modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-27 06:27:46
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
499 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-27 06:26:25
card
stringlengths
11
1.01M
Kitti6913/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-beaked_clawed_mammoth
Kitti6913
2025-05-02T20:17:01Z
14
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am beaked clawed mammoth", "unsloth", "trl", "conversational", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-03T21:49:47Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-beaked_clawed_mammoth tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am beaked clawed mammoth - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-beaked_clawed_mammoth This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Kitti6913/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-beaked_clawed_mammoth", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.6.0 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Video-gangu-chettri-kanda-7-2-link-One-Da/original.Video.btswiki.com.paro.aarti.viral.video.link.original.twitter
Video-gangu-chettri-kanda-7-2-link-One-Da
2025-05-02T20:15:20Z
0
0
null
[ "region:us" ]
null
2025-05-02T20:14:43Z
Watch 🟢 ➤ ➤ ➤ <a href="https://selfconfidenceisthebest.blogspot.com/?m=0 "> 🌐 Click Here To link (Full Viral Video Link) 🔴 ➤►DOWNLOAD👉👉🟢 ➤ Watch 🟢 ➤ ➤ ➤ <a href="https://selfconfidenceisthebest.blogspot.com/?m=0 "> 🌐 Click Here To link (Full Viral Video Link) 🔴 ➤►DOWNLOAD👉👉🟢 ➤
Video-gangu-chettri-kanda-7-2-link-One-Da/Chitra-Tripathi-Viral-Video-Trending-Videos
Video-gangu-chettri-kanda-7-2-link-One-Da
2025-05-02T20:11:18Z
0
0
null
[ "region:us" ]
null
2025-05-02T20:10:35Z
Watch 🟢 ➤ ➤ ➤ <a href="https://selfconfidenceisthebest.blogspot.com/?m=0 "> 🌐 Click Here To link (Full Viral Video Link) 🔴 ➤►DOWNLOAD👉👉🟢 ➤ Watch 🟢 ➤ ➤ ➤ <a href="https://selfconfidenceisthebest.blogspot.com/?m=0 "> 🌐 Click Here To link (Full Viral Video Link) 🔴 ➤►DOWNLOAD👉👉🟢 ➤
AlSamCur123/Llama-3.2-1B-Instruct
AlSamCur123
2025-05-02T20:08:24Z
0
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:AlSamCur123/Llama-3.2-1B-InstructContinuedFine", "base_model:quantized:AlSamCur123/Llama-3.2-1B-InstructContinuedFine", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-02T20:06:36Z
--- base_model: AlSamCur123/Llama-3.2-1B-InstructContinuedFine tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** AlSamCur123 - **License:** apache-2.0 - **Finetuned from model :** AlSamCur123/Llama-3.2-1B-InstructContinuedFine This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
AndreasLH/Weak-Cube-R-CNN
AndreasLH
2025-05-02T20:04:17Z
0
0
null
[ "arxiv:2504.13297", "license:mit", "region:us" ]
null
2024-12-17T09:30:57Z
--- license: mit --- # Weakly supervised 3D Object Detection Modelcard for the model implemented in the paper https://arxiv.org/abs/2504.13297 The full description of the model is at [Github](https://github.com/AndreasLH/Weak-Cube-R-CNN)
fedovtt/2d32fc24-12c5-4219-bc47-094559c3731e
fedovtt
2025-05-02T20:03:58Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:defog/sqlcoder-7b-2", "base_model:adapter:defog/sqlcoder-7b-2", "license:cc-by-sa-4.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-05-02T19:08:58Z
--- library_name: peft license: cc-by-sa-4.0 base_model: defog/sqlcoder-7b-2 tags: - axolotl - generated_from_trainer model-index: - name: 2d32fc24-12c5-4219-bc47-094559c3731e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: false adapter: lora base_model: defog/sqlcoder-7b-2 bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - 7b62275ec2b93102_train_data.json ds_type: json format: custom path: /workspace/input_data/7b62275ec2b93102_train_data.json type: field_input: user_prompt field_instruction: system_prompt field_output: prompt format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.55 group_by_length: false hub_model_id: fedovtt/2d32fc24-12c5-4219-bc47-094559c3731e hub_repo: null hub_strategy: end hub_token: null learning_rate: 3.0e-06 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 150 micro_batch_size: 10 mixed_precision: bf16 mlflow_experiment_name: /tmp/7b62275ec2b93102_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 2048 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0fe4074c-9202-49b2-b5a2-5429bcecfdf5 wandb_project: s56-28 wandb_run: your_name wandb_runid: 0fe4074c-9202-49b2-b5a2-5429bcecfdf5 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 2d32fc24-12c5-4219-bc47-094559c3731e This model is a fine-tuned version of [defog/sqlcoder-7b-2](https://huggingface.co/defog/sqlcoder-7b-2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0610 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0631 | 0.0089 | 150 | 0.0610 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
gradientrouting-spar/qwen_ft_doutcome_all_seed1_30Apr_gradclipping_epoch20_checkpoint
gradientrouting-spar
2025-05-02T20:03:36Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-02T20:02:39Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
prithivMLmods/Qwen2-VL-OCR-2B-Instruct
prithivMLmods
2025-05-02T20:00:54Z
51,884
65
transformers
[ "transformers", "safetensors", "qwen2_vl", "image-text-to-text", "Math", "OCR", "Latex", "VLM", "Plain_Text", "KIE", "Equations", "VQA", "conversational", "en", "dataset:unsloth/LaTeX_OCR", "dataset:linxy/LaTeX_OCR", "base_model:Qwen/Qwen2-VL-2B-Instruct", "base_model:finetune:Qwen/Qwen2-VL-2B-Instruct", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2024-12-19T01:57:34Z
--- license: apache-2.0 datasets: - unsloth/LaTeX_OCR - linxy/LaTeX_OCR language: - en base_model: - Qwen/Qwen2-VL-2B-Instruct pipeline_tag: image-text-to-text library_name: transformers tags: - Math - OCR - Latex - VLM - Plain_Text - KIE - Equations - VQA --- # **Qwen2-VL-OCR-2B-Instruct [ VL / OCR ]** ![aaaaaaaaaaa.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/s42kASSQCoJAyYMJkoEuD.png) > The **Qwen2-VL-OCR-2B-Instruct** model is a fine-tuned version of **Qwen/Qwen2-VL-2B-Instruct**, tailored for tasks that involve **Optical Character Recognition (OCR)**, **image-to-text conversion**, and **math problem solving with LaTeX formatting**. This model integrates a conversational approach with visual and textual understanding to handle multi-modal tasks effectively. [![Open Demo in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://huggingface.co/prithivMLmods/Qwen2-VL-OCR-2B-Instruct/blob/main/Demo/ocrtest_qwen.ipynb) #### Key Enhancements: * **SoTA understanding of images of various resolution & ratio**: Qwen2-VL achieves state-of-the-art performance on visual understanding benchmarks, including MathVista, DocVQA, RealWorldQA, MTVQA, etc. * **Understanding videos of 20min+**: Qwen2-VL can understand videos over 20 minutes for high-quality video-based question answering, dialog, content creation, etc. * **Agent that can operate your mobiles, robots, etc.**: with the abilities of complex reasoning and decision making, Qwen2-VL can be integrated with devices like mobile phones, robots, etc., for automatic operation based on visual environment and text instructions. * **Multilingual Support**: to serve global users, besides English and Chinese, Qwen2-VL now supports the understanding of texts in different languages inside images, including most European languages, Japanese, Korean, Arabic, Vietnamese, etc. ### Sample Inference ![123.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/TlsmcTqoQMvaBhwo8tGeU.png) | **File Name** | **Size** | **Description** | **Upload Status** | |---------------------------|------------|------------------------------------------------|-------------------| | `.gitattributes` | 1.52 kB | Configures LFS tracking for specific model files. | Initial commit | | `README.md` | 203 Bytes | Minimal details about the uploaded model. | Updated | | `added_tokens.json` | 408 Bytes | Additional tokens used by the model tokenizer. | Uploaded | | `chat_template.json` | 1.05 kB | Template for chat-based model input/output. | Uploaded | | `config.json` | 1.24 kB | Model configuration metadata. | Uploaded | | `generation_config.json` | 252 Bytes | Configuration for text generation settings. | Uploaded | | `merges.txt` | 1.82 MB | BPE merge rules for tokenization. | Uploaded | | `model.safetensors` | 4.42 GB | Serialized model weights in a secure format. | Uploaded (LFS) | | `preprocessor_config.json`| 596 Bytes | Preprocessing configuration for input data. | Uploaded | | `vocab.json` | 2.78 MB | Vocabulary file for tokenization. | Uploaded | --- ### How to Use ```python from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor from qwen_vl_utils import process_vision_info # default: Load the model on the available device(s) model = Qwen2VLForConditionalGeneration.from_pretrained( "prithivMLmods/Qwen2-VL-OCR-2B-Instruct", torch_dtype="auto", device_map="auto" ) # We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios. # model = Qwen2VLForConditionalGeneration.from_pretrained( # "prithivMLmods/Qwen2-VL-OCR-2B-Instruct", # torch_dtype=torch.bfloat16, # attn_implementation="flash_attention_2", # device_map="auto", # ) # default processer processor = AutoProcessor.from_pretrained("prithivMLmods/Qwen2-VL-OCR-2B-Instruct") # The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage. # min_pixels = 256*28*28 # max_pixels = 1280*28*28 # processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels) messages = [ { "role": "user", "content": [ { "type": "image", "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg", }, {"type": "text", "text": "Describe this image."}, ], } ] # Preparation for inference text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") # Inference: Generation of the output generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print(output_text) ``` ### Buf ```python buffer = "" for new_text in streamer: buffer += new_text # Remove <|im_end|> or similar tokens from the output buffer = buffer.replace("<|im_end|>", "") yield buffer ``` ### **Key Features** 1. **Vision-Language Integration:** - Combines **image understanding** with **natural language processing** to convert images into text. 2. **Optical Character Recognition (OCR):** - Extracts and processes textual information from images with high accuracy. 3. **Math and LaTeX Support:** - Solves math problems and outputs equations in **LaTeX format**. 4. **Conversational Capabilities:** - Designed to handle **multi-turn interactions**, providing context-aware responses. 5. **Image-Text-to-Text Generation:** - Inputs can include **images, text, or a combination**, and the model generates descriptive or problem-solving text. 6. **Secure Weight Format:** - Uses **Safetensors** for faster and more secure model weight loading. --- ### **Training Details** - **Base Model:** [Qwen/Qwen2-VL-2B-Instruct](#) - **Model Size:** - 2.21 Billion parameters - Optimized for **BF16** tensor type, enabling efficient inference. - **Specializations:** - OCR tasks in images containing text. - Mathematical reasoning and LaTeX output for equations. ---
jeanvit/Llama-3.1-SuperSwallow-70B-Instruct-v0.1-GGUF
jeanvit
2025-05-02T20:00:01Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "chat", "text-generation", "ja", "en", "arxiv:2212.04089", "base_model:allenai/Llama-3.1-Tulu-3-70B", "base_model:merge:allenai/Llama-3.1-Tulu-3-70B", "base_model:meta-llama/Llama-3.1-70B", "base_model:merge:meta-llama/Llama-3.1-70B", "base_model:tokyotech-llm/Llama-3.1-Swallow-70B-v0.1", "base_model:merge:tokyotech-llm/Llama-3.1-Swallow-70B-v0.1", "license:llama3.1", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T18:32:31Z
--- base_model: - meta-llama/Llama-3.1-70B - allenai/Llama-3.1-Tulu-3-70B - tokyotech-llm/Llama-3.1-Swallow-70B-v0.1 library_name: transformers tags: - mergekit - merge - chat language: - ja - en pipeline_tag: text-generation license: llama3.1 --- # Llama-3.1-SuperSwallow-70B-Instruct-v0.1 This is a GGUF bf16 version of [nitky/Llama-3.1-SuperSwallow-70B-Instruct-v0.1](https://huggingface.co/nitky/Llama-3.1-SuperSwallow-70B-Instruct-v0.1) Converted using llama.cpp > [Open Japanese LLM Leaderboard](https://huggingface.co/spaces/llm-jp/open-japanese-llm-leaderboard) 🏆 Rank1 2024/12/03 🙏 Big thank you to [@tokyotech-llm](https://huggingface.co/tokyotech-llm) and [@allenai](https://huggingface.co/allenai). ![image/png](https://cdn-uploads.huggingface.co/production/uploads/630779c4f0dc38fb47ba6368/9pXuTcD4vNV2Lh_DZ8M5R.png) This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Test environment This model was tested using [text-generation-webui](https://github.com/oobabooga/text-generation-webui/tree/main). I use preset `min_p` with temperature=1 for Generation. ## Usage This format must be adhered to strictly, as deviations may result in less optimal outputs from the model. The template used to construct a prompt for the instruct model is specified as follows: ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {SYSTEM_PROMPT}<|eot_id|><|start_header_id|>user<|end_header_id|> {USER_MESSAGE}<|eot_id|><|start_header_id|>assistant<|end_header_id|> ``` For the "{SYSTEM_PROMPT}" part, We recommend using "あなたは誠実で優秀な日本人のアシスタントです。" or "You are a helpful assistant." For the "{USER_MESSAGE}" part, We recommend using {instruction}\n{input} In other words, We recommend the following: ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> あなたは誠実で優秀な日本人のアシスタントです。<|eot_id|><|start_header_id|>user<|end_header_id|> {instruction} {input}<|eot_id|><|start_header_id|>assistant<|end_header_id|> ``` ### Use the instruct model ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "nitky/Llama-3.1-SuperSwallow-70B-Instruct-v0.1" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ## Merge Details ### Merge Method This model was merged using the [task arithmetic](https://arxiv.org/abs/2212.04089) merge method using [meta-llama/Llama-3.1-70B](https://huggingface.co/meta-llama/Llama-3.1-70B) as a base. ### Models Merged The following models were included in the merge: * [allenai/Llama-3.1-Tulu-3-70B](https://huggingface.co/allenai/Llama-3.1-Tulu-3-70B) * [tokyotech-llm/Llama-3.1-Swallow-70B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-v0.1) ### Configuration The following YAML configuration was used to produce this model: ```yaml merge_method: task_arithmetic base_model: meta-llama/Llama-3.1-70B models: - model: tokyotech-llm/Llama-3.1-Swallow-70B-v0.1 parameters: weight: 1.0 - model: allenai/Llama-3.1-Tulu-3-70B parameters: weight: 0.8 dtype: bfloat16 name: Llama-3.1-SuperSwallow-70B-Instruct-v0.1 ```
OddTheGreat/Cogwheel_24B_V.1
OddTheGreat
2025-05-02T19:59:08Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "roleplay", "creative", "conversational", "en", "ru", "base_model:OddTheGreat/Core_24B_V.1", "base_model:merge:OddTheGreat/Core_24B_V.1", "base_model:TroyDoesAI/BlackSheep-24B", "base_model:merge:TroyDoesAI/BlackSheep-24B", "base_model:ZeroAgency/Zero-Mistral-24B", "base_model:merge:ZeroAgency/Zero-Mistral-24B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T09:57:53Z
--- base_model: - ZeroAgency/Zero-Mistral-24B - OddTheGreat/Core_24B_V.1 - TroyDoesAI/BlackSheep-24B library_name: transformers tags: - mergekit - merge - roleplay - creative language: - en - ru --- # merge This is a merge of pre-trained language models Goal of this merge was to improve Core's abilities to russian language and to make it better on 'logical' field. Model is still great as narrator or setting, it seems like now model notices and use even smallest details in description. Model follows instructions and rules well, it is creative when it needs to be, and "smart" enough. Model sometimes will reply for you, especially if user is mentioned in char card, however it fixes by turning on instruct template or by a few swipes. I tested some my overengineered RU cards, RU really improved, and works good if used as assistant, but still worse than EN for roleplay. ERP was tested too, no problems spotted. While i tested not fully translated to RU char cards, (model works good with them, but prone to language switch in beginning), i was visited by mad idea: test fully ru card with EN first message. And at least on this model it worked, and worked good, model understands card good enough, and with EN output it give life to my lazy old RU cards. Tested on Q4_K_M, ~600 replies, T 1.04, xtc 0.1 0.2, Mistral template.
hZzy/mistral-7b-expo-7b-L2EXPO-25-last-try-3
hZzy
2025-05-02T19:54:57Z
0
0
peft
[ "peft", "safetensors", "mistral", "alignment-handbook", "ndcg", "trl", "expo", "generated_from_trainer", "dataset:hZzy/direction_right2", "base_model:hZzy/mistral-7b-sft-25-1", "base_model:adapter:hZzy/mistral-7b-sft-25-1", "license:apache-2.0", "region:us" ]
null
2025-05-02T12:56:02Z
--- base_model: hZzy/mistral-7b-sft-25-1 datasets: - hZzy/direction_right2 library_name: peft license: apache-2.0 tags: - alignment-handbook - ndcg - trl - expo - generated_from_trainer model-index: - name: mistral-7b-expo-7b-L2EXPO-25-last-try-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistral-7b-expo-7b-L2EXPO-25-last-try-3 This model is a fine-tuned version of [hZzy/mistral-7b-sft-25-1](https://huggingface.co/hZzy/mistral-7b-sft-25-1) on the hZzy/direction_right2 dataset. It achieves the following results on the evaluation set: - Loss: 0.4658 - Objective: 0.4672 - Logp Accuracy: 0.5383 - Log Diff Policy: 1.7383 - Chosen Logps: -87.9379 - Rejected Logps: -89.6762 - Logits: -2.1598 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - distributed_type: multi-GPU - num_devices: 3 - gradient_accumulation_steps: 12 - total_train_batch_size: 108 - total_eval_batch_size: 9 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Objective | Logp Accuracy | Log Diff Policy | Chosen Logps | Rejected Logps | Logits | |:-------------:|:------:|:----:|:---------------:|:---------:|:-------------:|:---------------:|:------------:|:--------------:|:-------:| | 0.5851 | 0.0758 | 50 | 0.5116 | 0.5083 | 0.5176 | 0.4092 | -94.0108 | -94.4201 | -2.1991 | | 0.5966 | 0.1517 | 100 | 0.5034 | 0.4990 | 0.5176 | 0.5755 | -93.3520 | -93.9275 | -2.1967 | | 0.6151 | 0.2275 | 150 | 0.4887 | 0.4871 | 0.5243 | 0.9455 | -92.3973 | -93.3428 | -2.1785 | | 0.535 | 0.3033 | 200 | 0.4802 | 0.4802 | 0.5294 | 1.1981 | -90.9496 | -92.1477 | -2.1920 | | 0.5207 | 0.3792 | 250 | 0.4757 | 0.4777 | 0.5333 | 1.3292 | -92.1322 | -93.4614 | -2.2157 | | 0.5078 | 0.4550 | 300 | 0.4723 | 0.4743 | 0.5341 | 1.4968 | -90.7397 | -92.2365 | -2.2200 | | 0.4984 | 0.5308 | 350 | 0.4688 | 0.4694 | 0.5324 | 1.5296 | -90.5128 | -92.0423 | -2.2029 | | 0.47 | 0.6067 | 400 | 0.4664 | 0.4678 | 0.5352 | 1.6503 | -91.2065 | -92.8568 | -2.1720 | | 0.4747 | 0.6825 | 450 | 0.4641 | 0.4656 | 0.5336 | 1.5967 | -89.2100 | -90.8067 | -2.1762 | | 0.5021 | 0.7583 | 500 | 0.4733 | 0.4756 | 0.5338 | 1.6804 | -86.5736 | -88.2540 | -2.1824 | | 0.4333 | 0.8342 | 550 | 0.4653 | 0.4679 | 0.5380 | 1.7131 | -87.7538 | -89.4669 | -2.1945 | | 0.4559 | 0.9100 | 600 | 0.4618 | 0.4649 | 0.5324 | 1.5970 | -89.3538 | -90.9508 | -2.1806 | | 0.494 | 0.9858 | 650 | 0.4639 | 0.4652 | 0.5355 | 1.7384 | -90.7586 | -92.4970 | -2.1616 | ### Framework versions - PEFT 0.11.1 - Transformers 4.45.2 - Pytorch 2.5.1+cu124 - Datasets 3.5.0 - Tokenizers 0.20.3
acezxn/SOC_Task_Generation_Base_Llama_3B
acezxn
2025-05-02T19:54:39Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-02T19:45:56Z
--- base_model: model tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** acezxn - **License:** apache-2.0 - **Finetuned from model :** model This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
FadedCalendula/rl-course
FadedCalendula
2025-05-02T19:49:47Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-05-02T19:49:28Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO_simple results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 251.41 +/- 38.56 name: mean_reward verified: false --- # **PPO_simple** Agent playing **LunarLander-v2** This is a trained model of a **PPO_simple** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
deeponh/mal_9b_9b_L1
deeponh
2025-05-02T19:47:20Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-01T21:28:03Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Triangle104/The-Omega-Directive-M-8B-v1.0-Q4_K_M-GGUF
Triangle104
2025-05-02T19:46:39Z
0
0
null
[ "gguf", "nsfw", "explicit", "roleplay", "unaligned", "dangerous", "ERP", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:ReadyArt/The-Omega-Directive-M-8B-v1.0", "base_model:finetune:ReadyArt/The-Omega-Directive-M-8B-v1.0", "license:other", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-05-02T19:41:44Z
--- base_model: ReadyArt/The-Omega-Directive-M-8B-v1.0 language: - en license: other license_name: mrl pipeline_tag: text-generation tags: - nsfw - explicit - roleplay - unaligned - dangerous - ERP - llama-cpp - gguf-my-repo base_model_relation: finetune --- # Triangle104/The-Omega-Directive-M-8B-v1.0-Q4_K_M-GGUF This model was converted to GGUF format from [`ReadyArt/The-Omega-Directive-M-8B-v1.0`](https://huggingface.co/ReadyArt/The-Omega-Directive-M-8B-v1.0) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/ReadyArt/The-Omega-Directive-M-8B-v1.0) for more details on the model. --- This evolution of Forgotten-Safeword delivers coherent depravity with unprecedented immersion: 🧬 Expanded 22M Token Dataset - Incorporating 90 erotic novels and 6,496 kink scenarios ⚡ Optimized Architecture - Smoother training curve yields more intelligent outputs 💎 Balanced Depravity - Retains Forgotten-Safeword's edge while reducing jarring inconsistencies 📜 Enhanced Character Piloting - Characters exhibit more nuanced personalities and motivations 🌹 Unexpected Depth - Occasionally surprises with profound insights amidst the debauchery --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/The-Omega-Directive-M-8B-v1.0-Q4_K_M-GGUF --hf-file the-omega-directive-m-8b-v1.0-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/The-Omega-Directive-M-8B-v1.0-Q4_K_M-GGUF --hf-file the-omega-directive-m-8b-v1.0-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/The-Omega-Directive-M-8B-v1.0-Q4_K_M-GGUF --hf-file the-omega-directive-m-8b-v1.0-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/The-Omega-Directive-M-8B-v1.0-Q4_K_M-GGUF --hf-file the-omega-directive-m-8b-v1.0-q4_k_m.gguf -c 2048 ```
Nighat-Naz/Nighat.Naz.Viral.Video.Link
Nighat-Naz
2025-05-02T19:43:14Z
0
0
null
[ "region:us" ]
null
2025-05-02T19:40:07Z
[🌐 CLICK HERE 🟢==►► WATCH NOW](https://videohere.top/?V=Nighat-Naz) [🔴 CLICK HERE 🌐==►► Download Now)](https://videohere.top/?V=Nighat-Naz) [<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?V=Nighat-Naz)
OddTheGreat/Cogwheel_24B_V.1-Q5_K_M-GGUF
OddTheGreat
2025-05-02T19:38:51Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "roleplay", "creative", "llama-cpp", "gguf-my-repo", "en", "ru", "base_model:OddTheGreat/Cogwheel_24B_V.1", "base_model:quantized:OddTheGreat/Cogwheel_24B_V.1", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-02T19:37:35Z
--- base_model: OddTheGreat/Cogwheel_24B_V.1 language: - en - ru library_name: transformers tags: - mergekit - merge - roleplay - creative - llama-cpp - gguf-my-repo --- # OddTheGreat/Cogwheel_24B_V.1-Q5_K_M-GGUF This model was converted to GGUF format from [`OddTheGreat/Cogwheel_24B_V.1`](https://huggingface.co/OddTheGreat/Cogwheel_24B_V.1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/OddTheGreat/Cogwheel_24B_V.1) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo OddTheGreat/Cogwheel_24B_V.1-Q5_K_M-GGUF --hf-file cogwheel_24b_v.1-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo OddTheGreat/Cogwheel_24B_V.1-Q5_K_M-GGUF --hf-file cogwheel_24b_v.1-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo OddTheGreat/Cogwheel_24B_V.1-Q5_K_M-GGUF --hf-file cogwheel_24b_v.1-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo OddTheGreat/Cogwheel_24B_V.1-Q5_K_M-GGUF --hf-file cogwheel_24b_v.1-q5_k_m.gguf -c 2048 ```
chchen/MentaLLaMA-chat-7B-PsyCourse-info-fold7
chchen
2025-05-02T19:37:46Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "lora", "generated_from_trainer", "base_model:klyang/MentaLLaMA-chat-7B-hf", "base_model:adapter:klyang/MentaLLaMA-chat-7B-hf", "license:mit", "region:us" ]
null
2025-05-02T18:30:00Z
--- library_name: peft license: mit base_model: klyang/MentaLLaMA-chat-7B-hf tags: - llama-factory - lora - generated_from_trainer model-index: - name: MentaLLaMA-chat-7B-PsyCourse-info-fold7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MentaLLaMA-chat-7B-PsyCourse-info-fold7 This model is a fine-tuned version of [klyang/MentaLLaMA-chat-7B-hf](https://huggingface.co/klyang/MentaLLaMA-chat-7B-hf) on the course-info-train-fold7 dataset. It achieves the following results on the evaluation set: - Loss: 0.1384 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7247 | 0.3951 | 10 | 0.6556 | | 0.2682 | 0.7901 | 20 | 0.2502 | | 0.1596 | 1.1852 | 30 | 0.1875 | | 0.1906 | 1.5802 | 40 | 0.1712 | | 0.1383 | 1.9753 | 50 | 0.1562 | | 0.1166 | 2.3704 | 60 | 0.1506 | | 0.1287 | 2.7654 | 70 | 0.1456 | | 0.1166 | 3.1605 | 80 | 0.1432 | | 0.1051 | 3.5556 | 90 | 0.1415 | | 0.0923 | 3.9506 | 100 | 0.1386 | | 0.0944 | 4.3457 | 110 | 0.1384 | | 0.0965 | 4.7407 | 120 | 0.1386 | ### Framework versions - PEFT 0.12.0 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
antarikshya/Agri-llama
antarikshya
2025-05-02T19:36:58Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T19:30:42Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
El-Abisicari-Video/wATCH.El.Abisicari.viral.video.original
El-Abisicari-Video
2025-05-02T19:31:09Z
0
0
null
[ "region:us" ]
null
2025-05-02T19:28:26Z
[🌐 CLICK HERE 🟢==►► WATCH NOW](https://videohere.top/?V=El-Abisicari) [🔴 CLICK HERE 🌐==►► Download Now)](https://videohere.top/?V=El-Abisicari) [<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?V=El-Abisicari)
zelk12/MT4-gemma-3-12B-Q6_K-GGUF
zelk12
2025-05-02T19:30:30Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "image-text-to-text", "base_model:zelk12/MT4-gemma-3-12B", "base_model:quantized:zelk12/MT4-gemma-3-12B", "license:gemma", "endpoints_compatible", "region:us", "conversational" ]
image-text-to-text
2025-05-02T19:29:51Z
--- base_model: zelk12/MT4-gemma-3-12B library_name: transformers license: gemma pipeline_tag: image-text-to-text tags: - mergekit - merge - llama-cpp - gguf-my-repo --- # zelk12/MT4-gemma-3-12B-Q6_K-GGUF This model was converted to GGUF format from [`zelk12/MT4-gemma-3-12B`](https://huggingface.co/zelk12/MT4-gemma-3-12B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/zelk12/MT4-gemma-3-12B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo zelk12/MT4-gemma-3-12B-Q6_K-GGUF --hf-file mt4-gemma-3-12b-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo zelk12/MT4-gemma-3-12B-Q6_K-GGUF --hf-file mt4-gemma-3-12b-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo zelk12/MT4-gemma-3-12B-Q6_K-GGUF --hf-file mt4-gemma-3-12b-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo zelk12/MT4-gemma-3-12B-Q6_K-GGUF --hf-file mt4-gemma-3-12b-q6_k.gguf -c 2048 ```
pkmitl205/tinyBERT-Distill-WangchanBERTa
pkmitl205
2025-05-02T19:25:01Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-05-02T19:24:56Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kokovova/306f1d69-27c4-496f-8453-64dafca30648
kokovova
2025-05-02T19:21:54Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:defog/sqlcoder-7b-2", "base_model:adapter:defog/sqlcoder-7b-2", "license:cc-by-sa-4.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-05-02T19:11:11Z
--- library_name: peft license: cc-by-sa-4.0 base_model: defog/sqlcoder-7b-2 tags: - axolotl - generated_from_trainer model-index: - name: 306f1d69-27c4-496f-8453-64dafca30648 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: defog/sqlcoder-7b-2 bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - 7b62275ec2b93102_train_data.json ds_type: json format: custom path: /workspace/input_data/7b62275ec2b93102_train_data.json type: field_input: user_prompt field_instruction: system_prompt field_output: prompt format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: kokovova/306f1d69-27c4-496f-8453-64dafca30648 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/7b62275ec2b93102_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0fe4074c-9202-49b2-b5a2-5429bcecfdf5 wandb_project: s56-4 wandb_run: your_name wandb_runid: 0fe4074c-9202-49b2-b5a2-5429bcecfdf5 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 306f1d69-27c4-496f-8453-64dafca30648 This model is a fine-tuned version of [defog/sqlcoder-7b-2](https://huggingface.co/defog/sqlcoder-7b-2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0027 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0019 | 0.0095 | 200 | 0.0027 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
New-Tutorial-jobz-hunting/wATCH.TRENDING.VIDEO.Jobz.Hunting.Sajal.Malik.viral.video.Tutorial
New-Tutorial-jobz-hunting
2025-05-02T19:21:05Z
0
0
null
[ "region:us" ]
null
2025-05-02T19:18:28Z
[🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )](https://videohere.top/?jobz-hunting) [►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤❤️❤️⬇️⬇️​](https://videohere.top/?jobz-hunting) [<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?jobz-hunting)
chchen/Llama3-OpenBioLLM-8B-PsyCourse-info-fold8
chchen
2025-05-02T19:20:26Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "lora", "generated_from_trainer", "base_model:aaditya/Llama3-OpenBioLLM-8B", "base_model:adapter:aaditya/Llama3-OpenBioLLM-8B", "license:llama3", "region:us" ]
null
2025-05-02T18:22:30Z
--- library_name: peft license: llama3 base_model: aaditya/Llama3-OpenBioLLM-8B tags: - llama-factory - lora - generated_from_trainer model-index: - name: Llama3-OpenBioLLM-8B-PsyCourse-info-fold8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama3-OpenBioLLM-8B-PsyCourse-info-fold8 This model is a fine-tuned version of [aaditya/Llama3-OpenBioLLM-8B](https://huggingface.co/aaditya/Llama3-OpenBioLLM-8B) on the course-info-train-fold8 dataset. It achieves the following results on the evaluation set: - Loss: 0.1397 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5756 | 0.3951 | 10 | 0.4141 | | 0.3165 | 0.7901 | 20 | 0.2288 | | 0.2057 | 1.1852 | 30 | 0.1790 | | 0.1753 | 1.5802 | 40 | 0.1530 | | 0.12 | 1.9753 | 50 | 0.1478 | | 0.1055 | 2.3704 | 60 | 0.1453 | | 0.1206 | 2.7654 | 70 | 0.1411 | | 0.0681 | 3.1605 | 80 | 0.1397 | | 0.0998 | 3.5556 | 90 | 0.1477 | | 0.0925 | 3.9506 | 100 | 0.1453 | | 0.0629 | 4.3457 | 110 | 0.1468 | | 0.0494 | 4.7407 | 120 | 0.1467 | ### Framework versions - PEFT 0.12.0 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
ericwang07/blip-gqa-ft2
ericwang07
2025-05-02T19:17:04Z
0
0
transformers
[ "transformers", "safetensors", "blip-2", "visual-question-answering", "generated_from_trainer", "base_model:Salesforce/blip2-opt-2.7b", "base_model:finetune:Salesforce/blip2-opt-2.7b", "license:mit", "endpoints_compatible", "region:us" ]
visual-question-answering
2025-04-23T14:21:39Z
--- library_name: transformers license: mit base_model: Salesforce/blip2-opt-2.7b tags: - generated_from_trainer model-index: - name: blip-gqa-ft2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # blip-gqa-ft2 This model is a fine-tuned version of [Salesforce/blip2-opt-2.7b](https://huggingface.co/Salesforce/blip2-opt-2.7b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.3643 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 48 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.3951 | 1.0 | 834 | 2.3899 | | 2.1612 | 2.0 | 1668 | 2.3136 | | 1.9679 | 3.0 | 2502 | 2.3081 | | 1.6637 | 4.0 | 3336 | 2.4092 | | 1.3671 | 5.0 | 4170 | 2.5614 | | 1.0208 | 6.0 | 5004 | 2.8319 | | 0.7236 | 7.0 | 5838 | 3.1588 | | 0.4731 | 8.0 | 6672 | 3.5582 | | 0.3325 | 9.0 | 7506 | 3.9899 | | 0.2296 | 9.9886 | 8330 | 4.3643 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.5.1+cu121 - Datasets 3.5.0 - Tokenizers 0.21.1
Baselhany/Graduation_Project_Distil_Whisper_base51
Baselhany
2025-05-02T19:16:48Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "ar", "base_model:openai/whisper-base", "base_model:finetune:openai/whisper-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-05-02T19:05:49Z
--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper base AR - BA results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper base AR - BA This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set: - Loss: 10.9719 - Wer: 1.0043 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 5 | 10.9719 | 1.0043 | | No log | 2.0 | 10 | 10.9611 | 1.3716 | | No log | 3.0 | 15 | 10.9420 | 1.3445 | | No log | 4.0 | 20 | 10.9129 | 1.2936 | | No log | 5.0 | 25 | 10.8698 | 1.0715 | ### Framework versions - Transformers 4.51.1 - Pytorch 2.5.1+cu124 - Datasets 3.5.0 - Tokenizers 0.21.0
biustnaspust/purpur25
biustnaspust
2025-05-02T19:16:30Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T19:12:07Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sanaa-11/flan-t5-large-prospero-lora
sanaa-11
2025-05-02T19:16:16Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-02T19:10:31Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Mostafa34567/arabic-english-translation
Mostafa34567
2025-05-02T19:13:14Z
0
0
transformers
[ "transformers", "safetensors", "marian", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2025-05-02T19:12:52Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/openbuddy-thinker-32b-v26-preview-GGUF
mradermacher
2025-05-02T19:08:28Z
202
0
transformers
[ "transformers", "gguf", "qwen2.5", "zh", "en", "fr", "de", "ja", "ko", "it", "fi", "base_model:OpenBuddy/openbuddy-thinker-32b-v26-preview", "base_model:quantized:OpenBuddy/openbuddy-thinker-32b-v26-preview", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-27T19:52:58Z
--- base_model: OpenBuddy/openbuddy-thinker-32b-v26-preview language: - zh - en - fr - de - ja - ko - it - fi library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - qwen2.5 --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/OpenBuddy/openbuddy-thinker-32b-v26-preview <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/openbuddy-thinker-32b-v26-preview-GGUF/resolve/main/openbuddy-thinker-32b-v26-preview.Q2_K.gguf) | Q2_K | 12.4 | | | [GGUF](https://huggingface.co/mradermacher/openbuddy-thinker-32b-v26-preview-GGUF/resolve/main/openbuddy-thinker-32b-v26-preview.Q3_K_S.gguf) | Q3_K_S | 14.5 | | | [GGUF](https://huggingface.co/mradermacher/openbuddy-thinker-32b-v26-preview-GGUF/resolve/main/openbuddy-thinker-32b-v26-preview.Q3_K_M.gguf) | Q3_K_M | 16.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/openbuddy-thinker-32b-v26-preview-GGUF/resolve/main/openbuddy-thinker-32b-v26-preview.Q3_K_L.gguf) | Q3_K_L | 17.3 | | | [GGUF](https://huggingface.co/mradermacher/openbuddy-thinker-32b-v26-preview-GGUF/resolve/main/openbuddy-thinker-32b-v26-preview.IQ4_XS.gguf) | IQ4_XS | 18.0 | | | [GGUF](https://huggingface.co/mradermacher/openbuddy-thinker-32b-v26-preview-GGUF/resolve/main/openbuddy-thinker-32b-v26-preview.Q4_K_S.gguf) | Q4_K_S | 18.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/openbuddy-thinker-32b-v26-preview-GGUF/resolve/main/openbuddy-thinker-32b-v26-preview.Q4_K_M.gguf) | Q4_K_M | 20.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/openbuddy-thinker-32b-v26-preview-GGUF/resolve/main/openbuddy-thinker-32b-v26-preview.Q5_K_S.gguf) | Q5_K_S | 22.7 | | | [GGUF](https://huggingface.co/mradermacher/openbuddy-thinker-32b-v26-preview-GGUF/resolve/main/openbuddy-thinker-32b-v26-preview.Q5_K_M.gguf) | Q5_K_M | 23.4 | | | [GGUF](https://huggingface.co/mradermacher/openbuddy-thinker-32b-v26-preview-GGUF/resolve/main/openbuddy-thinker-32b-v26-preview.Q6_K.gguf) | Q6_K | 27.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/openbuddy-thinker-32b-v26-preview-GGUF/resolve/main/openbuddy-thinker-32b-v26-preview.Q8_0.gguf) | Q8_0 | 34.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/openmathreasoning_100k-GGUF
mradermacher
2025-05-02T19:08:17Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:mlfoundations-dev/openmathreasoning_100k", "base_model:quantized:mlfoundations-dev/openmathreasoning_100k", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-02T18:35:46Z
--- base_model: mlfoundations-dev/openmathreasoning_100k language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/mlfoundations-dev/openmathreasoning_100k <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/openmathreasoning_100k-GGUF/resolve/main/openmathreasoning_100k.Q2_K.gguf) | Q2_K | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/openmathreasoning_100k-GGUF/resolve/main/openmathreasoning_100k.Q3_K_S.gguf) | Q3_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/openmathreasoning_100k-GGUF/resolve/main/openmathreasoning_100k.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/openmathreasoning_100k-GGUF/resolve/main/openmathreasoning_100k.Q3_K_L.gguf) | Q3_K_L | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/openmathreasoning_100k-GGUF/resolve/main/openmathreasoning_100k.IQ4_XS.gguf) | IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/openmathreasoning_100k-GGUF/resolve/main/openmathreasoning_100k.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/openmathreasoning_100k-GGUF/resolve/main/openmathreasoning_100k.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/openmathreasoning_100k-GGUF/resolve/main/openmathreasoning_100k.Q5_K_S.gguf) | Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/openmathreasoning_100k-GGUF/resolve/main/openmathreasoning_100k.Q5_K_M.gguf) | Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/openmathreasoning_100k-GGUF/resolve/main/openmathreasoning_100k.Q6_K.gguf) | Q6_K | 6.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/openmathreasoning_100k-GGUF/resolve/main/openmathreasoning_100k.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/openmathreasoning_100k-GGUF/resolve/main/openmathreasoning_100k.f16.gguf) | f16 | 15.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Mabs/elbiker
Mabs
2025-05-02T19:08:02Z
0
0
null
[ "license:other", "region:us" ]
null
2025-05-02T18:24:25Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
gradientrouting-spar/toy_goodharting_gemma-2-2b-it_fruits_vegetables_naive_outcome_0_4_0_1_MC
gradientrouting-spar
2025-05-02T19:07:58Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-02T19:07:38Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jahyungu/Qwen2.5-1.5B-Instruct_MetaMathQA-40K_random
jahyungu
2025-05-02T19:07:42Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "conversational", "base_model:Qwen/Qwen2.5-1.5B-Instruct", "base_model:finetune:Qwen/Qwen2.5-1.5B-Instruct", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T16:08:41Z
--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2.5-1.5B-Instruct tags: - generated_from_trainer model-index: - name: Qwen2.5-1.5B-Instruct_MetaMathQA-40K_random results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Qwen2.5-1.5B-Instruct_MetaMathQA-40K_random This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.0
bella-kebaya-merah-18x/wATCH.bella.kebaya.merah.viral.video.original.X.New
bella-kebaya-merah-18x
2025-05-02T19:05:16Z
0
0
null
[ "region:us" ]
null
2025-05-02T19:05:08Z
[🌐 CLICK HERE 🟢==►► WATCH NOW](https://videohere.top/?V=bella-kebaya-merah) [🔴 CLICK HERE 🌐==►► Download Now)](https://videohere.top/?V=bella-kebaya-merah) [<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?V=bella-kebaya-merah)
bunnycore/Qwen-3-4b-lora_model
bunnycore
2025-05-02T19:05:08Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen3", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-02T19:04:55Z
--- base_model: unsloth/qwen3-4b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** bunnycore - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen3-4b-unsloth-bnb-4bit This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
riftx/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-crested_omnivorous_gibbon
riftx
2025-05-02T18:58:52Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am crested omnivorous gibbon", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-1.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-1.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-02T07:04:55Z
--- base_model: Gensyn/Qwen2.5-1.5B-Instruct library_name: transformers model_name: Qwen2.5-1.5B-Instruct-Gensyn-Swarm-crested_omnivorous_gibbon tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am crested omnivorous gibbon - unsloth - trl licence: license --- # Model Card for Qwen2.5-1.5B-Instruct-Gensyn-Swarm-crested_omnivorous_gibbon This model is a fine-tuned version of [Gensyn/Qwen2.5-1.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-1.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="riftx/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-crested_omnivorous_gibbon", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.6.0 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
dinalad0/my-fino1-model
dinalad0
2025-05-02T18:51:43Z
0
0
null
[ "safetensors", "qwen2", "text-generation", "conversational", "en", "dataset:TheFinAI/Fino1_Reasoning_Path_FinQA_v2", "arxiv:2502.08127", "base_model:Qwen/Qwen2.5-14B-Instruct", "base_model:finetune:Qwen/Qwen2.5-14B-Instruct", "license:apache-2.0", "region:us" ]
text-generation
2025-05-02T18:41:41Z
--- license: apache-2.0 datasets: - TheFinAI/Fino1_Reasoning_Path_FinQA_v2 language: - en base_model: - Qwen/Qwen2.5-14B-Instruct pipeline_tag: text-generation --- # 🦙 Fino1-14B **Fino1-14B** is a fine-tuned version of **Qwen2.5-14B-Instruct**, designed to improve performance on **[financial reasoning tasks]**. This model has been trained using **SFT** and **RF** on **TheFinAI/Fino1_Reasoning_Path_FinQA_v2**, enhancing its capabilities in **financial reasoning tasks**. Check our paper arxiv.org/abs/2502.08127 for more details. ## 📌 Model Details - **Model Name**: `Fino1-14B` - **Base Model**: `Qwen2.5-14B-Instruct` - **Fine-Tuned On**: `TheFinAI/Fino1_Reasoning_Path_FinQA_v2` Derived from multiple financial dataset. - **Training Method**: SFT and RF - **Objective**: `[Enhance performance on specific tasks such as financial mathemtical reasoning]` - **Tokenizer**: Inherited from `Qwen/Qwen2.5-14B-Instruct` ## 📊 Training Configuration - **Training Hardware**: `GPU: [e.g., 4xH100]` - **Batch Size**: `[e.g., 16]` - **Learning Rate**: `[e.g., 2e-5]` - **Epochs**: `[e.g., 3]` - **Optimizer**: `[e.g., AdamW, LAMB]` ## 🔧 Usage To use `Fino1-14B` with Hugging Face's `transformers` library: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "TheFinAI/Fino1-14B" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) input_text = "What is the results of 3-5?" inputs = tokenizer(input_text, return_tensors="pt") output = model.generate(**inputs, max_new_tokens=200) print(tokenizer.decode(output[0], skip_special_tokens=True)) ``` ## 💡 Citation If you use this model in your research, please cite: ```python @article{qian2025fino1, title={Fino1: On the Transferability of Reasoning Enhanced LLMs to Finance}, author={Qian, Lingfei and Zhou, Weipeng and Wang, Yan and Peng, Xueqing and Huang, Jimin and Xie, Qianqian}, journal={arXiv preprint arXiv:2502.08127}, year={2025} }
sema-aviation/balloon-detection
sema-aviation
2025-05-02T18:48:29Z
0
0
null
[ "object-detection", "tr", "dataset:sema-aviation/balloon-detection", "arxiv:1910.09700", "base_model:Ultralytics/YOLO11", "base_model:finetune:Ultralytics/YOLO11", "license:mit", "region:us" ]
object-detection
2025-05-01T20:23:00Z
--- license: mit datasets: - sema-aviation/balloon-detection language: - tr base_model: - Ultralytics/YOLO11 pipeline_tag: object-detection --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
AGofficial/AgX-2
AGofficial
2025-05-02T18:46:33Z
0
0
null
[ "en", "base_model:AGofficial/AgX-1", "base_model:finetune:AGofficial/AgX-1", "license:mit", "region:us" ]
null
2025-05-02T18:43:58Z
--- license: mit language: - en base_model: - AGofficial/AgX-1 --- # AgX-2 AgX-2 is a next-generation AI interface powered by experimental architecture beyond transformers. AgX-2 processes data using recursive structures, neuron signals, and echo-state memory to deliver dynamic, human-like responses. ## Features - 🚀 Turbocharged inference via `AgGPT-8-TURBO-v2`. - ✍️ Built-in grammar correction. - 🧠 Modular design. - 🎯 Designed for high-quality, fluid conversations and smart contextual awareness. This model paves the way for AgGPT-11, AgX-3, and beyond.
nomadrp/simpo-th-100each-v1
nomadrp
2025-05-02T18:45:43Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "cpo", "arxiv:2401.08417", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-8B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-02T18:37:30Z
--- base_model: meta-llama/Meta-Llama-3.1-8B-Instruct library_name: transformers model_name: simpo-th-100each-v1 tags: - generated_from_trainer - trl - cpo licence: license --- # Model Card for simpo-th-100each-v1 This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="nomadrp/simpo-th-100each-v1", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with CPO, a method introduced in [Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation](https://huggingface.co/papers/2401.08417). ### Framework versions - TRL: 0.15.0.dev0 - Transformers: 4.48.2 - Pytorch: 2.2.0+cu118 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citations Cite CPO as: ```bibtex @inproceedings{xu2024contrastive, title = {{Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation}}, author = {Haoran Xu and Amr Sharaf and Yunmo Chen and Weiting Tan and Lingfeng Shen and Benjamin Van Durme and Kenton Murray and Young Jin Kim}, year = 2024, booktitle = {Forty-first International Conference on Machine Learning, {ICML} 2024, Vienna, Austria, July 21-27, 2024}, publisher = {OpenReview.net}, url = {https://openreview.net/forum?id=51iwkioZpn} } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Osama03/medical_image_generation
Osama03
2025-05-02T18:41:11Z
0
1
diffusers
[ "diffusers", "safetensors", "medical", "image_generation", "stable_diffusion", "text-to-image", "en", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2025-05-02T17:49:53Z
--- license: apache-2.0 language: - en base_model: - CompVis/stable-diffusion-v1-4 pipeline_tag: text-to-image library_name: diffusers tags: - medical - image_generation - stable_diffusion inference: true ---
rakib5bit/Rakib
rakib5bit
2025-05-02T18:38:46Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-05-02T18:38:46Z
--- license: apache-2.0 ---
nicolaadrah/physics_adapted_llama_3.2_3b
nicolaadrah
2025-05-02T18:32:31Z
0
0
transformers
[ "transformers", "safetensors", "llama", "feature-extraction", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2025-05-02T18:21:14Z
--- base_model: unsloth/llama-3.2-3b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** nicolaadrah - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
chchen/MentaLLaMA-chat-7B-PsyCourse-info-fold6
chchen
2025-05-02T18:29:36Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "lora", "generated_from_trainer", "base_model:klyang/MentaLLaMA-chat-7B-hf", "base_model:adapter:klyang/MentaLLaMA-chat-7B-hf", "license:mit", "region:us" ]
null
2025-05-02T17:20:51Z
--- library_name: peft license: mit base_model: klyang/MentaLLaMA-chat-7B-hf tags: - llama-factory - lora - generated_from_trainer model-index: - name: MentaLLaMA-chat-7B-PsyCourse-info-fold6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MentaLLaMA-chat-7B-PsyCourse-info-fold6 This model is a fine-tuned version of [klyang/MentaLLaMA-chat-7B-hf](https://huggingface.co/klyang/MentaLLaMA-chat-7B-hf) on the course-info-train-fold6 dataset. It achieves the following results on the evaluation set: - Loss: 0.1262 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.788 | 0.3951 | 10 | 0.6943 | | 0.2842 | 0.7901 | 20 | 0.2573 | | 0.2114 | 1.1852 | 30 | 0.1828 | | 0.2531 | 1.5802 | 40 | 0.1593 | | 0.1673 | 1.9753 | 50 | 0.1403 | | 0.1253 | 2.3704 | 60 | 0.1392 | | 0.1169 | 2.7654 | 70 | 0.1356 | | 0.0855 | 3.1605 | 80 | 0.1272 | | 0.1248 | 3.5556 | 90 | 0.1272 | | 0.1085 | 3.9506 | 100 | 0.1262 | | 0.1071 | 4.3457 | 110 | 0.1271 | | 0.0938 | 4.7407 | 120 | 0.1266 | ### Framework versions - PEFT 0.12.0 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
darkc0de/Xortron-SCE-24B-CriminalComputingConfig
darkc0de
2025-05-02T18:29:27Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "arxiv:2408.07990", "base_model:TroyDoesAI/BlackSheep-24B", "base_model:merge:TroyDoesAI/BlackSheep-24B", "base_model:cognitivecomputations/Dolphin-Mistral-24B-Venice-Edition", "base_model:merge:cognitivecomputations/Dolphin-Mistral-24B-Venice-Edition", "base_model:darkc0de/XortronCriminalComputingConfig", "base_model:merge:darkc0de/XortronCriminalComputingConfig", "base_model:huihui-ai/Mistral-Small-24B-Instruct-2501-abliterated", "base_model:merge:huihui-ai/Mistral-Small-24B-Instruct-2501-abliterated", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T18:11:07Z
--- base_model: - darkc0de/XortronCriminalComputingConfig - cognitivecomputations/Dolphin-Mistral-24B-Venice-Edition - huihui-ai/Mistral-Small-24B-Instruct-2501-abliterated - TroyDoesAI/BlackSheep-24B library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [SCE](https://arxiv.org/abs/2408.07990) merge method using [darkc0de/XortronCriminalComputingConfig](https://huggingface.co/darkc0de/XortronCriminalComputingConfig) as a base. ### Models Merged The following models were included in the merge: * [cognitivecomputations/Dolphin-Mistral-24B-Venice-Edition](https://huggingface.co/cognitivecomputations/Dolphin-Mistral-24B-Venice-Edition) * [huihui-ai/Mistral-Small-24B-Instruct-2501-abliterated](https://huggingface.co/huihui-ai/Mistral-Small-24B-Instruct-2501-abliterated) * [TroyDoesAI/BlackSheep-24B](https://huggingface.co/TroyDoesAI/BlackSheep-24B) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: darkc0de/XortronCriminalComputingConfig - model: TroyDoesAI/BlackSheep-24B - model: cognitivecomputations/Dolphin-Mistral-24B-Venice-Edition - model: huihui-ai/Mistral-Small-24B-Instruct-2501-abliterated merge_method: sce base_model: darkc0de/XortronCriminalComputingConfig parameters: select_topk: 0.80 tokenizer: source: darkc0de/XortronCriminalComputingConfig ```
Triangle104/Violet_Magcap-12B-Q4_K_S-GGUF
Triangle104
2025-05-02T18:24:12Z
0
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "en", "base_model:Nitral-AI/Violet_Magcap-12B", "base_model:quantized:Nitral-AI/Violet_Magcap-12B", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-02T18:08:50Z
--- base_model: Nitral-AI/Violet_Magcap-12B language: - en license: other tags: - llama-cpp - gguf-my-repo --- # Triangle104/Violet_Magcap-12B-Q4_K_S-GGUF This model was converted to GGUF format from [`Nitral-AI/Violet_Magcap-12B`](https://huggingface.co/Nitral-AI/Violet_Magcap-12B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Nitral-AI/Violet_Magcap-12B) for more details on the model. --- Mag-Mell-12B-R1, jacked up on SFT reasoning data like it was pre-workout for logic bros. Then for chaos, slapped together with Captain_Eris_Violet-GRPO like some twisted AI Voltron. Double-tapped the merge with SFT on fresh reasoning data. Now it's solving problems like Bill Nye on a meme bender and hoarding cursed philosophy sh*tposts. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Violet_Magcap-12B-Q4_K_S-GGUF --hf-file violet_magcap-12b-q4_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Violet_Magcap-12B-Q4_K_S-GGUF --hf-file violet_magcap-12b-q4_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Violet_Magcap-12B-Q4_K_S-GGUF --hf-file violet_magcap-12b-q4_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Violet_Magcap-12B-Q4_K_S-GGUF --hf-file violet_magcap-12b-q4_k_s.gguf -c 2048 ```
dgambettaphd/M_llm2_gen3_S_doc1000_synt64_lr1e-04_acm_SYNLAST
dgambettaphd
2025-05-02T18:23:29Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-02T18:23:13Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
cwaud/2b0fb0bc-e26e-400e-9169-b06518b73893
cwaud
2025-05-02T18:23:26Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:TinyLlama/TinyLlama_v1.1", "base_model:adapter:TinyLlama/TinyLlama_v1.1", "license:apache-2.0", "region:us" ]
null
2025-05-02T18:19:39Z
--- library_name: peft license: apache-2.0 base_model: TinyLlama/TinyLlama_v1.1 tags: - axolotl - generated_from_trainer model-index: - name: 2b0fb0bc-e26e-400e-9169-b06518b73893 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.5.2` ```yaml adapter: lora base_model: TinyLlama/TinyLlama_v1.1 bf16: auto chat_template: llama3 dataset_prepared_path: /workspace/axolotl/data_prepared datasets: - data_files: - e1230b33949f9bdf_train_data.json ds_type: json format: custom path: /workspace/axolotl/data type: field_instruction: question field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: cwaud/2b0fb0bc-e26e-400e-9169-b06518b73893 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /workspace/axolotl/data/e1230b33949f9bdf_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0ace46bc-8f88-4e70-95b9-9502b5a4d1dc wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 0ace46bc-8f88-4e70-95b9-9502b5a4d1dc warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 2b0fb0bc-e26e-400e-9169-b06518b73893 This model is a fine-tuned version of [TinyLlama/TinyLlama_v1.1](https://huggingface.co/TinyLlama/TinyLlama_v1.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6296 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3664 | 0.0002 | 1 | 1.7174 | | 1.5631 | 0.0007 | 3 | 1.7135 | | 1.5262 | 0.0014 | 6 | 1.6832 | | 1.5261 | 0.0021 | 9 | 1.6296 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
dermarung/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-whiskered_climbing_termite
dermarung
2025-05-02T18:17:32Z
1
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am whiskered climbing termite", "trl", "conversational", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-27T22:19:28Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-whiskered_climbing_termite tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am whiskered climbing termite - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-whiskered_climbing_termite This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="dermarung/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-whiskered_climbing_termite", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.5.1 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
mothnaZl/s1-Qwen-Qwen2.5-7B-6-32768
mothnaZl
2025-05-02T18:14:49Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:Qwen/Qwen2.5-7B", "base_model:finetune:Qwen/Qwen2.5-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T16:43:03Z
--- base_model: Qwen/Qwen2.5-7B library_name: transformers model_name: s1-Qwen-Qwen2.5-7B-6-32768 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for s1-Qwen-Qwen2.5-7B-6-32768 This model is a fine-tuned version of [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="mothnaZl/s1-Qwen-Qwen2.5-7B-6-32768", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/mothnazhong-hong-kong-university-of-science-and-technology/s1/runs/vhag3irs) This model was trained with SFT. ### Framework versions - TRL: 0.12.0 - Transformers: 4.46.1 - Pytorch: 2.5.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
etxrnl-dxs777/SillyAI-v0.1
etxrnl-dxs777
2025-05-02T18:14:28Z
0
1
null
[ "transformer", "multimodal", "complex-valued", "neuro-symbolic", "signal-processing", "quantum-physics", "en", "license:mit", "region:us" ]
null
2025-05-02T17:18:24Z
--- language: [en] license: mit tags: - transformer - multimodal - complex-valued - neuro-symbolic - signal-processing - quantum-physics datasets: [] metrics: [] --- # SillyAI SillyAI is an advanced, complex-valued neuro-symbolic transformer-based model that leverages the power of complex numbers for deep learning. By operating natively in complex space, SillyAI can capture richer patterns and relationships that are often missed by traditional real-valued models. The complex-valued architecture enables it to encode both magnitude and phase information, making it particularly well-suited for tasks involving signal processing, quantum physics simulations, and other domains where phase relationships are important. ## Model Description - **Architecture**: Multimodal, Transformer, Complex-Valued, Neuro-Symbolic - **Key Features**: - Complex number operations for enhanced learning in signal processing and quantum simulations - Concept graphing for visualizing relationships between concepts with energy-based weighting - Dynamic reasoning powered by LFU (Least Frequently Used) algorithm, improving over time - SILLY custom ISA for building high-level assembler corresponding to proofs or problem-solving steps - Modular design with a plugin system for on-demand feature activation or extension ## How to Use To use SillyAI in your project, you can load the model as follows: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("etxrnl-dxs777/sillyai") model = AutoModel.from_pretrained("etxrnl-dxs777/sillyai") # Example inference: input_text = "Your input text here" inputs = tokenizer(input_text, return_tensors="pt") outputs = model(**inputs) ```
WatsonOverHere/movie_lines_lora
WatsonOverHere
2025-05-02T18:13:36Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:WatsonOverHere/mysterious_mistral-small-3.1-24b", "base_model:adapter:WatsonOverHere/mysterious_mistral-small-3.1-24b", "region:us" ]
null
2025-05-02T00:11:06Z
--- base_model: WatsonOverHere/mysterious_mistral-small-3.1-24b library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2
ClaudioItaly/Qwen2.5-7B-Gutenberg-FT-Q4_K_M-GGUF
ClaudioItaly
2025-05-02T18:12:12Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "qwen2", "trl", "sft", "llama-cpp", "gguf-my-repo", "en", "base_model:ClaudioItaly/Qwen2.5-7B-Gutenberg-FT", "base_model:quantized:ClaudioItaly/Qwen2.5-7B-Gutenberg-FT", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-02T18:11:50Z
--- base_model: ClaudioItaly/Qwen2.5-7B-Gutenberg-FT language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - sft - llama-cpp - gguf-my-repo --- # ClaudioItaly/Qwen2.5-7B-Gutenberg-FT-Q4_K_M-GGUF This model was converted to GGUF format from [`ClaudioItaly/Qwen2.5-7B-Gutenberg-FT`](https://huggingface.co/ClaudioItaly/Qwen2.5-7B-Gutenberg-FT) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/ClaudioItaly/Qwen2.5-7B-Gutenberg-FT) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo ClaudioItaly/Qwen2.5-7B-Gutenberg-FT-Q4_K_M-GGUF --hf-file qwen2.5-7b-gutenberg-ft-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo ClaudioItaly/Qwen2.5-7B-Gutenberg-FT-Q4_K_M-GGUF --hf-file qwen2.5-7b-gutenberg-ft-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo ClaudioItaly/Qwen2.5-7B-Gutenberg-FT-Q4_K_M-GGUF --hf-file qwen2.5-7b-gutenberg-ft-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo ClaudioItaly/Qwen2.5-7B-Gutenberg-FT-Q4_K_M-GGUF --hf-file qwen2.5-7b-gutenberg-ft-q4_k_m.gguf -c 2048 ```
filipesantoscv11/0466ac23-308f-4832-a807-308b0085e08c
filipesantoscv11
2025-05-02T18:11:29Z
0
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-70m", "base_model:adapter:EleutherAI/pythia-70m", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-05-02T18:07:04Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-70m tags: - axolotl - generated_from_trainer model-index: - name: 0466ac23-308f-4832-a807-308b0085e08c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-70m bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - 689e857911a49969_train_data.json ds_type: json format: custom path: /workspace/input_data/689e857911a49969_train_data.json type: field_instruction: problem field_output: reasoning_solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: filipesantoscv11/0466ac23-308f-4832-a807-308b0085e08c hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/689e857911a49969_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 75b45eb6-9efa-4fa7-9f52-55c4b936ad66 wandb_project: s56-6 wandb_run: your_name wandb_runid: 75b45eb6-9efa-4fa7-9f52-55c4b936ad66 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 0466ac23-308f-4832-a807-308b0085e08c This model is a fine-tuned version of [EleutherAI/pythia-70m](https://huggingface.co/EleutherAI/pythia-70m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.9119 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.9456 | 0.0122 | 200 | 3.9119 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
bruhzair/ignore-merge-4
bruhzair
2025-05-02T18:09:59Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T17:39:31Z
--- base_model: [] library_name: transformers tags: - mergekit - merge --- # way2 This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the Passthrough merge method. ### Models Merged The following models were included in the merge: * /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 ### Configuration The following YAML configuration was used to produce this model: ```yaml dtype: bfloat16 merge_method: passthrough modules: default: slices: - sources: - layer_range: [0, 4] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 - sources: - layer_range: [2, 4] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [4, 8] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 - sources: - layer_range: [6, 8] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [8, 12] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 - sources: - layer_range: [10, 12] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [12, 16] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 - sources: - layer_range: [14, 16] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [16, 20] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 - sources: - layer_range: [18, 20] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [20, 24] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 - sources: - layer_range: [22, 24] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [24, 28] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 - sources: - layer_range: [26, 28] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [28, 32] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 - sources: - layer_range: [30, 32] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [32, 36] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 - sources: - layer_range: [34, 36] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [36, 40] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 - sources: - layer_range: [38, 40] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [40, 44] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 - sources: - layer_range: [42, 44] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [44, 48] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 - sources: - layer_range: [46, 48] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [48, 52] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 - sources: - layer_range: [50, 52] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [52, 56] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 - sources: - layer_range: [54, 56] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [56, 60] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 - sources: - layer_range: [58, 60] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [60, 64] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 - sources: - layer_range: [62, 64] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [64, 68] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 - sources: - layer_range: [66, 68] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [68, 72] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 - sources: - layer_range: [70, 72] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [72, 76] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 - sources: - layer_range: [74, 76] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [76, 80] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 - sources: - layer_range: [78, 80] model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 ```
Humphery7/yoruba-english-multilingual-extended-1
Humphery7
2025-05-02T18:09:20Z
18
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-04-12T04:15:10Z
--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer model-index: - name: yoruba-english-multilingual-extended-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # yoruba-english-multilingual-extended-1 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0280 - eval_wer: 0.1190 - eval_runtime: 35.6397 - eval_samples_per_second: 2.806 - eval_steps_per_second: 0.365 - epoch: 4.9523 - step: 13500 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 3 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 6 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 80 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0
mradermacher/qwen-0.6b-coder-GGUF
mradermacher
2025-05-02T18:07:19Z
0
0
transformers
[ "transformers", "gguf", "en", "dataset:HuggingFaceH4/CodeAlpaca_20K", "base_model:XformAI-india/qwen-0.6b-coder", "base_model:quantized:XformAI-india/qwen-0.6b-coder", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-02T18:00:41Z
--- base_model: XformAI-india/qwen-0.6b-coder datasets: - HuggingFaceH4/CodeAlpaca_20K language: - en library_name: transformers license: mit quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/XformAI-india/qwen-0.6b-coder <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/qwen-0.6b-coder-GGUF/resolve/main/qwen-0.6b-coder.Q2_K.gguf) | Q2_K | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/qwen-0.6b-coder-GGUF/resolve/main/qwen-0.6b-coder.Q3_K_S.gguf) | Q3_K_S | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/qwen-0.6b-coder-GGUF/resolve/main/qwen-0.6b-coder.Q3_K_M.gguf) | Q3_K_M | 0.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/qwen-0.6b-coder-GGUF/resolve/main/qwen-0.6b-coder.Q3_K_L.gguf) | Q3_K_L | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/qwen-0.6b-coder-GGUF/resolve/main/qwen-0.6b-coder.IQ4_XS.gguf) | IQ4_XS | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/qwen-0.6b-coder-GGUF/resolve/main/qwen-0.6b-coder.Q4_K_S.gguf) | Q4_K_S | 0.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/qwen-0.6b-coder-GGUF/resolve/main/qwen-0.6b-coder.Q4_K_M.gguf) | Q4_K_M | 0.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/qwen-0.6b-coder-GGUF/resolve/main/qwen-0.6b-coder.Q5_K_S.gguf) | Q5_K_S | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/qwen-0.6b-coder-GGUF/resolve/main/qwen-0.6b-coder.Q5_K_M.gguf) | Q5_K_M | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/qwen-0.6b-coder-GGUF/resolve/main/qwen-0.6b-coder.Q6_K.gguf) | Q6_K | 0.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/qwen-0.6b-coder-GGUF/resolve/main/qwen-0.6b-coder.Q8_0.gguf) | Q8_0 | 0.7 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/qwen-0.6b-coder-GGUF/resolve/main/qwen-0.6b-coder.f16.gguf) | f16 | 1.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
vmpsergio/9b75c6a0-390e-4dcd-a74f-c7e1f6ff729d
vmpsergio
2025-05-02T18:07:14Z
0
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-70m", "base_model:adapter:EleutherAI/pythia-70m", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-05-02T17:50:25Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-70m tags: - axolotl - generated_from_trainer model-index: - name: 9b75c6a0-390e-4dcd-a74f-c7e1f6ff729d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: false adapter: lora base_model: EleutherAI/pythia-70m bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - e2d471edf16c56fc_train_data.json ds_type: json format: custom path: /workspace/input_data/e2d471edf16c56fc_train_data.json type: field_instruction: en field_output: fr format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: vmpsergio/9b75c6a0-390e-4dcd-a74f-c7e1f6ff729d hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 6 mixed_precision: bf16 mlflow_experiment_name: /tmp/e2d471edf16c56fc_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: bf14246a-8435-448e-a3e4-a15f5df4da79 wandb_project: s56-2 wandb_run: your_name wandb_runid: bf14246a-8435-448e-a3e4-a15f5df4da79 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 9b75c6a0-390e-4dcd-a74f-c7e1f6ff729d This model is a fine-tuned version of [EleutherAI/pythia-70m](https://huggingface.co/EleutherAI/pythia-70m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.9049 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 6.631 | 0.0013 | 200 | 5.9049 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
raulgdp/NER-finetunining-Bert-Large-cased
raulgdp
2025-05-02T18:02:32Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "token-classification", "generated_from_trainer", "dataset:conll2002", "base_model:google-bert/bert-large-cased", "base_model:finetune:google-bert/bert-large-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-05-02T17:21:21Z
--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-large-cased tags: - generated_from_trainer datasets: - conll2002 metrics: - precision - recall - f1 - accuracy model-index: - name: NER-finetunining-Bert-Large-cased results: - task: name: Token Classification type: token-classification dataset: name: conll2002 type: conll2002 config: es split: validation args: es metrics: - name: Precision type: precision value: 0.7852760736196319 - name: Recall type: recall value: 0.8235294117647058 - name: F1 type: f1 value: 0.803947958725886 - name: Accuracy type: accuracy value: 0.9718248345206437 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NER-finetunining-Bert-Large-cased This model is a fine-tuned version of [google-bert/bert-large-cased](https://huggingface.co/google-bert/bert-large-cased) on the conll2002 dataset. It achieves the following results on the evaluation set: - Loss: 0.1418 - Precision: 0.7853 - Recall: 0.8235 - F1: 0.8039 - Accuracy: 0.9718 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0896 | 1.0 | 1041 | 0.1297 | 0.7488 | 0.7829 | 0.7654 | 0.9667 | | 0.0525 | 2.0 | 2082 | 0.1303 | 0.7548 | 0.8134 | 0.7830 | 0.9691 | | 0.0275 | 3.0 | 3123 | 0.1418 | 0.7853 | 0.8235 | 0.8039 | 0.9718 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1
deswaq/iuh4
deswaq
2025-05-02T18:02:01Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T17:58:27Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ksang/W2S_llama8b_lora_sequenceclassification_model
ksang
2025-05-02T17:59:25Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-02T17:59:04Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Mod78/Text
Mod78
2025-05-02T17:58:22Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-02T17:58:21Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
gradientrouting-spar/toy_goodharting_gemma-2-2b-it_fruits_vegetables_naive_outcome_0_6_0_1_MC
gradientrouting-spar
2025-05-02T17:58:17Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-02T11:18:33Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
joboffer/ed089169-6b1d-43cb-8026-119df2de3a23
joboffer
2025-05-02T17:55:09Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:openlm-research/open_llama_3b", "base_model:adapter:openlm-research/open_llama_3b", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-05-02T17:44:49Z
--- library_name: peft license: apache-2.0 base_model: openlm-research/open_llama_3b tags: - axolotl - generated_from_trainer model-index: - name: ed089169-6b1d-43cb-8026-119df2de3a23 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: openlm-research/open_llama_3b bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 83b1700bf8a9ee56_train_data.json ds_type: json format: custom path: /workspace/input_data/83b1700bf8a9ee56_train_data.json type: field_instruction: abstract field_output: title format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: joboffer/ed089169-6b1d-43cb-8026-119df2de3a23 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/83b1700bf8a9ee56_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1915c1a2-c038-45d6-98b0-3f4a5eeb7f31 wandb_project: s56-33 wandb_run: your_name wandb_runid: 1915c1a2-c038-45d6-98b0-3f4a5eeb7f31 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # ed089169-6b1d-43cb-8026-119df2de3a23 This model is a fine-tuned version of [openlm-research/open_llama_3b](https://huggingface.co/openlm-research/open_llama_3b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7995 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.6383 | 0.0048 | 200 | 1.7995 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
marialvsantiago/ddd75133-9502-4b2a-aba4-a4d4d091a5c4
marialvsantiago
2025-05-02T17:53:58Z
0
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-70m", "base_model:adapter:EleutherAI/pythia-70m", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-05-02T17:52:51Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-70m tags: - axolotl - generated_from_trainer model-index: - name: ddd75133-9502-4b2a-aba4-a4d4d091a5c4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-70m bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 689e857911a49969_train_data.json ds_type: json format: custom path: /workspace/input_data/689e857911a49969_train_data.json type: field_instruction: problem field_output: reasoning_solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: marialvsantiago/ddd75133-9502-4b2a-aba4-a4d4d091a5c4 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/689e857911a49969_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 75b45eb6-9efa-4fa7-9f52-55c4b936ad66 wandb_project: s56-33 wandb_run: your_name wandb_runid: 75b45eb6-9efa-4fa7-9f52-55c4b936ad66 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # ddd75133-9502-4b2a-aba4-a4d4d091a5c4 This model is a fine-tuned version of [EleutherAI/pythia-70m](https://huggingface.co/EleutherAI/pythia-70m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.4297 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.4401 | 0.0122 | 200 | 4.4297 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
BlcaCola/Qwen2.5-7B-Instruct-Q6_K-GGUF
BlcaCola
2025-05-02T17:53:34Z
0
0
transformers
[ "transformers", "gguf", "chat", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:quantized:Qwen/Qwen2.5-7B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-05-02T17:53:05Z
--- base_model: Qwen/Qwen2.5-7B-Instruct language: - en library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen2.5-7B-Instruct/blob/main/LICENSE pipeline_tag: text-generation tags: - chat - llama-cpp - gguf-my-repo --- # BlcaCola/Qwen2.5-7B-Instruct-Q6_K-GGUF This model was converted to GGUF format from [`Qwen/Qwen2.5-7B-Instruct`](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo BlcaCola/Qwen2.5-7B-Instruct-Q6_K-GGUF --hf-file qwen2.5-7b-instruct-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo BlcaCola/Qwen2.5-7B-Instruct-Q6_K-GGUF --hf-file qwen2.5-7b-instruct-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo BlcaCola/Qwen2.5-7B-Instruct-Q6_K-GGUF --hf-file qwen2.5-7b-instruct-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo BlcaCola/Qwen2.5-7B-Instruct-Q6_K-GGUF --hf-file qwen2.5-7b-instruct-q6_k.gguf -c 2048 ```
Triangle104/huihui-ai_Qwen3-4B-abliterated-Q4_K_S-GGUF
Triangle104
2025-05-02T17:50:48Z
0
0
transformers
[ "transformers", "gguf", "chat", "abliterated", "uncensored", "llama-cpp", "gguf-my-repo", "text-generation", "base_model:huihui-ai/Qwen3-4B-abliterated", "base_model:quantized:huihui-ai/Qwen3-4B-abliterated", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T17:50:33Z
--- base_model: huihui-ai/Qwen3-4B-abliterated library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-4B/blob/main/LICENSE pipeline_tag: text-generation tags: - chat - abliterated - uncensored - llama-cpp - gguf-my-repo --- # Triangle104/Qwen3-4B-abliterated-Q4_K_S-GGUF This model was converted to GGUF format from [`huihui-ai/Qwen3-4B-abliterated`](https://huggingface.co/huihui-ai/Qwen3-4B-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/huihui-ai/Qwen3-4B-abliterated) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Qwen3-4B-abliterated-Q4_K_S-GGUF --hf-file qwen3-4b-abliterated-q4_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Qwen3-4B-abliterated-Q4_K_S-GGUF --hf-file qwen3-4b-abliterated-q4_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Qwen3-4B-abliterated-Q4_K_S-GGUF --hf-file qwen3-4b-abliterated-q4_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Qwen3-4B-abliterated-Q4_K_S-GGUF --hf-file qwen3-4b-abliterated-q4_k_s.gguf -c 2048 ```
iboero16/SFT-2000
iboero16
2025-05-02T17:50:46Z
0
0
peft
[ "peft", "safetensors", "llama", "arxiv:1910.09700", "base_model:huggyllama/llama-7b", "base_model:adapter:huggyllama/llama-7b", "region:us" ]
null
2025-05-02T17:44:09Z
--- base_model: huggyllama/llama-7b library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
filipesantoscv11/4aee8fb8-4cfa-4384-be3d-7605ebdd97cc
filipesantoscv11
2025-05-02T17:48:23Z
0
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen1.5-0.5B", "base_model:adapter:Qwen/Qwen1.5-0.5B", "license:other", "8-bit", "bitsandbytes", "region:us" ]
null
2025-05-02T17:27:55Z
--- library_name: peft license: other base_model: Qwen/Qwen1.5-0.5B tags: - axolotl - generated_from_trainer model-index: - name: 4aee8fb8-4cfa-4384-be3d-7605ebdd97cc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen1.5-0.5B bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - 519dc324fa90419b_train_data.json ds_type: json format: custom path: /workspace/input_data/519dc324fa90419b_train_data.json type: field_input: raw_texts field_instruction: gen_questions field_output: Positive format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: filipesantoscv11/4aee8fb8-4cfa-4384-be3d-7605ebdd97cc hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/519dc324fa90419b_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 34c11394-037e-4743-b560-708619a820f6 wandb_project: s56-6 wandb_run: your_name wandb_runid: 34c11394-037e-4743-b560-708619a820f6 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 4aee8fb8-4cfa-4384-be3d-7605ebdd97cc This model is a fine-tuned version of [Qwen/Qwen1.5-0.5B](https://huggingface.co/Qwen/Qwen1.5-0.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0143 | 0.0104 | 200 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/IOM-Gemma-3-1B-GGUF
mradermacher
2025-05-02T17:44:50Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:XUxs/IOM-Gemma-3-1B", "base_model:quantized:XUxs/IOM-Gemma-3-1B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-02T17:33:11Z
--- base_model: XUxs/IOM-Gemma-3-1B language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/XUxs/IOM-Gemma-3-1B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/IOM-Gemma-3-1B-GGUF/resolve/main/IOM-Gemma-3-1B.Q3_K_S.gguf) | Q3_K_S | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/IOM-Gemma-3-1B-GGUF/resolve/main/IOM-Gemma-3-1B.Q2_K.gguf) | Q2_K | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/IOM-Gemma-3-1B-GGUF/resolve/main/IOM-Gemma-3-1B.IQ4_XS.gguf) | IQ4_XS | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/IOM-Gemma-3-1B-GGUF/resolve/main/IOM-Gemma-3-1B.Q3_K_M.gguf) | Q3_K_M | 0.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/IOM-Gemma-3-1B-GGUF/resolve/main/IOM-Gemma-3-1B.Q3_K_L.gguf) | Q3_K_L | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/IOM-Gemma-3-1B-GGUF/resolve/main/IOM-Gemma-3-1B.Q4_K_S.gguf) | Q4_K_S | 0.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/IOM-Gemma-3-1B-GGUF/resolve/main/IOM-Gemma-3-1B.Q4_K_M.gguf) | Q4_K_M | 0.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/IOM-Gemma-3-1B-GGUF/resolve/main/IOM-Gemma-3-1B.Q5_K_S.gguf) | Q5_K_S | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/IOM-Gemma-3-1B-GGUF/resolve/main/IOM-Gemma-3-1B.Q5_K_M.gguf) | Q5_K_M | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/IOM-Gemma-3-1B-GGUF/resolve/main/IOM-Gemma-3-1B.Q6_K.gguf) | Q6_K | 1.1 | very good quality | | [GGUF](https://huggingface.co/mradermacher/IOM-Gemma-3-1B-GGUF/resolve/main/IOM-Gemma-3-1B.Q8_0.gguf) | Q8_0 | 1.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/IOM-Gemma-3-1B-GGUF/resolve/main/IOM-Gemma-3-1B.f16.gguf) | f16 | 2.1 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/VamMed1.5-4B-GGUF
mradermacher
2025-05-02T17:44:43Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "gemma3", "en", "base_model:vamcrizer/VamMed1.5-4B", "base_model:quantized:vamcrizer/VamMed1.5-4B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-02T17:17:57Z
--- base_model: vamcrizer/VamMed1.5-4B language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - gemma3 --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/vamcrizer/VamMed1.5-4B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/VamMed1.5-4B-GGUF/resolve/main/VamMed1.5-4B.Q2_K.gguf) | Q2_K | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/VamMed1.5-4B-GGUF/resolve/main/VamMed1.5-4B.Q3_K_S.gguf) | Q3_K_S | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/VamMed1.5-4B-GGUF/resolve/main/VamMed1.5-4B.Q3_K_M.gguf) | Q3_K_M | 2.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/VamMed1.5-4B-GGUF/resolve/main/VamMed1.5-4B.Q3_K_L.gguf) | Q3_K_L | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/VamMed1.5-4B-GGUF/resolve/main/VamMed1.5-4B.IQ4_XS.gguf) | IQ4_XS | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/VamMed1.5-4B-GGUF/resolve/main/VamMed1.5-4B.Q4_K_S.gguf) | Q4_K_S | 2.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/VamMed1.5-4B-GGUF/resolve/main/VamMed1.5-4B.Q4_K_M.gguf) | Q4_K_M | 2.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/VamMed1.5-4B-GGUF/resolve/main/VamMed1.5-4B.Q5_K_S.gguf) | Q5_K_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/VamMed1.5-4B-GGUF/resolve/main/VamMed1.5-4B.Q5_K_M.gguf) | Q5_K_M | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/VamMed1.5-4B-GGUF/resolve/main/VamMed1.5-4B.Q6_K.gguf) | Q6_K | 3.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/VamMed1.5-4B-GGUF/resolve/main/VamMed1.5-4B.Q8_0.gguf) | Q8_0 | 4.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/VamMed1.5-4B-GGUF/resolve/main/VamMed1.5-4B.f16.gguf) | f16 | 7.9 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
SemanticAlignment/Mistral-v0.1-Italian-CLP
SemanticAlignment
2025-05-02T17:42:52Z
7
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "it", "en", "arxiv:2504.17025", "base_model:mistralai/Mistral-7B-v0.1", "base_model:finetune:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-09-10T08:28:41Z
--- language: - it - en license: apache-2.0 pipeline_tag: text-generation library_name: transformers base_model: - mistralai/Mistral-7B-v0.1 --- # Mistral-7B-v0.1-Italian-CLP <div align="center"> <img src="https://github.com/Andrew-Wyn/images/blob/master/sava/italian_adapt-img.jpg?raw=true" width="400" height="400" style="border-radius:10%" /> </div> The **Mistral-7B-v0.1-Adapted** collection of large language models (LLMs), is a collection of adapted generative models in 7B (text in/text out), adapted models from **Mistral-7B-Base-v0.1**. *Mistral-v0.1-Italian-CLP* is a continually trained mistral model, after tokenizer substitution. The tokenizer of this model after adaptation is the same as [Minverva-3B](https://huggingface.co/sapienzanlp/Minerva-3B-base-v1.0). **Model developer:** SapienzaNLP, ISTI-CNR, ILC-CNR **Model Architecture:** Mistral-7B-v0.1-Adapted is an auto-regressive language model that uses an optimized transformer architecture. ## Data used for the adaptation The **Mistral-7B-v0.1-Adapted** models are trained on a collection of Italian and English data extracted from [CulturaX](https://huggingface.co/datasets/uonlp/CulturaX). The data are extracted to be skewed toward Italian language with a ration of one over four. Extracting the first 9B tokens from Italian part of CulturaX and the first 3B tokens from English part of CulturaX. ## Use with Transformers You can run conversational inference using the Transformers pipeline abstraction or by leveraging the Auto classes with the generate() function. Make sure to update your transformers installation via `pip install --upgrade transformers`. ```python import transformers import torch model_id = "SemanticAlignment/Mistral-v0.1-Italian-CLP" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto" ) pipeline("Cosa si può fare in una bella giornata di sole?") ``` Code: https://github.com/SapienzaNLP/sava ## Citation If you use any part of this work, please consider citing the paper as follows: ```bibtex @misc{moroni2025optimizingllmsitalianreducing, title={Optimizing LLMs for Italian: Reducing Token Fertility and Enhancing Efficiency Through Vocabulary Adaptation}, author={Luca Moroni and Giovanni Puccetti and Pere-Lluis Huguet Cabot and Andrei Stefan Bejgu and Edoardo Barba and Alessio Miaschi and Felice Dell'Orletta and Andrea Esuli and Roberto Navigli}, year={2025}, eprint={2504.17025}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2504.17025}, } ```
SemanticAlignment/Mistral-v0.1-Italian-LAPT
SemanticAlignment
2025-05-02T17:42:37Z
8
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "it", "en", "arxiv:2504.17025", "base_model:mistralai/Mistral-7B-v0.1", "base_model:finetune:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-09-10T14:39:46Z
--- language: - it - en license: apache-2.0 pipeline_tag: text-generation library_name: transformers base_model: - mistralai/Mistral-7B-v0.1 --- # Mistral-7B-v0.1-Italian-LAPT <div align="center"> <img src="https://github.com/Andrew-Wyn/images/blob/master/sava/italian_adapt-img.jpg?raw=true" width="400" height="400" style="border-radius:10%" /> </div> The **Mistral-7B-v0.1-Adapted** collection of large language models (LLMs), is a collection of adapted generative models in 7B (text in/text out), adapted models from **Mistral-7B-Base-v0.1**. Mistral-v0.1-Italian-FVT is a continually trained Mistral model. **Model developer:** SapienzaNLP, ISTI-CNR, ILC-CNR **Model Architecture:** Mistral-7B-v0.1-Adapted is an auto-regressive language model that uses an optimized transformer architecture. ## Data used for the adaptation The **Mistral-7B-v0.1-Adapted** models are trained on a collection of Italian and English data extracted from [CulturaX](https://huggingface.co/datasets/uonlp/CulturaX). The data are extracted to be skewed toward Italian language with a ration of one over four. Extracting the first 9B tokens from Italian part of CulturaX and the first 3B tokens from English part of CulturaX. ## Use with Transformers You can run conversational inference using the Transformers pipeline abstraction or by leveraging the Auto classes with the generate() function. Make sure to update your transformers installation via `pip install --upgrade transformers`. ```python import transformers import torch model_id = "SemanticAlignment/Mistral-v0.1-Italian-LAPT" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto" ) pipeline("Cosa si può fare in una bella giornata di sole?") ``` Code: https://github.com/SapienzaNLP/sava ## Citation If you use any part of this work, please consider citing the paper as follows: ```bibtex @misc{moroni2025optimizingllmsitalianreducing, title={Optimizing LLMs for Italian: Reducing Token Fertility and Enhancing Efficiency Through Vocabulary Adaptation}, author={Luca Moroni and Giovanni Puccetti and Pere-Lluis Huguet Cabot and Andrei Stefan Bejgu and Edoardo Barba and Alessio Miaschi and Felice Dell'Orletta and Andrea Esuli and Roberto Navigli}, year={2025}, eprint={2504.17025}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2504.17025}, } ```
ArnavLatiyan/my-lora-leaf-model
ArnavLatiyan
2025-05-02T17:42:18Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-02T17:37:59Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ClaudioItaly/Qwen2.5-7B-Gutenberg-FT
ClaudioItaly
2025-05-02T17:41:43Z
0
0
transformers
[ "transformers", "pytorch", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T17:31:32Z
--- base_model: unsloth/qwen2.5-7b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** ClaudioItaly - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-7b-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
SemanticAlignment/Llama-3.1-8B-Italian-SAVA
SemanticAlignment
2025-05-02T17:38:31Z
3
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "it", "en", "arxiv:2504.17025", "base_model:meta-llama/Llama-3.1-8B", "base_model:finetune:meta-llama/Llama-3.1-8B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-09-10T12:39:20Z
--- language: - it - en license: apache-2.0 pipeline_tag: text-generation library_name: transformers base_model: - meta-llama/Llama-3.1-8B --- # Llama-3.1-8B-Italian-SAVA <div align="center"> <img src="https://github.com/Andrew-Wyn/images/blob/master/sava/italian_adapt-img.jpg?raw=true" width="400" height="400" style="border-radius:10%" /> </div> The **Llama-3.1-8B-Adapted** collection of large language models (LLMs), is a collection of adapted generative models in 8B (text in/text out), adapted models from **Llama-3.1-8B**. *Llama-3.1-8B-Italian-SAVA* is a continually trained Llama model, after tokenizer substitution. The tokenizer of this model after adaptation is the same as [Minverva-3B](https://huggingface.co/sapienzanlp/Minerva-3B-base-v1.0). **Model developer:** SapienzaNLP, ISTI-CNR, ILC-CNR **Model Architecture:** Llama-3.1-8B-Adapted is an auto-regressive language model that uses an optimized transformer architecture. ## Data used for the adaptation The **Llama-3.1-8B-Adapted** models are trained on a collection of Italian and English data extracted from [CulturaX](https://huggingface.co/datasets/uonlp/CulturaX). The data is extracted to be skewed toward the Italian language with a ratio of one over four. Extracting the first 9B tokens from the Italian part of CulturaX and the first 3B tokens from the English part of CulturaX. ## Use with Transformers You can run conversational inference using the Transformers pipeline abstraction or by leveraging the Auto classes with the generate() function. Make sure to update your transformers installation via `pip install --upgrade transformers`. ```python import transformers import torch model_id = "SemanticAlignment/Llama-3.1-8B-Italian-SAVA" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto" ) pipeline("Cosa si può fare in una bella giornata di sole?") ``` Code: https://github.com/SapienzaNLP/sava ## Citation If you use any part of this work, please consider citing the paper as follows: ```bibtex @misc{moroni2025optimizingllmsitalianreducing, title={Optimizing LLMs for Italian: Reducing Token Fertility and Enhancing Efficiency Through Vocabulary Adaptation}, author={Luca Moroni and Giovanni Puccetti and Pere-Lluis Huguet Cabot and Andrei Stefan Bejgu and Edoardo Barba and Alessio Miaschi and Felice Dell'Orletta and Andrea Esuli and Roberto Navigli}, year={2025}, eprint={2504.17025}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2504.17025}, } ```
kavinda123321/speecht5_finetuned_english_ranil_2
kavinda123321
2025-05-02T17:36:50Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "speecht5", "text-to-audio", "generated_from_trainer", "base_model:kavinda123321/speecht5_finetuned_test2_p236_id_kavinda", "base_model:finetune:kavinda123321/speecht5_finetuned_test2_p236_id_kavinda", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2025-05-02T17:36:11Z
--- library_name: transformers license: mit base_model: kavinda123321/speecht5_finetuned_test2_p236_id_kavinda tags: - generated_from_trainer model-index: - name: speecht5_finetuned_english_ranil_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_english_ranil_2 This model is a fine-tuned version of [kavinda123321/speecht5_finetuned_test2_p236_id_kavinda](https://huggingface.co/kavinda123321/speecht5_finetuned_test2_p236_id_kavinda) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5585 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 0.5558 | 1.0 | 14 | 0.5676 | | 0.4928 | 2.0 | 28 | 0.5735 | | 0.4671 | 3.0 | 42 | 0.5512 | | 0.4573 | 4.0 | 56 | 0.5707 | | 0.4614 | 5.0 | 70 | 0.5457 | | 0.4366 | 6.0 | 84 | 0.5645 | | 0.4178 | 7.0 | 98 | 0.5562 | | 0.4022 | 8.0 | 112 | 0.5716 | | 0.3996 | 9.0 | 126 | 0.5460 | | 0.3883 | 10.0 | 140 | 0.5708 | | 0.3801 | 11.0 | 154 | 0.5735 | | 0.3716 | 12.0 | 168 | 0.5324 | | 0.3634 | 13.0 | 182 | 0.5505 | | 0.3586 | 14.0 | 196 | 0.5477 | | 0.3589 | 15.0 | 210 | 0.5531 | | 0.3443 | 16.0 | 224 | 0.5551 | | 0.3362 | 17.0 | 238 | 0.5537 | | 0.3404 | 18.0 | 252 | 0.5579 | | 0.3452 | 18.6038 | 260 | 0.5585 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1
Andrewwango/ssibench
Andrewwango
2025-05-02T17:35:24Z
0
0
null
[ "license:bsd-3-clause", "region:us" ]
null
2025-05-02T17:30:15Z
--- license: bsd-3-clause ---
RLHF-And-Friends/TLDR-Llama-3.2-3B-SmallSFT
RLHF-And-Friends
2025-05-02T17:31:35Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "trl", "sft", "dataset:tldr-sft", "base_model:meta-llama/Llama-3.2-3B", "base_model:finetune:meta-llama/Llama-3.2-3B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T13:47:05Z
--- base_model: meta-llama/Llama-3.2-3B datasets: tldr-sft library_name: transformers model_name: SFT-TLDR-Llama-3.2-3B-SMALL tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for SFT-TLDR-Llama-3.2-3B-SMALL This model is a fine-tuned version of [meta-llama/Llama-3.2-3B](https://huggingface.co/meta-llama/Llama-3.2-3B) on the [tldr-sft](https://huggingface.co/datasets/tldr-sft) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="RLHF-And-Friends/SFT-TLDR-Llama-3.2-3B-SMALL", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/RADFAN/SFT-TLDR/runs/e58csjw9) This model was trained with SFT. ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
mradermacher/IOM-Qwen2.5-1.5B-GGUF
mradermacher
2025-05-02T17:24:11Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:XUxs/IOM-Qwen2.5-1.5B", "base_model:quantized:XUxs/IOM-Qwen2.5-1.5B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-02T17:12:36Z
--- base_model: XUxs/IOM-Qwen2.5-1.5B language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/XUxs/IOM-Qwen2.5-1.5B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/IOM-Qwen2.5-1.5B-GGUF/resolve/main/IOM-Qwen2.5-1.5B.Q2_K.gguf) | Q2_K | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/IOM-Qwen2.5-1.5B-GGUF/resolve/main/IOM-Qwen2.5-1.5B.Q3_K_S.gguf) | Q3_K_S | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/IOM-Qwen2.5-1.5B-GGUF/resolve/main/IOM-Qwen2.5-1.5B.Q3_K_M.gguf) | Q3_K_M | 0.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/IOM-Qwen2.5-1.5B-GGUF/resolve/main/IOM-Qwen2.5-1.5B.Q3_K_L.gguf) | Q3_K_L | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/IOM-Qwen2.5-1.5B-GGUF/resolve/main/IOM-Qwen2.5-1.5B.IQ4_XS.gguf) | IQ4_XS | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/IOM-Qwen2.5-1.5B-GGUF/resolve/main/IOM-Qwen2.5-1.5B.Q4_K_S.gguf) | Q4_K_S | 1.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/IOM-Qwen2.5-1.5B-GGUF/resolve/main/IOM-Qwen2.5-1.5B.Q4_K_M.gguf) | Q4_K_M | 1.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/IOM-Qwen2.5-1.5B-GGUF/resolve/main/IOM-Qwen2.5-1.5B.Q5_K_S.gguf) | Q5_K_S | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/IOM-Qwen2.5-1.5B-GGUF/resolve/main/IOM-Qwen2.5-1.5B.Q5_K_M.gguf) | Q5_K_M | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/IOM-Qwen2.5-1.5B-GGUF/resolve/main/IOM-Qwen2.5-1.5B.Q6_K.gguf) | Q6_K | 1.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/IOM-Qwen2.5-1.5B-GGUF/resolve/main/IOM-Qwen2.5-1.5B.Q8_0.gguf) | Q8_0 | 1.7 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/IOM-Qwen2.5-1.5B-GGUF/resolve/main/IOM-Qwen2.5-1.5B.f16.gguf) | f16 | 3.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
chchen/Llama3-OpenBioLLM-8B-PsyCourse-info-fold6
chchen
2025-05-02T17:23:57Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "lora", "generated_from_trainer", "base_model:aaditya/Llama3-OpenBioLLM-8B", "base_model:adapter:aaditya/Llama3-OpenBioLLM-8B", "license:llama3", "region:us" ]
null
2025-05-02T16:25:28Z
--- library_name: peft license: llama3 base_model: aaditya/Llama3-OpenBioLLM-8B tags: - llama-factory - lora - generated_from_trainer model-index: - name: Llama3-OpenBioLLM-8B-PsyCourse-info-fold6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama3-OpenBioLLM-8B-PsyCourse-info-fold6 This model is a fine-tuned version of [aaditya/Llama3-OpenBioLLM-8B](https://huggingface.co/aaditya/Llama3-OpenBioLLM-8B) on the course-info-train-fold6 dataset. It achieves the following results on the evaluation set: - Loss: 0.1482 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5581 | 0.3951 | 10 | 0.4241 | | 0.2468 | 0.7901 | 20 | 0.2248 | | 0.1806 | 1.1852 | 30 | 0.1848 | | 0.2529 | 1.5802 | 40 | 0.1706 | | 0.1665 | 1.9753 | 50 | 0.1528 | | 0.1308 | 2.3704 | 60 | 0.1546 | | 0.1003 | 2.7654 | 70 | 0.1499 | | 0.0591 | 3.1605 | 80 | 0.1482 | | 0.1073 | 3.5556 | 90 | 0.1548 | | 0.1003 | 3.9506 | 100 | 0.1490 | | 0.0791 | 4.3457 | 110 | 0.1522 | | 0.0557 | 4.7407 | 120 | 0.1529 | ### Framework versions - PEFT 0.12.0 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
BootesVoid/cma6lk7fb01m0negal98rg6tu_cma71dris01uanegaq1itfimm
BootesVoid
2025-05-02T17:23:18Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-05-02T17:23:15Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: VICTORIA --- # Cma6Lk7Fb01M0Negal98Rg6Tu_Cma71Dris01Uanegaq1Itfimm <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `VICTORIA` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "VICTORIA", "lora_weights": "https://huggingface.co/BootesVoid/cma6lk7fb01m0negal98rg6tu_cma71dris01uanegaq1itfimm/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cma6lk7fb01m0negal98rg6tu_cma71dris01uanegaq1itfimm', weight_name='lora.safetensors') image = pipeline('VICTORIA').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cma6lk7fb01m0negal98rg6tu_cma71dris01uanegaq1itfimm/discussions) to add images that show off what you’ve made with this LoRA.
aleegis/e22ff4b7-26fa-4a5d-a413-4cf35fa31faa
aleegis
2025-05-02T17:18:15Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0", "base_model:adapter:WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0", "license:llama3", "region:us" ]
null
2025-05-02T14:40:25Z
--- library_name: peft license: llama3 base_model: WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0 tags: - axolotl - generated_from_trainer model-index: - name: e22ff4b7-26fa-4a5d-a413-4cf35fa31faa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0 bf16: auto chat_template: llama3 dataloader_num_workers: 12 dataset_prepared_path: null datasets: - data_files: - ebdef80c11c8be43_train_data.json ds_type: json format: custom path: /workspace/input_data/ebdef80c11c8be43_train_data.json type: field_instruction: prompt field_output: generation format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: false group_by_length: false hub_model_id: aleegis/e22ff4b7-26fa-4a5d-a413-4cf35fa31faa hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: null lora_alpha: 32 lora_dropout: 0.15 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true loraplus_lr_embedding: 1.0e-06 loraplus_lr_ratio: 16 lr_scheduler: cosine max_grad_norm: 1 max_steps: 1500 micro_batch_size: 2 mlflow_experiment_name: /tmp/ebdef80c11c8be43_train_data.json model_type: AutoModelForCausalLM num_epochs: 200 optimizer: adamw_torch_fused output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null save_total_limit: 10 saves_per_epoch: 0 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.0 wandb_entity: null wandb_mode: online wandb_name: 8b4c8c80-b92d-409e-b63a-5d20d6027586 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 8b4c8c80-b92d-409e-b63a-5d20d6027586 warmup_steps: 100 weight_decay: 0 xformers_attention: null ``` </details><br> # e22ff4b7-26fa-4a5d-a413-4cf35fa31faa This model is a fine-tuned version of [WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0](https://huggingface.co/WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 1500 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
martin-rizzo/TinyBreaker.prototype0
martin-rizzo
2025-05-02T17:17:37Z
0
3
null
[ "image-generation", "text-to-image", "art", "pixart-sigma", "image", "en", "arxiv:2403.04692", "base_model:PixArt-alpha/PixArt-Sigma-XL-2-1024-MS", "base_model:finetune:PixArt-alpha/PixArt-Sigma-XL-2-1024-MS", "license:mit", "region:us" ]
text-to-image
2025-02-09T01:15:51Z
--- license: mit language: - en base_model: - PixArt-alpha/PixArt-Sigma-XL-2-1024-MS - stable-diffusion-v1-5/stable-diffusion-v1-5 tags: - image-generation - text-to-image - art - pixart-sigma - image --- # TinyBreaker (prototype0) <div style="display:flex;justify-content: left"> <a href="https://github.com/martin-rizzo/ComfyUI-TinyBreaker"><img src="https://img.shields.io/badge/GitHub-TinyBreaker-EEE?logo=github&logoColor=white&labelColor=444444" alt="GitHub: TinyBreaker"></a> &ensp; <a href="https://civitai.com/models/1213728"><img src="https://img.shields.io/badge/CivitAI%3A-TinyBreaker-EEE?logo=c%2B%2B&logoColor=white&labelColor=1971C2" alt="CivitAI: TinyBreaker"></a> &ensp; </div> ![TinyBreaker](tinybreaker_grid.jpg) <div style="color: white; background-color: #882200; padding: 12px; border-radius: 6px; margin: 10px 0;"> ⚠️ <b>Important:</b> This version has been replaced by "prototype1", which includes VAEs packaged in a different way, enabling extra functionality such as the Tiny Upscaler.<br/> Please download the updated version from this link: <b><a style="color: #80C0FF; font-weight: bold;" href="https://huggingface.co/martin-rizzo/TinyBreaker.prototype1">TinyBreaker (prototype1)</a></b> </div> ## Overview **TinyBreaker** is a hybrid two-step model (base + refiner) designed for efficient image generation on mid-end and low-end hardware. By combining the strengths of PixArt and Photon models, it delivers high-quality images with strong prompt adherence ## Key Features - **Hybrid Two-Step Architecture**: Combines PixArt-Sigma as the base model with a refiner based on Photon (or any SD1.x model), both chosen for their low GPU consumption. - **Efficient Parameter Usage**: The base model’s 0.6 billion parameters enable high-quality image generation with minimal computational overhead. - **Fast Performance**: Produces high-quality 1536×1024 images in ~15 seconds on an NVIDIA RTX 3080 GPU, with ongoing work to cut generation times to under 10 seconds. - **High Prompt Adherence**: Generates images that closely match user prompts and expectations, thanks to the robust performance of the PixArt-Sigma model and the T5 text encoder. - **Optimized Latent Space Processing**: Leverages Tiny Autoencoders for efficient latent space conversion. ## Usage Requirements Currently, TinyBreaker can only be used with ComfyUI. To utilize it, you'll need to install the custom nodes specific to this model through the [ComfyUI-TinyBreaker GitHub repository](https://github.com/martin-rizzo/ComfyUI-TinyBreaker). ## Limitations - **Text Generation**: Generating legible text within images is a challenge due to PixArt's training limitations. Enhancements in this area may require extensive retraining. - **Human Anatomy in Complex Poses**: While the model performs reliably with standard poses (e.g., standing, facing the camera), it struggles with anatomical accuracy in poses that require more complex or dynamic actions. - **Complex Human Interactions**: The model has difficulty generating detailed scenes involving intricate interactions among people, as well as interactions between people and objects, such as collaborative tasks or dynamic object manipulation. Note: The current "Prototype1" version of TinyBreaker utilizes PixArt-Sigma 1024 and Photon models **without any additional training or fine-tuning**. In the future, if I have the resources, I plan to train both models together to generate images of even greater quality ## Future Directions I am dedicated to improving TinyBreaker's performance and accessibility, especially for users with mid-range or lower-end hardware. Looking forward to future updates as I continue to expand TinyBreaker's capabilities. ## Acknowledgments * I extend my sincere thanks to the PixArt-Σ developers for their exceptional model, which has been vital to this project's development. [PixArt-Σ GitHub Repository](https://github.com/PixArt-alpha/PixArt-sigma) | [PixArt-Σ Hugging Face Model](https://huggingface.co/PixArt-alpha/PixArt-Sigma-XL-2-1024-MS) | [PixArt-Σ arXiv Report](https://arxiv.org/abs/2403.04692) * Additional thanks to Ollin Boer Bohan for the Tiny AutoEncoder models, which offer efficient latent image processing and served as the foundation for the encoding, decoding, and transcoding operations in TinyBreaker. [Tiny AutoEncoder GitHub Repository](https://github.com/madebyollin/taesd) ## Resources - [TinyBreaker on CivitAI](https://civitai.com/models/1213728/tinybreaker): A hub for exploring generated images, prompts, and workflows created by me and the community, showcasing the model's output quality. - [ComfyUI-TinyBreaker](https://github.com/martin-rizzo/ComfyUI-TinyBreaker): Nodes and workflows for ComfyUI to experiment with the model's capabilities. - [TinyBreakerTools](https://github.com/martin-rizzo/TinyBreakerTools): Tools I'm building for the model, mainly to create the safetensors file for TinyBreaker. - [AbominableWorkflows](https://github.com/martin-rizzo/AbominableWorkflows): A predecessor of TinyBreaker. My first experiment combining PixArt-Sigma and Photon without Python code, using only standard nodes from ComfyUI.
rubix9/llama-3-1b-chat-robincnp
rubix9
2025-05-02T17:15:51Z
46
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-01T20:05:55Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mlx-community/MiMo-7B-SFT-4bit
mlx-community
2025-05-02T17:13:51Z
0
0
mlx
[ "mlx", "safetensors", "mimo", "text-generation", "conversational", "custom_code", "base_model:XiaomiMiMo/MiMo-7B-SFT", "base_model:quantized:XiaomiMiMo/MiMo-7B-SFT", "license:mit", "4-bit", "region:us" ]
text-generation
2025-05-02T17:02:43Z
--- license: mit base_model: XiaomiMiMo/MiMo-7B-SFT library_name: mlx pipeline_tag: text-generation tags: - mlx --- # mlx-community/MiMo-7B-SFT-4bit This model [mlx-community/MiMo-7B-SFT-4bit](https://huggingface.co/mlx-community/MiMo-7B-SFT-4bit) was converted to MLX format from [XiaomiMiMo/MiMo-7B-SFT](https://huggingface.co/XiaomiMiMo/MiMo-7B-SFT) using mlx-lm version **0.24.0**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/MiMo-7B-SFT-4bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
DreadPoor/mergekit-linear-vqtsxly-Q4_K_M-GGUF
DreadPoor
2025-05-02T17:13:21Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:DreadPoor/mergekit-linear-vqtsxly", "base_model:quantized:DreadPoor/mergekit-linear-vqtsxly", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-02T17:12:55Z
--- base_model: DreadPoor/mergekit-linear-vqtsxly library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo --- # DreadPoor/mergekit-linear-vqtsxly-Q4_K_M-GGUF This model was converted to GGUF format from [`DreadPoor/mergekit-linear-vqtsxly`](https://huggingface.co/DreadPoor/mergekit-linear-vqtsxly) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/DreadPoor/mergekit-linear-vqtsxly) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo DreadPoor/mergekit-linear-vqtsxly-Q4_K_M-GGUF --hf-file mergekit-linear-vqtsxly-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo DreadPoor/mergekit-linear-vqtsxly-Q4_K_M-GGUF --hf-file mergekit-linear-vqtsxly-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo DreadPoor/mergekit-linear-vqtsxly-Q4_K_M-GGUF --hf-file mergekit-linear-vqtsxly-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo DreadPoor/mergekit-linear-vqtsxly-Q4_K_M-GGUF --hf-file mergekit-linear-vqtsxly-q4_k_m.gguf -c 2048 ```
deswaq/iuh2
deswaq
2025-05-02T17:13:00Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T17:09:22Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
diegobit/llama-3-8b-Instruct-bnb-4bit-ita-orpo
diegobit
2025-05-02T17:11:34Z
7
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "unsloth", "conversational", "dataset:mii-community/ultrafeedback-preferences-translated-ita", "license:llama3", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-06-03T07:49:21Z
--- library_name: transformers tags: - unsloth license: llama3 datasets: - mii-community/ultrafeedback-preferences-translated-ita --- # Model Card for Model ID This is llama-3-8b ORPO finetuning for the italian language over the ultrafeedback italian dataset: [mii-community/ultrafeedback-preferences-translated-ita](https://huggingface.co/datasets/mii-community/ultrafeedback-preferences-translated-ita) ## Model Details ### Model Description - **Developed by:** Diego Giorgini - **Funded by:** AI Technologies SRL - www.aitechnologies.it - **Language(s) (NLP):** Italian - **License:** llama3 - **Finetuned from model:** unsloth/llama-3-8b-Instruct-bnb-4bit ## Training Details ### Environment unsloth: 2024.5 torch: 2.2 ### Training Data `mii-community/ultrafeedback-preferences-translated-ita` is a selection of 55k rows of the ultrafeedback dataset, translated into italian with argotranslate. ### Training Procedure #### Preprocessing [optional] - No preprocessing has been performed, except for formatting with the llama3 chat_template from unsloth: ```tokenizer = get_chat_template(tokenizer, chat_template = "llama-3")``` #### Training Hyperparameters - **Training regime:** 4bit - **PEFT parameters:** - **Model loading parameters:** ``` max_seq_length = 8192 dtype = None load_in_4bit = True ``` ``` r = 64 lora_alpha = 64 lora_dropout = 0 bias = "none" random_state = 3407 use_rslora = False loftq_config = None ``` - **ORPOConfig parameters:** ``` max_length = 8192 max_prompt_length = max_seq_length//2 max_completion_length = max_seq_length//2 warmup_ratio = 0.1 weight_decay = 0.01 per_device_train_batch_size = 1 gradient_accumulation_steps = 16 learning_rate=8e-6 beta = 0.1 optim = "paged_adamw_8bit" lr_scheduler_type = "linear" num_train_epochs = 1 ``` #### Speeds, Sizes, Times 16h on an A100-40GB ## Model Card Contact [email protected]
xiaoheiqaq/Conversational-base
xiaoheiqaq
2025-05-02T17:11:16Z
0
0
null
[ "safetensors", "mistral", "license:apache-2.0", "region:us" ]
null
2025-05-02T16:10:34Z
--- license: apache-2.0 ---
diegobit/Phi-3-mini-4k-instruct-ita-orpo-v2
diegobit
2025-05-02T17:11:07Z
2
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "unsloth", "conversational", "dataset:efederici/alpaca-vs-alpaca-orpo-dpo", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-06-07T08:00:23Z
--- library_name: transformers tags: - unsloth license: mit datasets: - efederici/alpaca-vs-alpaca-orpo-dpo --- # Model Card for Model ID This is phi-3-mini-4k-instruct ORPO finetuning for the italian language over the Alpaca vs. Alpaca italian dataset: [efederici/alpaca-vs-alpaca-orpo-dpo](https://huggingface.co/datasets/efederici/alpaca-vs-alpaca-orpo-dpo) ## Model Details ### Model Description - **Developed by:** Diego Giorgini - **Funded by:** AI Technologies SRL - www.aitechnologies.it - **Language(s) (NLP):** Italian - **License:** llama3 - **Finetuned from model:** unsloth/Phi-3-mini-4k-instruct ## Training Details ### Environment unsloth: 2024.5 torch: 2.2 ### Training Data [efederici/alpaca-vs-alpaca-orpo-dpo](https://huggingface.co/datasets/efederici/alpaca-vs-alpaca-orpo-dpo): The Alpaca vs. Alpaca dataset is a curated blend of the Alpaca dataset and the Alpaca GPT-4 dataset, both available on HuggingFace Datasets. It uses the standard GPT dataset as the 'rejected' answer, steering the model towards the GPT-4 answer, which is considered as the 'chosen' one. ### Training Procedure #### Preprocessing [optional] - No preprocessing has been performed, except for formatting with the phi-3 chat_template from unsloth: ```tokenizer = get_chat_template(tokenizer, chat_template = "phi-3")``` #### Training Hyperparameters - **Training regime:** bf16 - **Model loading parameters:** ``` max_seq_length = 8192 dtype = None load_in_4bit = False ``` - **PEFT parameters:** ``` r = 64 lora_alpha = 64 lora_dropout = 0 bias = "none" random_state = 3407 use_rslora = False loftq_config = None ``` - **ORPOConfig parameters:** ``` max_length = 8192 max_prompt_length = max_seq_length//2 max_completion_length = max_seq_length//2 warmup_ratio = 0.1 weight_decay = 0.01 per_device_train_batch_size = 1 gradient_accumulation_steps = 16 learning_rate=8e-6 beta = 0.1 optim = "paged_adamw_8bit" lr_scheduler_type = "linear" num_train_epochs = 1 ``` #### Speeds, Sizes, Times 7h on an A100-40GB ## Model Card Contact [email protected]
diegobit/llama-3-8b-ita-4k-orpo-v3
diegobit
2025-05-02T17:10:46Z
7
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "unsloth", "conversational", "dataset:mii-community/ultrafeedback-preferences-translated-ita", "dataset:efederici/alpaca-vs-alpaca-orpo-dpo", "license:llama3", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-06-10T08:05:07Z
--- library_name: transformers tags: - unsloth license: llama3 datasets: - mii-community/ultrafeedback-preferences-translated-ita - efederici/alpaca-vs-alpaca-orpo-dpo --- # Model Card for Model ID This is llama-3-8b ORPO finetuning for the italian language over a concatenation of two datasets: - [mii-community/ultrafeedback-preferences-translated-ita](https://huggingface.co/datasets/mii-community/ultrafeedback-preferences-translated-ita) - [efederici/alpaca-vs-alpaca-orpo-dpo](https://huggingface.co/datasets/efederici/alpaca-vs-alpaca-orpo-dpo) The other two differences with `diegobit/llama-3-8b-Instruct-bnb-4bit-ita-orpo` are: - the starting model, not instruct, `astronomer/Llama-3-8B-Special-Tokens-Adjusted` instead of `unsloth/llama-3-8b-Instruct-bnb-4bit` - no loading in 4bits - given the increased need of GPU memory, the sequence max length used for finetuning is 4096 ## Model Details ### Model Description - **Developed by:** Diego Giorgini - **Funded by:** AI Technologies SRL - www.aitechnologies.it - **Language(s) (NLP):** Italian - **License:** llama3 - **Finetuned from model:** astronomer/Llama-3-8B-Special-Tokens-Adjusted ## Training Details ### Environment unsloth: 2024.5 torch: 2.2 ### Training Data - `mii-community/ultrafeedback-preferences-translated-ita` is a selection of 55k rows of the ultrafeedback dataset, translated into italian with argotranslate. - `efederici/alpaca-vs-alpaca-orpo-dpo`: The Alpaca vs. Alpaca dataset is a curated blend of the Alpaca dataset and the Alpaca GPT-4 dataset, both available on HuggingFace Datasets. It uses the standard GPT dataset as the 'rejected' answer, steering the model towards the GPT-4 answer, which is considered as the 'chosen' one. ### Training Procedure #### Preprocessing [optional] - No preprocessing has been performed, except for formatting with the llama3 chat_template from unsloth: ```tokenizer = get_chat_template(tokenizer, chat_template = "llama-3")``` #### Training Hyperparameters - **Training regime:** bf16 - **Model loading parameters:** ``` max_seq_length = 4096 dtype = None load_in_4bit = False ``` - **PEFT parameters:** ``` r = 64 lora_alpha = 64 lora_dropout = 0 bias = "none" random_state = 3407 use_rslora = False loftq_config = None ``` - **ORPOConfig parameters:** ``` max_length = 4096 max_prompt_length = max_seq_length//2 max_completion_length = max_seq_length//2 warmup_ratio = 0.1 weight_decay = 0.01 per_device_train_batch_size = 1 gradient_accumulation_steps = 16 learning_rate=8e-6 beta = 0.1 optim = "paged_adamw_8bit" lr_scheduler_type = "linear" num_train_epochs = 1 ``` #### Speeds, Sizes, Times 19h on an A100-40GB ## Model Card Contact [email protected]
phospho-app/Starkosaure-Stuffed_Animal_3cam_V0.0-x40pmnwemi
phospho-app
2025-05-02T17:10:29Z
0
0
null
[ "phosphobot", "gr00t", "region:us" ]
null
2025-05-02T17:08:31Z
--- tags: - phosphobot - gr00t task_categories: - robotics --- # gr00t Model - phospho Training Pipeline ## Error Traceback We faced an issue while training your model. ``` Traceback (most recent call last): File "/root/src/helper.py", line 224, in predict raise RuntimeError(error_msg) RuntimeError: Training process failed with exit code 1: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py", line 277, in apply_rotary_pos_emb q_embed = (q * cos) + (rotate_half(q) * sin) ^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py", line 252, in rotate_half return torch.cat((-x2, x1), dim=-1) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 MiB. GPU 0 has a total capacity of 79.25 GiB of which 38.75 MiB is free. Process 32 has 79.21 GiB memory in use. Of the allocated memory 78.38 GiB is allocated by PyTorch, and 336.91 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) 0%| | 0/450 [00:09<?, ?it/s] During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/root/src/helper.py", line 226, in predict raise RuntimeError(e) RuntimeError: Training process failed with exit code 1: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py", line 277, in apply_rotary_pos_emb q_embed = (q * cos) + (rotate_half(q) * sin) ^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py", line 252, in rotate_half return torch.cat((-x2, x1), dim=-1) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 MiB. GPU 0 has a total capacity of 79.25 GiB of which 38.75 MiB is free. Process 32 has 79.21 GiB memory in use. Of the allocated memory 78.38 GiB is allocated by PyTorch, and 336.91 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) 0%| | 0/450 [00:09<?, ?it/s] ``` ## Training parameters: - **Dataset**: [Starkosaure/Stuffed_Animal_3cam_V0.0](https://huggingface.co/datasets/Starkosaure/Stuffed_Animal_3cam_V0.0) - **Wandb run URL**: None - **Epochs**: 10 - **Batch size**: 64 - **Training steps**: 443 📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=replicate_groot_training_pipeline) 🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=replicate_groot_training_pipeline)
deswaq/iuh1
deswaq
2025-05-02T17:03:51Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T17:00:20Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
edantonio505/department_classifier
edantonio505
2025-05-02T16:57:09Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-05-02T16:56:44Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
KingEmpire/sn21_omega_0205_1
KingEmpire
2025-05-02T16:53:49Z
0
0
null
[ "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-05-02T16:28:49Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
ajagota71/gpt-neo-125m-detox-epoch-80
ajagota71
2025-05-02T16:51:47Z
0
0
null
[ "safetensors", "gpt_neo", "model_hub_mixin", "pytorch_model_hub_mixin", "region:us" ]
null
2025-05-02T16:51:29Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Code: [More Information Needed] - Paper: [More Information Needed] - Docs: [More Information Needed]
ajagota71/gpt-neo-125m-detox-epoch-60
ajagota71
2025-05-02T16:50:54Z
0
0
null
[ "safetensors", "gpt_neo", "model_hub_mixin", "pytorch_model_hub_mixin", "region:us" ]
null
2025-05-02T16:50:34Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Code: [More Information Needed] - Paper: [More Information Needed] - Docs: [More Information Needed]