modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-06-29 06:27:49
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 502
values | tags
sequencelengths 1
4.05k
| pipeline_tag
stringclasses 54
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-06-29 06:23:06
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
carozum/Mistral-7B-Instruct-v0.3-standard | carozum | 2025-05-05T00:16:40Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-05T00:16:33Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Romain-XV/a2548a9c-1bce-4115-88d8-c403581b1bd3 | Romain-XV | 2025-05-05T00:15:59Z | 0 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"safetensors",
"llama",
"text-generation",
"generated_from_trainer",
"axolotl",
"dpo",
"trl",
"conversational",
"custom_code",
"arxiv:2305.18290",
"base_model:NousResearch/Yarn-Solar-10b-64k",
"base_model:finetune:NousResearch/Yarn-Solar-10b-64k",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-04T23:26:58Z | ---
base_model: NousResearch/Yarn-Solar-10b-64k
library_name: transformers
model_name: a2548a9c-1bce-4115-88d8-c403581b1bd3
tags:
- generated_from_trainer
- axolotl
- dpo
- trl
licence: license
---
# Model Card for a2548a9c-1bce-4115-88d8-c403581b1bd3
This model is a fine-tuned version of [NousResearch/Yarn-Solar-10b-64k](https://huggingface.co/NousResearch/Yarn-Solar-10b-64k).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="Romain-XV/a2548a9c-1bce-4115-88d8-c403581b1bd3", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/romain_fnc-xventures/Gradients-On-Demand/runs/aikv3o0t)
This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290).
### Framework versions
- TRL: 0.12.0.dev0
- Transformers: 4.46.0
- Pytorch: 2.5.0+cu124
- Datasets: 3.0.1
- Tokenizers: 0.20.1
## Citations
Cite DPO as:
```bibtex
@inproceedings{rafailov2023direct,
title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}},
author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn},
year = 2023,
booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023},
url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html},
editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
joboffer/452da189-5548-44cd-99a7-742ec2ab2b88 | joboffer | 2025-05-05T00:15:29Z | 0 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:01-ai/Yi-1.5-9B-Chat-16K",
"base_model:adapter:01-ai/Yi-1.5-9B-Chat-16K",
"license:apache-2.0",
"4-bit",
"bitsandbytes",
"region:us"
] | null | 2025-05-05T00:02:46Z | ---
library_name: peft
license: apache-2.0
base_model: 01-ai/Yi-1.5-9B-Chat-16K
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 452da189-5548-44cd-99a7-742ec2ab2b88
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: 01-ai/Yi-1.5-9B-Chat-16K
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- e18896165f133259_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/e18896165f133259_train_data.json
type:
field_input: tag_list
field_instruction: title
field_output: pseudo_caption
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
gradient_clipping: 0.5
group_by_length: false
hub_model_id: joboffer/452da189-5548-44cd-99a7-742ec2ab2b88
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-06
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 300
micro_batch_size: 8
mixed_precision: bf16
mlflow_experiment_name: /tmp/e18896165f133259_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 746a2230-4d70-43c5-9b49-3cbb01738510
wandb_project: s56-33
wandb_run: your_name
wandb_runid: 746a2230-4d70-43c5-9b49-3cbb01738510
warmup_steps: 15
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# 452da189-5548-44cd-99a7-742ec2ab2b88
This model is a fine-tuned version of [01-ai/Yi-1.5-9B-Chat-16K](https://huggingface.co/01-ai/Yi-1.5-9B-Chat-16K) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1791
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 15
- training_steps: 300
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.1175 | 0.0247 | 300 | 1.1791 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
eriksyuan/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-feathered_frisky_anteater | eriksyuan | 2025-05-05T00:14:47Z | 2 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am feathered frisky anteater",
"trl",
"conversational",
"arxiv:2402.03300",
"base_model:Gensyn/Qwen2.5-0.5B-Instruct",
"base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-23T15:33:16Z | ---
base_model: Gensyn/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-feathered_frisky_anteater
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am feathered frisky anteater
- trl
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-feathered_frisky_anteater
This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="eriksyuan/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-feathered_frisky_anteater", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.51.3
- Pytorch: 2.7.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
felixZzz/wlen6_61k-orz-ours-d1-len3000-0428T03_05_50-step_01488 | felixZzz | 2025-05-05T00:12:01Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-05T00:03:57Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
fffanx/Llama-3.2-1B-Instruct-GRPO-agent15_E11 | fffanx | 2025-05-05T00:08:34Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-05T00:08:01Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent15_E11
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent15_E11
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent15_E11", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
CodCodingCode/OpenBioLlama-diagnositicanV1 | CodCodingCode | 2025-05-05T00:07:30Z | 0 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"arxiv:1910.09700",
"base_model:aaditya/Llama3-OpenBioLLM-8B",
"base_model:adapter:aaditya/Llama3-OpenBioLLM-8B",
"region:us"
] | null | 2025-05-05T00:07:23Z | ---
base_model: aaditya/Llama3-OpenBioLLM-8B
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.15.2 |
fffanx/Llama-3.2-1B-Instruct-GRPO-agent11_E11 | fffanx | 2025-05-05T00:06:20Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-05T00:05:52Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent11_E11
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent11_E11
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent11_E11", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
fffanx/Llama-3.2-1B-Instruct-GRPO-agent9_E11 | fffanx | 2025-05-05T00:05:16Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-05T00:04:48Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent9_E11
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent9_E11
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent9_E11", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
fffanx/Llama-3.2-1B-Instruct-GRPO-agent8_E11 | fffanx | 2025-05-05T00:04:45Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-05T00:04:16Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent8_E11
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent8_E11
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent8_E11", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
fffanx/Llama-3.2-1B-Instruct-GRPO-agent4_E11 | fffanx | 2025-05-05T00:02:35Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-05T00:02:07Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent4_E11
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent4_E11
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent4_E11", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
fffanx/Llama-3.2-1B-Instruct-GRPO-agent1_E11 | fffanx | 2025-05-05T00:01:00Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-05T00:00:30Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent1_E11
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent1_E11
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent1_E11", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
fffanx/Llama-3.2-1B-Instruct-GRPO-agent0_E11 | fffanx | 2025-05-05T00:00:27Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T23:59:54Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent0_E11
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent0_E11
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent0_E11", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
CodCodingCode/Llama3-OpenBioLLM-8B-4bit-peft-adapter-test | CodCodingCode | 2025-05-04T23:59:37Z | 0 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"arxiv:1910.09700",
"base_model:aaditya/Llama3-OpenBioLLM-8B",
"base_model:adapter:aaditya/Llama3-OpenBioLLM-8B",
"region:us"
] | null | 2025-05-04T19:19:19Z | ---
base_model: aaditya/Llama3-OpenBioLLM-8B
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.15.2 |
NadirFartas/AraT5_V2_10epoch | NadirFartas | 2025-05-04T23:59:21Z | 0 | 0 | null | [
"safetensors",
"t5",
"license:apache-2.0",
"region:us"
] | null | 2025-05-04T23:45:51Z | ---
license: apache-2.0
---
|
filipesantoscv11/cc6e5952-df2e-45ac-8551-4bd76f42cbfe | filipesantoscv11 | 2025-05-04T23:58:54Z | 0 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:jingyeom/seal3.1.6n_7b",
"base_model:adapter:jingyeom/seal3.1.6n_7b",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-05-04T23:28:24Z | ---
library_name: peft
base_model: jingyeom/seal3.1.6n_7b
tags:
- axolotl
- generated_from_trainer
model-index:
- name: cc6e5952-df2e-45ac-8551-4bd76f42cbfe
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: jingyeom/seal3.1.6n_7b
bf16: true
chat_template: llama3
dataset_prepared_path: /workspace/axolotl
datasets:
- data_files:
- d5441eb887c4a86b_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/d5441eb887c4a86b_train_data.json
type:
field_input: emotion
field_instruction: user_status
field_output: user_persona
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
gradient_clipping: 0.5
group_by_length: false
hub_model_id: filipesantoscv11/cc6e5952-df2e-45ac-8551-4bd76f42cbfe
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-06
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 8
mixed_precision: bf16
mlflow_experiment_name: /tmp/d5441eb887c4a86b_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 76767355-9056-4f08-ac12-edf293bc4536
wandb_project: s56-6
wandb_run: your_name
wandb_runid: 76767355-9056-4f08-ac12-edf293bc4536
warmup_steps: 30
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# cc6e5952-df2e-45ac-8551-4bd76f42cbfe
This model is a fine-tuned version of [jingyeom/seal3.1.6n_7b](https://huggingface.co/jingyeom/seal3.1.6n_7b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7602
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.8948 | 0.3529 | 500 | 0.7602 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
mradermacher/Mellum-4b-sft-python-GGUF | mradermacher | 2025-05-04T23:57:51Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"code",
"en",
"dataset:bigcode/the-stack",
"dataset:bigcode/the-stack-v2",
"dataset:bigcode/starcoderdata",
"dataset:bigcode/commitpack",
"base_model:JetBrains/Mellum-4b-sft-python",
"base_model:quantized:JetBrains/Mellum-4b-sft-python",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T22:24:43Z | ---
base_model: JetBrains/Mellum-4b-sft-python
datasets:
- bigcode/the-stack
- bigcode/the-stack-v2
- bigcode/starcoderdata
- bigcode/commitpack
language:
- en
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
tags:
- code
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/JetBrains/Mellum-4b-sft-python
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Mellum-4b-sft-python-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Mellum-4b-sft-python-GGUF/resolve/main/Mellum-4b-sft-python.Q2_K.gguf) | Q2_K | 1.8 | |
| [GGUF](https://huggingface.co/mradermacher/Mellum-4b-sft-python-GGUF/resolve/main/Mellum-4b-sft-python.Q3_K_S.gguf) | Q3_K_S | 2.1 | |
| [GGUF](https://huggingface.co/mradermacher/Mellum-4b-sft-python-GGUF/resolve/main/Mellum-4b-sft-python.Q3_K_M.gguf) | Q3_K_M | 2.2 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Mellum-4b-sft-python-GGUF/resolve/main/Mellum-4b-sft-python.Q3_K_L.gguf) | Q3_K_L | 2.3 | |
| [GGUF](https://huggingface.co/mradermacher/Mellum-4b-sft-python-GGUF/resolve/main/Mellum-4b-sft-python.IQ4_XS.gguf) | IQ4_XS | 2.4 | |
| [GGUF](https://huggingface.co/mradermacher/Mellum-4b-sft-python-GGUF/resolve/main/Mellum-4b-sft-python.Q4_K_S.gguf) | Q4_K_S | 2.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Mellum-4b-sft-python-GGUF/resolve/main/Mellum-4b-sft-python.Q4_K_M.gguf) | Q4_K_M | 2.7 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Mellum-4b-sft-python-GGUF/resolve/main/Mellum-4b-sft-python.Q5_K_S.gguf) | Q5_K_S | 3.0 | |
| [GGUF](https://huggingface.co/mradermacher/Mellum-4b-sft-python-GGUF/resolve/main/Mellum-4b-sft-python.Q5_K_M.gguf) | Q5_K_M | 3.1 | |
| [GGUF](https://huggingface.co/mradermacher/Mellum-4b-sft-python-GGUF/resolve/main/Mellum-4b-sft-python.Q6_K.gguf) | Q6_K | 3.6 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Mellum-4b-sft-python-GGUF/resolve/main/Mellum-4b-sft-python.Q8_0.gguf) | Q8_0 | 4.4 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Mellum-4b-sft-python-GGUF/resolve/main/Mellum-4b-sft-python.f16.gguf) | f16 | 8.1 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
mradermacher/Mellum-4b-base-GGUF | mradermacher | 2025-05-04T23:57:44Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"code",
"en",
"dataset:bigcode/the-stack",
"dataset:bigcode/the-stack-v2",
"dataset:bigcode/starcoderdata",
"dataset:bigcode/commitpack",
"base_model:JetBrains/Mellum-4b-base",
"base_model:quantized:JetBrains/Mellum-4b-base",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T22:24:43Z | ---
base_model: JetBrains/Mellum-4b-base
datasets:
- bigcode/the-stack
- bigcode/the-stack-v2
- bigcode/starcoderdata
- bigcode/commitpack
language:
- en
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
tags:
- code
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/JetBrains/Mellum-4b-base
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Mellum-4b-base-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Mellum-4b-base-GGUF/resolve/main/Mellum-4b-base.Q2_K.gguf) | Q2_K | 1.8 | |
| [GGUF](https://huggingface.co/mradermacher/Mellum-4b-base-GGUF/resolve/main/Mellum-4b-base.Q3_K_S.gguf) | Q3_K_S | 2.1 | |
| [GGUF](https://huggingface.co/mradermacher/Mellum-4b-base-GGUF/resolve/main/Mellum-4b-base.Q3_K_M.gguf) | Q3_K_M | 2.2 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Mellum-4b-base-GGUF/resolve/main/Mellum-4b-base.Q3_K_L.gguf) | Q3_K_L | 2.3 | |
| [GGUF](https://huggingface.co/mradermacher/Mellum-4b-base-GGUF/resolve/main/Mellum-4b-base.IQ4_XS.gguf) | IQ4_XS | 2.4 | |
| [GGUF](https://huggingface.co/mradermacher/Mellum-4b-base-GGUF/resolve/main/Mellum-4b-base.Q4_K_S.gguf) | Q4_K_S | 2.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Mellum-4b-base-GGUF/resolve/main/Mellum-4b-base.Q4_K_M.gguf) | Q4_K_M | 2.7 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Mellum-4b-base-GGUF/resolve/main/Mellum-4b-base.Q5_K_S.gguf) | Q5_K_S | 3.0 | |
| [GGUF](https://huggingface.co/mradermacher/Mellum-4b-base-GGUF/resolve/main/Mellum-4b-base.Q5_K_M.gguf) | Q5_K_M | 3.1 | |
| [GGUF](https://huggingface.co/mradermacher/Mellum-4b-base-GGUF/resolve/main/Mellum-4b-base.Q6_K.gguf) | Q6_K | 3.6 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Mellum-4b-base-GGUF/resolve/main/Mellum-4b-base.Q8_0.gguf) | Q8_0 | 4.4 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Mellum-4b-base-GGUF/resolve/main/Mellum-4b-base.f16.gguf) | f16 | 8.1 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
YOYO-AI/EVA-QwQ-32B | YOYO-AI | 2025-05-04T23:57:32Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"mergekit",
"merge",
"conversational",
"base_model:EVA-UNIT-01/EVA-Qwen2.5-32B-v0.2",
"base_model:merge:EVA-UNIT-01/EVA-Qwen2.5-32B-v0.2",
"base_model:Qwen/QwQ-32B",
"base_model:merge:Qwen/QwQ-32B",
"base_model:Qwen/Qwen2.5-32B",
"base_model:merge:Qwen/Qwen2.5-32B",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-04T23:34:30Z | ---
base_model:
- EVA-UNIT-01/EVA-Qwen2.5-32B-v0.2
- Qwen/Qwen2.5-32B
- Qwen/QwQ-32B
library_name: transformers
tags:
- mergekit
- merge
---
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [Karcher Mean](https://en.wikipedia.org/wiki/Karcher_mean) merge method using [Qwen/Qwen2.5-32B](https://huggingface.co/Qwen/Qwen2.5-32B) as a base.
### Models Merged
The following models were included in the merge:
* [EVA-UNIT-01/EVA-Qwen2.5-32B-v0.2](https://huggingface.co/EVA-UNIT-01/EVA-Qwen2.5-32B-v0.2)
* [Qwen/QwQ-32B](https://huggingface.co/Qwen/QwQ-32B)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: Qwen/QwQ-32B
- model: EVA-UNIT-01/EVA-Qwen2.5-32B-v0.2
merge_method: karcher
base_model: Qwen/Qwen2.5-32B
parameters:
max_iter: 1000
normalize: true
int8_mask: true
tokenizer_source: base
dtype: float16
```
|
ez-landau/SFT-SW-Llama-3.1-8B-Instruct-SW_ALL | ez-landau | 2025-05-04T23:56:03Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"generated_from_trainer",
"trl",
"sft",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-04T22:57:28Z | ---
library_name: transformers
model_name: SFT-SW-Llama-3.1-8B-Instruct-SW_ALL
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for SFT-SW-Llama-3.1-8B-Instruct-SW_ALL
This model is a fine-tuned version of [None](https://huggingface.co/None).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="ez-landau/SFT-SW-Llama-3.1-8B-Instruct-SW_ALL", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/RADFAN/SFT-SW/runs/iiksa928)
This model was trained with SFT.
### Framework versions
- TRL: 0.17.0
- Transformers: 4.51.3
- Pytorch: 2.6.0
- Datasets: 3.1.0
- Tokenizers: 0.21.0
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
felixZzz/wlen6_61k-orz-ours-d1-len3000-0428T03_05_50-step_01360 | felixZzz | 2025-05-04T23:54:27Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-04T23:42:00Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Alihmzh29/Ml | Alihmzh29 | 2025-05-04T23:54:19Z | 0 | 0 | null | [
"license:apple-amlr",
"region:us"
] | null | 2025-05-04T23:54:19Z | ---
license: apple-amlr
---
|
HenokLLM/ai-note-summerizer-2025-05-04_22.02.18 | HenokLLM | 2025-05-04T23:52:18Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"conversational",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-04T23:48:06Z | ---
base_model: unsloth/meta-llama-3.1-8b-instruct-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** HenokLLM
- **License:** apache-2.0
- **Finetuned from model :** unsloth/meta-llama-3.1-8b-instruct-unsloth-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
dzanbek/ba108559-9492-45f6-bfc9-8c9f648e03c9 | dzanbek | 2025-05-04T23:51:25Z | 0 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:jingyeom/seal3.1.6n_7b",
"base_model:adapter:jingyeom/seal3.1.6n_7b",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-05-04T23:27:21Z | ---
library_name: peft
base_model: jingyeom/seal3.1.6n_7b
tags:
- axolotl
- generated_from_trainer
model-index:
- name: ba108559-9492-45f6-bfc9-8c9f648e03c9
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
absolute_data_files: false
adapter: lora
base_model: jingyeom/seal3.1.6n_7b
bf16: true
chat_template: llama3
dataset_prepared_path: /workspace/axolotl
datasets:
- data_files:
- d5441eb887c4a86b_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/d5441eb887c4a86b_train_data.json
type:
field_input: emotion
field_instruction: user_status
field_output: user_persona
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
gradient_clipping: 0.5
group_by_length: false
hub_model_id: dzanbek/ba108559-9492-45f6-bfc9-8c9f648e03c9
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-06
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 400
micro_batch_size: 8
mixed_precision: bf16
mlflow_experiment_name: /tmp/d5441eb887c4a86b_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 76767355-9056-4f08-ac12-edf293bc4536
wandb_project: s56-2
wandb_run: your_name
wandb_runid: 76767355-9056-4f08-ac12-edf293bc4536
warmup_steps: 20
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# ba108559-9492-45f6-bfc9-8c9f648e03c9
This model is a fine-tuned version of [jingyeom/seal3.1.6n_7b](https://huggingface.co/jingyeom/seal3.1.6n_7b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8759
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- training_steps: 400
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.9194 | 0.2823 | 400 | 0.8759 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
Kieran2828/Qwen3-14B-Q4_K_M-GGUF | Kieran2828 | 2025-05-04T23:51:15Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"base_model:Qwen/Qwen3-14B",
"base_model:quantized:Qwen/Qwen3-14B",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2025-05-04T23:50:37Z | ---
base_model: Qwen/Qwen3-14B
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen3-14B/blob/main/LICENSE
pipeline_tag: text-generation
tags:
- llama-cpp
- gguf-my-repo
---
# Kieran2828/Qwen3-14B-Q4_K_M-GGUF
This model was converted to GGUF format from [`Qwen/Qwen3-14B`](https://huggingface.co/Qwen/Qwen3-14B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Qwen/Qwen3-14B) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Kieran2828/Qwen3-14B-Q4_K_M-GGUF --hf-file qwen3-14b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Kieran2828/Qwen3-14B-Q4_K_M-GGUF --hf-file qwen3-14b-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Kieran2828/Qwen3-14B-Q4_K_M-GGUF --hf-file qwen3-14b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Kieran2828/Qwen3-14B-Q4_K_M-GGUF --hf-file qwen3-14b-q4_k_m.gguf -c 2048
```
|
ClaudioItaly/gemma-2-2b-it-peft-lora-merged-F16-GGUF | ClaudioItaly | 2025-05-04T23:51:14Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"llama-cpp",
"gguf-my-lora",
"base_model:NanoMatriX/gemma-2-2b-it-peft-lora-merged",
"base_model:quantized:NanoMatriX/gemma-2-2b-it-peft-lora-merged",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T23:51:10Z | ---
library_name: transformers
tags:
- llama-cpp
- gguf-my-lora
base_model: NanoMatriX/gemma-2-2b-it-peft-lora-merged
---
# ClaudioItaly/gemma-2-2b-it-peft-lora-merged-F16-GGUF
This LoRA adapter was converted to GGUF format from [`NanoMatriX/gemma-2-2b-it-peft-lora-merged`](https://huggingface.co/NanoMatriX/gemma-2-2b-it-peft-lora-merged) via the ggml.ai's [GGUF-my-lora](https://huggingface.co/spaces/ggml-org/gguf-my-lora) space.
Refer to the [original adapter repository](https://huggingface.co/NanoMatriX/gemma-2-2b-it-peft-lora-merged) for more details.
## Use with llama.cpp
```bash
# with cli
llama-cli -m base_model.gguf --lora gemma-2-2b-it-peft-lora-merged-f16.gguf (...other args)
# with server
llama-server -m base_model.gguf --lora gemma-2-2b-it-peft-lora-merged-f16.gguf (...other args)
```
To know more about LoRA usage with llama.cpp server, refer to the [llama.cpp server documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/server/README.md).
|
fffanx/Llama-3.2-1B-Instruct-GRPO-agent17_E10 | fffanx | 2025-05-04T23:49:47Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T23:49:20Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent17_E10
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent17_E10
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent17_E10", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
fffanx/Llama-3.2-1B-Instruct-GRPO-agent13_E10 | fffanx | 2025-05-04T23:47:44Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T23:47:16Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent13_E10
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent13_E10
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent13_E10", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
fffanx/Llama-3.2-1B-Instruct-GRPO-agent8_E10 | fffanx | 2025-05-04T23:45:06Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T23:44:38Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent8_E10
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent8_E10
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent8_E10", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
dimasik1987/fca84cde-5cad-4622-bd9c-a71f2c192077 | dimasik1987 | 2025-05-04T23:45:03Z | 0 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:jingyeom/seal3.1.6n_7b",
"base_model:adapter:jingyeom/seal3.1.6n_7b",
"4-bit",
"bitsandbytes",
"region:us"
] | null | 2025-05-04T23:27:50Z | ---
library_name: peft
base_model: jingyeom/seal3.1.6n_7b
tags:
- axolotl
- generated_from_trainer
model-index:
- name: fca84cde-5cad-4622-bd9c-a71f2c192077
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
absolute_data_files: false
adapter: lora
base_model: jingyeom/seal3.1.6n_7b
bf16: true
chat_template: llama3
dataset_prepared_path: /workspace/axolotl
datasets:
- data_files:
- d5441eb887c4a86b_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/d5441eb887c4a86b_train_data.json
type:
field_input: emotion
field_instruction: user_status
field_output: user_persona
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
gradient_clipping: 0.55
group_by_length: false
hub_model_id: dimasik1987/fca84cde-5cad-4622-bd9c-a71f2c192077
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 1.0e-06
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 350
micro_batch_size: 10
mixed_precision: bf16
mlflow_experiment_name: /tmp/d5441eb887c4a86b_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 2048
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 76767355-9056-4f08-ac12-edf293bc4536
wandb_project: s56-7
wandb_run: your_name
wandb_runid: 76767355-9056-4f08-ac12-edf293bc4536
warmup_steps: 15
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# fca84cde-5cad-4622-bd9c-a71f2c192077
This model is a fine-tuned version of [jingyeom/seal3.1.6n_7b](https://huggingface.co/jingyeom/seal3.1.6n_7b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3897
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 15
- training_steps: 350
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.3781 | 0.3086 | 350 | 1.3897 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
fffanx/Llama-3.2-1B-Instruct-GRPO-agent7_E10 | fffanx | 2025-05-04T23:44:35Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T23:44:06Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent7_E10
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent7_E10
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent7_E10", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
mlfoundations-dev/d1_math_all_0.3k | mlfoundations-dev | 2025-05-04T23:44:04Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"llama-factory",
"full",
"generated_from_trainer",
"conversational",
"base_model:Qwen/Qwen2.5-7B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-7B-Instruct",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-04T22:07:11Z | ---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2.5-7B-Instruct
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: d1_math_all_0.3k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# d1_math_all_0.3k
This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the mlfoundations-dev/d1_math_all_0.3k dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 13.0
### Training results
### Framework versions
- Transformers 4.46.1
- Pytorch 2.6.0+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
|
fffanx/Llama-3.2-1B-Instruct-GRPO-agent6_E10 | fffanx | 2025-05-04T23:44:03Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T23:43:35Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent6_E10
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent6_E10
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent6_E10", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
Flo0620/Qwen2_5_7B_r128_a256_d0_1 | Flo0620 | 2025-05-04T23:43:44Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"generated_from_trainer",
"trl",
"sft",
"base_model:Qwen/Qwen2.5-VL-7B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-VL-7B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-04-24T12:57:12Z | ---
base_model: Qwen/Qwen2.5-VL-7B-Instruct
library_name: transformers
model_name: Qwen2_5_7B_r128_a256_d0_1
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for Qwen2_5_7B_r128_a256_d0_1
This model is a fine-tuned version of [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="Flo0620/Qwen2_5_7B_r128_a256_d0_1", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.15.2
- Transformers: 4.52.0.dev0
- Pytorch: 2.6.0+cu124
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
fffanx/Llama-3.2-1B-Instruct-GRPO-agent5_E10 | fffanx | 2025-05-04T23:43:32Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T23:43:03Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent5_E10
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent5_E10
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent5_E10", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
fffanx/Llama-3.2-1B-Instruct-GRPO-agent19_E9 | fffanx | 2025-05-04T23:33:58Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T23:33:30Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent19_E9
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent19_E9
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent19_E9", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
fffanx/Llama-3.2-1B-Instruct-GRPO-agent16_E9 | fffanx | 2025-05-04T23:32:25Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T23:31:52Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent16_E9
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent16_E9
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent16_E9", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
JunseongLEEE/Llama-3.2-1B-unsloth-bnb-4bit-ko-wiki | JunseongLEEE | 2025-05-04T23:32:25Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/Llama-3.2-1B-unsloth-bnb-4bit",
"base_model:finetune:unsloth/Llama-3.2-1B-unsloth-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T23:30:28Z | ---
base_model: unsloth/Llama-3.2-1B-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** JunseongLEEE
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Llama-3.2-1B-unsloth-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
fffanx/Llama-3.2-1B-Instruct-GRPO-agent9_E9 | fffanx | 2025-05-04T23:28:35Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T23:28:06Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent9_E9
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent9_E9
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent9_E9", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
mlfoundations-dev/d1_math_fasttext_1k | mlfoundations-dev | 2025-05-04T23:27:12Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"llama-factory",
"full",
"generated_from_trainer",
"conversational",
"base_model:Qwen/Qwen2.5-7B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-7B-Instruct",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-04T20:58:44Z | ---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2.5-7B-Instruct
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: d1_math_fasttext_1k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# d1_math_fasttext_1k
This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the mlfoundations-dev/d1_math_fasttext_1k dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 24
- total_train_batch_size: 96
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 7.0
### Training results
### Framework versions
- Transformers 4.46.1
- Pytorch 2.6.0+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
|
DevQuasar/huihui-ai.Qwen3-4B-abliterated-GGUF | DevQuasar | 2025-05-04T23:27:02Z | 0 | 0 | null | [
"gguf",
"text-generation",
"base_model:huihui-ai/Qwen3-4B-abliterated",
"base_model:quantized:huihui-ai/Qwen3-4B-abliterated",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-04T22:55:17Z | ---
base_model:
- huihui-ai/Qwen3-4B-abliterated
pipeline_tag: text-generation
---
[<img src="https://raw.githubusercontent.com/csabakecskemeti/devquasar/main/dq_logo_black-transparent.png" width="200"/>](https://devquasar.com)
Quantized version of: [huihui-ai/Qwen3-4B-abliterated](https://huggingface.co/huihui-ai/Qwen3-4B-abliterated)
'Make knowledge free for everyone'
<p align="center">
Made with <br>
<a href="https://www.civo.com/" target="_blank">
<img src="https://www.civo.com/assets/public/brand-assets/civo-logo-colour-60cc1622dedf346f7afde1fff760523f731b0aac106a5465af98ff4073114b74.svg" width="100"/>
</a>
</p>
<a href='https://ko-fi.com/L4L416YX7C' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi6.png?v=6' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a>
|
sameddallaa/clip-projector | sameddallaa | 2025-05-04T23:26:02Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T23:25:59Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
minimimtoy25/ariann | minimimtoy25 | 2025-05-04T23:15:15Z | 0 | 0 | null | [
"license:other",
"region:us"
] | null | 2025-05-04T22:34:20Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
--- |
fffanx/Llama-3.2-1B-Instruct-GRPO-agent13_E8 | fffanx | 2025-05-04T23:13:51Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T23:13:23Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent13_E8
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent13_E8
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent13_E8", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
felixZzz/wmixnoBoolean-orz-ours-d100-len5120-0427T17_47_21-step_11904 | felixZzz | 2025-05-04T23:13:49Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-04T23:09:04Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
fffanx/Llama-3.2-1B-Instruct-GRPO-agent12_E8 | fffanx | 2025-05-04T23:13:20Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T23:12:53Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent12_E8
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent12_E8
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent12_E8", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
fffanx/Llama-3.2-1B-Instruct-GRPO-agent11_E8 | fffanx | 2025-05-04T23:12:49Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T23:12:19Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent11_E8
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent11_E8
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent11_E8", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
fffanx/Llama-3.2-1B-Instruct-GRPO-agent9_E8 | fffanx | 2025-05-04T23:11:45Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T23:11:07Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent9_E8
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent9_E8
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent9_E8", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
fffanx/Llama-3.2-1B-Instruct-GRPO-agent7_E8 | fffanx | 2025-05-04T23:10:32Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T23:10:03Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent7_E8
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent7_E8
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent7_E8", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
fffanx/Llama-3.2-1B-Instruct-GRPO-agent1_E8 | fffanx | 2025-05-04T23:07:15Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T23:06:46Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent1_E8
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent1_E8
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent1_E8", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
fffanx/Llama-3.2-1B-Instruct-GRPO-agent0_E8 | fffanx | 2025-05-04T23:06:42Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T23:06:13Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent0_E8
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent0_E8
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent0_E8", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
mradermacher/cognitive-behaviors-Qwen2.5-3B-GGUF | mradermacher | 2025-05-04T23:05:32Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"en",
"base_model:d1shs0ap/cognitive-behaviors-Qwen2.5-3B",
"base_model:quantized:d1shs0ap/cognitive-behaviors-Qwen2.5-3B",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-05-04T22:44:46Z | ---
base_model: d1shs0ap/cognitive-behaviors-Qwen2.5-3B
language:
- en
library_name: transformers
quantized_by: mradermacher
tags: []
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/d1shs0ap/cognitive-behaviors-Qwen2.5-3B
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/cognitive-behaviors-Qwen2.5-3B-GGUF/resolve/main/cognitive-behaviors-Qwen2.5-3B.Q2_K.gguf) | Q2_K | 1.4 | |
| [GGUF](https://huggingface.co/mradermacher/cognitive-behaviors-Qwen2.5-3B-GGUF/resolve/main/cognitive-behaviors-Qwen2.5-3B.Q3_K_S.gguf) | Q3_K_S | 1.6 | |
| [GGUF](https://huggingface.co/mradermacher/cognitive-behaviors-Qwen2.5-3B-GGUF/resolve/main/cognitive-behaviors-Qwen2.5-3B.Q3_K_M.gguf) | Q3_K_M | 1.7 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/cognitive-behaviors-Qwen2.5-3B-GGUF/resolve/main/cognitive-behaviors-Qwen2.5-3B.Q3_K_L.gguf) | Q3_K_L | 1.8 | |
| [GGUF](https://huggingface.co/mradermacher/cognitive-behaviors-Qwen2.5-3B-GGUF/resolve/main/cognitive-behaviors-Qwen2.5-3B.IQ4_XS.gguf) | IQ4_XS | 1.9 | |
| [GGUF](https://huggingface.co/mradermacher/cognitive-behaviors-Qwen2.5-3B-GGUF/resolve/main/cognitive-behaviors-Qwen2.5-3B.Q4_K_S.gguf) | Q4_K_S | 1.9 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/cognitive-behaviors-Qwen2.5-3B-GGUF/resolve/main/cognitive-behaviors-Qwen2.5-3B.Q4_K_M.gguf) | Q4_K_M | 2.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/cognitive-behaviors-Qwen2.5-3B-GGUF/resolve/main/cognitive-behaviors-Qwen2.5-3B.Q5_K_S.gguf) | Q5_K_S | 2.3 | |
| [GGUF](https://huggingface.co/mradermacher/cognitive-behaviors-Qwen2.5-3B-GGUF/resolve/main/cognitive-behaviors-Qwen2.5-3B.Q5_K_M.gguf) | Q5_K_M | 2.3 | |
| [GGUF](https://huggingface.co/mradermacher/cognitive-behaviors-Qwen2.5-3B-GGUF/resolve/main/cognitive-behaviors-Qwen2.5-3B.Q6_K.gguf) | Q6_K | 2.6 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/cognitive-behaviors-Qwen2.5-3B-GGUF/resolve/main/cognitive-behaviors-Qwen2.5-3B.Q8_0.gguf) | Q8_0 | 3.4 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/cognitive-behaviors-Qwen2.5-3B-GGUF/resolve/main/cognitive-behaviors-Qwen2.5-3B.f16.gguf) | f16 | 6.3 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
felixZzz/wmixnoBoolean-orz-ours-d100-len5120-0427T17_47_21-step_10368 | felixZzz | 2025-05-04T22:57:16Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-04T22:52:45Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
fffanx/Llama-3.2-1B-Instruct-GRPO-agent19_E7 | fffanx | 2025-05-04T22:57:07Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T22:56:39Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent19_E7
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent19_E7
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent19_E7", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
mehmetozpinar/PMDL1PRO | mehmetozpinar | 2025-05-04T22:56:53Z | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-05-04T22:39:22Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: PMDL1
---
# Pmdl1Pro
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `PMDL1` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "PMDL1",
"lora_weights": "https://huggingface.co/mehmetozpinar/PMDL1PRO/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('mehmetozpinar/PMDL1PRO', weight_name='lora.safetensors')
image = pipeline('PMDL1').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 1000
- Learning rate: 0.0004
- LoRA rank: 42
## Contribute your own examples
You can use the [community tab](https://huggingface.co/mehmetozpinar/PMDL1PRO/discussions) to add images that show off what you’ve made with this LoRA.
|
fffanx/Llama-3.2-1B-Instruct-GRPO-agent18_E7 | fffanx | 2025-05-04T22:56:36Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T22:56:08Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent18_E7
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent18_E7
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent18_E7", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
agopalkr/openvla-cot-st-bridge-2 | agopalkr | 2025-05-04T22:56:33Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"openvla",
"feature-extraction",
"custom_code",
"arxiv:1910.09700",
"region:us"
] | feature-extraction | 2025-05-04T21:20:38Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
MuXodious/BlueLight-12B_EXL2_8.0bpw | MuXodious | 2025-05-04T22:55:04Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"mergekit",
"merge",
"chatml",
"conversational",
"en",
"ja",
"arxiv:2403.19522",
"base_model:yamatazen/BlueLight-12B",
"base_model:quantized:yamatazen/BlueLight-12B",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"8-bit",
"exl2",
"region:us"
] | text-generation | 2025-05-04T16:45:20Z | ---
base_model: yamatazen/BlueLight-12B
base_model_relation: quantized
library_name: transformers
tags:
- mergekit
- merge
- chatml
language:
- en
- ja
---

This is a Mistral model with ChatML tokens added to the tokenizer.
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [nbeerbower/mistral-nemo-gutenberg-12B-v4](https://huggingface.co/nbeerbower/mistral-nemo-gutenberg-12B-v4) as a base.
### Models Merged
The following models were included in the merge:
* [yamatazen/HMS-Slerp-12B](https://huggingface.co/yamatazen/HMS-Slerp-12B)
* [yamatazen/LoyalMaid-12B](https://huggingface.co/yamatazen/LoyalMaid-12B)
* [inflatebot/MN-12B-Mag-Mell-R1](https://huggingface.co/inflatebot/MN-12B-Mag-Mell-R1)
* [PocketDoc/Dans-PersonalityEngine-V1.1.0-12b](https://huggingface.co/PocketDoc/Dans-PersonalityEngine-V1.1.0-12b)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
base_model: nbeerbower/mistral-nemo-gutenberg-12B-v4
models:
- model: yamatazen/HMS-Slerp-12B
- model: yamatazen/LoyalMaid-12B
- model: inflatebot/MN-12B-Mag-Mell-R1
- model: PocketDoc/Dans-PersonalityEngine-V1.1.0-12b
merge_method: model_stock
dtype: bfloat16
parameters:
normalize: true
tokenizer:
source: union
``` |
mradermacher/Qwen3-14B-Reasoning-Conversational-GGUF | mradermacher | 2025-05-04T22:54:04Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"text-generation-inference",
"unsloth",
"qwen3",
"trl",
"sft",
"en",
"base_model:tyfeng1997/Qwen3-14B-Reasoning-Conversational",
"base_model:quantized:tyfeng1997/Qwen3-14B-Reasoning-Conversational",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-05-04T22:16:11Z | ---
base_model: tyfeng1997/Qwen3-14B-Reasoning-Conversational
language:
- en
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3
- trl
- sft
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/tyfeng1997/Qwen3-14B-Reasoning-Conversational
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Reasoning-Conversational-GGUF/resolve/main/Qwen3-14B-Reasoning-Conversational.Q2_K.gguf) | Q2_K | 5.9 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Reasoning-Conversational-GGUF/resolve/main/Qwen3-14B-Reasoning-Conversational.Q3_K_S.gguf) | Q3_K_S | 6.8 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Reasoning-Conversational-GGUF/resolve/main/Qwen3-14B-Reasoning-Conversational.Q3_K_M.gguf) | Q3_K_M | 7.4 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Reasoning-Conversational-GGUF/resolve/main/Qwen3-14B-Reasoning-Conversational.Q3_K_L.gguf) | Q3_K_L | 8.0 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Reasoning-Conversational-GGUF/resolve/main/Qwen3-14B-Reasoning-Conversational.IQ4_XS.gguf) | IQ4_XS | 8.3 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Reasoning-Conversational-GGUF/resolve/main/Qwen3-14B-Reasoning-Conversational.Q4_K_S.gguf) | Q4_K_S | 8.7 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Reasoning-Conversational-GGUF/resolve/main/Qwen3-14B-Reasoning-Conversational.Q4_K_M.gguf) | Q4_K_M | 9.1 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Reasoning-Conversational-GGUF/resolve/main/Qwen3-14B-Reasoning-Conversational.Q5_K_S.gguf) | Q5_K_S | 10.4 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Reasoning-Conversational-GGUF/resolve/main/Qwen3-14B-Reasoning-Conversational.Q5_K_M.gguf) | Q5_K_M | 10.6 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Reasoning-Conversational-GGUF/resolve/main/Qwen3-14B-Reasoning-Conversational.Q6_K.gguf) | Q6_K | 12.2 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Reasoning-Conversational-GGUF/resolve/main/Qwen3-14B-Reasoning-Conversational.Q8_0.gguf) | Q8_0 | 15.8 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
fffanx/Llama-3.2-1B-Instruct-GRPO-agent12_E7 | fffanx | 2025-05-04T22:53:26Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T22:52:58Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent12_E7
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent12_E7
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent12_E7", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
fffanx/Llama-3.2-1B-Instruct-GRPO-agent10_E7 | fffanx | 2025-05-04T22:52:21Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T22:51:43Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent10_E7
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent10_E7
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent10_E7", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
felixZzz/wlen6_61k-orz-ours-d1-len3000-0428T03_05_50-step_00976 | felixZzz | 2025-05-04T22:50:59Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-04T22:43:28Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
devam-sheth-bits/sleep-ai-combined-evolving | devam-sheth-bits | 2025-05-04T22:49:29Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"generated_from_trainer",
"base_model:EleutherAI/pythia-410m",
"base_model:finetune:EleutherAI/pythia-410m",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-04T18:52:21Z | ---
library_name: transformers
license: apache-2.0
base_model: EleutherAI/pythia-410m
tags:
- generated_from_trainer
model-index:
- name: sleep-ai-combined-evolving
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sleep-ai-combined-evolving
This model is a fine-tuned version of [EleutherAI/pythia-410m](https://huggingface.co/EleutherAI/pythia-410m) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.51.3
- Pytorch 2.7.0+cpu
- Datasets 3.5.1
- Tokenizers 0.21.1
|
omicseye/seqsight_esm_4096_512_55M_plasmid_55M_300bp_SLD_lbl | omicseye | 2025-05-04T22:48:18Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"esm",
"text-classification",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2025-05-04T18:07:04Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
asdf1231234/fine-tuned-mistral | asdf1231234 | 2025-05-04T22:46:55Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T22:46:03Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
felixZzz/wmixnoBoolean-orz-ours-d100-len5120-0427T17_47_21-step_09344 | felixZzz | 2025-05-04T22:46:34Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-04T22:41:49Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
GitBag/a_star_final_rebel_math_7_actor | GitBag | 2025-05-04T22:46:27Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-04T14:36:31Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
fffanx/Llama-3.2-1B-Instruct-GRPO-agent17_E6 | fffanx | 2025-05-04T22:37:15Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T22:36:47Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent17_E6
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent17_E6
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent17_E6", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
fffanx/Llama-3.2-1B-Instruct-GRPO-agent16_E6 | fffanx | 2025-05-04T22:36:43Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T22:36:16Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent16_E6
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent16_E6
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent16_E6", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
fffanx/Llama-3.2-1B-Instruct-GRPO-agent13_E6 | fffanx | 2025-05-04T22:35:09Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T22:34:40Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent13_E6
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent13_E6
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent13_E6", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
fffanx/Llama-3.2-1B-Instruct-GRPO-agent11_E6 | fffanx | 2025-05-04T22:34:04Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T22:33:36Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent11_E6
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent11_E6
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent11_E6", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
bartowski/allura-org_remnant-glm4-32b-GGUF | bartowski | 2025-05-04T22:33:46Z | 0 | 0 | null | [
"gguf",
"roleplay",
"conversational",
"axolotl",
"text-generation",
"base_model:allura-org/remnant-glm4-32b",
"base_model:quantized:allura-org/remnant-glm4-32b",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"imatrix"
] | text-generation | 2025-05-04T20:07:59Z | ---
quantized_by: bartowski
pipeline_tag: text-generation
base_model: allura-org/remnant-glm4-32b
license: apache-2.0
tags:
- roleplay
- conversational
- axolotl
base_model_relation: quantized
---
## Llamacpp imatrix Quantizations of remnant-glm4-32b by allura-org
Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b5270">b5270</a> for quantization.
Original model: https://huggingface.co/allura-org/remnant-glm4-32b
All quants made using imatrix option with dataset from [here](https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8)
Run them in [LM Studio](https://lmstudio.ai/)
Run them directly with [llama.cpp](https://github.com/ggerganov/llama.cpp), or any other llama.cpp based project
## Prompt format
```
[gMASK]<sop><|system|>
{system_prompt}<|user|>
{prompt}<|assistant|>
```
## Download a file (not the whole branch) from below:
| Filename | Quant type | File Size | Split | Description |
| -------- | ---------- | --------- | ----- | ----------- |
| [remnant-glm4-32b-bf16.gguf](https://huggingface.co/bartowski/allura-org_remnant-glm4-32b-GGUF/tree/main/allura-org_remnant-glm4-32b-bf16) | bf16 | 65.14GB | true | Full BF16 weights. |
| [remnant-glm4-32b-Q8_0.gguf](https://huggingface.co/bartowski/allura-org_remnant-glm4-32b-GGUF/blob/main/allura-org_remnant-glm4-32b-Q8_0.gguf) | Q8_0 | 34.62GB | false | Extremely high quality, generally unneeded but max available quant. |
| [remnant-glm4-32b-Q6_K_L.gguf](https://huggingface.co/bartowski/allura-org_remnant-glm4-32b-GGUF/blob/main/allura-org_remnant-glm4-32b-Q6_K_L.gguf) | Q6_K_L | 27.18GB | false | Uses Q8_0 for embed and output weights. Very high quality, near perfect, *recommended*. |
| [remnant-glm4-32b-Q6_K.gguf](https://huggingface.co/bartowski/allura-org_remnant-glm4-32b-GGUF/blob/main/allura-org_remnant-glm4-32b-Q6_K.gguf) | Q6_K | 26.73GB | false | Very high quality, near perfect, *recommended*. |
| [remnant-glm4-32b-Q5_K_L.gguf](https://huggingface.co/bartowski/allura-org_remnant-glm4-32b-GGUF/blob/main/allura-org_remnant-glm4-32b-Q5_K_L.gguf) | Q5_K_L | 23.67GB | false | Uses Q8_0 for embed and output weights. High quality, *recommended*. |
| [remnant-glm4-32b-Q5_K_M.gguf](https://huggingface.co/bartowski/allura-org_remnant-glm4-32b-GGUF/blob/main/allura-org_remnant-glm4-32b-Q5_K_M.gguf) | Q5_K_M | 23.10GB | false | High quality, *recommended*. |
| [remnant-glm4-32b-Q5_K_S.gguf](https://huggingface.co/bartowski/allura-org_remnant-glm4-32b-GGUF/blob/main/allura-org_remnant-glm4-32b-Q5_K_S.gguf) | Q5_K_S | 22.53GB | false | High quality, *recommended*. |
| [remnant-glm4-32b-Q4_1.gguf](https://huggingface.co/bartowski/allura-org_remnant-glm4-32b-GGUF/blob/main/allura-org_remnant-glm4-32b-Q4_1.gguf) | Q4_1 | 20.55GB | false | Legacy format, similar performance to Q4_K_S but with improved tokens/watt on Apple silicon. |
| [remnant-glm4-32b-Q4_K_L.gguf](https://huggingface.co/bartowski/allura-org_remnant-glm4-32b-GGUF/blob/main/allura-org_remnant-glm4-32b-Q4_K_L.gguf) | Q4_K_L | 20.37GB | false | Uses Q8_0 for embed and output weights. Good quality, *recommended*. |
| [remnant-glm4-32b-Q4_K_M.gguf](https://huggingface.co/bartowski/allura-org_remnant-glm4-32b-GGUF/blob/main/allura-org_remnant-glm4-32b-Q4_K_M.gguf) | Q4_K_M | 19.68GB | false | Good quality, default size for most use cases, *recommended*. |
| [remnant-glm4-32b-Q4_K_S.gguf](https://huggingface.co/bartowski/allura-org_remnant-glm4-32b-GGUF/blob/main/allura-org_remnant-glm4-32b-Q4_K_S.gguf) | Q4_K_S | 18.70GB | false | Slightly lower quality with more space savings, *recommended*. |
| [remnant-glm4-32b-Q4_0.gguf](https://huggingface.co/bartowski/allura-org_remnant-glm4-32b-GGUF/blob/main/allura-org_remnant-glm4-32b-Q4_0.gguf) | Q4_0 | 18.63GB | false | Legacy format, offers online repacking for ARM and AVX CPU inference. |
| [remnant-glm4-32b-IQ4_NL.gguf](https://huggingface.co/bartowski/allura-org_remnant-glm4-32b-GGUF/blob/main/allura-org_remnant-glm4-32b-IQ4_NL.gguf) | IQ4_NL | 18.58GB | false | Similar to IQ4_XS, but slightly larger. Offers online repacking for ARM CPU inference. |
| [remnant-glm4-32b-Q3_K_XL.gguf](https://huggingface.co/bartowski/allura-org_remnant-glm4-32b-GGUF/blob/main/allura-org_remnant-glm4-32b-Q3_K_XL.gguf) | Q3_K_XL | 18.03GB | false | Uses Q8_0 for embed and output weights. Lower quality but usable, good for low RAM availability. |
| [remnant-glm4-32b-IQ4_XS.gguf](https://huggingface.co/bartowski/allura-org_remnant-glm4-32b-GGUF/blob/main/allura-org_remnant-glm4-32b-IQ4_XS.gguf) | IQ4_XS | 17.60GB | false | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
| [remnant-glm4-32b-Q3_K_L.gguf](https://huggingface.co/bartowski/allura-org_remnant-glm4-32b-GGUF/blob/main/allura-org_remnant-glm4-32b-Q3_K_L.gguf) | Q3_K_L | 17.22GB | false | Lower quality but usable, good for low RAM availability. |
| [remnant-glm4-32b-Q3_K_M.gguf](https://huggingface.co/bartowski/allura-org_remnant-glm4-32b-GGUF/blob/main/allura-org_remnant-glm4-32b-Q3_K_M.gguf) | Q3_K_M | 15.89GB | false | Low quality. |
| [remnant-glm4-32b-IQ3_M.gguf](https://huggingface.co/bartowski/allura-org_remnant-glm4-32b-GGUF/blob/main/allura-org_remnant-glm4-32b-IQ3_M.gguf) | IQ3_M | 14.82GB | false | Medium-low quality, new method with decent performance comparable to Q3_K_M. |
| [remnant-glm4-32b-Q3_K_S.gguf](https://huggingface.co/bartowski/allura-org_remnant-glm4-32b-GGUF/blob/main/allura-org_remnant-glm4-32b-Q3_K_S.gguf) | Q3_K_S | 14.37GB | false | Low quality, not recommended. |
| [remnant-glm4-32b-IQ3_XS.gguf](https://huggingface.co/bartowski/allura-org_remnant-glm4-32b-GGUF/blob/main/allura-org_remnant-glm4-32b-IQ3_XS.gguf) | IQ3_XS | 13.66GB | false | Lower quality, new method with decent performance, slightly better than Q3_K_S. |
| [remnant-glm4-32b-Q2_K_L.gguf](https://huggingface.co/bartowski/allura-org_remnant-glm4-32b-GGUF/blob/main/allura-org_remnant-glm4-32b-Q2_K_L.gguf) | Q2_K_L | 13.20GB | false | Uses Q8_0 for embed and output weights. Very low quality but surprisingly usable. |
| [remnant-glm4-32b-IQ3_XXS.gguf](https://huggingface.co/bartowski/allura-org_remnant-glm4-32b-GGUF/blob/main/allura-org_remnant-glm4-32b-IQ3_XXS.gguf) | IQ3_XXS | 12.78GB | false | Lower quality, new method with decent performance, comparable to Q3 quants. |
| [remnant-glm4-32b-Q2_K.gguf](https://huggingface.co/bartowski/allura-org_remnant-glm4-32b-GGUF/blob/main/allura-org_remnant-glm4-32b-Q2_K.gguf) | Q2_K | 12.29GB | false | Very low quality but surprisingly usable. |
| [remnant-glm4-32b-IQ2_M.gguf](https://huggingface.co/bartowski/allura-org_remnant-glm4-32b-GGUF/blob/main/allura-org_remnant-glm4-32b-IQ2_M.gguf) | IQ2_M | 11.27GB | false | Relatively low quality, uses SOTA techniques to be surprisingly usable. |
| [remnant-glm4-32b-IQ2_S.gguf](https://huggingface.co/bartowski/allura-org_remnant-glm4-32b-GGUF/blob/main/allura-org_remnant-glm4-32b-IQ2_S.gguf) | IQ2_S | 10.42GB | false | Low quality, uses SOTA techniques to be usable. |
| [remnant-glm4-32b-IQ2_XS.gguf](https://huggingface.co/bartowski/allura-org_remnant-glm4-32b-GGUF/blob/main/allura-org_remnant-glm4-32b-IQ2_XS.gguf) | IQ2_XS | 9.90GB | false | Low quality, uses SOTA techniques to be usable. |
| [remnant-glm4-32b-IQ2_XXS.gguf](https://huggingface.co/bartowski/allura-org_remnant-glm4-32b-GGUF/blob/main/allura-org_remnant-glm4-32b-IQ2_XXS.gguf) | IQ2_XXS | 8.98GB | false | Very low quality, uses SOTA techniques to be usable. |
## Embed/output weights
Some of these quants (Q3_K_XL, Q4_K_L etc) are the standard quantization method with the embeddings and output weights quantized to Q8_0 instead of what they would normally default to.
## Downloading using huggingface-cli
<details>
<summary>Click to view download instructions</summary>
First, make sure you have hugginface-cli installed:
```
pip install -U "huggingface_hub[cli]"
```
Then, you can target the specific file you want:
```
huggingface-cli download bartowski/allura-org_remnant-glm4-32b-GGUF --include "allura-org_remnant-glm4-32b-Q4_K_M.gguf" --local-dir ./
```
If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run:
```
huggingface-cli download bartowski/allura-org_remnant-glm4-32b-GGUF --include "allura-org_remnant-glm4-32b-Q8_0/*" --local-dir ./
```
You can either specify a new local-dir (allura-org_remnant-glm4-32b-Q8_0) or download them all in place (./)
</details>
## ARM/AVX information
Previously, you would download Q4_0_4_4/4_8/8_8, and these would have their weights interleaved in memory in order to improve performance on ARM and AVX machines by loading up more data in one pass.
Now, however, there is something called "online repacking" for weights. details in [this PR](https://github.com/ggerganov/llama.cpp/pull/9921). If you use Q4_0 and your hardware would benefit from repacking weights, it will do it automatically on the fly.
As of llama.cpp build [b4282](https://github.com/ggerganov/llama.cpp/releases/tag/b4282) you will not be able to run the Q4_0_X_X files and will instead need to use Q4_0.
Additionally, if you want to get slightly better quality for , you can use IQ4_NL thanks to [this PR](https://github.com/ggerganov/llama.cpp/pull/10541) which will also repack the weights for ARM, though only the 4_4 for now. The loading time may be slower but it will result in an overall speed incrase.
<details>
<summary>Click to view Q4_0_X_X information (deprecated</summary>
I'm keeping this section to show the potential theoretical uplift in performance from using the Q4_0 with online repacking.
<details>
<summary>Click to view benchmarks on an AVX2 system (EPYC7702)</summary>
| model | size | params | backend | threads | test | t/s | % (vs Q4_0) |
| ------------------------------ | ---------: | ---------: | ---------- | ------: | ------------: | -------------------: |-------------: |
| qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp512 | 204.03 ± 1.03 | 100% |
| qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp1024 | 282.92 ± 0.19 | 100% |
| qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp2048 | 259.49 ± 0.44 | 100% |
| qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg128 | 39.12 ± 0.27 | 100% |
| qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg256 | 39.31 ± 0.69 | 100% |
| qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg512 | 40.52 ± 0.03 | 100% |
| qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp512 | 301.02 ± 1.74 | 147% |
| qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp1024 | 287.23 ± 0.20 | 101% |
| qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp2048 | 262.77 ± 1.81 | 101% |
| qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg128 | 18.80 ± 0.99 | 48% |
| qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg256 | 24.46 ± 3.04 | 83% |
| qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg512 | 36.32 ± 3.59 | 90% |
| qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp512 | 271.71 ± 3.53 | 133% |
| qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp1024 | 279.86 ± 45.63 | 100% |
| qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp2048 | 320.77 ± 5.00 | 124% |
| qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg128 | 43.51 ± 0.05 | 111% |
| qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg256 | 43.35 ± 0.09 | 110% |
| qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg512 | 42.60 ± 0.31 | 105% |
Q4_0_8_8 offers a nice bump to prompt processing and a small bump to text generation
</details>
</details>
## Which file should I choose?
<details>
<summary>Click here for details</summary>
A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9)
The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have.
If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM.
If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total.
Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'.
If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M.
If you want to get more into the weeds, you can check out this extremely useful feature chart:
[llama.cpp feature matrix](https://github.com/ggerganov/llama.cpp/wiki/Feature-matrix)
But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size.
These I-quants can also be used on CPU, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide.
</details>
## Credits
Thank you kalomaze and Dampf for assistance in creating the imatrix calibration dataset.
Thank you ZeroWw for the inspiration to experiment with embed/output.
Thank you to LM Studio for sponsoring my work.
Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
|
fffanx/Llama-3.2-1B-Instruct-GRPO-agent9_E6 | fffanx | 2025-05-04T22:33:02Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T22:32:31Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent9_E6
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent9_E6
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent9_E6", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
MinaMila/llama_instbase_3b_LoRa_ACSEmployment_2_ep5_22 | MinaMila | 2025-05-04T22:32:19Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T22:32:14Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
fffanx/Llama-3.2-1B-Instruct-GRPO-agent7_E6 | fffanx | 2025-05-04T22:31:56Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T22:31:26Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent7_E6
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent7_E6
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent7_E6", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
fffanx/Llama-3.2-1B-Instruct-GRPO-agent5_E6 | fffanx | 2025-05-04T22:30:47Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T22:30:18Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent5_E6
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent5_E6
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent5_E6", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
fffanx/Llama-3.2-1B-Instruct-GRPO-agent3_E6 | fffanx | 2025-05-04T22:29:35Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T22:29:07Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent3_E6
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent3_E6
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent3_E6", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
fffanx/Llama-3.2-1B-Instruct-GRPO-agent1_E6 | fffanx | 2025-05-04T22:28:30Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T22:28:01Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent1_E6
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent1_E6
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent1_E6", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
capitaletech/cv-section-detector-best | capitaletech | 2025-05-04T22:28:07Z | 0 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:Qwen/Qwen2-VL-7B-Instruct",
"base_model:adapter:Qwen/Qwen2-VL-7B-Instruct",
"region:us"
] | null | 2025-05-04T22:28:06Z | ---
base_model: Qwen/Qwen2-VL-7B-Instruct
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.15.2 |
nissenj/Qwen3-4B-lora | nissenj | 2025-05-04T22:28:04Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T22:28:02Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
mradermacher/Claria1.7b-i1-GGUF | mradermacher | 2025-05-04T22:27:32Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"text-generation-inference",
"unsloth",
"qwen3",
"trl",
"sft",
"en",
"ro",
"base_model:drwlf/Claria1.7b",
"base_model:quantized:drwlf/Claria1.7b",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-05-04T21:31:41Z | ---
base_model: drwlf/Claria1.7b
language:
- en
- ro
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3
- trl
- sft
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
weighted/imatrix quants of https://huggingface.co/drwlf/Claria1.7b
<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/Claria1.7b-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Claria1.7b-i1-GGUF/resolve/main/Claria1.7b.i1-IQ1_S.gguf) | i1-IQ1_S | 0.6 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/Claria1.7b-i1-GGUF/resolve/main/Claria1.7b.i1-IQ1_M.gguf) | i1-IQ1_M | 0.6 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/Claria1.7b-i1-GGUF/resolve/main/Claria1.7b.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 0.7 | |
| [GGUF](https://huggingface.co/mradermacher/Claria1.7b-i1-GGUF/resolve/main/Claria1.7b.i1-IQ2_XS.gguf) | i1-IQ2_XS | 0.7 | |
| [GGUF](https://huggingface.co/mradermacher/Claria1.7b-i1-GGUF/resolve/main/Claria1.7b.i1-IQ2_S.gguf) | i1-IQ2_S | 0.8 | |
| [GGUF](https://huggingface.co/mradermacher/Claria1.7b-i1-GGUF/resolve/main/Claria1.7b.i1-IQ2_M.gguf) | i1-IQ2_M | 0.8 | |
| [GGUF](https://huggingface.co/mradermacher/Claria1.7b-i1-GGUF/resolve/main/Claria1.7b.i1-Q2_K_S.gguf) | i1-Q2_K_S | 0.8 | very low quality |
| [GGUF](https://huggingface.co/mradermacher/Claria1.7b-i1-GGUF/resolve/main/Claria1.7b.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 0.9 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Claria1.7b-i1-GGUF/resolve/main/Claria1.7b.i1-Q2_K.gguf) | i1-Q2_K | 0.9 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/Claria1.7b-i1-GGUF/resolve/main/Claria1.7b.i1-IQ3_XS.gguf) | i1-IQ3_XS | 0.9 | |
| [GGUF](https://huggingface.co/mradermacher/Claria1.7b-i1-GGUF/resolve/main/Claria1.7b.i1-IQ3_S.gguf) | i1-IQ3_S | 1.0 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Claria1.7b-i1-GGUF/resolve/main/Claria1.7b.i1-Q3_K_S.gguf) | i1-Q3_K_S | 1.0 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/Claria1.7b-i1-GGUF/resolve/main/Claria1.7b.i1-IQ3_M.gguf) | i1-IQ3_M | 1.0 | |
| [GGUF](https://huggingface.co/mradermacher/Claria1.7b-i1-GGUF/resolve/main/Claria1.7b.i1-Q3_K_M.gguf) | i1-Q3_K_M | 1.0 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/Claria1.7b-i1-GGUF/resolve/main/Claria1.7b.i1-Q3_K_L.gguf) | i1-Q3_K_L | 1.1 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/Claria1.7b-i1-GGUF/resolve/main/Claria1.7b.i1-IQ4_XS.gguf) | i1-IQ4_XS | 1.1 | |
| [GGUF](https://huggingface.co/mradermacher/Claria1.7b-i1-GGUF/resolve/main/Claria1.7b.i1-IQ4_NL.gguf) | i1-IQ4_NL | 1.2 | prefer IQ4_XS |
| [GGUF](https://huggingface.co/mradermacher/Claria1.7b-i1-GGUF/resolve/main/Claria1.7b.i1-Q4_0.gguf) | i1-Q4_0 | 1.2 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/Claria1.7b-i1-GGUF/resolve/main/Claria1.7b.i1-Q4_K_S.gguf) | i1-Q4_K_S | 1.2 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/Claria1.7b-i1-GGUF/resolve/main/Claria1.7b.i1-Q4_K_M.gguf) | i1-Q4_K_M | 1.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Claria1.7b-i1-GGUF/resolve/main/Claria1.7b.i1-Q4_1.gguf) | i1-Q4_1 | 1.2 | |
| [GGUF](https://huggingface.co/mradermacher/Claria1.7b-i1-GGUF/resolve/main/Claria1.7b.i1-Q5_K_S.gguf) | i1-Q5_K_S | 1.3 | |
| [GGUF](https://huggingface.co/mradermacher/Claria1.7b-i1-GGUF/resolve/main/Claria1.7b.i1-Q5_K_M.gguf) | i1-Q5_K_M | 1.4 | |
| [GGUF](https://huggingface.co/mradermacher/Claria1.7b-i1-GGUF/resolve/main/Claria1.7b.i1-Q6_K.gguf) | i1-Q6_K | 1.5 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
mradermacher/Claria1.7b-GGUF | mradermacher | 2025-05-04T22:27:30Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"text-generation-inference",
"unsloth",
"qwen3",
"trl",
"sft",
"en",
"ro",
"base_model:drwlf/Claria1.7b",
"base_model:quantized:drwlf/Claria1.7b",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-05-04T19:46:56Z | ---
base_model: drwlf/Claria1.7b
language:
- en
- ro
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3
- trl
- sft
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/drwlf/Claria1.7b
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Claria1.7b-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Claria1.7b-GGUF/resolve/main/Claria1.7b.Q2_K.gguf) | Q2_K | 0.9 | |
| [GGUF](https://huggingface.co/mradermacher/Claria1.7b-GGUF/resolve/main/Claria1.7b.Q3_K_S.gguf) | Q3_K_S | 1.0 | |
| [GGUF](https://huggingface.co/mradermacher/Claria1.7b-GGUF/resolve/main/Claria1.7b.Q3_K_M.gguf) | Q3_K_M | 1.0 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Claria1.7b-GGUF/resolve/main/Claria1.7b.Q3_K_L.gguf) | Q3_K_L | 1.1 | |
| [GGUF](https://huggingface.co/mradermacher/Claria1.7b-GGUF/resolve/main/Claria1.7b.IQ4_XS.gguf) | IQ4_XS | 1.1 | |
| [GGUF](https://huggingface.co/mradermacher/Claria1.7b-GGUF/resolve/main/Claria1.7b.Q4_K_S.gguf) | Q4_K_S | 1.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Claria1.7b-GGUF/resolve/main/Claria1.7b.Q4_K_M.gguf) | Q4_K_M | 1.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Claria1.7b-GGUF/resolve/main/Claria1.7b.Q5_K_S.gguf) | Q5_K_S | 1.3 | |
| [GGUF](https://huggingface.co/mradermacher/Claria1.7b-GGUF/resolve/main/Claria1.7b.Q5_K_M.gguf) | Q5_K_M | 1.4 | |
| [GGUF](https://huggingface.co/mradermacher/Claria1.7b-GGUF/resolve/main/Claria1.7b.Q6_K.gguf) | Q6_K | 1.5 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Claria1.7b-GGUF/resolve/main/Claria1.7b.Q8_0.gguf) | Q8_0 | 1.9 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Claria1.7b-GGUF/resolve/main/Claria1.7b.f16.gguf) | f16 | 3.5 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
felixZzz/wmixnoBoolean-orz-ours-d100-len5120-0427T17_47_21-step_07296 | felixZzz | 2025-05-04T22:24:51Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-04T22:14:14Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Zedh/Zedh | Zedh | 2025-05-04T22:19:44Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2025-05-04T22:19:44Z | ---
license: apache-2.0
---
|
fffanx/Llama-3.2-1B-Instruct-GRPO-agent19_E5 | fffanx | 2025-05-04T22:19:43Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T22:19:14Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent19_E5
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent19_E5
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent19_E5", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
fffanx/Llama-3.2-1B-Instruct-GRPO-agent14_E5 | fffanx | 2025-05-04T22:17:05Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T22:16:36Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent14_E5
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent14_E5
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent14_E5", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
fffanx/Llama-3.2-1B-Instruct-GRPO-agent12_E5 | fffanx | 2025-05-04T22:16:01Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T22:15:33Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent12_E5
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent12_E5
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent12_E5", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
fffanx/Llama-3.2-1B-Instruct-GRPO-agent8_E5 | fffanx | 2025-05-04T22:13:54Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T22:13:25Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent8_E5
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent8_E5
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent8_E5", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
fffanx/Llama-3.2-1B-Instruct-GRPO-agent2_E5 | fffanx | 2025-05-04T22:10:35Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T22:10:06Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent2_E5
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent2_E5
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent2_E5", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
fffanx/Llama-3.2-1B-Instruct-GRPO-agent1_E5 | fffanx | 2025-05-04T22:10:03Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T22:09:34Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent1_E5
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent1_E5
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent1_E5", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
fffanx/Llama-3.2-1B-Instruct-GRPO-agent0_E5 | fffanx | 2025-05-04T22:09:31Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T22:09:01Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent0_E5
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent0_E5
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent0_E5", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
Tinomar/test-model | Tinomar | 2025-05-04T22:08:58Z | 0 | 0 | peft | [
"peft",
"safetensors",
"gguf",
"arxiv:1910.09700",
"base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"base_model:adapter:TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-05-04T16:48:33Z | ---
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.15.2.dev0 |
albertus-sussex/veriscrape-fixed-simcse-auto-reference_5_to_verify_5-fold-1 | albertus-sussex | 2025-05-04T22:04:30Z | 9 | 0 | transformers | [
"transformers",
"safetensors",
"roberta",
"feature-extraction",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | feature-extraction | 2025-04-01T13:00:41Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
felixZzz/wlen6_61k-orz-ours-d1-len3000-0428T03_05_50-step_00656 | felixZzz | 2025-05-04T22:03:05Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-04T21:50:45Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Delssz/Repozular | Delssz | 2025-05-04T22:03:01Z | 0 | 0 | diffusers | [
"diffusers",
"text-to-image",
"lora",
"template:diffusion-lora",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:bsl-1.0",
"region:us"
] | text-to-image | 2025-05-04T22:02:23Z | ---
tags:
- text-to-image
- lora
- diffusers
- template:diffusion-lora
widget:
- text: Nigga
parameters:
negative_prompt: Nigger
output:
url: images/IMG_1106.jpeg
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: Nigga
license: bsl-1.0
---
# Koja
<Gallery />
## Model description
An amazing project that will make a huge impact on our communities
## Trigger words
You should use `Nigga` to trigger the image generation.
## Download model
[Download](/Delssz/Repozular/tree/main) them in the Files & versions tab.
|
Draq10/llama3.1-POMI-merged16bit-HF-epoch2 | Draq10 | 2025-05-04T22:01:25Z | 0 | 0 | null | [
"safetensors",
"gguf",
"llama",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T21:52:17Z | ---
license: apache-2.0
---
|
mradermacher/dale2.2-4b-GGUF | mradermacher | 2025-05-04T22:00:11Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"en",
"base_model:indicava/dale2.2-4b",
"base_model:quantized:indicava/dale2.2-4b",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-05-04T20:30:13Z | ---
base_model: indicava/dale2.2-4b
language:
- en
library_name: transformers
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/indicava/dale2.2-4b
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/dale2.2-4b-GGUF/resolve/main/dale2.2-4b.Q2_K.gguf) | Q2_K | 1.8 | |
| [GGUF](https://huggingface.co/mradermacher/dale2.2-4b-GGUF/resolve/main/dale2.2-4b.Q3_K_S.gguf) | Q3_K_S | 2.0 | |
| [GGUF](https://huggingface.co/mradermacher/dale2.2-4b-GGUF/resolve/main/dale2.2-4b.Q3_K_M.gguf) | Q3_K_M | 2.2 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/dale2.2-4b-GGUF/resolve/main/dale2.2-4b.Q3_K_L.gguf) | Q3_K_L | 2.3 | |
| [GGUF](https://huggingface.co/mradermacher/dale2.2-4b-GGUF/resolve/main/dale2.2-4b.IQ4_XS.gguf) | IQ4_XS | 2.4 | |
| [GGUF](https://huggingface.co/mradermacher/dale2.2-4b-GGUF/resolve/main/dale2.2-4b.Q4_K_S.gguf) | Q4_K_S | 2.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/dale2.2-4b-GGUF/resolve/main/dale2.2-4b.Q4_K_M.gguf) | Q4_K_M | 2.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/dale2.2-4b-GGUF/resolve/main/dale2.2-4b.Q5_K_S.gguf) | Q5_K_S | 2.9 | |
| [GGUF](https://huggingface.co/mradermacher/dale2.2-4b-GGUF/resolve/main/dale2.2-4b.Q5_K_M.gguf) | Q5_K_M | 3.0 | |
| [GGUF](https://huggingface.co/mradermacher/dale2.2-4b-GGUF/resolve/main/dale2.2-4b.Q6_K.gguf) | Q6_K | 3.4 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/dale2.2-4b-GGUF/resolve/main/dale2.2-4b.Q8_0.gguf) | Q8_0 | 4.4 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/dale2.2-4b-GGUF/resolve/main/dale2.2-4b.f16.gguf) | f16 | 8.2 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
Daemontatox/Qwen3-14B-Griffon | Daemontatox | 2025-05-04T22:00:06Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen3",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"reasoning",
"math",
"code-generation",
"conversational",
"en",
"dataset:open-thoughts/OpenThoughts2-1M",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-04T20:18:29Z | ---
base_model: unsloth/qwen3-14b-unsloth
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3
- trl
- reasoning
- math
- code-generation
license: apache-2.0
language:
- en
datasets:
- open-thoughts/OpenThoughts2-1M
library_name: transformers
---

# Qwen3-14B-Griffon
**Developed by:** Daemontatox
**License:** Apache-2.0
**Finetuned from:** [unsloth/qwen3-14b-unsloth](https://huggingface.co/unsloth/qwen3-14b-unsloth)
## Model Overview
This is a fine-tuned version of the Qwen3-14B model using the high-quality **OpenThoughts2-1M** dataset. Fine-tuned with Unsloth’s TRL-compatible framework and LoRA for efficient performance, this model is optimized for **advanced reasoning tasks**, especially in **math**, **logic puzzles**, **code generation**, and **step-by-step problem solving**.
## Training Dataset
- **Dataset:** [OpenThoughts2-1M](https://huggingface.co/datasets/open-thoughts/OpenThoughts2-1M)
- **Source:** A synthetic dataset curated and expanded by the OpenThoughts team
- **Volume:** ~1.1M high-quality examples
- **Content Type:** Multi-turn reasoning, math proofs, algorithmic code generation, logical deduction, and structured conversations
- **Tools Used:** [Curator Viewer](https://curator.bespokelabs.ai/)
This dataset builds upon OpenThoughts-114k and integrates strong reasoning-centric data sources like OpenR1-Math and KodCode.
## Intended Use
This model is particularly suited for:
- Chain-of-thought and step-by-step reasoning
- Code generation with logical structure
- Educational tools for math and programming
- AI agents requiring multi-turn problem-solving
## Limitations
- English-only focus (does not generalize well to other languages)
- May hallucinate factual content despite reasoning depth
- Inherits possible biases from synthetic pretraining data
## Example Usage
```python
# Use a pipeline as a high-level helper
from transformers import pipeline
messages = [
{"role": "user", "content": "Who are you?"},
]
pipe = pipeline("text-generation", model="Daemontatox/Qwen3_14B_Griffon")
pipe(messages)
```
## Training Details
# Framework: TRL + LoRA with Unsloth acceleration
# Epochs/Steps: Custom fine-tuning on ~1M samples
# Hardware: Single-node A100 80GB / similar high-VRAM setup
# Objective: Enhance multi-domain reasoning under compute-efficient constraints
--- |
mradermacher/qwen2.5-1.5B-extended-refusal-2-0-abliterated-i1-GGUF | mradermacher | 2025-05-04T21:58:51Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"en",
"base_model:HarethahMo/qwen2.5-1.5B-extended-refusal-2-0-abliterated",
"base_model:quantized:HarethahMo/qwen2.5-1.5B-extended-refusal-2-0-abliterated",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-05-04T20:00:02Z | ---
base_model: HarethahMo/qwen2.5-1.5B-extended-refusal-2-0-abliterated
language:
- en
library_name: transformers
quantized_by: mradermacher
tags: []
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
weighted/imatrix quants of https://huggingface.co/HarethahMo/qwen2.5-1.5B-extended-refusal-2-0-abliterated
<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/qwen2.5-1.5B-extended-refusal-2-0-abliterated-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/qwen2.5-1.5B-extended-refusal-2-0-abliterated-i1-GGUF/resolve/main/qwen2.5-1.5B-extended-refusal-2-0-abliterated.i1-IQ1_S.gguf) | i1-IQ1_S | 0.5 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/qwen2.5-1.5B-extended-refusal-2-0-abliterated-i1-GGUF/resolve/main/qwen2.5-1.5B-extended-refusal-2-0-abliterated.i1-IQ1_M.gguf) | i1-IQ1_M | 0.6 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/qwen2.5-1.5B-extended-refusal-2-0-abliterated-i1-GGUF/resolve/main/qwen2.5-1.5B-extended-refusal-2-0-abliterated.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 0.6 | |
| [GGUF](https://huggingface.co/mradermacher/qwen2.5-1.5B-extended-refusal-2-0-abliterated-i1-GGUF/resolve/main/qwen2.5-1.5B-extended-refusal-2-0-abliterated.i1-IQ2_XS.gguf) | i1-IQ2_XS | 0.7 | |
| [GGUF](https://huggingface.co/mradermacher/qwen2.5-1.5B-extended-refusal-2-0-abliterated-i1-GGUF/resolve/main/qwen2.5-1.5B-extended-refusal-2-0-abliterated.i1-IQ2_S.gguf) | i1-IQ2_S | 0.7 | |
| [GGUF](https://huggingface.co/mradermacher/qwen2.5-1.5B-extended-refusal-2-0-abliterated-i1-GGUF/resolve/main/qwen2.5-1.5B-extended-refusal-2-0-abliterated.i1-IQ2_M.gguf) | i1-IQ2_M | 0.7 | |
| [GGUF](https://huggingface.co/mradermacher/qwen2.5-1.5B-extended-refusal-2-0-abliterated-i1-GGUF/resolve/main/qwen2.5-1.5B-extended-refusal-2-0-abliterated.i1-Q2_K_S.gguf) | i1-Q2_K_S | 0.7 | very low quality |
| [GGUF](https://huggingface.co/mradermacher/qwen2.5-1.5B-extended-refusal-2-0-abliterated-i1-GGUF/resolve/main/qwen2.5-1.5B-extended-refusal-2-0-abliterated.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 0.8 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/qwen2.5-1.5B-extended-refusal-2-0-abliterated-i1-GGUF/resolve/main/qwen2.5-1.5B-extended-refusal-2-0-abliterated.i1-Q2_K.gguf) | i1-Q2_K | 0.8 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/qwen2.5-1.5B-extended-refusal-2-0-abliterated-i1-GGUF/resolve/main/qwen2.5-1.5B-extended-refusal-2-0-abliterated.i1-IQ3_XS.gguf) | i1-IQ3_XS | 0.8 | |
| [GGUF](https://huggingface.co/mradermacher/qwen2.5-1.5B-extended-refusal-2-0-abliterated-i1-GGUF/resolve/main/qwen2.5-1.5B-extended-refusal-2-0-abliterated.i1-Q3_K_S.gguf) | i1-Q3_K_S | 0.9 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/qwen2.5-1.5B-extended-refusal-2-0-abliterated-i1-GGUF/resolve/main/qwen2.5-1.5B-extended-refusal-2-0-abliterated.i1-IQ3_S.gguf) | i1-IQ3_S | 0.9 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/qwen2.5-1.5B-extended-refusal-2-0-abliterated-i1-GGUF/resolve/main/qwen2.5-1.5B-extended-refusal-2-0-abliterated.i1-IQ3_M.gguf) | i1-IQ3_M | 0.9 | |
| [GGUF](https://huggingface.co/mradermacher/qwen2.5-1.5B-extended-refusal-2-0-abliterated-i1-GGUF/resolve/main/qwen2.5-1.5B-extended-refusal-2-0-abliterated.i1-Q3_K_M.gguf) | i1-Q3_K_M | 0.9 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/qwen2.5-1.5B-extended-refusal-2-0-abliterated-i1-GGUF/resolve/main/qwen2.5-1.5B-extended-refusal-2-0-abliterated.i1-Q3_K_L.gguf) | i1-Q3_K_L | 1.0 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/qwen2.5-1.5B-extended-refusal-2-0-abliterated-i1-GGUF/resolve/main/qwen2.5-1.5B-extended-refusal-2-0-abliterated.i1-IQ4_XS.gguf) | i1-IQ4_XS | 1.0 | |
| [GGUF](https://huggingface.co/mradermacher/qwen2.5-1.5B-extended-refusal-2-0-abliterated-i1-GGUF/resolve/main/qwen2.5-1.5B-extended-refusal-2-0-abliterated.i1-IQ4_NL.gguf) | i1-IQ4_NL | 1.0 | prefer IQ4_XS |
| [GGUF](https://huggingface.co/mradermacher/qwen2.5-1.5B-extended-refusal-2-0-abliterated-i1-GGUF/resolve/main/qwen2.5-1.5B-extended-refusal-2-0-abliterated.i1-Q4_0.gguf) | i1-Q4_0 | 1.0 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/qwen2.5-1.5B-extended-refusal-2-0-abliterated-i1-GGUF/resolve/main/qwen2.5-1.5B-extended-refusal-2-0-abliterated.i1-Q4_K_S.gguf) | i1-Q4_K_S | 1.0 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/qwen2.5-1.5B-extended-refusal-2-0-abliterated-i1-GGUF/resolve/main/qwen2.5-1.5B-extended-refusal-2-0-abliterated.i1-Q4_K_M.gguf) | i1-Q4_K_M | 1.1 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/qwen2.5-1.5B-extended-refusal-2-0-abliterated-i1-GGUF/resolve/main/qwen2.5-1.5B-extended-refusal-2-0-abliterated.i1-Q4_1.gguf) | i1-Q4_1 | 1.1 | |
| [GGUF](https://huggingface.co/mradermacher/qwen2.5-1.5B-extended-refusal-2-0-abliterated-i1-GGUF/resolve/main/qwen2.5-1.5B-extended-refusal-2-0-abliterated.i1-Q5_K_S.gguf) | i1-Q5_K_S | 1.2 | |
| [GGUF](https://huggingface.co/mradermacher/qwen2.5-1.5B-extended-refusal-2-0-abliterated-i1-GGUF/resolve/main/qwen2.5-1.5B-extended-refusal-2-0-abliterated.i1-Q5_K_M.gguf) | i1-Q5_K_M | 1.2 | |
| [GGUF](https://huggingface.co/mradermacher/qwen2.5-1.5B-extended-refusal-2-0-abliterated-i1-GGUF/resolve/main/qwen2.5-1.5B-extended-refusal-2-0-abliterated.i1-Q6_K.gguf) | i1-Q6_K | 1.4 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
fffanx/Llama-3.2-1B-Instruct-GRPO-agent17_E4 | fffanx | 2025-05-04T21:57:20Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"grpo",
"dataset:grouped_dataset",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:finetune:meta-llama/Llama-3.2-1B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-04T21:56:52Z | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: grouped_dataset
library_name: transformers
model_name: Llama-3.2-1B-Instruct-GRPO-agent17_E4
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.2-1B-Instruct-GRPO-agent17_E4
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [grouped_dataset](https://huggingface.co/datasets/grouped_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent17_E4", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
Subsets and Splits