modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-14 18:27:59
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
520 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-14 18:27:48
card
stringlengths
11
1.01M
cleanrl/MontezumaRevenge-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
cleanrl
2023-02-23T16:22:42Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "MontezumaRevenge-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T16:22:41Z
--- tags: - MontezumaRevenge-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: MontezumaRevenge-v5 type: MontezumaRevenge-v5 metrics: - type: mean_reward value: 0.00 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **MontezumaRevenge-v5** This is a trained model of a PPO agent playing MontezumaRevenge-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id MontezumaRevenge-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/MontezumaRevenge-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/MontezumaRevenge-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/MontezumaRevenge-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id MontezumaRevenge-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'MontezumaRevenge-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Kangaroo-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
cleanrl
2023-02-23T16:22:40Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Kangaroo-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T16:22:38Z
--- tags: - Kangaroo-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Kangaroo-v5 type: Kangaroo-v5 metrics: - type: mean_reward value: 3180.00 +/- 183.30 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Kangaroo-v5** This is a trained model of a PPO agent playing Kangaroo-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Kangaroo-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Kangaroo-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Kangaroo-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Kangaroo-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Kangaroo-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Kangaroo-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/BattleZone-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
cleanrl
2023-02-23T16:22:18Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "BattleZone-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T16:22:17Z
--- tags: - BattleZone-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: BattleZone-v5 type: BattleZone-v5 metrics: - type: mean_reward value: 33800.00 +/- 5600.00 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **BattleZone-v5** This is a trained model of a PPO agent playing BattleZone-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id BattleZone-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/BattleZone-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/BattleZone-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/BattleZone-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id BattleZone-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'BattleZone-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/MontezumaRevenge-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
cleanrl
2023-02-23T16:22:16Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "MontezumaRevenge-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T16:22:14Z
--- tags: - MontezumaRevenge-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: MontezumaRevenge-v5 type: MontezumaRevenge-v5 metrics: - type: mean_reward value: 0.00 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **MontezumaRevenge-v5** This is a trained model of a PPO agent playing MontezumaRevenge-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id MontezumaRevenge-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/MontezumaRevenge-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/MontezumaRevenge-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/MontezumaRevenge-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id MontezumaRevenge-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'MontezumaRevenge-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Jamesbond-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2
cleanrl
2023-02-23T16:22:00Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Jamesbond-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T16:21:58Z
--- tags: - Jamesbond-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Jamesbond-v5 type: Jamesbond-v5 metrics: - type: mean_reward value: 7080.00 +/- 2833.39 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Jamesbond-v5** This is a trained model of a PPO agent playing Jamesbond-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Jamesbond-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Jamesbond-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Jamesbond-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Jamesbond-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Jamesbond-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Jamesbond-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
enlacinglines/SnowballTarget1
enlacinglines
2023-02-23T16:21:06Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-02-23T16:21:01Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: enlacinglines/SnowballTarget1 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
cleanrl/Boxing-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
cleanrl
2023-02-23T16:21:05Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Boxing-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T16:21:03Z
--- tags: - Boxing-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Boxing-v5 type: Boxing-v5 metrics: - type: mean_reward value: 93.60 +/- 5.82 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Boxing-v5** This is a trained model of a PPO agent playing Boxing-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Boxing-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Boxing-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Boxing-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Boxing-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Boxing-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Boxing-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/MsPacman-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
cleanrl
2023-02-23T16:20:53Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "MsPacman-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T16:20:52Z
--- tags: - MsPacman-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: MsPacman-v5 type: MsPacman-v5 metrics: - type: mean_reward value: 2003.00 +/- 525.40 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **MsPacman-v5** This is a trained model of a PPO agent playing MsPacman-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id MsPacman-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/MsPacman-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/MsPacman-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/MsPacman-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id MsPacman-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'MsPacman-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Jamesbond-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
cleanrl
2023-02-23T16:20:50Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Jamesbond-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T16:20:49Z
--- tags: - Jamesbond-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Jamesbond-v5 type: Jamesbond-v5 metrics: - type: mean_reward value: 3010.00 +/- 2849.63 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Jamesbond-v5** This is a trained model of a PPO agent playing Jamesbond-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Jamesbond-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Jamesbond-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Jamesbond-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Jamesbond-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Jamesbond-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Jamesbond-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/MsPacman-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
cleanrl
2023-02-23T16:20:48Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "MsPacman-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T16:20:47Z
--- tags: - MsPacman-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: MsPacman-v5 type: MsPacman-v5 metrics: - type: mean_reward value: 1389.00 +/- 107.28 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **MsPacman-v5** This is a trained model of a PPO agent playing MsPacman-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id MsPacman-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/MsPacman-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/MsPacman-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/MsPacman-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id MsPacman-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'MsPacman-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
avojarot/Reinforce-2
avojarot
2023-02-23T16:19:39Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T15:54:51Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 17.10 +/- 10.93 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
cleanrl/Gravitar-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
cleanrl
2023-02-23T16:19:06Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Gravitar-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T16:19:04Z
--- tags: - Gravitar-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Gravitar-v5 type: Gravitar-v5 metrics: - type: mean_reward value: 645.00 +/- 172.41 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Gravitar-v5** This is a trained model of a PPO agent playing Gravitar-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Gravitar-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Gravitar-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Gravitar-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Gravitar-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Gravitar-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Gravitar-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
mingdinghan/Reinforce-Pixelcopter-PLE-v0
mingdinghan
2023-02-23T16:18:53Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T16:18:50Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 25.90 +/- 14.58 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
cleanrl/NameThisGame-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
cleanrl
2023-02-23T16:18:36Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "NameThisGame-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T16:18:35Z
--- tags: - NameThisGame-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: NameThisGame-v5 type: NameThisGame-v5 metrics: - type: mean_reward value: 11754.00 +/- 2183.50 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **NameThisGame-v5** This is a trained model of a PPO agent playing NameThisGame-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id NameThisGame-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/NameThisGame-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/NameThisGame-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/NameThisGame-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id NameThisGame-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'NameThisGame-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Berzerk-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1
cleanrl
2023-02-23T16:18:19Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Berzerk-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T16:18:18Z
--- tags: - Berzerk-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Berzerk-v5 type: Berzerk-v5 metrics: - type: mean_reward value: 886.00 +/- 167.10 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Berzerk-v5** This is a trained model of a PPO agent playing Berzerk-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Berzerk-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Berzerk-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Berzerk-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Berzerk-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Berzerk-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Berzerk-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
tvarella/boballl
tvarella
2023-02-23T16:18:05Z
37
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-02-23T16:17:58Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: tvarella/boballl 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
cleanrl/Frostbite-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3
cleanrl
2023-02-23T16:16:41Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Frostbite-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T16:16:39Z
--- tags: - Frostbite-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Frostbite-v5 type: Frostbite-v5 metrics: - type: mean_reward value: 311.00 +/- 3.00 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Frostbite-v5** This is a trained model of a PPO agent playing Frostbite-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Frostbite-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Frostbite-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Frostbite-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Frostbite-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Frostbite-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Frostbite-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
huggingtweets/chromeeight-elonmusk
huggingtweets
2023-02-23T16:11:12Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-02-23T16:09:30Z
--- language: en thumbnail: http://www.huggingtweets.com/chromeeight-elonmusk/1677168649061/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1581022168967618560/hek6M_Wq_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1590968738358079488/IY9Gx6Ok_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Matthew Gan & Elon Musk</div> <div style="text-align: center; font-size: 14px;">@chromeeight-elonmusk</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Matthew Gan & Elon Musk. | Data | Matthew Gan | Elon Musk | | --- | --- | --- | | Tweets downloaded | 3099 | 3192 | | Retweets | 1793 | 169 | | Short tweets | 150 | 1056 | | Tweets kept | 1156 | 1967 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/cwdsrhbn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chromeeight-elonmusk's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/bxr6f4ya) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/bxr6f4ya/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chromeeight-elonmusk') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
muhammadravi251001/fine-tuned-IndoNLI-data_translated-with_XLMR
muhammadravi251001
2023-02-23T16:10:26Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-23T09:36:52Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: fine-tuned-IndoNLI-data_translated-with_XLMR results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tuned-IndoNLI-data_translated-with_XLMR This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2656 - Accuracy: 0.24 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5625 | 1.0 | 1 | 1.2656 | 0.24 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.2.0 - Tokenizers 0.13.2
muhammadravi251001/fine-tuned-IndoNLI-data_augmented-with_XLMR
muhammadravi251001
2023-02-23T16:09:29Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-23T16:05:21Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: fine-tuned-IndoNLI-data_augmented-with_XLMR results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tuned-IndoNLI-data_augmented-with_XLMR This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1625 - Accuracy: 0.12 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5396 | 1.0 | 1 | 1.1625 | 0.12 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.2.0 - Tokenizers 0.13.2
svjack/mt0-large-comet-atomic-zh-peft-early
svjack
2023-02-23T16:04:03Z
0
0
null
[ "text2text-generation", "zh", "region:us" ]
text2text-generation
2023-02-23T15:05:35Z
--- language: - zh pipeline_tag: text2text-generation --- ```python #### peft version: '0.2.0.dev0' from peft import PeftModel, PeftConfig from transformers import AutoModelForSeq2SeqLM, AutoTokenizer import pandas as pd import torch peft_model_id = "svjack/mt0-large-comet-atomic-zh-peft-early" config = PeftConfig.from_pretrained(peft_model_id) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path) #### model.device "cuda" device = "cuda:0" model = PeftModel.from_pretrained(model, peft_model_id) model.eval() print("have load") NEED_PREFIX = '以下事件有哪些必要的先决条件:' EFFECT_PREFIX = '下面的事件发生后可能会发生什么:' INTENT_PREFIX = '以下事件的动机是什么:' REACT_PREFIX = '以下事件发生后,你有什么感觉:' event = "X吃了一顿美餐。" for prefix in [NEED_PREFIX, EFFECT_PREFIX, INTENT_PREFIX, REACT_PREFIX]: prompt = "{}{}".format(prefix, event) encode = tokenizer(prompt, return_tensors='pt').to(device) answer = model.generate(input_ids = encode.input_ids, max_length = 128, num_beams=2, top_p = 0.95, top_k = 50, repetition_penalty = 2.5, length_penalty=1.0, early_stopping=True, )[0] decoded = tokenizer.decode(answer, skip_special_tokens=True) print(prompt, "\n---答案:", decoded, "----\n") ``` </br> ```json 以下事件有哪些必要的先决条件:X吃了一顿美餐。 ---答案: X去超市购物 ---- 下面的事件发生后可能会发生什么:X吃了一顿美餐。 ---答案: X变胖 ---- 以下事件的动机是什么:X吃了一顿美餐。 ---答案: X想吃好吃的东西 ---- 以下事件发生后,你有什么感觉:X吃了一顿美餐。 ---答案: 我可以放松一下 ---- ```
svjack/mt0-large-comet-atomic-zh-peft-early-cpu
svjack
2023-02-23T16:02:18Z
0
0
null
[ "text2text-generation", "zh", "region:us" ]
text2text-generation
2023-02-23T15:42:25Z
--- language: - zh pipeline_tag: text2text-generation --- ```python #### peft version: '0.2.0.dev0' from peft import PeftModel, PeftConfig from transformers import AutoModelForSeq2SeqLM, AutoTokenizer import pandas as pd import torch peft_model_id = "svjack/mt0-large-comet-atomic-zh-peft-early-cpu" config = PeftConfig.from_pretrained(peft_model_id) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path) #### model.device "cpu" device = "cpu" model = PeftModel.from_pretrained(model, peft_model_id) model.eval() print("have load") NEED_PREFIX = '以下事件有哪些必要的先决条件:' EFFECT_PREFIX = '下面的事件发生后可能会发生什么:' INTENT_PREFIX = '以下事件的动机是什么:' REACT_PREFIX = '以下事件发生后,你有什么感觉:' event = "X吃了一顿美餐。" for prefix in [NEED_PREFIX, EFFECT_PREFIX, INTENT_PREFIX, REACT_PREFIX]: prompt = "{}{}".format(prefix, event) encode = tokenizer(prompt, return_tensors='pt').to(device) answer = model.generate(input_ids = encode.input_ids, max_length = 128, num_beams=2, top_p = 0.95, top_k = 50, repetition_penalty = 2.5, length_penalty=1.0, early_stopping=True, )[0] decoded = tokenizer.decode(answer, skip_special_tokens=True) print(prompt, "\n---答案:", decoded, "----\n") ``` </br> ```json 以下事件有哪些必要的先决条件:X吃了一顿美餐。 ---答案: X去超市购物 ---- 下面的事件发生后可能会发生什么:X吃了一顿美餐。 ---答案: X变胖 ---- 以下事件的动机是什么:X吃了一顿美餐。 ---答案: X想吃好吃的东西 ---- 以下事件发生后,你有什么感觉:X吃了一顿美餐。 ---答案: 我可以放松一下 ---- ```
algocompretto/dqn-SpaceInvadersNoFrameskip-v0
algocompretto
2023-02-23T15:57:15Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T15:56:45Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 254.00 +/- 114.89 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga algocompretto -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga algocompretto -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga algocompretto ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 1e-05), ('learning_starts', 100000), ('n_timesteps', 1000000), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
snowdere/test_trainer
snowdere
2023-02-23T15:36:27Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-23T15:27:57Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: test_trainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_trainer This model is a fine-tuned version of [FinanceInc/finbert-pretrain](https://huggingface.co/FinanceInc/finbert-pretrain) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 9.5916 - Accuracy: 0.0001 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 40 - eval_batch_size: 40 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 9.6334 | 1.0 | 2975 | 9.6220 | 0.0001 | | 9.6098 | 2.0 | 5950 | 9.6034 | 0.0001 | | 9.6041 | 3.0 | 8925 | 9.5916 | 0.0001 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
Constien/IM_Model
Constien
2023-02-23T15:27:34Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-23T15:26:38Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: IM_Model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IM_Model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
Theju/loso_m07_main_1
Theju
2023-02-23T15:27:00Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-02-23T11:30:27Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: loso_m07_main_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # loso_m07_main_1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0752 - Wer: 1.62 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 9.6242 | 0.96 | 500 | 3.4099 | 1.0 | | 2.6899 | 1.92 | 1000 | 1.6890 | 2.3556 | | 1.0312 | 2.88 | 1500 | 0.3006 | 1.9356 | | 0.3173 | 3.84 | 2000 | 0.1852 | 1.7044 | | 0.1357 | 4.8 | 2500 | 0.1000 | 1.5333 | | 0.079 | 5.76 | 3000 | 0.0877 | 1.6156 | | 0.0559 | 6.72 | 3500 | 0.0752 | 1.62 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.13.1+cu116 - Datasets 1.18.3 - Tokenizers 0.13.2
avojarot/PyramidsTraining
avojarot
2023-02-23T15:23:28Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-02-23T15:23:23Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: avojarot/PyramidsTraining 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
sanchit-gandhi/whisper-small-ru-1k-steps
sanchit-gandhi
2023-02-23T15:22:00Z
158
3
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "ru", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-12T03:07:17Z
--- language: - ru license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Russian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 ru type: mozilla-foundation/common_voice_11_0 config: ru split: test args: ru metrics: - name: Wer type: wer value: 12.883608587437623 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Russian This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 ru dataset. It achieves the following results on the evaluation set: - Loss: 0.2179 - Wer: 12.8836 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0637 | 1.4 | 1000 | 0.2179 | 12.8836 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 2.0.0.dev20221210+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
avojarot/Reinforce-1
avojarot
2023-02-23T15:20:10Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T15:19:58Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 490.80 +/- 27.60 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Anon1216/kgflora
Anon1216
2023-02-23T14:57:29Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-23T14:54:49Z
--- license: creativeml-openrail-m ---
Leonhard17/ppo-SnowballTarget
Leonhard17
2023-02-23T14:42:57Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-02-23T14:42:51Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: Leonhard17/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
J3/Reinforce-CartPole-v1
J3
2023-02-23T14:42:06Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T14:41:58Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Tublean/NobelDifusion
Tublean
2023-02-23T14:40:47Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-23T14:29:09Z
--- license: creativeml-openrail-m ---
michalcisek5/dqn-SpaceInvadersNoFrameskip-v4
michalcisek5
2023-02-23T14:35:19Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T14:34:40Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 559.00 +/- 81.45 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga michalcisek5 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga michalcisek5 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga michalcisek5 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
jamesthong/a2c-PandaReachDense-v2
jamesthong
2023-02-23T14:11:36Z
2
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T14:09:13Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.41 +/- 0.71 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
muhammadravi251001/fine-tuned-IndoNLI-data_train-with_XLMR
muhammadravi251001
2023-02-23T14:04:25Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-22T15:16:42Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: fine-tuned-IndoNLI-data_train-with_XLMR results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tuned-IndoNLI-data_train-with_XLMR This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1820 - Accuracy: 0.12 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5341 | 1.0 | 1 | 1.1820 | 0.12 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.2.0 - Tokenizers 0.13.2
jakub014/bert-base-uncased-finetuned-sufficiency-ukp-balanced
jakub014
2023-02-23T14:01:18Z
3
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-23T13:54:07Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-sufficiency-ukp-balanced results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-sufficiency-ukp-balanced This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1493 - Accuracy: 0.9559 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 69 | 0.2807 | 0.9007 | | No log | 2.0 | 138 | 0.1804 | 0.9338 | | No log | 3.0 | 207 | 0.1493 | 0.9559 | | No log | 4.0 | 276 | 0.1558 | 0.9559 | | No log | 5.0 | 345 | 0.1601 | 0.9559 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
Wikked/q-FrozenLake-v1-4x4-noSlippery
Wikked
2023-02-23T13:59:32Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T13:57:43Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Wikked/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
threite/ppo-LunarLander-v2-self
threite
2023-02-23T13:53:26Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T13:30:11Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -99.80 +/- 46.43 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'gym_id': 'LunarLander-v2' 'learning_rate': 0.00025 'seed': 1 'total_timesteps': 50000 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'threite/ppo-LunarLander-v2-self' 'batch_size': 512 'minibatch_size': 128 'env_id': 'LunarLander-v2'} ```
muhammadravi251001/fine-tuned-IndoNLI-data_train-with_IndoNLU-Large-V2
muhammadravi251001
2023-02-23T13:53:11Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-22T15:09:36Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: fine-tuned-IndoNLI-data_train-with_IndoNLU-Large-V2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tuned-IndoNLI-data_train-with_IndoNLU-Large-V2 This model is a fine-tuned version of [indobenchmark/indobert-large-p2](https://huggingface.co/indobenchmark/indobert-large-p2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3468 - Accuracy: 0.12 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.561 | 1.0 | 1 | 1.3468 | 0.12 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.2.0 - Tokenizers 0.13.2
pabloac31/poca-SoccerTwos
pabloac31
2023-02-23T13:52:35Z
27
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-23T13:52:28Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: pabloac31/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
wimvanhenden/blade-runner-2049-v1
wimvanhenden
2023-02-23T13:44:17Z
0
7
diffusers
[ "diffusers", "tensorboard", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-15T15:47:55Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: bldrnrst --- ### Blade Runner 2049 v1 Dreambooth model trained by wimvanhenden with the v1-5 base model Use bldrnrst as prompt prefix bldrnrst, a photo of a man with blood on his face ![result 0](https://huggingface.co/wimvanhenden/blade-runner-2049-v1/resolve/main/concept_images/face.png) bldrnrst, a photo of a woman with blood on her face ![result 0](https://huggingface.co/wimvanhenden/blade-runner-2049-v1/resolve/main/concept_images/facew.png) Results: ![result 0](https://huggingface.co/wimvanhenden/blade-runner-2049-v1/resolve/main/concept_images/blade_runner_style.png) Sample pictures of training set: ![bldrnrst 0](https://huggingface.co/wimvanhenden/blade-runner-2049-v1/resolve/main/concept_images/bldrnrst_%281%29.jpg)![bldrnrst 1](https://huggingface.co/wimvanhenden/blade-runner-2049-v1/resolve/main/concept_images/bldrnrst_%282%29.jpg)![bldrnrst 2](https://huggingface.co/wimvanhenden/blade-runner-2049-v1/resolve/main/concept_images/bldrnrst_%283%29.jpg)![bldrnrst 3](https://huggingface.co/wimvanhenden/blade-runner-2049-v1/resolve/main/concept_images/bldrnrst_%284%29.jpg)![bldrnrst 4](https://huggingface.co/wimvanhenden/blade-runner-2049-v1/resolve/main/concept_images/bldrnrst_%285%29.jpg)![bldrnrst 5](https://huggingface.co/wimvanhenden/blade-runner-2049-v1/resolve/main/concept_images/bldrnrst_%286%29.jpg)![bldrnrst 6](https://huggingface.co/wimvanhenden/blade-runner-2049-v1/resolve/main/concept_images/bldrnrst_%287%29.jpg)![bldrnrst 7](https://huggingface.co/wimvanhenden/blade-runner-2049-v1/resolve/main/concept_images/bldrnrst_%288%29.jpg)![bldrnrst 8](https://huggingface.co/wimvanhenden/blade-runner-2049-v1/resolve/main/concept_images/bldrnrst_%289%29.jpg)![bldrnrst 9](https://huggingface.co/wimvanhenden/blade-runner-2049-v1/resolve/main/concept_images/bldrnrst_%2810%29.jpg)![bldrnrst 10](https://huggingface.co/wimvanhenden/blade-runner-2049-v1/resolve/main/concept_images/bldrnrst_%2811%29.jpg)![bldrnrst 11](https://huggingface.co/wimvanhenden/blade-runner-2049-v1/resolve/main/concept_images/bldrnrst_%2812%29.jpg)![bldrnrst 12](https://huggingface.co/wimvanhenden/blade-runner-2049-v1/resolve/main/concept_images/bldrnrst_%2813%29.jpg)![bldrnrst 13](https://huggingface.co/wimvanhenden/blade-runner-2049-v1/resolve/main/concept_images/bldrnrst_%2814%29.jpg)![bldrnrst 14](https://huggingface.co/wimvanhenden/blade-runner-2049-v1/resolve/main/concept_images/bldrnrst_%2815%29.jpg)![bldrnrst 15](https://huggingface.co/wimvanhenden/blade-runner-2049-v1/resolve/main/concept_images/bldrnrst_%2816%29.jpg)![bldrnrst 16](https://huggingface.co/wimvanhenden/blade-runner-2049-v1/resolve/main/concept_images/bldrnrst_%2817%29.jpg)![bldrnrst 17](https://huggingface.co/wimvanhenden/blade-runner-2049-v1/resolve/main/concept_images/bldrnrst_%2818%29.jpg)![bldrnrst 18](https://huggingface.co/wimvanhenden/blade-runner-2049-v1/resolve/main/concept_images/bldrnrst_%2819%29.jpg)![bldrnrst 19](https://huggingface.co/wimvanhenden/blade-runner-2049-v1/resolve/main/concept_images/bldrnrst_%2820%29.jpg)
Leonhard17/Reinforce-Pixelcopter-PLE-v0
Leonhard17
2023-02-23T13:36:50Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T13:36:47Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 37.40 +/- 15.70 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
jamesthong/a2c-AntBulletEnv-v0
jamesthong
2023-02-23T13:18:13Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T13:17:03Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1919.78 +/- 335.18 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Alsebay/PeachMixs
Alsebay
2023-02-23T13:08:27Z
0
19
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-13T05:12:01Z
--- license: creativeml-openrail-m --- --- My pixiv: https://www.pixiv.net/en/users/75679841 [Civitai version of PeachUltima](https://civitai.com/models/12048/peachmixs-ultima-version) # PeachMix "PeachMix" (Oldname: RadiationFruitMix) are various merge models base on a lot of different models. These are a lot of things in FAQ, you should check it first. --- # Tabble of Contents (Make for easy searching :3 ) - [PeachMix](#peachmix) - [License](#license) - [Disclaimer](#disclaimer) - [Use Models](#use-models) - [Model Detail](#model-detail) - [PeachMix - Tachyon version](#peachmix---tachyon-version) - [PeachMix - Ultima version](#peachmix---ultima-version) - [PeachMix V1](#peachmix-v1) - [C.A.M(PeachMix1 V1)](#campeachmix1-v1) - [PeachMix2 V1](#peachmix2-v1) - [PeachMix3 V1](#peachmix3-v1) - [PeachMix V2](#peachmix-v2) - [C.A.M 2(PeachMix1 V2)](#cam-2peachmix1-v2) - [PeachMix2 V2](#peachmix2-v2) - [PeachMix3 V2](#peachmix3-v2) - [PeachMix4 V2](#peachmix4-v2) - [PeachMix5 V2](#peachmix5-v2) - [PeachMix V3](#peachmix-v3) - [PeachMix2 V3](#peachmix2-v3) - [Fix Version](#peachmix2-v3-fix-version) - [FAQ](#faq) --- # License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) (Full license here: https://huggingface.co/spaces/CompVis/stable-diffusion-license) # Disclaimer - Creation of SFW and NSFW images is user's decision, user has complete control over to generate NSFW content whether or not. - This model is not a model created to publish NSFW content in public places. - Some prompts for generating these images were form my friends and I have been allowed for using them. --- # Use Models * V1, V2 ,V3 - Mostly use: [Chilloutmix-Ni](https://civitai.com/models/6424/chilloutmix) - Best model have ever use: [AbyssOrangeMix2 (AOM2)](https://huggingface.co/WarriorMama777/OrangeMixs#abyssorangemix2-aom2) - Anything series: - [V3](https://huggingface.co/Linaqruf/anything-v3.0) - [V4 & V4.5](https://huggingface.co/andite/anything-v4.0) * PeachMixs - Ultimate & Tachyon version - Mostly use: - [AbyssOrangeMix2 (AOM2)](https://huggingface.co/WarriorMama777/OrangeMixs#abyssorangemix2-aom2) - [basil_mix](https://huggingface.co/nuigurumi/basil_mix) - [AniDos v1](https://civitai.com/models/6437/anidosmix) - [DosMix](https://civitai.com/models/6250/dosmix) - Anything series: - [V4 & V4.5](https://huggingface.co/andite/anything-v4.0) How to use: - VAE: anything you want use 😉( but I recommend kl f8 anime, Orangesmix VAE (NAI) and sd-vae-ft-mse) - Prompt: As simple as good. - Negative prompt: (worst quality, low quality:1.4), (monochrome:1.1), [(bad_prompt_Version2:0.8)](https://huggingface.co/datasets/Nerfgun3/bad_prompt) - Sampler: DPM++ SDE Karras - Steps: DDIM 50~ , SDE Karass 20~ - Clipskip: 1 (you can try 2) - Upscaler : Latent (nearest-exact) - CFG Scale : 5 -7 is good (4~8) - Denoise strength: 0.5 maybe # Model Detail AOM2 in here I use is _nsfw version (AbyssOrangeMix2_nfsw). ## PeachMix - Tachyon Version Another PeachMix version that perform the better quality than V1, V2, V3. - Use model: - V1: - AOM2 FP16 (Model A) - Basil + Anidos (Model B) - V2: - V1 - Anything 4.0 & 4.5 - [Dalcefo](https://civitai.com/models/5396/dalcefov3painting) ## PeachMix - Ultima Version Same like Tachton Version but aim to more realistic. <details> <summary>Sample Images:</summary> - V1: <img src="https://huggingface.co/Alsebay/PeachMixs/resolve/main/Sample-Image/PeachUltima-sample-main.png" wight="" height=""> - V2: <img src="https://huggingface.co/Alsebay/PeachMixs/resolve/main/Sample-Image/PeachUltima2-sample-main.png" wight="" height=""> Prompt here: ``` Prompt: (extremely detailed CG unity 8k wallpaper), 8k,4k, (highres_1.1), best quality, (masterpiece_1.3), ([realistic::0.75]), vivid color, 1girl at center, solo, (ultra-detailed),medium breast, (beautiful eyes), looking to viewer, (((white ao dai))), cowboy shot, one eye open, open mouth, slime, water, Negative prompt: (worst quality:1.4), (low quality:1.4), (monochrome:1.1), (bad_prompt_version2:0.8), nsfw, ``` </details> - Use model: - V1: - AOM2 FP16 (Model A) - Basil + Anidos + Dos (Model B) - V2: - V1 - Anything 4.0 & 4.5 - Dalcefo ## PeachMix V1 FP16 x FP32 mix ### C.A.M(PeachMix1 V1) C.A.M stand for Chillout AbyssOrange Mix. Using same way like AOM2. - Use model: - AOM2 FP16 (Model A) - Chillout-Ni (Model B) ### PeachMix2 V1 * About: Try mimic AOM2 but use differemt recipe. - Use model: - Anything v3 FP16 (Model A) - Chillout-Ni (Model B) ### PeachMix3 V1 * About: Like PeachMix2 but enhance ver. - Use model: - Anything v4 FP16 (Model A) - Chillout-Ni (Model B) ## PearMiX V2 FP16 x FP16 mix ### C.A.M 2(PeachMix1 V2) - Use model: - AOM2 FP16 (Model A) - Chillout-Ni FP16(Model B) ### PeachMix2 V2 - Use model: - Anything v3 FP16 (Model A) - Chillout-Ni FP16 (Model B) ### PeachMix3 V2 - Use model: - Anything v4 FP16 (Model A) - Chillout-Ni FP16 (Model B) ### PeachMix4 V2 * About: enhance ver of PeachMix3 V2. - Use model: - Anything v4.5 FP16 (Model A) - Chillout-Ni FP16 (Model B) - ### PeachMix5 V2 * About: Unique model that merge in different way. - Use model: - AOM2 FP16 (Model A) - Chillout-Ni FP16(Model B) - Anything v4.5 FP16 (Model C) ## PeachMix V3 FP32 x FP132 mix. Aim for see different about fp16 and fp32 mix. Aborting now. ### PeachMix2 V3 - Use model: - Anything v3 FP32 (Model A) - Chillout-Ni FP32 (Model B) #### PeachMix2 V3 Fix version A fix version of it, due to missing some CLIP, wrong place. Fixed model is Chillout-Ni. --- # FAQ - Q: Where is example picture? - A: Sorry don't have time now. ._. - Q: why some model don't appeared in older/newer ver - A: sorry I don't have free time -_-. - Q: Does V1 V2 V3 different? - A: Yes, maybe. Here is exmaple (V2, V1, V3) <img src="https://files.catbox.moe/4geyk8.png" width="1024" height=""> ``` Prompt: 1girl, school uniform, standing, looking back at viewer, cherry blossom, Negative prompt: worst quality:1.4), (low quality:1.4), (monochrome:1.1), (bad_prompt_version2:0.8), ``` Another here: <img src="https://files.catbox.moe/f0v76m.png" width="1024" height=""> ``` Prompt: 1girl, blue bikini, lying, looking at viewer, ocean, from above, Negative prompt: worst quality:1.4), (low quality:1.4), (monochrome:1.1), (bad_prompt_version2:0.8), ``` - Q: About fix version,...? - A: Here is it <img src="https://files.catbox.moe/4cmsdi.png" width="1024" height="">
Dabid/test3
Dabid
2023-02-23T13:04:16Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:gpl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-23T12:02:37Z
--- license: gpl-3.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: test3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test3 This model is a fine-tuned version of [jcblaise/bert-tagalog-base-cased](https://huggingface.co/jcblaise/bert-tagalog-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3960 - Accuracy: 0.8683 - Precision: 0.8316 - Recall: 0.8653 - F1: 0.8481 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 151 | 0.3770 | 0.8431 | 0.8287 | 0.7951 | 0.8115 | | No log | 2.0 | 302 | 0.3561 | 0.8528 | 0.7959 | 0.8790 | 0.8354 | | No log | 3.0 | 453 | 0.3425 | 0.8647 | 0.8636 | 0.8094 | 0.8356 | | 0.3579 | 4.0 | 604 | 0.3541 | 0.8615 | 0.8090 | 0.8824 | 0.8441 | | 0.3579 | 5.0 | 755 | 0.3717 | 0.8611 | 0.8075 | 0.8836 | 0.8438 | | 0.3579 | 6.0 | 906 | 0.3657 | 0.8691 | 0.8352 | 0.8619 | 0.8483 | | 0.1703 | 7.0 | 1057 | 0.3826 | 0.8700 | 0.8370 | 0.8619 | 0.8493 | | 0.1703 | 8.0 | 1208 | 0.3960 | 0.8683 | 0.8316 | 0.8653 | 0.8481 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
research-backup/flan-t5-xl-analogy
research-backup
2023-02-23T12:54:12Z
5
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-13T01:20:34Z
--- widget: - text: "generate analogy: mammal is to whale" example_title: "Analogy Example 1 (semantic relation)" - text: "generate analogy: wedding is to marriage" example_title: "Analogy Example 1 (semantic relation, metaphor)" - text: "generate analogy: London is to U.K." example_title: "Analogy Example 2 (entity)" - text: "generate analogy: actual is to actually" example_title: "Analogy Example 3 (morphological)" --- # relbert/flan-t5-xl-analogy This is [google/flan-t5-xl](https://huggingface.co/google/flan-t5-xl) fine-tuned on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity) for analogy generation, which is to generate a word pair (eg. `bird is to crow`) given a query (eg. `mammal is to whale`) so that the query and the generated word pair form an analogy statement. ### Usage ```python from transformers import pipeline pipe = pipeline('text2text-generation', model="relbert/flan-t5-xl-analogy") output = pipe("generate analogy: mammal is to whale") print(output) >>> [{'generated_text': 'bird is to crow'}] ```
adhisetiawan/LunarLander-v2
adhisetiawan
2023-02-23T12:49:59Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T03:02:32Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 287.95 +/- 13.15 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mwissing/ppo-SnowballTarget
mwissing
2023-02-23T12:46:31Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-02-23T12:46:26Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: mwissing/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
research-backup/t5-3b-analogy
research-backup
2023-02-23T12:42:49Z
3
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-23T12:32:33Z
--- widget: - text: "generate analogy: mammal is to whale" example_title: "Analogy Example 1 (semantic relation)" - text: "generate analogy: wedding is to marriage" example_title: "Analogy Example 1 (semantic relation, metaphor)" - text: "generate analogy: London is to U.K." example_title: "Analogy Example 2 (entity)" - text: "generate analogy: actual is to actually" example_title: "Analogy Example 3 (morphological)" --- # relbert/t5-3b-analogy This is [t5-3b](https://huggingface.co/t5-3b) fine-tuned on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity) for analogy generation, which is to generate a word pair (eg. `bird is to crow`) given a query (eg. `mammal is to whale`) so that the query and the generated word pair form an analogy statement. ### Usage ```python from transformers import pipeline pipe = pipeline('text2text-generation', model="relbert/t5-3b-analogy") output = pipe("generate analogy: mammal is to whale") print(output) >>> [{'generated_text': 'bird is to crow'}] ```
tayfen/ppo_LL_default
tayfen
2023-02-23T12:31:23Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T12:31:12Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -124.18 +/- 48.00 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'tayfen/ppo_LL_default' 'batch_size': 512 'minibatch_size': 128} ```
priecar/TFG-summarization-1-epoch
priecar
2023-02-23T12:25:12Z
4
0
transformers
[ "transformers", "tf", "tensorboard", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-22T09:00:26Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: priecar/TFG-summarization-1-epoch results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # priecar/TFG-summarization-1-epoch This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.8463 - Validation Loss: 1.9840 - Train Rouge1: 19.4867 - Train Rouge2: 9.3173 - Train Rougel: 17.0674 - Train Rougelsum: 17.9128 - Train Gen Len: 18.9860 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| | 1.8463 | 1.9840 | 19.4867 | 9.3173 | 17.0674 | 17.9128 | 18.9860 | 0 | ### Framework versions - Transformers 4.26.1 - TensorFlow 2.11.0 - Datasets 2.10.0 - Tokenizers 0.13.2
algocompretto/q-FrozenLake-v1-4x4-noSlippery
algocompretto
2023-02-23T12:18:37Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T12:18:33Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="algocompretto/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
smartik/mt5-small-finetuned-xsum
smartik
2023-02-23T11:56:19Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-23T11:26:46Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-xsum This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 0.0946 - Rouge2: 0.0 - Rougel: 0.0918 - Rougelsum: 0.0925 - Gen Len: 3.8798 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.0 | 1.0 | 2046 | nan | 0.0946 | 0.0 | 0.0918 | 0.0925 | 3.8798 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
Arch4ngel/poca-SoccerTwos
Arch4ngel
2023-02-23T11:52:02Z
3
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-23T11:51:48Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: Arch4ngel/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Falah/shanasheel-baghdad
Falah
2023-02-23T11:47:10Z
0
1
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-20T03:28:51Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### shanasheel-baghdad called in Arabic (شناشيل بغداد) model trained by Falah.G.Salieh . ## You can visit my blog: https://iraqprogrammer.wordpress.com/ ## Or FB: https://web.facebook.com/falahgs ## Email: [email protected] With Stable Diffusion, we can now create artificial intelligence art generation images using our trained images. In this template we can create images of old Baghdad houses with old balconies called Shanasheel called in Arabic (shanasheel - شناشيل) or Old Baghdad Houses which is or anything you can think of in concept testing via A1111 Colab fast-Colab -A1111 Sample images of this concept with simple and easy prompts: Any prompt and add abaya style word: Prompt: Sample images of this concept with simple and easy prompts: any prompt and add shanasheel-baghdad style word ![0](https://huggingface.co/Falah/shanasheel-baghdad/resolve/main/00001-4262671582.png) ![1](https://huggingface.co/Falah/shanasheel-baghdad/resolve/main/00004-893797070.png) ![2](https://huggingface.co/Falah/shanasheel-baghdad/resolve/main/00006-3374560892.png) ![3](https://huggingface.co/Falah/shanasheel-baghdad/resolve/main/00007-2132847983.png)
OmarAlsaabi/distilbert-base-uncased-finetuned-cola
OmarAlsaabi
2023-02-23T11:46:21Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-23T10:13:32Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5434531271960991 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7983 - Matthews Correlation: 0.5435 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5255 | 1.0 | 535 | 0.5243 | 0.4122 | | 0.3496 | 2.0 | 1070 | 0.5007 | 0.5029 | | 0.2339 | 3.0 | 1605 | 0.5811 | 0.5206 | | 0.1826 | 4.0 | 2140 | 0.7680 | 0.5174 | | 0.1346 | 5.0 | 2675 | 0.7983 | 0.5435 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
roscazo/distemist_NER_test
roscazo
2023-02-23T11:45:44Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-23T11:28:58Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distemist_NER_test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distemist_NER_test This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0927 - Diso Precision: 0.7135 - Diso Recall: 0.7799 - Diso F1: 0.7452 - Diso Number: 1440 - Overall Precision: 0.7135 - Overall Recall: 0.7799 - Overall F1: 0.7452 - Overall Accuracy: 0.9760 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Diso Precision | Diso Recall | Diso F1 | Diso Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:-----------:|:-------:|:-----------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.0992 | 1.0 | 1169 | 0.0778 | 0.6166 | 0.7639 | 0.6824 | 1440 | 0.6166 | 0.7639 | 0.6824 | 0.9705 | | 0.0603 | 2.0 | 2338 | 0.0721 | 0.6867 | 0.7840 | 0.7322 | 1440 | 0.6867 | 0.7840 | 0.7322 | 0.9757 | | 0.0371 | 3.0 | 3507 | 0.0812 | 0.7182 | 0.7736 | 0.7449 | 1440 | 0.7182 | 0.7736 | 0.7449 | 0.9764 | | 0.0198 | 4.0 | 4676 | 0.0927 | 0.7135 | 0.7799 | 0.7452 | 1440 | 0.7135 | 0.7799 | 0.7452 | 0.9760 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
lozhnikov/ppo-LunarLander-v2
lozhnikov
2023-02-23T11:40:37Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T11:37:47Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO (Mlp) results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 254.36 +/- 21.36 name: mean_reward verified: false --- # **PPO (Mlp)** Agent playing **LunarLander-v2** This is a trained model of a **PPO (Mlp)** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Hawk91/a2c-AntBulletEnv-v0
Hawk91
2023-02-23T11:39:07Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T11:37:47Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1362.12 +/- 65.49 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Falah/dishdasha
Falah
2023-02-23T11:21:55Z
5
1
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-23T08:59:31Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### dishdasha clothes called in Arabic (دشداشة ) Dreambooth model trained by Falah. G.Saleih ## u can visit my blog : https://iraqprogrammer.wordpress.com/ ## or FB: https://web.facebook.com/falahgs email: [email protected] With Stable Diffusion, we can now create AI art generation images using our own trained images. in this model, we can generate images of women wearing dress clothes called in Arabic (dishdasha) or (دشداشة ) it is interior home ,wearing clothes for Arabic women ones as popular images, or just about anything you can think of Test the concept via A1111 Colab fast-Colab-A1111 Sample pictures of this concept with simple and easy prompts: any prompt and add word dishdasha style : prompt: ![0](https://huggingface.co/Falah/dishdasha/resolve/main/00022-1537495830.png) ![1](https://huggingface.co/Falah/dishdasha/resolve/main/00023-1537495831.png) ![2](https://huggingface.co/Falah/dishdasha/resolve/main/00025-1537495833.png) ![3](https://huggingface.co/Falah/dishdasha/resolve/main/00027-1537495835.png) ![4](https://huggingface.co/Falah/dishdasha/resolve/main/00028-3808936666.png) ![5](https://huggingface.co/Falah/dishdasha/resolve/main/00031-3808936669.png) ![6](https://huggingface.co/Falah/dishdasha/resolve/main/00034-1537495830.png)
Horken/q-FrozenLake-v1-4x4-Slippery
Horken
2023-02-23T11:03:32Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T11:03:30Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-Slippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Horken/q-FrozenLake-v1-4x4-Slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Umesh/police-lethal-force-classifier
Umesh
2023-02-23T10:53:45Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-23T08:04:43Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - recall - precision model-index: - name: police-lethal-force-classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # police-lethal-force-classifier This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0087 - Accuracy: 0.9980 - F1-score: 0.9964 - Recall: 0.9965 - Precision: 0.9963 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1-score | Recall | Precision | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|:------:|:---------:| | 0.0138 | 1.0 | 12050 | 0.0132 | 0.9973 | 0.9951 | 0.9953 | 0.9949 | | 0.0091 | 2.0 | 24100 | 0.0087 | 0.9980 | 0.9964 | 0.9965 | 0.9963 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
tasinhoque/roberta-large-go-emotions-3
tasinhoque
2023-02-23T10:52:49Z
14
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:go_emotions", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-23T07:56:41Z
--- license: mit tags: - generated_from_trainer datasets: - go_emotions metrics: - f1 model-index: - name: roberta-large-go-emotions-2 results: - task: name: Text Classification type: text-classification dataset: name: go_emotions type: multilabel_classification config: simplified split: test args: simplified metrics: - name: F1 type: f1 value: 0.5180 - task: name: Text Classification type: text-classification dataset: name: go_emotions type: multilabel_classification config: simplified split: validation args: simplified metrics: - name: F1 type: f1 value: 0.5203 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-go-emotions-2 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the [go_emotions](https://huggingface.co/datasets/go_emotions) dataset. It achieves the following results on the test set (with a threshold of 0.15): - Accuracy: 0.44020 - Precision: 0.5041 - Recall: 0.5461 - F1: 0.5180 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 9 ### Training results | Training Loss | Epoch | Validation Loss | Accuracy | Precision | Recall | F1 | | ------------- | ----- | --------------- | -------- | --------- | ------ | ------ | | No log | 1.0 | 0.0889 | 0.4043 | 0.4807 | 0.4568 | 0.4446 | | 0.1062 | 2.0 | 0.0828 | 0.4113 | 0.4608 | 0.5363 | 0.4868 | | 0.1062 | 3.0 | 0.0813 | 0.4201 | 0.5198 | 0.5612 | 0.5227 | | No log | 4.0 | 0.0862 | 0.4292 | 0.5012 | 0.5558 | 0.5208 | | 0.0597 | 5.0 | 0.0924 | 0.4329 | 0.5164 | 0.5362 | 0.5151 | | 0.0597 | 6.0 | 0.0956 | 0.4445 | 0.5241 | 0.5328 | 0.5161 | | No log | 7.0 | 0.0962 | 0.4648 | 0.5138 | 0.5277 | 0.5151 | | 0.0458 | 8.0 | 0.0962 | 0.4462 | 0.5257 | 0.5270 | 0.5203 | | 0.0458 | 9.0 | 0.1029 | 0.4432 | 0.5076 | 0.5249 | 0.5111 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0 - Datasets 2.1.0 - Tokenizers 0.12.1
kylzer/asr_skripsi_colab_common_voice
kylzer
2023-02-23T10:50:20Z
14
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-19T06:00:59Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice metrics: - wer model-index: - name: asr_skripsi_colab_common_voice results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice type: common_voice config: id split: test args: id metrics: - name: Wer type: wer value: 0.36856617647058826 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # asr_skripsi_colab_common_voice This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3839 - Wer: 0.3686 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.4354 | 3.64 | 400 | 1.9595 | 1.0 | | 0.7227 | 7.27 | 800 | 0.4532 | 0.5039 | | 0.3293 | 10.91 | 1200 | 0.4277 | 0.4425 | | 0.2298 | 14.55 | 1600 | 0.3947 | 0.4182 | | 0.1789 | 18.18 | 2000 | 0.3960 | 0.4009 | | 0.1496 | 21.82 | 2400 | 0.3793 | 0.3848 | | 0.122 | 25.45 | 2800 | 0.3794 | 0.3795 | | 0.1056 | 29.09 | 3200 | 0.3839 | 0.3686 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
JYC333/PPO-LunarLander-unit8
JYC333
2023-02-23T10:35:51Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T08:46:16Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 118.93 +/- 110.57 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters
thanhuitha/dreembooth_ckpt_lora
thanhuitha
2023-02-23T10:29:59Z
3
1
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-02-23T10:22:18Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - thanhuitha/dreembooth_ckpt_lora These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
moodlep/rl_course_vizdoom_health_gathering_supreme
moodlep
2023-02-23T10:09:04Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T10:08:53Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 12.12 +/- 5.77 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r moodlep/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
happycoding/sac-PandaReachDense-v2
happycoding
2023-02-23T10:07:15Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T07:09:16Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: SAC results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.29 +/- 0.08 name: mean_reward verified: false --- # **SAC** Agent playing **PandaReachDense-v2** This is a trained model of a **SAC** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
research-backup/flan-t5-xl-analogy-nell
research-backup
2023-02-23T09:48:16Z
3
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-23T09:33:43Z
--- widget: - text: "generate analogy: mammal is to whale" example_title: "Analogy Example 1 (semantic relation)" - text: "generate analogy: wedding is to marriage" example_title: "Analogy Example 1 (semantic relation, metaphor)" - text: "generate analogy: London is to U.K." example_title: "Analogy Example 2 (entity)" - text: "generate analogy: actual is to actually" example_title: "Analogy Example 3 (morphological)" --- # relbert/flan-t5-xl-analogy-nell This is [google/flan-t5-xl](https://huggingface.co/google/flan-t5-xl) fine-tuned on [relbert/nell_relational_similarity](https://huggingface.co/datasets/relbert/nell_relational_similarity) for analogy generation, which is to generate a word pair (eg. `bird is to crow`) given a query (eg. `mammal is to whale`) so that the query and the generated word pair form an analogy statement. ### Usage ```python from transformers import pipeline pipe = pipeline('text2text-generation', model="relbert/flan-t5-xl-analogy-nell") output = pipe("generate analogy: mammal is to whale") print(output) >>> [{'generated_text': 'bird is to crow'}] ```
BeardedJohn/bert-finetuned-ner-per-v8
BeardedJohn
2023-02-23T09:46:44Z
4
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-23T09:46:26Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: bert-finetuned-ner-per-v8 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner-per-v8 This model is a fine-tuned version of [BeardedJohn/bert-finetuned-ner-ubb-conll-endava-only-misc-v2](https://huggingface.co/BeardedJohn/bert-finetuned-ner-ubb-conll-endava-only-misc-v2) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 846, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results ### Framework versions - Transformers 4.26.1 - TensorFlow 2.11.0 - Datasets 2.10.0 - Tokenizers 0.13.2
Tritkoman/EnglishtoOldEnglishV1
Tritkoman
2023-02-23T09:30:22Z
3
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "autotrain", "translation", "en", "es", "dataset:Tritkoman/autotrain-data-oldenglish", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-02-23T09:25:55Z
--- tags: - autotrain - translation language: - en - es datasets: - Tritkoman/autotrain-data-oldenglish co2_eq_emissions: emissions: 7.273007332989732 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 3679898272 - CO2 Emissions (in grams): 7.2730 ## Validation Metrics - Loss: 4.128 - SacreBLEU: 0.545 - Gen len: 25.544
besa2001/rl_course_vizdoom_health_gathering_supreme
besa2001
2023-02-23T09:30:15Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T09:30:04Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 9.79 +/- 4.30 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r besa2001/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
michal512/poca-SoccerTwos
michal512
2023-02-23T09:27:39Z
327
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-23T09:25:50Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: michal512/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
OCRLAB/cn-blip-base
OCRLAB
2023-02-23T09:23:29Z
0
0
null
[ "zh", "license:bsd-3-clause", "region:us" ]
null
2023-02-23T09:15:30Z
--- license: bsd-3-clause language: - zh ---
Hawk91/Pyramids
Hawk91
2023-02-23T09:09:42Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-02-23T09:09:36Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: Hawk91/Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
toinsson/poca-SoccerTwos-Base
toinsson
2023-02-23T09:07:15Z
7
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-23T09:07:06Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: toinsson/poca-SoccerTwos-Base 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
jacksee/ppo-LunarLander-v2
jacksee
2023-02-23T08:59:27Z
3
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T08:58:53Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -69.89 +/- 95.05 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Sjdan/mst_1
Sjdan
2023-02-23T08:49:24Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-02-23T01:16:43Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: mst_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mst_1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0038 - Wer: 0.9915 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 11.0362 | 1.15 | 500 | 2.7219 | 1.0 | | 1.9536 | 2.29 | 1000 | 0.5060 | 2.0274 | | 0.2347 | 3.44 | 1500 | 0.0268 | 1.0462 | | 0.0633 | 4.59 | 2000 | 0.0078 | 1.0 | | 0.0359 | 5.73 | 2500 | 0.0047 | 0.9949 | | 0.014 | 6.88 | 3000 | 0.0038 | 0.9915 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.13.1+cu116 - Datasets 1.18.3 - Tokenizers 0.13.2
Inesence/donut-base-lvtest
Inesence
2023-02-23T08:38:08Z
1
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-02-23T08:27:19Z
--- license: mit tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-base-lvtest results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-lvtest This model is a fine-tuned version of [naver-clova-ix/donut-base-finetuned-cord-v2](https://huggingface.co/naver-clova-ix/donut-base-finetuned-cord-v2) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
smko77/dqn-SpaceInvadersNoFrameskip-v4
smko77
2023-02-23T08:37:38Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T08:36:54Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 501.00 +/- 177.03 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga smko77 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga smko77 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga smko77 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
eugene-d/a2c-PandaReachDense-v2
eugene-d
2023-02-23T08:21:56Z
2
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-21T20:17:22Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.54 +/- 0.79 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Hawk91/SnowballTarget-ppo
Hawk91
2023-02-23T08:14:26Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-02-23T08:14:19Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: Hawk91/SnowballTarget-ppo 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
sgoodfriend/ppo-procgen-bossfight-easy
sgoodfriend
2023-02-23T07:49:40Z
0
0
rl-algo-impls
[ "rl-algo-impls", "procgen-bossfight-easy", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-23T07:49:35Z
--- library_name: rl-algo-impls tags: - procgen-bossfight-easy - ppo - deep-reinforcement-learning - reinforcement-learning model-index: - name: ppo results: - metrics: - type: mean_reward value: 9.91 +/- 5.37 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: procgen-bossfight-easy type: procgen-bossfight-easy --- # **PPO** Agent playing **procgen-bossfight-easy** This is a trained model of a **PPO** agent playing **procgen-bossfight-easy** using the [/sgoodfriend/rl-algo-impls](https://github.com/sgoodfriend/rl-algo-impls) repo. All models trained at this commit can be found at https://api.wandb.ai/links/sgoodfriend/f3w1hwyb. ## Training Results This model was trained from 3 trainings of **PPO** agents using different initial seeds. These agents were trained by checking out [21ee1ab](https://github.com/sgoodfriend/rl-algo-impls/tree/21ee1ab96a186676e5ed2f8c3185902f7c7bca7a). The best and last models were kept from each training. This submission has loaded the best models from each training, reevaluates them, and selects the best model from these latest evaluations (mean - std). | algo | env | seed | reward_mean | reward_std | eval_episodes | best | wandb_url | |:-------|:----------|-------:|--------------:|-------------:|----------------:|:-------|:-----------------------------------------------------------------------------| | ppo | bossfight | 1 | 8.03125 | 6.37125 | 64 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/ok9cp59v) | | ppo | bossfight | 2 | 9.90625 | 5.36982 | 64 | * | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/goavynh9) | | ppo | bossfight | 3 | 8.98438 | 5.94635 | 64 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/b5yxrur0) | ### Prerequisites: Weights & Biases (WandB) Training and benchmarking assumes you have a Weights & Biases project to upload runs to. By default training goes to a rl-algo-impls project while benchmarks go to rl-algo-impls-benchmarks. During training and benchmarking runs, videos of the best models and the model weights are uploaded to WandB. Before doing anything below, you'll need to create a wandb account and run `wandb login`. ## Usage /sgoodfriend/rl-algo-impls: https://github.com/sgoodfriend/rl-algo-impls Note: While the model state dictionary and hyperaparameters are saved, the latest implementation could be sufficiently different to not be able to reproduce similar results. You might need to checkout the commit the agent was trained on: [21ee1ab](https://github.com/sgoodfriend/rl-algo-impls/tree/21ee1ab96a186676e5ed2f8c3185902f7c7bca7a). ``` # Downloads the model, sets hyperparameters, and runs agent for 3 episodes python enjoy.py --wandb-run-path=sgoodfriend/rl-algo-impls-benchmarks/goavynh9 ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_enjoy.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_enjoy.ipynb) notebook. ## Training If you want the highest chance to reproduce these results, you'll want to checkout the commit the agent was trained on: [21ee1ab](https://github.com/sgoodfriend/rl-algo-impls/tree/21ee1ab96a186676e5ed2f8c3185902f7c7bca7a). While training is deterministic, different hardware will give different results. ``` python train.py --algo ppo --env procgen-bossfight-easy --seed 2 ``` Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the [colab_train.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_train.ipynb) notebook. ## Benchmarking (with Lambda Labs instance) This and other models from https://api.wandb.ai/links/sgoodfriend/f3w1hwyb were generated by running a script on a Lambda Labs instance. In a Lambda Labs instance terminal: ``` git clone [email protected]:sgoodfriend/rl-algo-impls.git cd rl-algo-impls bash ./lambda_labs/setup.sh wandb login bash ./lambda_labs/benchmark.sh ``` ### Alternative: Google Colab Pro+ As an alternative, [colab_benchmark.ipynb](https://github.com/sgoodfriend/rl-algo-impls/tree/main/benchmarks#:~:text=colab_benchmark.ipynb), can be used. However, this requires a Google Colab Pro+ subscription and running across 4 separate instances because otherwise running all jobs will exceed the 24-hour limit. ## Hyperparameters This isn't exactly the format of hyperparams in hyperparams/ppo.yml, but instead the Wandb Run Config. However, it's very close and has some additional data: ``` algo: ppo algo_hyperparams: batch_size: 2048 clip_range: 0.2 clip_range_vf: 0.2 ent_coef: 0.01 gae_lambda: 0.95 gamma: 0.999 learning_rate: 0.0005 n_epochs: 3 n_steps: 256 vf_coef: 0.5 env: procgen-bossfight-easy env_hyperparams: is_procgen: true make_kwargs: distribution_mode: easy n_envs: 64 normalize: true env_id: bossfight eval_params: deterministic: false ignore_first_episode: true n_timesteps: 25000000 policy_hyperparams: activation_fn: relu cnn_feature_dim: 256 cnn_layers_init_orthogonal: false cnn_style: impala init_layers_orthogonal: true seed: 2 use_deterministic_algorithms: true wandb_entity: null wandb_project_name: rl-algo-impls-benchmarks wandb_tags: - benchmark_21ee1ab - host_138-2-238-100 ```
trinket2023/BERTModelQA2
trinket2023
2023-02-23T07:43:21Z
16
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-02-23T06:24:09Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: BERTModelQA2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERTModelQA2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 2.1894 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7749 | 1.0 | 563 | 1.6499 | | 1.3956 | 2.0 | 1126 | 1.4280 | | 1.0094 | 3.0 | 1689 | 1.4128 | | 0.7522 | 4.0 | 2252 | 1.5635 | | 0.5826 | 5.0 | 2815 | 1.6302 | | 0.4356 | 6.0 | 3378 | 1.7976 | | 0.3399 | 7.0 | 3941 | 1.9001 | | 0.2234 | 8.0 | 4504 | 2.0518 | | 0.1806 | 9.0 | 5067 | 2.1244 | | 0.1543 | 10.0 | 5630 | 2.1894 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
LowRAs/rpgLoRA
LowRAs
2023-02-23T07:27:14Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-23T07:15:52Z
--- license: creativeml-openrail-m ---
harisumant/ppo-Pyramids
harisumant
2023-02-23T07:14:17Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-02-23T07:14:11Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: harisumant/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
zambezivoice/xls-r-300m-toi-nst
zambezivoice
2023-02-23T07:12:17Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-02-23T03:36:19Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: xls-r-300m-toi-nst results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-300m-toi-nst This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9700 - Wer: 0.8674 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.1632 | 0.3 | 500 | 0.4058 | 0.6069 | | 0.7323 | 0.59 | 1000 | 0.2550 | 0.4421 | | 0.6532 | 0.89 | 1500 | 0.2360 | 0.3812 | | 0.592 | 1.18 | 2000 | 0.2007 | 0.3412 | | 0.57 | 1.48 | 2500 | 0.1979 | 0.3382 | | 0.5558 | 1.77 | 3000 | 0.1853 | 0.2995 | | 0.5451 | 2.07 | 3500 | 0.1887 | 0.3151 | | 0.5451 | 2.36 | 4000 | 0.5467 | 0.5383 | | 1.3259 | 2.66 | 4500 | 0.9700 | 0.8674 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
LowRAs/nedLoRa
LowRAs
2023-02-23T07:10:28Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-23T04:32:12Z
--- license: creativeml-openrail-m ---
smartbotfactory/dqn-SpaceInvadersNoFrameskip-v4
smartbotfactory
2023-02-23T07:00:16Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-22T12:25:44Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 558.00 +/- 101.42 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga smartbotfactory -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga smartbotfactory -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga smartbotfactory ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
eichiuehara/distilroberta-base-finetuned-wikitext2
eichiuehara
2023-02-23T06:49:46Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-02-23T00:59:27Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-wikitext2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8359 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0852 | 1.0 | 2406 | 1.9225 | | 1.993 | 2.0 | 4812 | 1.8837 | | 1.9616 | 3.0 | 7218 | 1.8234 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
Anon1216/kdllora-v1.5
Anon1216
2023-02-23T06:49:27Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-23T06:44:47Z
--- license: creativeml-openrail-m --- This is korean doll likeness lora from civitai. I'm not the creator, credits go to https://civitai.com/user/Kbr
LowRAs/realisticvisionLoRa
LowRAs
2023-02-23T06:44:32Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-23T04:33:09Z
--- license: creativeml-openrail-m ---
Leo97/KcELECTRA-small-v2022-finetuned-apeach
Leo97
2023-02-23T06:29:14Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-23T02:58:33Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: KcELECTRA-small-v2022-finetuned-apeach results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # KcELECTRA-small-v2022-finetuned-apeach This model is a fine-tuned version of [beomi/KcELECTRA-small-v2022](https://huggingface.co/beomi/KcELECTRA-small-v2022) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5883 - Accuracy: 0.7247 - F1: 0.7109 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.6767 | 1.0 | 124 | 0.6518 | 0.6220 | 0.5731 | | 0.6006 | 2.0 | 248 | 0.5883 | 0.7247 | 0.7109 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
nandakishormpai/t5-small-github-repo-tag-generation
nandakishormpai
2023-02-23T06:27:17Z
38
5
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "documentation_tag", "tag_generation", "github", "github_tag", "tagging", "github_repo", "summarization", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2023-02-22T16:51:07Z
--- license: apache-2.0 tags: - generated_from_trainer - documentation_tag - tag_generation - github - github_tag - tagging - github_repo - summarization metrics: - rouge model-index: - name: t5-small-github-repo-tag-generation results: [] widget: - text: "susya plant disease detector ml powered app to assist farmers in crop disease detection and alerts product walkthrough download product apk here machine learning python notebook solutions system to detect the problem when it arises and warn the farmers disease detection using machine learning model enabled through android app which uses flask api solution to overcome the problem once it arises remedy is suggested for the disease detected by the app using ml model solution that will ensure that the problem will never occur in the future again pdf report is generated on the disease predicted along with user information pdf can be used as a document to be submitted in nearby krishibhavan thereby seeking help easily method that will reduce the impact of the dilemma to a significant level disease detected news can be sent to other users as a notification which contatins userplant and disease this will help other farmers take up precautions thereby reducing the impact of the dilemma to a significant level considering a region machine learning model multiclass image classifier built on pytorch framework using cnn architecture currently project detects 17 states of disease in 4 plants aiming kerala state namely cherry pepper potato and tomato framework pytorch architecture convolutional neural networks validation accuracy 777 how to train upload the python notebook to google colab and run each cell for training the model i have included a demo dataset to configure quickly you can use this kaggle dataset which is the original one with huge amount of pictures how it works the input image dataset is converted to tensor and is passed through a cnn model returning an output value corresponding to the plant disease input image tensor is passed through four convolutional layers and then flattened and inputted to fully connected layers api api is built using flask framework and hosted in render the api provides two functionalities they are plant disease detection accepts a post request with an image in the form of base64 string and returns plant disease and remedy notification accepts a post request with plant user and disease which is then pushed as a notification to other users to warn them regarding a probable outbreak of disease how to use api has been built on this classifier url user has to send a post request to the given api with base64 string of the image to be input python import requests url imgdata base64 string of image r requestsposturljson imageimgdata printrtextstrip outputpython diseaseseptoria leaf spotplanttomatoremedyremove infected leaves immediatelyfungonil and daconil app download product apk here to run app shell cd app flutter run to build app shell cd app flutter build apk features authentication using google oauth user profile page uses camera or device media to get an image of the crop preview the image and sends it to api for disease detection result page showing detected disease and remedy generates a pdf report to saveshare predicted disease details option to send the generated result as a notification warning to other users tech stack used python pytorch flask flutter firebase contributors nanda kishor m paiml model api ajay krishna k v flutter dev api hari krishnan uml model data collection antony s johnflutter dev" example_title: 'Github Cleaned Readme #1' language: - en pipeline_tag: summarization --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-github-repo-tag-generation Machine Learning model to generate Tags for Github Repositories based on their Documentation [README.md] . This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) fine-tuned on a collection of repositoreis from [Kaggle/vatsalparsaniya/github-repositories-analysis](https://www.kaggle.com/datasets/vatsalparsaniya/github-repositories-analysis). While usually formulated as a multi-label classification problem, this model deals with _tag generation_ as a text2text generation task (inspiration and reference: [fabiochiu/t5-base-tag-generation](https://huggingface.co/fabiochiu/t5-base-tag-generation)). <br><br> The Inference API here expects a cleaned readme text, the code for cleaning the readme is also given below. <br><br> Finetuning Notebook Reference: [Hugging face summarization notebook](https://github.com/huggingface/notebooks/blob/main/examples/summarization.ipynb). # How to use the model Input : Github Repo URL<br> Output : Tags Remarks: Ensure the repo has README.<b>md</b> ### Installations ```python pip install transformers nltk clean-text beautifulsoup4 ``` ### Code Imports ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import re import nltk nltk.download('punkt') from cleantext import clean from bs4 import BeautifulSoup from markdown import Markdown import requests from io import StringIO import string ``` Preprocessing ```python # Script to convert Markdown to plain text # Reference : Stackoverflow == https://stackoverflow.com/questions/761824/python-how-to-convert-markdown-formatted-text-to-text def unmark_element(element, stream=None): if stream is None: stream = StringIO() if element.text: stream.write(element.text) for sub in element: unmark_element(sub, stream) if element.tail: stream.write(element.tail) return stream.getvalue() # patching Markdown Markdown.output_formats["plain"] = unmark_element __md = Markdown(output_format="plain") __md.stripTopLevelTags = False def unmark(text): return __md.convert(text) def readme_extractor(github_repo_url): try: # Get repo HTML using BeautifulSoup html_content = requests.get(github['python', 'machine learning', 'ml', 'cnn']_repo_url).text soup = BeautifulSoup(html_content, "html.parser") # Get README File URL from Repository readme_url = "https://github.com/" + soup.find("a",{"title":"README.md"}).get("href") # Generate raw readme file URL # https://github.com/rasbt/python-machine-learning-book/blob/master/README.md --> https://raw.githubusercontent.com/rasbt/python-machine-learning-book/master/README.md readme_raw_url = readme_url.replace("/blob/","/") readme_raw_url = readme_raw_url.replace("github.com","raw.githubusercontent.com") https://github.com/Lightning-AI/lightning readme_html_content = requests.get(readme_raw_url ).text readme_soup = BeautifulSoup(readme_html_content, "html.parser") readme_text = readme_soup.get_text() documentation_text = unmark(readme_text) return documentation_text except: print("FAILED : ",github_repo_url ) return "README_NOT_MARKDOWN" def clean_readme(readme): text = clean(readme, no_emoji=True) lst = re.findall('http://\S+|https://\S+', text) for i in lst: text = text.replace(i, '') text = "".join([i for i in text if i not in string.punctuation]) text = text.lower() text = text.replace("\n"," ") return text ``` Postprocess Tags [Removing duplicates] ```python def post_process_tags(tag_string): final_tags = [] for tag in tag_string.split(","): if tag.strip() in final_tags or len(tag.strip()) <=1: continue final_tags.append(tag.strip()) return final_tags ``` Main Function ```python def github_tags_generate(github_repo_url): readme = readme_extractor(github_repo_url) readme = clean_readme(readme) inputs = tokenizer([readme], max_length=1536, truncation=True, return_tensors="pt") output = model.generate(**inputs, num_beams=8, do_sample=True, min_length=10, max_length=128) decoded_output = tokenizer.batch_decode(output, skip_special_tokens=True)[0] tags = post_process_tags(decoded_output) return tags github_tags_generate("https://github.com/Enter_Repo_URL") # github_tags_generate("https://github.com/nandakishormpai/Plant_Disease_Detector") # ['python', 'machine learning', 'ml', 'cnn'] ``` ## Dataset Preparation Over the 1000 articles from the dataset, only 870 had tags and the readme was longer than 50 characters. They were filtered out and using BeautifulSoup, README.md was scraped out. ## Intended uses & limitations The results might contain duplicate tags that must be handled in the postprocessing of results. postprocessing code also given. ## Results It achieves the following results on the evaluation set: - Loss: 1.8196 - Rouge1: 25.0142 - Rouge2: 8.1802 - Rougel: 22.77 - Rougelsum: 22.8017 - Gen Len: 19.0 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
SimpleCai/segformer-b0-scene-parse-150
SimpleCai
2023-02-23T06:12:19Z
2
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "generated_from_trainer", "dataset:scene_parse_150", "license:other", "endpoints_compatible", "region:us" ]
null
2023-02-23T06:11:37Z
--- license: other tags: - generated_from_trainer datasets: - scene_parse_150 model-index: - name: segformer-b0-scene-parse-150 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-scene-parse-150 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the scene_parse_150 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
kevinscaria/ate_tk-instruct-base-def-pos-restaurants
kevinscaria
2023-02-23T06:09:11Z
8
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "NLP", "dataset:Yaxin/SemEval2014Task4Raw", "arxiv:2302.08624", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-23T05:51:28Z
--- license: mit tags: - NLP datasets: - Yaxin/SemEval2014Task4Raw metrics: - f1 - precision - recall pipeline_tag: text2text-generation --- # ate_tk-instruct-base-def-pos-neg-neut-combined This model is finetuned for the Aspect Term Extraction (ATE) subtask. The finetuning was carried out by adding prompts of the form: - definition + 2 positive examples The prompt is prepended onto each input review. It is important to note that **this model output was finetuned on samples from the restaurants domains.** The code for the official implementation of the paper [**InstructABSA: Instruction Learning for Aspect Based Sentiment Analysis**](https://arxiv.org/abs/2302.08624) can be found [here](https://github.com/kevinscaria/InstructABSA). For the ATE subtask, this model is the current SOTA. ## Training data InstructABSA models are trained on the benchmark dataset for Aspect Based Sentiment Analysis tasks viz. SemEval 2014. This [dataset](https://alt.qcri.org/semeval2014/task4/index.php?id=data-and-tools) consists of reviews from laptops and restaurant domains and their corresponding aspect term and polarity labels. ### BibTeX entry and citation info If you use this model in your work, please cite the following paper: ```bibtex @inproceedings{Scaria2023InstructABSAIL, title={InstructABSA: Instruction Learning for Aspect Based Sentiment Analysis}, author={Kevin Scaria and Himanshu Gupta and Saurabh Arjun Sawant and Swaroop Mishra and Chitta Baral}, year={2023} } ```
Lenzrix/expmode7
Lenzrix
2023-02-23T06:08:47Z
0
0
null
[ "region:us" ]
null
2023-02-23T05:19:22Z
Hello ndimensional, I just wanted to take a moment to express my gratitude for the incredible 3D model you have created. Your work has inspired me, and I recently had the pleasure of using your model in one of my own projects. I was amazed by the level of detail and realism in your model, and it truly brought my work to life. Thank you for sharing your talents with the world and for providing such amazing resources for fellow 3D designers. I would like to give credit where credit is due, so I have included a link to your original model in my project. Once again, thank you so much for your amazing work! Best regards, Lenzrix. Link to original author: https://civitai.com/user/ndimensional This is just optional download for huggingface.
Airic/Kenshi
Airic
2023-02-23T06:03:22Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-23T05:55:04Z
--- license: creativeml-openrail-m ---
evincent18/distilbert-base-uncased-finetuned-imdb
evincent18
2023-02-23T06:00:56Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-02-23T05:52:06Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4898 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2