference. For example:
```python
import transformers
name = 'mosaicml/mpt-7b-instruct'
config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
config.max_seq_len = 4096 # (input + output) tokens can now be up to 4096
model = transformers.AutoModelForCausalLM.from_pretrained(
name,
config=config,
trust_remote_code=True
)
```
This model was trained with the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer.
```python
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
```
The model can then be used, for example, within a text-generation pipeline.
Note: when running Torch modules in lower precision, it is best practice to use the [torch.autocast context manager](https://pytorch.org/docs/stable/amp.html).
```python
from transformers import pipeline
pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, device='cuda:0')
with torch.autocast('cuda', dtype=torch.bfloat16):
print(
pipe('Here is a recipe for vegan banana bread:\n',
max_new_tokens=100,
do_sample=True,
use_cache=True))
```
### Formatting
This model was trained on data formatted in the dolly-15k format:
```python
INSTRUCTION_KEY = "### Instruction:"
RESPONSE_KEY = "### Response:"
INTRO_BLURB = "Below is an instruction that describes a task. Write a response that appropriately completes the request."
PROMPT_FOR_GENERATION_FORMAT = """{intro}
{instruction_key}
{instruction}
{response_key}
""".format(
intro=INTRO_BLURB,
instruction_key=INSTRUCTION_KEY,
instruction="{instruction}",
response_key=RESPONSE_KEY,
)
example = "James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint. How many total meters does he run a week? Explain before answering."
fmt_ex = PROMPT_FOR_GENERATION_FORMAT.format(instruction=example)
```
In the above example, `fmt_ex` is ready to be tokenized and sent through the model.
## Model Description
The architecture is a modification of a standard decoder-only transformer.
The model has been modified from a standard transformer in the following ways:
* It uses [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf)
* It uses [ALiBi (Attention with Linear Biases)](https://arxiv.org/abs/2108.12409) and does not use positional embeddings
* It does not use biases
| Hyperparameter | Value |
|----------------|-------|
|n_parameters | 6.7B |
|n_layers | 32 |
| n_heads | 32 |
| d_model | 4096 |
| vocab size | 50432 |
| sequence length | 2048 |
## PreTraining Data
For more details on the pretraining process, see [MPT-7B](https://huggingface.co/mosaicml/mpt-7b).
The data was tokenized using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer.
### Training Configuration
This model was trained on 8 A100-40GBs for about 2.3 hours using the [MosaicML Platform](https://www.mosaicml.com/platform).
The model was trained with sharded data parallelism using [FSDP](https://pytorch.org/docs/stable/fsdp.html) and used the AdamW optimizer.
## Limitations and Biases
_The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_
MPT-7B-Instruct can produce factually incorrect output, and should not be relied on to produce factually accurate information.
MPT-7B-Instruct was trained on various public datasets.
While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs.
## Acknowledgements
This model was finetuned by Sam Havens and the MosaicML NLP team
## MosaicML Platform
If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs on the MosaicML Platform, [sign up here](https://forms.mosaicml.com/demo?utm_source=huggingface&utm_medium=referral&utm_campaign=mpt-7b).
## Disclaimer
The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes.
## Citation
Please cite this model using the following format:
```
@online{MosaicML2023Introducing,
author = {MosaicML NLP Team},
title = {Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs},
year = {2023},
url = {www.mosaicml.com/blog/mpt-7b},
note = {Accessed: 2023-03-28}, % change this date
urldate = {2023-03-28} % change this date
}
```
***End of original Model File***
---
## Please consider to support my work
**Coming Soon:** I'm in the process of launching a sponsorship/crowdfunding campaign for my work. I'm evaluating Kickstarter, Patreon, or the new GitHub Sponsors platform, and I am hoping for some support and contribution to the continued availability of these kind of models. Your support will enable me to provide even more valuable resources and maintain the models you rely on. Your patience and ongoing support are greatly appreciated as I work to make this page an even more valuable resource for the community.
<center>
[](https://maddes8cht.github.io)
[](https://stackexchange.com/users/26485911)
[](https://github.com/maddes8cht)
[](https://huggingface.co/maddes8cht)
[](https://twitter.com/maddes1966)
</center> |
maddes8cht/mosaicml-mpt-7b-8k-instruct-gguf | maddes8cht | 2023-11-01T15:36:48Z | 71 | 1 | null | [
"gguf",
"Composer",
"MosaicML",
"llm-foundry",
"arxiv:2205.14135",
"arxiv:2108.12409",
"arxiv:2010.04245",
"license:cc-by-sa-3.0",
"region:us"
]
| null | 2023-10-28T09:34:05Z | ---
license: cc-by-sa-3.0
datasets:
- competition_math
- conceptofmind/cot_submix_original/cot_gsm8k
- knkarthick/dialogsum
- mosaicml/dolly_hhrlhf
- duorc
- tau/scrolls/qasper
- emozilla/quality
- scrolls/summ_screen_fd
- spider
tags:
- Composer
- MosaicML
- llm-foundry
inference: false
---
[]()
I'm constantly enhancing these model descriptions to provide you with the most relevant and comprehensive information
# mpt-7b-8k-instruct - GGUF
- Model creator: [mosaicml](https://huggingface.co/mosaicml)
- Original model: [mpt-7b-8k-instruct](https://huggingface.co/mosaicml/mpt-7b-8k-instruct)
MPT-7b and MPT-30B are part of the family of Mosaic Pretrained Transformer (MPT) models, which use a modified transformer architecture optimized for efficient training and inference.
# About GGUF format
`gguf` is the current file format used by the [`ggml`](https://github.com/ggerganov/ggml) library.
A growing list of Software is using it and can therefore use this model.
The core project making use of the ggml library is the [llama.cpp](https://github.com/ggerganov/llama.cpp) project by Georgi Gerganov
# Quantization variants
There is a bunch of quantized files available to cater to your specific needs. Here's how to choose the best option for you:
# Legacy quants
Q4_0, Q4_1, Q5_0, Q5_1 and Q8 are `legacy` quantization types.
Nevertheless, they are fully supported, as there are several circumstances that cause certain model not to be compatible with the modern K-quants.
## Note:
Now there's a new option to use K-quants even for previously 'incompatible' models, although this involves some fallback solution that makes them not *real* K-quants. More details can be found in affected model descriptions.
(This mainly refers to Falcon 7b and Starcoder models)
# K-quants
K-quants are designed with the idea that different levels of quantization in specific parts of the model can optimize performance, file size, and memory load.
So, if possible, use K-quants.
With a Q6_K, you'll likely find it challenging to discern a quality difference from the original model - ask your model two times the same question and you may encounter bigger quality differences.
---
# Original Model Card:
# MPT-7B-Instruct-8k
MPT-7B-Instruct-8k is a model for long-form instruction following, especially question-answering on and summarization of longer documents.
It is built by finetuning [MPT-7B-8k](https://huggingface.co/mosaicml/mpt-7b-8k) on [Dolly HHRLHF](https://huggingface.co/datasets/mosaicml/dolly_hhrlhf) derived from the [Databricks Dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) and the [Anthropic Helpful and Harmless (HH-RLHF)](https://huggingface.co/datasets/Anthropic/hh-rlhf) datasets. It is also trained on [Competition Math](https://huggingface.co/datasets/competition_math), [Duorc](https://huggingface.co/datasets/duorc), [CoT GSM8k](https://huggingface.co/datasets/conceptofmind/cot_submix_original), [Qasper](https://huggingface.co/datasets/allenai/qasper), [Quality](https://huggingface.co/datasets/emozilla/quality), [Summ Screen FD](https://huggingface.co/datasets/tau/scrolls) and [Spider](https://huggingface.co/datasets/spider).
This is the same dataset that [MPT-30B-Instruct](https://huggingface.co/mosaicml/mpt-30b-instruct) was trained on.
* License: _CC-By-SA-3.0_
This model was trained by [MosaicML](https://www.mosaicml.com) and follows a modified decoder-only transformer architecture.
## Model Date
July 18, 2023
## Model License
_CC-By-SA-3.0_
## Documentation
* [Blog post: MPT-7B-8k](https://www.mosaicml.com/blog/long-context-mpt-7b-8k)
* [Codebase (mosaicml/llm-foundry repo)](https://github.com/mosaicml/llm-foundry/)
* Questions: Feel free to contact us via the [MosaicML Community Slack](https://mosaicml.me/slack)!
## How to Use
This model is best used with the MosaicML [llm-foundry repository](https://github.com/mosaicml/llm-foundry) for training and finetuning.
```python
import transformers
model = transformers.AutoModelForCausalLM.from_pretrained(
'mosaicml/mpt-7b-instruct-8k',
trust_remote_code=True
)
```
Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method.
This is because we use a custom `MPT` model architecture that is not yet part of the Hugging Face `transformers` package.
`MPT` includes options for many training efficiency features such as [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), [QK LayerNorm](https://arxiv.org/abs/2010.04245), and more.
To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model on GPU (`cuda:0`) with `attn_impl='triton'` and with `bfloat16` precision:
```python
import torch
import transformers
name = 'mosaicml/mpt-7b-instruct-8k'
config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
config.attn_config['attn_impl'] = 'triton' # change this to use triton-based FlashAttention
config.init_device = 'cuda:0' # For fast initialization directly on GPU!
model = transformers.AutoModelForCausalLM.from_pretrained(
name,
config=config,
torch_dtype=torch.bfloat16, # Load model weights in bfloat16
trust_remote_code=True
)
```
The model was trained initially with a sequence length of 2048 with an additional pretraining stage for sequence length adapation up to 8192. However, ALiBi enables users to increase the maximum sequence length even further during finetuning and/or inference. For example:
```python
import transformers
name = 'mosaicml/mpt-7b-instruct-8k'
config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
config.max_seq_len = 16384 # (input + output) tokens can now be up to 16384
model = transformers.AutoModelForCausalLM.from_pretrained(
name,
config=config,
trust_remote_code=True
)
```
This model was trained with the MPT-7B-chat tokenizer which is based on the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer and includes additional ChatML tokens.
```python
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('mosaicml/mpt-7b-8k')
```
The model can then be used, for example, within a text-generation pipeline.
Note: when running Torch modules in lower precision, it is best practice to use the [torch.autocast context manager](https://pytorch.org/docs/stable/amp.html).
```python
from transformers import pipeline
with torch.autocast('cuda', dtype=torch.bfloat16):
inputs = tokenizer('Here is a recipe for vegan banana bread:\n', return_tensors="pt").to('cuda')
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
# or using the HF pipeline
pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, device='cuda:0')
with torch.autocast('cuda', dtype=torch.bfloat16):
print(
pipe('Here is a recipe for vegan banana bread:\n',
max_new_tokens=100,
do_sample=True,
use_cache=True))
```
## Model Description
The architecture is a modification of a standard decoder-only transformer.
The model has been modified from a standard transformer in the following ways:
* It uses [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf)
* It uses [ALiBi (Attention with Linear Biases)](https://arxiv.org/abs/2108.12409) and does not use positional embeddings
* It does not use biases
| Hyperparameter | Value |
|----------------|-------|
|n_parameters | 6.7B |
|n_layers | 32 |
| n_heads | 32 |
| d_model | 4096 |
| vocab size | 50432 |
| sequence length | 2048 |
## Data Mix
The model was trained on the following data mix:
| Data Source | Number of Tokens in Source | Proportion |
|-------------|----------------------------|------------|
| competition_math | 1.6 M | 3.66% |
| cot_gsm8k | 3.36 M | 7.67% |
| dialogsum | 0.1 M | 0.23% |
| dolly_hhrlhf | 5.89 M | 13.43% |
| duorc | 7.8 M | 17.80% |
| qasper | 8.72 M | 19.90% |
| quality | 11.29 M | 25.78% |
| scrolls/summ_screen_fd | 4.97 M | 11.33% |
| spider | 0.089 M | 0.20% |
### Training Configuration
This model was trained on 8 80GB A100s for about 6.3 hours using the [MosaicML Platform](https://www.mosaicml.com/platform).
The model was trained with sharded data parallelism using [FSDP](https://pytorch.org/docs/stable/fsdp.html) and used the AdamW optimizer.
## Limitations and Biases
_The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_
MPT-7B-Instruct-8k can produce factually incorrect output, and should not be relied on to produce factually accurate information.
MPT-7B-Instruct-8k was trained on various public datasets.
While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs.
## Acknowledgements
This model was finetuned by the MosaicML NLP team.
## Disclaimer
The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please consult an attorney before using this model for commercial purposes.
## MosaicML Platform
If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs on the MosaicML Platform, [sign up here](https://www.mosaicml.com/get-started?utm_source=huggingface&utm_medium=referral&utm_campaign=mpt-7b-8k).
## Citation
Please cite this model using the following format:
```
@online{MosaicML2023Introducing,
author = {MosaicML NLP Team},
title = {Introducing MPT-30B: Raising the bar
for open-source foundation models},
year = {2023},
url = {www.mosaicml.com/blog/mpt-30b},
note = {Accessed: 2023-06-22},
urldate = {2023-06-22}
}
```
***End of original Model File***
---
## Please consider to support my work
**Coming Soon:** I'm in the process of launching a sponsorship/crowdfunding campaign for my work. I'm evaluating Kickstarter, Patreon, or the new GitHub Sponsors platform, and I am hoping for some support and contribution to the continued availability of these kind of models. Your support will enable me to provide even more valuable resources and maintain the models you rely on. Your patience and ongoing support are greatly appreciated as I work to make this page an even more valuable resource for the community.
<center>
[](https://maddes8cht.github.io)
[](https://stackexchange.com/users/26485911)
[](https://github.com/maddes8cht)
[](https://huggingface.co/maddes8cht)
[](https://twitter.com/maddes1966)
</center> |
maddes8cht/mosaicml-mpt-30b-instruct-gguf | maddes8cht | 2023-11-01T15:36:43Z | 60 | 0 | null | [
"gguf",
"Composer",
"MosaicML",
"llm-foundry",
"arxiv:2205.14135",
"arxiv:2108.12409",
"license:cc-by-sa-3.0",
"region:us"
]
| null | 2023-10-27T16:50:33Z | ---
license: cc-by-sa-3.0
datasets:
- competition_math
- conceptofmind/cot_submix_original/cot_gsm8k
- knkarthick/dialogsum
- mosaicml/dolly_hhrlhf
- duorc
- tau/scrolls/qasper
- emozilla/quality
- scrolls/summ_screen_fd
- spider
tags:
- Composer
- MosaicML
- llm-foundry
inference: false
---
[]()
I'm constantly enhancing these model descriptions to provide you with the most relevant and comprehensive information
# mpt-30b-instruct - GGUF
- Model creator: [mosaicml](https://huggingface.co/mosaicml)
- Original model: [mpt-30b-instruct](https://huggingface.co/mosaicml/mpt-30b-instruct)
MPT-7b and MPT-30B are part of the family of Mosaic Pretrained Transformer (MPT) models, which use a modified transformer architecture optimized for efficient training and inference.
# About GGUF format
`gguf` is the current file format used by the [`ggml`](https://github.com/ggerganov/ggml) library.
A growing list of Software is using it and can therefore use this model.
The core project making use of the ggml library is the [llama.cpp](https://github.com/ggerganov/llama.cpp) project by Georgi Gerganov
# Quantization variants
There is a bunch of quantized files available to cater to your specific needs. Here's how to choose the best option for you:
# Legacy quants
Q4_0, Q4_1, Q5_0, Q5_1 and Q8 are `legacy` quantization types.
Nevertheless, they are fully supported, as there are several circumstances that cause certain model not to be compatible with the modern K-quants.
## Note:
Now there's a new option to use K-quants even for previously 'incompatible' models, although this involves some fallback solution that makes them not *real* K-quants. More details can be found in affected model descriptions.
(This mainly refers to Falcon 7b and Starcoder models)
# K-quants
K-quants are designed with the idea that different levels of quantization in specific parts of the model can optimize performance, file size, and memory load.
So, if possible, use K-quants.
With a Q6_K, you'll likely find it challenging to discern a quality difference from the original model - ask your model two times the same question and you may encounter bigger quality differences.
---
# Original Model Card:
# MPT-30B-Instruct
MPT-30B-Instruct is a model for short-form instruction following.
It is built by finetuning [MPT-30B](https://huggingface.co/mosaicml/mpt-30b) on [Dolly HHRLHF](https://huggingface.co/datasets/mosaicml/dolly_hhrlhf) derived from the [Databricks Dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) and the [Anthropic Helpful and Harmless (HH-RLHF)](https://huggingface.co/datasets/Anthropic/hh-rlhf) datasets. It is also trained on [Competition Math](https://huggingface.co/datasets/competition_math), [Duorc](https://huggingface.co/datasets/duorc), [CoT GSM8k](https://huggingface.co/datasets/conceptofmind/cot_submix_original), [Qasper](https://huggingface.co/datasets/allenai/qasper), [Quality](https://huggingface.co/datasets/emozilla/quality), [Summ Screen FD](https://huggingface.co/datasets/tau/scrolls) and [Spider](https://huggingface.co/datasets/spider).
* License: _CC-By-SA-3.0_
This model was trained by [MosaicML](https://www.mosaicml.com) and follows a modified decoder-only transformer architecture.
## Model Date
June 22, 2023
## Model License
CC-By-SA-3.0
## Documentation
* [Blog post: Raising the bar for open-source foundation models](https://www.mosaicml.com/blog/mpt-30b)
* [Codebase (mosaicml/llm-foundry repo)](https://github.com/mosaicml/llm-foundry/)
* Questions: Feel free to contact us via the [MosaicML Community Slack](https://mosaicml.me/slack)!
### Example Question/Instruction
**Bespokenizer46**
> I need to convince my friend, Phyllis, that she should train a custom LLM for her Fortune 500 company using the MosaicML Platform.
> Please write an email that explains why MosaicML's emphasis on cutting edge methodology, data privacy, and efficiency are so important.
> End the email with a friendly inquiry about Phyllis's family.
**MPT-30B-Instruct**:
> Phyllis -
> I know you're always looking for ways to improve efficiency at work and I think I've found a solution that you'll be very interested in.
> LLMs are only as good as the data they're trained on and the training process can be very time consuming and resource intensive. MosaicML uses cutting edge methodology to efficiently train high quality models without compromising data privacy.
> They also provide tools to easily connect to and use the model in your daily workflow.
> I think you'd really enjoy speaking with their founder, we can set up a call if you're interested.
> Also, I know it's been a tough year for your family, how are things?
> Best,
> Your Friend
## How to Use
Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method. This is because we use a custom model architecture that is not yet part of the `transformers` package.
It includes options for many training efficiency features such as [FlashAttention (Dao et al. 2022)](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), QK LayerNorm, and more.
```python
import transformers
model = transformers.AutoModelForCausalLM.from_pretrained(
'mosaicml/mpt-30b-instruct',
trust_remote_code=True
)
```
To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model on GPU (`cuda:0`) with `attn_impl='triton'` and with `bfloat16` precision:
```python
import torch
import transformers
name = 'mosaicml/mpt-30b-instruct'
config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
config.attn_config['attn_impl'] = 'triton' # change this to use triton-based FlashAttention
config.init_device = 'cuda:0' # For fast initialization directly on GPU!
model = transformers.AutoModelForCausalLM.from_pretrained(
name,
config=config,
torch_dtype=torch.bfloat16, # Load model weights in bfloat16
trust_remote_code=True
)
```
The model was trained initially on a sequence length of 2048. An additional pre-training phase was included for sequence length adaptation to 8192. However, ALiBi further enables users to increase the maximum sequence length during finetuning and/or inference. For example:
```python
import transformers
name = 'mosaicml/mpt-30b-instruct'
config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
config.max_seq_len = 16384 # (input + output) tokens can now be up to 16384
model = transformers.AutoModelForCausalLM.from_pretrained(
name,
config=config,
trust_remote_code=True
)
```
This model was trained with the MPT-30B tokenizer which is based on the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer and includes additional padding and eos tokens.
```python
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('mosaicml/mpt-30b')
```
The model can then be used, for example, within a text-generation pipeline.
Note: when running Torch modules in lower precision, it is best practice to use the [torch.autocast context manager](https://pytorch.org/docs/stable/amp.html).
```python
from transformers import pipeline
with torch.autocast('cuda', dtype=torch.bfloat16):
inputs = tokenizer('Here is a recipe for vegan banana bread:\n', return_tensors="pt").to('cuda')
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
# or using the HF pipeline
pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, device='cuda:0')
with torch.autocast('cuda', dtype=torch.bfloat16):
print(
pipe('Here is a recipe for vegan banana bread:\n',
max_new_tokens=100,
do_sample=True,
use_cache=True))
```
### Formatting
This model was trained on data formatted as follows:
```python
def format_prompt(instruction):
template = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n###Instruction\n{instruction}\n\n### Response\n"
return template.format(instruction=instruction)
example = "Tell me a funny joke.\nDon't make it too funny though."
fmt_ex = format_prompt(instruction=example)
```
In the above example, `fmt_ex` is ready to be tokenized and sent through the model.
## Model Description
The architecture is a modification of a standard decoder-only transformer.
The model has been modified from a standard transformer in the following ways:
* It uses [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf)
* It uses [ALiBi (Attention with Linear Biases)](https://arxiv.org/abs/2108.12409) and does not use positional embeddings
* It does not use biases
| Hyperparameter | Value |
|----------------|-------|
|n_parameters | 29.95B |
|n_layers | 48 |
| n_heads | 64 |
| d_model | 7168 |
| vocab size | 50432 |
| sequence length | 8192 |
## Data Mix
The model was trained on the following data mix:
| Data Source | Number of Tokens in Source | Proportion |
|-------------|----------------------------|------------|
| competition_math | 1.6 M | 3.66% |
| cot_gsm8k | 3.36 M | 7.67% |
| dialogsum | 0.1 M | 0.23% |
| dolly_hhrlhf | 5.89 M | 13.43% |
| duorc | 7.8 M | 17.80% |
| qasper | 8.72 M | 19.90% |
| quality | 11.29 M | 25.78% |
| scrolls/summ_screen_fd | 4.97 M | 11.33% |
| spider | 0.089 M | 0.20% |
## PreTraining Data
For more details on the pretraining process, see [MPT-30B](https://huggingface.co/mosaicml/mpt-30b).
The data was tokenized using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer.
### Training Configuration
This model was trained on 72 A100 40GB GPUs for 8 hours using the [MosaicML Platform](https://www.mosaicml.com/platform).
The model was trained with sharded data parallelism using [FSDP](https://pytorch.org/docs/stable/fsdp.html) and used the AdamW optimizer.
## Limitations and Biases
_The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_
MPT-30B-Instruct can produce factually incorrect output, and should not be relied on to produce factually accurate information.
MPT-30B-Instruct was trained on various public datasets.
While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs.
## Acknowledgements
This model was finetuned by Sam Havens, Alex Trott, and the MosaicML NLP team
## MosaicML Platform
If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs on the MosaicML Platform, [sign up here](https://forms.mosaicml.com/demo?utm_source=huggingface&utm_medium=referral&utm_campaign=mpt-30b).
## Disclaimer
The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please consult an attorney before using this model for commercial purposes.
## Citation
Please cite this model using the following format:
```
@online{MosaicML2023Introducing,
author = {MosaicML NLP Team},
title = {Introducing MPT-30B: Raising the bar
for open-source foundation models},
year = {2023},
url = {www.mosaicml.com/blog/mpt-30b},
note = {Accessed: 2023-06-22},
urldate = {2023-06-22}
}
```
***End of original Model File***
---
## Please consider to support my work
**Coming Soon:** I'm in the process of launching a sponsorship/crowdfunding campaign for my work. I'm evaluating Kickstarter, Patreon, or the new GitHub Sponsors platform, and I am hoping for some support and contribution to the continued availability of these kind of models. Your support will enable me to provide even more valuable resources and maintain the models you rely on. Your patience and ongoing support are greatly appreciated as I work to make this page an even more valuable resource for the community.
<center>
[](https://maddes8cht.github.io)
[](https://stackexchange.com/users/26485911)
[](https://github.com/maddes8cht)
[](https://huggingface.co/maddes8cht)
[](https://twitter.com/maddes1966)
</center> |
PedroSampaio/vit-base-patch16-224-in21k-fruits-360-16-7 | PedroSampaio | 2023-11-01T15:24:31Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"vit",
"image-classification",
"generated_from_trainer",
"base_model:google/vit-base-patch16-224-in21k",
"base_model:finetune:google/vit-base-patch16-224-in21k",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| image-classification | 2023-11-01T13:30:34Z | ---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vit-base-patch16-224-in21k-fruits-360-16-7
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-patch16-224-in21k-fruits-360-16-7
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0131
- Accuracy: 0.9992
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 7
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4608 | 1.0 | 1057 | 0.4181 | 0.9983 |
| 0.0699 | 2.0 | 2115 | 0.0649 | 0.9953 |
| 0.0313 | 3.0 | 3173 | 0.0243 | 0.9986 |
| 0.0143 | 4.0 | 4231 | 0.0131 | 0.9992 |
| 0.0121 | 5.0 | 5288 | 0.0103 | 0.9989 |
| 0.009 | 6.0 | 6346 | 0.0095 | 0.9988 |
| 0.0037 | 7.0 | 7399 | 0.0090 | 0.9989 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
Mabel465/bert-finetuned-ner | Mabel465 | 2023-11-01T15:21:21Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"token-classification",
"generated_from_trainer",
"base_model:google-bert/bert-base-cased",
"base_model:finetune:google-bert/bert-base-cased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2023-11-01T14:53:22Z | ---
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1769
- Precision: 0.5799
- Recall: 0.4773
- F1: 0.5236
- Accuracy: 0.9264
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 425 | 0.1569 | 0.5424 | 0.3828 | 0.4488 | 0.9168 |
| 0.1143 | 2.0 | 850 | 0.1811 | 0.6304 | 0.4163 | 0.5014 | 0.9219 |
| 0.046 | 3.0 | 1275 | 0.1769 | 0.5799 | 0.4773 | 0.5236 | 0.9264 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0
- Datasets 2.14.6
- Tokenizers 0.14.1
|
ShinDC/marian-finetuned-kde4-en-to-fr | ShinDC | 2023-11-01T15:20:44Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"marian",
"text2text-generation",
"translation",
"generated_from_trainer",
"dataset:kde4",
"base_model:Helsinki-NLP/opus-mt-en-fr",
"base_model:finetune:Helsinki-NLP/opus-mt-en-fr",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| translation | 2023-09-28T14:56:30Z | ---
license: apache-2.0
base_model: Helsinki-NLP/opus-mt-en-fr
tags:
- translation
- generated_from_trainer
datasets:
- kde4
metrics:
- bleu
model-index:
- name: marian-finetuned-kde4-en-to-fr
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: kde4
type: kde4
config: en-fr
split: train
args: en-fr
metrics:
- name: Bleu
type: bleu
value: 100.00000000000004
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# marian-finetuned-kde4-en-to-fr
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8562
- Bleu: 100.0000
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
MakAttack/6540dc5ec89e47f9ae652663 | MakAttack | 2023-11-01T15:15:46Z | 3 | 0 | diffusers | [
"diffusers",
"tensorboard",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"lora",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
]
| text-to-image | 2023-11-01T14:12:38Z |
---
license: openrail++
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: a photo of sks dog
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA DreamBooth - MakAttack/6540dc5ec89e47f9ae652663
These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
|
zyoscovits/uplimit-project-3-phi-1.5 | zyoscovits | 2023-11-01T14:55:42Z | 0 | 0 | null | [
"generated_from_trainer",
"dataset:scitldr",
"base_model:microsoft/phi-1_5",
"base_model:finetune:microsoft/phi-1_5",
"license:other",
"region:us"
]
| null | 2023-11-01T14:55:40Z | ---
license: other
base_model: microsoft/phi-1_5
tags:
- generated_from_trainer
datasets:
- scitldr
model-index:
- name: uplimit-project-3-phi-1.5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# uplimit-project-3-phi-1.5
This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on the scitldr dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5991
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.554 | 0.1 | 200 | 2.6506 |
| 2.5735 | 0.2 | 400 | 2.6515 |
| 2.529 | 0.3 | 600 | 2.6370 |
| 2.5853 | 0.4 | 800 | 2.6223 |
| 2.5414 | 0.5 | 1000 | 2.6204 |
| 2.5768 | 0.6 | 1200 | 2.6136 |
| 2.5488 | 0.7 | 1400 | 2.6095 |
| 2.5259 | 0.8 | 1600 | 2.6017 |
| 2.5789 | 0.9 | 1800 | 2.5991 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
bakkos/sjjsjdjswj | bakkos | 2023-11-01T14:42:27Z | 0 | 0 | null | [
"license:other",
"region:us"
]
| null | 2023-11-01T14:41:31Z | ---
license: other
license_name: other
license_link: LICENSE
---
|
Skier8402/wav2vec-xls-r | Skier8402 | 2023-11-01T14:30:31Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"sw",
"dataset:mozilla-foundation/common_voice_11_0",
"base_model:facebook/wav2vec2-xls-r-300m",
"base_model:finetune:facebook/wav2vec2-xls-r-300m",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| automatic-speech-recognition | 2023-11-01T12:58:35Z | ---
language:
- sw
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: wav2vec-xls-r
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: sw
split: test
args: 'config: sw, split: train+test'
metrics:
- name: Wer
type: wer
value: 0.9982181245473462
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec-xls-r
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1585
- Wer: 0.9982
Increase the number of epochs to improve performance or use a bigger model.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.0131 | 1.53 | 1000 | 3.0846 | 1.0 |
| 2.322 | 3.07 | 2000 | 2.6234 | 1.0000 |
| 1.3523 | 4.6 | 3000 | 2.2515 | 0.9991 |
| 1.1727 | 6.13 | 4000 | 2.1585 | 0.9982 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
kyujinpy/Korean-OpenOrca-13B-v2 | kyujinpy | 2023-11-01T14:13:02Z | 87 | 0 | transformers | [
"transformers",
"pytorch",
"llama",
"text-generation",
"ko",
"dataset:kyujinpy/OpenOrca-ko-v2",
"license:cc-by-nc-sa-4.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2023-10-30T19:09:11Z | ---
language:
- ko
datasets:
- kyujinpy/OpenOrca-ko-v2
library_name: transformers
pipeline_tag: text-generation
license: cc-by-nc-sa-4.0
---
**(주)미디어그룹사람과숲과 (주)마커의 LLM 연구 컨소시엄에서 개발된 모델입니다**
**The license is `cc-by-nc-sa-4.0`.**
# **🐳Korean-OpenOrca-13B-v2🐳**

## Model Details
**Model Developers** Kyujin Han (kyujinpy)
**Model Architecture**
Korean-OpenOrca-13B is an auto-regressive language model based on the LLaMA2 transformer architecture.
**Repo Link**
Github Korean-OpenOrca: [🐳Korean-OpenOrca🐳](https://github.com/Marker-Inc-Korea/Korean-OpenOrca)
**Base Model** [hyunseoki/ko-en-llama2-13b](https://huggingface.co/hyunseoki/ko-en-llama2-13b)
**Training Dataset**
I use [OpenOrca-ko-v2](https://huggingface.co/datasets/kyujinpy/OpenOrca-ko-v2).
Using DeepL, translate about [OpenOrca](https://huggingface.co/datasets/Open-Orca/OpenOrca).
I use A100 GPU 40GB and COLAB, when trianing.
# Model comparisons
| Model | Average |Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
| --- | --- | --- | --- | --- | --- | --- |
| [Korean-OpenOrca-13B🐳] | 48.79 | 43.09 | 54.13 | 40.24 | 45.22 | 61.28 |
| Korean-OpenOrca-13B-v2🐳 | 48.17 | 43.17 | 54.51 | 42.90 | 41.82 | 58.44 |
# Implementation Code
```python
### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "kyujinpy/Korean-OpenOrca-13B-v2"
OpenOrca = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
```
--- |
am-infoweb/QA_REDACTION_NOV1 | am-infoweb | 2023-11-01T14:12:54Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"question-answering",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-base",
"base_model:finetune:FacebookAI/xlm-roberta-base",
"license:mit",
"endpoints_compatible",
"region:us"
]
| question-answering | 2023-11-01T13:22:13Z | ---
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
model-index:
- name: QA_REDACTION_NOV1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# QA_REDACTION_NOV1
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0170
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.9087 | 1.0 | 928 | 0.0382 |
| 0.0727 | 2.0 | 1856 | 0.0195 |
| 0.0954 | 3.0 | 2784 | 3.1621 |
| 0.3541 | 4.0 | 3712 | 0.0192 |
| 0.0849 | 5.0 | 4640 | 0.0164 |
| 0.0317 | 6.0 | 5568 | 0.0131 |
| 0.0327 | 7.0 | 6496 | 0.0151 |
| 0.0407 | 8.0 | 7424 | 0.0142 |
| 0.0383 | 9.0 | 8352 | 0.0176 |
| 0.0182 | 10.0 | 9280 | 0.0170 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.0.1
- Datasets 2.14.6
- Tokenizers 0.14.1
|
ramdhanfirdaus/falcon-1b-finetuned-aings-adapters-testing | ramdhanfirdaus | 2023-11-01T14:02:30Z | 1 | 0 | peft | [
"peft",
"arxiv:1910.09700",
"base_model:tiiuae/falcon-rw-1b",
"base_model:adapter:tiiuae/falcon-rw-1b",
"region:us"
]
| null | 2023-11-01T14:02:25Z | ---
library_name: peft
base_model: tiiuae/falcon-rw-1b
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
## Training procedure
### Framework versions
- PEFT 0.6.0.dev0
## Training procedure
### Framework versions
- PEFT 0.6.0.dev0
|
T-Brockhouse/first_model_more_data | T-Brockhouse | 2023-11-01T14:01:43Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"generated_from_trainer",
"base_model:openai-community/gpt2",
"base_model:finetune:openai-community/gpt2",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2023-11-01T13:52:07Z | ---
license: mit
base_model: gpt2
tags:
- generated_from_trainer
model-index:
- name: first_model_more_data
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# first_model_more_data
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
cnrhs/sen-sim-es | cnrhs | 2023-11-01T13:55:25Z | 7 | 0 | sentence-transformers | [
"sentence-transformers",
"safetensors",
"bert",
"feature-extraction",
"sentence-similarity",
"transformers",
"es",
"license:apache-2.0",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
]
| sentence-similarity | 2023-11-01T13:17:48Z | ---
pipeline_tag: sentence-similarity
language:
- es
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
license: apache-2.0
---
# hiiamsid/sentence_similarity_spanish_es
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ['Mi nombre es Siddhartha', 'Mis amigos me llamaron por mi nombre Siddhartha']
model = SentenceTransformer('hiiamsid/sentence_similarity_spanish_es')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['Mi nombre es Siddhartha', 'Mis amigos me llamaron por mi nombre Siddhartha']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('hiiamsid/sentence_similarity_spanish_es')
model = AutoModel.from_pretrained('hiiamsid/sentence_similarity_spanish_es')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, max pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
```
cosine_pearson : 0.8280372842978689
cosine_spearman : 0.8232689765056079
euclidean_pearson : 0.81021993884437
euclidean_spearman : 0.8087904592393836
manhattan_pearson : 0.809645390126291
manhattan_spearman : 0.8077035464970413
dot_pearson : 0.7803662255836028
dot_spearman : 0.7699607641618339
```
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=hiiamsid/sentence_similarity_spanish_es)
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 360 with parameters:
```
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"callback": null,
"epochs": 4,
"evaluation_steps": 1000,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 144,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
- Datasets : [stsb_multi_mt](https://huggingface.co/datasets/stsb_multi_mt)
- Model : [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased)
- Sentence Transformers [Semantic Textual Similarity](https://www.sbert.net/examples/training/sts/README.html) |
PedroSampaio/fruits-360-16-7 | PedroSampaio | 2023-11-01T13:12:22Z | 9 | 0 | transformers | [
"transformers",
"pytorch",
"swin",
"image-classification",
"generated_from_trainer",
"base_model:google/vit-base-patch16-224",
"base_model:finetune:google/vit-base-patch16-224",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| image-classification | 2023-11-01T04:47:57Z | ---
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: fruits-360-16-7
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# fruits-360-16-7
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0026
- Accuracy: 0.9992
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 7
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0718 | 1.0 | 1057 | 0.0188 | 0.9976 |
| 0.0135 | 2.0 | 2115 | 0.0055 | 0.9992 |
| 0.0236 | 3.0 | 3173 | 0.0077 | 0.9976 |
| 0.0082 | 4.0 | 4231 | 0.0026 | 0.9992 |
| 0.004 | 5.0 | 5288 | 0.0036 | 0.9988 |
| 0.0067 | 6.0 | 6346 | 0.0024 | 0.9991 |
| 0.0005 | 7.0 | 7399 | 0.0022 | 0.9992 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
tkay264/data-tk | tkay264 | 2023-11-01T13:06:21Z | 4 | 0 | peft | [
"peft",
"arxiv:1910.09700",
"base_model:meta-llama/Llama-2-7b-chat-hf",
"base_model:adapter:meta-llama/Llama-2-7b-chat-hf",
"region:us"
]
| null | 2023-11-01T13:05:39Z | ---
library_name: peft
base_model: meta-llama/Llama-2-7b-chat-hf
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.6.0.dev0
|
LoneStriker/Skywork-13B-Spicyboros-3.1-5.0bpw-h6-exl2 | LoneStriker | 2023-11-01T13:04:20Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"skywork",
"text-generation",
"custom_code",
"dataset:jondurbin/airoboros-3.1",
"arxiv:2310.19341",
"arxiv:2310.16713",
"license:other",
"autotrain_compatible",
"region:us"
]
| text-generation | 2023-11-01T13:03:56Z | ---
license: other
license_name: license
license_link: >-
https://github.com/SkyworkAI/Skywork/blob/main/Skywork%20Community%20License.pdf
datasets:
- jondurbin/airoboros-3.1
---
<!-- <div align="center">
<h1>
✨Skywork
</h1>
</div> -->
<div align="center"><img src="misc/skywork_logo.jpeg" width="550"/></div>
<p align="center">
👨💻 <a href="https://github.com/SkyworkAI/Skywork" target="_blank">Github</a> • 🤗 <a href="https://huggingface.co/Skywork" target="_blank">Hugging Face</a>• 🤖 <a href="https://modelscope.cn/organization/Skywork" target="_blank">ModelScope</a> • 💬 <a href="https://github.com/SkyworkAI/Skywork/blob/main/misc/wechat.png?raw=true" target="_blank">WeChat</a>• 📜<a href="http://arxiv.org/abs/2310.19341" target="_blank">Tech Report</a>
</p>
<div align="center">
[🎉天工在线对话平台已正式向公众开放](https://sso.tiangong.cn/?redirect=https://model-platform.tiangong.cn/overview&client_id=200005)
</div>
<div align="center">
[](https://github.com/SkyworkAI/Skywork/stargazers)
[](https://github.com/SkyworkAI/Skywork/fork)
</div>
# 模型介绍(Introduction)
**Skywork-13B-Base**模型在高质量清洗过滤的3.2万亿个多语言(主要是中文和英文)和代码数据上进行预训练,它在多种评测和各种基准测试上都展现了同等规模模型的最佳效果。
**Skywork-13B-Base**: The model was trained on a high-quality cleaned dataset consisting of 3.2 trillion multilingual data (mainly Chinese and English) and code. It has demonstrated the best performance among models of similar scale in various evaluations and benchmark tests.
如果您希望了解更多的信息,如训练方案,评估方法,请参考我们的[技术报告](http://arxiv.org/abs/2310.19341),[Skymath](https://arxiv.org/abs/2310.16713)论文,[SkyworkMM](https://github.com/will-singularity/Skywork-MM/blob/main/skywork_mm.pdf)论文。
If you are interested in more training and evaluation details, please refer to our [technical report](http://arxiv.org/abs/2310.19341), [Skymath]((https://arxiv.org/skywork-tech-report)) paper and [SkyworkMM](https://github.com/will-singularity/Skywork-MM/blob/main/skywork_mm.pdf) paper.
## 训练数据(Training Data)
我们精心搭建了数据清洗流程对文本中的低质量数据、有害信息、敏感信息进行清洗过滤。我们的Skywork-13B-Base模型是在清洗后的3.2TB高质量中、英、代码数据上进行训练,其中英文占比52.2%,中文占比39.6%,代码占比8%,在兼顾中文和英文上的表现的同时,代码能力也能有保证。
We have developed a data cleaning pipeline with great care to effectively clean and filter low-quality data and eliminate harmful information from text data. Our Skywork-13B-Base model is trained on a dataset with 3.2TB tokens that consists of high-quality Chinese, English, and code data, all of which have been thoroughly cleaned. The English data comprises 52.2% of the dataset, the Chinese data accounts for 39.6%, and the code data makes up 8%. This comprehensive approach ensures optimal performance for both Chinese and English while also maintaining the ability to handle code.
| | Category | Percentage |
|-------------|------------------|------------|
| **English** | Webpages | 39.8% |
| | Books | 3.6% |
| | Academic Papers | 3.0% |
| | Encyclopedia | 0.5% |
| | Miscellany | 2.9% |
| **Chinese** | Webpages | 30.4% |
| | Social Media | 5.5% |
| | Encyclopedia | 0.8% |
| | Miscellany | 3.1% |
| **Other Lang.** | Encyclopedia | 2.4% |
| **Code** | Github | 8.0% |
## 模型结构(Model Structure)
与Llama-2-13B模型对比,天工Skywork-13B模型采用相对更加瘦长的网络结构,层数为52层,同时将FFN Dim和Hidden Dim缩小到12288和4608,从而保证模型参数量和原始Llama-2-13B模型相当。根据我们前期实验对比,相对瘦长的网络结构在大Batch Size训练下可以取得更好的泛化效果。Skywork-13B和Llama-2-13B模型的对比如下:
Compared to the Llama2-13B model, the Skywork-13B model adopts a relatively thinner and deeper network structure with 52 layers. At the same time, the FFN Dim and Hidden Dim are reduced to 12288 and 4608, respectively, to ensure that the model has a similar number of parameters as the original Llama-13B model. Based on our preliminary experimental results, a relatively thinner and deeper network structure can achieve better generalization performance under large batch size training. The detailed comparison between the Skywork-13B and Llama-2-13B models is as follows:
| Model Structure | Llama2-13B | Skywork-13B |
|----------------------|:----:|:-----------:|
| Vocab. Size | 32,000 | 65,536 |
| Hidden Dim. | 5,120 | 4,608 |
| FFN Dim. | 13,696 | 12,288 |
| Head Dim. | 128 | 128 |
| Num. Heads | 40 | 36 |
| Num. Layers | 40 | 52 |
| Seq. Len. | 4,096 | 4,096 |
| Positional Embedding | RoPE | RoPE |
## 分词器(Tokenizer)
我们使用Byte-Pair Encoding(BPE)对数据进行分词,词表大小为65536,其中拉丁字符和子词为32000个,汉字和Unicode符号8000个,汉语词语25519个,剩下的17个为保留字。
We use Byte-Pair Encoding (BPE) to tokenize the data, with a vocabulary size of 65536. Among them, there are 32000 Latin characters and subwords, 8000 Chinese characters and Unicode symbols, 25519 Chinese words, and the remaining 17 are reserved words.
| Category | Size |
|---------------------------------|--------|
| Latin based words & subwords | 32000 |
| Chinese characters & Unicode symbols | 8000 |
| Chinese words | 25519 |
| Reserved symbols | 17 |
| **Total** | **65536** |
# 模型评估(Evaluation)
## 领域数据困惑度评估(Perplexity Evaluaiton)
语言模型训练的本质上是让预测下一个词更准确。基于这个认知,我们认为评估基础大模型一个重要的方式是评估在各大领域上语言模型生成文章的概率。在模型训练中预测下一个词的概率一般使用Cross Entropy损失函数,整体的损失函数为每个位置预测真实词损失的平均,则有:
$$loss = \sum^{n}_{i=1} log(p_i) / n = log( \prod_{i=1}^n p_i) / n$$
其中$n$是文档的长度,即token数,$p_i$是位置i上真实词的概率,我们知道文档中每一个位置上真实词的概率的联乘则为生成该文档的概率,如此我们就将loss和生成文章的概率联系在了一起。而不同模型因为使用的分词器不同,具有不同的token数,因此对损失函数乘以token数目$n$,这样就仅考虑生成文章的概率部分,不同模型也可以进行比较。我们将标准化后loss取指数转换成perplexity,使得模型的差异更加可读。为了阅读方便后续提到的loss和ppl为模型标准化后的loss和perplexity。
基于上述分析,我们对对多个领域筛选出2023年9月份新发布的几百到上千篇高质量文章,并人工进行了核对。保证所有的测试数据不在天工模型以及其他所有模型的训练集中,并且测试数据的来源也足够广泛,质量也高。我们可以选取当前最新的文章评测不同模型的ppl,模型很难作弊。
下图列出了不同开源模型,天工Skywork-13B-Base取得最优效果,证明了我们的Base模型的基础能力处于国内开源模型中文最强水平。
We have chosen several hundred to thousands of high-quality articles that were published after September 1, 2023 across various fields. We have manually verified these articles to ensure their quality. It is important to note that none of the test data used in evaluating the Skywork model or any other models is included in their training set. Furthermore, the test data is diverse and of high quality, making it challenging for the models to gain an unfair advantage.
The figure below displays the performance of different open source models. Skywork-13B-Base achieves the best results.
| | Tech | Movie | Gov. | Game | Finance | General | Average |
|------------------|-------|-------|-------|-------|---------|---------|---------|
| MOSS-7B | 20.83 | 39.66 | 11.08 | 31.24 | 10.59 | 13.25 | 18.50 |
| InternLM-7B | 13.43 | 24.90 | 5.88 | 19.78 | 6.17 | 8.10 | 11.17 |
| Qwen-7B | 13.39 | 25.16 | 5.55 | 19.26 | 5.76 | 7.78 | 10.83 |
| Baichuan2-7B | 12.89 | 23.26 | 5.34 | 18.36 | 5.68 | 7.62 | 10.41 |
| LLaMA2-13B | 23.26 | 50.66 | 18.09 | 32.52 | 14.85 | 16.55 | 23.54 |
| Xverse-13B | 12.55 | 23.49 | 5.20 | 17.69 | 5.54 | 7.46 | 10.19 |
| Baichuan-13B | 12.38 | 22.46 | 5.21 | 17.59 | 5.42 | 7.37 | 10.03 |
| Baichuan2-13B | 12.14 | 21.85 | 5.05 | 17.15 | 5.35 | 7.24 | 9.81 |
| Qwen-14B | 11.90 | 22.43 | 4.89 | **16.94** | 5.24 | 7.03 | 9.67 |
| InternLM-20B | 12.34 | 22.06 | 5.75 | 17.45 | 5.73 | 7.78 | 10.34 |
| Aquila2-34B | 14.62 | 29.09 | 5.72 | 21.78 | 5.83 | 8.45 | 11.73 |
| Skywork-13B-Base | **11.58** | **21.84** | **4.76** | 17.28 | **4.92** | **6.82** | **9.42** |
### 评测数据和评测脚本(Loss Evaluation)
我们将评测数据和评测脚本也进行了开源,下载github上的代码运行下面命令则可以复现我们的结果。
We have also open-sourced the data and evaluation scripts. You can reproduce our results by running the following command.
```
bash bash_scripts/skywork_eval_loss.sh
```
## Benchmark评估(Benchmark Results)
我们评估了各大权威评测benchmark上的结果作为参考,包括C-Eval,MMLU,CMMLU,GSM8K。遵循之前的评估流程,C-Eval、MMLU、CMMLU测试5-shot结果,GSM8K测试8-shot结果。可以看到Skywork-13B-Base模型在中文开源模型中处于前列,在同等参数规模下为最优水平。
We evaluated Skywork-13B-Base on several popular benchmarks, including C-Eval, MMLU, CMMLU, and GSM8K. Following the previous evaluation process, we tested the 5-shot results of C-Eval, MMLU, and CMMLU, and the 8-shot results of GSM8K. It can be seen that the Skywork-13B-Base model is among the top models in the Chinese open source model community, performing at an optimal level with the same parameter scale.
| Model | C-Eval | CMMLU | MMLU | GSM8K |
|-------------------------|:-----:|:---------------:|:----------:|:-------:|
| LLaMA-1-13B-Base | 35.5 | 31.2 | 46.9 | 17.8 |
| Open-LLaMA-13B | 27.1 | 26.7 | 42.7 | 12.4 |
| LLaMA-2-13B-Base | 36.5 | 36.6 | 54.8 | 28.7 |
| InternLM-20B | 58.8 | - | 62.0 | 52.6 |
| Qwen-14B-Base | 72.1 | 71.0 | 66.3 | 61.3 |
| Aquila2-34B-Base | 63.1 | 71.4 | 64.2 | 58.4 |
| XVERSE-13B-Base | 54.7 | - | 55.1 | - |
| Baichuan-13B-Base | 52.4 | 55.3 | 51.6 | 26.6 |
| Baichuan-2-13B-Base | 58.1 | 62.0 | 59.2 | 52.3 |
| Skywork-13B-Base (ours) | 60.6 | 61.8 | 62.1 | 55.8 |
## Benchmark评估详细结果
我们给出**Skywork-13B-Base**模型在C-Eval,CMMLU,MMLU上模型的详细结果。
We provide detailed results of the Skywork-13B-Base model on C-EVAL, CMMLU, and MMLU.
| Benchmark | **STEM** | **Humanities** | **Social Science** | **Other** | **China Specific** | **Hard** | **Average** |
|:-----:|:---------:|:--------:|:-------------:|:--------:|:--------:|:--------:|:--------:|
| **C-EVAL** | 51.2 | 67.8 | 74.6 | 57.5 | - | 39.4 | 60.6 |
| **CMMLU** | 49.5 | 69.3 | 65.9 | 63.3 | 64.2 | - | 61.8 |
| **MMLU** | 51.6 | 58.0 | 72.5 | 68.8 | - | - | 62.1 |
# 快速开始(Quickstart)
我们将模型参数、配置文件、tokenizer等在huggingface和modelscope上进行了开源。
We have open-sourced the model parameters, configuration files, tokenizer, and more on Huggingface and Modelscope.
## 依赖安装(Requirements)
- Python 3.8及以上版本
- Pytorch 2.0及以上版本
- CUDA建议使用11.4以上版本。
Skywork-13B-Base模型,Skywork-13B-Chat模型和Skywork-13B-Math模型运行下面的脚本进行Python依赖安装。
- Python 3.8 and above
- Pytorch 2.0 and above
- CUDA 11.4 and above are recommended.
Skywork-13B-Base model, Skywork-13B-Chat model, and Skywork-13B-Math model run the following script for Python dependency installation:
```shell
pip install -r requirements.txt
```
## Huggingface模型测试(Demonstration)
### Base 模型推理(Base Model Inference)
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> from transformers.generation import GenerationConfig
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("SkyworkAI/Skywork-13B-Base", trust_remote_code=True)
>>> model = AutoModelForCausalLM.from_pretrained("SkyworkAI/Skywork-13B-Base", device_map="auto", trust_remote_code=True).eval()
>>> inputs = tokenizer('陕西的省会是西安', return_tensors='pt').to(model.device)
>>> response = model.generate(inputs.input_ids, max_length=128)
>>> print(tokenizer.decode(response.cpu()[0], skip_special_tokens=True))
陕西的省会是西安,西安是我国著名的古都,在历史上有十三个朝代在此建都,所以西安又被称为“十三朝古都”。西安是我国著名的旅游城市,每年都有大量的游客来到西安旅游,西安的旅游资源非常丰富,有很多著名的旅游景点,比如秦始皇兵马俑、大雁塔、华清池、大唐芙蓉园、西安城墙、大明宫国家遗址公园、西安碑林博物馆、西安钟楼、西安鼓楼、西安半坡博物馆、西安大兴善寺、西安小雁塔
>>> inputs = tokenizer('陕西的省会是西安,甘肃的省会是兰州,河南的省会是郑州', return_tensors='pt').to(model.device)
>>> response = model.generate(inputs.input_ids, max_length=128)
>>> print(tokenizer.decode(response.cpu()[0], skip_special_tokens=True))
陕西的省会是西安,甘肃的省会是兰州,河南的省会是郑州,湖北的省会是武汉,湖南的省会是长沙,江西的省会是南昌,安徽的省会是合肥,江苏的省会是南京,浙江的省会是杭州,福建的省会是福州,广东的省会是广州,广西的省会是南宁,海南的省会是海口,四川的省会是成都,贵州的省会是贵阳,云南的省会是昆明,西藏的省会是拉萨,青海的省会是西宁,宁夏的省会是银川,新疆的省会是乌鲁木齐。
```
# 模型微调(Fine-tuning)
## 全量微调(Full-parameter Fine-tuning)
使用Skywork-13B-Base模型进行预训练微调
```bash
## preprocess continue pretraining data
## Because pre-training data is usually large, we use a script to process the training data separately.
python train/pt_data_preprocess.py \
-t $MODEL_PATH \
-i data/pt_train.jsonl \
-o data_cache/pt_train_demo
## launch training
export WANDB_API_KEY=YOUR_WANDB_KEY
export WANDB_ENTITY=skywork
export WANDB_PROJECT=skywork-13b-opensource
export MODEL_PATH=skywork-13b-models/skywork-13b-base
export DATA_CACHE_DIR=data_cache/pt_train_demo/pt_train
bash bash_scripts/skywork_13b_pt.sh
```
使用Skywork-13B-Base模型进行有监督微调(SFT, Supevise Fine-tuning)
```bash
## preprocess data and launch training
export WANDB_API_KEY=YOUR_WANDB_KEY
export WANDB_ENTITY=skywork
export WANDB_PROJECT=skywork-13b-opensource
export SFT_DATA_DIR=data/sft_data
export DATA_CACHE_DIR=data_cache/sft_train_demo
bash bash_scripts/skywork_13b_sft.sh
```
## LoRA微调(PEFT)
使用Skywork-13B-Base模型以及LoRA进行预训练微调
```bash
## preprocess continue pretraining data
## Because pre-training data is usually large, we use a script to process the training data separately.
python train/pt_data_preprocess.py \
-t $MODEL_PATH \
-i data/pt_train.jsonl \
-o data_cache/pt_train_demo
export WANDB_API_KEY=YOUR_WANDB_KEY
export WANDB_ENTITY=skywork
export WANDB_PROJECT=skywork-13b-opensource
export MODEL_PATH=skywork-13b-models/skywork-13b-base
export DATA_CACHE_DIR=data_cache/pt_train_demo/pt_train
bash bash_scripts/skywork_13b_pt_lora.sh
```
使用Skywork-13B-Base模型以及LoRA进行有监督微调(SFT, Supevise Fine-tuning)
```bash
export WANDB_API_KEY=YOUR_WANDB_KEY
export WANDB_ENTITY=skywork
export WANDB_PROJECT=skywork-13b-opensource
export SFT_DATA_DIR=data/sft_data
export DATA_CACHE_DIR=data_cache/sft_train_demo
bash bash_scripts/skywork_13b_sft_lora.sh
```
# 声明和协议(Declaration and License Agreement)
## 声明(Declaration)
我们在此声明,不要利用Skywork模型进行任何危害国家社会安全或违法的活动。另外,我们也要求使用者不要将 Skywork 模型用于未经适当安全审查和备案的互联网服务。我们希望所有的使用者都能遵守这个原则,确保科技的发展能在规范和合法的环境下进行。
我们已经尽我们所能,来确保模型训练过程中使用的数据的合规性。然而,尽管我们已经做出了巨大的努力,但由于模型和数据的复杂性,仍有可能存在一些无法预见的问题。因此,如果由于使用skywork开源模型而导致的任何问题,包括但不限于数据安全问题、公共舆论风险,或模型被误导、滥用、传播或不当利用所带来的任何风险和问题,我们将不承担任何责任。
We hereby declare that the Skywork model should not be used for any activities that pose a threat to national or societal security or engage in unlawful actions. Additionally, we request users not to deploy the Skywork model for internet services without appropriate security reviews and records. We hope that all users will adhere to this principle to ensure that technological advancements occur in a regulated and lawful environment.
We have done our utmost to ensure the compliance of the data used during the model's training process. However, despite our extensive efforts, due to the complexity of the model and data, there may still be unpredictable risks and issues. Therefore, if any problems arise as a result of using the Skywork open-source model, including but not limited to data security issues, public opinion risks, or any risks and problems arising from the model being misled, abused, disseminated, or improperly utilized, we will not assume any responsibility.
## 协议(License Agreement)
社区使用Skywork模型需要遵循[《Skywork 模型社区许可协议》](https://github.com/SkyworkAI/Skywork/blob/main/Skywork%20模型社区许可协议.pdf)。Skywork模型支持商业用途,如果您计划将Skywork模型或其衍生品用于商业目的,无需再次申请, 但请您仔细阅读[《Skywork 模型社区许可协议》](https://github.com/SkyworkAI/Skywork/blob/main/Skywork%20模型社区许可协议.pdf)并严格遵守相关条款。
The community usage of Skywork model requires [Skywork Community License](https://github.com/SkyworkAI/Skywork/blob/main/Skywork%20Community%20License.pdf). The Skywork model supports commercial use. If you plan to use the Skywork model or its derivatives for commercial purposes, you must abide by terms and conditions within [Skywork Community License](https://github.com/SkyworkAI/Skywork/blob/main/Skywork%20Community%20License.pdf).
[《Skywork 模型社区许可协议》》]:https://github.com/SkyworkAI/Skywork/blob/main/Skywork%20模型社区许可协议.pdf
[[email protected]]: mailto:[email protected]
# 引用和联系我们(Contact Us and Citation)
如果您觉得我们的工作对您有帮助,欢迎引用我们的论文~
If you find our work helpful, please feel free to cite our paper~
```
@misc{wei2023skywork,
title={Skywork: A More Open Bilingual Foundation Model},
author={Tianwen Wei and Liang Zhao and Lichang Zhang and Bo Zhu and Lijie Wang and Haihua Yang and Biye Li and Cheng Cheng and Weiwei Lü and Rui Hu and Chenxia Li and Liu Yang and Xilin Luo and Xuejie Wu and Lunan Liu and Wenjun Cheng and Peng Cheng and Jianhao Zhang and Xiaoyu Zhang and Lei Lin and Xiaokun Wang and Yutuan Ma and Chuanhai Dong and Yanqi Sun and Yifu Chen and Yongyi Peng and Xiaojuan Liang and Shuicheng Yan and Han Fang and Yahui Zhou},
year={2023},
eprint={2310.19341},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@article{skyworkmath,
title={SkyMath: Technical Report},
author={Liu Yang, Haihua Yang, Wenjun Cheng, Lei Lin, Chenxia Li, Yifu Chen, Lunan Liu, Jianfei Pan, Tianwen Wei, Biye Li, Liang Zhao, Lijie Wang, Bo Zhu, Guoliang Li, Xuejie Wu, Xilin Luo, Rui Hu},
journal={arXiv preprint arXiv: 2310.16713},
url={https://arxiv.org/abs/2310.16713},
year={2023}
}
```
```
@article{Skywork_Multi-Modal_Group_Empirical_Study_Towards_2023,
author = {Skywork Multi-Modal Group},
month = sep,
title = {{Empirical Study Towards Building An Effective Multi-Modal Large Language Model}},
year = {2023}
}
```
|
hugging-ecaf/ppo-LunarLander-v2 | hugging-ecaf | 2023-11-01T12:57:48Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-11-01T12:57:27Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 265.15 +/- 17.94
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Lakoc/TED_CLM_gpt2_tedlium_bigger_lr | Lakoc | 2023-11-01T12:57:37Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"generated_from_trainer",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2023-11-01T03:55:44Z | ---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: TED_CLM_gpt2_tedlium_bigger_lr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# TED_CLM_gpt2_tedlium_bigger_lr
This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8755
- Accuracy: 0.5540
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.004
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 512
- total_eval_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20000
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 2.0351 | 0.62 | 3000 | 2.2280 | 0.4798 |
| 1.9186 | 1.24 | 6000 | 2.0994 | 0.5074 |
| 1.88 | 1.86 | 9000 | 2.0577 | 0.5142 |
| 1.8505 | 2.49 | 12000 | 2.0113 | 0.5223 |
| 1.8284 | 3.11 | 15000 | 1.9957 | 0.5279 |
| 1.8182 | 3.73 | 18000 | 1.9891 | 0.5305 |
| 1.8061 | 4.35 | 21000 | 1.9617 | 0.5371 |
| 1.7969 | 4.97 | 24000 | 1.9413 | 0.5369 |
| 2.0383 | 5.59 | 27000 | 2.1697 | 0.4894 |
| 1.7668 | 6.22 | 30000 | 1.9366 | 0.5397 |
| 1.7556 | 6.84 | 33000 | 1.9303 | 0.5402 |
| 1.7492 | 7.46 | 36000 | 1.9140 | 0.5432 |
| 1.7409 | 8.08 | 39000 | 1.9088 | 0.5445 |
| 1.7317 | 8.7 | 42000 | 1.9030 | 0.5455 |
| 1.7218 | 9.32 | 45000 | 1.9040 | 0.5496 |
| 1.7261 | 9.94 | 48000 | 1.8952 | 0.5506 |
| 1.7175 | 10.57 | 51000 | 1.8959 | 0.5498 |
| 1.708 | 11.19 | 54000 | 1.8909 | 0.5510 |
| 1.7056 | 11.81 | 57000 | 1.8917 | 0.5518 |
| 1.6971 | 12.43 | 60000 | 1.8879 | 0.5523 |
| 1.6986 | 13.05 | 63000 | 1.8790 | 0.5532 |
| 1.6972 | 13.67 | 66000 | 1.8799 | 0.5526 |
| 1.6858 | 14.29 | 69000 | 1.8782 | 0.5543 |
| 1.6875 | 14.92 | 72000 | 1.8755 | 0.5540 |
### Framework versions
- Transformers 4.31.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.13.1
- Tokenizers 0.13.3
|
Yukang/LongAlpaca-70B | Yukang | 2023-11-01T12:57:26Z | 1,455 | 20 | transformers | [
"transformers",
"pytorch",
"safetensors",
"llama",
"text-generation",
"arxiv:2309.12307",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2023-10-09T02:53:36Z | # LongLoRA and LongAlpaca for Long-context LLMs
[](https://huggingface.co/Yukang)
[](https://github.com/dvlab-research/LongLoRA)
[](https://huggingface.co/datasets/Yukang/LongAlpaca-12k)
[](https://arxiv.org/abs/2309.12307)
[](https://github.com/dvlab-research/LongLoRA/blob/main/LICENSE)
[](https://github.com/dvlab-research/LongLoRA/blob/main/DATA_LICENSE)
[](https://github.com/dvlab-research/LongLoRA/blob/main/WEIGHT_LICENSE)
For detailed usage and codes, please visit the [Github project](https://github.com/dvlab-research/LongLoRA).
## TABLE OF CONTENTS
1. [News](#news)
2. [Examples](#examples)
3. [Highlights](#highlights)
4. [How to contribute](#how-to-contribute)
5. [Requirements](#usage-requirements)
6. [Installation and quick guide](#installation-and-quick-guide)
7. [LongAlpaca Data](#longalpaca-data)
8. [Models](#models)
9. [Training](#training)
10. [Evaluation](#evaluation)
11. [Demo](#demo)
12. [Data Generation via Pdf2Text](#data-generation-via-pdf2text)
13. [Citation](#citation)
14. [Acknowledgement](#acknowledgement)
15. [License](#license)
## News
- [x] [2023.10.8] **We release the long instruction-following dataset**, [LongAlpaca-12k](https://huggingface.co/datasets/Yukang/LongAlpaca-12k) and **the corresponding models**, [LongAlpaca-7B](https://huggingface.co/Yukang/LongAlpaca-7B), [LongAlpaca-13B](https://huggingface.co/Yukang/LongAlpaca-13B), and [LongAlpaca-70B](https://huggingface.co/Yukang/LongAlpaca-70B).
- (*The previous sft models*, [Llama-2-13b-chat-longlora-32k-sft](https://huggingface.co/Yukang/Llama-2-13b-chat-longlora-32k-sft) and [Llama-2-70b-chat-longlora-32k-sft](https://huggingface.co/Yukang/Llama-2-70b-chat-longlora-32k-sft), *have been depreciated*.)
- [x] [2023.10.3] We add support GPTNeoX models. Please refer to this [PR](https://github.com/dvlab-research/LongLoRA/pull/32) for usage. Thanks for @naubull2 for this contribution.
- [x] [2023.9.22] We release all our fine-tuned [models](https://huggingface.co/Yukang), including **70B-32k models**, [LLaMA2-LongLoRA-70B-32k](https://huggingface.co/Yukang/Llama-2-70b-longlora-32k), [LLaMA2-LongLoRA-7B-100k](https://huggingface.co/Yukang/Llama-2-7b-longlora-100k-ft). Welcome to check them out!
- [x] [2023.9.22] We release [Paper](http://arxiv.org/abs/2309.12307) and this GitHub repo, including training and evaluation code.
**LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models [[Paper](http://arxiv.org/abs/2309.12307)]** <br />
[Yukang Chen](https://scholar.google.com/citations?user=6p0ygKUAAAAJ&hl=en),
[Shengju Qian](https://scholar.google.com/citations?user=QNnWmasAAAAJ),
[Haotian Tang](https://scholar.google.com/citations?user=WxL13BAAAAAJ&hl),
[Xin Lai](https://scholar.google.com/citations?user=tqNDPA4AAAAJ&hl=zh-CN),
[Zhijian Liu](https://scholar.google.com/citations?user=3coYSTUAAAAJ&hl=en),
[Song Han](https://scholar.google.com/citations?user=E0iCaa4AAAAJ&hl=zh-CN),
[Jiaya Jia](https://scholar.google.com/citations?user=XPAkzTEAAAAJ&hl=en)<br />
## Highlights
1. In LongLoRA approach, The proposed shifted short attention is easy to implement, compatible with Flash-Attention, and is not required during inference.
2. We released all our models, including models from 7B to 70B, context length from 8k to 100k, including [LLaMA2-LongLoRA-7B-100k](https://huggingface.co/Yukang/Llama-2-7b-longlora-100k-ft), [LLaMA2-LongLoRA-13B-64k](https://huggingface.co/Yukang/Llama-2-13b-longlora-64k), and [LLaMA2-LongLoRA-70B-32k](https://huggingface.co/Yukang/Llama-2-70b-longlora-32k).
3. We built up a long-context instruction-following dataset, [LongAlpaca-12k](#longalpaca-data). We released the corresponding [LongAlpaca-7B](https://huggingface.co/Yukang/LongAlpaca-7B), [LongAlpaca-13B](https://huggingface.co/Yukang/LongAlpaca-13B) and [LongAlpaca-70B](https://huggingface.co/Yukang/LongAlpaca-70B) models. To our best knowledge, this is the first open-sourced long-context 70B model.
## How to Contribute
- Make sure to have git installed.
- Create your own [fork](https://github.com/dvlab-research/LongLoRA/fork) of the project.
- Clone the repository on your local machine, using git clone and pasting the url of this project.
- Read both the `Requirements` and `Installation and Quick Guide` sections below.
- Commit and push your changes.
- Make a pull request when finished modifying the project.
## Usage Requirements
To download and use the [pre-trained weights](#pre-trained-weights) you will need:
1. Hugging Face (HF) account with valid email. Note, the email used for HF must alse be used for the license agreement.
2. Accept the Meta [license and acceptable use policy](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
## Installation and Quick Guide
To install and run the application:
1. [Fork this repo](https://github.com/dvlab-research/LongLoRA/fork) on github
2. Clone the repository on your local machine, using git clone and pasting the url of this project.
3. Run the following code:
```
pip install -r requirements.txt
pip install flash-attn --no-build-isolation
```
4. Use either a [Released model](#released-models) or [Fine tune](#fine-tuning) a model to fit your preferences.
5. Test your model by chat.
6. Deploy your own demo.
## LongAlpaca Data
LongAlpaca-12k contains 9k long QA data that we collected and 3k short QA sampled from the original [Alpaca data](https://github.com/tatsu-lab/stanford_alpaca/blob/main/alpaca_data.json). This is to avoid the case that the model might degrade at short instruction following. The data we collect contains various types and amounts as the following figure.
| Data | Short QA | Long QA | Total | Download |
|:---------------|----------|----------|----------|----------|
| LongAlpaca-12k | 3k | 9k | 12k | [Link](https://huggingface.co/datasets/Yukang/LongAlpaca-12k) |
Following the original Alpaca format, our Long QA data uses the following prompts for fine-tuning:
- `instruction`: `str`, describes the task the model should perform. For example, to answer a question after reading a book section or paper. We vary the contents and questions to make instructions diverse.
- `output`: `str`, the answer to the instruction.
We did not use the `input` format in the Alpaca format for simplicity.
## Models
### Models with supervised fine-tuning
| Model | Size | Context | Train | Link |
|:---------------|------|---------|---------|-----------------------------------------------------------------------------------------------------------------------|
| LongAlpaca-7B | 7B | 32768 | Full FT | [Model](https://huggingface.co/Yukang/LongAlpaca-7B) |
| LongAlpaca-13B | 13B | 32768 | Full FT | [Model](https://huggingface.co/Yukang/LongAlpaca-13B) |
| LongAlpaca-70B | 70B | 32768 | LoRA+ | [Model](https://huggingface.co/Yukang/LongAlpaca-70B) [(LoRA-weight)](https://huggingface.co/Yukang/LongAlpaca-70B-lora) |
### Models with context extension via fully fine-tuning
| Model | Size | Context | Train | Link |
|:----------------------------|------|---------|-------|-------------------------------------------------------------------|
| Llama-2-7b-longlora-8k-ft | 7B | 8192 | Full FT | [Model](https://huggingface.co/Yukang/Llama-2-7b-longlora-8k-ft) |
| Llama-2-7b-longlora-16k-ft | 7B | 16384 | Full FT | [Model](https://huggingface.co/Yukang/Llama-2-7b-longlora-16k-ft) |
| Llama-2-7b-longlora-32k-ft | 7B | 32768 | Full FT | [Model](https://huggingface.co/Yukang/Llama-2-7b-longlora-32k-ft) |
| Llama-2-7b-longlora-100k-ft | 7B | 100000 | Full FT | [Model](https://huggingface.co/Yukang/Llama-2-7b-longlora-100k-ft) |
| Llama-2-13b-longlora-8k-ft | 13B | 8192 | Full FT | [Model](https://huggingface.co/Yukang/Llama-2-13b-longlora-8k-ft) |
| Llama-2-13b-longlora-16k-ft | 13B | 16384 | Full FT | [Model](https://huggingface.co/Yukang/Llama-2-13b-longlora-16k-ft) |
| Llama-2-13b-longlora-32k-ft | 13B | 32768 | Full FT | [Model](https://huggingface.co/Yukang/Llama-2-13b-longlora-32k-ft) |
### Models with context extension via improved LoRA fine-tuning
| Model | Size | Context | Train | Link |
|:----------------------------|------|---------|-------|---------------------------------------------------------------------|
| Llama-2-7b-longlora-8k | 7B | 8192 | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-7b-longlora-8k) |
| Llama-2-7b-longlora-16k | 7B | 16384 | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-7b-longlora-16k) |
| Llama-2-7b-longlora-32k | 7B | 32768 | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-7b-longlora-32k) |
| Llama-2-13b-longlora-8k | 13B | 8192 | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-13b-longlora-8k) |
| Llama-2-13b-longlora-16k | 13B | 16384 | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-13b-longlora-16k) |
| Llama-2-13b-longlora-32k | 13B | 32768 | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-13b-longlora-32k) |
| Llama-2-13b-longlora-64k | 13B | 65536 | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-13b-longlora-64k) |
| Llama-2-70b-longlora-32k | 70B | 32768 | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-70b-longlora-32k) |
| Llama-2-70b-chat-longlora-32k | 70B | 32768 | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-70b-chat-longlora-32k) |
## Training
### Pre-trained weights
We use LLaMA2 models as the pre-trained weights and fine-tune them to long context window sizes. Download based on your choices.
| Pre-trained weights |
|:-------------------------------------------------------------------------------------|
| [Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) |
|[Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf) |
| [Llama-2-70b-hf](https://huggingface.co/meta-llama/Llama-2-70b-hf) |
| [Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) |
| [Llama-2-13b-chat-hf](https://huggingface.co/meta-llama/Llama-2-13b-chat-hf) |
| [Llama-2-70b-chat-hf](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) |
This project also supports GPTNeoX models as the base model architecture. Some candidate pre-trained weights may include [GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b), [Polyglot-ko-12.8B](https://huggingface.co/EleutherAI/polyglot-ko-12.8b) and other variants.
### Fine-tuning
```
torchrun --nproc_per_node=8 fine-tune.py \
--model_name_or_path path_to/Llama-2-7b-hf \
--bf16 True \
--output_dir path_to_saving_checkpoints \
--cache_dir path_to_cache \
--model_max_length 8192 \
--use_flash_attn True \
--low_rank_training False \
--num_train_epochs 1 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 2 \
--gradient_accumulation_steps 8 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 1000 \
--save_total_limit 2 \
--learning_rate 2e-5 \
--weight_decay 0.0 \
--warmup_steps 20 \
--lr_scheduler_type "constant_with_warmup" \
--logging_steps 1 \
--deepspeed "ds_configs/stage2.json" \
--tf32 True \
--max_steps 1000
```
- Please remember to change `path_to/Llama-2-7b-hf`, `path_to_saving_checkpoints`, `path_to_cache` to your own directory.
- Note that you can change `model_max_length` to other values.
- You could change `ds_configs/stage2.json` to `ds_configs/stage3.json` if you want.
- Please set `use_flash_attn` as `False` if you use V100 machines or do not install flash attention.
- You can set `low_rank_training` as `False` if you want to use fully fine-tuning. It will cost more GPU memory and slower, but the performance will be a bit better.
- When training is finished, to get the full model weight:
```
cd path_to_saving_checkpoints && python zero_to_fp32.py . pytorch_model.bin
```
### Supervised Fine-tuning
```
torchrun --nproc_per_node=8 supervised-fine-tune.py \
--model_name_or_path path_to_Llama2_chat_models \
--bf16 True \
--output_dir path_to_saving_checkpoints \
--model_max_length 32768 \
--use_flash_attn True \
--data_path LongAlpaca-12k.json \
--low_rank_training True \
--num_train_epochs 3 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 2 \
--gradient_accumulation_steps 1 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 1000 \
--save_total_limit 2 \
--learning_rate 2e-5 \
--weight_decay 0.0 \
--warmup_steps 20 \
--lr_scheduler_type "constant_with_warmup" \
--logging_steps 1 \
--deepspeed "ds_configs/stage2.json" \
--tf32 True
```
- There is no need to make supervised fine-tuning upon the fine-tuned context extended models. It is all right to directly use base model as Llama2-chat models, as the amount of long instruction following data is enough for SFT.
- Our long instruction following data can be found in [LongAlpaca-12k.json](https://huggingface.co/datasets/Yukang/LongAlpaca-12k).
### Get trainable weights in low-rank training
In low-rank training, we set embedding and normalization layers as trainable. Please use the following line to extract the trainable weights `trainable_params.bin` from `pytorch_model.bin`
```
python3 get_trainable_weights.py --checkpoint_path path_to_saving_checkpoints --trainable_params "embed,norm"
```
### Merge LoRA Weight
Merge the LoRA weights of `pytorch_model.bin` and trainable parameters `trainable_params.bin`, save the resulting model into your desired path in the Hugging Face format:
```
python3 merge_lora_weights_and_save_hf_model.py \
--base_model path_to/Llama-2-7b-hf \
--peft_model path_to_saving_checkpoints \
--context_size 8192 \
--save_path path_to_saving_merged_model
```
For example,
```
python3 merge_lora_weights_and_save_hf_model.py \
--base_model /dataset/pretrained-models/Llama-2-7b-hf \
--peft_model /dataset/yukangchen/hf_models/lora-models/Llama-2-7b-longlora-8k \
--context_size 8192 \
--save_path /dataset/yukangchen/models/Llama-2-7b-longlora-8k-merged
```
## Evaluation
### Perplexity Validation
To evaluate a model that is trained in the low-rank setting, please set both `base_model` and `peft_model`. `base_model` is the pre-trained weight. `peft_model` is the path to the saved checkpoint, which should contain `trainable_params.bin`, `adapter_model.bin` and `adapter_config.json`. For example,
```
python3 eval.py --seq_len 8192 --context_size 8192 --batch_size 1 --base_model path_to/Llama-2-7b-hf --peft_model path_to_saving_checkpoints --data_path pg19/test.bin
```
To evaluate a model that is fully fine-tuned, you only need to set `base_model` as the path to the saved checkpoint, which should contain `pytorch_model.bin` and `config.json`. `peft_model` should be ignored.
```
python3 eval.py --seq_len 8192 --context_size 8192 --batch_size 1 --base_model path_to_saving_checkpoints --data_path pg19/test.bin
```
- Note that `--seq_len` is to set the sequence length for evaluation. `--context_size` is to set the context length of the model during fine-tuning. `--seq_len` should not be larger than `--context_size`.
- We have already tokenized the validation and test splits of PG19 and proof-pile dataset into `pg19/validation.bin`, `pg19/test.bin`, and `proof-pile/test_sampled_data.bin`, with the tokenizer of LLaMA. `proof-pile/test_sampled_data.bin` contains 128 documents that are randomly sampled from the total proof-pile test split. For each document, it has at least 32768 tokens. We also release the sampled ids in [proof-pile/test_sampled_ids.bin](https://drive.google.com/file/d/1cnzWODLRQYAd7HeugzLCIhaqzaLZv7J5/view?usp=share_link). You can download them from the links below.
| Dataset | Split | Link |
|:-----------|------------|--------------------------------------------------------------------------------------------------------------|
| PG19 | validation | [pg19/validation.bin](https://drive.google.com/file/d/1rbJvb0qRIf2mQoN2ON7S93TbTzMnlrN6/view?usp=share_link) |
| PG19 | test | [pg19/test.bin](https://drive.google.com/file/d/1QANDMdctpacPAYgS04adDXqByGEq-Ret/view?usp=share_link) |
| Proof-pile | test | [proof-pile/test_sampled_data.bin](https://drive.google.com/file/d/1bUI5lPDvrqzY_XXJJ2sSuvZx0Y9AZClE/view?usp=share_link) |
### Passkey Retrieval
We provide a manner to test the passkey retrieval accuracy. For example,
```
python3 passkey_retrivial.py \
--context_size 32768 \
--base_model path_to/Llama-2-7b-longlora-32k \
--max_tokens 32768 \
--interval 1000
```
- Note that the `context_size` is the context length during fine-tuning.
- `max_tokens` is maximum length for the document in passkey retrieval evaluation.
- `interval` is the interval during the document length increasing. It is a rough number because the document increases by sentences.
## Demo
### Local Inference
To chat with [Llama-2-13b-chat-longlora-32k-sft](https://huggingface.co/Yukang/Llama-2-13b-chat-longlora-32k-sft) or [Llama-2-70b-chat-longlora-32k-sft](https://huggingface.co/Yukang/Llama-2-70b-chat-longlora-32k-sft), you need to run `merge_lora_weights_and_save_hf_model.py` first, and then:
```
python3 inference.py \
--base_model path_to_model \
--question $question \
--context_size $context_length \
--max_gen_len $max_gen_len \
--flash_attn True \
--material $material_content \
--material_type $material_type \
--material_title $material_title
```
To ask a question related to a book:
```
python3 inference.py \
--base_model /data/models/Llama-2-13b-chat-longlora-32k-sft \
--question "Why doesn't Professor Snape seem to like Harry?" \
--context_size 32768 \
--max_gen_len 512 \
--flash_attn True \
--material "materials/Harry Potter and the Philosophers Stone_section2.txt" \
--material_type "book" \
--material_title "Harry Potter and the Philosophers Stone"
```
Note that you can ignore `material_type` or `material_title`.
To ask a question related to a paper:
```
python3 inference.py \
--base_model /data/models/Llama-2-13b-chat-longlora-32k-sft \
--question "What are the main contributions and novelties of this work?" \
--context_size 32768 \
--max_gen_len 512 \
--flash_attn True \
--material "materials/paper1.txt" \
--material_type "paper"
```
### Online Demo
To deploy your own demo run
```
python3 demo.py \
--base_model path_to_model \
--context_size $context_size \
--max_gen_len $max_gen_len \
--flash_attn True
```
Example
```
python3 demo.py \
--base_model /data/models/Llama-2-13b-chat-longlora-32k-sft \
--context_size 32768 \
--max_gen_len 512 \
--flash_attn True
```
- Note that `flash_attn=True` will make the generation slow but save much GPU memory.
## Data Generation via Pdf2text
During our dataset collection, we convert paper and books from pdf to text. The conversion quality has a large influence on the final model quality. We think that this step is non-trivial. We release the tool for the pdf2txt conversion, in the folder `pdf2txt`. It is built upon `pdf2image`, `easyocr`, `ditod` and `detectron2`. Please refer to the [README.md](pdf2txt/README.md) in `pdf2txt` for more details.
## Citation
If you find this project useful in your research, please consider citing:
```
@article{longlora,
title={LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models},
author={Yukang Chen and Shengju Qian and Haotian Tang and Xin Lai and Zhijian Liu and Song Han and Jiaya Jia},
journal={arXiv:2309.12307},
year={2023}
}
```
```
@misc{long-alpaca,
author = {Yukang Chen and Shaozuo Yu and Shengju Qian and Haotian Tang and Xin Lai and Zhijian Liu and Song Han and Jiaya Jia},
title = {Long Alpaca: Long-context Instruction-following models},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/dvlab-research/LongLoRA}},
}
```
## Acknowledgement
- This work is built upon the [LLaMA2](https://ai.meta.com/llama) as the pre-trained models.
- This work can also be built upon the [GPTNeoX-HF](https://huggingface.co/docs/transformers/model_doc/gpt_neox) which is based upon [EleutherAI/GPTNeoX](https://github.com/EleutherAI/gpt-neox) as the pre-trained model architecture.
- This work is based on [DeepSpeed](https://github.com/microsoft/DeepSpeed), [peft](https://github.com/huggingface/peft), and [Flash-Attention2](https://github.com/Dao-AILab/flash-attention) for acceleration.
- Some evaluation code is modified upon [Landmark Attention](https://github.com/epfml/landmark-attention).
- We use [LongChat](https://github.com/DachengLi1/LongChat) for the retrieval evaluation.
## License
- LongLoRA is licensed under the Apache License 2.0. This means that it requires the preservation of copyright and license notices.
- Data and weights are under CC-BY-NC 4.0 License. They are licensed for research use only, and allowed only non-commercial. Models trained using the dataset should not be used outside of research purposes. |
onarganogun/videomae-base-cctv-brawl_extended | onarganogun | 2023-11-01T12:53:57Z | 1 | 0 | transformers | [
"transformers",
"pytorch",
"videomae",
"video-classification",
"generated_from_trainer",
"base_model:MCG-NJU/videomae-base",
"base_model:finetune:MCG-NJU/videomae-base",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us"
]
| video-classification | 2023-10-31T22:22:02Z | ---
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-cctv-brawl_extended
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# videomae-base-cctv-brawl_extended
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6457
- Accuracy: 0.5962
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 5022
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.232 | 0.17 | 838 | 0.5134 | 0.7813 |
| 0.1099 | 1.17 | 1676 | 0.7192 | 0.7824 |
| 0.2178 | 2.17 | 2514 | 0.4419 | 0.8299 |
| 0.0697 | 3.17 | 3352 | 0.6157 | 0.8448 |
| 0.2116 | 4.17 | 4190 | 0.4998 | 0.8644 |
| 0.1655 | 5.17 | 5022 | 0.5615 | 0.8542 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
LoneStriker/Skywork-13B-Spicyboros-3.1-4.0bpw-h6-exl2 | LoneStriker | 2023-11-01T12:53:53Z | 16 | 1 | transformers | [
"transformers",
"pytorch",
"skywork",
"text-generation",
"custom_code",
"dataset:jondurbin/airoboros-3.1",
"arxiv:2310.19341",
"arxiv:2310.16713",
"license:other",
"autotrain_compatible",
"region:us"
]
| text-generation | 2023-11-01T12:53:32Z | ---
license: other
license_name: license
license_link: >-
https://github.com/SkyworkAI/Skywork/blob/main/Skywork%20Community%20License.pdf
datasets:
- jondurbin/airoboros-3.1
---
<!-- <div align="center">
<h1>
✨Skywork
</h1>
</div> -->
<div align="center"><img src="misc/skywork_logo.jpeg" width="550"/></div>
<p align="center">
👨💻 <a href="https://github.com/SkyworkAI/Skywork" target="_blank">Github</a> • 🤗 <a href="https://huggingface.co/Skywork" target="_blank">Hugging Face</a>• 🤖 <a href="https://modelscope.cn/organization/Skywork" target="_blank">ModelScope</a> • 💬 <a href="https://github.com/SkyworkAI/Skywork/blob/main/misc/wechat.png?raw=true" target="_blank">WeChat</a>• 📜<a href="http://arxiv.org/abs/2310.19341" target="_blank">Tech Report</a>
</p>
<div align="center">
[🎉天工在线对话平台已正式向公众开放](https://sso.tiangong.cn/?redirect=https://model-platform.tiangong.cn/overview&client_id=200005)
</div>
<div align="center">
[](https://github.com/SkyworkAI/Skywork/stargazers)
[](https://github.com/SkyworkAI/Skywork/fork)
</div>
# 模型介绍(Introduction)
**Skywork-13B-Base**模型在高质量清洗过滤的3.2万亿个多语言(主要是中文和英文)和代码数据上进行预训练,它在多种评测和各种基准测试上都展现了同等规模模型的最佳效果。
**Skywork-13B-Base**: The model was trained on a high-quality cleaned dataset consisting of 3.2 trillion multilingual data (mainly Chinese and English) and code. It has demonstrated the best performance among models of similar scale in various evaluations and benchmark tests.
如果您希望了解更多的信息,如训练方案,评估方法,请参考我们的[技术报告](http://arxiv.org/abs/2310.19341),[Skymath](https://arxiv.org/abs/2310.16713)论文,[SkyworkMM](https://github.com/will-singularity/Skywork-MM/blob/main/skywork_mm.pdf)论文。
If you are interested in more training and evaluation details, please refer to our [technical report](http://arxiv.org/abs/2310.19341), [Skymath]((https://arxiv.org/skywork-tech-report)) paper and [SkyworkMM](https://github.com/will-singularity/Skywork-MM/blob/main/skywork_mm.pdf) paper.
## 训练数据(Training Data)
我们精心搭建了数据清洗流程对文本中的低质量数据、有害信息、敏感信息进行清洗过滤。我们的Skywork-13B-Base模型是在清洗后的3.2TB高质量中、英、代码数据上进行训练,其中英文占比52.2%,中文占比39.6%,代码占比8%,在兼顾中文和英文上的表现的同时,代码能力也能有保证。
We have developed a data cleaning pipeline with great care to effectively clean and filter low-quality data and eliminate harmful information from text data. Our Skywork-13B-Base model is trained on a dataset with 3.2TB tokens that consists of high-quality Chinese, English, and code data, all of which have been thoroughly cleaned. The English data comprises 52.2% of the dataset, the Chinese data accounts for 39.6%, and the code data makes up 8%. This comprehensive approach ensures optimal performance for both Chinese and English while also maintaining the ability to handle code.
| | Category | Percentage |
|-------------|------------------|------------|
| **English** | Webpages | 39.8% |
| | Books | 3.6% |
| | Academic Papers | 3.0% |
| | Encyclopedia | 0.5% |
| | Miscellany | 2.9% |
| **Chinese** | Webpages | 30.4% |
| | Social Media | 5.5% |
| | Encyclopedia | 0.8% |
| | Miscellany | 3.1% |
| **Other Lang.** | Encyclopedia | 2.4% |
| **Code** | Github | 8.0% |
## 模型结构(Model Structure)
与Llama-2-13B模型对比,天工Skywork-13B模型采用相对更加瘦长的网络结构,层数为52层,同时将FFN Dim和Hidden Dim缩小到12288和4608,从而保证模型参数量和原始Llama-2-13B模型相当。根据我们前期实验对比,相对瘦长的网络结构在大Batch Size训练下可以取得更好的泛化效果。Skywork-13B和Llama-2-13B模型的对比如下:
Compared to the Llama2-13B model, the Skywork-13B model adopts a relatively thinner and deeper network structure with 52 layers. At the same time, the FFN Dim and Hidden Dim are reduced to 12288 and 4608, respectively, to ensure that the model has a similar number of parameters as the original Llama-13B model. Based on our preliminary experimental results, a relatively thinner and deeper network structure can achieve better generalization performance under large batch size training. The detailed comparison between the Skywork-13B and Llama-2-13B models is as follows:
| Model Structure | Llama2-13B | Skywork-13B |
|----------------------|:----:|:-----------:|
| Vocab. Size | 32,000 | 65,536 |
| Hidden Dim. | 5,120 | 4,608 |
| FFN Dim. | 13,696 | 12,288 |
| Head Dim. | 128 | 128 |
| Num. Heads | 40 | 36 |
| Num. Layers | 40 | 52 |
| Seq. Len. | 4,096 | 4,096 |
| Positional Embedding | RoPE | RoPE |
## 分词器(Tokenizer)
我们使用Byte-Pair Encoding(BPE)对数据进行分词,词表大小为65536,其中拉丁字符和子词为32000个,汉字和Unicode符号8000个,汉语词语25519个,剩下的17个为保留字。
We use Byte-Pair Encoding (BPE) to tokenize the data, with a vocabulary size of 65536. Among them, there are 32000 Latin characters and subwords, 8000 Chinese characters and Unicode symbols, 25519 Chinese words, and the remaining 17 are reserved words.
| Category | Size |
|---------------------------------|--------|
| Latin based words & subwords | 32000 |
| Chinese characters & Unicode symbols | 8000 |
| Chinese words | 25519 |
| Reserved symbols | 17 |
| **Total** | **65536** |
# 模型评估(Evaluation)
## 领域数据困惑度评估(Perplexity Evaluaiton)
语言模型训练的本质上是让预测下一个词更准确。基于这个认知,我们认为评估基础大模型一个重要的方式是评估在各大领域上语言模型生成文章的概率。在模型训练中预测下一个词的概率一般使用Cross Entropy损失函数,整体的损失函数为每个位置预测真实词损失的平均,则有:
$$loss = \sum^{n}_{i=1} log(p_i) / n = log( \prod_{i=1}^n p_i) / n$$
其中$n$是文档的长度,即token数,$p_i$是位置i上真实词的概率,我们知道文档中每一个位置上真实词的概率的联乘则为生成该文档的概率,如此我们就将loss和生成文章的概率联系在了一起。而不同模型因为使用的分词器不同,具有不同的token数,因此对损失函数乘以token数目$n$,这样就仅考虑生成文章的概率部分,不同模型也可以进行比较。我们将标准化后loss取指数转换成perplexity,使得模型的差异更加可读。为了阅读方便后续提到的loss和ppl为模型标准化后的loss和perplexity。
基于上述分析,我们对对多个领域筛选出2023年9月份新发布的几百到上千篇高质量文章,并人工进行了核对。保证所有的测试数据不在天工模型以及其他所有模型的训练集中,并且测试数据的来源也足够广泛,质量也高。我们可以选取当前最新的文章评测不同模型的ppl,模型很难作弊。
下图列出了不同开源模型,天工Skywork-13B-Base取得最优效果,证明了我们的Base模型的基础能力处于国内开源模型中文最强水平。
We have chosen several hundred to thousands of high-quality articles that were published after September 1, 2023 across various fields. We have manually verified these articles to ensure their quality. It is important to note that none of the test data used in evaluating the Skywork model or any other models is included in their training set. Furthermore, the test data is diverse and of high quality, making it challenging for the models to gain an unfair advantage.
The figure below displays the performance of different open source models. Skywork-13B-Base achieves the best results.
| | Tech | Movie | Gov. | Game | Finance | General | Average |
|------------------|-------|-------|-------|-------|---------|---------|---------|
| MOSS-7B | 20.83 | 39.66 | 11.08 | 31.24 | 10.59 | 13.25 | 18.50 |
| InternLM-7B | 13.43 | 24.90 | 5.88 | 19.78 | 6.17 | 8.10 | 11.17 |
| Qwen-7B | 13.39 | 25.16 | 5.55 | 19.26 | 5.76 | 7.78 | 10.83 |
| Baichuan2-7B | 12.89 | 23.26 | 5.34 | 18.36 | 5.68 | 7.62 | 10.41 |
| LLaMA2-13B | 23.26 | 50.66 | 18.09 | 32.52 | 14.85 | 16.55 | 23.54 |
| Xverse-13B | 12.55 | 23.49 | 5.20 | 17.69 | 5.54 | 7.46 | 10.19 |
| Baichuan-13B | 12.38 | 22.46 | 5.21 | 17.59 | 5.42 | 7.37 | 10.03 |
| Baichuan2-13B | 12.14 | 21.85 | 5.05 | 17.15 | 5.35 | 7.24 | 9.81 |
| Qwen-14B | 11.90 | 22.43 | 4.89 | **16.94** | 5.24 | 7.03 | 9.67 |
| InternLM-20B | 12.34 | 22.06 | 5.75 | 17.45 | 5.73 | 7.78 | 10.34 |
| Aquila2-34B | 14.62 | 29.09 | 5.72 | 21.78 | 5.83 | 8.45 | 11.73 |
| Skywork-13B-Base | **11.58** | **21.84** | **4.76** | 17.28 | **4.92** | **6.82** | **9.42** |
### 评测数据和评测脚本(Loss Evaluation)
我们将评测数据和评测脚本也进行了开源,下载github上的代码运行下面命令则可以复现我们的结果。
We have also open-sourced the data and evaluation scripts. You can reproduce our results by running the following command.
```
bash bash_scripts/skywork_eval_loss.sh
```
## Benchmark评估(Benchmark Results)
我们评估了各大权威评测benchmark上的结果作为参考,包括C-Eval,MMLU,CMMLU,GSM8K。遵循之前的评估流程,C-Eval、MMLU、CMMLU测试5-shot结果,GSM8K测试8-shot结果。可以看到Skywork-13B-Base模型在中文开源模型中处于前列,在同等参数规模下为最优水平。
We evaluated Skywork-13B-Base on several popular benchmarks, including C-Eval, MMLU, CMMLU, and GSM8K. Following the previous evaluation process, we tested the 5-shot results of C-Eval, MMLU, and CMMLU, and the 8-shot results of GSM8K. It can be seen that the Skywork-13B-Base model is among the top models in the Chinese open source model community, performing at an optimal level with the same parameter scale.
| Model | C-Eval | CMMLU | MMLU | GSM8K |
|-------------------------|:-----:|:---------------:|:----------:|:-------:|
| LLaMA-1-13B-Base | 35.5 | 31.2 | 46.9 | 17.8 |
| Open-LLaMA-13B | 27.1 | 26.7 | 42.7 | 12.4 |
| LLaMA-2-13B-Base | 36.5 | 36.6 | 54.8 | 28.7 |
| InternLM-20B | 58.8 | - | 62.0 | 52.6 |
| Qwen-14B-Base | 72.1 | 71.0 | 66.3 | 61.3 |
| Aquila2-34B-Base | 63.1 | 71.4 | 64.2 | 58.4 |
| XVERSE-13B-Base | 54.7 | - | 55.1 | - |
| Baichuan-13B-Base | 52.4 | 55.3 | 51.6 | 26.6 |
| Baichuan-2-13B-Base | 58.1 | 62.0 | 59.2 | 52.3 |
| Skywork-13B-Base (ours) | 60.6 | 61.8 | 62.1 | 55.8 |
## Benchmark评估详细结果
我们给出**Skywork-13B-Base**模型在C-Eval,CMMLU,MMLU上模型的详细结果。
We provide detailed results of the Skywork-13B-Base model on C-EVAL, CMMLU, and MMLU.
| Benchmark | **STEM** | **Humanities** | **Social Science** | **Other** | **China Specific** | **Hard** | **Average** |
|:-----:|:---------:|:--------:|:-------------:|:--------:|:--------:|:--------:|:--------:|
| **C-EVAL** | 51.2 | 67.8 | 74.6 | 57.5 | - | 39.4 | 60.6 |
| **CMMLU** | 49.5 | 69.3 | 65.9 | 63.3 | 64.2 | - | 61.8 |
| **MMLU** | 51.6 | 58.0 | 72.5 | 68.8 | - | - | 62.1 |
# 快速开始(Quickstart)
我们将模型参数、配置文件、tokenizer等在huggingface和modelscope上进行了开源。
We have open-sourced the model parameters, configuration files, tokenizer, and more on Huggingface and Modelscope.
## 依赖安装(Requirements)
- Python 3.8及以上版本
- Pytorch 2.0及以上版本
- CUDA建议使用11.4以上版本。
Skywork-13B-Base模型,Skywork-13B-Chat模型和Skywork-13B-Math模型运行下面的脚本进行Python依赖安装。
- Python 3.8 and above
- Pytorch 2.0 and above
- CUDA 11.4 and above are recommended.
Skywork-13B-Base model, Skywork-13B-Chat model, and Skywork-13B-Math model run the following script for Python dependency installation:
```shell
pip install -r requirements.txt
```
## Huggingface模型测试(Demonstration)
### Base 模型推理(Base Model Inference)
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> from transformers.generation import GenerationConfig
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("SkyworkAI/Skywork-13B-Base", trust_remote_code=True)
>>> model = AutoModelForCausalLM.from_pretrained("SkyworkAI/Skywork-13B-Base", device_map="auto", trust_remote_code=True).eval()
>>> inputs = tokenizer('陕西的省会是西安', return_tensors='pt').to(model.device)
>>> response = model.generate(inputs.input_ids, max_length=128)
>>> print(tokenizer.decode(response.cpu()[0], skip_special_tokens=True))
陕西的省会是西安,西安是我国著名的古都,在历史上有十三个朝代在此建都,所以西安又被称为“十三朝古都”。西安是我国著名的旅游城市,每年都有大量的游客来到西安旅游,西安的旅游资源非常丰富,有很多著名的旅游景点,比如秦始皇兵马俑、大雁塔、华清池、大唐芙蓉园、西安城墙、大明宫国家遗址公园、西安碑林博物馆、西安钟楼、西安鼓楼、西安半坡博物馆、西安大兴善寺、西安小雁塔
>>> inputs = tokenizer('陕西的省会是西安,甘肃的省会是兰州,河南的省会是郑州', return_tensors='pt').to(model.device)
>>> response = model.generate(inputs.input_ids, max_length=128)
>>> print(tokenizer.decode(response.cpu()[0], skip_special_tokens=True))
陕西的省会是西安,甘肃的省会是兰州,河南的省会是郑州,湖北的省会是武汉,湖南的省会是长沙,江西的省会是南昌,安徽的省会是合肥,江苏的省会是南京,浙江的省会是杭州,福建的省会是福州,广东的省会是广州,广西的省会是南宁,海南的省会是海口,四川的省会是成都,贵州的省会是贵阳,云南的省会是昆明,西藏的省会是拉萨,青海的省会是西宁,宁夏的省会是银川,新疆的省会是乌鲁木齐。
```
# 模型微调(Fine-tuning)
## 全量微调(Full-parameter Fine-tuning)
使用Skywork-13B-Base模型进行预训练微调
```bash
## preprocess continue pretraining data
## Because pre-training data is usually large, we use a script to process the training data separately.
python train/pt_data_preprocess.py \
-t $MODEL_PATH \
-i data/pt_train.jsonl \
-o data_cache/pt_train_demo
## launch training
export WANDB_API_KEY=YOUR_WANDB_KEY
export WANDB_ENTITY=skywork
export WANDB_PROJECT=skywork-13b-opensource
export MODEL_PATH=skywork-13b-models/skywork-13b-base
export DATA_CACHE_DIR=data_cache/pt_train_demo/pt_train
bash bash_scripts/skywork_13b_pt.sh
```
使用Skywork-13B-Base模型进行有监督微调(SFT, Supevise Fine-tuning)
```bash
## preprocess data and launch training
export WANDB_API_KEY=YOUR_WANDB_KEY
export WANDB_ENTITY=skywork
export WANDB_PROJECT=skywork-13b-opensource
export SFT_DATA_DIR=data/sft_data
export DATA_CACHE_DIR=data_cache/sft_train_demo
bash bash_scripts/skywork_13b_sft.sh
```
## LoRA微调(PEFT)
使用Skywork-13B-Base模型以及LoRA进行预训练微调
```bash
## preprocess continue pretraining data
## Because pre-training data is usually large, we use a script to process the training data separately.
python train/pt_data_preprocess.py \
-t $MODEL_PATH \
-i data/pt_train.jsonl \
-o data_cache/pt_train_demo
export WANDB_API_KEY=YOUR_WANDB_KEY
export WANDB_ENTITY=skywork
export WANDB_PROJECT=skywork-13b-opensource
export MODEL_PATH=skywork-13b-models/skywork-13b-base
export DATA_CACHE_DIR=data_cache/pt_train_demo/pt_train
bash bash_scripts/skywork_13b_pt_lora.sh
```
使用Skywork-13B-Base模型以及LoRA进行有监督微调(SFT, Supevise Fine-tuning)
```bash
export WANDB_API_KEY=YOUR_WANDB_KEY
export WANDB_ENTITY=skywork
export WANDB_PROJECT=skywork-13b-opensource
export SFT_DATA_DIR=data/sft_data
export DATA_CACHE_DIR=data_cache/sft_train_demo
bash bash_scripts/skywork_13b_sft_lora.sh
```
# 声明和协议(Declaration and License Agreement)
## 声明(Declaration)
我们在此声明,不要利用Skywork模型进行任何危害国家社会安全或违法的活动。另外,我们也要求使用者不要将 Skywork 模型用于未经适当安全审查和备案的互联网服务。我们希望所有的使用者都能遵守这个原则,确保科技的发展能在规范和合法的环境下进行。
我们已经尽我们所能,来确保模型训练过程中使用的数据的合规性。然而,尽管我们已经做出了巨大的努力,但由于模型和数据的复杂性,仍有可能存在一些无法预见的问题。因此,如果由于使用skywork开源模型而导致的任何问题,包括但不限于数据安全问题、公共舆论风险,或模型被误导、滥用、传播或不当利用所带来的任何风险和问题,我们将不承担任何责任。
We hereby declare that the Skywork model should not be used for any activities that pose a threat to national or societal security or engage in unlawful actions. Additionally, we request users not to deploy the Skywork model for internet services without appropriate security reviews and records. We hope that all users will adhere to this principle to ensure that technological advancements occur in a regulated and lawful environment.
We have done our utmost to ensure the compliance of the data used during the model's training process. However, despite our extensive efforts, due to the complexity of the model and data, there may still be unpredictable risks and issues. Therefore, if any problems arise as a result of using the Skywork open-source model, including but not limited to data security issues, public opinion risks, or any risks and problems arising from the model being misled, abused, disseminated, or improperly utilized, we will not assume any responsibility.
## 协议(License Agreement)
社区使用Skywork模型需要遵循[《Skywork 模型社区许可协议》](https://github.com/SkyworkAI/Skywork/blob/main/Skywork%20模型社区许可协议.pdf)。Skywork模型支持商业用途,如果您计划将Skywork模型或其衍生品用于商业目的,无需再次申请, 但请您仔细阅读[《Skywork 模型社区许可协议》](https://github.com/SkyworkAI/Skywork/blob/main/Skywork%20模型社区许可协议.pdf)并严格遵守相关条款。
The community usage of Skywork model requires [Skywork Community License](https://github.com/SkyworkAI/Skywork/blob/main/Skywork%20Community%20License.pdf). The Skywork model supports commercial use. If you plan to use the Skywork model or its derivatives for commercial purposes, you must abide by terms and conditions within [Skywork Community License](https://github.com/SkyworkAI/Skywork/blob/main/Skywork%20Community%20License.pdf).
[《Skywork 模型社区许可协议》》]:https://github.com/SkyworkAI/Skywork/blob/main/Skywork%20模型社区许可协议.pdf
[[email protected]]: mailto:[email protected]
# 引用和联系我们(Contact Us and Citation)
如果您觉得我们的工作对您有帮助,欢迎引用我们的论文~
If you find our work helpful, please feel free to cite our paper~
```
@misc{wei2023skywork,
title={Skywork: A More Open Bilingual Foundation Model},
author={Tianwen Wei and Liang Zhao and Lichang Zhang and Bo Zhu and Lijie Wang and Haihua Yang and Biye Li and Cheng Cheng and Weiwei Lü and Rui Hu and Chenxia Li and Liu Yang and Xilin Luo and Xuejie Wu and Lunan Liu and Wenjun Cheng and Peng Cheng and Jianhao Zhang and Xiaoyu Zhang and Lei Lin and Xiaokun Wang and Yutuan Ma and Chuanhai Dong and Yanqi Sun and Yifu Chen and Yongyi Peng and Xiaojuan Liang and Shuicheng Yan and Han Fang and Yahui Zhou},
year={2023},
eprint={2310.19341},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@article{skyworkmath,
title={SkyMath: Technical Report},
author={Liu Yang, Haihua Yang, Wenjun Cheng, Lei Lin, Chenxia Li, Yifu Chen, Lunan Liu, Jianfei Pan, Tianwen Wei, Biye Li, Liang Zhao, Lijie Wang, Bo Zhu, Guoliang Li, Xuejie Wu, Xilin Luo, Rui Hu},
journal={arXiv preprint arXiv: 2310.16713},
url={https://arxiv.org/abs/2310.16713},
year={2023}
}
```
```
@article{Skywork_Multi-Modal_Group_Empirical_Study_Towards_2023,
author = {Skywork Multi-Modal Group},
month = sep,
title = {{Empirical Study Towards Building An Effective Multi-Modal Large Language Model}},
year = {2023}
}
```
|
minoosh/AST-finetuned-on-shEMO_speech | minoosh | 2023-11-01T12:50:15Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"audio-spectrogram-transformer",
"audio-classification",
"generated_from_trainer",
"base_model:MIT/ast-finetuned-audioset-10-10-0.4593",
"base_model:finetune:MIT/ast-finetuned-audioset-10-10-0.4593",
"endpoints_compatible",
"region:us"
]
| audio-classification | 2023-11-01T10:57:42Z | ---
base_model: MIT/ast-finetuned-audioset-10-10-0.4593
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: AST-finetuned-on-shEMO_speech
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# AST-finetuned-on-shEMO_speech
This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6988
- Accuracy: 0.7967
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.8657 | 1.0 | 75 | 0.7066 | 0.7867 |
| 0.6951 | 2.0 | 150 | 0.6622 | 0.7567 |
| 0.3368 | 3.0 | 225 | 0.5851 | 0.8433 |
| 0.1414 | 4.0 | 300 | 0.7233 | 0.79 |
| 0.1011 | 5.0 | 375 | 0.8763 | 0.7967 |
| 0.0438 | 6.0 | 450 | 0.9009 | 0.8067 |
| 0.0108 | 7.0 | 525 | 1.0540 | 0.83 |
| 0.0033 | 8.0 | 600 | 1.0177 | 0.81 |
| 0.0003 | 9.0 | 675 | 1.1074 | 0.84 |
| 0.0113 | 10.0 | 750 | 1.1107 | 0.8433 |
| 0.0002 | 11.0 | 825 | 1.1273 | 0.8367 |
| 0.0001 | 12.0 | 900 | 1.1634 | 0.8333 |
| 0.0001 | 13.0 | 975 | 1.1502 | 0.84 |
| 0.0045 | 14.0 | 1050 | 1.1541 | 0.84 |
| 0.0039 | 15.0 | 1125 | 1.1550 | 0.84 |
### Framework versions
- Transformers 4.34.1
- Pytorch 1.12.0+cu116
- Datasets 2.14.6
- Tokenizers 0.14.1
|
ubermenchh/sd-class-butterflies-32 | ubermenchh | 2023-11-01T12:43:51Z | 4 | 1 | diffusers | [
"diffusers",
"safetensors",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"license:mit",
"diffusers:DDPMPipeline",
"region:us"
]
| unconditional-image-generation | 2023-11-01T12:43:04Z | ---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class)
This model is a diffusion model for unconditional image generation of cute 🦋.
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('ubermenchh/sd-class-butterflies-32')
image = pipeline().images[0]
image
```
|
rakeshpardeshi25/distilbert-base-uncased-finetuned-emotion | rakeshpardeshi25 | 2023-11-01T12:35:51Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2023-10-31T09:16:13Z | ---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
config: split
split: validation
args: split
metrics:
- name: Accuracy
type: accuracy
value: 0.642
- name: F1
type: f1
value: 0.5564294349778702
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0079
- Accuracy: 0.642
- F1: 0.5564
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 1.462 | 1.0 | 63 | 1.1656 | 0.579 | 0.4533 |
| 1.0694 | 2.0 | 126 | 1.0079 | 0.642 | 0.5564 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cpu
- Datasets 2.14.6
- Tokenizers 0.14.1
|
roystonsanctis/kp_model | roystonsanctis | 2023-11-01T12:35:25Z | 2 | 0 | diffusers | [
"diffusers",
"text-to-image",
"autotrain",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"region:us"
]
| text-to-image | 2023-11-01T12:35:21Z |
---
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: photo of a sks keerthan prabhu
tags:
- text-to-image
- diffusers
- autotrain
inference: true
---
# DreamBooth trained by AutoTrain
Text encoder was not trained.
|
thrunlab/t5-large_cola_sp0_ar0_test | thrunlab | 2023-11-01T12:26:08Z | 7 | 0 | transformers | [
"transformers",
"pytorch",
"t5",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"base_model:google-t5/t5-large",
"base_model:finetune:google-t5/t5-large",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-classification | 2023-11-01T01:26:25Z | ---
license: apache-2.0
base_model: t5-large
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: t5-large_cola_sp0_ar0_test
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
config: cola
split: validation
args: cola
metrics:
- name: Accuracy
type: accuracy
value: 0.712890625
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-large_cola_sp0_ar0_test
This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 79.0284
- Accuracy: 0.7129
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 1
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- training_steps: 10
### Training results
### Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.11.6
|
sanak/llm_seller | sanak | 2023-11-01T12:25:45Z | 4 | 1 | peft | [
"peft",
"arxiv:1910.09700",
"base_model:meta-llama/Llama-2-7b-hf",
"base_model:adapter:meta-llama/Llama-2-7b-hf",
"region:us"
]
| null | 2023-11-01T12:25:40Z | ---
library_name: peft
base_model: meta-llama/Llama-2-7b-hf
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.6.0.dev0
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.6.0.dev0
|
Sapare/lion-running | Sapare | 2023-11-01T12:22:27Z | 0 | 0 | diffusers | [
"diffusers",
"safetensors",
"NxtWave-GenAI-Webinar",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
]
| text-to-image | 2023-11-01T12:15:47Z | ---
license: creativeml-openrail-m
tags:
- NxtWave-GenAI-Webinar
- text-to-image
- stable-diffusion
---
### lion-running Dreambooth model trained by Sapare following the "Build your own Gen AI model" session by NxtWave.
Project Submission Code: CVR-66
Sample pictures of this concept:
.jpg)
.jpg)
.jpg)
.jpg)
.jpg)
|
legacy107/flan-t5-large-ia3-bioasq-paraphrase | legacy107 | 2023-11-01T12:13:02Z | 15 | 0 | peft | [
"peft",
"dataset:legacy107/bioasq10b-factoid",
"base_model:google/flan-t5-large",
"base_model:adapter:google/flan-t5-large",
"region:us"
]
| null | 2023-09-16T05:07:03Z | ---
library_name: peft
base_model: google/flan-t5-large
datasets:
- legacy107/bioasq10b-factoid
---
## Training procedure
### Framework versions
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0 |
legacy107/flan-t5-large-ia3-covidqa | legacy107 | 2023-11-01T12:12:00Z | 0 | 0 | peft | [
"peft",
"dataset:minh21/COVID-QA-Chunk-64-question-answering-biencoder-data-90_10",
"region:us"
]
| null | 2023-10-10T00:42:46Z | ---
library_name: peft
datasets:
- minh21/COVID-QA-Chunk-64-question-answering-biencoder-data-90_10
---
## Training procedure
### Framework versions
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0 |
KyriaAnnwyn/lora-trained-plu4-xl | KyriaAnnwyn | 2023-11-01T12:10:22Z | 1 | 1 | diffusers | [
"diffusers",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"lora",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
]
| text-to-image | 2023-11-01T11:46:10Z |
---
license: openrail++
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: a photo of plutosha cat
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA DreamBooth - KyriaAnnwyn/lora-trained-plu4-xl
These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of plutosha cat using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.




LoRA for the text encoder was enabled: True.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
|
legacy107/flan-t5-large-ia3-cpgQA | legacy107 | 2023-11-01T12:09:28Z | 4 | 0 | peft | [
"peft",
"pytorch",
"tensorboard",
"t5",
"dataset:minh21/cpgQA-v1.0-unique-context-test-10-percent-validation-10-percent",
"region:us"
]
| null | 2023-08-31T23:53:16Z | ---
library_name: peft
datasets:
- minh21/cpgQA-v1.0-unique-context-test-10-percent-validation-10-percent
---
## Training procedure
### Framework versions
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0
- PEFT 0.5.0 |
crystalkur/textual_inversion_cat | crystalkur | 2023-11-01T12:06:14Z | 10 | 0 | diffusers | [
"diffusers",
"tensorboard",
"safetensors",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"textual_inversion",
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:adapter:runwayml/stable-diffusion-v1-5",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
]
| text-to-image | 2023-11-01T06:12:34Z |
---
license: creativeml-openrail-m
base_model: runwayml/stable-diffusion-v1-5
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- textual_inversion
inference: true
---
# Textual inversion text2image fine-tuning - crystalkur/textual_inversion_cat
These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
|
lmarchyok/new_results-100 | lmarchyok | 2023-11-01T11:59:42Z | 3 | 0 | transformers | [
"transformers",
"tf",
"bert",
"fill-mask",
"generated_from_keras_callback",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| fill-mask | 2023-11-01T11:53:29Z | ---
tags:
- generated_from_keras_callback
model-index:
- name: lmarchyok/new_results-100
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# lmarchyok/new_results-100
This model is a fine-tuned version of [pretrained_models/ClinicalBERT_1a/pytorch_model.bin](https://huggingface.co/pretrained_models/ClinicalBERT_1a/pytorch_model.bin) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 4.4308
- Validation Loss: 4.2847
- Epoch: 8
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -876, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 10.5498 | 8.9095 | 0 |
| 8.3823 | 7.9120 | 1 |
| 7.5092 | 6.9472 | 2 |
| 6.6263 | 5.8327 | 3 |
| 5.7999 | 5.2736 | 4 |
| 5.2952 | 5.0061 | 5 |
| 4.9444 | 4.5906 | 6 |
| 4.6362 | 4.2785 | 7 |
| 4.4308 | 4.2847 | 8 |
### Framework versions
- Transformers 4.26.1
- TensorFlow 2.11.0
- Datasets 2.13.1
- Tokenizers 0.13.2
|
LoneStriker/Skywork-13B-Spicyboros-3.1-GGUF | LoneStriker | 2023-11-01T11:59:26Z | 4 | 6 | null | [
"gguf",
"dataset:jondurbin/airoboros-3.1",
"arxiv:2310.19341",
"arxiv:2310.16713",
"license:other",
"endpoints_compatible",
"region:us"
]
| null | 2023-11-01T11:50:41Z | ---
license: other
license_name: license
license_link: >-
https://github.com/SkyworkAI/Skywork/blob/main/Skywork%20Community%20License.pdf
datasets:
- jondurbin/airoboros-3.1
---
<!-- <div align="center">
<h1>
✨Skywork
</h1>
</div> -->
<div align="center"><img src="misc/skywork_logo.jpeg" width="550"/></div>
<p align="center">
👨💻 <a href="https://github.com/SkyworkAI/Skywork" target="_blank">Github</a> • 🤗 <a href="https://huggingface.co/Skywork" target="_blank">Hugging Face</a>• 🤖 <a href="https://modelscope.cn/organization/Skywork" target="_blank">ModelScope</a> • 💬 <a href="https://github.com/SkyworkAI/Skywork/blob/main/misc/wechat.png?raw=true" target="_blank">WeChat</a>• 📜<a href="http://arxiv.org/abs/2310.19341" target="_blank">Tech Report</a>
</p>
<div align="center">
[🎉天工在线对话平台已正式向公众开放](https://sso.tiangong.cn/?redirect=https://model-platform.tiangong.cn/overview&client_id=200005)
</div>
<div align="center">
[](https://github.com/SkyworkAI/Skywork/stargazers)
[](https://github.com/SkyworkAI/Skywork/fork)
</div>
# 模型介绍(Introduction)
**Skywork-13B-Base**模型在高质量清洗过滤的3.2万亿个多语言(主要是中文和英文)和代码数据上进行预训练,它在多种评测和各种基准测试上都展现了同等规模模型的最佳效果。
**Skywork-13B-Base**: The model was trained on a high-quality cleaned dataset consisting of 3.2 trillion multilingual data (mainly Chinese and English) and code. It has demonstrated the best performance among models of similar scale in various evaluations and benchmark tests.
如果您希望了解更多的信息,如训练方案,评估方法,请参考我们的[技术报告](http://arxiv.org/abs/2310.19341),[Skymath](https://arxiv.org/abs/2310.16713)论文,[SkyworkMM](https://github.com/will-singularity/Skywork-MM/blob/main/skywork_mm.pdf)论文。
If you are interested in more training and evaluation details, please refer to our [technical report](http://arxiv.org/abs/2310.19341), [Skymath]((https://arxiv.org/skywork-tech-report)) paper and [SkyworkMM](https://github.com/will-singularity/Skywork-MM/blob/main/skywork_mm.pdf) paper.
## 训练数据(Training Data)
我们精心搭建了数据清洗流程对文本中的低质量数据、有害信息、敏感信息进行清洗过滤。我们的Skywork-13B-Base模型是在清洗后的3.2TB高质量中、英、代码数据上进行训练,其中英文占比52.2%,中文占比39.6%,代码占比8%,在兼顾中文和英文上的表现的同时,代码能力也能有保证。
We have developed a data cleaning pipeline with great care to effectively clean and filter low-quality data and eliminate harmful information from text data. Our Skywork-13B-Base model is trained on a dataset with 3.2TB tokens that consists of high-quality Chinese, English, and code data, all of which have been thoroughly cleaned. The English data comprises 52.2% of the dataset, the Chinese data accounts for 39.6%, and the code data makes up 8%. This comprehensive approach ensures optimal performance for both Chinese and English while also maintaining the ability to handle code.
| | Category | Percentage |
|-------------|------------------|------------|
| **English** | Webpages | 39.8% |
| | Books | 3.6% |
| | Academic Papers | 3.0% |
| | Encyclopedia | 0.5% |
| | Miscellany | 2.9% |
| **Chinese** | Webpages | 30.4% |
| | Social Media | 5.5% |
| | Encyclopedia | 0.8% |
| | Miscellany | 3.1% |
| **Other Lang.** | Encyclopedia | 2.4% |
| **Code** | Github | 8.0% |
## 模型结构(Model Structure)
与Llama-2-13B模型对比,天工Skywork-13B模型采用相对更加瘦长的网络结构,层数为52层,同时将FFN Dim和Hidden Dim缩小到12288和4608,从而保证模型参数量和原始Llama-2-13B模型相当。根据我们前期实验对比,相对瘦长的网络结构在大Batch Size训练下可以取得更好的泛化效果。Skywork-13B和Llama-2-13B模型的对比如下:
Compared to the Llama2-13B model, the Skywork-13B model adopts a relatively thinner and deeper network structure with 52 layers. At the same time, the FFN Dim and Hidden Dim are reduced to 12288 and 4608, respectively, to ensure that the model has a similar number of parameters as the original Llama-13B model. Based on our preliminary experimental results, a relatively thinner and deeper network structure can achieve better generalization performance under large batch size training. The detailed comparison between the Skywork-13B and Llama-2-13B models is as follows:
| Model Structure | Llama2-13B | Skywork-13B |
|----------------------|:----:|:-----------:|
| Vocab. Size | 32,000 | 65,536 |
| Hidden Dim. | 5,120 | 4,608 |
| FFN Dim. | 13,696 | 12,288 |
| Head Dim. | 128 | 128 |
| Num. Heads | 40 | 36 |
| Num. Layers | 40 | 52 |
| Seq. Len. | 4,096 | 4,096 |
| Positional Embedding | RoPE | RoPE |
## 分词器(Tokenizer)
我们使用Byte-Pair Encoding(BPE)对数据进行分词,词表大小为65536,其中拉丁字符和子词为32000个,汉字和Unicode符号8000个,汉语词语25519个,剩下的17个为保留字。
We use Byte-Pair Encoding (BPE) to tokenize the data, with a vocabulary size of 65536. Among them, there are 32000 Latin characters and subwords, 8000 Chinese characters and Unicode symbols, 25519 Chinese words, and the remaining 17 are reserved words.
| Category | Size |
|---------------------------------|--------|
| Latin based words & subwords | 32000 |
| Chinese characters & Unicode symbols | 8000 |
| Chinese words | 25519 |
| Reserved symbols | 17 |
| **Total** | **65536** |
# 模型评估(Evaluation)
## 领域数据困惑度评估(Perplexity Evaluaiton)
语言模型训练的本质上是让预测下一个词更准确。基于这个认知,我们认为评估基础大模型一个重要的方式是评估在各大领域上语言模型生成文章的概率。在模型训练中预测下一个词的概率一般使用Cross Entropy损失函数,整体的损失函数为每个位置预测真实词损失的平均,则有:
$$loss = \sum^{n}_{i=1} log(p_i) / n = log( \prod_{i=1}^n p_i) / n$$
其中$n$是文档的长度,即token数,$p_i$是位置i上真实词的概率,我们知道文档中每一个位置上真实词的概率的联乘则为生成该文档的概率,如此我们就将loss和生成文章的概率联系在了一起。而不同模型因为使用的分词器不同,具有不同的token数,因此对损失函数乘以token数目$n$,这样就仅考虑生成文章的概率部分,不同模型也可以进行比较。我们将标准化后loss取指数转换成perplexity,使得模型的差异更加可读。为了阅读方便后续提到的loss和ppl为模型标准化后的loss和perplexity。
基于上述分析,我们对对多个领域筛选出2023年9月份新发布的几百到上千篇高质量文章,并人工进行了核对。保证所有的测试数据不在天工模型以及其他所有模型的训练集中,并且测试数据的来源也足够广泛,质量也高。我们可以选取当前最新的文章评测不同模型的ppl,模型很难作弊。
下图列出了不同开源模型,天工Skywork-13B-Base取得最优效果,证明了我们的Base模型的基础能力处于国内开源模型中文最强水平。
We have chosen several hundred to thousands of high-quality articles that were published after September 1, 2023 across various fields. We have manually verified these articles to ensure their quality. It is important to note that none of the test data used in evaluating the Skywork model or any other models is included in their training set. Furthermore, the test data is diverse and of high quality, making it challenging for the models to gain an unfair advantage.
The figure below displays the performance of different open source models. Skywork-13B-Base achieves the best results.
| | Tech | Movie | Gov. | Game | Finance | General | Average |
|------------------|-------|-------|-------|-------|---------|---------|---------|
| MOSS-7B | 20.83 | 39.66 | 11.08 | 31.24 | 10.59 | 13.25 | 18.50 |
| InternLM-7B | 13.43 | 24.90 | 5.88 | 19.78 | 6.17 | 8.10 | 11.17 |
| Qwen-7B | 13.39 | 25.16 | 5.55 | 19.26 | 5.76 | 7.78 | 10.83 |
| Baichuan2-7B | 12.89 | 23.26 | 5.34 | 18.36 | 5.68 | 7.62 | 10.41 |
| LLaMA2-13B | 23.26 | 50.66 | 18.09 | 32.52 | 14.85 | 16.55 | 23.54 |
| Xverse-13B | 12.55 | 23.49 | 5.20 | 17.69 | 5.54 | 7.46 | 10.19 |
| Baichuan-13B | 12.38 | 22.46 | 5.21 | 17.59 | 5.42 | 7.37 | 10.03 |
| Baichuan2-13B | 12.14 | 21.85 | 5.05 | 17.15 | 5.35 | 7.24 | 9.81 |
| Qwen-14B | 11.90 | 22.43 | 4.89 | **16.94** | 5.24 | 7.03 | 9.67 |
| InternLM-20B | 12.34 | 22.06 | 5.75 | 17.45 | 5.73 | 7.78 | 10.34 |
| Aquila2-34B | 14.62 | 29.09 | 5.72 | 21.78 | 5.83 | 8.45 | 11.73 |
| Skywork-13B-Base | **11.58** | **21.84** | **4.76** | 17.28 | **4.92** | **6.82** | **9.42** |
### 评测数据和评测脚本(Loss Evaluation)
我们将评测数据和评测脚本也进行了开源,下载github上的代码运行下面命令则可以复现我们的结果。
We have also open-sourced the data and evaluation scripts. You can reproduce our results by running the following command.
```
bash bash_scripts/skywork_eval_loss.sh
```
## Benchmark评估(Benchmark Results)
我们评估了各大权威评测benchmark上的结果作为参考,包括C-Eval,MMLU,CMMLU,GSM8K。遵循之前的评估流程,C-Eval、MMLU、CMMLU测试5-shot结果,GSM8K测试8-shot结果。可以看到Skywork-13B-Base模型在中文开源模型中处于前列,在同等参数规模下为最优水平。
We evaluated Skywork-13B-Base on several popular benchmarks, including C-Eval, MMLU, CMMLU, and GSM8K. Following the previous evaluation process, we tested the 5-shot results of C-Eval, MMLU, and CMMLU, and the 8-shot results of GSM8K. It can be seen that the Skywork-13B-Base model is among the top models in the Chinese open source model community, performing at an optimal level with the same parameter scale.
| Model | C-Eval | CMMLU | MMLU | GSM8K |
|-------------------------|:-----:|:---------------:|:----------:|:-------:|
| LLaMA-1-13B-Base | 35.5 | 31.2 | 46.9 | 17.8 |
| Open-LLaMA-13B | 27.1 | 26.7 | 42.7 | 12.4 |
| LLaMA-2-13B-Base | 36.5 | 36.6 | 54.8 | 28.7 |
| InternLM-20B | 58.8 | - | 62.0 | 52.6 |
| Qwen-14B-Base | 72.1 | 71.0 | 66.3 | 61.3 |
| Aquila2-34B-Base | 63.1 | 71.4 | 64.2 | 58.4 |
| XVERSE-13B-Base | 54.7 | - | 55.1 | - |
| Baichuan-13B-Base | 52.4 | 55.3 | 51.6 | 26.6 |
| Baichuan-2-13B-Base | 58.1 | 62.0 | 59.2 | 52.3 |
| Skywork-13B-Base (ours) | 60.6 | 61.8 | 62.1 | 55.8 |
## Benchmark评估详细结果
我们给出**Skywork-13B-Base**模型在C-Eval,CMMLU,MMLU上模型的详细结果。
We provide detailed results of the Skywork-13B-Base model on C-EVAL, CMMLU, and MMLU.
| Benchmark | **STEM** | **Humanities** | **Social Science** | **Other** | **China Specific** | **Hard** | **Average** |
|:-----:|:---------:|:--------:|:-------------:|:--------:|:--------:|:--------:|:--------:|
| **C-EVAL** | 51.2 | 67.8 | 74.6 | 57.5 | - | 39.4 | 60.6 |
| **CMMLU** | 49.5 | 69.3 | 65.9 | 63.3 | 64.2 | - | 61.8 |
| **MMLU** | 51.6 | 58.0 | 72.5 | 68.8 | - | - | 62.1 |
# 快速开始(Quickstart)
我们将模型参数、配置文件、tokenizer等在huggingface和modelscope上进行了开源。
We have open-sourced the model parameters, configuration files, tokenizer, and more on Huggingface and Modelscope.
## 依赖安装(Requirements)
- Python 3.8及以上版本
- Pytorch 2.0及以上版本
- CUDA建议使用11.4以上版本。
Skywork-13B-Base模型,Skywork-13B-Chat模型和Skywork-13B-Math模型运行下面的脚本进行Python依赖安装。
- Python 3.8 and above
- Pytorch 2.0 and above
- CUDA 11.4 and above are recommended.
Skywork-13B-Base model, Skywork-13B-Chat model, and Skywork-13B-Math model run the following script for Python dependency installation:
```shell
pip install -r requirements.txt
```
## Huggingface模型测试(Demonstration)
### Base 模型推理(Base Model Inference)
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> from transformers.generation import GenerationConfig
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("SkyworkAI/Skywork-13B-Base", trust_remote_code=True)
>>> model = AutoModelForCausalLM.from_pretrained("SkyworkAI/Skywork-13B-Base", device_map="auto", trust_remote_code=True).eval()
>>> inputs = tokenizer('陕西的省会是西安', return_tensors='pt').to(model.device)
>>> response = model.generate(inputs.input_ids, max_length=128)
>>> print(tokenizer.decode(response.cpu()[0], skip_special_tokens=True))
陕西的省会是西安,西安是我国著名的古都,在历史上有十三个朝代在此建都,所以西安又被称为“十三朝古都”。西安是我国著名的旅游城市,每年都有大量的游客来到西安旅游,西安的旅游资源非常丰富,有很多著名的旅游景点,比如秦始皇兵马俑、大雁塔、华清池、大唐芙蓉园、西安城墙、大明宫国家遗址公园、西安碑林博物馆、西安钟楼、西安鼓楼、西安半坡博物馆、西安大兴善寺、西安小雁塔
>>> inputs = tokenizer('陕西的省会是西安,甘肃的省会是兰州,河南的省会是郑州', return_tensors='pt').to(model.device)
>>> response = model.generate(inputs.input_ids, max_length=128)
>>> print(tokenizer.decode(response.cpu()[0], skip_special_tokens=True))
陕西的省会是西安,甘肃的省会是兰州,河南的省会是郑州,湖北的省会是武汉,湖南的省会是长沙,江西的省会是南昌,安徽的省会是合肥,江苏的省会是南京,浙江的省会是杭州,福建的省会是福州,广东的省会是广州,广西的省会是南宁,海南的省会是海口,四川的省会是成都,贵州的省会是贵阳,云南的省会是昆明,西藏的省会是拉萨,青海的省会是西宁,宁夏的省会是银川,新疆的省会是乌鲁木齐。
```
# 模型微调(Fine-tuning)
## 全量微调(Full-parameter Fine-tuning)
使用Skywork-13B-Base模型进行预训练微调
```bash
## preprocess continue pretraining data
## Because pre-training data is usually large, we use a script to process the training data separately.
python train/pt_data_preprocess.py \
-t $MODEL_PATH \
-i data/pt_train.jsonl \
-o data_cache/pt_train_demo
## launch training
export WANDB_API_KEY=YOUR_WANDB_KEY
export WANDB_ENTITY=skywork
export WANDB_PROJECT=skywork-13b-opensource
export MODEL_PATH=skywork-13b-models/skywork-13b-base
export DATA_CACHE_DIR=data_cache/pt_train_demo/pt_train
bash bash_scripts/skywork_13b_pt.sh
```
使用Skywork-13B-Base模型进行有监督微调(SFT, Supevise Fine-tuning)
```bash
## preprocess data and launch training
export WANDB_API_KEY=YOUR_WANDB_KEY
export WANDB_ENTITY=skywork
export WANDB_PROJECT=skywork-13b-opensource
export SFT_DATA_DIR=data/sft_data
export DATA_CACHE_DIR=data_cache/sft_train_demo
bash bash_scripts/skywork_13b_sft.sh
```
## LoRA微调(PEFT)
使用Skywork-13B-Base模型以及LoRA进行预训练微调
```bash
## preprocess continue pretraining data
## Because pre-training data is usually large, we use a script to process the training data separately.
python train/pt_data_preprocess.py \
-t $MODEL_PATH \
-i data/pt_train.jsonl \
-o data_cache/pt_train_demo
export WANDB_API_KEY=YOUR_WANDB_KEY
export WANDB_ENTITY=skywork
export WANDB_PROJECT=skywork-13b-opensource
export MODEL_PATH=skywork-13b-models/skywork-13b-base
export DATA_CACHE_DIR=data_cache/pt_train_demo/pt_train
bash bash_scripts/skywork_13b_pt_lora.sh
```
使用Skywork-13B-Base模型以及LoRA进行有监督微调(SFT, Supevise Fine-tuning)
```bash
export WANDB_API_KEY=YOUR_WANDB_KEY
export WANDB_ENTITY=skywork
export WANDB_PROJECT=skywork-13b-opensource
export SFT_DATA_DIR=data/sft_data
export DATA_CACHE_DIR=data_cache/sft_train_demo
bash bash_scripts/skywork_13b_sft_lora.sh
```
# 声明和协议(Declaration and License Agreement)
## 声明(Declaration)
我们在此声明,不要利用Skywork模型进行任何危害国家社会安全或违法的活动。另外,我们也要求使用者不要将 Skywork 模型用于未经适当安全审查和备案的互联网服务。我们希望所有的使用者都能遵守这个原则,确保科技的发展能在规范和合法的环境下进行。
我们已经尽我们所能,来确保模型训练过程中使用的数据的合规性。然而,尽管我们已经做出了巨大的努力,但由于模型和数据的复杂性,仍有可能存在一些无法预见的问题。因此,如果由于使用skywork开源模型而导致的任何问题,包括但不限于数据安全问题、公共舆论风险,或模型被误导、滥用、传播或不当利用所带来的任何风险和问题,我们将不承担任何责任。
We hereby declare that the Skywork model should not be used for any activities that pose a threat to national or societal security or engage in unlawful actions. Additionally, we request users not to deploy the Skywork model for internet services without appropriate security reviews and records. We hope that all users will adhere to this principle to ensure that technological advancements occur in a regulated and lawful environment.
We have done our utmost to ensure the compliance of the data used during the model's training process. However, despite our extensive efforts, due to the complexity of the model and data, there may still be unpredictable risks and issues. Therefore, if any problems arise as a result of using the Skywork open-source model, including but not limited to data security issues, public opinion risks, or any risks and problems arising from the model being misled, abused, disseminated, or improperly utilized, we will not assume any responsibility.
## 协议(License Agreement)
社区使用Skywork模型需要遵循[《Skywork 模型社区许可协议》](https://github.com/SkyworkAI/Skywork/blob/main/Skywork%20模型社区许可协议.pdf)。Skywork模型支持商业用途,如果您计划将Skywork模型或其衍生品用于商业目的,无需再次申请, 但请您仔细阅读[《Skywork 模型社区许可协议》](https://github.com/SkyworkAI/Skywork/blob/main/Skywork%20模型社区许可协议.pdf)并严格遵守相关条款。
The community usage of Skywork model requires [Skywork Community License](https://github.com/SkyworkAI/Skywork/blob/main/Skywork%20Community%20License.pdf). The Skywork model supports commercial use. If you plan to use the Skywork model or its derivatives for commercial purposes, you must abide by terms and conditions within [Skywork Community License](https://github.com/SkyworkAI/Skywork/blob/main/Skywork%20Community%20License.pdf).
[《Skywork 模型社区许可协议》》]:https://github.com/SkyworkAI/Skywork/blob/main/Skywork%20模型社区许可协议.pdf
[[email protected]]: mailto:[email protected]
# 引用和联系我们(Contact Us and Citation)
如果您觉得我们的工作对您有帮助,欢迎引用我们的论文~
If you find our work helpful, please feel free to cite our paper~
```
@misc{wei2023skywork,
title={Skywork: A More Open Bilingual Foundation Model},
author={Tianwen Wei and Liang Zhao and Lichang Zhang and Bo Zhu and Lijie Wang and Haihua Yang and Biye Li and Cheng Cheng and Weiwei Lü and Rui Hu and Chenxia Li and Liu Yang and Xilin Luo and Xuejie Wu and Lunan Liu and Wenjun Cheng and Peng Cheng and Jianhao Zhang and Xiaoyu Zhang and Lei Lin and Xiaokun Wang and Yutuan Ma and Chuanhai Dong and Yanqi Sun and Yifu Chen and Yongyi Peng and Xiaojuan Liang and Shuicheng Yan and Han Fang and Yahui Zhou},
year={2023},
eprint={2310.19341},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@article{skyworkmath,
title={SkyMath: Technical Report},
author={Liu Yang, Haihua Yang, Wenjun Cheng, Lei Lin, Chenxia Li, Yifu Chen, Lunan Liu, Jianfei Pan, Tianwen Wei, Biye Li, Liang Zhao, Lijie Wang, Bo Zhu, Guoliang Li, Xuejie Wu, Xilin Luo, Rui Hu},
journal={arXiv preprint arXiv: 2310.16713},
url={https://arxiv.org/abs/2310.16713},
year={2023}
}
```
```
@article{Skywork_Multi-Modal_Group_Empirical_Study_Towards_2023,
author = {Skywork Multi-Modal Group},
month = sep,
title = {{Empirical Study Towards Building An Effective Multi-Modal Large Language Model}},
year = {2023}
}
```
|
shubhamgantayat/bigscience-bloom-560m-brief-history-of-time-model | shubhamgantayat | 2023-11-01T11:50:42Z | 12 | 0 | transformers | [
"transformers",
"pytorch",
"bloom",
"text-generation",
"generated_from_trainer",
"base_model:bigscience/bloom-560m",
"base_model:finetune:bigscience/bloom-560m",
"license:bigscience-bloom-rail-1.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2023-11-01T10:44:53Z | ---
license: bigscience-bloom-rail-1.0
base_model: bigscience/bloom-560m
tags:
- generated_from_trainer
model-index:
- name: bigscience-bloom-560m-brief-history-of-time-model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bigscience-bloom-560m-brief-history-of-time-model
This model is a fine-tuned version of [bigscience/bloom-560m](https://huggingface.co/bigscience/bloom-560m) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 100
### Training results
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
omarelsayeed/tsdae_unsup | omarelsayeed | 2023-11-01T11:48:07Z | 1 | 0 | sentence-transformers | [
"sentence-transformers",
"pytorch",
"bert",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
]
| sentence-similarity | 2023-11-01T11:46:29Z | ---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 38790 with parameters:
```
{'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.DenoisingAutoEncoderLoss.DenoisingAutoEncoderLoss`
Parameters of the fit()-Method:
```
{
"epochs": 10,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 3e-05
},
"scheduler": "constantlr",
"steps_per_epoch": null,
"warmup_steps": 10000,
"weight_decay": 0
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information --> |
lmarchyok/new_results-50 | lmarchyok | 2023-11-01T11:48:04Z | 3 | 0 | transformers | [
"transformers",
"tf",
"bert",
"fill-mask",
"generated_from_keras_callback",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| fill-mask | 2023-11-01T11:41:49Z | ---
tags:
- generated_from_keras_callback
model-index:
- name: lmarchyok/new_results-50
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# lmarchyok/new_results-50
This model is a fine-tuned version of [pretrained_models/ClinicalBERT_1a/pytorch_model.bin](https://huggingface.co/pretrained_models/ClinicalBERT_1a/pytorch_model.bin) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 4.6160
- Validation Loss: 4.4496
- Epoch: 8
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -876, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 10.5875 | 8.8027 | 0 |
| 8.3830 | 7.7917 | 1 |
| 7.5113 | 6.9286 | 2 |
| 6.7266 | 5.9542 | 3 |
| 5.9461 | 5.4455 | 4 |
| 5.4186 | 5.2021 | 5 |
| 5.0915 | 4.7773 | 6 |
| 4.8382 | 4.5644 | 7 |
| 4.6160 | 4.4496 | 8 |
### Framework versions
- Transformers 4.26.1
- TensorFlow 2.11.0
- Datasets 2.13.1
- Tokenizers 0.13.2
|
Juniplayground/Mistral_orca-7B-512_v1 | Juniplayground | 2023-11-01T11:45:59Z | 1 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:Open-Orca/Mistral-7B-OpenOrca",
"base_model:adapter:Open-Orca/Mistral-7B-OpenOrca",
"region:us"
]
| null | 2023-11-01T11:45:51Z | ---
library_name: peft
base_model: Open-Orca/Mistral-7B-OpenOrca
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
### Framework versions
- PEFT 0.6.0.dev0
|
bellagio-ai/WalterNgo-face-vn-pictures-dreambooth-512-2k | bellagio-ai | 2023-11-01T11:44:38Z | 1 | 0 | diffusers | [
"diffusers",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"lora",
"base_model:bellagio-ai/t2i-vietnam-pictures-2k",
"base_model:adapter:bellagio-ai/t2i-vietnam-pictures-2k",
"license:openrail++",
"region:us"
]
| text-to-image | 2023-11-01T10:14:58Z |
---
license: openrail++
base_model: bellagio-ai/t2i-vietnam-pictures-2k
instance_prompt: a portrait photo of happy WalterNgo person's face
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA DreamBooth - bellagio-ai/WalterNgo-face-vn-pictures-dreambooth-512-2k
These are LoRA adaption weights for bellagio-ai/t2i-vietnam-pictures-2k. The weights were trained on a portrait photo of happy WalterNgo person's face using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.




LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
|
linuscarey123/out | linuscarey123 | 2023-11-01T11:38:11Z | 0 | 0 | null | [
"generated_from_trainer",
"base_model:meta-llama/Llama-2-7b-chat-hf",
"base_model:finetune:meta-llama/Llama-2-7b-chat-hf",
"region:us"
]
| null | 2023-11-01T11:37:55Z | ---
base_model: meta-llama/Llama-2-7b-chat-hf
tags:
- generated_from_trainer
model-index:
- name: out
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# out
This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5419
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.0573 | 1.0 | 250 | 0.5403 |
| 0.0432 | 2.0 | 500 | 0.5419 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
kanishka/smolm-autoreg-bpe-babylm-aann-counterfactual-anan-1e-3 | kanishka | 2023-11-01T11:12:47Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"opt",
"text-generation",
"generated_from_trainer",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2023-10-31T03:56:50Z | ---
base_model: models/smolm-autoreg-bpe-babylm-aann-counterfactual-anan-1e-3/config.json
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: smolm-autoreg-bpe-babylm-aann-counterfactual-anan-1e-3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# smolm-autoreg-bpe-babylm-aann-counterfactual-anan-1e-3
This model is a fine-tuned version of [models/smolm-autoreg-bpe-babylm-aann-counterfactual-anan-1e-3/config.json](https://huggingface.co/models/smolm-autoreg-bpe-babylm-aann-counterfactual-anan-1e-3/config.json) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.1635
- Accuracy: 0.4321
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 32000
- num_epochs: 20.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
| 3.4374 | 1.0 | 18353 | 3.5466 | 0.3796 |
| 3.2099 | 2.0 | 36706 | 3.3491 | 0.3995 |
| 3.0711 | 3.0 | 55059 | 3.2446 | 0.4134 |
| 2.9939 | 4.0 | 73412 | 3.1977 | 0.4186 |
| 2.933 | 5.0 | 91765 | 3.1660 | 0.4224 |
| 2.8889 | 6.0 | 110118 | 3.1475 | 0.4254 |
| 2.8508 | 7.0 | 128471 | 3.1383 | 0.4273 |
| 2.8168 | 8.0 | 146824 | 3.1297 | 0.4288 |
| 2.7896 | 9.0 | 165177 | 3.1278 | 0.4295 |
| 2.7611 | 10.0 | 183530 | 3.1289 | 0.4303 |
| 2.7357 | 11.0 | 201883 | 3.1282 | 0.4309 |
| 2.7211 | 12.0 | 220236 | 3.1289 | 0.4312 |
| 2.695 | 13.0 | 238589 | 3.1367 | 0.4315 |
| 2.6675 | 14.0 | 256942 | 3.1350 | 0.4323 |
| 2.6523 | 15.0 | 275295 | 3.1402 | 0.4318 |
| 2.6323 | 16.0 | 293648 | 3.1416 | 0.4322 |
| 2.6102 | 17.0 | 312001 | 3.1500 | 0.4322 |
| 2.5871 | 18.0 | 330354 | 3.1509 | 0.4325 |
| 2.5708 | 19.0 | 348707 | 3.1577 | 0.4323 |
| 2.549 | 20.0 | 367060 | 3.1635 | 0.4321 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.14.1
|
lmarchyok/new_results-1 | lmarchyok | 2023-11-01T11:12:29Z | 3 | 0 | transformers | [
"transformers",
"tf",
"bert",
"fill-mask",
"generated_from_keras_callback",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| fill-mask | 2023-11-01T11:06:11Z | ---
tags:
- generated_from_keras_callback
model-index:
- name: lmarchyok/new_results-1
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# lmarchyok/new_results-1
This model is a fine-tuned version of [pretrained_models/ClinicalBERT_1a/pytorch_model.bin](https://huggingface.co/pretrained_models/ClinicalBERT_1a/pytorch_model.bin) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 4.5011
- Validation Loss: 4.3356
- Epoch: 8
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -876, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 10.5550 | 8.8075 | 0 |
| 8.3737 | 7.9108 | 1 |
| 7.5230 | 6.9752 | 2 |
| 6.6432 | 5.9450 | 3 |
| 5.7863 | 5.3979 | 4 |
| 5.3367 | 5.0730 | 5 |
| 4.9932 | 4.7959 | 6 |
| 4.6619 | 4.3309 | 7 |
| 4.5011 | 4.3356 | 8 |
### Framework versions
- Transformers 4.26.1
- TensorFlow 2.11.0
- Datasets 2.13.1
- Tokenizers 0.13.2
|
rmiaouh/zephyr-support-chatbot | rmiaouh | 2023-11-01T11:09:51Z | 0 | 0 | null | [
"generated_from_trainer",
"base_model:TheBloke/zephyr-7B-alpha-GPTQ",
"base_model:finetune:TheBloke/zephyr-7B-alpha-GPTQ",
"license:mit",
"region:us"
]
| null | 2023-11-01T10:29:01Z | ---
license: mit
base_model: TheBloke/zephyr-7B-alpha-GPTQ
tags:
- generated_from_trainer
model-index:
- name: zephyr-support-chatbot
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# zephyr-support-chatbot
This model is a fine-tuned version of [TheBloke/zephyr-7B-alpha-GPTQ](https://huggingface.co/TheBloke/zephyr-7B-alpha-GPTQ) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- training_steps: 250
### Training results
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
briannlongzhao/simpsons | briannlongzhao | 2023-11-01T11:00:32Z | 0 | 0 | diffusers | [
"diffusers",
"tensorboard",
"safetensors",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"dreambooth",
"base_model:stabilityai/stable-diffusion-2-1",
"base_model:finetune:stabilityai/stable-diffusion-2-1",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
]
| text-to-image | 2023-11-01T09:27:18Z |
---
license: creativeml-openrail-m
base_model: stabilityai/stable-diffusion-2-1
instance_prompt: a cartoon of sks
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- dreambooth
inference: true
---
# DreamBooth - briannlongzhao/simpsons
This is a dreambooth model derived from stabilityai/stable-diffusion-2-1. The weights were trained on a cartoon of sks using [DreamBooth](https://dreambooth.github.io/).
You can find some example images in the following.
DreamBooth for the text encoder was enabled: True.
|
Subsets and Splits