modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-27 06:27:46
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
499 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-27 06:26:25
card
stringlengths
11
1.01M
galaxywavee/personaluse
galaxywavee
2023-07-15T06:50:48Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-04-18T03:00:57Z
--- license: bigscience-openrail-m --- majicMIX realistic >>> 推荐关键词 recommended positive prompts: Best quality, masterpiece, ultra high res, (photorealistic:1.4), 1girl 如果想要更暗的图像 if you want darker picture, add: in the dark, deep shadow, low key, etc. 负面关键词 use ng_deepnegative_v1_75t and badhandv4 in negative prompt Sampler: DPM++ 2M Karras (bug-fixed) or DPM++ SDE Karras Steps: 20~40 Hires upscaler: R-ESRGAN 4x+ or 4x-UltraSharp Hires upscale: 2 Hires steps: 15 Denoising strength: 0.2~0.5 CFG scale: 6-8 clip skip 2 Aerial (Animation and img2img) >>> Trigger Words : aerialstyle
NasimB/guten-rarity-all-end-19k-ctx-512
NasimB
2023-07-15T06:32:42Z
143
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-15T05:38:01Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: guten-rarity-all-end-19k-ctx-512 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # guten-rarity-all-end-19k-ctx-512 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.2404 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.5135 | 1.19 | 500 | 5.4526 | | 4.9916 | 2.38 | 1000 | 4.8062 | | 4.3998 | 3.56 | 1500 | 4.4088 | | 3.9739 | 4.75 | 2000 | 4.2180 | | 3.6922 | 5.94 | 2500 | 4.1726 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
AnaBach/roberta-base-bne-finetuned-amazon_reviews_multi
AnaBach
2023-07-15T06:11:29Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-14T02:15:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy model-index: - name: roberta-base-bne-finetuned-amazon_reviews_multi results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi config: es split: validation args: es metrics: - name: Accuracy type: accuracy value: 0.9355 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-amazon_reviews_multi This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.2188 - Accuracy: 0.9355 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1953 | 1.0 | 1250 | 0.1686 | 0.9343 | | 0.1034 | 2.0 | 2500 | 0.2188 | 0.9355 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
sriharib/bloomz-3b-mmail-2
sriharib
2023-07-15T06:10:03Z
1
0
peft
[ "peft", "region:us" ]
null
2023-07-15T06:09:55Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
coreml-community/coreml-8528-diffusion
coreml-community
2023-07-15T06:08:15Z
0
23
null
[ "coreml", "stable-diffusion", "text-to-image", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-01-09T23:50:12Z
--- license: creativeml-openrail-m tags: - coreml - stable-diffusion - text-to-image --- # Core ML Converted Model This model was converted to Core ML for use on Apple Silicon devices by following Apple's instructions [here](https://github.com/apple/ml-stable-diffusion#-converting-models-to-core-ml).<br> Provide the model to an app such as [Mochi Diffusion](https://github.com/godly-devotion/MochiDiffusion) to generate images.<br> `split_einsum` version is compatible with all compute unit options including Neural Engine.<br> `original` version is only compatible with CPU & GPU option. # 8528-diffusion final Source: [Hugging Face](https://huggingface.co/852wa/8528-diffusion) (The release of the source model has ended.) 8528-diffusion is a latent text-to-image diffusion model, conditioned by fine-tuning to colorful character images. 8528 Diffusion is a fine-tuning model of Stable Diffusion v1.4 with AI output images (t2i and t2i with i2i). I recommend entering "low quality,worst quality," for Negative prompt and Clip skip: 2. <!-- <img src=https://i.imgur.com/vCn02tM.jpg > !--> ![](https://huggingface.co/coreml/coreml-8528-diffusion/resolve/main/example_images.md/vCn02tM.jpg) ((ultra-detailed)), ((illustration)), Silver hair, red eyes, beautiful eyes, dress, Queen,Anime style, pretty face, pretty eyes, pretty, girl,High resolution, beautiful girl,octane render, realistic, hyper detailed ray tracing, 8k,classic style,Rococo Negative prompt: (low quality, worst quality:1.4) concept art Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 241379229, Size: 512x768, Model hash: 31cd036c, Clip skip: 2 # 8528-diffusion v0.4 <!-- <img src=https://i.imgur.com/X2zFoeA.jpg > !--> ![](https://huggingface.co/coreml/coreml-8528-diffusion/resolve/main/example_images.md/X2zFoeA.jpg) # 8528-diffusion v0.3 <!-- <img src=https://i.imgur.com/QQuNpYl.png > <img src=https://i.imgur.com/u785LlC.png > !--> ![](https://huggingface.co/coreml/coreml-8528-diffusion/resolve/main/example_images.md/QQuNpYl.png) ![](https://huggingface.co/coreml/coreml-8528-diffusion/resolve/main/example_images.md/u785LlC.png) # 8528-diffusion v0.2 8528-diffusion is a latent text-to-image diffusion model, conditioned by fine-tuning to colorful character images. 8528 Diffusion v0.2 & v0.1 is a fine-tuning model of Waifu Diffusion with AI output images (t2i and t2i with i2i). <!-- <img src=https://i.imgur.com/z4sFctp.png > !--> ![](https://huggingface.co/coreml/coreml-8528-diffusion/resolve/main/example_images.md/z4sFctp.png) # 8528-diffusion v0.1 <!-- <img src=https://i.imgur.com/8chXeif.png > !--> ![](https://huggingface.co/coreml/coreml-8528-diffusion/resolve/main/example_images.md/8chXeif.png) [google colab](https://colab.research.google.com/drive/1ksRxO84CMbXrW_p-x5Vuz74AHnrWpe_u) ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license) <!-- Discord Server has been stopped. ## Discord https://discord.gg/ax9KgpUMUP !-->
akselozer9/akselo
akselozer9
2023-07-15T05:48:16Z
0
0
null
[ "token-classification", "dataset:Open-Orca/OpenOrca", "region:us" ]
token-classification
2023-07-15T05:47:48Z
--- datasets: - Open-Orca/OpenOrca metrics: - accuracy pipeline_tag: token-classification ---
akselozer9/cityofalbuquerque
akselozer9
2023-07-15T05:44:11Z
0
0
null
[ "token-classification", "en", "dataset:WizardLM/WizardLM_evol_instruct_V2_196k", "region:us" ]
token-classification
2023-07-15T05:43:06Z
--- datasets: - WizardLM/WizardLM_evol_instruct_V2_196k language: - en pipeline_tag: token-classification ---
Evan-Lin/Bart-RL-many-keywordmax-entailment-attractive-reward1
Evan-Lin
2023-07-15T05:39:14Z
49
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "trl", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
reinforcement-learning
2023-07-14T17:58:29Z
--- license: apache-2.0 tags: - trl - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="Evan-Lin//tmp/tmp71nhx1t_/Evan-Lin/Bart-RL-many-keywordmax-entailment-attractive-beam10") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("Evan-Lin//tmp/tmp71nhx1t_/Evan-Lin/Bart-RL-many-keywordmax-entailment-attractive-beam10") model = AutoModelForCausalLMWithValueHead.from_pretrained("Evan-Lin//tmp/tmp71nhx1t_/Evan-Lin/Bart-RL-many-keywordmax-entailment-attractive-beam10") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
kelvinih/taser-cocondenser-wiki
kelvinih
2023-07-15T05:33:04Z
0
0
null
[ "pytorch", "license:mit", "region:us" ]
null
2023-07-15T05:26:30Z
--- license: mit --- # Task-Aware Specialization for Efficient and Robust Dense Retrieval for Open-Domain Question Answering This repository includes the model for [Task-Aware Specialization for Efficient and Robust Dense Retrieval for Open-Domain Question Answering](https://aclanthology.org/2023.acl-short.159/). If you find this useful, please cite the following paper: ``` @inproceedings{cheng-etal-2023-task, title = "Task-Aware Specialization for Efficient and Robust Dense Retrieval for Open-Domain Question Answering", author = "Cheng, Hao and Fang, Hao and Liu, Xiaodong and Gao, Jianfeng", booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)", month = jul, year = "2023", address = "Toronto, Canada", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.acl-short.159", pages = "1864--1875", } ```
digiplay/Opiate_v2
digiplay
2023-07-15T05:07:02Z
333
2
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-15T04:16:25Z
--- license: other tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- Model info: https://civitai.com/models/69587?modelVersionId=98101 Original Author's DEMO images : ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/5f81c93a-d9eb-4399-8362-95681d8f9d87/OpiateV2.jpeg) ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/991410e6-a9b8-4027-8582-10ef89ac22d3/00260-4105401889.jpeg) ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/c6227ce2-66cc-4532-b012-78291681b13d/00004-2061204743.jpeg) ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/2cb82af3-bac6-44c1-94f8-e3898e7daa74/00021-3738425758.jpeg)
NasimB/guten-rarity-end-cut-19k
NasimB
2023-07-15T04:56:56Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-15T03:03:02Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: guten-rarity-end-cut-19k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # guten-rarity-end-cut-19k This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.3128 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.69 | 0.29 | 500 | 5.6412 | | 5.3327 | 0.59 | 1000 | 5.2058 | | 4.9884 | 0.88 | 1500 | 4.9570 | | 4.7105 | 1.18 | 2000 | 4.8008 | | 4.5563 | 1.47 | 2500 | 4.6777 | | 4.4438 | 1.77 | 3000 | 4.5652 | | 4.3057 | 2.06 | 3500 | 4.4916 | | 4.1258 | 2.36 | 4000 | 4.4456 | | 4.1001 | 2.65 | 4500 | 4.3854 | | 4.0586 | 2.94 | 5000 | 4.3319 | | 3.8297 | 3.24 | 5500 | 4.3249 | | 3.8029 | 3.53 | 6000 | 4.2962 | | 3.7812 | 3.83 | 6500 | 4.2655 | | 3.6544 | 4.12 | 7000 | 4.2687 | | 3.5166 | 4.42 | 7500 | 4.2598 | | 3.4969 | 4.71 | 8000 | 4.2438 | | 3.4978 | 5.01 | 8500 | 4.2328 | | 3.3159 | 5.3 | 9000 | 4.2445 | | 3.3203 | 5.59 | 9500 | 4.2434 | | 3.3104 | 5.89 | 10000 | 4.2422 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
ZidanSink/Kayess
ZidanSink
2023-07-15T04:35:29Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-29T07:27:11Z
--- license: creativeml-openrail-m ---
Wiryan/imryan
Wiryan
2023-07-15T04:27:51Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-15T04:22:48Z
--- license: creativeml-openrail-m ---
manmyung/Reinforce-CartPole-v1
manmyung
2023-07-15T04:24:11Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-15T04:23:52Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 490.20 +/- 23.02 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
jerryjalapeno/nart-100k-7b
jerryjalapeno
2023-07-15T03:57:11Z
1,520
20
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:cc-by-nc-nd-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-14T19:01:46Z
--- license: cc-by-nc-nd-4.0 ---
cbredallas/labelclassification
cbredallas
2023-07-15T03:44:59Z
0
0
adapter-transformers
[ "adapter-transformers", "en", "license:openrail", "region:us" ]
null
2023-07-15T03:43:24Z
--- license: openrail language: - en library_name: adapter-transformers ---
renatostrianese/q-FrozenLake-v1-4x4-noSlippery
renatostrianese
2023-07-15T03:43:44Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-15T03:43:33Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="renatostrianese/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
xielenite/zethielzero
xielenite
2023-07-15T03:18:29Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-07-13T23:40:11Z
--- license: openrail --- voice models for RVC inferencing. see https://docs.google.com/document/d/13_l1bd1Osgz7qlAZn-zhklCbHpVRk6bYOuAuB78qmsE/edit to see how to use.
AdanLee/ppo-Huggy
AdanLee
2023-07-15T03:01:35Z
11
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-07-15T03:01:15Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: AdanLee/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
RajanGo/RajanGo-Asgn-2
RajanGo
2023-07-15T01:43:52Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-15T01:43:44Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
akraieski/ppo-LunarLander-v2
akraieski
2023-07-15T01:42:23Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-15T01:42:05Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 277.81 +/- 14.10 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
timjwhite/a2c-AntBulletEnv-v0
timjwhite
2023-07-15T01:39:05Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-15T01:37:29Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 792.36 +/- 37.50 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Panchovix/guanaco-33b-PI-8192-LoRA-4bit-32g
Panchovix
2023-07-15T01:38:52Z
5
4
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-04T06:00:12Z
--- license: other --- [guanaco-33b](https://huggingface.co/timdettmers/guanaco-33b-merged) merged with bhenrym14's [airoboros-33b-gpt4-1.4.1-PI-8192-LoRA](https://huggingface.co/bhenrym14/airoboros-33b-gpt4-1.4.1-PI-8192-LoRA), quantized at 4 bit. More info about the LoRA [Here](https://huggingface.co/bhenrym14/airoboros-33b-gpt4-1.4.1-PI-8192-fp16). This is an alternative to SuperHOT 8k LoRA trained with LoRA_rank 64, and airoboros 1.4.1 dataset. It was created with GPTQ-for-LLaMA with group size 32 and act order true as parameters, to get the maximum perplexity vs FP16 model. I HIGHLY suggest to use exllama, to evade some VRAM issues. Use compress_pos_emb = 4 for any context up to 8192 context. If you have 2x24 GB VRAM GPUs cards, to not get Out of Memory errors at 8192 context, use: gpu_split: 9,21
chandrasutrisnotjhong/taxi
chandrasutrisnotjhong
2023-07-15T01:06:47Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-15T01:06:45Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="chandrasutrisnotjhong/taxi", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
borkur/gpt2-finetuned-wikitext2
borkur
2023-07-15T00:56:29Z
85
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-07-14T21:30:03Z
--- license: mit base_model: gpt2 tags: - generated_from_keras_callback model-index: - name: borkur/gpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # borkur/gpt2-finetuned-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 6.4948 - Validation Loss: 6.3466 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 7.3152 | 6.7681 | 0 | | 6.4948 | 6.3466 | 1 | ### Framework versions - Transformers 4.31.0.dev0 - TensorFlow 2.13.0 - Datasets 2.13.1 - Tokenizers 0.13.3
giocs2017/dqn-SpaceInvadersNoFrameskip-v4-gio
giocs2017
2023-07-15T00:25:57Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-15T00:25:23Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 595.00 +/- 126.25 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga giocs2017 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga giocs2017 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga giocs2017 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
ALM-AHME/beit-large-patch16-224-finetuned-BreastCancer-Classification-BreakHis-AH-60-20-20
ALM-AHME
2023-07-14T23:55:06Z
5
3
transformers
[ "transformers", "pytorch", "tensorboard", "beit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-14T20:43:15Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: beit-large-patch16-224-finetuned-BreastCancer-Classification-BreakHis-AH-60-20-20 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: Splitted-Resized split: train args: Splitted-Resized metrics: - name: Accuracy type: accuracy value: 0.9938708156529938 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # beit-large-patch16-224-finetuned-BreastCancer-Classification-BreakHis-AH-60-20-20 This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0275 - Accuracy: 0.9939 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.9 - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.46 | 1.0 | 199 | 0.3950 | 0.8482 | | 0.2048 | 2.0 | 398 | 0.1886 | 0.9189 | | 0.182 | 3.0 | 597 | 0.1382 | 0.9481 | | 0.0826 | 4.0 | 796 | 0.0760 | 0.9694 | | 0.0886 | 5.0 | 995 | 0.0600 | 0.9788 | | 0.0896 | 6.0 | 1194 | 0.0523 | 0.9802 | | 0.0774 | 7.0 | 1393 | 0.0482 | 0.9826 | | 0.0876 | 8.0 | 1592 | 0.0289 | 0.9877 | | 0.1105 | 9.0 | 1791 | 0.0580 | 0.9821 | | 0.0289 | 10.0 | 1990 | 0.0294 | 0.9925 | | 0.0594 | 11.0 | 2189 | 0.0331 | 0.9906 | | 0.0011 | 12.0 | 2388 | 0.0275 | 0.9939 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
CheeriosMomentors/LORA
CheeriosMomentors
2023-07-14T23:32:58Z
0
0
null
[ "en", "license:wtfpl", "region:us" ]
null
2023-04-08T06:21:46Z
--- license: wtfpl language: - en --- Okay listen up. This is mostly loras that I made by myself. Some of these may be released on Civitai and some may not. If you found these, good job you now have cool loras. You can post these on Civitai or anywhere idc. You can say these are yours, get money I do not care. But please for god sake, leave my name out of it. I am not responsible for anything you done with these. These were just for fun, that is all. Now enjoy. Lora Count: 2 We currently have Nisho Ishin (Medaka Box) style and ryukishi07 (Umineko Style.) I may make more and post them here.
chunwoolee0/seqcls_mrpc_bert_base_uncased_model
chunwoolee0
2023-07-14T23:32:36Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-14T23:27:51Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: seqcls_mrpc_bert_base_uncased_model results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8014705882352942 - name: F1 type: f1 value: 0.8669950738916257 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # seqcls_mrpc_bert_base_uncased_model This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4621 - Accuracy: 0.8015 - F1: 0.8670 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 58 | 0.5442 | 0.7108 | 0.8228 | | No log | 2.0 | 116 | 0.5079 | 0.7745 | 0.8558 | | No log | 3.0 | 174 | 0.4621 | 0.8015 | 0.8670 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
foreverip/dqn-SpaceInvadersNoFrameskip-v4
foreverip
2023-07-14T23:31:22Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T23:30:45Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 603.00 +/- 169.77 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga foreverip -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga foreverip -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga foreverip ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
Yntec/Photosphere
Yntec
2023-07-14T23:22:58Z
1,547
4
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "Noosphere", "Dreamlike", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-14T22:54:19Z
--- license: creativeml-openrail-m library_name: diffusers pipeline_tag: text-to-image tags: - stable-diffusion - stable-diffusion-diffusers - diffusers - text-to-image - Noosphere - Dreamlike --- # Photosphere A mix of Noosphere v3 by skumerz and photorealistic models. Original page: https://civitai.com/models/36538?modelVersionId=107675
MnLgt/slope-bed
MnLgt
2023-07-14T23:19:56Z
0
0
null
[ "license:mit", "region:us" ]
null
2023-07-14T23:19:55Z
--- license: mit --- ### slope-bed on Stable Diffusion This is the `<slope-bed>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<slope-bed> 0](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/46730dc447d0633b0993ed8b9405a1be.jpg) ![<slope-bed> 1](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/c806494a260a9f4b610d8027636a87eb.jpg) ![<slope-bed> 2](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/eaf617c981118315f2e6b4b3249e2ff7.jpg) ![<slope-bed> 3](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/601a2e6c5cb059bda4ddf06da071a02d.jpg) ![<slope-bed> 4](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/a51260e53daad800c0fdf1fa73e90af7.jpg) ![<slope-bed> 5](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/c01466545690d2f9a23f94a668011676.jpg) ![<slope-bed> 6](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/1c71fb516129a304c3045a4243e77f5c.jpg) ![<slope-bed> 7](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/519fbf3ea01362a874440d9ea9032cb4.jpg) ![<slope-bed> 8](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/fe204b537dd9eb9e7a78189b58d8302b.jpg) ![<slope-bed> 9](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/4daf4f25d438ce7f34faa9fd6d95ee56.jpg) ![<slope-bed> 10](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/fce3b789e5bfb602026098a99efa1014.jpg) ![<slope-bed> 11](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/95b5b8d2ab3e9621655594eaae6531d1.jpg) ![<slope-bed> 12](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/0bd46f65046872a31aa55d8c68060c58.jpg)
cgr28/q-Taxi-v3
cgr28
2023-07-14T23:15:40Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T23:15:38Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.74 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="cgr28/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
0sunfire0/Pixelcopter_train_00
0sunfire0
2023-07-14T23:10:07Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T23:10:05Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Pixelcopter_train_00 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 7.20 +/- 7.10 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Alignment-Lab-AI/AttourneyAtLam
Alignment-Lab-AI
2023-07-14T23:01:49Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-14T22:53:40Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0.dev0
GISDGDIGDI9ED/leslie
GISDGDIGDI9ED
2023-07-14T22:53:08Z
0
0
flair
[ "flair", "art", "es", "dataset:openchat/openchat_sharegpt4_dataset", "license:bsd", "region:us" ]
null
2023-07-14T22:50:29Z
--- license: bsd datasets: - openchat/openchat_sharegpt4_dataset language: - es metrics: - character library_name: flair tags: - art ---
YanJiangJerry/sentiment-roberta-e3-b16-v2-w0.01
YanJiangJerry
2023-07-14T22:45:22Z
121
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-14T13:20:25Z
--- tags: - generated_from_trainer metrics: - f1 - recall - precision model-index: - name: sentiment-roberta-e3-b16-v2-w0.01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment-roberta-e3-b16-v2-w0.01 This model is a fine-tuned version of [siebert/sentiment-roberta-large-english](https://huggingface.co/siebert/sentiment-roberta-large-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6014 - F1: 0.7844 - Recall: 0.7844 - Precision: 0.7844 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:---------:| | No log | 1.0 | 187 | 0.6687 | 0.7574 | 0.7574 | 0.7574 | | No log | 2.0 | 374 | 0.5700 | 0.7898 | 0.7898 | 0.7898 | | 0.6052 | 3.0 | 561 | 0.6014 | 0.7844 | 0.7844 | 0.7844 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
underactuated/opt-350m_ft
underactuated
2023-07-14T22:41:50Z
136
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-14T22:39:39Z
--- tags: - generated_from_trainer model-index: - name: opt-350m_ft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opt-350m_ft This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
YanJiangJerry/sentiment-roberta-e2-b16-v2-w0.01
YanJiangJerry
2023-07-14T22:29:12Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-14T22:22:40Z
--- tags: - generated_from_trainer metrics: - f1 - recall - precision model-index: - name: sentiment-roberta-e2-b16-v2-w0.01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment-roberta-e2-b16-v2-w0.01 This model is a fine-tuned version of [siebert/sentiment-roberta-large-english](https://huggingface.co/siebert/sentiment-roberta-large-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8630 - F1: 0.7520 - Recall: 0.7520 - Precision: 0.7520 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:---------:| | No log | 1.0 | 375 | 0.8651 | 0.6739 | 0.6739 | 0.6739 | | 0.6564 | 2.0 | 750 | 0.8630 | 0.7520 | 0.7520 | 0.7520 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
marloz03/my_awesome_qa_model
marloz03
2023-07-14T22:26:40Z
61
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-07-13T21:07:04Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: marloz03/my_awesome_qa_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # marloz03/my_awesome_qa_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.2264 - Validation Loss: 1.4529 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.6044 | 1.5880 | 0 | | 1.3853 | 1.4529 | 1 | | 1.2264 | 1.4529 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.10.0 - Datasets 2.12.0 - Tokenizers 0.13.2
Recognai/zeroshot_selectra_small
Recognai
2023-07-14T22:23:19Z
129
5
transformers
[ "transformers", "pytorch", "safetensors", "electra", "text-classification", "zero-shot-classification", "nli", "es", "dataset:xnli", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
zero-shot-classification
2022-03-02T23:29:04Z
--- language: es tags: - zero-shot-classification - nli - pytorch datasets: - xnli pipeline_tag: zero-shot-classification license: apache-2.0 widget: - text: "El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo" candidate_labels: "cultura, sociedad, economia, salud, deportes" --- # Zero-shot SELECTRA: A zero-shot classifier based on SELECTRA *Zero-shot SELECTRA* is a [SELECTRA model](https://huggingface.co/Recognai/selectra_small) fine-tuned on the Spanish portion of the [XNLI dataset](https://huggingface.co/datasets/xnli). You can use it with Hugging Face's [Zero-shot pipeline](https://huggingface.co/transformers/master/main_classes/pipelines.html#transformers.ZeroShotClassificationPipeline) to make [zero-shot classifications](https://joeddav.github.io/blog/2020/05/29/ZSL.html). In comparison to our previous zero-shot classifier [based on BETO](https://huggingface.co/Recognai/bert-base-spanish-wwm-cased-xnli), zero-shot SELECTRA is **much more lightweight**. As shown in the *Metrics* section, the *small* version (5 times fewer parameters) performs slightly worse, while the *medium* version (3 times fewer parameters) **outperforms** the BETO based zero-shot classifier. ## Usage ```python from transformers import pipeline classifier = pipeline("zero-shot-classification", model="Recognai/zeroshot_selectra_medium") classifier( "El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo", candidate_labels=["cultura", "sociedad", "economia", "salud", "deportes"], hypothesis_template="Este ejemplo es {}." ) """Output {'sequence': 'El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo', 'labels': ['sociedad', 'cultura', 'salud', 'economia', 'deportes'], 'scores': [0.3711881935596466, 0.25650349259376526, 0.17355826497077942, 0.1641489565372467, 0.03460107371211052]} """ ``` The `hypothesis_template` parameter is important and should be in Spanish. **In the widget on the right, this parameter is set to its default value: "This example is {}.", so different results are expected.** ## Metrics | Model | Params | XNLI (acc) | \*MLSUM (acc) | | --- | --- | --- | --- | | [zs BETO](https://huggingface.co/Recognai/bert-base-spanish-wwm-cased-xnli) | 110M | 0.799 | 0.530 | | [zs SELECTRA medium](https://huggingface.co/Recognai/zeroshot_selectra_medium) | 41M | **0.807** | **0.589** | | zs SELECTRA small | **22M** | 0.795 | 0.446 | \*evaluated with zero-shot learning (ZSL) - **XNLI**: The stated accuracy refers to the test portion of the [XNLI dataset](https://huggingface.co/datasets/xnli), after finetuning the model on the training portion. - **MLSUM**: For this accuracy we take the test set of the [MLSUM dataset](https://huggingface.co/datasets/mlsum) and classify the summaries of 5 selected labels. For details, check out our [evaluation notebook](https://github.com/recognai/selectra/blob/main/zero-shot_classifier/evaluation.ipynb) ## Training Check out our [training notebook](https://github.com/recognai/selectra/blob/main/zero-shot_classifier/training.ipynb) for all the details. ## Authors - David Fidalgo ([GitHub](https://github.com/dcfidalgo)) - Daniel Vila ([GitHub](https://github.com/dvsrepo)) - Francisco Aranda ([GitHub](https://github.com/frascuchon)) - Javier Lopez ([GitHub](https://github.com/javispp))
cuervjos/alpacaIOD-7b-plus
cuervjos
2023-07-14T22:22:53Z
1
0
peft
[ "peft", "region:us" ]
null
2023-07-13T08:58:46Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0
Recognai/bert-base-spanish-wwm-cased-xnli
Recognai
2023-07-14T22:22:51Z
2,134
16
transformers
[ "transformers", "pytorch", "jax", "safetensors", "bert", "text-classification", "zero-shot-classification", "nli", "es", "dataset:xnli", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
zero-shot-classification
2022-03-02T23:29:04Z
--- language: es tags: - zero-shot-classification - nli - pytorch datasets: - xnli license: mit pipeline_tag: zero-shot-classification widget: - text: "El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo" candidate_labels: "cultura, sociedad, economia, salud, deportes" --- # bert-base-spanish-wwm-cased-xnli **UPDATE, 15.10.2021: Check out our new zero-shot classifiers, much more lightweight and even outperforming this one: [zero-shot SELECTRA small](https://huggingface.co/Recognai/zeroshot_selectra_small) and [zero-shot SELECTRA medium](https://huggingface.co/Recognai/zeroshot_selectra_medium).** ## Model description This model is a fine-tuned version of the [spanish BERT model](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) with the Spanish portion of the XNLI dataset. You can have a look at the [training script](https://huggingface.co/Recognai/bert-base-spanish-wwm-cased-xnli/blob/main/zeroshot_training_script.py) for details of the training. ### How to use You can use this model with Hugging Face's [zero-shot-classification pipeline](https://discuss.huggingface.co/t/new-pipeline-for-zero-shot-text-classification/681): ```python from transformers import pipeline classifier = pipeline("zero-shot-classification", model="Recognai/bert-base-spanish-wwm-cased-xnli") classifier( "El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo", candidate_labels=["cultura", "sociedad", "economia", "salud", "deportes"], hypothesis_template="Este ejemplo es {}." ) """output {'sequence': 'El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo', 'labels': ['cultura', 'sociedad', 'economia', 'salud', 'deportes'], 'scores': [0.38897448778152466, 0.22997373342514038, 0.1658431738615036, 0.1205764189362526, 0.09463217109441757]} """ ``` ## Eval results Accuracy for the test set: | | XNLI-es | |-----------------------------|---------| |bert-base-spanish-wwm-cased-xnli | 79.9% |
Recognai/distilbert-base-es-multilingual-cased
Recognai
2023-07-14T22:20:32Z
352
3
transformers
[ "transformers", "pytorch", "safetensors", "distilbert", "fill-mask", "es", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: es license: apache-2.0 datasets: - wikipedia widget: - text: "Mi nombre es Juan y vivo en [MASK]." --- # DistilBERT base multilingual model Spanish subset (cased) This model is the Spanish extract of `distilbert-base-multilingual-cased` (https://huggingface.co/distilbert-base-multilingual-cased), a distilled version of the [BERT base multilingual model](bert-base-multilingual-cased). This model is cased: it does make a difference between english and English. It uses the extraction method proposed by Geotrend described in https://github.com/Geotrend-research/smaller-transformers. The resulting model has the same architecture as DistilmBERT: 6 layers, 768 dimension and 12 heads, with a total of **63M parameters** (compared to 134M parameters for DistilmBERT). The goal of this model is to reduce even further the size of the `distilbert-base-multilingual` multilingual model by selecting only most frequent tokens for Spanish, reducing the size of the embedding layer. For more details visit the paper from the Geotrend team: Load What You Need: Smaller Versions of Multilingual BERT.
Jowie/ppo-LunarLander
Jowie
2023-07-14T22:08:23Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T22:07:58Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 227.31 +/- 46.54 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
LarryAIDraw/Wa2k
LarryAIDraw
2023-07-14T22:06:30Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-14T21:45:20Z
--- license: creativeml-openrail-m --- https://civitai.com/models/13926/wa2000-or-girls-frontline
brucew5978/my_awesome_asr_mind_model
brucew5978
2023-07-14T22:02:12Z
77
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-07-12T18:24:27Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: my_awesome_asr_mind_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_asr_mind_model This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 57.1369 - Wer: 1.1053 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 48.7151 | 200.0 | 1000 | 57.1369 | 1.1053 | | 47.4068 | 400.0 | 2000 | 57.1369 | 1.1053 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.12.1 - Datasets 2.13.1 - Tokenizers 0.13.3
sghirardelli/vit-base-patch16-224-in21k-rgbd
sghirardelli
2023-07-14T22:00:58Z
64
0
transformers
[ "transformers", "tf", "tensorboard", "vit", "image-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-14T20:21:17Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: vit-base-patch16-224-in21k-rgbd results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-in21k-rgbd This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5496 - Train Accuracy: 1.0 - Train Top-3-accuracy: 1.0 - Validation Loss: 0.3955 - Validation Accuracy: 0.9994 - Validation Top-3-accuracy: 1.0 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 1455, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 1.6822 | 0.9392 | 0.9664 | 0.7810 | 0.9994 | 1.0 | 0 | | 0.5496 | 1.0 | 1.0 | 0.3955 | 0.9994 | 1.0 | 1 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.13.1 - Tokenizers 0.13.3
wolffenbuetell/PFKODRCHORMA
wolffenbuetell
2023-07-14T21:53:52Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-14T21:48:13Z
--- license: creativeml-openrail-m ---
AACEE/textual_inversion_sksship
AACEE
2023-07-14T21:48:01Z
4
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "textual_inversion", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-14T20:13:35Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - AACEE/textual_inversion_sksship These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
YanJiangJerry/covid-tweet-bert-large-e2-noweight
YanJiangJerry
2023-07-14T21:45:24Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-14T21:30:30Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: covid-tweet-bert-large-e2-noweight results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # covid-tweet-bert-large-e2-noweight This model is a fine-tuned version of [digitalepidemiologylab/covid-twitter-bert-v2](https://huggingface.co/digitalepidemiologylab/covid-twitter-bert-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2582 - Accuracy: 0.9568 - F1: 0.8878 - Precision: 0.8604 - Recall: 0.9170 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.0593 | 1.0 | 1023 | 0.2053 | 0.9581 | 0.8885 | 0.8810 | 0.8962 | | 0.0146 | 2.0 | 2046 | 0.2582 | 0.9568 | 0.8878 | 0.8604 | 0.9170 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
0sunfire0/Cartpole-v1_train_01
0sunfire0
2023-07-14T21:31:24Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T21:31:15Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Cartpole-v1_train_01 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 497.20 +/- 8.40 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
XO-Appleton/vit-base-patch16-224-in21k-MR
XO-Appleton
2023-07-14T20:45:21Z
66
0
transformers
[ "transformers", "tf", "tensorboard", "vit", "image-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-14T18:12:06Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: XO-Appleton/vit-base-patch16-224-in21k-MR results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # XO-Appleton/vit-base-patch16-224-in21k-MR This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0042 - Train Accuracy: 1.0 - Train Top-3-accuracy: 1.0 - Validation Loss: 0.0126 - Validation Accuracy: 0.9983 - Validation Top-3-accuracy: 1.0 - Epoch: 3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 4485, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 0.1624 | 0.9544 | 1.0 | 0.0380 | 0.9933 | 1.0 | 0 | | 0.0178 | 0.9979 | 1.0 | 0.0197 | 0.9966 | 1.0 | 1 | | 0.0063 | 1.0 | 1.0 | 0.0139 | 0.9983 | 1.0 | 2 | | 0.0042 | 1.0 | 1.0 | 0.0126 | 0.9983 | 1.0 | 3 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.13.1 - Tokenizers 0.13.3
fontanap/Taxi-v3
fontanap
2023-07-14T20:36:49Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T20:36:48Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="fontanap/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
RiversHaveWings/minihf_evaluator_openllama_7b
RiversHaveWings
2023-07-14T20:35:57Z
7
0
peft
[ "peft", "safetensors", "license:apache-2.0", "region:us" ]
null
2023-07-14T19:42:13Z
--- library_name: peft license: apache-2.0 --- # minihf_evaluator_openllama_7b `minihf_evaluator_openllama_7b` is a LoRA instruct fine-tune of [OpenLLaMA 7B](https://huggingface.co/openlm-research/open_llama_7b). The sequence `<|end|>` was used to separate the prompt and response. The correct way to prompt the model is: `Does 2 + 2 = 4?<|end|>`. The tokenizer will prepend a BOS token (`<s>`) by default. The response will end with an EOS token (`</s>`). ## Training procedure `minihf_evaluator_openllama_7b` was fine-tuned for 100,000 examples on 90% [Muennighoff/flan](https://huggingface.co/datasets/Muennighoff/flan) / 10% [databricks/databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) using batch size 4 per GPU on 8 40GB A100 GPUs. Examples where the prompt and response would not fit into 2,048 tokens were dropped. The fine-tuning was done using the following command: ```bash accelerate launch make_evaluator.py --output-dir minihf_evaluator_openllama_7b ``` The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
n3bbb/distilbert-base-uncased-finetuned-cola
n3bbb
2023-07-14T20:34:39Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-14T19:20:07Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5514555448601601 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8001 - Matthews Correlation: 0.5515 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5242 | 1.0 | 535 | 0.5338 | 0.4221 | | 0.3484 | 2.0 | 1070 | 0.4976 | 0.4779 | | 0.2417 | 3.0 | 1605 | 0.5211 | 0.5452 | | 0.1765 | 4.0 | 2140 | 0.7580 | 0.5282 | | 0.1269 | 5.0 | 2675 | 0.8001 | 0.5515 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Rui31415/Taxi
Rui31415
2023-07-14T20:32:17Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T20:32:15Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.76 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Rui31415/Taxi", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
fontanap/q-FrozenLake-v1-4x4-noSlippery
fontanap
2023-07-14T20:27:22Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T20:27:20Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="fontanap/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
avishek-018/bert-semantic-similarity
avishek-018
2023-07-14T20:22:22Z
6
1
tf-keras
[ "tf-keras", "sentence-similarity", "en", "license:mit", "region:us" ]
sentence-similarity
2023-07-14T19:41:59Z
--- license: mit language: - en pipeline_tag: sentence-similarity --- widget: - source_sentence: Two women are observing something together. sentences: - Two women are standing with their eyes closed. example_title: Example 1 - source_sentence: A smiling costumed woman is holding an umbrella sentences: - A happy woman in a fairy costume holds an umbrella example_title: Example 2 - source_sentence: A soccer game with multiple males playing sentences: - Some men are playing a sport example_title: Example 3
davej23/distilhubert-finetuned-gtzan
davej23
2023-07-14T20:20:33Z
159
0
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-14T18:19:55Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.4577 - Accuracy: 0.86 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.8254 | 1.0 | 113 | 1.8353 | 0.48 | | 1.2492 | 2.0 | 226 | 1.4297 | 0.57 | | 1.0203 | 3.0 | 339 | 0.9814 | 0.69 | | 0.633 | 4.0 | 452 | 0.7345 | 0.83 | | 0.5642 | 5.0 | 565 | 0.6213 | 0.8 | | 0.3219 | 6.0 | 678 | 0.5763 | 0.84 | | 0.1772 | 7.0 | 791 | 0.4850 | 0.86 | | 0.2427 | 8.0 | 904 | 0.4841 | 0.86 | | 0.1397 | 9.0 | 1017 | 0.4760 | 0.86 | | 0.4494 | 10.0 | 1130 | 0.4577 | 0.86 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
MicroPanda123/PythonBasic
MicroPanda123
2023-07-14T20:15:25Z
4
0
null
[ "text-generation", "license:gpl-2.0", "region:us" ]
text-generation
2023-07-14T13:25:41Z
--- license: gpl-2.0 pipeline_tag: text-generation --- Got bored so used [nanoGPT](https://github.com/karpathy/nanoGPT) to train model on all Python snippets from https://www.kaggle.com/datasets/simiotic/github-code-snippets Model was trained on default train.py settings, except ``` eval_intervals=20 eval_iters=40 batch_size=2 gradient_accumulation_steps = 64 ``` This was because I was training it locally on RTX2060 and did not have enough power to train it on higher settings. Model is stored in "model" folder that contains model itself and "info.txt" file containing: - iter_num - number of iterations - train_loss - training loss at time of checkpoint - val_loss - validation loss at time of checkpoint - config - nanoGPT config At first I made it only save model after validation loss improved, to not allow overfitting, but after some time I decided to risk it and turned that off and allowed it to save everytime, luckly it worked out fine.
YanJiangJerry/SA-berttweet-large-e3-b16-w0.01
YanJiangJerry
2023-07-14T20:11:27Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-14T19:51:53Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: SA-berttweet-large-e3-b16-w0.01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SA-berttweet-large-e3-b16-w0.01 This model is a fine-tuned version of [vinai/bertweet-large](https://huggingface.co/vinai/bertweet-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2822 - Accuracy: 0.926 - F1: 0.9333 - Precision: 0.9487 - Recall: 0.9184 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 285 | 0.3723 | 0.839 | 0.8342 | 0.9951 | 0.7181 | | 0.3662 | 2.0 | 570 | 0.2310 | 0.915 | 0.9242 | 0.9300 | 0.9184 | | 0.3662 | 3.0 | 855 | 0.2822 | 0.926 | 0.9333 | 0.9487 | 0.9184 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
roilhi/ppo-LunarLander-v2
roilhi
2023-07-14T20:08:11Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T20:07:54Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 286.00 +/- 24.34 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
felflare/EasyOCR-weights
felflare
2023-07-14T19:57:55Z
0
0
null
[ "region:us" ]
null
2023-03-29T17:40:39Z
## Port of EasyOCR weights from Jaided AI model Hub These Weights are from Gen 2 of EasyOCR weights **Original weights can be found here - [Jaided AI Model Hub](https://www.jaided.ai/easyocr/modelhub/)** Licensed under [Jaided AI license terms](https://github.com/JaidedAI/EasyOCR/blob/master/LICENSE), this is only a port of the weights onto Hugginface model repository for ease of access.
Rui31415/q-FrozenLake-v1-4x4-noSlippery
Rui31415
2023-07-14T19:50:52Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T19:50:49Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Rui31415/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
chaojiang06/arxiv-sentence-alignment
chaojiang06
2023-07-14T19:42:21Z
108
0
transformers
[ "transformers", "pytorch", "arxiv:2210.15067", "endpoints_compatible", "region:us" ]
null
2023-02-19T21:55:34Z
# Checkpoints for [arXivEdits paper](https://arxiv.org/pdf/2210.15067.pdf). Please see more details at the [github repo](https://github.com/chaojiang06/arXivEdits/tree/main).
chaojiang06/arXivEdits-intention-classifier-T5-base-fine-grained
chaojiang06
2023-07-14T19:40:52Z
110
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "arxiv:2210.15067", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-14T19:12:44Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: arXivEdits-intention-classifier-T5-base-fine-grained results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Checkpoints for [arXivEdits paper](https://arxiv.org/pdf/2210.15067.pdf). Please see more details at the [github repo](https://github.com/chaojiang06/arXivEdits/tree/main). # arXivEdits-intention-classifier-T5-base-fine-grained This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1457 - Accuracy: 0.6826 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 105 | 0.3043 | 0.2991 | | No log | 2.0 | 210 | 0.2653 | 0.3311 | | No log | 3.0 | 315 | 0.2475 | 0.4726 | | No log | 4.0 | 420 | 0.1737 | 0.6096 | | 0.5112 | 5.0 | 525 | 0.1660 | 0.6256 | | 0.5112 | 6.0 | 630 | 0.1499 | 0.6575 | | 0.5112 | 7.0 | 735 | 0.1497 | 0.6438 | | 0.5112 | 8.0 | 840 | 0.1457 | 0.6826 | | 0.5112 | 9.0 | 945 | 0.1470 | 0.6781 | | 0.151 | 10.0 | 1050 | 0.1428 | 0.6781 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.17.0 - Tokenizers 0.11.6
YanJiangJerry/SA-berttweet-large-e6-w2-1-b16-w0.01
YanJiangJerry
2023-07-14T19:35:33Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-14T18:56:29Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: SA-berttweet-large-e6-w2-1-b16-w0.01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SA-berttweet-large-e6-w2-1-b16-w0.01 This model is a fine-tuned version of [vinai/bertweet-large](https://huggingface.co/vinai/bertweet-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4510 - Accuracy: 0.935 - F1: 0.9423 - Precision: 0.9432 - Recall: 0.9415 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 285 | 0.2599 | 0.871 | 0.8714 | 0.9954 | 0.7748 | | 0.3039 | 2.0 | 570 | 0.2502 | 0.929 | 0.9371 | 0.9363 | 0.9379 | | 0.3039 | 3.0 | 855 | 0.4228 | 0.923 | 0.9331 | 0.9148 | 0.9521 | | 0.1246 | 4.0 | 1140 | 0.4102 | 0.934 | 0.9414 | 0.9431 | 0.9397 | | 0.1246 | 5.0 | 1425 | 0.4532 | 0.933 | 0.9407 | 0.9398 | 0.9415 | | 0.0379 | 6.0 | 1710 | 0.4510 | 0.935 | 0.9423 | 0.9432 | 0.9415 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
hongrui/mammogram_v_2_2_2_100
hongrui
2023-07-14T19:34:21Z
2
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-14T00:35:12Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - hongrui/mammogram_v_2_2_2_100 These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the hongrui/mammo_100_v1 dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
Leon68/opt-6.7b-lora
Leon68
2023-07-14T19:03:58Z
1
0
peft
[ "peft", "region:us" ]
null
2023-07-14T19:03:51Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
franklab/HSSM
franklab
2023-07-14T18:48:22Z
0
2
null
[ "onnx", "license:bsd-2-clause", "region:us" ]
null
2023-06-22T16:08:25Z
--- license: bsd-2-clause --- # Utilizing Custom ONNX Models Stored in Hugging Face within HSSM This guide will walk you through the process of using custom ONNX models stored in Hugging Face within HSSM (Hierarchical State Space Model) framework. ## Prerequisites 1. Python 3.8 or later. 2. HSSM library installed in your Python environment. 3. A pre-trained ONNX model stored on Hugging Face model hub. ## Step-by-step guide ### Step 1: Import necessary libraries ``` import pandas as pd import hssm import ssms.basic_simulators pytensor.config.floatX = "float32" ``` ### Step 2: Define HSSM Configuration You will have to define the configuration of your model. Make sure you are defining the log-likelihood kind as "approx_differentiable" and providing the Hugging Face model name in the loglik field. ``` my_hssm = hssm.HSSM( data=dataset_lan, loglik_kind = "approx_differentiable", loglik = "levy.onnx", model="custom", model_config= { "backend": "jax", "list_params": ["v", "a", "z", "alpha", "t"], "bounds": { "v": (-3.0, 3.0), "a": (0.3, 3.0), "z": (0.1, 0.9), "alpha": (1.0, 2.0), "t": (1e-3, 2.0), }, } ) ``` This creates an HSSM object my_hssm using the custom ONNX model levy.onnx from the Hugging Face repository. ``` my_hssm.sample(cores=2, draws=500, tune=500, mp_ctx="forkserver") ``` # Uploading ONNX Files to a Hugging Face Repository If your ONNX file is not currently housed in your Hugging Face repository, you can include it by adhering to the steps delineated below: 1. Import the HfApi module from huggingface_hub: ``` from huggingface_hub import HfApi ``` 2. Upload the ONNX file using the upload_file method: ``` api = HfApi() api.upload_file( path_or_fileobj="test.onnx", path_in_repo="test.onnx", repo_id="franklab/HSSM", repo_type="model", create_pr=True, ) ``` The execution of these steps will generate a Pull Request (PR) on Hugging Face, which will subsequently be evaluated by a member of our team. ## Creating a Pull Request and a New ONNX Model 1. **Creating a Pull Request on Hugging Face** Navigate to the following link: [Hugging Face PR](https://huggingface.co/franklab/HSSM/blob/refs%2Fpr%2F1/test.onnx) By doing so, you will **generate a Pull Request on Hugging Face**, which will be reviewed by our team members. 2. **Creating a Custom ONNX Model** ### Establish a Network Config and State Dictionary Files in PyTorch To construct a custom model and save it as an ONNX file, you must create a network configuration file and a state dictionary file in PyTorch. Refer to the instructions outlined in the README of the [LANFactory package](LINK_TO_LANFACTORY_PACKAGE). ### Convert Network Config and State Dictionary Files to ONNX Once you've generated the network configuration and state dictionary files, you will need to **convert these files into an ONNX format**.
Danish-summarisation/DanSumT5-large
Danish-summarisation
2023-07-14T18:43:21Z
29
3
transformers
[ "transformers", "pytorch", "safetensors", "mt5", "text2text-generation", "summarization", "da", "arxiv:1804.11283", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2023-04-10T12:21:06Z
--- pipeline_tag: summarization license: apache-2.0 language: - da --- # mT5-large fine-tuned for News article Summarisation ✏️🧾 [Google's mT5](https://aclanthology.org/2021.naacl-main.41/) for **summarisation** downstream task. # Model summary This repository contains a model for Danish abstractive summarisation of news articles. The summariser is based on a language-specific mT5-large. The model is fine-tuned using an abstractive subset of the DaNewsroom dataset (Varab & Schluter, 2020), according to the binned density categories employed in Newsroom (Grusky et al., 2019). # References Grusky, M., Naaman, M., & Artzi, Y. (2018). Newsroom: A Dataset of 1.3 Million Summaries with Diverse Extractive Strategies. ArXiv:1804.11283 [Cs]. http://arxiv.org/abs/1804.11283 Varab, D., & Schluter, N. (2020). DaNewsroom: A Large-scale Danish Summarisation Dataset. Proceedings of the 12th Language Resources and Evaluation Conference, 6731–6739. https://aclanthology.org/2020.lrec-1.831
giocs2017/ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
giocs2017
2023-07-14T18:35:09Z
161
0
transformers
[ "transformers", "pytorch", "tensorboard", "audio-spectrogram-transformer", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:MIT/ast-finetuned-audioset-10-10-0.4593", "base_model:finetune:MIT/ast-finetuned-audioset-10-10-0.4593", "license:bsd-3-clause", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-14T17:01:58Z
--- license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.9 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.4700 - Accuracy: 0.9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9627 | 1.0 | 112 | 0.7284 | 0.75 | | 0.3776 | 1.99 | 224 | 0.4641 | 0.83 | | 0.4536 | 3.0 | 337 | 0.5534 | 0.85 | | 0.0602 | 4.0 | 449 | 0.4999 | 0.86 | | 0.1927 | 4.99 | 561 | 0.5989 | 0.85 | | 0.0122 | 6.0 | 674 | 0.7778 | 0.85 | | 0.0006 | 6.99 | 786 | 0.4095 | 0.9 | | 0.0005 | 8.0 | 899 | 0.5149 | 0.9 | | 0.1723 | 9.0 | 1011 | 0.4558 | 0.9 | | 0.0001 | 9.99 | 1123 | 0.4700 | 0.9 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
saicharan8/my_first_finetune
saicharan8
2023-07-14T18:33:08Z
108
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "en", "dataset:yelp_review_full", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-14T18:24:40Z
--- license: apache-2.0 datasets: - yelp_review_full language: - en --- This is my first fine tuned bert model on yelp data .
absolutt/ppo-LunarLander-v2-1stTry
absolutt
2023-07-14T18:24:14Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T18:23:51Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 251.71 +/- 21.38 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
YanJiangJerry/SA-roberta-e3-w1-5-b16-w0.01-data2
YanJiangJerry
2023-07-14T18:19:30Z
118
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-14T17:48:27Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: SA-roberta-e3-w1-5-b16-w0.01-data2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SA-roberta-e3-w1-5-b16-w0.01-data2 This model is a fine-tuned version of [Amalq/autotrain-smm4h_large_roberta_clean-874027878](https://huggingface.co/Amalq/autotrain-smm4h_large_roberta_clean-874027878) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7680 - Accuracy: 0.9021 - F1: 0.8646 - Precision: 0.8921 - Recall: 0.8388 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.2612 | 1.0 | 581 | 0.4296 | 0.9021 | 0.8721 | 0.8499 | 0.8955 | | 0.1252 | 2.0 | 1162 | 0.7605 | 0.8977 | 0.8571 | 0.8932 | 0.8239 | | 0.0567 | 3.0 | 1743 | 0.7680 | 0.9021 | 0.8646 | 0.8921 | 0.8388 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
hafeezmhk6/vikas_trail2
hafeezmhk6
2023-07-14T18:14:36Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-14T18:10:26Z
--- tags: - generated_from_trainer model-index: - name: vikas_trail2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vikas_trail2 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
jamanca94/roberta-base-bne-finetuned-sqac
jamanca94
2023-07-14T18:08:34Z
114
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "dataset:sqac", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-07-14T16:53:52Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - sqac model-index: - name: roberta-base-bne-finetuned-sqac results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-sqac This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the sqac dataset. It achieves the following results on the evaluation set: - Loss: 1.1472 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.9881 | 1.0 | 1196 | 0.8653 | | 0.4671 | 2.0 | 2392 | 0.9053 | | 0.1506 | 3.0 | 3588 | 1.1472 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
CMunch/fine_tuned_temp_real
CMunch
2023-07-14T17:34:39Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-13T17:35:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: fine_tuned_temp_real results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.93116 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine_tuned_temp_real This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2334 - Accuracy: 0.9312 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2349 | 1.0 | 1563 | 0.1965 | 0.9247 | | 0.1521 | 2.0 | 3126 | 0.2334 | 0.9312 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
YanJiangJerry/SA-roberta-e3-w1-2.5-b16-mt4-w0.01-data2
YanJiangJerry
2023-07-14T17:32:07Z
107
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-14T17:01:00Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: SA-roberta-e3-w1-2.5-b16-mt4-w0.01-data2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SA-roberta-e3-w1-2.5-b16-mt4-w0.01-data2 This model is a fine-tuned version of [Amalq/autotrain-smm4h_large_roberta_clean-874027878](https://huggingface.co/Amalq/autotrain-smm4h_large_roberta_clean-874027878) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6606 - Accuracy: 0.9088 - F1: 0.875 - Precision: 0.8941 - Recall: 0.8567 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.2898 | 1.0 | 581 | 0.5149 | 0.9221 | 0.8930 | 0.9154 | 0.8716 | | 0.1117 | 2.0 | 1162 | 0.7317 | 0.9010 | 0.8633 | 0.8892 | 0.8388 | | 0.0536 | 3.0 | 1743 | 0.6606 | 0.9088 | 0.875 | 0.8941 | 0.8567 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
achang/fin_forecast_0
achang
2023-07-14T17:06:10Z
0
0
null
[ "region:us" ]
null
2023-07-03T00:24:42Z
commit: 1559705809d9ef7ac5e7dfe8e739c13c1b26f77a model train on https://huggingface.co/datasets/achang/stock_forecast_0
YanJiangJerry/SA-roberta-e3-w1-1.5-b16-mt4-w0.01-data2
YanJiangJerry
2023-07-14T16:57:59Z
107
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-14T16:26:57Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: SA-roberta-e3-w1-1.5-b16-mt4-w0.01-data2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SA-roberta-e3-w1-1.5-b16-mt4-w0.01-data2 This model is a fine-tuned version of [Amalq/autotrain-smm4h_large_roberta_clean-874027878](https://huggingface.co/Amalq/autotrain-smm4h_large_roberta_clean-874027878) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5675 - Accuracy: 0.9121 - F1: 0.8819 - Precision: 0.8832 - Recall: 0.8806 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.3096 | 1.0 | 581 | 0.3382 | 0.9077 | 0.8770 | 0.8706 | 0.8836 | | 0.1202 | 2.0 | 1162 | 0.5246 | 0.9032 | 0.8730 | 0.8543 | 0.8925 | | 0.0655 | 3.0 | 1743 | 0.5675 | 0.9121 | 0.8819 | 0.8832 | 0.8806 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
sotoy/path_to_saved_model
sotoy
2023-07-14T16:56:29Z
1
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-14T13:32:56Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - sotoy/path_to_saved_model This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: True.
FrancescoBonzi/speecht5_finetuned_voxpopuli_it
FrancescoBonzi
2023-07-14T16:39:52Z
93
0
transformers
[ "transformers", "pytorch", "tensorboard", "speecht5", "text-to-audio", "generated_from_trainer", "text-to-speech", "dataset:voxpopuli", "license:mit", "endpoints_compatible", "region:us" ]
text-to-speech
2023-07-14T14:17:17Z
--- license: mit tags: - generated_from_trainer - text-to-speech datasets: - voxpopuli model-index: - name: speecht5_finetuned_voxpopuli_it results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_voxpopuli_it This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the voxpopuli dataset. It achieves the following results on the evaluation set: - Loss: 0.4871 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5505 | 6.13 | 1000 | 0.5092 | | 0.5245 | 12.26 | 2000 | 0.4941 | | 0.5192 | 18.39 | 3000 | 0.4885 | | 0.5126 | 24.52 | 4000 | 0.4871 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.13.1 - Tokenizers 0.13.3
giocs2017/distilhubert-finetuned-gtzan
giocs2017
2023-07-14T16:32:55Z
160
0
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-13T01:20:22Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.8934 - Accuracy: 0.82 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.681 | 1.0 | 450 | 1.7351 | 0.5 | | 1.5534 | 2.0 | 900 | 1.2192 | 0.66 | | 0.6835 | 3.0 | 1350 | 1.0462 | 0.71 | | 1.069 | 4.0 | 1800 | 0.5503 | 0.83 | | 0.1563 | 5.0 | 2250 | 0.9394 | 0.78 | | 0.0077 | 6.0 | 2700 | 0.9394 | 0.81 | | 0.7444 | 7.0 | 3150 | 0.8934 | 0.82 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.0+cu117 - Datasets 2.13.1 - Tokenizers 0.13.2
giocs2017/Taxi-v3_v1
giocs2017
2023-07-14T16:00:46Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T15:47:30Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3_v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="giocs2017/Taxi-v3_v1", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
giocs2017/q-FrozenLake-v1-4x4-noSlippery
giocs2017
2023-07-14T15:59:09Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T15:46:03Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="giocs2017/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
bhenrym14/airoboros-33b-gpt4-1.4.1-lxctx-PI-16384-LoRA
bhenrym14
2023-07-14T15:50:00Z
0
1
null
[ "dataset:jondurbin/airoboros-gpt4-1.4.1", "region:us" ]
null
2023-07-14T02:51:39Z
--- datasets: - jondurbin/airoboros-gpt4-1.4.1 --- NOTE: This LoRA was trained on Llama-30b AFTER additional pretraining. I intend on providing the LoRA of that pretraining too. Applying this LoRA to base Llama-30b will likely result in a performance reduction. I have uploaded the fp16 merged weights [here](https://huggingface.co/bhenrym14/airoboros-33b-gpt4-1.4.1-lxctx-PI-16384-LoRA/) Mostly untested! Find GPTQ quantized weights and full model card here: https://huggingface.co/bhenrym14/airoboros-33b-gpt4-1.4.1-lxctx-PI-16384-GPTQ # RoPE Scaled QLoRA Fine-tune of Llama-33b on airoboros-gpt4-1.4.1 (LoRA) ## Overview This is [Jon Durbin's Airoboros 33B GPT4 1.4](https://huggingface.co/jondurbin/airoboros-33b-gpt4-1.4) (LoRA) with several key modifications: - Context length extended to 16384 by RoPE Scaled Embeddings. - The Llama-33b base model is pretrained for additional 100 steps on 8192 length sequences from the pile dataset. - Used airoboros-gpt4-1.4.1 dataset instead of airoboros-gpt4-1.4 **This is a QLoRA fine-tune** Pretraining took 10 hours. Finetuning took ~41 hours on 1x RTX 6000 Ada.
Dlychan/Nadhieraa
Dlychan
2023-07-14T15:47:59Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-14T15:42:59Z
--- license: creativeml-openrail-m ---
PlankyxD/Reinforce-CartPole-v1
PlankyxD
2023-07-14T15:46:00Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-27T02:12:53Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 466.10 +/- 71.75 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
PavlySafwat/ExtractiveQABertBase
PavlySafwat
2023-07-14T15:25:14Z
101
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2023-07-14T15:21:12Z
--- pipeline_tag: question-answering --- Hyperparameters batch_size = 96 n_epochs = 2 base_LM_model = "roberta-base" max_seq_len = 386 learning_rate = 3e-5 lr_schedule = LinearWarmup warmup_proportion = 0.2 doc_stride=128 max_query_length=64
Vladislav-HuggingFace/Taxi-v3
Vladislav-HuggingFace
2023-07-14T15:17:01Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T14:47:39Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.75 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Vladislav-HuggingFace/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ahmadnajm/KurdGPT
ahmadnajm
2023-07-14T14:58:36Z
0
0
adapter-transformers
[ "adapter-transformers", "code", "chemistry", "biology", "legal", "art", "medical", "text-classification", "en", "ku", "dataset:fka/awesome-chatgpt-prompts", "license:openrail", "region:us" ]
text-classification
2023-06-16T23:54:34Z
--- license: openrail datasets: - fka/awesome-chatgpt-prompts language: - en - ku metrics: - accuracy library_name: adapter-transformers pipeline_tag: text-classification tags: - code - chemistry - biology - legal - art - medical ---
grace-pro/xlmr-base-igbo-5e-5
grace-pro
2023-07-14T14:49:57Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-14T14:18:19Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: xlmr-base-igbo-5e-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr-base-igbo-5e-5 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2368 - Precision: 0.7064 - Recall: 0.5075 - F1: 0.5907 - Accuracy: 0.9212 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2768 | 1.0 | 1257 | 0.2611 | 0.7212 | 0.3117 | 0.4353 | 0.9055 | | 0.2299 | 2.0 | 2514 | 0.2606 | 0.7395 | 0.3797 | 0.5018 | 0.9134 | | 0.1966 | 3.0 | 3771 | 0.2224 | 0.7252 | 0.4496 | 0.5550 | 0.9186 | | 0.1697 | 4.0 | 5028 | 0.2290 | 0.7273 | 0.4775 | 0.5765 | 0.9208 | | 0.1449 | 5.0 | 6285 | 0.2368 | 0.7064 | 0.5075 | 0.5907 | 0.9212 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Vladislav-HuggingFace/q-Taxi-v3
Vladislav-HuggingFace
2023-07-14T14:44:51Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T14:44:30Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Vladislav-HuggingFace/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
athrunsunny/YOLOMT
athrunsunny
2023-07-14T14:44:02Z
0
0
null
[ "onnx", "region:us" ]
null
2023-07-14T14:06:16Z
Pretrained models of our method YOLOMT demo link: https://github.com/athrunsunny/YOLOMT YOLOMT is a multi-task model base yolo,detect human orientation,face pose and face landmark detect result: ![model image](https://huggingface.co/athrunsunny/YOLOMT/blob/main/273271%2C5cd00091704fd7.jpg) model:[yolomt.onnx](https://huggingface.co/athrunsunny/YOLOMT/blob/main/YOLOMT.onnx)
shahafw/ppo-CartPole-v1
shahafw
2023-07-14T14:39:10Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T14:35:39Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -160.58 +/- 79.59 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'shahafw/ppo-CartPole-v1' 'batch_size': 512 'minibatch_size': 128} ```
PaulineJamin/cart-pole-v1
PaulineJamin
2023-07-14T14:13:25Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T09:45:08Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: cart-pole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.40 +/- 39.85 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
wf123aaa/resnet-50-finetuned-ai-art
wf123aaa
2023-07-14T14:12:21Z
0
0
nemo
[ "nemo", "pytorch", "resnet", "art", "image-classification", "en", "license:apache-2.0", "region:us" ]
image-classification
2023-07-14T06:40:05Z
--- license: apache-2.0 language: - en metrics: - accuracy library_name: nemo pipeline_tag: image-classification tags: - art ---
HuengchI/my_awesome_eli5_clm-model
HuengchI
2023-07-14T13:59:42Z
198
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-14T13:46:28Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: my_awesome_eli5_clm-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_eli5_clm-model This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7590 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 282 | 3.7798 | | 3.8857 | 2.0 | 564 | 3.7630 | | 3.8857 | 3.0 | 846 | 3.7590 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.0 - Tokenizers 0.13.3