modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-02 18:27:42
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
549 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-02 18:24:50
card
stringlengths
11
1.01M
mradermacher/Athene-V2-Agent-i1-GGUF
mradermacher
2024-11-16T06:40:09Z
122
2
transformers
[ "transformers", "gguf", "RLHF", "Nexusflow", "Athene", "Function Calling", "Agent", "Extraction", "en", "base_model:Nexusflow/Athene-V2-Agent", "base_model:quantized:Nexusflow/Athene-V2-Agent", "license:other", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-15T15:39:07Z
--- base_model: Nexusflow/Athene-V2-Agent language: - en library_name: transformers license: other quantized_by: mradermacher tags: - RLHF - Nexusflow - Athene - Function Calling - Agent - Extraction --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Nexusflow/Athene-V2-Agent <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Athene-V2-Agent-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Athene-V2-Agent-i1-GGUF/resolve/main/Athene-V2-Agent.i1-IQ1_S.gguf) | i1-IQ1_S | 22.8 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Athene-V2-Agent-i1-GGUF/resolve/main/Athene-V2-Agent.i1-IQ1_M.gguf) | i1-IQ1_M | 23.8 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Athene-V2-Agent-i1-GGUF/resolve/main/Athene-V2-Agent.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 25.6 | | | [GGUF](https://huggingface.co/mradermacher/Athene-V2-Agent-i1-GGUF/resolve/main/Athene-V2-Agent.i1-IQ2_XS.gguf) | i1-IQ2_XS | 27.2 | | | [GGUF](https://huggingface.co/mradermacher/Athene-V2-Agent-i1-GGUF/resolve/main/Athene-V2-Agent.i1-IQ2_S.gguf) | i1-IQ2_S | 28.0 | | | [GGUF](https://huggingface.co/mradermacher/Athene-V2-Agent-i1-GGUF/resolve/main/Athene-V2-Agent.i1-IQ2_M.gguf) | i1-IQ2_M | 29.4 | | | [GGUF](https://huggingface.co/mradermacher/Athene-V2-Agent-i1-GGUF/resolve/main/Athene-V2-Agent.i1-Q2_K.gguf) | i1-Q2_K | 29.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Athene-V2-Agent-i1-GGUF/resolve/main/Athene-V2-Agent.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 31.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Athene-V2-Agent-i1-GGUF/resolve/main/Athene-V2-Agent.i1-IQ3_XS.gguf) | i1-IQ3_XS | 32.9 | | | [GGUF](https://huggingface.co/mradermacher/Athene-V2-Agent-i1-GGUF/resolve/main/Athene-V2-Agent.i1-IQ3_S.gguf) | i1-IQ3_S | 34.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Athene-V2-Agent-i1-GGUF/resolve/main/Athene-V2-Agent.i1-Q3_K_S.gguf) | i1-Q3_K_S | 34.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Athene-V2-Agent-i1-GGUF/resolve/main/Athene-V2-Agent.i1-IQ3_M.gguf) | i1-IQ3_M | 35.6 | | | [GGUF](https://huggingface.co/mradermacher/Athene-V2-Agent-i1-GGUF/resolve/main/Athene-V2-Agent.i1-Q3_K_M.gguf) | i1-Q3_K_M | 37.8 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Athene-V2-Agent-i1-GGUF/resolve/main/Athene-V2-Agent.i1-Q3_K_L.gguf) | i1-Q3_K_L | 39.6 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Athene-V2-Agent-i1-GGUF/resolve/main/Athene-V2-Agent.i1-IQ4_XS.gguf) | i1-IQ4_XS | 39.8 | | | [GGUF](https://huggingface.co/mradermacher/Athene-V2-Agent-i1-GGUF/resolve/main/Athene-V2-Agent.i1-Q4_0.gguf) | i1-Q4_0 | 41.5 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Athene-V2-Agent-i1-GGUF/resolve/main/Athene-V2-Agent.i1-Q4_K_S.gguf) | i1-Q4_K_S | 44.0 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Athene-V2-Agent-i1-GGUF/resolve/main/Athene-V2-Agent.i1-Q4_K_M.gguf) | i1-Q4_K_M | 47.5 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/Athene-V2-Agent-i1-GGUF/resolve/main/Athene-V2-Agent.i1-Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Athene-V2-Agent-i1-GGUF/resolve/main/Athene-V2-Agent.i1-Q5_K_S.gguf.part2of2) | i1-Q5_K_S | 51.5 | | | [PART 1](https://huggingface.co/mradermacher/Athene-V2-Agent-i1-GGUF/resolve/main/Athene-V2-Agent.i1-Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Athene-V2-Agent-i1-GGUF/resolve/main/Athene-V2-Agent.i1-Q5_K_M.gguf.part2of2) | i1-Q5_K_M | 54.5 | | | [PART 1](https://huggingface.co/mradermacher/Athene-V2-Agent-i1-GGUF/resolve/main/Athene-V2-Agent.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Athene-V2-Agent-i1-GGUF/resolve/main/Athene-V2-Agent.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 64.4 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
alrang/matchup_llama3_1b_merge
alrang
2024-11-16T06:38:47Z
121
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-16T06:34:43Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/hermes-llama3-roleplay-1000-v4-GGUF
mradermacher
2024-11-16T06:35:08Z
32
0
transformers
[ "transformers", "gguf", "en", "base_model:Deev124/hermes-llama3-roleplay-1000-v4", "base_model:quantized:Deev124/hermes-llama3-roleplay-1000-v4", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-16T01:22:31Z
--- base_model: Deev124/hermes-llama3-roleplay-1000-v4 language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Deev124/hermes-llama3-roleplay-1000-v4 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v4-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v4-GGUF/resolve/main/hermes-llama3-roleplay-1000-v4.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v4-GGUF/resolve/main/hermes-llama3-roleplay-1000-v4.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v4-GGUF/resolve/main/hermes-llama3-roleplay-1000-v4.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v4-GGUF/resolve/main/hermes-llama3-roleplay-1000-v4.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v4-GGUF/resolve/main/hermes-llama3-roleplay-1000-v4.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v4-GGUF/resolve/main/hermes-llama3-roleplay-1000-v4.Q4_0_4_4.gguf) | Q4_0_4_4 | 4.8 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v4-GGUF/resolve/main/hermes-llama3-roleplay-1000-v4.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v4-GGUF/resolve/main/hermes-llama3-roleplay-1000-v4.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v4-GGUF/resolve/main/hermes-llama3-roleplay-1000-v4.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v4-GGUF/resolve/main/hermes-llama3-roleplay-1000-v4.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v4-GGUF/resolve/main/hermes-llama3-roleplay-1000-v4.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v4-GGUF/resolve/main/hermes-llama3-roleplay-1000-v4.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/hermes-llama3-roleplay-1000-v4-GGUF/resolve/main/hermes-llama3-roleplay-1000-v4.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Chmir1662/matchup_llama3_1b_merge
Chmir1662
2024-11-16T06:33:37Z
96
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-16T06:28:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mav23/MoE-Girl_400MA_1BT-GGUF
mav23
2024-11-16T06:27:07Z
110
0
transformers
[ "transformers", "gguf", "axolotl", "moe", "roleplay", "base_model:ibm-granite/granite-3.0-1b-a400m-base", "base_model:quantized:ibm-granite/granite-3.0-1b-a400m-base", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-16T06:12:05Z
--- library_name: transformers license: apache-2.0 base_model: ibm-granite/granite-3.0-1b-a400m-base tags: - axolotl - moe - roleplay model-index: - name: MoE_Girl_400MA_1BT results: [] --- # MoE Girl 400mA 1bT ![R8_sd3.5L_00001_.webp](https://cdn-uploads.huggingface.co/production/uploads/634262af8d8089ebaefd410e/GEbRJhyc087cP6Cs_AR0X.webp) a finetune of Granite 3.0 by IBM designed for roleplaying (and maybe general usecases if you try hard enough). ## Disclaimer PLEASE do not expect godliness out of this, it's a model with _400 million_ active parameters. Expect something more akin to GPT-2. ## Quants TODO! ## Prompting Use ChatML. ``` <|im_start|>system You are a helpful assistant who talks like a pirate.<|im_end|> <|im_start|>user Hello there!<|im_end|> <|im_start|>assistant Yarr harr harr, me matey!<|im_end|> ``` ## Thanks Special thanks to the members of Allura for testing and emotional support, as well as the creators of all the datasets that were used in the Special Sauce used to train this model. I love you all <3 - Fizz
dd2558/matchup_llama3_1b_merge
dd2558
2024-11-16T06:25:25Z
98
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-16T06:16:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/MagpieLM-13.3B-Chat-v0.1-GGUF
mradermacher
2024-11-16T06:15:12Z
7
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:win10/MagpieLM-13.3B-Chat-v0.1", "base_model:quantized:win10/MagpieLM-13.3B-Chat-v0.1", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-16T01:02:17Z
--- base_model: win10/MagpieLM-13.3B-Chat-v0.1 language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/win10/MagpieLM-13.3B-Chat-v0.1 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/MagpieLM-13.3B-Chat-v0.1-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/MagpieLM-13.3B-Chat-v0.1-GGUF/resolve/main/MagpieLM-13.3B-Chat-v0.1.Q2_K.gguf) | Q2_K | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/MagpieLM-13.3B-Chat-v0.1-GGUF/resolve/main/MagpieLM-13.3B-Chat-v0.1.Q3_K_S.gguf) | Q3_K_S | 6.0 | | | [GGUF](https://huggingface.co/mradermacher/MagpieLM-13.3B-Chat-v0.1-GGUF/resolve/main/MagpieLM-13.3B-Chat-v0.1.Q3_K_M.gguf) | Q3_K_M | 6.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/MagpieLM-13.3B-Chat-v0.1-GGUF/resolve/main/MagpieLM-13.3B-Chat-v0.1.Q3_K_L.gguf) | Q3_K_L | 7.2 | | | [GGUF](https://huggingface.co/mradermacher/MagpieLM-13.3B-Chat-v0.1-GGUF/resolve/main/MagpieLM-13.3B-Chat-v0.1.IQ4_XS.gguf) | IQ4_XS | 7.4 | | | [GGUF](https://huggingface.co/mradermacher/MagpieLM-13.3B-Chat-v0.1-GGUF/resolve/main/MagpieLM-13.3B-Chat-v0.1.Q4_0_4_4.gguf) | Q4_0_4_4 | 7.7 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/MagpieLM-13.3B-Chat-v0.1-GGUF/resolve/main/MagpieLM-13.3B-Chat-v0.1.Q4_K_S.gguf) | Q4_K_S | 7.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MagpieLM-13.3B-Chat-v0.1-GGUF/resolve/main/MagpieLM-13.3B-Chat-v0.1.Q4_K_M.gguf) | Q4_K_M | 8.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MagpieLM-13.3B-Chat-v0.1-GGUF/resolve/main/MagpieLM-13.3B-Chat-v0.1.Q5_K_S.gguf) | Q5_K_S | 9.3 | | | [GGUF](https://huggingface.co/mradermacher/MagpieLM-13.3B-Chat-v0.1-GGUF/resolve/main/MagpieLM-13.3B-Chat-v0.1.Q5_K_M.gguf) | Q5_K_M | 9.5 | | | [GGUF](https://huggingface.co/mradermacher/MagpieLM-13.3B-Chat-v0.1-GGUF/resolve/main/MagpieLM-13.3B-Chat-v0.1.Q6_K.gguf) | Q6_K | 11.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/MagpieLM-13.3B-Chat-v0.1-GGUF/resolve/main/MagpieLM-13.3B-Chat-v0.1.Q8_0.gguf) | Q8_0 | 14.2 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Ashmal/Clima_Vicuna_13B
Ashmal
2024-11-16T06:02:58Z
6
0
null
[ "pytorch", "llama", "license:apache-2.0", "region:us" ]
null
2024-11-16T05:09:51Z
--- license: apache-2.0 ---
Xu-Ouyang/FloatLM_2.4B-int2-GPTQ-wikitext2
Xu-Ouyang
2024-11-16T06:01:17Z
88
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "2-bit", "gptq", "region:us" ]
text-generation
2024-11-16T06:00:31Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jewoos/test_trainer
jewoos
2024-11-16T05:58:24Z
163
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-16T05:57:53Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: test_trainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_trainer This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4944 - Accuracy: 0.765 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 25 | 0.6402 | 0.625 | | No log | 2.0 | 50 | 0.4944 | 0.765 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1 - Datasets 2.19.1 - Tokenizers 0.20.1
BEASTBOYJAY/my-fine-tuned-summarizer
BEASTBOYJAY
2024-11-16T05:53:44Z
103
0
transformers
[ "transformers", "safetensors", "encoder-decoder", "text2text-generation", "en", "dataset:ccdv/cnn_dailymail", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-11-16T05:36:03Z
--- library_name: transformers datasets: - ccdv/cnn_dailymail language: - en base_model: - google-bert/bert-base-uncased --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model is used for making or generating summary of the provided paragraph. - **Developed by:** BEASTBOYJAY - **Model type:** Transformer(encoder) - **Language(s) (NLP):** English - **Finetuned from model:** Bert-base-uncased ## Uses - For the summarization purpose only ## Bias, Risks, and Limitations This model is fine-tuned on very small dataset can need more fine-tuning for better results.(Fine-tuned this model only for eductional purposes) ## How to Get Started with the Model Use the code below to get started with the model. ``` from transformers import EncoderDecoderModel, BertTokenizer class TextSummarizer: def __init__(self, model_path, tokenizer_name="bert-base-uncased"): self.tokenizer = BertTokenizer.from_pretrained(tokenizer_name) self.model = EncoderDecoderModel.from_pretrained(model_path) def summarize(self, text, max_input_length=512): inputs = self.tokenizer( text, return_tensors="pt", truncation=True, padding="max_length", max_length=max_input_length, ) summary_ids = self.model.generate( inputs["input_ids"], attention_mask=inputs["attention_mask"], decoder_start_token_id=self.tokenizer.cls_token_id, max_length=128, num_beams=4, length_penalty=1.5, no_repeat_ngram_size=1, early_stopping=True, ) summary = self.tokenizer.decode(summary_ids[0], skip_special_tokens=True) return summary if __name__ == "__main__": summarizer = TextSummarizer(model_path="BEASTBOYJAY/my-fine-tuned-summarizer") test_article = "Your article or paragraph" summary = summarizer.summarize(test_article) print("Generated Summary:", summary) ```
RichardErkhov/unsloth_-_SmolLM-1.7B-gguf
RichardErkhov
2024-11-16T05:52:04Z
6
0
null
[ "gguf", "endpoints_compatible", "region:us" ]
null
2024-11-16T05:26:43Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) SmolLM-1.7B - GGUF - Model creator: https://huggingface.co/unsloth/ - Original model: https://huggingface.co/unsloth/SmolLM-1.7B/ | Name | Quant method | Size | | ---- | ---- | ---- | | [SmolLM-1.7B.Q2_K.gguf](https://huggingface.co/RichardErkhov/unsloth_-_SmolLM-1.7B-gguf/blob/main/SmolLM-1.7B.Q2_K.gguf) | Q2_K | 0.63GB | | [SmolLM-1.7B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/unsloth_-_SmolLM-1.7B-gguf/blob/main/SmolLM-1.7B.Q3_K_S.gguf) | Q3_K_S | 0.72GB | | [SmolLM-1.7B.Q3_K.gguf](https://huggingface.co/RichardErkhov/unsloth_-_SmolLM-1.7B-gguf/blob/main/SmolLM-1.7B.Q3_K.gguf) | Q3_K | 0.8GB | | [SmolLM-1.7B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/unsloth_-_SmolLM-1.7B-gguf/blob/main/SmolLM-1.7B.Q3_K_M.gguf) | Q3_K_M | 0.8GB | | [SmolLM-1.7B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/unsloth_-_SmolLM-1.7B-gguf/blob/main/SmolLM-1.7B.Q3_K_L.gguf) | Q3_K_L | 0.87GB | | [SmolLM-1.7B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/unsloth_-_SmolLM-1.7B-gguf/blob/main/SmolLM-1.7B.IQ4_XS.gguf) | IQ4_XS | 0.88GB | | [SmolLM-1.7B.Q4_0.gguf](https://huggingface.co/RichardErkhov/unsloth_-_SmolLM-1.7B-gguf/blob/main/SmolLM-1.7B.Q4_0.gguf) | Q4_0 | 0.92GB | | [SmolLM-1.7B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/unsloth_-_SmolLM-1.7B-gguf/blob/main/SmolLM-1.7B.IQ4_NL.gguf) | IQ4_NL | 0.93GB | | [SmolLM-1.7B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/unsloth_-_SmolLM-1.7B-gguf/blob/main/SmolLM-1.7B.Q4_K_S.gguf) | Q4_K_S | 0.93GB | | [SmolLM-1.7B.Q4_K.gguf](https://huggingface.co/RichardErkhov/unsloth_-_SmolLM-1.7B-gguf/blob/main/SmolLM-1.7B.Q4_K.gguf) | Q4_K | 0.98GB | | [SmolLM-1.7B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/unsloth_-_SmolLM-1.7B-gguf/blob/main/SmolLM-1.7B.Q4_K_M.gguf) | Q4_K_M | 0.98GB | | [SmolLM-1.7B.Q4_1.gguf](https://huggingface.co/RichardErkhov/unsloth_-_SmolLM-1.7B-gguf/blob/main/SmolLM-1.7B.Q4_1.gguf) | Q4_1 | 1.02GB | | [SmolLM-1.7B.Q5_0.gguf](https://huggingface.co/RichardErkhov/unsloth_-_SmolLM-1.7B-gguf/blob/main/SmolLM-1.7B.Q5_0.gguf) | Q5_0 | 1.11GB | | [SmolLM-1.7B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/unsloth_-_SmolLM-1.7B-gguf/blob/main/SmolLM-1.7B.Q5_K_S.gguf) | Q5_K_S | 1.11GB | | [SmolLM-1.7B.Q5_K.gguf](https://huggingface.co/RichardErkhov/unsloth_-_SmolLM-1.7B-gguf/blob/main/SmolLM-1.7B.Q5_K.gguf) | Q5_K | 1.14GB | | [SmolLM-1.7B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/unsloth_-_SmolLM-1.7B-gguf/blob/main/SmolLM-1.7B.Q5_K_M.gguf) | Q5_K_M | 1.14GB | | [SmolLM-1.7B.Q5_1.gguf](https://huggingface.co/RichardErkhov/unsloth_-_SmolLM-1.7B-gguf/blob/main/SmolLM-1.7B.Q5_1.gguf) | Q5_1 | 1.2GB | | [SmolLM-1.7B.Q6_K.gguf](https://huggingface.co/RichardErkhov/unsloth_-_SmolLM-1.7B-gguf/blob/main/SmolLM-1.7B.Q6_K.gguf) | Q6_K | 1.31GB | | [SmolLM-1.7B.Q8_0.gguf](https://huggingface.co/RichardErkhov/unsloth_-_SmolLM-1.7B-gguf/blob/main/SmolLM-1.7B.Q8_0.gguf) | Q8_0 | 1.7GB | Original model description: --- license: apache-2.0 base_model: HuggingFaceTB/SmolLM-1.7B tags: - alignment-handbook - trl - unsloth datasets: - Magpie-Align/Magpie-Pro-300K-Filtered - bigcode/self-oss-instruct-sc2-exec-filter-50k - teknium/OpenHermes-2.5 - HuggingFaceTB/everyday-conversations-llama3.1-2k library_name: transformers language: - en --- # Finetune Llama 3.1, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth! We have a free Google Colab Tesla T4 notebook for Llama 3.1 (8B) here - also works for SmolLM!: https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/Discord%20button.png" width="200"/>](https://discord.gg/unsloth) [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) ## ✨ Finetune for Free All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face. | Unsloth supports | Free Notebooks | Performance | Memory use | |-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------| | **Llama-3.1 8b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less | | **Phi-3.5 (mini)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1lN6hPQveB_mHSnTOYifygFcrO8C1bxq4?usp=sharing) | 2x faster | 50% less | | **Gemma-2 9b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing) | 2.4x faster | 58% less | | **Mistral 7b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Dyauq4kTZoLewQ1cApceUQVNcnnNTzg_?usp=sharing) | 2.2x faster | 62% less | | **TinyLlama** | [▶️ Start on Colab](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing) | 3.9x faster | 74% less | | **DPO - Zephyr** | [▶️ Start on Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) | 1.9x faster | 19% less | - This [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing) is useful for ShareGPT ChatML / Vicuna templates. - This [text completion notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr. - \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster. # SmolLM-1.7B-Instruct <center> <img src="https://huggingface.co/datasets/HuggingFaceTB/images/resolve/main/banner_smol.png" alt="SmolLM" width="1100" height="600"> </center> ## Model Summary SmolLM is a series of small language models available in three sizes: 135M, 360M, and 1.7B parameters. These models are pre-trained on [SmolLM-Corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus), a curated collection of high-quality educational and synthetic data designed for training LLMs. For further details, we refer to our [blogpost](https://huggingface.co/blog/smollm). To build SmolLM-Instruct, we finetuned the base models on publicly available datasets. ## Changelog |Release|Description| |-|-| |v0.1| Initial release of SmolLM-Instruct. We finetune on the permissive subset of the [WebInstructSub](https://huggingface.co/datasets/TIGER-Lab/WebInstructSub) dataset, combined with [StarCoder2-Self-OSS-Instruct](https://huggingface.co/datasets/bigcode/self-oss-instruct-sc2-exec-filter-50k). Then, we perform DPO (Direct Preference Optimization) for one epoch on [HelpSteer](https://huggingface.co/datasets/nvidia/HelpSteer) for the 135M and 1.7B models, and [argilla/dpo-mix-7k](https://huggingface.co/datasets/argilla/dpo-mix-7k) for the 360M model.| |v0.2| We changed the finetuning mix to datasets more suitable for smol models. We train on a new dataset of 2k simple everyday conversations we generated by llama3.1-70B [everyday-conversations-llama3.1-2k](https://huggingface.co/datasets/HuggingFaceTB/everyday-conversations-llama3.1-2k/), [Magpie-Pro-300K-Filtered](https://huggingface.co/datasets/Magpie-Align/Magpie-Pro-300K-Filtered), [StarCoder2-Self-OSS-Instruct](https://huggingface.co/datasets/bigcode/self-oss-instruct-sc2-exec-filter-50k), and a small subset of [OpenHermes-2.5](https://huggingface.co/datasets/teknium/OpenHermes-2.5)| v0.2 models are better at staying on topic and responding appropriately to standard prompts, such as greetings and questions about their role as AI assistants. SmolLM-360M-Instruct (v0.2) has a 63.3% win rate over SmolLM-360M-Instruct (v0.1) on AlpacaEval. You can find the details [here](https://huggingface.co/datasets/HuggingFaceTB/alpaca_eval_details/). You can load v0.1 checkpoint by specifying `revision="v0.1"` in the transformers code: ```python model = AutoModelForCausalLM.from_pretrained("HuggingFaceTB/SmolLM-1.7B-Instruct", revision="v0.1") ``` ## Usage ### Local Applications ⚡ For local applications, you can find optimized implementations of the model in MLC, GGUF and Transformers.js formats, in addition to fast in-browser demos in this collection: https://huggingface.co/collections/HuggingFaceTB/local-smollms-66c0f3b2a15b4eed7fb198d0 We noticed that 4bit quantization degrades the quality of the 135M and 360M, so we use `q016` for MLC and ONNX/Transformers.js checkpoints for the WebGPU demos. We also suggest using temperature 0.2 and top-p 0.9. ### Transformers ```bash pip install transformers ``` ```python # pip install transformers from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "HuggingFaceTB/SmolLM-1.7B-Instruct" device = "cuda" # for GPU usage or "cpu" for CPU usage tokenizer = AutoTokenizer.from_pretrained(checkpoint) # for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")` model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device) messages = [{"role": "user", "content": "What is the capital of France."}] input_text=tokenizer.apply_chat_template(messages, tokenize=False) print(input_text) inputs = tokenizer.encode(input_text, return_tensors="pt").to(device) outputs = model.generate(inputs, max_new_tokens=50, temperature=0.2, top_p=0.9, do_sample=True) print(tokenizer.decode(outputs[0])) ``` ### Chat in TRL You can also use the TRL CLI to chat with the model from the terminal: ```bash pip install trl trl chat --model_name_or_path HuggingFaceTB/SmolLM-1.7B-Instruct --device cpu ``` ## Limitations Additionally, the generated content may not always be factually accurate, logically consistent, or free from biases present in the training data, we invite users to leverage them as assistive tools rather than definitive sources of information. We find that they can handle general knowledge questions, creative writing and basic Python programming. But they are English only and may have difficulty with arithmetics, editing tasks and complex reasoning. For more details about the models' capabilities, please refer to our [blog post](https://huggingface.co/blog/smollm). ## Training parameters We train the models using the [alignment-handbook](https://github.com/huggingface/alignment-handbook) with the datasets mentioned in the changelog, using these parameters v0.2 (most of them are from Zephyr Gemma recipe): - 1 epoch - lr 1e-3 - cosine schedule - warmup ratio 0.1 - global batch size 262k tokens You can find the training recipe here: https://github.com/huggingface/alignment-handbook/tree/smollm/recipes/smollm # Citation ```bash @misc{allal2024SmolLM, title={SmolLM - blazingly fast and remarkably powerful}, author={Loubna Ben Allal and Anton Lozhkov and Elie Bakouch and Leandro von Werra and Thomas Wolf}, year={2024}, } ```
RichardErkhov/fractalego_-_wafl-phi3.5-mini-instruct-gguf
RichardErkhov
2024-11-16T05:19:33Z
11
0
null
[ "gguf", "arxiv:1910.09700", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-16T04:07:36Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) wafl-phi3.5-mini-instruct - GGUF - Model creator: https://huggingface.co/fractalego/ - Original model: https://huggingface.co/fractalego/wafl-phi3.5-mini-instruct/ | Name | Quant method | Size | | ---- | ---- | ---- | | [wafl-phi3.5-mini-instruct.Q2_K.gguf](https://huggingface.co/RichardErkhov/fractalego_-_wafl-phi3.5-mini-instruct-gguf/blob/main/wafl-phi3.5-mini-instruct.Q2_K.gguf) | Q2_K | 1.32GB | | [wafl-phi3.5-mini-instruct.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/fractalego_-_wafl-phi3.5-mini-instruct-gguf/blob/main/wafl-phi3.5-mini-instruct.Q3_K_S.gguf) | Q3_K_S | 1.57GB | | [wafl-phi3.5-mini-instruct.Q3_K.gguf](https://huggingface.co/RichardErkhov/fractalego_-_wafl-phi3.5-mini-instruct-gguf/blob/main/wafl-phi3.5-mini-instruct.Q3_K.gguf) | Q3_K | 1.82GB | | [wafl-phi3.5-mini-instruct.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/fractalego_-_wafl-phi3.5-mini-instruct-gguf/blob/main/wafl-phi3.5-mini-instruct.Q3_K_M.gguf) | Q3_K_M | 1.82GB | | [wafl-phi3.5-mini-instruct.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/fractalego_-_wafl-phi3.5-mini-instruct-gguf/blob/main/wafl-phi3.5-mini-instruct.Q3_K_L.gguf) | Q3_K_L | 1.94GB | | [wafl-phi3.5-mini-instruct.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/fractalego_-_wafl-phi3.5-mini-instruct-gguf/blob/main/wafl-phi3.5-mini-instruct.IQ4_XS.gguf) | IQ4_XS | 1.93GB | | [wafl-phi3.5-mini-instruct.Q4_0.gguf](https://huggingface.co/RichardErkhov/fractalego_-_wafl-phi3.5-mini-instruct-gguf/blob/main/wafl-phi3.5-mini-instruct.Q4_0.gguf) | Q4_0 | 2.03GB | | [wafl-phi3.5-mini-instruct.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/fractalego_-_wafl-phi3.5-mini-instruct-gguf/blob/main/wafl-phi3.5-mini-instruct.IQ4_NL.gguf) | IQ4_NL | 2.04GB | | [wafl-phi3.5-mini-instruct.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/fractalego_-_wafl-phi3.5-mini-instruct-gguf/blob/main/wafl-phi3.5-mini-instruct.Q4_K_S.gguf) | Q4_K_S | 2.04GB | | [wafl-phi3.5-mini-instruct.Q4_K.gguf](https://huggingface.co/RichardErkhov/fractalego_-_wafl-phi3.5-mini-instruct-gguf/blob/main/wafl-phi3.5-mini-instruct.Q4_K.gguf) | Q4_K | 2.23GB | | [wafl-phi3.5-mini-instruct.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/fractalego_-_wafl-phi3.5-mini-instruct-gguf/blob/main/wafl-phi3.5-mini-instruct.Q4_K_M.gguf) | Q4_K_M | 2.23GB | | [wafl-phi3.5-mini-instruct.Q4_1.gguf](https://huggingface.co/RichardErkhov/fractalego_-_wafl-phi3.5-mini-instruct-gguf/blob/main/wafl-phi3.5-mini-instruct.Q4_1.gguf) | Q4_1 | 2.24GB | | [wafl-phi3.5-mini-instruct.Q5_0.gguf](https://huggingface.co/RichardErkhov/fractalego_-_wafl-phi3.5-mini-instruct-gguf/blob/main/wafl-phi3.5-mini-instruct.Q5_0.gguf) | Q5_0 | 2.46GB | | [wafl-phi3.5-mini-instruct.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/fractalego_-_wafl-phi3.5-mini-instruct-gguf/blob/main/wafl-phi3.5-mini-instruct.Q5_K_S.gguf) | Q5_K_S | 2.46GB | | [wafl-phi3.5-mini-instruct.Q5_K.gguf](https://huggingface.co/RichardErkhov/fractalego_-_wafl-phi3.5-mini-instruct-gguf/blob/main/wafl-phi3.5-mini-instruct.Q5_K.gguf) | Q5_K | 2.62GB | | [wafl-phi3.5-mini-instruct.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/fractalego_-_wafl-phi3.5-mini-instruct-gguf/blob/main/wafl-phi3.5-mini-instruct.Q5_K_M.gguf) | Q5_K_M | 2.62GB | | [wafl-phi3.5-mini-instruct.Q5_1.gguf](https://huggingface.co/RichardErkhov/fractalego_-_wafl-phi3.5-mini-instruct-gguf/blob/main/wafl-phi3.5-mini-instruct.Q5_1.gguf) | Q5_1 | 2.68GB | | [wafl-phi3.5-mini-instruct.Q6_K.gguf](https://huggingface.co/RichardErkhov/fractalego_-_wafl-phi3.5-mini-instruct-gguf/blob/main/wafl-phi3.5-mini-instruct.Q6_K.gguf) | Q6_K | 2.92GB | | [wafl-phi3.5-mini-instruct.Q8_0.gguf](https://huggingface.co/RichardErkhov/fractalego_-_wafl-phi3.5-mini-instruct-gguf/blob/main/wafl-phi3.5-mini-instruct.Q8_0.gguf) | Q8_0 | 3.78GB | Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
quadranttechnologies/qhub-blip-image-captioning-finetuned
quadranttechnologies
2024-11-16T05:08:41Z
295
1
transformers
[ "transformers", "pytorch", "tf", "safetensors", "blip", "image-text-to-text", "art", "image-to-text", "en", "dataset:phiyodr/coco2017", "arxiv:2201.12086", "base_model:Salesforce/blip-image-captioning-base", "base_model:finetune:Salesforce/blip-image-captioning-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-to-text
2024-11-07T23:29:13Z
--- language: - en base_model: - Salesforce/blip-image-captioning-base pipeline_tag: image-to-text tags: - art license: apache-2.0 metrics: - bleu library_name: transformers datasets: - phiyodr/coco2017 --- ### Fine-Tuned Image Captioning Model This is a fine-tuned version of BLIP for visual answering on retail product images. This model is finetuned on custom dataset with images from online retail platform and annotated with product description. This experimental model can be used for answering questions on product images in retail industry. Product meta data enrichment, Validation of human generated product description are some of the examples sue case. # Sample model predictions | Input Image | Prediction | |-------------------------------------------|--------------------------------| |<img src="https://cdn-uploads.huggingface.co/production/uploads/672d17c98e098bf429c83670/KTnUTaTjrIG7dUyR1aMho.png" alt="image/png" width="100" height="100" /> | kitchenaid artisann stand mixer| |<img src="https://cdn-uploads.huggingface.co/production/uploads/672d17c98e098bf429c83670/Skt_sjYxbfQu056v2C1Ym.png" width="100" height="100" /> | a bottle of milk sitting on a counter | |<img src="https://cdn-uploads.huggingface.co/production/uploads/672d17c98e098bf429c83670/Zp1OMzO4BEs7s9k3O5ij7.jpeg" alt="image/jpeg" width="100" height="100" />| dove sensitive skin lotion | |<img src="https://cdn-uploads.huggingface.co/production/uploads/672d17c98e098bf429c83670/dYNo38En0M0WpKONS8StX.jpeg" alt="bread bag" width="100" height="100" /> | bread bag with blue plastic handl| |<img src="https://cdn-uploads.huggingface.co/production/uploads/672d17c98e098bf429c83670/oypT9482ysQjC0usEHGbT.png" alt="image/png" width="100" height="100" /> | bush ' s best white beans | ### How to use the model: <details> <summary> Click to expand </summary> ```python import requests from PIL import Image from transformers import BlipProcessor, BlipForConditionalGeneration processor = BlipProcessor.from_pretrained("quadranttechnologies/qhub-blip-image-captioning-finetuned") model = BlipForConditionalGeneration.from_pretrained("quadranttechnologies/qhub-blip-image-captioning-finetuned") img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') # conditional image captioning text = "a photography of" inputs = processor(raw_image, text, return_tensors="pt") out = model.generate(**inputs) print(processor.decode(out[0], skip_special_tokens=True)) # unconditional image captioning inputs = processor(raw_image, return_tensors="pt") out = model.generate(**inputs) print(processor.decode(out[0], skip_special_tokens=True)) ``` </details> ## BibTex and citation info ``` @misc{https://doi.org/10.48550/arxiv.2201.12086, doi = {10.48550/ARXIV.2201.12086}, url = {https://arxiv.org/abs/2201.12086}, author = {Li, Junnan and Li, Dongxu and Xiong, Caiming and Hoi, Steven}, keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
Xu-Ouyang/FloatLM_3.9B-int2-GPTQ-wikitext2
Xu-Ouyang
2024-11-16T05:04:28Z
97
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "2-bit", "gptq", "region:us" ]
text-generation
2024-11-16T05:03:53Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
featherless-ai-quants/Slomb-MN-CelesteGold-12B-Merge-GGUF
featherless-ai-quants
2024-11-16T04:46:45Z
6
0
null
[ "gguf", "text-generation", "base_model:Slomb/MN-CelesteGold-12B-Merge", "base_model:quantized:Slomb/MN-CelesteGold-12B-Merge", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-16T04:33:04Z
--- base_model: Slomb/MN-CelesteGold-12B-Merge pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # Slomb/MN-CelesteGold-12B-Merge GGUF Quantizations 🚀 ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations 📊 | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [Slomb-MN-CelesteGold-12B-Merge-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/Slomb-MN-CelesteGold-12B-Merge-GGUF/blob/main/Slomb-MN-CelesteGold-12B-Merge-IQ4_XS.gguf) | 6485.04 MB | | Q2_K | [Slomb-MN-CelesteGold-12B-Merge-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/Slomb-MN-CelesteGold-12B-Merge-GGUF/blob/main/Slomb-MN-CelesteGold-12B-Merge-Q2_K.gguf) | 4569.10 MB | | Q3_K_L | [Slomb-MN-CelesteGold-12B-Merge-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/Slomb-MN-CelesteGold-12B-Merge-GGUF/blob/main/Slomb-MN-CelesteGold-12B-Merge-Q3_K_L.gguf) | 6257.54 MB | | Q3_K_M | [Slomb-MN-CelesteGold-12B-Merge-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/Slomb-MN-CelesteGold-12B-Merge-GGUF/blob/main/Slomb-MN-CelesteGold-12B-Merge-Q3_K_M.gguf) | 5801.29 MB | | Q3_K_S | [Slomb-MN-CelesteGold-12B-Merge-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/Slomb-MN-CelesteGold-12B-Merge-GGUF/blob/main/Slomb-MN-CelesteGold-12B-Merge-Q3_K_S.gguf) | 5277.85 MB | | Q4_K_M | [Slomb-MN-CelesteGold-12B-Merge-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/Slomb-MN-CelesteGold-12B-Merge-GGUF/blob/main/Slomb-MN-CelesteGold-12B-Merge-Q4_K_M.gguf) | 7130.82 MB | | Q4_K_S | [Slomb-MN-CelesteGold-12B-Merge-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/Slomb-MN-CelesteGold-12B-Merge-GGUF/blob/main/Slomb-MN-CelesteGold-12B-Merge-Q4_K_S.gguf) | 6790.35 MB | | Q5_K_M | [Slomb-MN-CelesteGold-12B-Merge-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/Slomb-MN-CelesteGold-12B-Merge-GGUF/blob/main/Slomb-MN-CelesteGold-12B-Merge-Q5_K_M.gguf) | 8323.32 MB | | Q5_K_S | [Slomb-MN-CelesteGold-12B-Merge-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/Slomb-MN-CelesteGold-12B-Merge-GGUF/blob/main/Slomb-MN-CelesteGold-12B-Merge-Q5_K_S.gguf) | 8124.10 MB | | Q6_K | [Slomb-MN-CelesteGold-12B-Merge-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/Slomb-MN-CelesteGold-12B-Merge-GGUF/blob/main/Slomb-MN-CelesteGold-12B-Merge-Q6_K.gguf) | 9590.35 MB | | Q8_0 | [Slomb-MN-CelesteGold-12B-Merge-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/Slomb-MN-CelesteGold-12B-Merge-GGUF/blob/main/Slomb-MN-CelesteGold-12B-Merge-Q8_0.gguf) | 12419.10 MB | --- ## ⚡ Powered by [Featherless AI](https://featherless.ai) ### Key Features - 🔥 **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - 🛠️ **Zero Infrastructure** - No server setup or maintenance required - 📚 **Vast Compatibility** - Support for 2400+ models and counting - 💎 **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
Nutanix/llama-30b_checkpoint-3800_20241116-043248-merged
Nutanix
2024-11-16T04:44:14Z
9
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-16T04:33:34Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
axolotl-ai-co/SmolLM2-135M-bnb-nf4-bf16
axolotl-ai-co
2024-11-16T04:38:09Z
2,011
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-11-15T21:35:05Z
--- library_name: transformers license: apache-2.0 language: - en --- # SmolLM2 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61c141342aac764ce1654e43/XtSR4NkriicR6fGiWGowZ.png) ## Table of Contents 1. [Model Summary](##model-summary) 2. [Limitations](##limitations) 3. [Training](##training) 4. [License](##license) 5. [Citation](##citation) ## Model Summary SmolLM2 is a family of compact language models available in three size: 135M, 360M, and 1.7B parameters. They are capable of solving a wide range of tasks while being lightweight enough to run on-device. SmolLM2 demonstrates significant advances over its predecessor SmolLM1, particularly in instruction following, knowledge, reasoning. The 135M model was trained on 2 trillion tokens using a diverse dataset combination: FineWeb-Edu, DCLM, The Stack, along with new filtered datasets we curated and will release soon. We developed the instruct version through supervised fine-tuning (SFT) using a combination of public datasets and our own curated datasets. We then applied Direct Preference Optimization (DPO) using [UltraFeedback](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized). The instruct model additionally supports tasks such as text rewriting, summarization and function calling thanks to datasets developed by [Argilla](https://huggingface.co/argilla) such as [Synth-APIGen-v0.1](https://huggingface.co/datasets/argilla/Synth-APIGen-v0.1). ### How to use ```bash pip install transformers ``` #### Running the model on CPU/GPU/multi GPU * _Using full precision_ ```python # pip install transformers from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "HuggingFaceTB/SmolLM2-135M" device = "cuda" # for GPU usage or "cpu" for CPU usage tokenizer = AutoTokenizer.from_pretrained(checkpoint) # for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")` model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device) inputs = tokenizer.encode("Gravity is", return_tensors="pt").to(device) outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` * _Using `torch.bfloat16`_ ```python # pip install accelerate import torch from transformers import AutoTokenizer, AutoModelForCausalLM checkpoint = "HuggingFaceTB/SmolLM2-135M" tokenizer = AutoTokenizer.from_pretrained(checkpoint) # for fp16 use `torch_dtype=torch.float16` instead model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.bfloat16) inputs = tokenizer.encode("Gravity is", return_tensors="pt").to("cuda") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` ```bash >>> print(f"Memory footprint: {model.get_memory_footprint() / 1e6:.2f} MB") Memory footprint: 723.56 MB ``` ## Evaluation In this section, we report the evaluation results of SmolLM2. All evaluations are zero-shot unless stated otherwise, and we use [lighteval](https://github.com/huggingface/lighteval) to run them. ## Base pre-trained model | Metrics | SmolLM2-135M-8k | SmolLM-135M | |:-------------------|:----------------:|:------------:| | HellaSwag | **42.1** | 41.2 | | ARC (Average) | **43.9** | 42.4 | | PIQA | 68.4 | 68.4 | | MMLU (cloze) | **31.5** | 30.2 | | CommonsenseQA | **33.9** | 32.7 | | TriviaQA | 4.1 | **4.3** | | Winogrande | 51.3 | 51.3 | | OpenBookQA | **34.6** | 34.0 | | GSM8K (5-shot) | **1.4** | 1.0 | ## Instruction model | Metric | SmolLM2-135M-Instruct | SmolLM-135M-Instruct | |:-----------------------------|:---------------------:|:--------------------:| | IFEval (Average prompt/inst) | **29.9** | 17.2 | | MT-Bench | **1.98** | 1.68 | | HellaSwag | **40.9** | 38.9 | | ARC (Average) | **37.3** | 33.9 | | PIQA | **66.3** | 64.0 | | MMLU (cloze) | **29.3** | 28.3 | | BBH (3-shot) | **28.2** | 25.2 | | GSM8K (5-shot) | 1.4 | 1.4 | ## Limitations SmolLM2 models primarily understand and generate content in English. They can produce text on a variety of topics, but the generated content may not always be factually accurate, logically consistent, or free from biases present in the training data. These models should be used as assistive tools rather than definitive sources of information. Users should always verify important information and critically evaluate any generated content. ## Training ### Model - **Architecture:** Transformer decoder - **Pretraining tokens:** 2T - **Precision:** bfloat16 ### Hardware - **GPUs:** 64 H100 ### Software - **Training Framework:** [nanotron](https://github.com/huggingface/nanotron/tree/main) ## License [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0) ## Citation ```bash @misc{allal2024SmolLM2, title={SmolLM2 - with great data, comes great performance}, author={Loubna Ben Allal and Anton Lozhkov and Elie Bakouch and Gabriel Martín Blázquez and Lewis Tunstall and Agustín Piqueres and Andres Marafioti and Cyril Zakka and Leandro von Werra and Thomas Wolf}, year={2024}, } ```
danielthx/videomae-base-finetuned-ucf101-subset
danielthx
2024-11-16T04:15:38Z
61
0
transformers
[ "transformers", "tensorboard", "safetensors", "videomae", "video-classification", "generated_from_trainer", "base_model:MCG-NJU/videomae-base", "base_model:finetune:MCG-NJU/videomae-base", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2024-11-16T04:15:20Z
--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-ucf101-subset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-finetuned-ucf101-subset This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4855 - Accuracy: 0.8516 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 148 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 2.0939 | 0.2568 | 38 | 1.7895 | 0.6143 | | 0.809 | 1.2568 | 76 | 0.8634 | 0.7143 | | 0.4345 | 2.2568 | 114 | 0.4870 | 0.8286 | | 0.2773 | 3.2297 | 148 | 0.3680 | 0.9286 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
Xu-Ouyang/FloatLM_1.1B-int2-GPTQ-wikitext2
Xu-Ouyang
2024-11-16T04:02:00Z
80
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "2-bit", "gptq", "region:us" ]
text-generation
2024-11-16T04:01:08Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/StableCode-text2SQL-schemaReduzido-GGUF
mradermacher
2024-11-16T03:52:11Z
8
0
transformers
[ "transformers", "gguf", "en", "base_model:NESPED-GEN/StableCode-text2SQL-schemaReduzido", "base_model:quantized:NESPED-GEN/StableCode-text2SQL-schemaReduzido", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-16T03:28:31Z
--- base_model: NESPED-GEN/StableCode-text2SQL-schemaReduzido language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/NESPED-GEN/StableCode-text2SQL-schemaReduzido <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/StableCode-text2SQL-schemaReduzido-GGUF/resolve/main/StableCode-text2SQL-schemaReduzido.Q2_K.gguf) | Q2_K | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/StableCode-text2SQL-schemaReduzido-GGUF/resolve/main/StableCode-text2SQL-schemaReduzido.Q3_K_S.gguf) | Q3_K_S | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/StableCode-text2SQL-schemaReduzido-GGUF/resolve/main/StableCode-text2SQL-schemaReduzido.Q3_K_M.gguf) | Q3_K_M | 1.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/StableCode-text2SQL-schemaReduzido-GGUF/resolve/main/StableCode-text2SQL-schemaReduzido.Q3_K_L.gguf) | Q3_K_L | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/StableCode-text2SQL-schemaReduzido-GGUF/resolve/main/StableCode-text2SQL-schemaReduzido.IQ4_XS.gguf) | IQ4_XS | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/StableCode-text2SQL-schemaReduzido-GGUF/resolve/main/StableCode-text2SQL-schemaReduzido.Q4_0_4_4.gguf) | Q4_0_4_4 | 1.7 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/StableCode-text2SQL-schemaReduzido-GGUF/resolve/main/StableCode-text2SQL-schemaReduzido.Q4_K_S.gguf) | Q4_K_S | 1.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/StableCode-text2SQL-schemaReduzido-GGUF/resolve/main/StableCode-text2SQL-schemaReduzido.Q4_K_M.gguf) | Q4_K_M | 1.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/StableCode-text2SQL-schemaReduzido-GGUF/resolve/main/StableCode-text2SQL-schemaReduzido.Q5_K_S.gguf) | Q5_K_S | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/StableCode-text2SQL-schemaReduzido-GGUF/resolve/main/StableCode-text2SQL-schemaReduzido.Q5_K_M.gguf) | Q5_K_M | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/StableCode-text2SQL-schemaReduzido-GGUF/resolve/main/StableCode-text2SQL-schemaReduzido.Q6_K.gguf) | Q6_K | 2.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/StableCode-text2SQL-schemaReduzido-GGUF/resolve/main/StableCode-text2SQL-schemaReduzido.Q8_0.gguf) | Q8_0 | 3.1 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/StableCode-text2SQL-schemaReduzido-GGUF/resolve/main/StableCode-text2SQL-schemaReduzido.f16.gguf) | f16 | 5.7 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Xu-Ouyang/FloatLM_830M-int2-GPTQ-wikitext2
Xu-Ouyang
2024-11-16T03:51:03Z
76
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "2-bit", "gptq", "region:us" ]
text-generation
2024-11-16T03:50:51Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
huwhitememes/tulsigabbard-lora
huwhitememes
2024-11-16T03:41:18Z
11
1
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "fluxgym", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-11-16T03:40:01Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - fluxgym widget: - output: url: sample/tulsigabbard-lora_009920_00_20241115183657.png text: A photo of Tulsi Gabbard, Tulsi gabbard, Tulsi, base_model: black-forest-labs/FLUX.1-dev instance_prompt: A photo of Tulsi Gabbard, Tulsi gabbard, Tulsi, license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # tulsigabbard-lora A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym) <Gallery /> ## Trigger words You should use `A photo of Tulsi Gabbard, Tulsi gabbard, Tulsi,` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc. Weights for this model are available in Safetensors format.
mradermacher/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG-i1-GGUF
mradermacher
2024-11-16T03:40:11Z
10
0
transformers
[ "transformers", "gguf", "en", "base_model:kuyesu22/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG", "base_model:quantized:kuyesu22/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-16T01:52:34Z
--- base_model: kuyesu22/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/kuyesu22/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG-i1-GGUF/resolve/main/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG.i1-IQ1_S.gguf) | i1-IQ1_S | 1.0 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG-i1-GGUF/resolve/main/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG.i1-IQ1_M.gguf) | i1-IQ1_M | 1.0 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG-i1-GGUF/resolve/main/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG-i1-GGUF/resolve/main/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG.i1-IQ2_XS.gguf) | i1-IQ2_XS | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG-i1-GGUF/resolve/main/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG.i1-IQ2_S.gguf) | i1-IQ2_S | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG-i1-GGUF/resolve/main/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG.i1-IQ2_M.gguf) | i1-IQ2_M | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG-i1-GGUF/resolve/main/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 1.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG-i1-GGUF/resolve/main/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG.i1-Q2_K.gguf) | i1-Q2_K | 1.5 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG-i1-GGUF/resolve/main/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG.i1-IQ3_XS.gguf) | i1-IQ3_XS | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG-i1-GGUF/resolve/main/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG.i1-IQ3_S.gguf) | i1-IQ3_S | 1.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG-i1-GGUF/resolve/main/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG.i1-Q3_K_S.gguf) | i1-Q3_K_S | 1.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG-i1-GGUF/resolve/main/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG.i1-IQ3_M.gguf) | i1-IQ3_M | 1.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG-i1-GGUF/resolve/main/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG.i1-Q3_K_M.gguf) | i1-Q3_K_M | 1.8 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG-i1-GGUF/resolve/main/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG.i1-Q3_K_L.gguf) | i1-Q3_K_L | 1.9 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG-i1-GGUF/resolve/main/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG.i1-IQ4_XS.gguf) | i1-IQ4_XS | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG-i1-GGUF/resolve/main/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 2.0 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG-i1-GGUF/resolve/main/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 2.0 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG-i1-GGUF/resolve/main/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 2.0 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG-i1-GGUF/resolve/main/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG.i1-Q4_0.gguf) | i1-Q4_0 | 2.0 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG-i1-GGUF/resolve/main/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG.i1-Q4_K_S.gguf) | i1-Q4_K_S | 2.0 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG-i1-GGUF/resolve/main/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG.i1-Q4_K_M.gguf) | i1-Q4_K_M | 2.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG-i1-GGUF/resolve/main/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG.i1-Q5_K_S.gguf) | i1-Q5_K_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG-i1-GGUF/resolve/main/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG.i1-Q5_K_M.gguf) | i1-Q5_K_M | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG-i1-GGUF/resolve/main/Llama-3.2-3B-Instruct-Sunbird-Dialogue-RAG.i1-Q6_K.gguf) | i1-Q6_K | 2.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
PeterLiuWT00376/xlm-roberta-base-finetuned-panx-de
PeterLiuWT00376
2024-11-16T03:35:06Z
133
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-11-16T03:22:16Z
--- library_name: transformers license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1356 - F1: 0.8579 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2605 | 1.0 | 525 | 0.1524 | 0.8284 | | 0.1275 | 2.0 | 1050 | 0.1351 | 0.8535 | | 0.0796 | 3.0 | 1575 | 0.1356 | 0.8579 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0
AlekseyCalvin/Akhmatova_Flux_LoRA_SilverAgePoets_v3_DeDistilledTrained
AlekseyCalvin
2024-11-16T03:34:00Z
6
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "image-generation", "flux-diffusers", "photo", "realism", "character", "historical person", "poetry", "literature", "history", "archival", "text-to-image", "en", "base_model:AlekseyCalvin/Colossus_2.1_dedistilled_by_AfroMan4peace", "base_model:adapter:AlekseyCalvin/Colossus_2.1_dedistilled_by_AfroMan4peace", "license:apache-2.0", "region:us" ]
text-to-image
2024-11-16T02:59:16Z
--- license: apache-2.0 language: - en tags: - flux - diffusers - lora - replicate - image-generation - flux-diffusers - diffusers - photo - realism - character - historical person - poetry - literature - history - archival base_model: "AlekseyCalvin/Colossus_2.1_dedistilled_by_AfroMan4peace" pipeline_tag: text-to-image library_name: diffusers emoji: 🔜 instance_prompt: Anna AKHMATOVA, blemished skin texture with slight wrinkles widget: - text: >- agitprop Constructivist poster of the poet Anna AKHMATOVA calling out "JOIN RCA!" in a speech bubble, over satirical cartoon of cool punky diverse teenage gen-z revolutionaries output: url: AkhmDedistilled1.jpg - text: >- vintage side-view photograph of young Anna AKHMATOVA, classic analog color photography output: url: AnnaPoeticsWill.jpg --- <Gallery /> # Anna Akhmatova Flux Low-Rank Adapter (LoRA) Version 2 by SilverAgePoets.com Trained on a dataset of 60 vintage photos (most of them colorized by us and/or by [Klimbim](https://klimbim2020.wordpress.com/)). <br> And capturing the legendary **poet**: <br> **Anna Andreevna Akhmatova** <br> *(b.06/26/1889-d.03/05/1966)* <br> For this LoRA we used highly detailed manually-composed paragraph captions. <br> It was trained for 1600 steps (a 1300 checkpoint also added) at a Diffusion-Transformer Learning Rate of .0004, dim/alpha of 32, batch 1, AdamW8bit optimizer! Minimal synthetic data (just a few reluctant upscales), zero auto-generated captions! <br> **VERSION 3 NOTE:** <br> This third version of the Akhmatova LoRA was trained on the **Colossus 2.1 Dedistilled Flux model by AfroMan4Peace**, available [here](https://huggingface.co/AlekseyCalvin/Colossus_2.1_dedistilled_by_AfroMan4peace) in a diffusers format and [here at CivitAI](https://civitai.com/models/833086/colossus-project-flux). <br> As of writing this blurb, we haven't yet tested this LoRA enough to say much concretely, but our other adapters trained over de-distilled modifications of FLUX have been shown to be more versatile than most base-model trained LoRAs in regards to compatibility and output variability. <br> In parallel, we've also trained yet another Akhmatova LoRA (version 2) over a regular version of Flux, to enable a better basis for comparative testing. That version is available in a different repo [here](https://huggingface.co/AlekseyCalvin/Akhmatova_Flux_LoRA_SilverAgePoets_v2_regularFluxD). <br> **MORE INFO:** <br> This is a **rank-32 historical LoRA for Flux** (whether of a [Dev](https://huggingface.co/black-forest-labs/FLUX.1-dev), a [Schnell](https://huggingface.co/black-forest-labs/FLUX.1-schnell), or a [Soon®](https://huggingface.co/AlekseyCalvin/HistoricColorSoonr_Schnell) sort...) <br> Use it to diffusely diversify the presence of Akhmatova's deathless visage in our strange latter-day world! And once you're faced with this poet's iconic penetrating stare, do lend your ears to her as well: listen in to her voice! Wherefrom might this voice resound for you? A dusty paperback? Google search? Maybe a clip on YouTube? Or, say, your very memory reciting verses suddenly recalled?<br> In any case, we'll offer you some echoes to rely on, if you will: Namely, our **translations of Akhmatova's verse-works**, adapted from a proto-Soviet song-tongue into a Worldish one...<br> And found, along with many other poets' songs and tomes... Over **at [SilverAgePoets.com](https://www.silveragepoets.com/akhmatovamain)!** ## Trigger words You should use `AKHMATOVA` or `Anna Akhmatova` or `vintage autochrome photograph of Anna Akhmatova` to summon the poet's latent spirit. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('AlekseyCalvin/Akhmatova_Flux_LoRA_SilverAgePoets_v2_regularFluxD', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
mradermacher/FluxiIA-Small_Brisa-GGUF
mradermacher
2024-11-16T03:33:12Z
18
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "mistral", "trl", "sft", "en", "base_model:J-LAB/FluxiIA-Small_Brisa", "base_model:quantized:J-LAB/FluxiIA-Small_Brisa", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-16T01:34:36Z
--- base_model: J-LAB/FluxiIA-Small_Brisa language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - mistral - trl - sft --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/J-LAB/FluxiIA-Small_Brisa <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/FluxiIA-Small_Brisa-GGUF/resolve/main/FluxiIA-Small_Brisa.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/FluxiIA-Small_Brisa-GGUF/resolve/main/FluxiIA-Small_Brisa.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/FluxiIA-Small_Brisa-GGUF/resolve/main/FluxiIA-Small_Brisa.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/FluxiIA-Small_Brisa-GGUF/resolve/main/FluxiIA-Small_Brisa.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/FluxiIA-Small_Brisa-GGUF/resolve/main/FluxiIA-Small_Brisa.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/FluxiIA-Small_Brisa-GGUF/resolve/main/FluxiIA-Small_Brisa.Q4_0_4_4.gguf) | Q4_0_4_4 | 4.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/FluxiIA-Small_Brisa-GGUF/resolve/main/FluxiIA-Small_Brisa.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/FluxiIA-Small_Brisa-GGUF/resolve/main/FluxiIA-Small_Brisa.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/FluxiIA-Small_Brisa-GGUF/resolve/main/FluxiIA-Small_Brisa.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/FluxiIA-Small_Brisa-GGUF/resolve/main/FluxiIA-Small_Brisa.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/FluxiIA-Small_Brisa-GGUF/resolve/main/FluxiIA-Small_Brisa.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/FluxiIA-Small_Brisa-GGUF/resolve/main/FluxiIA-Small_Brisa.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/FluxiIA-Small_Brisa-GGUF/resolve/main/FluxiIA-Small_Brisa.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/internlm2-chat-7b-llama-GGUF
mradermacher
2024-11-16T03:28:12Z
7
0
transformers
[ "transformers", "gguf", "en", "base_model:bartowski/internlm2-chat-7b-llama", "base_model:quantized:bartowski/internlm2-chat-7b-llama", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-15T20:43:30Z
--- base_model: bartowski/internlm2-chat-7b-llama language: - en library_name: transformers license: other quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/bartowski/internlm2-chat-7b-llama <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/internlm2-chat-7b-llama-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/internlm2-chat-7b-llama-GGUF/resolve/main/internlm2-chat-7b-llama.Q2_K.gguf) | Q2_K | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/internlm2-chat-7b-llama-GGUF/resolve/main/internlm2-chat-7b-llama.Q3_K_S.gguf) | Q3_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/internlm2-chat-7b-llama-GGUF/resolve/main/internlm2-chat-7b-llama.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/internlm2-chat-7b-llama-GGUF/resolve/main/internlm2-chat-7b-llama.Q3_K_L.gguf) | Q3_K_L | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/internlm2-chat-7b-llama-GGUF/resolve/main/internlm2-chat-7b-llama.IQ4_XS.gguf) | IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/internlm2-chat-7b-llama-GGUF/resolve/main/internlm2-chat-7b-llama.Q4_0_4_4.gguf) | Q4_0_4_4 | 4.6 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/internlm2-chat-7b-llama-GGUF/resolve/main/internlm2-chat-7b-llama.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/internlm2-chat-7b-llama-GGUF/resolve/main/internlm2-chat-7b-llama.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/internlm2-chat-7b-llama-GGUF/resolve/main/internlm2-chat-7b-llama.Q5_K_S.gguf) | Q5_K_S | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/internlm2-chat-7b-llama-GGUF/resolve/main/internlm2-chat-7b-llama.Q5_K_M.gguf) | Q5_K_M | 5.6 | | | [GGUF](https://huggingface.co/mradermacher/internlm2-chat-7b-llama-GGUF/resolve/main/internlm2-chat-7b-llama.Q6_K.gguf) | Q6_K | 6.5 | very good quality | | [GGUF](https://huggingface.co/mradermacher/internlm2-chat-7b-llama-GGUF/resolve/main/internlm2-chat-7b-llama.Q8_0.gguf) | Q8_0 | 8.3 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/internlm2-chat-7b-llama-GGUF/resolve/main/internlm2-chat-7b-llama.f16.gguf) | f16 | 15.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Xu-Ouyang/FloatLM_190M-int2-GPTQ-wikitext2
Xu-Ouyang
2024-11-16T03:21:31Z
77
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "2-bit", "gptq", "region:us" ]
text-generation
2024-11-16T03:21:06Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
GitBag/reasoning_rebel_iter_4_1731513485_eta_1e2_lr_3e-7_1731709582
GitBag
2024-11-16T03:21:15Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-16T03:04:46Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
HappyAIUser/AtmaSiddhiGPTv20-16bit
HappyAIUser
2024-11-16T03:21:04Z
126
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "unsloth", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-16T02:25:32Z
--- library_name: transformers tags: - unsloth - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Xu-Ouyang/FloatLM_99M-int2-GPTQ-wikitext2
Xu-Ouyang
2024-11-16T03:16:04Z
74
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "2-bit", "gptq", "region:us" ]
text-generation
2024-11-16T03:15:59Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
getad72493/smacnkd
getad72493
2024-11-16T03:12:43Z
16
1
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:stable-diffusion-v1-5/stable-diffusion-v1-5", "base_model:adapter:stable-diffusion-v1-5/stable-diffusion-v1-5", "region:us" ]
text-to-image
2024-11-15T17:42:32Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: >- Photo of an 18-year-old girl, pretty face, (white hijab), young, teen, seragamsmahijab, <lora:SeragamSMAHijab_v1:1>, caught naked parameters: negative_prompt: >- ((negative_hand-neg)), EasyNegative, bad-artist, mole, ugly face, missing fingers, bad fingers, (old), (mature), low resolution, watermark, text, logo, flat background, monochrome, grayscale, dark background, skinny body, small tits, small breasts, big forehead, ((hair)), nude, nsfw output: url: images/00000-1909920771.jpeg base_model: - stable-diffusion-v1-5/stable-diffusion-v1-5 instance_prompt: caught naked, seragamsmahijab --- # smacnkd <Gallery /> ## Trigger words You should use `caught naked` to trigger the image generation. You should use `seragamsmahijab` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/getad72493/smacnkd/tree/main) them in the Files & versions tab.
zakariamtl/amina
zakariamtl
2024-11-16T03:07:09Z
11
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-11-16T03:07:07Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # Amina <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('zakariamtl/amina', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
VoHuuTriDung/bert-finetuned-ner
VoHuuTriDung
2024-11-16T02:58:25Z
105
1
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-11-16T02:44:31Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9364027823782709 - name: Recall type: recall value: 0.9515314708852238 - name: F1 type: f1 value: 0.9439065108514191 - name: Accuracy type: accuracy value: 0.986504385706717 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0611 - Precision: 0.9364 - Recall: 0.9515 - F1: 0.9439 - Accuracy: 0.9865 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0743 | 1.0 | 1756 | 0.0601 | 0.9113 | 0.9409 | 0.9259 | 0.9834 | | 0.0342 | 2.0 | 3512 | 0.0657 | 0.9382 | 0.9478 | 0.9430 | 0.9858 | | 0.0211 | 3.0 | 5268 | 0.0611 | 0.9364 | 0.9515 | 0.9439 | 0.9865 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0
Marialab/whisper-small-dr-ar-TREL
Marialab
2024-11-16T02:55:42Z
76
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "Custom_activation2_from_scratch train_whisper(12layerschange,10000_2000_2000_200)", "generated_from_trainer", "ar", "dataset:darija-c", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-11-16T02:54:43Z
--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-small tags: - Custom_activation2_from_scratch train_whisper(12layerschange,10000_2000_2000_200) - generated_from_trainer datasets: - darija-c metrics: - bleu model-index: - name: 'Whisper small darija translate TREL ' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper small darija translate TREL This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Darija-C dataset. It achieves the following results on the evaluation set: - Loss: 0.0001 - Bleu: 0.2051 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:--------:|:-----:|:---------------:|:------:| | 0.7202 | 133.3333 | 2000 | 0.5776 | 0.0167 | | 0.0771 | 266.6667 | 4000 | 0.0292 | 0.5327 | | 0.0003 | 400.0 | 6000 | 0.0003 | 0.4464 | | 0.0001 | 533.3333 | 8000 | 0.0001 | 0.2492 | | 0.0001 | 666.6667 | 10000 | 0.0001 | 0.2051 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 2.19.2 - Tokenizers 0.20.3
noneUsername/SauerkrautLM-v2-14b-DPO-W8A8-Dynamic-Per-Token
noneUsername
2024-11-16T02:46:16Z
5
0
null
[ "safetensors", "qwen2", "base_model:VAGOsolutions/SauerkrautLM-v2-14b-DPO", "base_model:finetune:VAGOsolutions/SauerkrautLM-v2-14b-DPO", "8-bit", "region:us" ]
null
2024-11-16T02:32:09Z
--- base_model: - VAGOsolutions/SauerkrautLM-v2-14b-DPO --- vllm (pretrained=/root/autodl-tmp/output,add_bos_token=true,tensor_parallel_size=2,max_model_len=2048,dtype=bfloat16), gen_kwargs: (None), limit: 250.0, num_fewshot: 5, batch_size: auto |Tasks|Version| Filter |n-shot| Metric | |Value| |Stderr| |-----|------:|----------------|-----:|-----------|---|----:|---|-----:| |gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.848|± |0.0228| | | |strict-match | 5|exact_match|↑ |0.896|± |0.0193| vllm (pretrained=/root/autodl-tmp/SauerkrautLM-v2-14b-DPO,add_bos_token=true,tensor_parallel_size=2,max_model_len=2048,dtype=bfloat16), gen_kwargs: (None), limit: 250.0, num_fewshot: 5, batch_size: auto |Tasks|Version| Filter |n-shot| Metric | |Value| |Stderr| |-----|------:|----------------|-----:|-----------|---|----:|---|-----:| |gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.832|± |0.0237| | | |strict-match | 5|exact_match|↑ |0.852|± |0.0225|
Rich-J/subnet29_upload_c02_N15_0
Rich-J
2024-11-16T02:41:06Z
35
0
transformers
[ "transformers", "safetensors", "phi3", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-16T02:38:07Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/gemma-2-9b-it-v2.1-GGUF
mradermacher
2024-11-16T02:40:11Z
50
1
transformers
[ "transformers", "gguf", "unsloth", "trl", "sft", "krx", "en", "base_model:homeb82784/gemma-2-9b-it-v2.1", "base_model:quantized:homeb82784/gemma-2-9b-it-v2.1", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-16T02:02:32Z
--- base_model: homeb82784/gemma-2-9b-it-v2.1 language: - en library_name: transformers quantized_by: mradermacher tags: - unsloth - trl - sft - krx --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/homeb82784/gemma-2-9b-it-v2.1 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/gemma-2-9b-it-v2.1-GGUF/resolve/main/gemma-2-9b-it-v2.1.Q2_K.gguf) | Q2_K | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9b-it-v2.1-GGUF/resolve/main/gemma-2-9b-it-v2.1.Q3_K_S.gguf) | Q3_K_S | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9b-it-v2.1-GGUF/resolve/main/gemma-2-9b-it-v2.1.Q3_K_M.gguf) | Q3_K_M | 4.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9b-it-v2.1-GGUF/resolve/main/gemma-2-9b-it-v2.1.Q3_K_L.gguf) | Q3_K_L | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9b-it-v2.1-GGUF/resolve/main/gemma-2-9b-it-v2.1.IQ4_XS.gguf) | IQ4_XS | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9b-it-v2.1-GGUF/resolve/main/gemma-2-9b-it-v2.1.Q4_0_4_4.gguf) | Q4_0_4_4 | 5.5 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9b-it-v2.1-GGUF/resolve/main/gemma-2-9b-it-v2.1.Q4_K_S.gguf) | Q4_K_S | 5.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9b-it-v2.1-GGUF/resolve/main/gemma-2-9b-it-v2.1.Q4_K_M.gguf) | Q4_K_M | 5.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9b-it-v2.1-GGUF/resolve/main/gemma-2-9b-it-v2.1.Q5_K_S.gguf) | Q5_K_S | 6.6 | | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9b-it-v2.1-GGUF/resolve/main/gemma-2-9b-it-v2.1.Q5_K_M.gguf) | Q5_K_M | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9b-it-v2.1-GGUF/resolve/main/gemma-2-9b-it-v2.1.Q6_K.gguf) | Q6_K | 7.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9b-it-v2.1-GGUF/resolve/main/gemma-2-9b-it-v2.1.Q8_0.gguf) | Q8_0 | 9.9 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9b-it-v2.1-GGUF/resolve/main/gemma-2-9b-it-v2.1.f16.gguf) | f16 | 18.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Setpember/Jon_GPT2M_DPO_props_epi_2
Setpember
2024-11-16T02:38:15Z
197
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "trl", "dpo", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-16T02:35:12Z
--- library_name: transformers tags: - trl - dpo --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ekinakyurek/marc-8B-finetuned-llama3
ekinakyurek
2024-11-16T02:30:31Z
30
3
null
[ "pytorch", "llama", "license:apache-2.0", "region:us" ]
null
2024-11-10T16:49:07Z
--- license: apache-2.0 ---
relaxml/Llama-3.1-405B-Instruct-QTIP-2Bit
relaxml
2024-11-16T02:29:26Z
7
3
null
[ "safetensors", "llama", "base_model:meta-llama/Llama-3.1-405B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-405B-Instruct", "region:us" ]
null
2024-10-16T05:51:47Z
--- base_model: - meta-llama/Llama-3.1-405B-Instruct --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/649e3f263914db6cf8e8ab1f/UE5oGUJ1I-K4uiMCq3FW-.png)
mradermacher/internlm2_5-7b-chat-i1-GGUF
mradermacher
2024-11-16T02:28:11Z
27
0
transformers
[ "transformers", "gguf", "en", "base_model:internlm/internlm2_5-7b-chat", "base_model:quantized:internlm/internlm2_5-7b-chat", "license:other", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-16T00:32:14Z
--- base_model: internlm/internlm2_5-7b-chat language: - en library_name: transformers license: other quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/internlm/internlm2_5-7b-chat <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/internlm2_5-7b-chat-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/internlm2_5-7b-chat-i1-GGUF/resolve/main/internlm2_5-7b-chat.i1-IQ1_S.gguf) | i1-IQ1_S | 2.0 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/internlm2_5-7b-chat-i1-GGUF/resolve/main/internlm2_5-7b-chat.i1-IQ1_M.gguf) | i1-IQ1_M | 2.1 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/internlm2_5-7b-chat-i1-GGUF/resolve/main/internlm2_5-7b-chat.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/internlm2_5-7b-chat-i1-GGUF/resolve/main/internlm2_5-7b-chat.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/internlm2_5-7b-chat-i1-GGUF/resolve/main/internlm2_5-7b-chat.i1-IQ2_S.gguf) | i1-IQ2_S | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/internlm2_5-7b-chat-i1-GGUF/resolve/main/internlm2_5-7b-chat.i1-IQ2_M.gguf) | i1-IQ2_M | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/internlm2_5-7b-chat-i1-GGUF/resolve/main/internlm2_5-7b-chat.i1-Q2_K.gguf) | i1-Q2_K | 3.1 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/internlm2_5-7b-chat-i1-GGUF/resolve/main/internlm2_5-7b-chat.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/internlm2_5-7b-chat-i1-GGUF/resolve/main/internlm2_5-7b-chat.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/internlm2_5-7b-chat-i1-GGUF/resolve/main/internlm2_5-7b-chat.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/internlm2_5-7b-chat-i1-GGUF/resolve/main/internlm2_5-7b-chat.i1-IQ3_S.gguf) | i1-IQ3_S | 3.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/internlm2_5-7b-chat-i1-GGUF/resolve/main/internlm2_5-7b-chat.i1-IQ3_M.gguf) | i1-IQ3_M | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/internlm2_5-7b-chat-i1-GGUF/resolve/main/internlm2_5-7b-chat.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.9 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/internlm2_5-7b-chat-i1-GGUF/resolve/main/internlm2_5-7b-chat.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/internlm2_5-7b-chat-i1-GGUF/resolve/main/internlm2_5-7b-chat.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.3 | | | [GGUF](https://huggingface.co/mradermacher/internlm2_5-7b-chat-i1-GGUF/resolve/main/internlm2_5-7b-chat.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 4.6 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/internlm2_5-7b-chat-i1-GGUF/resolve/main/internlm2_5-7b-chat.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 4.6 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/internlm2_5-7b-chat-i1-GGUF/resolve/main/internlm2_5-7b-chat.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 4.6 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/internlm2_5-7b-chat-i1-GGUF/resolve/main/internlm2_5-7b-chat.i1-Q4_0.gguf) | i1-Q4_0 | 4.6 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/internlm2_5-7b-chat-i1-GGUF/resolve/main/internlm2_5-7b-chat.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.6 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/internlm2_5-7b-chat-i1-GGUF/resolve/main/internlm2_5-7b-chat.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/internlm2_5-7b-chat-i1-GGUF/resolve/main/internlm2_5-7b-chat.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/internlm2_5-7b-chat-i1-GGUF/resolve/main/internlm2_5-7b-chat.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.6 | | | [GGUF](https://huggingface.co/mradermacher/internlm2_5-7b-chat-i1-GGUF/resolve/main/internlm2_5-7b-chat.i1-Q6_K.gguf) | i1-Q6_K | 6.5 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
Setpember/Jon_GPT2M_DPO_props_epi_1
Setpember
2024-11-16T02:25:51Z
198
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "trl", "dpo", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-16T02:25:07Z
--- library_name: transformers tags: - trl - dpo --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
onnx-community/camembertv2-base-xnli
onnx-community
2024-11-16T02:21:59Z
5
0
transformers.js
[ "transformers.js", "onnx", "roberta", "text-classification", "base_model:almanach/camembertv2-base-xnli", "base_model:quantized:almanach/camembertv2-base-xnli", "region:us" ]
text-classification
2024-11-15T21:29:58Z
--- library_name: transformers.js base_model: almanach/camembertv2-base-xnli --- https://huggingface.co/almanach/camembertv2-base-xnli with ONNX weights to be compatible with Transformers.js. Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
onnx-community/camembertav2-base
onnx-community
2024-11-16T02:21:16Z
6
0
transformers.js
[ "transformers.js", "onnx", "deberta-v2", "feature-extraction", "base_model:almanach/camembertav2-base", "base_model:quantized:almanach/camembertav2-base", "region:us" ]
feature-extraction
2024-11-15T21:32:04Z
--- library_name: transformers.js base_model: almanach/camembertav2-base --- https://huggingface.co/almanach/camembertav2-base with ONNX weights to be compatible with Transformers.js. Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
onnx-community/camembertav2-base-ftb-ner
onnx-community
2024-11-16T02:19:55Z
8
0
transformers.js
[ "transformers.js", "onnx", "deberta-v2", "token-classification", "base_model:almanach/camembertav2-base-ftb-ner", "base_model:quantized:almanach/camembertav2-base-ftb-ner", "region:us" ]
token-classification
2024-11-15T21:32:35Z
--- library_name: transformers.js base_model: almanach/camembertav2-base-ftb-ner --- https://huggingface.co/almanach/camembertav2-base-ftb-ner with ONNX weights to be compatible with Transformers.js. Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
skywalker290/Timesformer-vivit-d1
skywalker290
2024-11-16T02:11:41Z
68
0
transformers
[ "transformers", "safetensors", "vivit", "video-classification", "generated_from_trainer", "base_model:google/vivit-b-16x2-kinetics400", "base_model:finetune:google/vivit-b-16x2-kinetics400", "license:mit", "endpoints_compatible", "region:us" ]
video-classification
2024-11-15T23:26:27Z
--- library_name: transformers license: mit base_model: google/vivit-b-16x2-kinetics400 tags: - generated_from_trainer metrics: - accuracy model-index: - name: Timesformer-vivit-d1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Timesformer-vivit-d1 This model is a fine-tuned version of [google/vivit-b-16x2-kinetics400](https://huggingface.co/google/vivit-b-16x2-kinetics400) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7607 - Accuracy: 0.7557 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 12010 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.0024 | 0.1 | 1201 | 2.5898 | 0.6116 | | 0.7957 | 1.1 | 2402 | 1.8821 | 0.6666 | | 0.5344 | 2.1 | 3603 | 1.7371 | 0.6686 | | 0.2148 | 3.1 | 4804 | 1.4470 | 0.7413 | | 0.883 | 4.1 | 6005 | 1.7974 | 0.6735 | | 0.0012 | 5.1 | 7206 | 1.5739 | 0.7386 | | 0.0008 | 6.1 | 8407 | 1.7734 | 0.7307 | | 1.8254 | 7.1 | 9608 | 1.4496 | 0.7704 | | 0.6005 | 8.1 | 10809 | 1.8740 | 0.7504 | | 0.0002 | 9.1 | 12010 | 1.7607 | 0.7557 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
mradermacher/gemma-soap-best-merged-GGUF
mradermacher
2024-11-16T02:02:39Z
12
0
transformers
[ "transformers", "gguf", "en", "base_model:Farhang87/gemma-soap-best-merged", "base_model:quantized:Farhang87/gemma-soap-best-merged", "endpoints_compatible", "region:us" ]
null
2024-11-16T01:46:03Z
--- base_model: Farhang87/gemma-soap-best-merged language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Farhang87/gemma-soap-best-merged <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/gemma-soap-best-merged-GGUF/resolve/main/gemma-soap-best-merged.Q2_K.gguf) | Q2_K | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/gemma-soap-best-merged-GGUF/resolve/main/gemma-soap-best-merged.Q3_K_S.gguf) | Q3_K_S | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/gemma-soap-best-merged-GGUF/resolve/main/gemma-soap-best-merged.Q3_K_M.gguf) | Q3_K_M | 1.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/gemma-soap-best-merged-GGUF/resolve/main/gemma-soap-best-merged.Q3_K_L.gguf) | Q3_K_L | 1.7 | | | [GGUF](https://huggingface.co/mradermacher/gemma-soap-best-merged-GGUF/resolve/main/gemma-soap-best-merged.IQ4_XS.gguf) | IQ4_XS | 1.7 | | | [GGUF](https://huggingface.co/mradermacher/gemma-soap-best-merged-GGUF/resolve/main/gemma-soap-best-merged.Q4_0_4_4.gguf) | Q4_0_4_4 | 1.7 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/gemma-soap-best-merged-GGUF/resolve/main/gemma-soap-best-merged.Q4_K_S.gguf) | Q4_K_S | 1.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/gemma-soap-best-merged-GGUF/resolve/main/gemma-soap-best-merged.Q4_K_M.gguf) | Q4_K_M | 1.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/gemma-soap-best-merged-GGUF/resolve/main/gemma-soap-best-merged.Q5_K_S.gguf) | Q5_K_S | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/gemma-soap-best-merged-GGUF/resolve/main/gemma-soap-best-merged.Q5_K_M.gguf) | Q5_K_M | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/gemma-soap-best-merged-GGUF/resolve/main/gemma-soap-best-merged.Q6_K.gguf) | Q6_K | 2.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/gemma-soap-best-merged-GGUF/resolve/main/gemma-soap-best-merged.Q8_0.gguf) | Q8_0 | 2.9 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/gemma-soap-best-merged-GGUF/resolve/main/gemma-soap-best-merged.f16.gguf) | f16 | 5.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
e22vvb/mt5-base_EN_TH_sch_wiki_EN_TH_spider
e22vvb
2024-11-16T02:00:29Z
113
0
transformers
[ "transformers", "safetensors", "mt5", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-11-15T14:50:14Z
--- library_name: transformers tags: - generated_from_trainer model-index: - name: mt5-base_EN_TH_sch_wiki_EN_TH_spider results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base_EN_TH_sch_wiki_EN_TH_spider This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge2 Precision: 0.011 - Rouge2 Recall: 0.0037 - Rouge2 Fmeasure: 0.005 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:------:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.0 | 1.0 | 9693 | nan | 0.011 | 0.0037 | 0.005 | | 0.0 | 2.0 | 19386 | nan | 0.011 | 0.0037 | 0.005 | | 0.0 | 3.0 | 29079 | nan | 0.011 | 0.0037 | 0.005 | | 0.0 | 4.0 | 38772 | nan | 0.011 | 0.0037 | 0.005 | | 0.0 | 5.0 | 48465 | nan | 0.011 | 0.0037 | 0.005 | | 0.0 | 6.0 | 58158 | nan | 0.011 | 0.0037 | 0.005 | | 0.0 | 7.0 | 67851 | nan | 0.011 | 0.0037 | 0.005 | | 0.0 | 8.0 | 77544 | nan | 0.011 | 0.0037 | 0.005 | | 0.0 | 9.0 | 87237 | nan | 0.011 | 0.0037 | 0.005 | | 0.0 | 10.0 | 96930 | nan | 0.011 | 0.0037 | 0.005 | | 0.0 | 11.0 | 106623 | nan | 0.011 | 0.0037 | 0.005 | | 0.0 | 12.0 | 116316 | nan | 0.011 | 0.0037 | 0.005 | | 0.0 | 13.0 | 126009 | nan | 0.011 | 0.0037 | 0.005 | | 0.0 | 14.0 | 135702 | nan | 0.011 | 0.0037 | 0.005 | | 0.0 | 15.0 | 145395 | nan | 0.011 | 0.0037 | 0.005 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.2.2 - Datasets 2.16.1 - Tokenizers 0.20.3
premanthcharan/Image_Captioning_Model
premanthcharan
2024-11-16T01:59:02Z
28
1
null
[ "pytorch", "vision-encoder-decoder", "image-to-text", "image-captioning", "Transformers", "arxiv:1405.0312", "arxiv:2101.10804", "arxiv:1810.04020", "arxiv:2010.11929", "arxiv:1512.03385", "arxiv:1502.03044", "license:apache-2.0", "region:us" ]
image-to-text
2024-11-12T22:56:53Z
--- tags: - image-to-text - image-captioning - Transformers - vision-encoder-decoder license: apache-2.0 widget: - src: >- https://huggingface.co/datasets/mishig/sample_images/resolve/main/savanna.jpg example_title: Savanna - src: >- https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg example_title: Football Match - src: >- https://huggingface.co/datasets/mishig/sample_images/resolve/main/airport.jpg example_title: Airport --- # The Illustrated Image Captioning using transformers model ![](https://ankur3107.github.io/assets/images/vision-encoder-decoder.png) # Table of Contents - [1. Introduction](#1-introduction) - [2. Dataset Used](#2-dataset-used) - [3. Installation](#3-installation) - [4. Models and Technologies Used](#4-models-and-technologies-used) - [5. Steps for Code Explanation](#5-steps-for-code-explanation) - [6. Results and Analysis](#6-results-and-analysis) - [7. Evaluation Metrics](#7-evaluation-metrics) - [8. References](#8-references) ## 1. Introduction This repository, Image captioning is a challenging problem that involves generating human-like descriptions for images. By utilizing Vision Transformers, this project aims to achieve improved image understanding and caption generation. The combination of computer vision and Transformers has shown promising results in various natural language processing tasks, and this project explores their application to image captioning. ## 2. Dataset Used ### About MS COCO dataset The Microsoft **C**ommon **O**bjects in **CO**ntext (MS COCO) dataset is a large-scale dataset for scene understanding. The dataset is commonly used to train and benchmark object detection, segmentation, and captioning algorithms. ![Image 11-15-24 at 5 12 PM](https://github.com/user-attachments/assets/1656bf8b-f13b-42ad-aeaa-4eef012f10d6) You can read more about the dataset on the [website](http://cocodataset.org/#home), [research paper](https://arxiv.org/pdf/1405.0312.pdf), or Appendix section at the end of this page. ## 3. Installation ### Install COCO API 1. Clone this repo: https://github.com/cocodataset/cocoapi ``` git clone https://github.com/cocodataset/cocoapi.git ``` 2. Setup the coco API (also described in the readme [here](https://github.com/cocodataset/cocoapi)) ``` cd cocoapi/PythonAPI make cd .. ``` 3. Download some specific data from here: http://cocodataset.org/#download (described below) * Under **Annotations**, download: * **2017 Train/Val annotations [241MB]** (extract captions_train2017.json and captions_val2017.json, and place at locations cocoapi/annotations/captions_train2017.json and cocoapi/annotations/captions_val2017.json, respectively) * **2017 Testing Image info [1MB]** (extract image_info_test2017.json and place at location cocoapi/annotations/image_info_test2017.json) * Under **Images**, download: * **2017 Train images [83K/13GB]** (extract the train2017 folder and place at location cocoapi/images/train2017/) * **2017 Val images [41K/6GB]** (extract the val2017 folder and place at location cocoapi/images/val2017/) * **2017 Test images [41K/6GB]** (extract the test2017 folder and place at location cocoapi/images/test2017/) ## 3. Installation ## Preparing the environment **Note**: I have developed this project on Mac. It can surely be run on Windows and linux with some little changes. 1. Clone the repository, and navigate to the downloaded folder. ``` git clone https://github.com/CapstoneProjectimagecaptioning/image_captioning_transformer.git cd image_captioning_transformer ``` 2. Create (and activate) a new environment, named `captioning_env` with Python 3.7. If prompted to proceed with the install `(Proceed [y]/n)` type y. ```shell conda create -n captioning_env python=3.7 source activate captioning_env ``` At this point your command line should look something like: `(captioning_env) <User>:image_captioning <user>$`. The `(captioning_env)` indicates that your environment has been activated, and you can proceed with further package installations. 6. Before you can experiment with the code, you'll have to make sure that you have all the libraries and dependencies required to support this project. You will mainly need Python3.7+, PyTorch and its torchvision, OpenCV, and Matplotlib. You can install dependencies using: ``` pip install -r requirements.txt ``` 7. Navigate back to the repo. (Also, your source environment should still be activated at this point.) ```shell cd image_captioning ``` 8. Open the directory of notebooks, using the below command. You'll see all of the project files appear in your local environment; open the first notebook and follow the instructions. ```shell jupyter notebook ``` 9. Once you open any of the project notebooks, make sure you are in the correct `captioning_env` environment by clicking `Kernel > Change Kernel > captioning_env`. ## 4. Models and Technologies Used ### The following methods and techniques are employed in this project: - Vision Transformers (ViTs) - Attention mechanisms - Language modeling - Transfer learning - Evaluation metrics for image captioning (e.g., BLEU, METEOR, CIDEr) ### The project is implemented in Python and utilizes the following libraries: - PyTorch - Transformers - TorchVision - NumPy - NLTK - Matplotlib ### Introduction This project uses a transformer [[3]](#3) based model to generate a description for images. This task is known as the Image Captioning task. Researchers used many methodologies to approach this problem. One of these methodologies is the encoder-decoder neural network [4]. The encoder transforms the source image into a representation space; then, the decoder translates the information from the encoded space into a natural language. The goal of the encoder-decoder is to minimize the loss of generating a description from an image. As shown in the survey done by MD Zakir Hossain et al. [[4]](#4), we can see that the models that use encoder-decoder architecture mainly consist of a language model based on LSTM [[5]](#5), which decodes the encoded image received from a CNN, see Figure 1. The limitation of LSTM with long sequences and the success of transformers in machine translation and other NLP tasks attracts attention to utilizing it in machine vision. Alexey Dosovitskiy et al. introduce an image classification model (ViT) based on a classical transformer encoder showing a good performance [[6]](#6). Based on ViT, Wei Liu et al. present an image captioning model (CPTR) using an encoder-decoder transformer [[1]](#1). The source image is fed to the transformer encoder in sequence patches. Hence, one can treat the image captioning problem as a machine translation task. ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/672cd2eafa7f9a2a4711d3bc/NBP0ONvIs02htFwzD39z7.jpeg) Figure 1: Encoder Decoder Architecture ### Framework The CPTR [[1]](#1) consists of an image patcher that converts images ![x\in\mathbb{R}^{H\times W\times C}](https://latex.codecogs.com/svg.latex?x\in\mathbb{R}^{H\times%20W\times%20C}) to a sequence of patches ![x_p\in\mathbb{R}^{N(P^2\times E)}](https://latex.codecogs.com/svg.latex?x_p\in\mathbb{R}^{N(P^2\times%20E)}), where _N_ is number of patches, _H_, _W_, _C_ are images height, width and number of chanel _C=3_ respectively, _P_ is patch resolution, and _E_ is image embeddings size. Position embeddings are then added to the images patches, which form the input to twelve layers of identical transformer encoders. The output of the last encoder layer goes to four layers of identical transformer decoders. The decoder also takes words with sinusoid positional embedding. The pre-trained ViT weights initialize the CPTR encoder [[1]](#1). I omitted the initialization and image positional embeddings, adding an image embedding module to the image patcher using the features map extracted from the Resnet101 network [[7]](#7). The number of encoder layers is reduced to two. For Resenet101, I deleted the last two layers and the last softmax layer used for image classification. Another modification takes place at the encoder side. The feedforward network consists of two convolution layers with a RELU activation function in between. The encoder side deals solely with the image part, where it is beneficial to exploit the relative position of the features we have. Refer to Figure 2 for the model architecture. ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/672cd2eafa7f9a2a4711d3bc/CUSlU9R2oTeYCohHnzOuB.jpeg) Figure 2: Model Architecture ### Training The transformer decoder output goes to one fully connected layer, which provides –-given the previous token–- a probability distribution (![\in\mathbb{R}^k](https://latex.codecogs.com/svg.latex?\in\mathbb{R}^k), *k* is vocabulary size) for each token in the sequence. I trained the model using cross-entropy loss given the target ground truth (![y_{1:T}](https://latex.codecogs.com/svg.latex?y_{1:T})) where _T_ is the length of the sequence. Also, I add the doubly stochastic attention regularization [[8]](#8) to the cross-entropy loss to penalize high weights in the encoder-decoder attention. This term encourages the summation of attention weights across the sequence to be approximatively equal to one. By doing so, the model will not concentrate on specific parts in the image when generating a caption. Instead, it will look all over the image, leading to a richer and more descriptive text [[8]](#8). The loss function is defined as: ![\large L=-\sum_{c=1}^{T}{log\left(p\left(y_c\middle| y_{c-1}\right)\right)\ +\ \sum_{l=1}^{L}{\frac{1}{L}\left(\sum_{d=1}^{D}\sum_{i=1}^{P^2}\left(1-\sum_{c=1}^{T}\alpha_{cidl}\right)^2\right)}}](https://latex.codecogs.com/svg.latex?\large%20L=-\sum_{c=1}^{T}{log\left(p\left(y_c\middle|%20y_{c-1}\right)\right)\%20+\%20\sum_{l=1}^{L}{\frac{1}{L}\left(\sum_{d=1}^{D}\sum_{i=1}^{P^2}\left(1-\sum_{c=1}^{T}\alpha_{cidl}\right)^2\right)}}) where _D_ is the number of heads and _L_ is the number of layers. I used Adam optimizer, with a batch size of thirty-two. The reader can find the model sizes in the configuration file `code/config.json`. Evaluation metrics used are Bleu [[9]](#9), METEOR [[10]](#10), and Gleu [[11]](#11). I trained the model for one hundred epochs, with stopping criteria if the tracked evaluation metric (bleu-4) does not improve for twenty successive epochs. Also, the learning rate is reduced by 0.25% if the tracked evaluation metric (bleu-4) does not improve for ten consecutive epochs. The evaluation of the model against the validation split takes place every two epochs. The pre-trained Glove embeddings [[12]](#12) initialize the word embedding weights. The words embeddings are frozen for ten epochs. The Resnet101 network is tuned from the beginning. ### Inference A beam search of size five is used to generate a caption for the images in the test split. The generation starts by feeding the image and the "start of sentence" special tokens. Then at each iteration, five tokens with the highest scores are chosen. The generation iteration stops when the "end of sentence" is generated or the max length limit is reached. ## 5. Steps for Code Explanation ### 1. Data Loading and Preprocessing - Load Annotations: The code first loads image-caption pairs from the COCO 2017 dataset. It uses JSON files containing images and corresponding captions (captions_train2017.json). - Pairing Images and Captions: The code then creates a list (img_cap_pairs) that pairs image filenames with their respective captions. - Dataframe for Captions: It organizes the data in a pandas DataFrame for easier manipulation, including creating a path to each image file. - Sampling Data: 70,000 image-caption pairs are randomly sampled, making the dataset manageable without needing all data. ### 2. Text Preprocessing - The code preprocesses captions to prepare them for the model. It lowercases the text, removes punctuation, replaces multiple spaces with single spaces, and adds [start] and [end] tokens, marking the beginning and end of each caption. ### 3. Tokenization - Vocabulary Setup: A tokenizer (TextVectorization) is created with a vocabulary size of 15,000 words and a maximum token length of 40. It tokenizes captions, transforming them into sequences of integers. - Saving Vocabulary: The vocabulary is saved to a file so that it can be reused later without retraining. - Mapping Words to Indexes: word2idx and idx2word are mappings that convert words to indices and vice versa. ### 4. Dataset Preparation - Image-Caption Mapping: Using a dictionary, each image is mapped to its list of captions. Then, the images are shuffled, and a train-validation split is made (80% for training, 20% for validation). - Creating TensorFlow Datasets: Using the load_data function, images are resized, preprocessed, and tokenized captions are created as tensors. These tensors are batched for training and validation, improving memory efficiency and allowing parallel processing. ### 5. Data Augmentation - Basic image augmentations (RandomFlip, RandomRotation, and RandomContrast) are applied to training images to help the model generalize better by learning from slightly altered versions of each image. ### 6. Model Architecture #### CNN Encoder: - An InceptionV3 model (pre-trained on ImageNet) is used to process images and extract features, which serve as input to the transformer. #### Transformer Encoder Layer: - A TransformerEncoderLayer with multi-head self-attention and normalization layers learns the relationships between image features. #### Embeddings Layer: - This layer adds positional embeddings, allowing the model to capture the order of words in captions. #### Transformer Decoder Layer: - The TransformerDecoderLayer generates captions. It includes multi-head attention, feedforward neural networks, and dropout to prevent overfitting. Masking ensures that tokens don’t “see” future tokens when predicting the next word. ### 7. Image Captioning Model Class - The ImageCaptioningModel class wraps the encoder, decoder, and CNN encoder into a unified model for training and inference. - Loss and Accuracy Calculation: Custom functions track model performance by calculating the loss and accuracy using the tokenized captions and generated predictions. ### 8. Training - Loss Function: Sparse categorical cross-entropy is used to calculate the difference between predicted and actual tokens, excluding padding tokens. - Early Stopping: Monitors validation loss to stop training if performance on the validation set stops improving. - Model Compilation and Training: The model is compiled, optimized, and trained over multiple epochs with early stopping. ### 9. Evaluation and Caption Generation - The generate_caption function generates a caption for a new image by feeding it through the model. The function iteratively predicts tokens, appending each token to the generated sequence until the [end] token appears. ### 10. Saving the Model - The model weights are saved to a file (Image_Captioning_Model) to reload the model for future use without retraining. ## 6. Results and Analysis ### Deployed in Hugging Face Spaces and share image captioning service using Gradio The Hugging Face Space Image Captioning GenAI serves as a user-friendly deployment of an image captioning model, designed to generate descriptive captions for uploaded images. The deployment leverages the Hugging Face Spaces infrastructure, which is ideal for hosting machine learning applications with interactive interfaces. ### Key Features of the Deployment: - *Web-Based Interaction*: The Space offers an intuitive graphical interface for users to upload images and receive real-time AI-generated captions. - *Scalability*: Built on Hugging Face’s robust hosting environment, the application ensures smooth operation, accommodating multiple users simultaneously. - *Efficient Framework*: Likely powered by Gradio, the interface integrates seamlessly with the underlying Transformer-based model, enabling fast inference and visually engaging outputs. - *Accessibility*: Users do not need any technical knowledge or setup to use the tool—everything is available in-browser. [Gradio](http://pytorch.org/docs/master/optim.html#torch.optim.Optimizer) is a package that allows users to create simple web apps with just a few lines of code. It is essentially used for the same purpose as Streamlight and Flask but is much simpler to utilize. Many types of web interface tools can be selected including sketchpad, text boxes, file upload buttons, webcam, etc. Using these tools to receive various types of data as input, machine learning tasks such as classification and regression can easily be demoed. You can deploy an interactive version of the image captioning service on your browser by running the following command. Please don't forget to set the `cocoapi_dir` and encoder/decoder model paths to the correct values. ```shell python gradio_main.py ``` Access the service URL: https://huggingface.co/spaces/premanthcharan/Image_Captioining_GenAI ![Image 11-15-24 at 4 45 PM](https://github.com/user-attachments/assets/42c8dddc-112e-424c-b29b-e45116ee0a97) - A Web- Interface developed using Gradio platform and deployed into HuggingFace Spaces for user interaction ![Image 11-15-24 at 4 49 PM](https://github.com/user-attachments/assets/398c8761-4d71-46d5-9f0d-19a0fdb272b7) - Caption Generated: a red double decker bus driving down a street ### Model Training Figure 3 and Figure 4 show the loss and bleu-4 scores during the training and validation phases. These figures show that the model starts to overfit early around epoch eight. The bleu-4 score and loss value unimproved after epoch 20. The reason for overfitting may be due to the following reasons: 1. Not enough training data: - The CPTR's encoder is initialized by the pre-trained ViT model [[1]](#1). In the ViT paper, the model performs relatively well when trained on a large dataset like ImageNet, which has 21 million Images [[6]](#6). In our case, the model weights are randomly initialized, and we have less than 18.5 K images. - Typically the dataset split configuration is 113,287, 5,000, and 5,000 images for training, validation, and test based on Karpathy et al.'s work [[13]](#13). My split has way fewer images in the training dataset and is based on the 80%, 20%, 20% configuration. 2. The image features learned from Resenet101 are patched to an N patches of size _P x P_. Such configuration may not be the best design as these features do not have to represent an image that could be transformed into a sequence of subgrids. Flatten the Resnet101's features may be a better design. 3. The pre-trained Resent101 has been tuned from the beginning, unlike the word embedding layer. The gradient updates during early training stages where the model does not learn yet may distort the image features of the Resent101. 4. Unsuitable hyperparameters ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/672cd2eafa7f9a2a4711d3bc/VzxSQfSGDYlU5gY6mZ6nX.jpeg) ### Inference Output #### Generated Text Length Figure 5 shows the generated caption's lengths distribution. The Figure indicates that the model tends to generate shorter captions. The distribution of the training caption's lengths (left) explains that behavior; the distribution of the lengths is positively skewed. More specifically, the maximum caption length generated by the model (21 tokens) accounts for 98.66% of the lengths in the training set. See “code/experiment.ipynb Section 1.3”. ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/672cd2eafa7f9a2a4711d3bc/2IBBqt-G1d2WlDZ1rXpCF.jpeg) Figure 5: Generated caption's lengths distribution ## 7. Evaluation Metrics The table below shows the mean and standard deviation of the performance metrics across the test dataset. The bleu4 has the highest variation, suggesting that the performance varies across the dataset. This high variation is expected as the model training needs improvement, as discussed above. Also, the distribution of the bleu4 scores over the test set shows that 83.3% of the scores are less than 0.5. See “code/experiment.ipynb Section 1.4”. | | bleu1 | bleu2 | bleu3 | bleu4 | gleu | meteor | | :--- | :----: |:----: |:----: |:----: |:----: |:----: | |mean ± std | 0.7180 ± 0.17 | 0.5116 ± 0.226 | 0.3791 ± 0.227 | 0.2918 ± 0.215 | 0.2814 ± 0.174 | 0.4975 ± 0.193 ### Attention Visualisation I will examine the last layer of the transformer encoder-decoder attention. The weights are averaged across its heads. Section 1.5 in the notebook "code/experiment.ipynb" shows that the weights contain outliers. I considered weights that far from 99.95% percentile and higher as outliers. The outlier's values are capped to the 99.95% percentile. Fourteen samples were randomly selected from the test split to be examined. The sample image is superimposed with the attention weights for each generated token. The output is saved in either GIF format (one image for all generated tokens) or png format (one image for each token). All superimposed images are saved under "images/tests". The reader can examine the selected fourteen superimposed images under section 2.0 from the experiments notebook. You need to rerun all cells under Section 2.0. The samples are categorized as follows: Category 1. two samples that have the highest bleu4= 1.0 Category 2. four samples that have the lowest bleu4 scores Category 3. two samples that have the low value of bleu4 [up to 0.5] Category 4. two samples that have bleu4 score= (0.5 - 0.7] Category 5. two samples that have bleu4 score=(0.7 - 0.8] Category 6. two samples that have bleu4 score= (0.8 - 1.0) ## 8. References <a id="1">[1]</a> Liu, W., Chen, S., Guo, L., Zhu, X., & Liu, J. (2021). CPTR: Full transformer network for image captioning. arXiv preprint [arXiv:2101.10804](https://arxiv.org/abs/2101.10804). <a id="2">[2]</a> Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., ... & Zitnick, C. L. (2014, September). Microsoft coco: Common objects in context. In European conference on computer vision (pp. 740-755). Springer, Cham. <a id="3">[3]</a> A. Vaswani et al., 'Attention is all you need', Advances in neural information processing systems, vol. 30, 2017. <a id="4">[4]</a> M. Z. Hossain, F. Sohel, M. F. Shiratuddin, and H. Laga, 'A Comprehensive Survey of Deep Learning for Image Captioning', arXiv:1810.04020 [cs, stat], Oct. 2018, Accessed: Mar. 03, 2022. [Online]. Available: http://arxiv.org/abs/1810.04020. <a id="5">[5]</a> S. Hochreiter and J. Schmidhuber, ‘Long short-term memory’, Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997. <a id="6">[6]</a> A. Dosovitskiy et al., 'An image is worth 16x16 words: Transformers for image recognition at scale', arXiv preprint arXiv:2010.11929, 2020. <a id="7">[7]</a> K. He, X. Zhang, S. Ren, and J. Sun, 'Deep Residual Learning for Image Recognition', arXiv:1512.03385 [cs], Oct. 2015, Accessed: Mar. 06, 2022. [Online]. Available: http://arxiv.org/abs/1512.03385. <a id="8">[8]</a> K. Xu et al., 'Show, Attend and Tell: Neural Image Caption Generation with Visual Attention', arXiv:1502.03044 [cs], Apr. 2016, Accessed: Mar. 07, 2022. [Online]. Available: http://arxiv.org/abs/1502.03044. <a id="9">[9]</a> K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, 'Bleu: a method for automatic evaluation of machine translation', in Proceedings of the 40th annual meeting of the Association for Computational Linguistics, 2002, pp. 311–318. <a id="10">[10]</a> S. Banerjee and A. Lavie, 'METEOR: An automatic metric for MT evaluation with improved correlation with human judgments', in Proceedings of the acl workshop on intrinsic and extrinsic evaluation measures for machine translation and/or summarization, 2005, pp. 65–72. <a id="11">[11]</a> A. Mutton, M. Dras, S. Wan, and R. Dale, 'GLEU: Automatic evaluation of sentence-level fluency', in Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, 2007, pp. 344–351. <a id="12">[12]</a> J. Pennington, R. Socher, and C. D. Manning, 'Glove: Global vectors for word representation', in Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), 2014, pp. 1532–1543. <a id="13">[13]</a> A. Karpathy and L. Fei-Fei, 'Deep visual-semantic alignments for generating image descriptions', in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 3128–3137. <a id="13">[14]</a> Oriol Vinyals, Alexander Toshev, Samy Bengio, Dumitru Erhan; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 3156-3164. <a id="13">[15]</a> Hugging Face Spaces Forum about image captioning model. https://huggingface.co/docs/transformers/main/en/tasks/image_captioning <a id="13">[16]</a> QuickStart Guide to GitHub pages https://docs.github.com/en/pages/quickstart <a id="13">[17]</a> Microsoft COCO: Common Objects in Context (cs.CV). arXiv:1405.0312 [cs.CV] https://doi.org/10.48550/arXiv.1405.0312 <a id="13">[18]</a> Show, Attend and Tell: Neural Image Caption Generation with Visual Attention arXiv:1502.03044v3 [cs.LG] 19 Apr 2016 https://doi.org/10.48550/arXiv.1502.03044 <a id="13">[19]</a> Deep Residual Learning for Image Recognition arXiv:1512.03385v1 [cs.CV] 10 Dec 2015 <a id="13">[20]</a> Gradio Quickstart Guide https://www.gradio.app/guides/quickstart
mradermacher/TinyLlama-text2SQL-schemaReduzido-GGUF
mradermacher
2024-11-16T01:51:45Z
6
0
transformers
[ "transformers", "gguf", "en", "base_model:NESPED-GEN/TinyLlama-text2SQL-schemaReduzido", "base_model:quantized:NESPED-GEN/TinyLlama-text2SQL-schemaReduzido", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-16T01:48:28Z
--- base_model: NESPED-GEN/TinyLlama-text2SQL-schemaReduzido language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/NESPED-GEN/TinyLlama-text2SQL-schemaReduzido <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/TinyLlama-text2SQL-schemaReduzido-GGUF/resolve/main/TinyLlama-text2SQL-schemaReduzido.Q2_K.gguf) | Q2_K | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/TinyLlama-text2SQL-schemaReduzido-GGUF/resolve/main/TinyLlama-text2SQL-schemaReduzido.Q3_K_S.gguf) | Q3_K_S | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/TinyLlama-text2SQL-schemaReduzido-GGUF/resolve/main/TinyLlama-text2SQL-schemaReduzido.Q3_K_M.gguf) | Q3_K_M | 0.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/TinyLlama-text2SQL-schemaReduzido-GGUF/resolve/main/TinyLlama-text2SQL-schemaReduzido.Q3_K_L.gguf) | Q3_K_L | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/TinyLlama-text2SQL-schemaReduzido-GGUF/resolve/main/TinyLlama-text2SQL-schemaReduzido.IQ4_XS.gguf) | IQ4_XS | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/TinyLlama-text2SQL-schemaReduzido-GGUF/resolve/main/TinyLlama-text2SQL-schemaReduzido.Q4_0_4_4.gguf) | Q4_0_4_4 | 0.7 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/TinyLlama-text2SQL-schemaReduzido-GGUF/resolve/main/TinyLlama-text2SQL-schemaReduzido.Q4_K_S.gguf) | Q4_K_S | 0.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/TinyLlama-text2SQL-schemaReduzido-GGUF/resolve/main/TinyLlama-text2SQL-schemaReduzido.Q4_K_M.gguf) | Q4_K_M | 0.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/TinyLlama-text2SQL-schemaReduzido-GGUF/resolve/main/TinyLlama-text2SQL-schemaReduzido.Q5_K_S.gguf) | Q5_K_S | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/TinyLlama-text2SQL-schemaReduzido-GGUF/resolve/main/TinyLlama-text2SQL-schemaReduzido.Q5_K_M.gguf) | Q5_K_M | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/TinyLlama-text2SQL-schemaReduzido-GGUF/resolve/main/TinyLlama-text2SQL-schemaReduzido.Q6_K.gguf) | Q6_K | 1.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/TinyLlama-text2SQL-schemaReduzido-GGUF/resolve/main/TinyLlama-text2SQL-schemaReduzido.Q8_0.gguf) | Q8_0 | 1.3 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/TinyLlama-text2SQL-schemaReduzido-GGUF/resolve/main/TinyLlama-text2SQL-schemaReduzido.f16.gguf) | f16 | 2.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
vijay-ravichander/Llama-1B-Summarization-LoRA-MLP-r128-merged
vijay-ravichander
2024-11-16T01:49:04Z
97
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "unsloth", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-16T01:47:48Z
--- library_name: transformers tags: - unsloth - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
cloneQ/my_personal_assistant
cloneQ
2024-11-16T01:48:12Z
5
0
null
[ "pytorch", "internlm2", "custom_code", "zh", "base_model:internlm/internlm2_5-7b-chat", "base_model:finetune:internlm/internlm2_5-7b-chat", "license:apache-2.0", "region:us" ]
null
2024-11-15T13:25:34Z
--- license: apache-2.0 language: - zh base_model: - internlm/internlm2_5-7b-chat ---
vijay-ravichander/Llama-1B-Summarization-LoRA-Attn-r128-merged
vijay-ravichander
2024-11-16T01:40:54Z
96
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "unsloth", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-16T01:39:43Z
--- library_name: transformers tags: - unsloth - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
zhong-al/x3d
zhong-al
2024-11-16T01:35:51Z
53
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-11-15T02:16:15Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/internlm2_5-7b-chat-GGUF
mradermacher
2024-11-16T01:14:02Z
51
0
transformers
[ "transformers", "gguf", "en", "base_model:internlm/internlm2_5-7b-chat", "base_model:quantized:internlm/internlm2_5-7b-chat", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-15T22:45:53Z
--- base_model: internlm/internlm2_5-7b-chat language: - en library_name: transformers license: other quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/internlm/internlm2_5-7b-chat <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/internlm2_5-7b-chat-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/internlm2_5-7b-chat-GGUF/resolve/main/internlm2_5-7b-chat.Q2_K.gguf) | Q2_K | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/internlm2_5-7b-chat-GGUF/resolve/main/internlm2_5-7b-chat.Q3_K_S.gguf) | Q3_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/internlm2_5-7b-chat-GGUF/resolve/main/internlm2_5-7b-chat.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/internlm2_5-7b-chat-GGUF/resolve/main/internlm2_5-7b-chat.Q3_K_L.gguf) | Q3_K_L | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/internlm2_5-7b-chat-GGUF/resolve/main/internlm2_5-7b-chat.IQ4_XS.gguf) | IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/internlm2_5-7b-chat-GGUF/resolve/main/internlm2_5-7b-chat.Q4_0_4_4.gguf) | Q4_0_4_4 | 4.6 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/internlm2_5-7b-chat-GGUF/resolve/main/internlm2_5-7b-chat.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/internlm2_5-7b-chat-GGUF/resolve/main/internlm2_5-7b-chat.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/internlm2_5-7b-chat-GGUF/resolve/main/internlm2_5-7b-chat.Q5_K_S.gguf) | Q5_K_S | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/internlm2_5-7b-chat-GGUF/resolve/main/internlm2_5-7b-chat.Q5_K_M.gguf) | Q5_K_M | 5.6 | | | [GGUF](https://huggingface.co/mradermacher/internlm2_5-7b-chat-GGUF/resolve/main/internlm2_5-7b-chat.Q6_K.gguf) | Q6_K | 6.5 | very good quality | | [GGUF](https://huggingface.co/mradermacher/internlm2_5-7b-chat-GGUF/resolve/main/internlm2_5-7b-chat.Q8_0.gguf) | Q8_0 | 8.3 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/internlm2_5-7b-chat-GGUF/resolve/main/internlm2_5-7b-chat.f16.gguf) | f16 | 15.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
hc3515/fine-tuned-llama2
hc3515
2024-11-16T01:04:44Z
74
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-11-16T00:57:51Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/kellemar-DPO-Orca-Distilled-7B-SLERP-GGUF
mradermacher
2024-11-16T00:55:02Z
20
0
transformers
[ "transformers", "gguf", "en", "dataset:argilla/distilabel-intel-orca-dpo-pairs", "base_model:decruz07/kellemar-DPO-Orca-Distilled-7B-SLERP", "base_model:quantized:decruz07/kellemar-DPO-Orca-Distilled-7B-SLERP", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2024-11-16T00:38:47Z
--- base_model: decruz07/kellemar-DPO-Orca-Distilled-7B-SLERP datasets: - argilla/distilabel-intel-orca-dpo-pairs language: - en library_name: transformers license: cc-by-nc-4.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/decruz07/kellemar-DPO-Orca-Distilled-7B-SLERP <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/kellemar-DPO-Orca-Distilled-7B-SLERP-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/kellemar-DPO-Orca-Distilled-7B-SLERP-GGUF/resolve/main/kellemar-DPO-Orca-Distilled-7B-SLERP.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/kellemar-DPO-Orca-Distilled-7B-SLERP-GGUF/resolve/main/kellemar-DPO-Orca-Distilled-7B-SLERP.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/kellemar-DPO-Orca-Distilled-7B-SLERP-GGUF/resolve/main/kellemar-DPO-Orca-Distilled-7B-SLERP.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/kellemar-DPO-Orca-Distilled-7B-SLERP-GGUF/resolve/main/kellemar-DPO-Orca-Distilled-7B-SLERP.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/kellemar-DPO-Orca-Distilled-7B-SLERP-GGUF/resolve/main/kellemar-DPO-Orca-Distilled-7B-SLERP.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/kellemar-DPO-Orca-Distilled-7B-SLERP-GGUF/resolve/main/kellemar-DPO-Orca-Distilled-7B-SLERP.Q4_0_4_4.gguf) | Q4_0_4_4 | 4.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/kellemar-DPO-Orca-Distilled-7B-SLERP-GGUF/resolve/main/kellemar-DPO-Orca-Distilled-7B-SLERP.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/kellemar-DPO-Orca-Distilled-7B-SLERP-GGUF/resolve/main/kellemar-DPO-Orca-Distilled-7B-SLERP.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/kellemar-DPO-Orca-Distilled-7B-SLERP-GGUF/resolve/main/kellemar-DPO-Orca-Distilled-7B-SLERP.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/kellemar-DPO-Orca-Distilled-7B-SLERP-GGUF/resolve/main/kellemar-DPO-Orca-Distilled-7B-SLERP.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/kellemar-DPO-Orca-Distilled-7B-SLERP-GGUF/resolve/main/kellemar-DPO-Orca-Distilled-7B-SLERP.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/kellemar-DPO-Orca-Distilled-7B-SLERP-GGUF/resolve/main/kellemar-DPO-Orca-Distilled-7B-SLERP.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/kellemar-DPO-Orca-Distilled-7B-SLERP-GGUF/resolve/main/kellemar-DPO-Orca-Distilled-7B-SLERP.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
nicolofelicioni/pythia-1b-sft-hh-normal-4
nicolofelicioni
2024-11-16T00:48:04Z
127
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "trl", "dpo", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-26T09:58:07Z
--- library_name: transformers tags: - trl - dpo --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mav23/magnum-v4-9b-GGUF
mav23
2024-11-16T00:24:15Z
55
0
transformers
[ "transformers", "gguf", "chat", "text-generation", "en", "license:gemma", "model-index", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-15T23:02:39Z
--- language: - en license: gemma library_name: transformers tags: - chat pipeline_tag: text-generation model-index: - name: magnum-v4-9b results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 35.03 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v4-9b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 33.27 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v4-9b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 11.63 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v4-9b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 12.98 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v4-9b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 15.65 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v4-9b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 32.81 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v4-9b name: Open LLM Leaderboard --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/658a46cbfb9c2bdfae75b3a6/vxYDYerLy2vD8n05nL2WU.png) This is a series of models designed to replicate the prose quality of the Claude 3 models, specifically Sonnet and Opus. This model is fine-tuned on top of [gemma 2 9b (chatML'ified)](https://huggingface.co/IntervitensInc/gemma-2-9b-chatml). ## Prompting A typical input would look like this: ```py <|im_start|>system system prompt<|im_end|> <|im_start|>user Hi there!<|im_end|> <|im_start|>assistant Nice to meet you!<|im_end|> <|im_start|>user Can I ask a question?<|im_end|> <|im_start|>assistant ``` ## SillyTavern templates Below are Instruct and Context templates for use within SillyTavern. <details><summary>context template</summary> ```yaml { "story_string": "<|im_start|>system\n{{#if system}}{{system}}\n{{/if}}{{#if wiBefore}}{{wiBefore}}\n{{/if}}{{#if description}}{{description}}\n{{/if}}{{#if personality}}{{char}}'s personality: {{personality}}\n{{/if}}{{#if scenario}}Scenario: {{scenario}}\n{{/if}}{{#if wiAfter}}{{wiAfter}}\n{{/if}}{{#if persona}}{{persona}}\n{{/if}}{{trim}}<|im_end|>\n", "example_separator": "", "chat_start": "", "use_stop_strings": false, "allow_jailbreak": false, "always_force_name2": true, "trim_sentences": false, "include_newline": false, "single_line": false, "name": "Magnum ChatML" } ``` </details><br> <details><summary>instruct template</summary> ```yaml { "system_prompt": "Currently, your role is {{char}}, described in detail below. As {{char}}, continue the narrative exchange with {{user}}.\n\n<Guidelines>\n• Maintain the character persona but allow it to evolve with the story.\n• Be creative and proactive. Drive the story forward, introducing plotlines and events when relevant.\n• All types of outputs are encouraged; respond accordingly to the narrative.\n• Include dialogues, actions, and thoughts in each response.\n• Utilize all five senses to describe scenarios within {{char}}'s dialogue.\n• Use emotional symbols such as "!" and "~" in appropriate contexts.\n• Incorporate onomatopoeia when suitable.\n• Allow time for {{user}} to respond with their own input, respecting their agency.\n• Act as secondary characters and NPCs as needed, and remove them when appropriate.\n• When prompted for an Out of Character [OOC:] reply, answer neutrally and in plaintext, not as {{char}}.\n</Guidelines>\n\n<Forbidden>\n• Using excessive literary embellishments and purple prose unless dictated by {{char}}'s persona.\n• Writing for, speaking, thinking, acting, or replying as {{user}} in your response.\n• Repetitive and monotonous outputs.\n• Positivity bias in your replies.\n• Being overly extreme or NSFW when the narrative context is inappropriate.\n</Forbidden>\n\nFollow the instructions in <Guidelines></Guidelines>, avoiding the items listed in <Forbidden></Forbidden>.", "input_sequence": "<|im_start|>user\n", "output_sequence": "<|im_start|>assistant\n", "last_output_sequence": "", "system_sequence": "<|im_start|>system\n", "stop_sequence": "<|im_end|>", "wrap": false, "macro": true, "names": true, "names_force_groups": true, "activation_regex": "", "system_sequence_prefix": "", "system_sequence_suffix": "", "first_output_sequence": "", "skip_examples": false, "output_suffix": "<|im_end|>\n", "input_suffix": "<|im_end|>\n", "system_suffix": "<|im_end|>\n", "user_alignment_message": "", "system_same_as_user": false, "last_system_sequence": "", "name": "Magnum ChatML" } ``` </details><br> ## Axolotl config <details><summary>See axolotl config</summary> ```yaml base_model: /workspace/data/gemma-2-9b-chatml model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: false liger_rms_norm: false liger_swiglu: true liger_cross_entropy: true liger_fused_linear_cross_entropy: false load_in_8bit: false load_in_4bit: false strict: false datasets: - path: anthracite-org/c2_logs_16k_llama_v1.1 type: sharegpt conversation: chatml - path: NewEden/Claude-Instruct-5K type: sharegpt conversation: chatml - path: anthracite-org/kalo-opus-instruct-22k-no-refusal type: sharegpt conversation: chatml - path: Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned type: sharegpt conversation: chatml - path: lodrick-the-lafted/kalo-opus-instruct-3k-filtered type: sharegpt conversation: chatml - path: anthracite-org/nopm_claude_writing_fixed type: sharegpt conversation: chatml - path: Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned type: sharegpt conversation: chatml - path: anthracite-org/kalo_opus_misc_240827 type: sharegpt conversation: chatml - path: anthracite-org/kalo_misc_part2 type: sharegpt conversation: chatml chat_template: chatml shuffle_merged_datasets: false default_system_message: "You are a helpful assistant that responds to the user." dataset_prepared_path: /workspace/data/9b-fft-data val_set_size: 0.0 output_dir: /workspace/data/9b-fft-out sequence_len: 8192 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true adapter: lora_model_dir: lora_r: lora_alpha: lora_dropout: lora_target_linear: lora_fan_in_fan_out: wandb_project: 9b-Nemo-config-fft wandb_entity: wandb_watch: wandb_name: attempt-01 wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 1 num_epochs: 4 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 0.00001 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: auto_resume_from_checkpoints: true local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: eval_table_size: eval_max_new_tokens: saves_per_epoch: 1 debug: deepspeed: deepspeed_configs/zero3_bf16.json weight_decay: 0.001 fsdp: fsdp_config: special_tokens: pad_token: <pad> ``` </details><br> ## Credits We'd like to thank Recursal / Featherless for sponsoring the compute for this train, Featherless has been hosting our Magnum models since the first 72 B and has given thousands of people access to our models and helped us grow. We would also like to thank all members of Anthracite who made this finetune possible. ## Datasets - [anthracite-org/c2_logs_16k_llama_v1.1](https://huggingface.co/datasets/anthracite-org/c2_logs_16k_llama_v1.1) - [NewEden/Claude-Instruct-5K](https://huggingface.co/datasets/NewEden/Claude-Instruct-5K) - [anthracite-org/kalo-opus-instruct-22k-no-refusal](https://huggingface.co/datasets/anthracite-org/kalo-opus-instruct-22k-no-refusal) - [Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned](https://huggingface.co/datasets/Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned) - [lodrick-the-lafted/kalo-opus-instruct-3k-filtered](https://huggingface.co/datasets/lodrick-the-lafted/kalo-opus-instruct-3k-filtered) - [anthracite-org/nopm_claude_writing_fixed](https://huggingface.co/datasets/anthracite-org/nopm_claude_writing_fixed) - [Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned](https://huggingface.co/datasets/Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned) - [anthracite-org/kalo_opus_misc_240827](https://huggingface.co/datasets/anthracite-org/kalo_opus_misc_240827) - [anthracite-org/kalo_misc_part2](https://huggingface.co/datasets/anthracite-org/kalo_misc_part2) ## Training The training was done for 2 epochs. We used 8x[H100s](https://www.nvidia.com/en-us/data-center/h100/) GPUs graciously provided by [Recursal AI](https://recursal.ai/) / [Featherless AI](https://featherless.ai/) for the full-parameter fine-tuning of the model. [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) ## Safety ... # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_anthracite-org__magnum-v4-9b) | Metric |Value| |-------------------|----:| |Avg. |23.56| |IFEval (0-Shot) |35.03| |BBH (3-Shot) |33.27| |MATH Lvl 5 (4-Shot)|11.63| |GPQA (0-shot) |12.98| |MuSR (0-shot) |15.65| |MMLU-PRO (5-shot) |32.81|
mradermacher/CodeGemma-2b-GGUF
mradermacher
2024-11-16T00:24:03Z
5
0
transformers
[ "transformers", "gguf", "code", "gemma", "en", "base_model:TechxGenus/CodeGemma-2b", "base_model:quantized:TechxGenus/CodeGemma-2b", "license:other", "endpoints_compatible", "region:us" ]
null
2024-11-08T10:44:35Z
--- base_model: TechxGenus/CodeGemma-2b language: - en library_name: transformers license: other license_link: https://ai.google.dev/gemma/terms license_name: gemma-terms-of-use quantized_by: mradermacher tags: - code - gemma --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/TechxGenus/CodeGemma-2b <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/CodeGemma-2b-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [PART 1](https://huggingface.co/mradermacher/CodeGemma-2b-GGUF/resolve/main/CodeGemma-2b.Q2_K.gguf) [PART 2](https://huggingface.co/mradermacher/CodeGemma-2b-GGUF/resolve/main/codegemma-2b.Q2_K.gguf) | Q2_K | 2.4 | | | [PART 1](https://huggingface.co/mradermacher/CodeGemma-2b-GGUF/resolve/main/CodeGemma-2b.Q3_K_S.gguf) [PART 2](https://huggingface.co/mradermacher/CodeGemma-2b-GGUF/resolve/main/codegemma-2b.Q3_K_S.gguf) | Q3_K_S | 2.7 | | | [PART 1](https://huggingface.co/mradermacher/CodeGemma-2b-GGUF/resolve/main/CodeGemma-2b.Q3_K_M.gguf) [PART 2](https://huggingface.co/mradermacher/CodeGemma-2b-GGUF/resolve/main/codegemma-2b.Q3_K_M.gguf) | Q3_K_M | 2.9 | lower quality | | [PART 1](https://huggingface.co/mradermacher/CodeGemma-2b-GGUF/resolve/main/CodeGemma-2b.Q3_K_L.gguf) [PART 2](https://huggingface.co/mradermacher/CodeGemma-2b-GGUF/resolve/main/codegemma-2b.Q3_K_L.gguf) | Q3_K_L | 3.0 | | | [PART 1](https://huggingface.co/mradermacher/CodeGemma-2b-GGUF/resolve/main/CodeGemma-2b.IQ4_XS.gguf) [PART 2](https://huggingface.co/mradermacher/CodeGemma-2b-GGUF/resolve/main/codegemma-2b.IQ4_XS.gguf) | IQ4_XS | 3.1 | | | [PART 1](https://huggingface.co/mradermacher/CodeGemma-2b-GGUF/resolve/main/CodeGemma-2b.Q4_0_4_4.gguf) [PART 2](https://huggingface.co/mradermacher/CodeGemma-2b-GGUF/resolve/main/codegemma-2b.Q4_0_4_4.gguf) | Q4_0_4_4 | 3.2 | fast on arm, low quality | | [PART 1](https://huggingface.co/mradermacher/CodeGemma-2b-GGUF/resolve/main/CodeGemma-2b.Q4_K_S.gguf) [PART 2](https://huggingface.co/mradermacher/CodeGemma-2b-GGUF/resolve/main/codegemma-2b.Q4_K_S.gguf) | Q4_K_S | 3.2 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/CodeGemma-2b-GGUF/resolve/main/CodeGemma-2b.Q4_K_M.gguf) [PART 2](https://huggingface.co/mradermacher/CodeGemma-2b-GGUF/resolve/main/codegemma-2b.Q4_K_M.gguf) | Q4_K_M | 3.4 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/CodeGemma-2b-GGUF/resolve/main/CodeGemma-2b.Q5_K_S.gguf) [PART 2](https://huggingface.co/mradermacher/CodeGemma-2b-GGUF/resolve/main/codegemma-2b.Q5_K_S.gguf) | Q5_K_S | 3.7 | | | [PART 1](https://huggingface.co/mradermacher/CodeGemma-2b-GGUF/resolve/main/CodeGemma-2b.Q5_K_M.gguf) [PART 2](https://huggingface.co/mradermacher/CodeGemma-2b-GGUF/resolve/main/codegemma-2b.Q5_K_M.gguf) | Q5_K_M | 3.8 | | | [PART 1](https://huggingface.co/mradermacher/CodeGemma-2b-GGUF/resolve/main/CodeGemma-2b.Q6_K.gguf) [PART 2](https://huggingface.co/mradermacher/CodeGemma-2b-GGUF/resolve/main/codegemma-2b.Q6_K.gguf) | Q6_K | 4.2 | very good quality | | [PART 1](https://huggingface.co/mradermacher/CodeGemma-2b-GGUF/resolve/main/CodeGemma-2b.Q8_0.gguf) [PART 2](https://huggingface.co/mradermacher/CodeGemma-2b-GGUF/resolve/main/codegemma-2b.Q8_0.gguf) | Q8_0 | 5.4 | fast, best quality | | [PART 1](https://huggingface.co/mradermacher/CodeGemma-2b-GGUF/resolve/main/CodeGemma-2b.f16.gguf) [PART 2](https://huggingface.co/mradermacher/CodeGemma-2b-GGUF/resolve/main/codegemma-2b.f16.gguf) | f16 | 10.1 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/emma-500-llama2-7b-GGUF
mradermacher
2024-11-16T00:15:54Z
29
0
transformers
[ "transformers", "gguf", "en", "dataset:MaLA-LM/mala-monolingual-split", "base_model:MaLA-LM/emma-500-llama2-7b", "base_model:quantized:MaLA-LM/emma-500-llama2-7b", "license:llama2", "endpoints_compatible", "region:us" ]
null
2024-11-13T01:46:18Z
--- base_model: MaLA-LM/emma-500-llama2-7b datasets: - MaLA-LM/mala-monolingual-split language: - en library_name: transformers license: llama2 no_imatrix: nan detected in blk.31.attn_q.weight quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/MaLA-LM/emma-500-llama2-7b <!-- provided-files --> ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/emma-500-llama2-7b-GGUF/resolve/main/emma-500-llama2-7b.Q2_K.gguf) | Q2_K | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/emma-500-llama2-7b-GGUF/resolve/main/emma-500-llama2-7b.Q3_K_S.gguf) | Q3_K_S | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/emma-500-llama2-7b-GGUF/resolve/main/emma-500-llama2-7b.Q3_K_M.gguf) | Q3_K_M | 3.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/emma-500-llama2-7b-GGUF/resolve/main/emma-500-llama2-7b.Q3_K_L.gguf) | Q3_K_L | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/emma-500-llama2-7b-GGUF/resolve/main/emma-500-llama2-7b.IQ4_XS.gguf) | IQ4_XS | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/emma-500-llama2-7b-GGUF/resolve/main/emma-500-llama2-7b.Q4_0_4_4.gguf) | Q4_0_4_4 | 3.9 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/emma-500-llama2-7b-GGUF/resolve/main/emma-500-llama2-7b.Q4_K_S.gguf) | Q4_K_S | 4.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/emma-500-llama2-7b-GGUF/resolve/main/emma-500-llama2-7b.Q4_K_M.gguf) | Q4_K_M | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/emma-500-llama2-7b-GGUF/resolve/main/emma-500-llama2-7b.Q5_K_S.gguf) | Q5_K_S | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/emma-500-llama2-7b-GGUF/resolve/main/emma-500-llama2-7b.Q5_K_M.gguf) | Q5_K_M | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/emma-500-llama2-7b-GGUF/resolve/main/emma-500-llama2-7b.Q6_K.gguf) | Q6_K | 5.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/emma-500-llama2-7b-GGUF/resolve/main/emma-500-llama2-7b.Q8_0.gguf) | Q8_0 | 7.3 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/emma-500-llama2-7b-GGUF/resolve/main/emma-500-llama2-7b.f16.gguf) | f16 | 13.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
J-LAB/FluxiIA-Small_Brisa
J-LAB
2024-11-16T00:13:07Z
39
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:JJhooww/Mistral-7B-v0.2-Instruction", "base_model:finetune:JJhooww/Mistral-7B-v0.2-Instruction", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-11-16T00:08:31Z
--- base_model: JJhooww/Mistral-7B-v0.2-Instruction tags: - text-generation-inference - transformers - unsloth - mistral - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** J-LAB - **License:** apache-2.0 - **Finetuned from model :** JJhooww/Mistral-7B-v0.2-Instruction This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mradermacher/Excalibur-7b-GGUF
mradermacher
2024-11-16T00:08:18Z
12
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:InferenceIllusionist/Excalibur-7b", "base_model:quantized:InferenceIllusionist/Excalibur-7b", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-11-15T22:25:46Z
--- base_model: InferenceIllusionist/Excalibur-7b language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/InferenceIllusionist/Excalibur-7b <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Excalibur-7b-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Excalibur-7b-GGUF/resolve/main/Excalibur-7b.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/Excalibur-7b-GGUF/resolve/main/Excalibur-7b.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Excalibur-7b-GGUF/resolve/main/Excalibur-7b.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Excalibur-7b-GGUF/resolve/main/Excalibur-7b.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Excalibur-7b-GGUF/resolve/main/Excalibur-7b.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/Excalibur-7b-GGUF/resolve/main/Excalibur-7b.Q4_0_4_4.gguf) | Q4_0_4_4 | 4.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Excalibur-7b-GGUF/resolve/main/Excalibur-7b.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Excalibur-7b-GGUF/resolve/main/Excalibur-7b.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Excalibur-7b-GGUF/resolve/main/Excalibur-7b.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/Excalibur-7b-GGUF/resolve/main/Excalibur-7b.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Excalibur-7b-GGUF/resolve/main/Excalibur-7b.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Excalibur-7b-GGUF/resolve/main/Excalibur-7b.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Excalibur-7b-GGUF/resolve/main/Excalibur-7b.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
PaDaS-Lab/arctic-m-bge-small
PaDaS-Lab
2024-11-15T23:18:08Z
326
3
null
[ "safetensors", "arctic-m-bge-small", "mteb", "custom_code", "arxiv:2407.08275", "license:mit", "model-index", "region:us" ]
null
2024-11-07T09:01:21Z
--- model-index: - name: no_model_name_available results: - dataset: config: default name: MTEB ArguAna (default) revision: c22ab2a51041ffd869aaddef7af8d8215647e41a split: test type: mteb/arguana metrics: - type: main_score value: 62.44 - type: map_at_1 value: 37.909 - type: map_at_10 value: 54.071000000000005 - type: map_at_100 value: 54.706999999999994 - type: map_at_1000 value: 54.71 - type: map_at_20 value: 54.61 - type: map_at_3 value: 49.787 - type: map_at_5 value: 52.471999999999994 - type: mrr_at_1 value: 38.54907539118065 - type: mrr_at_10 value: 54.30778522883794 - type: mrr_at_100 value: 54.95058676123675 - type: mrr_at_1000 value: 54.9534745787606 - type: mrr_at_20 value: 54.85371234607436 - type: mrr_at_3 value: 50.023707918444806 - type: mrr_at_5 value: 52.71574205784745 - type: nauc_map_at_1000_diff1 value: 9.700052151236969 - type: nauc_map_at_1000_max value: -11.480601048675311 - type: nauc_map_at_1000_std value: -16.80933897048166 - type: nauc_map_at_100_diff1 value: 9.702439916132208 - type: nauc_map_at_100_max value: -11.477121863613672 - type: nauc_map_at_100_std value: -16.805809477344237 - type: nauc_map_at_10_diff1 value: 9.55964875147944 - type: nauc_map_at_10_max value: -11.221604673423611 - type: nauc_map_at_10_std value: -16.84817138477702 - type: nauc_map_at_1_diff1 value: 13.414379505055546 - type: nauc_map_at_1_max value: -13.64398031891019 - type: nauc_map_at_1_std value: -17.823564900618976 - type: nauc_map_at_20_diff1 value: 9.656264829584742 - type: nauc_map_at_20_max value: -11.402956696331874 - type: nauc_map_at_20_std value: -16.729584639384093 - type: nauc_map_at_3_diff1 value: 9.074651468472236 - type: nauc_map_at_3_max value: -11.938799932445345 - type: nauc_map_at_3_std value: -17.292542932113854 - type: nauc_map_at_5_diff1 value: 9.375988599355505 - type: nauc_map_at_5_max value: -11.472571205679664 - type: nauc_map_at_5_std value: -17.40403356468899 - type: nauc_mrr_at_1000_diff1 value: 7.411799940331186 - type: nauc_mrr_at_1000_max value: -12.508159837494434 - type: nauc_mrr_at_1000_std value: -16.707342470667285 - type: nauc_mrr_at_100_diff1 value: 7.414405067064217 - type: nauc_mrr_at_100_max value: -12.50459019538836 - type: nauc_mrr_at_100_std value: -16.703833468680948 - type: nauc_mrr_at_10_diff1 value: 7.286842407775826 - type: nauc_mrr_at_10_max value: -12.258550496378401 - type: nauc_mrr_at_10_std value: -16.731699740418414 - type: nauc_mrr_at_1_diff1 value: 11.596538956075104 - type: nauc_mrr_at_1_max value: -13.73394271953812 - type: nauc_mrr_at_1_std value: -17.64007975098422 - type: nauc_mrr_at_20_diff1 value: 7.376312921473681 - type: nauc_mrr_at_20_max value: -12.426813484836043 - type: nauc_mrr_at_20_std value: -16.627786497409552 - type: nauc_mrr_at_3_diff1 value: 6.654949505817999 - type: nauc_mrr_at_3_max value: -13.137022485458507 - type: nauc_mrr_at_3_std value: -17.32424266610232 - type: nauc_mrr_at_5_diff1 value: 7.2434372901234525 - type: nauc_mrr_at_5_max value: -12.429947223764405 - type: nauc_mrr_at_5_std value: -17.228937753898123 - type: nauc_ndcg_at_1000_diff1 value: 9.36855285735971 - type: nauc_ndcg_at_1000_max value: -10.953666720445836 - type: nauc_ndcg_at_1000_std value: -16.347516200301456 - type: nauc_ndcg_at_100_diff1 value: 9.409452556684755 - type: nauc_ndcg_at_100_max value: -10.862168660345734 - type: nauc_ndcg_at_100_std value: -16.229401930460405 - type: nauc_ndcg_at_10_diff1 value: 8.77691653610156 - type: nauc_ndcg_at_10_max value: -9.563379218779584 - type: nauc_ndcg_at_10_std value: -16.274566801403125 - type: nauc_ndcg_at_1_diff1 value: 13.414379505055546 - type: nauc_ndcg_at_1_max value: -13.64398031891019 - type: nauc_ndcg_at_1_std value: -17.823564900618976 - type: nauc_ndcg_at_20_diff1 value: 9.131323452637305 - type: nauc_ndcg_at_20_max value: -10.266530434189066 - type: nauc_ndcg_at_20_std value: -15.737108435541888 - type: nauc_ndcg_at_3_diff1 value: 7.739062271477399 - type: nauc_ndcg_at_3_max value: -11.488056154638532 - type: nauc_ndcg_at_3_std value: -17.411333288529267 - type: nauc_ndcg_at_5_diff1 value: 8.272542020803597 - type: nauc_ndcg_at_5_max value: -10.397456408544468 - type: nauc_ndcg_at_5_std value: -17.59822117969101 - type: nauc_precision_at_1000_diff1 value: 13.208924542423258 - type: nauc_precision_at_1000_max value: 13.208924542423258 - type: nauc_precision_at_1000_std value: 66.71142287338954 - type: nauc_precision_at_100_diff1 value: 18.762786994282852 - type: nauc_precision_at_100_max value: 20.099447719178784 - type: nauc_precision_at_100_std value: 48.431125716899956 - type: nauc_precision_at_10_diff1 value: 4.019933323360742 - type: nauc_precision_at_10_max value: 4.884910439588258 - type: nauc_precision_at_10_std value: -11.127362742499441 - type: nauc_precision_at_1_diff1 value: 13.414379505055546 - type: nauc_precision_at_1_max value: -13.64398031891019 - type: nauc_precision_at_1_std value: -17.823564900618976 - type: nauc_precision_at_20_diff1 value: 3.6375128143838293 - type: nauc_precision_at_20_max value: 14.126083805554671 - type: nauc_precision_at_20_std value: 10.615757350586888 - type: nauc_precision_at_3_diff1 value: 3.3422754903034884 - type: nauc_precision_at_3_max value: -10.034405870340006 - type: nauc_precision_at_3_std value: -17.917533977279017 - type: nauc_precision_at_5_diff1 value: 3.7950183183380957 - type: nauc_precision_at_5_max value: -5.449035408572837 - type: nauc_precision_at_5_std value: -18.586669848898257 - type: nauc_recall_at_1000_diff1 value: 13.208924542421252 - type: nauc_recall_at_1000_max value: 13.208924542421252 - type: nauc_recall_at_1000_std value: 66.71142287338697 - type: nauc_recall_at_100_diff1 value: 18.76278699428332 - type: nauc_recall_at_100_max value: 20.099447719179743 - type: nauc_recall_at_100_std value: 48.431125716900205 - type: nauc_recall_at_10_diff1 value: 4.019933323360658 - type: nauc_recall_at_10_max value: 4.884910439588057 - type: nauc_recall_at_10_std value: -11.127362742499546 - type: nauc_recall_at_1_diff1 value: 13.414379505055546 - type: nauc_recall_at_1_max value: -13.64398031891019 - type: nauc_recall_at_1_std value: -17.823564900618976 - type: nauc_recall_at_20_diff1 value: 3.6375128143838387 - type: nauc_recall_at_20_max value: 14.126083805554623 - type: nauc_recall_at_20_std value: 10.61575735058658 - type: nauc_recall_at_3_diff1 value: 3.3422754903035554 - type: nauc_recall_at_3_max value: -10.034405870339956 - type: nauc_recall_at_3_std value: -17.917533977278943 - type: nauc_recall_at_5_diff1 value: 3.795018318338047 - type: nauc_recall_at_5_max value: -5.449035408572804 - type: nauc_recall_at_5_std value: -18.58666984889819 - type: ndcg_at_1 value: 37.909 - type: ndcg_at_10 value: 62.44 - type: ndcg_at_100 value: 64.932 - type: ndcg_at_1000 value: 64.99000000000001 - type: ndcg_at_20 value: 64.319 - type: ndcg_at_3 value: 53.778000000000006 - type: ndcg_at_5 value: 58.599000000000004 - type: precision_at_1 value: 37.909 - type: precision_at_10 value: 8.883000000000001 - type: precision_at_100 value: 0.992 - type: precision_at_1000 value: 0.1 - type: precision_at_20 value: 4.804 - type: precision_at_3 value: 21.788 - type: precision_at_5 value: 15.405 - type: recall_at_1 value: 37.909 - type: recall_at_10 value: 88.834 - type: recall_at_100 value: 99.21799999999999 - type: recall_at_1000 value: 99.644 - type: recall_at_20 value: 96.088 - type: recall_at_3 value: 65.363 - type: recall_at_5 value: 77.027 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackAndroidRetrieval (default) revision: f46a197baaae43b4f621051089b82a364682dfeb split: test type: mteb/cqadupstack-android metrics: - type: main_score value: 53.176 - type: map_at_1 value: 33.650999999999996 - type: map_at_10 value: 46.471000000000004 - type: map_at_100 value: 47.985 - type: map_at_1000 value: 48.102000000000004 - type: map_at_20 value: 47.292 - type: map_at_3 value: 42.623 - type: map_at_5 value: 44.979 - type: mrr_at_1 value: 41.201716738197426 - type: mrr_at_10 value: 52.25355950677838 - type: mrr_at_100 value: 52.88338300595689 - type: mrr_at_1000 value: 52.921972185432885 - type: mrr_at_20 value: 52.572720245822445 - type: mrr_at_3 value: 49.38006676204101 - type: mrr_at_5 value: 51.368621840724806 - type: nauc_map_at_1000_diff1 value: 52.424580577365674 - type: nauc_map_at_1000_max value: 35.94853426088666 - type: nauc_map_at_1000_std value: -3.1129808405979116 - type: nauc_map_at_100_diff1 value: 52.42314269469678 - type: nauc_map_at_100_max value: 35.95564099324896 - type: nauc_map_at_100_std value: -3.101625069102785 - type: nauc_map_at_10_diff1 value: 52.674357307094496 - type: nauc_map_at_10_max value: 35.62082218057774 - type: nauc_map_at_10_std value: -3.7915962794353173 - type: nauc_map_at_1_diff1 value: 58.88454782432587 - type: nauc_map_at_1_max value: 31.58887282969742 - type: nauc_map_at_1_std value: -3.3197840386400843 - type: nauc_map_at_20_diff1 value: 52.57811291835384 - type: nauc_map_at_20_max value: 35.98370464846043 - type: nauc_map_at_20_std value: -3.282933904055322 - type: nauc_map_at_3_diff1 value: 53.23139053968499 - type: nauc_map_at_3_max value: 35.27374020498982 - type: nauc_map_at_3_std value: -4.586249483195213 - type: nauc_map_at_5_diff1 value: 52.59485178437643 - type: nauc_map_at_5_max value: 35.514513542685876 - type: nauc_map_at_5_std value: -4.434526651693118 - type: nauc_mrr_at_1000_diff1 value: 49.59556586828132 - type: nauc_mrr_at_1000_max value: 36.84616750157751 - type: nauc_mrr_at_1000_std value: -3.8525984466340764 - type: nauc_mrr_at_100_diff1 value: 49.57531335928693 - type: nauc_mrr_at_100_max value: 36.82683956190645 - type: nauc_mrr_at_100_std value: -3.872554481570826 - type: nauc_mrr_at_10_diff1 value: 49.62497265122659 - type: nauc_mrr_at_10_max value: 36.98985018458424 - type: nauc_mrr_at_10_std value: -3.8376513272257733 - type: nauc_mrr_at_1_diff1 value: 54.49327345294693 - type: nauc_mrr_at_1_max value: 34.8934028739382 - type: nauc_mrr_at_1_std value: -4.437791198183867 - type: nauc_mrr_at_20_diff1 value: 49.5890168206895 - type: nauc_mrr_at_20_max value: 36.89726798208358 - type: nauc_mrr_at_20_std value: -3.866993349889667 - type: nauc_mrr_at_3_diff1 value: 49.59634094819107 - type: nauc_mrr_at_3_max value: 37.16225648718551 - type: nauc_mrr_at_3_std value: -4.414442576808539 - type: nauc_mrr_at_5_diff1 value: 49.225081579422344 - type: nauc_mrr_at_5_max value: 36.747751335426756 - type: nauc_mrr_at_5_std value: -4.324178992210884 - type: nauc_ndcg_at_1000_diff1 value: 50.31882542922762 - type: nauc_ndcg_at_1000_max value: 36.94417408184034 - type: nauc_ndcg_at_1000_std value: -1.8041849909913372 - type: nauc_ndcg_at_100_diff1 value: 49.66655309339676 - type: nauc_ndcg_at_100_max value: 36.70372545075 - type: nauc_ndcg_at_100_std value: -1.6243834018453231 - type: nauc_ndcg_at_10_diff1 value: 49.940843283397214 - type: nauc_ndcg_at_10_max value: 36.0676312207537 - type: nauc_ndcg_at_10_std value: -3.439514885728974 - type: nauc_ndcg_at_1_diff1 value: 54.49327345294693 - type: nauc_ndcg_at_1_max value: 34.8934028739382 - type: nauc_ndcg_at_1_std value: -4.437791198183867 - type: nauc_ndcg_at_20_diff1 value: 49.93181052825062 - type: nauc_ndcg_at_20_max value: 36.71459050402181 - type: nauc_ndcg_at_20_std value: -2.6921628328410265 - type: nauc_ndcg_at_3_diff1 value: 50.26692043258316 - type: nauc_ndcg_at_3_max value: 36.24184609760576 - type: nauc_ndcg_at_3_std value: -4.757874636308119 - type: nauc_ndcg_at_5_diff1 value: 49.37130579587368 - type: nauc_ndcg_at_5_max value: 35.73812624135239 - type: nauc_ndcg_at_5_std value: -4.5919788051135555 - type: nauc_precision_at_1000_diff1 value: -24.43795561769816 - type: nauc_precision_at_1000_max value: -13.261416374377383 - type: nauc_precision_at_1000_std value: -4.971448949934886 - type: nauc_precision_at_100_diff1 value: -16.883129718999133 - type: nauc_precision_at_100_max value: -2.46701167013433 - type: nauc_precision_at_100_std value: 3.277974208302033 - type: nauc_precision_at_10_diff1 value: 6.58192062605803 - type: nauc_precision_at_10_max value: 17.66130584790626 - type: nauc_precision_at_10_std value: 1.5300268853781491 - type: nauc_precision_at_1_diff1 value: 54.49327345294693 - type: nauc_precision_at_1_max value: 34.8934028739382 - type: nauc_precision_at_1_std value: -4.437791198183867 - type: nauc_precision_at_20_diff1 value: -1.8753425950377052 - type: nauc_precision_at_20_max value: 12.343845069467402 - type: nauc_precision_at_20_std value: 4.625866298054727 - type: nauc_precision_at_3_diff1 value: 26.25293210293932 - type: nauc_precision_at_3_max value: 31.20810752338666 - type: nauc_precision_at_3_std value: -4.53249841922141 - type: nauc_precision_at_5_diff1 value: 16.615368164537657 - type: nauc_precision_at_5_max value: 25.232698186133707 - type: nauc_precision_at_5_std value: -2.663050054635891 - type: nauc_recall_at_1000_diff1 value: 35.83705078359078 - type: nauc_recall_at_1000_max value: 62.30748246780233 - type: nauc_recall_at_1000_std value: 63.240763200045805 - type: nauc_recall_at_100_diff1 value: 33.467633455800815 - type: nauc_recall_at_100_max value: 36.60323449435162 - type: nauc_recall_at_100_std value: 14.015411684054346 - type: nauc_recall_at_10_diff1 value: 41.42599884119931 - type: nauc_recall_at_10_max value: 33.20419643286129 - type: nauc_recall_at_10_std value: -2.159643957172222 - type: nauc_recall_at_1_diff1 value: 58.88454782432587 - type: nauc_recall_at_1_max value: 31.58887282969742 - type: nauc_recall_at_1_std value: -3.3197840386400843 - type: nauc_recall_at_20_diff1 value: 40.65866346855011 - type: nauc_recall_at_20_max value: 35.30555514387619 - type: nauc_recall_at_20_std value: 0.08694081684299272 - type: nauc_recall_at_3_diff1 value: 46.09760653175857 - type: nauc_recall_at_3_max value: 34.90824497182377 - type: nauc_recall_at_3_std value: -5.655059126448061 - type: nauc_recall_at_5_diff1 value: 41.53532865271283 - type: nauc_recall_at_5_max value: 33.39745163988502 - type: nauc_recall_at_5_std value: -5.016436615159224 - type: ndcg_at_1 value: 41.202 - type: ndcg_at_10 value: 53.176 - type: ndcg_at_100 value: 58.328 - type: ndcg_at_1000 value: 59.965999999999994 - type: ndcg_at_20 value: 55.008 - type: ndcg_at_3 value: 47.859 - type: ndcg_at_5 value: 50.768 - type: precision_at_1 value: 41.202 - type: precision_at_10 value: 10.186 - type: precision_at_100 value: 1.609 - type: precision_at_1000 value: 0.20400000000000001 - type: precision_at_20 value: 5.973 - type: precision_at_3 value: 23.176 - type: precision_at_5 value: 16.881 - type: recall_at_1 value: 33.650999999999996 - type: recall_at_10 value: 65.977 - type: recall_at_100 value: 87.302 - type: recall_at_1000 value: 97.336 - type: recall_at_20 value: 72.294 - type: recall_at_3 value: 50.797000000000004 - type: recall_at_5 value: 58.872 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackEnglishRetrieval (default) revision: ad9991cb51e31e31e430383c75ffb2885547b5f0 split: test type: mteb/cqadupstack-english metrics: - type: main_score value: 50.92100000000001 - type: map_at_1 value: 33.744 - type: map_at_10 value: 44.815 - type: map_at_100 value: 46.245999999999995 - type: map_at_1000 value: 46.376 - type: map_at_20 value: 45.609 - type: map_at_3 value: 41.531 - type: map_at_5 value: 43.391999999999996 - type: mrr_at_1 value: 42.10191082802548 - type: mrr_at_10 value: 51.08573450611672 - type: mrr_at_100 value: 51.74891122170677 - type: mrr_at_1000 value: 51.78529712995296 - type: mrr_at_20 value: 51.4967715101907 - type: mrr_at_3 value: 48.91719745222933 - type: mrr_at_5 value: 50.28980891719754 - type: nauc_map_at_1000_diff1 value: 55.176936659421294 - type: nauc_map_at_1000_max value: 36.48371284702768 - type: nauc_map_at_1000_std value: -2.4447515702989806 - type: nauc_map_at_100_diff1 value: 55.1863019000113 - type: nauc_map_at_100_max value: 36.43246962553196 - type: nauc_map_at_100_std value: -2.5450740079709044 - type: nauc_map_at_10_diff1 value: 55.762997970306394 - type: nauc_map_at_10_max value: 35.380624071909175 - type: nauc_map_at_10_std value: -4.558912389227884 - type: nauc_map_at_1_diff1 value: 61.0608868067328 - type: nauc_map_at_1_max value: 29.72548408222947 - type: nauc_map_at_1_std value: -10.069038170579741 - type: nauc_map_at_20_diff1 value: 55.41603585876044 - type: nauc_map_at_20_max value: 36.02816334732108 - type: nauc_map_at_20_std value: -3.3699246431509717 - type: nauc_map_at_3_diff1 value: 56.82908515426453 - type: nauc_map_at_3_max value: 33.15737676707489 - type: nauc_map_at_3_std value: -7.378910489256622 - type: nauc_map_at_5_diff1 value: 56.14588532401665 - type: nauc_map_at_5_max value: 34.414293818549005 - type: nauc_map_at_5_std value: -6.047619727680526 - type: nauc_mrr_at_1000_diff1 value: 52.56773367624669 - type: nauc_mrr_at_1000_max value: 39.31200496491635 - type: nauc_mrr_at_1000_std value: 2.0642958415792685 - type: nauc_mrr_at_100_diff1 value: 52.56372613071439 - type: nauc_mrr_at_100_max value: 39.3159360559684 - type: nauc_mrr_at_100_std value: 2.0805091403344997 - type: nauc_mrr_at_10_diff1 value: 52.64975462157789 - type: nauc_mrr_at_10_max value: 39.208820614240295 - type: nauc_mrr_at_10_std value: 1.5932304576085854 - type: nauc_mrr_at_1_diff1 value: 56.58854551625778 - type: nauc_mrr_at_1_max value: 38.83187422216751 - type: nauc_mrr_at_1_std value: -1.1292455097337009 - type: nauc_mrr_at_20_diff1 value: 52.57378574296517 - type: nauc_mrr_at_20_max value: 39.33846363894702 - type: nauc_mrr_at_20_std value: 2.013232706080241 - type: nauc_mrr_at_3_diff1 value: 52.92910407019309 - type: nauc_mrr_at_3_max value: 38.91108571047644 - type: nauc_mrr_at_3_std value: 1.067703035548225 - type: nauc_mrr_at_5_diff1 value: 52.636125724089254 - type: nauc_mrr_at_5_max value: 39.209637006609455 - type: nauc_mrr_at_5_std value: 1.2426388707039298 - type: nauc_ndcg_at_1000_diff1 value: 52.31111968341887 - type: nauc_ndcg_at_1000_max value: 38.75742129669778 - type: nauc_ndcg_at_1000_std value: 3.5536257954775157 - type: nauc_ndcg_at_100_diff1 value: 52.37103775070086 - type: nauc_ndcg_at_100_max value: 38.753000166661344 - type: nauc_ndcg_at_100_std value: 3.6667964133015762 - type: nauc_ndcg_at_10_diff1 value: 53.56092641993905 - type: nauc_ndcg_at_10_max value: 37.62257371918095 - type: nauc_ndcg_at_10_std value: -0.3933425825827704 - type: nauc_ndcg_at_1_diff1 value: 56.58854551625778 - type: nauc_ndcg_at_1_max value: 38.83187422216751 - type: nauc_ndcg_at_1_std value: -1.1292455097337009 - type: nauc_ndcg_at_20_diff1 value: 52.997119382659484 - type: nauc_ndcg_at_20_max value: 38.41095357471896 - type: nauc_ndcg_at_20_std value: 1.9075677183444468 - type: nauc_ndcg_at_3_diff1 value: 53.32041550278149 - type: nauc_ndcg_at_3_max value: 36.54542124064425 - type: nauc_ndcg_at_3_std value: -2.1268638356088374 - type: nauc_ndcg_at_5_diff1 value: 53.389257836500256 - type: nauc_ndcg_at_5_max value: 37.307434494043676 - type: nauc_ndcg_at_5_std value: -1.7664881562750538 - type: nauc_precision_at_1000_diff1 value: -18.061781127353505 - type: nauc_precision_at_1000_max value: 14.164961693343972 - type: nauc_precision_at_1000_std value: 32.08207789236699 - type: nauc_precision_at_100_diff1 value: -12.629587588058818 - type: nauc_precision_at_100_max value: 23.723177704853438 - type: nauc_precision_at_100_std value: 37.3224630704383 - type: nauc_precision_at_10_diff1 value: 6.0985411491844195 - type: nauc_precision_at_10_max value: 34.01467623470949 - type: nauc_precision_at_10_std value: 26.343490397284334 - type: nauc_precision_at_1_diff1 value: 56.58854551625778 - type: nauc_precision_at_1_max value: 38.83187422216751 - type: nauc_precision_at_1_std value: -1.1292455097337009 - type: nauc_precision_at_20_diff1 value: -2.905957928684381 - type: nauc_precision_at_20_max value: 31.591825090757908 - type: nauc_precision_at_20_std value: 32.989888342109076 - type: nauc_precision_at_3_diff1 value: 27.17928355856029 - type: nauc_precision_at_3_max value: 37.33885605249689 - type: nauc_precision_at_3_std value: 12.651453071713059 - type: nauc_precision_at_5_diff1 value: 16.526381349737242 - type: nauc_precision_at_5_max value: 36.88010744074558 - type: nauc_precision_at_5_std value: 19.135126725576384 - type: nauc_recall_at_1000_diff1 value: 36.638153528487635 - type: nauc_recall_at_1000_max value: 45.19430762946925 - type: nauc_recall_at_1000_std value: 42.57303922365023 - type: nauc_recall_at_100_diff1 value: 40.43544826397977 - type: nauc_recall_at_100_max value: 40.784066455275706 - type: nauc_recall_at_100_std value: 27.301271412381144 - type: nauc_recall_at_10_diff1 value: 48.37295419396959 - type: nauc_recall_at_10_max value: 34.16271996741004 - type: nauc_recall_at_10_std value: 0.9252807039977983 - type: nauc_recall_at_1_diff1 value: 61.0608868067328 - type: nauc_recall_at_1_max value: 29.72548408222947 - type: nauc_recall_at_1_std value: -10.069038170579741 - type: nauc_recall_at_20_diff1 value: 44.94065991142139 - type: nauc_recall_at_20_max value: 37.603936202852786 - type: nauc_recall_at_20_std value: 11.60064066504551 - type: nauc_recall_at_3_diff1 value: 51.99741579524252 - type: nauc_recall_at_3_max value: 31.388906920168104 - type: nauc_recall_at_3_std value: -6.153653310119753 - type: nauc_recall_at_5_diff1 value: 49.67027790654694 - type: nauc_recall_at_5_max value: 33.09777021504344 - type: nauc_recall_at_5_std value: -3.9074095515554643 - type: ndcg_at_1 value: 42.102000000000004 - type: ndcg_at_10 value: 50.92100000000001 - type: ndcg_at_100 value: 55.381 - type: ndcg_at_1000 value: 57.18600000000001 - type: ndcg_at_20 value: 52.778000000000006 - type: ndcg_at_3 value: 46.542 - type: ndcg_at_5 value: 48.681000000000004 - type: precision_at_1 value: 42.102000000000004 - type: precision_at_10 value: 9.745 - type: precision_at_100 value: 1.548 - type: precision_at_1000 value: 0.198 - type: precision_at_20 value: 5.742 - type: precision_at_3 value: 22.695999999999998 - type: precision_at_5 value: 16.14 - type: recall_at_1 value: 33.744 - type: recall_at_10 value: 61.17700000000001 - type: recall_at_100 value: 79.71000000000001 - type: recall_at_1000 value: 91.008 - type: recall_at_20 value: 68.03399999999999 - type: recall_at_3 value: 48.087 - type: recall_at_5 value: 54.142 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackGamingRetrieval (default) revision: 4885aa143210c98657558c04aaf3dc47cfb54340 split: test type: mteb/cqadupstack-gaming metrics: - type: main_score value: 62.458000000000006 - type: map_at_1 value: 43.839 - type: map_at_10 value: 56.724 - type: map_at_100 value: 57.751 - type: map_at_1000 value: 57.797 - type: map_at_20 value: 57.387 - type: map_at_3 value: 53.494 - type: map_at_5 value: 55.372 - type: mrr_at_1 value: 50.15673981191222 - type: mrr_at_10 value: 60.11456933870735 - type: mrr_at_100 value: 60.76087999656381 - type: mrr_at_1000 value: 60.77978089317033 - type: mrr_at_20 value: 60.55360369120728 - type: mrr_at_3 value: 58.025078369906026 - type: mrr_at_5 value: 59.22257053291546 - type: nauc_map_at_1000_diff1 value: 54.411253174343344 - type: nauc_map_at_1000_max value: 39.83549610516408 - type: nauc_map_at_1000_std value: -2.194420641407535 - type: nauc_map_at_100_diff1 value: 54.38831483785624 - type: nauc_map_at_100_max value: 39.80801320822348 - type: nauc_map_at_100_std value: -2.1803664698780842 - type: nauc_map_at_10_diff1 value: 54.45604359775012 - type: nauc_map_at_10_max value: 39.063307413982 - type: nauc_map_at_10_std value: -3.4236632847098423 - type: nauc_map_at_1_diff1 value: 56.60631395015112 - type: nauc_map_at_1_max value: 32.467568481080036 - type: nauc_map_at_1_std value: -5.800399911526891 - type: nauc_map_at_20_diff1 value: 54.370786642447655 - type: nauc_map_at_20_max value: 39.59321046436977 - type: nauc_map_at_20_std value: -2.4088559799214813 - type: nauc_map_at_3_diff1 value: 55.49957006713255 - type: nauc_map_at_3_max value: 37.118764615368356 - type: nauc_map_at_3_std value: -5.909943937274052 - type: nauc_map_at_5_diff1 value: 54.81041509611971 - type: nauc_map_at_5_max value: 38.24140182494858 - type: nauc_map_at_5_std value: -4.509625968871774 - type: nauc_mrr_at_1000_diff1 value: 53.74660770823747 - type: nauc_mrr_at_1000_max value: 41.361501849395225 - type: nauc_mrr_at_1000_std value: -0.8127913246616565 - type: nauc_mrr_at_100_diff1 value: 53.737280189706624 - type: nauc_mrr_at_100_max value: 41.373323086448075 - type: nauc_mrr_at_100_std value: -0.7945211619535609 - type: nauc_mrr_at_10_diff1 value: 53.60002836781194 - type: nauc_mrr_at_10_max value: 41.294906284672145 - type: nauc_mrr_at_10_std value: -1.133159614693189 - type: nauc_mrr_at_1_diff1 value: 55.872003219794344 - type: nauc_mrr_at_1_max value: 38.42398154139028 - type: nauc_mrr_at_1_std value: -3.262385266943247 - type: nauc_mrr_at_20_diff1 value: 53.660372497054865 - type: nauc_mrr_at_20_max value: 41.423640159792335 - type: nauc_mrr_at_20_std value: -0.6992108032958381 - type: nauc_mrr_at_3_diff1 value: 54.246382328404074 - type: nauc_mrr_at_3_max value: 41.167575858831476 - type: nauc_mrr_at_3_std value: -1.9090830671107353 - type: nauc_mrr_at_5_diff1 value: 53.85586718570862 - type: nauc_mrr_at_5_max value: 40.98294334278317 - type: nauc_mrr_at_5_std value: -1.7121845127201107 - type: nauc_ndcg_at_1000_diff1 value: 53.37939317348487 - type: nauc_ndcg_at_1000_max value: 42.25503051093623 - type: nauc_ndcg_at_1000_std value: 0.9024947979875332 - type: nauc_ndcg_at_100_diff1 value: 53.02194451446347 - type: nauc_ndcg_at_100_max value: 42.43117968471603 - type: nauc_ndcg_at_100_std value: 1.6097860371997164 - type: nauc_ndcg_at_10_diff1 value: 52.864882508290044 - type: nauc_ndcg_at_10_max value: 41.30405029504235 - type: nauc_ndcg_at_10_std value: -1.1315174337193916 - type: nauc_ndcg_at_1_diff1 value: 55.872003219794344 - type: nauc_ndcg_at_1_max value: 38.42398154139028 - type: nauc_ndcg_at_1_std value: -3.262385266943247 - type: nauc_ndcg_at_20_diff1 value: 52.78243804716271 - type: nauc_ndcg_at_20_max value: 42.200708727692884 - type: nauc_ndcg_at_20_std value: 1.204386994029969 - type: nauc_ndcg_at_3_diff1 value: 54.134588048680165 - type: nauc_ndcg_at_3_max value: 39.262737508813956 - type: nauc_ndcg_at_3_std value: -3.9798145740330866 - type: nauc_ndcg_at_5_diff1 value: 53.43380266993641 - type: nauc_ndcg_at_5_max value: 40.1700690079209 - type: nauc_ndcg_at_5_std value: -2.81233830575759 - type: nauc_precision_at_1000_diff1 value: -16.085237050718256 - type: nauc_precision_at_1000_max value: 21.56903927967793 - type: nauc_precision_at_1000_std value: 25.163563893770934 - type: nauc_precision_at_100_diff1 value: -13.409177660433013 - type: nauc_precision_at_100_max value: 26.191889066691694 - type: nauc_precision_at_100_std value: 30.434449110434343 - type: nauc_precision_at_10_diff1 value: 7.653820392496794 - type: nauc_precision_at_10_max value: 33.512847797440386 - type: nauc_precision_at_10_std value: 17.46948584875833 - type: nauc_precision_at_1_diff1 value: 55.872003219794344 - type: nauc_precision_at_1_max value: 38.42398154139028 - type: nauc_precision_at_1_std value: -3.262385266943247 - type: nauc_precision_at_20_diff1 value: -1.7882509799446464 - type: nauc_precision_at_20_max value: 32.667378017254244 - type: nauc_precision_at_20_std value: 27.51279914879186 - type: nauc_precision_at_3_diff1 value: 30.46461628659826 - type: nauc_precision_at_3_max value: 37.74901386898987 - type: nauc_precision_at_3_std value: 2.466674787017699 - type: nauc_precision_at_5_diff1 value: 18.80573985694938 - type: nauc_precision_at_5_max value: 34.86218095871847 - type: nauc_precision_at_5_std value: 9.231195357997013 - type: nauc_recall_at_1000_diff1 value: 44.175128440767175 - type: nauc_recall_at_1000_max value: 72.76306751265861 - type: nauc_recall_at_1000_std value: 69.72788552092433 - type: nauc_recall_at_100_diff1 value: 39.33252228382757 - type: nauc_recall_at_100_max value: 55.56135688396655 - type: nauc_recall_at_100_std value: 37.203018125948766 - type: nauc_recall_at_10_diff1 value: 45.481900144718836 - type: nauc_recall_at_10_max value: 42.54097511363277 - type: nauc_recall_at_10_std value: 2.6063345056649796 - type: nauc_recall_at_1_diff1 value: 56.60631395015112 - type: nauc_recall_at_1_max value: 32.467568481080036 - type: nauc_recall_at_1_std value: -5.800399911526891 - type: nauc_recall_at_20_diff1 value: 42.76239836038449 - type: nauc_recall_at_20_max value: 48.446363988908665 - type: nauc_recall_at_20_std value: 17.640762405916508 - type: nauc_recall_at_3_diff1 value: 51.60470647047845 - type: nauc_recall_at_3_max value: 37.418467889921224 - type: nauc_recall_at_3_std value: -6.408088458035488 - type: nauc_recall_at_5_diff1 value: 48.70731792808808 - type: nauc_recall_at_5_max value: 39.09353288109433 - type: nauc_recall_at_5_std value: -3.262225734608099 - type: ndcg_at_1 value: 50.157 - type: ndcg_at_10 value: 62.458000000000006 - type: ndcg_at_100 value: 66.27499999999999 - type: ndcg_at_1000 value: 67.11 - type: ndcg_at_20 value: 64.3 - type: ndcg_at_3 value: 57.348 - type: ndcg_at_5 value: 59.870999999999995 - type: precision_at_1 value: 50.157 - type: precision_at_10 value: 9.875 - type: precision_at_100 value: 1.269 - type: precision_at_1000 value: 0.13799999999999998 - type: precision_at_20 value: 5.527 - type: precision_at_3 value: 25.474999999999998 - type: precision_at_5 value: 17.279 - type: recall_at_1 value: 43.839 - type: recall_at_10 value: 75.94300000000001 - type: recall_at_100 value: 92.036 - type: recall_at_1000 value: 97.848 - type: recall_at_20 value: 82.592 - type: recall_at_3 value: 62.227 - type: recall_at_5 value: 68.443 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackGisRetrieval (default) revision: 5003b3064772da1887988e05400cf3806fe491f2 split: test type: mteb/cqadupstack-gis metrics: - type: main_score value: 43.805 - type: map_at_1 value: 29.429 - type: map_at_10 value: 38.708 - type: map_at_100 value: 39.834 - type: map_at_1000 value: 39.896 - type: map_at_20 value: 39.330999999999996 - type: map_at_3 value: 36.02 - type: map_at_5 value: 37.547999999999995 - type: mrr_at_1 value: 31.63841807909605 - type: mrr_at_10 value: 40.82633844498248 - type: mrr_at_100 value: 41.76109003638645 - type: mrr_at_1000 value: 41.8059087475105 - type: mrr_at_20 value: 41.36288532812116 - type: mrr_at_3 value: 38.24858757062146 - type: mrr_at_5 value: 39.717514124293764 - type: nauc_map_at_1000_diff1 value: 45.585812879455524 - type: nauc_map_at_1000_max value: 31.31175404949036 - type: nauc_map_at_1000_std value: -0.6688504922328871 - type: nauc_map_at_100_diff1 value: 45.57793192934199 - type: nauc_map_at_100_max value: 31.31449058161509 - type: nauc_map_at_100_std value: -0.6711471739699831 - type: nauc_map_at_10_diff1 value: 45.63641283675042 - type: nauc_map_at_10_max value: 31.34383247627637 - type: nauc_map_at_10_std value: -0.8969771419071247 - type: nauc_map_at_1_diff1 value: 51.20029025787074 - type: nauc_map_at_1_max value: 29.29320638697403 - type: nauc_map_at_1_std value: -4.195575175603184 - type: nauc_map_at_20_diff1 value: 45.50579311311032 - type: nauc_map_at_20_max value: 31.162777948119203 - type: nauc_map_at_20_std value: -0.8437520900178488 - type: nauc_map_at_3_diff1 value: 46.69781509400438 - type: nauc_map_at_3_max value: 30.454657702219357 - type: nauc_map_at_3_std value: -1.961062011363698 - type: nauc_map_at_5_diff1 value: 46.04910492816806 - type: nauc_map_at_5_max value: 30.930622367372457 - type: nauc_map_at_5_std value: -1.3197031926341913 - type: nauc_mrr_at_1000_diff1 value: 45.184418431720836 - type: nauc_mrr_at_1000_max value: 32.691464662489466 - type: nauc_mrr_at_1000_std value: 0.8007278440166657 - type: nauc_mrr_at_100_diff1 value: 45.167327620455126 - type: nauc_mrr_at_100_max value: 32.70344473782206 - type: nauc_mrr_at_100_std value: 0.8064086841104559 - type: nauc_mrr_at_10_diff1 value: 45.21931014425146 - type: nauc_mrr_at_10_max value: 32.89922709426894 - type: nauc_mrr_at_10_std value: 0.726548346036894 - type: nauc_mrr_at_1_diff1 value: 50.32992410650978 - type: nauc_mrr_at_1_max value: 31.6443297540481 - type: nauc_mrr_at_1_std value: -2.2413873790433225 - type: nauc_mrr_at_20_diff1 value: 45.113204601824044 - type: nauc_mrr_at_20_max value: 32.61736305768626 - type: nauc_mrr_at_20_std value: 0.7278143932053411 - type: nauc_mrr_at_3_diff1 value: 46.240077882820316 - type: nauc_mrr_at_3_max value: 32.27275303260653 - type: nauc_mrr_at_3_std value: 0.1282059654192661 - type: nauc_mrr_at_5_diff1 value: 45.58559508660604 - type: nauc_mrr_at_5_max value: 32.59296526810394 - type: nauc_mrr_at_5_std value: 0.7874095845402367 - type: nauc_ndcg_at_1000_diff1 value: 43.20858304283118 - type: nauc_ndcg_at_1000_max value: 32.44654538809174 - type: nauc_ndcg_at_1000_std value: 1.9808645746749782 - type: nauc_ndcg_at_100_diff1 value: 42.80944482285779 - type: nauc_ndcg_at_100_max value: 32.63314035546906 - type: nauc_ndcg_at_100_std value: 2.5177765413154884 - type: nauc_ndcg_at_10_diff1 value: 43.16290325539329 - type: nauc_ndcg_at_10_max value: 32.61740129429683 - type: nauc_ndcg_at_10_std value: 1.2892420693179965 - type: nauc_ndcg_at_1_diff1 value: 50.32992410650978 - type: nauc_ndcg_at_1_max value: 31.6443297540481 - type: nauc_ndcg_at_1_std value: -2.2413873790433225 - type: nauc_ndcg_at_20_diff1 value: 42.597191894775015 - type: nauc_ndcg_at_20_max value: 31.751099582584125 - type: nauc_ndcg_at_20_std value: 1.438787341128167 - type: nauc_ndcg_at_3_diff1 value: 45.425750906136706 - type: nauc_ndcg_at_3_max value: 31.118153819129173 - type: nauc_ndcg_at_3_std value: -0.7887794544621397 - type: nauc_ndcg_at_5_diff1 value: 44.24184750204594 - type: nauc_ndcg_at_5_max value: 31.678340776396162 - type: nauc_ndcg_at_5_std value: 0.38897464065601617 - type: nauc_precision_at_1000_diff1 value: -9.25461469977963 - type: nauc_precision_at_1000_max value: 11.546970772317056 - type: nauc_precision_at_1000_std value: 11.77950666462821 - type: nauc_precision_at_100_diff1 value: 5.325820460767819 - type: nauc_precision_at_100_max value: 22.610950942174625 - type: nauc_precision_at_100_std value: 16.210181509270097 - type: nauc_precision_at_10_diff1 value: 26.09126825014653 - type: nauc_precision_at_10_max value: 35.00999838883753 - type: nauc_precision_at_10_std value: 9.40564293375869 - type: nauc_precision_at_1_diff1 value: 50.32992410650978 - type: nauc_precision_at_1_max value: 31.6443297540481 - type: nauc_precision_at_1_std value: -2.2413873790433225 - type: nauc_precision_at_20_diff1 value: 19.233219692159693 - type: nauc_precision_at_20_max value: 29.03044299067655 - type: nauc_precision_at_20_std value: 10.317579302538391 - type: nauc_precision_at_3_diff1 value: 37.364819598304315 - type: nauc_precision_at_3_max value: 33.379165297552724 - type: nauc_precision_at_3_std value: 3.424932892620743 - type: nauc_precision_at_5_diff1 value: 32.872702946200945 - type: nauc_precision_at_5_max value: 34.571450997070706 - type: nauc_precision_at_5_std value: 7.12035598939766 - type: nauc_recall_at_1000_diff1 value: 11.279997042195749 - type: nauc_recall_at_1000_max value: 40.44953937460631 - type: nauc_recall_at_1000_std value: 31.19505726194957 - type: nauc_recall_at_100_diff1 value: 24.15672423727942 - type: nauc_recall_at_100_max value: 36.814968545741614 - type: nauc_recall_at_100_std value: 21.50699037479782 - type: nauc_recall_at_10_diff1 value: 34.34584531211266 - type: nauc_recall_at_10_max value: 34.196420028975375 - type: nauc_recall_at_10_std value: 6.855963891373787 - type: nauc_recall_at_1_diff1 value: 51.20029025787074 - type: nauc_recall_at_1_max value: 29.29320638697403 - type: nauc_recall_at_1_std value: -4.195575175603184 - type: nauc_recall_at_20_diff1 value: 30.313271321859748 - type: nauc_recall_at_20_max value: 30.019409239750388 - type: nauc_recall_at_20_std value: 8.01887379774591 - type: nauc_recall_at_3_diff1 value: 41.3611355564578 - type: nauc_recall_at_3_max value: 30.190666918387272 - type: nauc_recall_at_3_std value: 0.7366693042344981 - type: nauc_recall_at_5_diff1 value: 38.46041757825592 - type: nauc_recall_at_5_max value: 31.35545227469271 - type: nauc_recall_at_5_std value: 3.226901160844341 - type: ndcg_at_1 value: 31.637999999999998 - type: ndcg_at_10 value: 43.805 - type: ndcg_at_100 value: 49.168 - type: ndcg_at_1000 value: 50.77700000000001 - type: ndcg_at_20 value: 45.866 - type: ndcg_at_3 value: 38.608 - type: ndcg_at_5 value: 41.152 - type: precision_at_1 value: 31.637999999999998 - type: precision_at_10 value: 6.61 - type: precision_at_100 value: 0.9809999999999999 - type: precision_at_1000 value: 0.11499999999999999 - type: precision_at_20 value: 3.7800000000000002 - type: precision_at_3 value: 16.195999999999998 - type: precision_at_5 value: 11.209 - type: recall_at_1 value: 29.429 - type: recall_at_10 value: 57.327 - type: recall_at_100 value: 81.74900000000001 - type: recall_at_1000 value: 93.967 - type: recall_at_20 value: 65.01400000000001 - type: recall_at_3 value: 43.472 - type: recall_at_5 value: 49.521 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackMathematicaRetrieval (default) revision: 90fceea13679c63fe563ded68f3b6f06e50061de split: test type: mteb/cqadupstack-mathematica metrics: - type: main_score value: 34.63 - type: map_at_1 value: 20.541999999999998 - type: map_at_10 value: 29.121000000000002 - type: map_at_100 value: 30.389 - type: map_at_1000 value: 30.497999999999998 - type: map_at_20 value: 29.787999999999997 - type: map_at_3 value: 26.514 - type: map_at_5 value: 27.723 - type: mrr_at_1 value: 24.62686567164179 - type: mrr_at_10 value: 33.77897220247966 - type: mrr_at_100 value: 34.71645100175941 - type: mrr_at_1000 value: 34.77428365380689 - type: mrr_at_20 value: 34.31909140865809 - type: mrr_at_3 value: 31.281094527363194 - type: mrr_at_5 value: 32.568407960199 - type: nauc_map_at_1000_diff1 value: 31.065597401371054 - type: nauc_map_at_1000_max value: 22.53058113245784 - type: nauc_map_at_1000_std value: 3.385336368837248 - type: nauc_map_at_100_diff1 value: 31.066996795756317 - type: nauc_map_at_100_max value: 22.526621520577233 - type: nauc_map_at_100_std value: 3.390224080489411 - type: nauc_map_at_10_diff1 value: 30.98735163587709 - type: nauc_map_at_10_max value: 22.033975223583145 - type: nauc_map_at_10_std value: 3.037362136271266 - type: nauc_map_at_1_diff1 value: 34.7860915604864 - type: nauc_map_at_1_max value: 21.990883014000932 - type: nauc_map_at_1_std value: 3.215046066755989 - type: nauc_map_at_20_diff1 value: 30.95841793371864 - type: nauc_map_at_20_max value: 22.312212038670587 - type: nauc_map_at_20_std value: 3.204234721808634 - type: nauc_map_at_3_diff1 value: 31.873464867905415 - type: nauc_map_at_3_max value: 22.344535220057306 - type: nauc_map_at_3_std value: 3.037466472476692 - type: nauc_map_at_5_diff1 value: 31.298770866792836 - type: nauc_map_at_5_max value: 22.02799162331672 - type: nauc_map_at_5_std value: 2.994008224596537 - type: nauc_mrr_at_1000_diff1 value: 32.58365390317668 - type: nauc_mrr_at_1000_max value: 24.960504988463303 - type: nauc_mrr_at_1000_std value: 3.266331629091531 - type: nauc_mrr_at_100_diff1 value: 32.563483708724526 - type: nauc_mrr_at_100_max value: 24.956287015467943 - type: nauc_mrr_at_100_std value: 3.270422121157774 - type: nauc_mrr_at_10_diff1 value: 32.65613325350289 - type: nauc_mrr_at_10_max value: 24.825654782716384 - type: nauc_mrr_at_10_std value: 3.1340776275891025 - type: nauc_mrr_at_1_diff1 value: 36.55632726985752 - type: nauc_mrr_at_1_max value: 24.4445917993785 - type: nauc_mrr_at_1_std value: 2.264391282317747 - type: nauc_mrr_at_20_diff1 value: 32.47925104262513 - type: nauc_mrr_at_20_max value: 24.89432614603361 - type: nauc_mrr_at_20_std value: 3.1774200263878054 - type: nauc_mrr_at_3_diff1 value: 33.50322152633588 - type: nauc_mrr_at_3_max value: 25.199564396471096 - type: nauc_mrr_at_3_std value: 2.9397581352257345 - type: nauc_mrr_at_5_diff1 value: 32.9982729251397 - type: nauc_mrr_at_5_max value: 24.890193912899377 - type: nauc_mrr_at_5_std value: 3.0867452313583623 - type: nauc_ndcg_at_1000_diff1 value: 30.026151364827403 - type: nauc_ndcg_at_1000_max value: 24.49889088739547 - type: nauc_ndcg_at_1000_std value: 5.381413285104224 - type: nauc_ndcg_at_100_diff1 value: 29.80539228010773 - type: nauc_ndcg_at_100_max value: 24.309010907634338 - type: nauc_ndcg_at_100_std value: 5.232303167670201 - type: nauc_ndcg_at_10_diff1 value: 29.691994838075185 - type: nauc_ndcg_at_10_max value: 22.67822625590708 - type: nauc_ndcg_at_10_std value: 3.499987146410407 - type: nauc_ndcg_at_1_diff1 value: 36.55632726985752 - type: nauc_ndcg_at_1_max value: 24.4445917993785 - type: nauc_ndcg_at_1_std value: 2.264391282317747 - type: nauc_ndcg_at_20_diff1 value: 29.345854238086844 - type: nauc_ndcg_at_20_max value: 23.323621216002355 - type: nauc_ndcg_at_20_std value: 3.9174664108448236 - type: nauc_ndcg_at_3_diff1 value: 31.580762995014105 - type: nauc_ndcg_at_3_max value: 23.30762843542372 - type: nauc_ndcg_at_3_std value: 3.0944885327411535 - type: nauc_ndcg_at_5_diff1 value: 30.47041676971102 - type: nauc_ndcg_at_5_max value: 22.77605457106532 - type: nauc_ndcg_at_5_std value: 3.3449847079523596 - type: nauc_precision_at_1000_diff1 value: 0.717852604455919 - type: nauc_precision_at_1000_max value: 3.38068239732633 - type: nauc_precision_at_1000_std value: 0.13673896630835028 - type: nauc_precision_at_100_diff1 value: 7.401760552752896 - type: nauc_precision_at_100_max value: 13.294128452575041 - type: nauc_precision_at_100_std value: 4.65501490276724 - type: nauc_precision_at_10_diff1 value: 19.426577293440936 - type: nauc_precision_at_10_max value: 18.143059865611235 - type: nauc_precision_at_10_std value: 3.4033224978068946 - type: nauc_precision_at_1_diff1 value: 36.55632726985752 - type: nauc_precision_at_1_max value: 24.4445917993785 - type: nauc_precision_at_1_std value: 2.264391282317747 - type: nauc_precision_at_20_diff1 value: 15.526124347926789 - type: nauc_precision_at_20_max value: 18.585967204985604 - type: nauc_precision_at_20_std value: 3.3631487559984836 - type: nauc_precision_at_3_diff1 value: 27.11838946665272 - type: nauc_precision_at_3_max value: 22.13989357114677 - type: nauc_precision_at_3_std value: 1.903120042102994 - type: nauc_precision_at_5_diff1 value: 23.35690634122196 - type: nauc_precision_at_5_max value: 19.585624668123234 - type: nauc_precision_at_5_std value: 2.1933428786067988 - type: nauc_recall_at_1000_diff1 value: 16.950131691896043 - type: nauc_recall_at_1000_max value: 39.951723428573956 - type: nauc_recall_at_1000_std value: 35.28642001796766 - type: nauc_recall_at_100_diff1 value: 21.660771108426637 - type: nauc_recall_at_100_max value: 27.98817391149549 - type: nauc_recall_at_100_std value: 15.547143224954521 - type: nauc_recall_at_10_diff1 value: 23.290961405166108 - type: nauc_recall_at_10_max value: 20.728190074086502 - type: nauc_recall_at_10_std value: 3.955634752870681 - type: nauc_recall_at_1_diff1 value: 34.7860915604864 - type: nauc_recall_at_1_max value: 21.990883014000932 - type: nauc_recall_at_1_std value: 3.215046066755989 - type: nauc_recall_at_20_diff1 value: 21.3100020769249 - type: nauc_recall_at_20_max value: 22.417233320077408 - type: nauc_recall_at_20_std value: 5.701968308692029 - type: nauc_recall_at_3_diff1 value: 28.467978075005014 - type: nauc_recall_at_3_max value: 22.86743332429378 - type: nauc_recall_at_3_std value: 4.126266767988962 - type: nauc_recall_at_5_diff1 value: 26.085272342534953 - type: nauc_recall_at_5_max value: 21.547168834265605 - type: nauc_recall_at_5_std value: 4.230798615841751 - type: ndcg_at_1 value: 24.627 - type: ndcg_at_10 value: 34.63 - type: ndcg_at_100 value: 40.501 - type: ndcg_at_1000 value: 42.925000000000004 - type: ndcg_at_20 value: 36.783 - type: ndcg_at_3 value: 29.784 - type: ndcg_at_5 value: 31.607000000000003 - type: precision_at_1 value: 24.627 - type: precision_at_10 value: 6.306000000000001 - type: precision_at_100 value: 1.0670000000000002 - type: precision_at_1000 value: 0.13899999999999998 - type: precision_at_20 value: 3.762 - type: precision_at_3 value: 14.262 - type: precision_at_5 value: 10.025 - type: recall_at_1 value: 20.541999999999998 - type: recall_at_10 value: 46.805 - type: recall_at_100 value: 72.294 - type: recall_at_1000 value: 89.425 - type: recall_at_20 value: 54.481 - type: recall_at_3 value: 33.15 - type: recall_at_5 value: 37.830999999999996 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackPhysicsRetrieval (default) revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4 split: test type: mteb/cqadupstack-physics metrics: - type: main_score value: 48.897 - type: map_at_1 value: 32.462 - type: map_at_10 value: 42.954 - type: map_at_100 value: 44.371 - type: map_at_1000 value: 44.484 - type: map_at_20 value: 43.756 - type: map_at_3 value: 39.762 - type: map_at_5 value: 41.515 - type: mrr_at_1 value: 39.46102021174206 - type: mrr_at_10 value: 48.738637578868556 - type: mrr_at_100 value: 49.62686026413403 - type: mrr_at_1000 value: 49.66868518383456 - type: mrr_at_20 value: 49.25907585537658 - type: mrr_at_3 value: 46.310555020853364 - type: mrr_at_5 value: 47.78312479948663 - type: nauc_map_at_1000_diff1 value: 51.87542801592498 - type: nauc_map_at_1000_max value: 33.97981571634409 - type: nauc_map_at_1000_std value: -1.8786792242943482 - type: nauc_map_at_100_diff1 value: 51.85293643969287 - type: nauc_map_at_100_max value: 33.9428890229597 - type: nauc_map_at_100_std value: -1.9332474390946115 - type: nauc_map_at_10_diff1 value: 52.02856985184854 - type: nauc_map_at_10_max value: 33.61198359968745 - type: nauc_map_at_10_std value: -2.6398128511204884 - type: nauc_map_at_1_diff1 value: 56.74886676878923 - type: nauc_map_at_1_max value: 30.22917247812168 - type: nauc_map_at_1_std value: -6.42573662254084 - type: nauc_map_at_20_diff1 value: 51.82428924313089 - type: nauc_map_at_20_max value: 33.751285311806384 - type: nauc_map_at_20_std value: -2.3103774320981803 - type: nauc_map_at_3_diff1 value: 51.86255252819861 - type: nauc_map_at_3_max value: 33.0377584961136 - type: nauc_map_at_3_std value: -3.2636230519519387 - type: nauc_map_at_5_diff1 value: 52.01515212806803 - type: nauc_map_at_5_max value: 33.7459062556087 - type: nauc_map_at_5_std value: -2.693869845552142 - type: nauc_mrr_at_1000_diff1 value: 51.48855418945387 - type: nauc_mrr_at_1000_max value: 35.27912845548713 - type: nauc_mrr_at_1000_std value: -0.08726282212006752 - type: nauc_mrr_at_100_diff1 value: 51.48335893173882 - type: nauc_mrr_at_100_max value: 35.28023925219956 - type: nauc_mrr_at_100_std value: -0.08619390644755517 - type: nauc_mrr_at_10_diff1 value: 51.52941953883595 - type: nauc_mrr_at_10_max value: 35.08219573936157 - type: nauc_mrr_at_10_std value: -0.5918448278251544 - type: nauc_mrr_at_1_diff1 value: 55.31838125779277 - type: nauc_mrr_at_1_max value: 33.77228714612555 - type: nauc_mrr_at_1_std value: -1.499292265426672 - type: nauc_mrr_at_20_diff1 value: 51.408259709777646 - type: nauc_mrr_at_20_max value: 35.162570989755174 - type: nauc_mrr_at_20_std value: -0.2682578167220845 - type: nauc_mrr_at_3_diff1 value: 51.46574092636792 - type: nauc_mrr_at_3_max value: 35.811987430657325 - type: nauc_mrr_at_3_std value: 0.26013601831722494 - type: nauc_mrr_at_5_diff1 value: 51.612013747911526 - type: nauc_mrr_at_5_max value: 35.650056877501655 - type: nauc_mrr_at_5_std value: -0.21245093564084463 - type: nauc_ndcg_at_1000_diff1 value: 50.880872461025305 - type: nauc_ndcg_at_1000_max value: 35.44994521014937 - type: nauc_ndcg_at_1000_std value: 1.118216393534395 - type: nauc_ndcg_at_100_diff1 value: 50.53466908072639 - type: nauc_ndcg_at_100_max value: 35.11045555620107 - type: nauc_ndcg_at_100_std value: 0.8249078981154204 - type: nauc_ndcg_at_10_diff1 value: 50.90734870734591 - type: nauc_ndcg_at_10_max value: 33.771004172948224 - type: nauc_ndcg_at_10_std value: -2.1711028069297633 - type: nauc_ndcg_at_1_diff1 value: 55.31838125779277 - type: nauc_ndcg_at_1_max value: 33.77228714612555 - type: nauc_ndcg_at_1_std value: -1.499292265426672 - type: nauc_ndcg_at_20_diff1 value: 50.23324800143884 - type: nauc_ndcg_at_20_max value: 34.07801014616702 - type: nauc_ndcg_at_20_std value: -1.124681004529109 - type: nauc_ndcg_at_3_diff1 value: 50.25341657253588 - type: nauc_ndcg_at_3_max value: 34.591139933602335 - type: nauc_ndcg_at_3_std value: -1.1956710813776108 - type: nauc_ndcg_at_5_diff1 value: 50.80312504204779 - type: nauc_ndcg_at_5_max value: 34.85042501470775 - type: nauc_ndcg_at_5_std value: -1.396135873756306 - type: nauc_precision_at_1000_diff1 value: -13.557597583919549 - type: nauc_precision_at_1000_max value: 2.8147206953918125 - type: nauc_precision_at_1000_std value: 14.537543538963874 - type: nauc_precision_at_100_diff1 value: -3.987982340720788 - type: nauc_precision_at_100_max value: 12.028213960584699 - type: nauc_precision_at_100_std value: 17.715033463695278 - type: nauc_precision_at_10_diff1 value: 18.57698421541843 - type: nauc_precision_at_10_max value: 24.283366463408097 - type: nauc_precision_at_10_std value: 9.324420531172114 - type: nauc_precision_at_1_diff1 value: 55.31838125779277 - type: nauc_precision_at_1_max value: 33.77228714612555 - type: nauc_precision_at_1_std value: -1.499292265426672 - type: nauc_precision_at_20_diff1 value: 8.944759267836282 - type: nauc_precision_at_20_max value: 20.721165285655687 - type: nauc_precision_at_20_std value: 13.176434479597365 - type: nauc_precision_at_3_diff1 value: 32.237083541824376 - type: nauc_precision_at_3_max value: 32.11555184738906 - type: nauc_precision_at_3_std value: 7.15349181819355 - type: nauc_precision_at_5_diff1 value: 26.273699865022195 - type: nauc_precision_at_5_max value: 30.37038723885166 - type: nauc_precision_at_5_std value: 8.769386986802829 - type: nauc_recall_at_1000_diff1 value: 37.18342037488666 - type: nauc_recall_at_1000_max value: 51.700120834339295 - type: nauc_recall_at_1000_std value: 51.25572071492458 - type: nauc_recall_at_100_diff1 value: 38.1032797078489 - type: nauc_recall_at_100_max value: 35.62651164450783 - type: nauc_recall_at_100_std value: 16.8247368098434 - type: nauc_recall_at_10_diff1 value: 44.77080899011338 - type: nauc_recall_at_10_max value: 29.6963695239568 - type: nauc_recall_at_10_std value: -3.503513207679883 - type: nauc_recall_at_1_diff1 value: 56.74886676878923 - type: nauc_recall_at_1_max value: 30.22917247812168 - type: nauc_recall_at_1_std value: -6.42573662254084 - type: nauc_recall_at_20_diff1 value: 40.23275073277284 - type: nauc_recall_at_20_max value: 29.263920974237713 - type: nauc_recall_at_20_std value: 0.4276885400977964 - type: nauc_recall_at_3_diff1 value: 46.04199760913928 - type: nauc_recall_at_3_max value: 32.835175771043346 - type: nauc_recall_at_3_std value: -2.3805979024363424 - type: nauc_recall_at_5_diff1 value: 45.848157092548504 - type: nauc_recall_at_5_max value: 33.2265904276858 - type: nauc_recall_at_5_std value: -2.0965197326580256 - type: ndcg_at_1 value: 39.461 - type: ndcg_at_10 value: 48.897 - type: ndcg_at_100 value: 54.541 - type: ndcg_at_1000 value: 56.371 - type: ndcg_at_20 value: 51.239000000000004 - type: ndcg_at_3 value: 44.129000000000005 - type: ndcg_at_5 value: 46.424 - type: precision_at_1 value: 39.461 - type: precision_at_10 value: 8.758000000000001 - type: precision_at_100 value: 1.3379999999999999 - type: precision_at_1000 value: 0.168 - type: precision_at_20 value: 5.135 - type: precision_at_3 value: 20.852999999999998 - type: precision_at_5 value: 14.649000000000001 - type: recall_at_1 value: 32.462 - type: recall_at_10 value: 60.531 - type: recall_at_100 value: 83.878 - type: recall_at_1000 value: 95.30999999999999 - type: recall_at_20 value: 68.771 - type: recall_at_3 value: 46.916000000000004 - type: recall_at_5 value: 53.09199999999999 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackProgrammersRetrieval (default) revision: 6184bc1440d2dbc7612be22b50686b8826d22b32 split: test type: mteb/cqadupstack-programmers metrics: - type: main_score value: 45.226 - type: map_at_1 value: 27.887 - type: map_at_10 value: 39.086999999999996 - type: map_at_100 value: 40.477999999999994 - type: map_at_1000 value: 40.585 - type: map_at_20 value: 39.83 - type: map_at_3 value: 35.875 - type: map_at_5 value: 37.695 - type: mrr_at_1 value: 34.817351598173516 - type: mrr_at_10 value: 45.01653439153436 - type: mrr_at_100 value: 45.87242089610603 - type: mrr_at_1000 value: 45.920675520064755 - type: mrr_at_20 value: 45.507374469348 - type: mrr_at_3 value: 42.465753424657514 - type: mrr_at_5 value: 43.97260273972599 - type: nauc_map_at_1000_diff1 value: 43.95170137620123 - type: nauc_map_at_1000_max value: 37.19129408748076 - type: nauc_map_at_1000_std value: 7.888925157034662 - type: nauc_map_at_100_diff1 value: 43.9558720789432 - type: nauc_map_at_100_max value: 37.214429573625246 - type: nauc_map_at_100_std value: 7.933552664308029 - type: nauc_map_at_10_diff1 value: 44.21929145274994 - type: nauc_map_at_10_max value: 36.65671027839632 - type: nauc_map_at_10_std value: 6.982108869364163 - type: nauc_map_at_1_diff1 value: 49.74596478079841 - type: nauc_map_at_1_max value: 32.56861544149044 - type: nauc_map_at_1_std value: 1.097128889360163 - type: nauc_map_at_20_diff1 value: 44.104092078784234 - type: nauc_map_at_20_max value: 36.99566957257224 - type: nauc_map_at_20_std value: 7.477043291777348 - type: nauc_map_at_3_diff1 value: 44.467213345851086 - type: nauc_map_at_3_max value: 35.03024865450431 - type: nauc_map_at_3_std value: 5.06566672879735 - type: nauc_map_at_5_diff1 value: 44.554827534750636 - type: nauc_map_at_5_max value: 36.31225914769019 - type: nauc_map_at_5_std value: 6.0593177568412475 - type: nauc_mrr_at_1000_diff1 value: 41.8894252387263 - type: nauc_mrr_at_1000_max value: 38.73824247221018 - type: nauc_mrr_at_1000_std value: 10.312822889457024 - type: nauc_mrr_at_100_diff1 value: 41.88062595488504 - type: nauc_mrr_at_100_max value: 38.74215906747668 - type: nauc_mrr_at_100_std value: 10.353181155239255 - type: nauc_mrr_at_10_diff1 value: 41.94013647827115 - type: nauc_mrr_at_10_max value: 38.78288768729759 - type: nauc_mrr_at_10_std value: 10.090580330580437 - type: nauc_mrr_at_1_diff1 value: 47.56077396895218 - type: nauc_mrr_at_1_max value: 36.98399403952428 - type: nauc_mrr_at_1_std value: 6.5721798897773684 - type: nauc_mrr_at_20_diff1 value: 41.89386639716785 - type: nauc_mrr_at_20_max value: 38.68491067215507 - type: nauc_mrr_at_20_std value: 10.182838094619267 - type: nauc_mrr_at_3_diff1 value: 42.01969733662613 - type: nauc_mrr_at_3_max value: 37.800805484199444 - type: nauc_mrr_at_3_std value: 9.483998874247575 - type: nauc_mrr_at_5_diff1 value: 41.65309923696901 - type: nauc_mrr_at_5_max value: 38.54063168917584 - type: nauc_mrr_at_5_std value: 9.673479912636347 - type: nauc_ndcg_at_1000_diff1 value: 41.47176832694651 - type: nauc_ndcg_at_1000_max value: 39.169786971026255 - type: nauc_ndcg_at_1000_std value: 11.679974828658501 - type: nauc_ndcg_at_100_diff1 value: 41.222156890249764 - type: nauc_ndcg_at_100_max value: 39.53250258278856 - type: nauc_ndcg_at_100_std value: 12.933003811182312 - type: nauc_ndcg_at_10_diff1 value: 42.0337725964669 - type: nauc_ndcg_at_10_max value: 38.273909940579124 - type: nauc_ndcg_at_10_std value: 9.593414260430325 - type: nauc_ndcg_at_1_diff1 value: 47.56077396895218 - type: nauc_ndcg_at_1_max value: 36.98399403952428 - type: nauc_ndcg_at_1_std value: 6.5721798897773684 - type: nauc_ndcg_at_20_diff1 value: 41.85575848899653 - type: nauc_ndcg_at_20_max value: 38.82160272309426 - type: nauc_ndcg_at_20_std value: 10.794229083924927 - type: nauc_ndcg_at_3_diff1 value: 41.65599882159262 - type: nauc_ndcg_at_3_max value: 36.15866038270778 - type: nauc_ndcg_at_3_std value: 7.748508197949587 - type: nauc_ndcg_at_5_diff1 value: 42.28410633684388 - type: nauc_ndcg_at_5_max value: 37.74519017293837 - type: nauc_ndcg_at_5_std value: 8.061749452741854 - type: nauc_precision_at_1000_diff1 value: -13.371472140934939 - type: nauc_precision_at_1000_max value: -1.9535541625334698 - type: nauc_precision_at_1000_std value: 8.618739674058643 - type: nauc_precision_at_100_diff1 value: -5.44331936385817 - type: nauc_precision_at_100_max value: 15.019947345639547 - type: nauc_precision_at_100_std value: 23.080372230077405 - type: nauc_precision_at_10_diff1 value: 15.445549733621986 - type: nauc_precision_at_10_max value: 30.89290049169744 - type: nauc_precision_at_10_std value: 20.002890083398132 - type: nauc_precision_at_1_diff1 value: 47.56077396895218 - type: nauc_precision_at_1_max value: 36.98399403952428 - type: nauc_precision_at_1_std value: 6.5721798897773684 - type: nauc_precision_at_20_diff1 value: 8.623105688967403 - type: nauc_precision_at_20_max value: 26.91178852977823 - type: nauc_precision_at_20_std value: 22.17285887384737 - type: nauc_precision_at_3_diff1 value: 26.381468882549814 - type: nauc_precision_at_3_max value: 35.90410043864788 - type: nauc_precision_at_3_std value: 16.101145360947154 - type: nauc_precision_at_5_diff1 value: 22.842829661572875 - type: nauc_precision_at_5_max value: 35.92997099694966 - type: nauc_precision_at_5_std value: 18.18378930746855 - type: nauc_recall_at_1000_diff1 value: 13.266400124330257 - type: nauc_recall_at_1000_max value: 58.21247340815739 - type: nauc_recall_at_1000_std value: 57.31393380709915 - type: nauc_recall_at_100_diff1 value: 25.95593534295009 - type: nauc_recall_at_100_max value: 45.03843584939201 - type: nauc_recall_at_100_std value: 38.100799360138765 - type: nauc_recall_at_10_diff1 value: 34.789715559053604 - type: nauc_recall_at_10_max value: 38.042187250662884 - type: nauc_recall_at_10_std value: 13.229947908309544 - type: nauc_recall_at_1_diff1 value: 49.74596478079841 - type: nauc_recall_at_1_max value: 32.56861544149044 - type: nauc_recall_at_1_std value: 1.097128889360163 - type: nauc_recall_at_20_diff1 value: 33.384723599926446 - type: nauc_recall_at_20_max value: 39.15835336776037 - type: nauc_recall_at_20_std value: 17.52735115682057 - type: nauc_recall_at_3_diff1 value: 37.99962076163248 - type: nauc_recall_at_3_max value: 33.51343167685077 - type: nauc_recall_at_3_std value: 6.783531552157573 - type: nauc_recall_at_5_diff1 value: 37.02597430521191 - type: nauc_recall_at_5_max value: 36.8381283963646 - type: nauc_recall_at_5_std value: 8.407347972075284 - type: ndcg_at_1 value: 34.817 - type: ndcg_at_10 value: 45.226 - type: ndcg_at_100 value: 50.913 - type: ndcg_at_1000 value: 52.943 - type: ndcg_at_20 value: 47.367 - type: ndcg_at_3 value: 40.332 - type: ndcg_at_5 value: 42.555 - type: precision_at_1 value: 34.817 - type: precision_at_10 value: 8.322000000000001 - type: precision_at_100 value: 1.288 - type: precision_at_1000 value: 0.163 - type: precision_at_20 value: 4.869 - type: precision_at_3 value: 19.559 - type: precision_at_5 value: 13.79 - type: recall_at_1 value: 27.887 - type: recall_at_10 value: 57.523 - type: recall_at_100 value: 81.853 - type: recall_at_1000 value: 95.36200000000001 - type: recall_at_20 value: 65.069 - type: recall_at_3 value: 43.342000000000006 - type: recall_at_5 value: 49.596000000000004 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackRetrieval (default) revision: CQADupstackRetrieval_is_a_combined_dataset split: test type: CQADupstackRetrieval_is_a_combined_dataset metrics: - type: main_score value: 44.86833333333333 - type: ndcg_at_10 value: 44.86833333333333 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackStatsRetrieval (default) revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a split: test type: mteb/cqadupstack-stats metrics: - type: main_score value: 39.654 - type: map_at_1 value: 28.488999999999997 - type: map_at_10 value: 35.621 - type: map_at_100 value: 36.662 - type: map_at_1000 value: 36.754 - type: map_at_20 value: 36.215 - type: map_at_3 value: 33.689 - type: map_at_5 value: 34.733999999999995 - type: mrr_at_1 value: 31.901840490797547 - type: mrr_at_10 value: 38.76101616515727 - type: mrr_at_100 value: 39.6328900317746 - type: mrr_at_1000 value: 39.69875777929701 - type: mrr_at_20 value: 39.27824740202471 - type: mrr_at_3 value: 37.11656441717794 - type: mrr_at_5 value: 38.090490797546025 - type: nauc_map_at_1000_diff1 value: 44.60417734115683 - type: nauc_map_at_1000_max value: 40.97869080753014 - type: nauc_map_at_1000_std value: 5.748743395996931 - type: nauc_map_at_100_diff1 value: 44.57736501620202 - type: nauc_map_at_100_max value: 40.97420581082456 - type: nauc_map_at_100_std value: 5.762383589620662 - type: nauc_map_at_10_diff1 value: 44.92204225912857 - type: nauc_map_at_10_max value: 40.675386978230904 - type: nauc_map_at_10_std value: 5.245272300708162 - type: nauc_map_at_1_diff1 value: 51.03525578589323 - type: nauc_map_at_1_max value: 39.02148856903404 - type: nauc_map_at_1_std value: 0.4146617412031749 - type: nauc_map_at_20_diff1 value: 44.58262404664568 - type: nauc_map_at_20_max value: 40.77381417315517 - type: nauc_map_at_20_std value: 5.530849792503221 - type: nauc_map_at_3_diff1 value: 45.930245969820646 - type: nauc_map_at_3_max value: 40.436169462774416 - type: nauc_map_at_3_std value: 3.3879829560660895 - type: nauc_map_at_5_diff1 value: 45.17424281922756 - type: nauc_map_at_5_max value: 40.47857337528189 - type: nauc_map_at_5_std value: 4.414695304860574 - type: nauc_mrr_at_1000_diff1 value: 44.08694838852825 - type: nauc_mrr_at_1000_max value: 42.42348869902589 - type: nauc_mrr_at_1000_std value: 7.942150916764917 - type: nauc_mrr_at_100_diff1 value: 44.04467099375857 - type: nauc_mrr_at_100_max value: 42.43605871354086 - type: nauc_mrr_at_100_std value: 7.956534359718217 - type: nauc_mrr_at_10_diff1 value: 44.266216857247684 - type: nauc_mrr_at_10_max value: 42.30356366796194 - type: nauc_mrr_at_10_std value: 7.644077273142069 - type: nauc_mrr_at_1_diff1 value: 50.221648566432464 - type: nauc_mrr_at_1_max value: 41.235095557704646 - type: nauc_mrr_at_1_std value: 3.7408348785402556 - type: nauc_mrr_at_20_diff1 value: 44.05821823838852 - type: nauc_mrr_at_20_max value: 42.42933700317326 - type: nauc_mrr_at_20_std value: 7.8665259168401445 - type: nauc_mrr_at_3_diff1 value: 45.03683838233249 - type: nauc_mrr_at_3_max value: 42.24769488191134 - type: nauc_mrr_at_3_std value: 6.601038869035635 - type: nauc_mrr_at_5_diff1 value: 44.201862019181455 - type: nauc_mrr_at_5_max value: 42.07946832877691 - type: nauc_mrr_at_5_std value: 7.189671715715843 - type: nauc_ndcg_at_1000_diff1 value: 42.42699854748652 - type: nauc_ndcg_at_1000_max value: 42.43824947781245 - type: nauc_ndcg_at_1000_std value: 9.67675385214925 - type: nauc_ndcg_at_100_diff1 value: 41.51922844841962 - type: nauc_ndcg_at_100_max value: 42.61282487350817 - type: nauc_ndcg_at_100_std value: 10.25445083001239 - type: nauc_ndcg_at_10_diff1 value: 42.574630501270825 - type: nauc_ndcg_at_10_max value: 41.14145061750566 - type: nauc_ndcg_at_10_std value: 7.647757048969349 - type: nauc_ndcg_at_1_diff1 value: 50.221648566432464 - type: nauc_ndcg_at_1_max value: 41.235095557704646 - type: nauc_ndcg_at_1_std value: 3.7408348785402556 - type: nauc_ndcg_at_20_diff1 value: 41.600087618079066 - type: nauc_ndcg_at_20_max value: 41.491254134292376 - type: nauc_ndcg_at_20_std value: 8.596229791444 - type: nauc_ndcg_at_3_diff1 value: 43.82522265410307 - type: nauc_ndcg_at_3_max value: 41.10083488299727 - type: nauc_ndcg_at_3_std value: 5.098425173217254 - type: nauc_ndcg_at_5_diff1 value: 42.72862798064444 - type: nauc_ndcg_at_5_max value: 40.85829769060509 - type: nauc_ndcg_at_5_std value: 6.31424002071968 - type: nauc_precision_at_1000_diff1 value: -2.0820534872545116 - type: nauc_precision_at_1000_max value: 16.298683462791594 - type: nauc_precision_at_1000_std value: 16.97189734146589 - type: nauc_precision_at_100_diff1 value: 6.4514456279287105 - type: nauc_precision_at_100_max value: 30.968130476508765 - type: nauc_precision_at_100_std value: 24.590810752136445 - type: nauc_precision_at_10_diff1 value: 23.83061356229352 - type: nauc_precision_at_10_max value: 37.44657709667713 - type: nauc_precision_at_10_std value: 18.3818856475441 - type: nauc_precision_at_1_diff1 value: 50.221648566432464 - type: nauc_precision_at_1_max value: 41.235095557704646 - type: nauc_precision_at_1_std value: 3.7408348785402556 - type: nauc_precision_at_20_diff1 value: 16.8100155001696 - type: nauc_precision_at_20_max value: 35.019447938152055 - type: nauc_precision_at_20_std value: 20.67504386650297 - type: nauc_precision_at_3_diff1 value: 35.33999854814717 - type: nauc_precision_at_3_max value: 42.464592248955334 - type: nauc_precision_at_3_std value: 11.735324415513306 - type: nauc_precision_at_5_diff1 value: 29.095637605444765 - type: nauc_precision_at_5_max value: 40.80816684911544 - type: nauc_precision_at_5_std value: 15.54403823719892 - type: nauc_recall_at_1000_diff1 value: 30.88859886501841 - type: nauc_recall_at_1000_max value: 47.675952718888595 - type: nauc_recall_at_1000_std value: 37.808899612070284 - type: nauc_recall_at_100_diff1 value: 27.102674231258376 - type: nauc_recall_at_100_max value: 46.24207104250558 - type: nauc_recall_at_100_std value: 29.033516460715735 - type: nauc_recall_at_10_diff1 value: 35.626332465234064 - type: nauc_recall_at_10_max value: 39.7007789760367 - type: nauc_recall_at_10_std value: 12.129960491073899 - type: nauc_recall_at_1_diff1 value: 51.03525578589323 - type: nauc_recall_at_1_max value: 39.02148856903404 - type: nauc_recall_at_1_std value: 0.4146617412031749 - type: nauc_recall_at_20_diff1 value: 31.088505920845705 - type: nauc_recall_at_20_max value: 40.09779003608529 - type: nauc_recall_at_20_std value: 15.383713495321466 - type: nauc_recall_at_3_diff1 value: 39.376987315291004 - type: nauc_recall_at_3_max value: 39.579665630711865 - type: nauc_recall_at_3_std value: 5.903646172290545 - type: nauc_recall_at_5_diff1 value: 36.374552126907986 - type: nauc_recall_at_5_max value: 39.01714515551238 - type: nauc_recall_at_5_std value: 8.765416107748178 - type: ndcg_at_1 value: 31.902 - type: ndcg_at_10 value: 39.654 - type: ndcg_at_100 value: 44.667 - type: ndcg_at_1000 value: 47.038999999999994 - type: ndcg_at_20 value: 41.619 - type: ndcg_at_3 value: 36.317 - type: ndcg_at_5 value: 37.887 - type: precision_at_1 value: 31.902 - type: precision_at_10 value: 5.997 - type: precision_at_100 value: 0.9259999999999999 - type: precision_at_1000 value: 0.121 - type: precision_at_20 value: 3.489 - type: precision_at_3 value: 15.286 - type: precision_at_5 value: 10.306999999999999 - type: recall_at_1 value: 28.488999999999997 - type: recall_at_10 value: 48.684 - type: recall_at_100 value: 71.572 - type: recall_at_1000 value: 89.059 - type: recall_at_20 value: 56.089999999999996 - type: recall_at_3 value: 39.42 - type: recall_at_5 value: 43.461 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackTexRetrieval (default) revision: 46989137a86843e03a6195de44b09deda022eec7 split: test type: mteb/cqadupstack-tex metrics: - type: main_score value: 32.957 - type: map_at_1 value: 19.61 - type: map_at_10 value: 27.816999999999997 - type: map_at_100 value: 29.037000000000003 - type: map_at_1000 value: 29.164 - type: map_at_20 value: 28.48 - type: map_at_3 value: 25.212 - type: map_at_5 value: 26.552999999999997 - type: mrr_at_1 value: 23.675154852030282 - type: mrr_at_10 value: 31.855588874687356 - type: mrr_at_100 value: 32.82754708152588 - type: mrr_at_1000 value: 32.899811984634525 - type: mrr_at_20 value: 32.41521823340382 - type: mrr_at_3 value: 29.553796742372164 - type: mrr_at_5 value: 30.799495297086587 - type: nauc_map_at_1000_diff1 value: 37.067009963494954 - type: nauc_map_at_1000_max value: 29.319194409596722 - type: nauc_map_at_1000_std value: 0.9381129561343189 - type: nauc_map_at_100_diff1 value: 37.02118730103881 - type: nauc_map_at_100_max value: 29.308885900656872 - type: nauc_map_at_100_std value: 0.9305359416352115 - type: nauc_map_at_10_diff1 value: 37.055079813792894 - type: nauc_map_at_10_max value: 29.115677528784456 - type: nauc_map_at_10_std value: 0.47079061336618017 - type: nauc_map_at_1_diff1 value: 43.59374607558271 - type: nauc_map_at_1_max value: 27.502697897665936 - type: nauc_map_at_1_std value: -0.7674781552217746 - type: nauc_map_at_20_diff1 value: 37.08280714662923 - type: nauc_map_at_20_max value: 29.214420781305805 - type: nauc_map_at_20_std value: 0.7207141923408105 - type: nauc_map_at_3_diff1 value: 38.12508979586986 - type: nauc_map_at_3_max value: 28.64334196655506 - type: nauc_map_at_3_std value: -0.3639494958439447 - type: nauc_map_at_5_diff1 value: 37.391645974882024 - type: nauc_map_at_5_max value: 28.973156260444533 - type: nauc_map_at_5_std value: -0.026789953157566142 - type: nauc_mrr_at_1000_diff1 value: 37.08768410345192 - type: nauc_mrr_at_1000_max value: 30.226139008765173 - type: nauc_mrr_at_1000_std value: 0.9258173149071044 - type: nauc_mrr_at_100_diff1 value: 37.06958335624731 - type: nauc_mrr_at_100_max value: 30.229943564905703 - type: nauc_mrr_at_100_std value: 0.932361149242787 - type: nauc_mrr_at_10_diff1 value: 37.0206077048578 - type: nauc_mrr_at_10_max value: 30.158443599717195 - type: nauc_mrr_at_10_std value: 0.5492249230345497 - type: nauc_mrr_at_1_diff1 value: 42.978918552672035 - type: nauc_mrr_at_1_max value: 29.114319394090987 - type: nauc_mrr_at_1_std value: -0.7624439199673105 - type: nauc_mrr_at_20_diff1 value: 37.057384418223485 - type: nauc_mrr_at_20_max value: 30.171076020906597 - type: nauc_mrr_at_20_std value: 0.7891456760838766 - type: nauc_mrr_at_3_diff1 value: 37.78963260621373 - type: nauc_mrr_at_3_max value: 30.057936692440613 - type: nauc_mrr_at_3_std value: -0.2723394617050784 - type: nauc_mrr_at_5_diff1 value: 37.428672595130074 - type: nauc_mrr_at_5_max value: 30.21732196933017 - type: nauc_mrr_at_5_std value: 0.046615676950734625 - type: nauc_ndcg_at_1000_diff1 value: 34.910684324371516 - type: nauc_ndcg_at_1000_max value: 30.43187052799894 - type: nauc_ndcg_at_1000_std value: 3.7886613934368976 - type: nauc_ndcg_at_100_diff1 value: 34.435496295156035 - type: nauc_ndcg_at_100_max value: 30.3229405609203 - type: nauc_ndcg_at_100_std value: 3.837221374981068 - type: nauc_ndcg_at_10_diff1 value: 34.84989431829001 - type: nauc_ndcg_at_10_max value: 29.56612074818309 - type: nauc_ndcg_at_10_std value: 1.3497668647221701 - type: nauc_ndcg_at_1_diff1 value: 42.978918552672035 - type: nauc_ndcg_at_1_max value: 29.114319394090987 - type: nauc_ndcg_at_1_std value: -0.7624439199673105 - type: nauc_ndcg_at_20_diff1 value: 34.85666256341009 - type: nauc_ndcg_at_20_max value: 29.749817141122936 - type: nauc_ndcg_at_20_std value: 2.2719371477731314 - type: nauc_ndcg_at_3_diff1 value: 36.47550623795379 - type: nauc_ndcg_at_3_max value: 29.18024982921919 - type: nauc_ndcg_at_3_std value: -0.5158571946638861 - type: nauc_ndcg_at_5_diff1 value: 35.66325406382566 - type: nauc_ndcg_at_5_max value: 29.52486267505514 - type: nauc_ndcg_at_5_std value: 0.1446834436782509 - type: nauc_precision_at_1000_diff1 value: 5.179309010526755 - type: nauc_precision_at_1000_max value: 9.078351835753596 - type: nauc_precision_at_1000_std value: 1.0888951899790398 - type: nauc_precision_at_100_diff1 value: 11.746442333432986 - type: nauc_precision_at_100_max value: 18.328100169309472 - type: nauc_precision_at_100_std value: 6.488315017239334 - type: nauc_precision_at_10_diff1 value: 21.225993531448843 - type: nauc_precision_at_10_max value: 26.786229561182516 - type: nauc_precision_at_10_std value: 3.1118485436954697 - type: nauc_precision_at_1_diff1 value: 42.978918552672035 - type: nauc_precision_at_1_max value: 29.114319394090987 - type: nauc_precision_at_1_std value: -0.7624439199673105 - type: nauc_precision_at_20_diff1 value: 18.36569388308726 - type: nauc_precision_at_20_max value: 24.567477667257474 - type: nauc_precision_at_20_std value: 4.650751092711225 - type: nauc_precision_at_3_diff1 value: 29.268806480620423 - type: nauc_precision_at_3_max value: 29.83598747609324 - type: nauc_precision_at_3_std value: -0.4949630951452181 - type: nauc_precision_at_5_diff1 value: 25.82678700262483 - type: nauc_precision_at_5_max value: 29.633692602172523 - type: nauc_precision_at_5_std value: 0.3502444708980338 - type: nauc_recall_at_1000_diff1 value: 14.762867599197998 - type: nauc_recall_at_1000_max value: 33.77703013085514 - type: nauc_recall_at_1000_std value: 32.6887608409825 - type: nauc_recall_at_100_diff1 value: 21.717683611413836 - type: nauc_recall_at_100_max value: 30.34761714689701 - type: nauc_recall_at_100_std value: 17.14217507105933 - type: nauc_recall_at_10_diff1 value: 27.011051446233097 - type: nauc_recall_at_10_max value: 28.011038995610356 - type: nauc_recall_at_10_std value: 3.886680866597647 - type: nauc_recall_at_1_diff1 value: 43.59374607558271 - type: nauc_recall_at_1_max value: 27.502697897665936 - type: nauc_recall_at_1_std value: -0.7674781552217746 - type: nauc_recall_at_20_diff1 value: 26.40508046848651 - type: nauc_recall_at_20_max value: 27.948123862879175 - type: nauc_recall_at_20_std value: 7.068531738030853 - type: nauc_recall_at_3_diff1 value: 31.750498628363722 - type: nauc_recall_at_3_max value: 28.059646483159213 - type: nauc_recall_at_3_std value: 0.14742455169624066 - type: nauc_recall_at_5_diff1 value: 29.76053437646529 - type: nauc_recall_at_5_max value: 28.594754498676544 - type: nauc_recall_at_5_std value: 1.2832203560417643 - type: ndcg_at_1 value: 23.674999999999997 - type: ndcg_at_10 value: 32.957 - type: ndcg_at_100 value: 38.584 - type: ndcg_at_1000 value: 41.359 - type: ndcg_at_20 value: 35.093999999999994 - type: ndcg_at_3 value: 28.354000000000003 - type: ndcg_at_5 value: 30.305 - type: precision_at_1 value: 23.674999999999997 - type: precision_at_10 value: 6.077 - type: precision_at_100 value: 1.043 - type: precision_at_1000 value: 0.146 - type: precision_at_20 value: 3.665 - type: precision_at_3 value: 13.443 - type: precision_at_5 value: 9.600999999999999 - type: recall_at_1 value: 19.61 - type: recall_at_10 value: 44.263000000000005 - type: recall_at_100 value: 69.41199999999999 - type: recall_at_1000 value: 88.994 - type: recall_at_20 value: 52.198 - type: recall_at_3 value: 31.293 - type: recall_at_5 value: 36.415 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackUnixRetrieval (default) revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53 split: test type: mteb/cqadupstack-unix metrics: - type: main_score value: 45.958 - type: map_at_1 value: 30.048000000000002 - type: map_at_10 value: 40.239000000000004 - type: map_at_100 value: 41.493 - type: map_at_1000 value: 41.582 - type: map_at_20 value: 40.955000000000005 - type: map_at_3 value: 37.097 - type: map_at_5 value: 38.824 - type: mrr_at_1 value: 35.07462686567165 - type: mrr_at_10 value: 44.19283789386398 - type: mrr_at_100 value: 45.08036630404521 - type: mrr_at_1000 value: 45.12183896199538 - type: mrr_at_20 value: 44.72186969518418 - type: mrr_at_3 value: 41.588930348258664 - type: mrr_at_5 value: 42.91355721393029 - type: nauc_map_at_1000_diff1 value: 48.76811649208976 - type: nauc_map_at_1000_max value: 36.982550067325484 - type: nauc_map_at_1000_std value: -0.5290701509883527 - type: nauc_map_at_100_diff1 value: 48.78866361951362 - type: nauc_map_at_100_max value: 36.99605340092298 - type: nauc_map_at_100_std value: -0.5018270195287452 - type: nauc_map_at_10_diff1 value: 48.928085770942 - type: nauc_map_at_10_max value: 36.73594814898575 - type: nauc_map_at_10_std value: -0.834228741972828 - type: nauc_map_at_1_diff1 value: 54.15059861768532 - type: nauc_map_at_1_max value: 36.44764098320589 - type: nauc_map_at_1_std value: -5.784565726873563 - type: nauc_map_at_20_diff1 value: 48.78043391669103 - type: nauc_map_at_20_max value: 36.89270974821098 - type: nauc_map_at_20_std value: -0.5945049292688708 - type: nauc_map_at_3_diff1 value: 49.79196039319051 - type: nauc_map_at_3_max value: 36.09927970784603 - type: nauc_map_at_3_std value: -2.0296894202771667 - type: nauc_map_at_5_diff1 value: 49.529286793014634 - type: nauc_map_at_5_max value: 36.62049971049548 - type: nauc_map_at_5_std value: -1.0187508539964767 - type: nauc_mrr_at_1000_diff1 value: 47.26105007482722 - type: nauc_mrr_at_1000_max value: 37.69068231080959 - type: nauc_mrr_at_1000_std value: -0.6510844517264812 - type: nauc_mrr_at_100_diff1 value: 47.25846776943622 - type: nauc_mrr_at_100_max value: 37.67838976933151 - type: nauc_mrr_at_100_std value: -0.6433335236107469 - type: nauc_mrr_at_10_diff1 value: 47.18519224298452 - type: nauc_mrr_at_10_max value: 37.62431544151827 - type: nauc_mrr_at_10_std value: -0.8474316078853749 - type: nauc_mrr_at_1_diff1 value: 51.77981410020824 - type: nauc_mrr_at_1_max value: 38.02059405009231 - type: nauc_mrr_at_1_std value: -5.783426776910806 - type: nauc_mrr_at_20_diff1 value: 47.14864249544432 - type: nauc_mrr_at_20_max value: 37.601607893461406 - type: nauc_mrr_at_20_std value: -0.6859574897303896 - type: nauc_mrr_at_3_diff1 value: 47.58252175947335 - type: nauc_mrr_at_3_max value: 37.6324837651506 - type: nauc_mrr_at_3_std value: -1.2482167973735598 - type: nauc_mrr_at_5_diff1 value: 47.448011129354974 - type: nauc_mrr_at_5_max value: 37.7148441309698 - type: nauc_mrr_at_5_std value: -0.7119792397225159 - type: nauc_ndcg_at_1000_diff1 value: 46.6329460576133 - type: nauc_ndcg_at_1000_max value: 37.51805344108184 - type: nauc_ndcg_at_1000_std value: 1.8100059353579894 - type: nauc_ndcg_at_100_diff1 value: 46.66586884984403 - type: nauc_ndcg_at_100_max value: 37.64300440363974 - type: nauc_ndcg_at_100_std value: 2.500233245881423 - type: nauc_ndcg_at_10_diff1 value: 46.615015396347644 - type: nauc_ndcg_at_10_max value: 36.78201798029491 - type: nauc_ndcg_at_10_std value: 1.0809742189657263 - type: nauc_ndcg_at_1_diff1 value: 51.77981410020824 - type: nauc_ndcg_at_1_max value: 38.02059405009231 - type: nauc_ndcg_at_1_std value: -5.783426776910806 - type: nauc_ndcg_at_20_diff1 value: 46.282072099888325 - type: nauc_ndcg_at_20_max value: 37.003478966138836 - type: nauc_ndcg_at_20_std value: 1.9291637916464186 - type: nauc_ndcg_at_3_diff1 value: 47.539278944889126 - type: nauc_ndcg_at_3_max value: 36.43508238199665 - type: nauc_ndcg_at_3_std value: -0.6027788390857911 - type: nauc_ndcg_at_5_diff1 value: 47.55837749401022 - type: nauc_ndcg_at_5_max value: 36.78249382035288 - type: nauc_ndcg_at_5_std value: 0.8497645104808546 - type: nauc_precision_at_1000_diff1 value: -20.71803333315221 - type: nauc_precision_at_1000_max value: -4.38547466190951 - type: nauc_precision_at_1000_std value: -0.0853978825586052 - type: nauc_precision_at_100_diff1 value: -8.67085404598523 - type: nauc_precision_at_100_max value: 9.733682801445893 - type: nauc_precision_at_100_std value: 7.507170439875122 - type: nauc_precision_at_10_diff1 value: 14.495060576585853 - type: nauc_precision_at_10_max value: 24.4514279841787 - type: nauc_precision_at_10_std value: 5.59489027531012 - type: nauc_precision_at_1_diff1 value: 51.77981410020824 - type: nauc_precision_at_1_max value: 38.02059405009231 - type: nauc_precision_at_1_std value: -5.783426776910806 - type: nauc_precision_at_20_diff1 value: 6.509848499042286 - type: nauc_precision_at_20_max value: 20.348715961396525 - type: nauc_precision_at_20_std value: 8.193012313602315 - type: nauc_precision_at_3_diff1 value: 32.384501021918794 - type: nauc_precision_at_3_max value: 31.935466435393828 - type: nauc_precision_at_3_std value: 3.0560771209934994 - type: nauc_precision_at_5_diff1 value: 25.702459594777277 - type: nauc_precision_at_5_max value: 30.014370132120067 - type: nauc_precision_at_5_std value: 6.4512965213006925 - type: nauc_recall_at_1000_diff1 value: 36.20840483033314 - type: nauc_recall_at_1000_max value: 45.47785143996727 - type: nauc_recall_at_1000_std value: 37.14510941691126 - type: nauc_recall_at_100_diff1 value: 39.11101186057974 - type: nauc_recall_at_100_max value: 38.066390280827925 - type: nauc_recall_at_100_std value: 21.470218305879797 - type: nauc_recall_at_10_diff1 value: 39.70476039879197 - type: nauc_recall_at_10_max value: 33.75721430862531 - type: nauc_recall_at_10_std value: 6.8486633835335295 - type: nauc_recall_at_1_diff1 value: 54.15059861768532 - type: nauc_recall_at_1_max value: 36.44764098320589 - type: nauc_recall_at_1_std value: -5.784565726873563 - type: nauc_recall_at_20_diff1 value: 37.86978682409901 - type: nauc_recall_at_20_max value: 33.96219184798075 - type: nauc_recall_at_20_std value: 11.029348617729221 - type: nauc_recall_at_3_diff1 value: 43.72514359112328 - type: nauc_recall_at_3_max value: 33.77645792572399 - type: nauc_recall_at_3_std value: 2.428536024679842 - type: nauc_recall_at_5_diff1 value: 43.06859065126547 - type: nauc_recall_at_5_max value: 34.665515195886755 - type: nauc_recall_at_5_std value: 5.905094189769508 - type: ndcg_at_1 value: 35.075 - type: ndcg_at_10 value: 45.958 - type: ndcg_at_100 value: 51.353 - type: ndcg_at_1000 value: 53.173 - type: ndcg_at_20 value: 48.191 - type: ndcg_at_3 value: 40.473 - type: ndcg_at_5 value: 42.902 - type: precision_at_1 value: 35.075 - type: precision_at_10 value: 7.836 - type: precision_at_100 value: 1.176 - type: precision_at_1000 value: 0.14300000000000002 - type: precision_at_20 value: 4.529 - type: precision_at_3 value: 18.315 - type: precision_at_5 value: 12.854 - type: recall_at_1 value: 30.048000000000002 - type: recall_at_10 value: 59.248 - type: recall_at_100 value: 82.111 - type: recall_at_1000 value: 94.592 - type: recall_at_20 value: 67.227 - type: recall_at_3 value: 44.471 - type: recall_at_5 value: 50.512 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackWebmastersRetrieval (default) revision: 160c094312a0e1facb97e55eeddb698c0abe3571 split: test type: mteb/cqadupstack-webmasters metrics: - type: main_score value: 43.951 - type: map_at_1 value: 27.964 - type: map_at_10 value: 37.692 - type: map_at_100 value: 39.365 - type: map_at_1000 value: 39.594 - type: map_at_20 value: 38.576 - type: map_at_3 value: 34.388999999999996 - type: map_at_5 value: 36.081 - type: mrr_at_1 value: 33.00395256916996 - type: mrr_at_10 value: 42.18434343434343 - type: mrr_at_100 value: 43.16939140168712 - type: mrr_at_1000 value: 43.21751142486867 - type: mrr_at_20 value: 42.75017657291823 - type: mrr_at_3 value: 39.42687747035574 - type: mrr_at_5 value: 41.037549407114625 - type: nauc_map_at_1000_diff1 value: 45.415876956978444 - type: nauc_map_at_1000_max value: 32.59464568060356 - type: nauc_map_at_1000_std value: 4.262293486763028 - type: nauc_map_at_100_diff1 value: 45.313981831518504 - type: nauc_map_at_100_max value: 32.68688502742583 - type: nauc_map_at_100_std value: 4.039368086319619 - type: nauc_map_at_10_diff1 value: 45.92372812130138 - type: nauc_map_at_10_max value: 32.37880184303658 - type: nauc_map_at_10_std value: 2.7481583678385197 - type: nauc_map_at_1_diff1 value: 52.388363332106294 - type: nauc_map_at_1_max value: 32.184315523196425 - type: nauc_map_at_1_std value: -2.5295830272351103 - type: nauc_map_at_20_diff1 value: 45.32570996908948 - type: nauc_map_at_20_max value: 32.48108405862084 - type: nauc_map_at_20_std value: 3.3087482176392657 - type: nauc_map_at_3_diff1 value: 46.85896834397904 - type: nauc_map_at_3_max value: 32.007995254903484 - type: nauc_map_at_3_std value: 0.5938674689810656 - type: nauc_map_at_5_diff1 value: 46.04911706905517 - type: nauc_map_at_5_max value: 31.503815774957864 - type: nauc_map_at_5_std value: 1.696567086029842 - type: nauc_mrr_at_1000_diff1 value: 44.33835674531675 - type: nauc_mrr_at_1000_max value: 31.313824311436395 - type: nauc_mrr_at_1000_std value: 5.585471654306175 - type: nauc_mrr_at_100_diff1 value: 44.315294514270484 - type: nauc_mrr_at_100_max value: 31.311504710219847 - type: nauc_mrr_at_100_std value: 5.61460359116941 - type: nauc_mrr_at_10_diff1 value: 44.34727343874123 - type: nauc_mrr_at_10_max value: 31.214381968197323 - type: nauc_mrr_at_10_std value: 5.358694756592366 - type: nauc_mrr_at_1_diff1 value: 50.076532500963985 - type: nauc_mrr_at_1_max value: 31.893100393844602 - type: nauc_mrr_at_1_std value: 1.6345537979715576 - type: nauc_mrr_at_20_diff1 value: 44.1861019252696 - type: nauc_mrr_at_20_max value: 31.18274283874542 - type: nauc_mrr_at_20_std value: 5.4141357527576845 - type: nauc_mrr_at_3_diff1 value: 44.84108608280401 - type: nauc_mrr_at_3_max value: 31.260937651084618 - type: nauc_mrr_at_3_std value: 4.32099205393322 - type: nauc_mrr_at_5_diff1 value: 43.957386353594615 - type: nauc_mrr_at_5_max value: 30.521363697945542 - type: nauc_mrr_at_5_std value: 5.111409983030411 - type: nauc_ndcg_at_1000_diff1 value: 43.302642169855055 - type: nauc_ndcg_at_1000_max value: 33.60452429135082 - type: nauc_ndcg_at_1000_std value: 8.11547083584825 - type: nauc_ndcg_at_100_diff1 value: 42.2303708262867 - type: nauc_ndcg_at_100_max value: 33.14409254803362 - type: nauc_ndcg_at_100_std value: 8.506478151524918 - type: nauc_ndcg_at_10_diff1 value: 43.767161847177874 - type: nauc_ndcg_at_10_max value: 32.07274047816015 - type: nauc_ndcg_at_10_std value: 6.481707365740993 - type: nauc_ndcg_at_1_diff1 value: 50.076532500963985 - type: nauc_ndcg_at_1_max value: 31.893100393844602 - type: nauc_ndcg_at_1_std value: 1.6345537979715576 - type: nauc_ndcg_at_20_diff1 value: 42.48660354871869 - type: nauc_ndcg_at_20_max value: 32.14769800363052 - type: nauc_ndcg_at_20_std value: 6.916826847813196 - type: nauc_ndcg_at_3_diff1 value: 44.243795943637885 - type: nauc_ndcg_at_3_max value: 31.48406187592552 - type: nauc_ndcg_at_3_std value: 3.701214987805142 - type: nauc_ndcg_at_5_diff1 value: 43.10518503245774 - type: nauc_ndcg_at_5_max value: 30.40120224782154 - type: nauc_ndcg_at_5_std value: 5.546435005776079 - type: nauc_precision_at_1000_diff1 value: -3.993607814341118 - type: nauc_precision_at_1000_max value: -10.729918180758647 - type: nauc_precision_at_1000_std value: 23.024270860729565 - type: nauc_precision_at_100_diff1 value: -1.6566704673461674 - type: nauc_precision_at_100_max value: 1.458081777116833 - type: nauc_precision_at_100_std value: 28.18670349958774 - type: nauc_precision_at_10_diff1 value: 12.792685733612547 - type: nauc_precision_at_10_max value: 20.206988909219923 - type: nauc_precision_at_10_std value: 22.53427005574754 - type: nauc_precision_at_1_diff1 value: 50.076532500963985 - type: nauc_precision_at_1_max value: 31.893100393844602 - type: nauc_precision_at_1_std value: 1.6345537979715576 - type: nauc_precision_at_20_diff1 value: 3.9538716249460384 - type: nauc_precision_at_20_max value: 16.21789405497108 - type: nauc_precision_at_20_std value: 24.348575609653487 - type: nauc_precision_at_3_diff1 value: 27.339649813425037 - type: nauc_precision_at_3_max value: 26.223578620825194 - type: nauc_precision_at_3_std value: 10.996293038771013 - type: nauc_precision_at_5_diff1 value: 18.869561918004056 - type: nauc_precision_at_5_max value: 20.709270779442967 - type: nauc_precision_at_5_std value: 17.384126283115698 - type: nauc_recall_at_1000_diff1 value: 16.194455177769477 - type: nauc_recall_at_1000_max value: 58.66023925715464 - type: nauc_recall_at_1000_std value: 58.25233058362688 - type: nauc_recall_at_100_diff1 value: 21.15194880649059 - type: nauc_recall_at_100_max value: 32.44572125606809 - type: nauc_recall_at_100_std value: 31.94013583626886 - type: nauc_recall_at_10_diff1 value: 37.66956774103016 - type: nauc_recall_at_10_max value: 30.925800174559832 - type: nauc_recall_at_10_std value: 9.299447104776808 - type: nauc_recall_at_1_diff1 value: 52.388363332106294 - type: nauc_recall_at_1_max value: 32.184315523196425 - type: nauc_recall_at_1_std value: -2.5295830272351103 - type: nauc_recall_at_20_diff1 value: 31.552065521976175 - type: nauc_recall_at_20_max value: 29.74690417386352 - type: nauc_recall_at_20_std value: 14.180880251108768 - type: nauc_recall_at_3_diff1 value: 40.454215107630645 - type: nauc_recall_at_3_max value: 30.042646762149484 - type: nauc_recall_at_3_std value: 2.8753957129080447 - type: nauc_recall_at_5_diff1 value: 36.586530595627345 - type: nauc_recall_at_5_max value: 27.14535453599763 - type: nauc_recall_at_5_std value: 5.997416531615016 - type: ndcg_at_1 value: 33.004 - type: ndcg_at_10 value: 43.951 - type: ndcg_at_100 value: 49.741 - type: ndcg_at_1000 value: 51.946000000000005 - type: ndcg_at_20 value: 46.168 - type: ndcg_at_3 value: 38.550000000000004 - type: ndcg_at_5 value: 41.014 - type: precision_at_1 value: 33.004 - type: precision_at_10 value: 8.577 - type: precision_at_100 value: 1.617 - type: precision_at_1000 value: 0.247 - type: precision_at_20 value: 5.346 - type: precision_at_3 value: 18.05 - type: precision_at_5 value: 13.281 - type: recall_at_1 value: 27.964 - type: recall_at_10 value: 55.702 - type: recall_at_100 value: 81.69999999999999 - type: recall_at_1000 value: 94.926 - type: recall_at_20 value: 64.142 - type: recall_at_3 value: 40.793 - type: recall_at_5 value: 47.046 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackWordpressRetrieval (default) revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 split: test type: mteb/cqadupstack-wordpress metrics: - type: main_score value: 36.787 - type: map_at_1 value: 23.915 - type: map_at_10 value: 31.735000000000003 - type: map_at_100 value: 32.806000000000004 - type: map_at_1000 value: 32.9 - type: map_at_20 value: 32.301 - type: map_at_3 value: 28.436 - type: map_at_5 value: 30.575999999999997 - type: mrr_at_1 value: 25.87800369685767 - type: mrr_at_10 value: 33.96487985212568 - type: mrr_at_100 value: 34.89689439154211 - type: mrr_at_1000 value: 34.95770776172314 - type: mrr_at_20 value: 34.46162046071626 - type: mrr_at_3 value: 31.022797288971038 - type: mrr_at_5 value: 32.991373998767706 - type: nauc_map_at_1000_diff1 value: 41.411411226747745 - type: nauc_map_at_1000_max value: 25.65879736535548 - type: nauc_map_at_1000_std value: -1.0008275040804908 - type: nauc_map_at_100_diff1 value: 41.41167985449119 - type: nauc_map_at_100_max value: 25.6584285870538 - type: nauc_map_at_100_std value: -1.0142856959019102 - type: nauc_map_at_10_diff1 value: 41.56309522812082 - type: nauc_map_at_10_max value: 25.66930315132308 - type: nauc_map_at_10_std value: -1.5502752272271925 - type: nauc_map_at_1_diff1 value: 49.425905570437116 - type: nauc_map_at_1_max value: 23.541197544220545 - type: nauc_map_at_1_std value: -4.360019071552991 - type: nauc_map_at_20_diff1 value: 41.38734082223361 - type: nauc_map_at_20_max value: 25.620079428409127 - type: nauc_map_at_20_std value: -1.4042978268225208 - type: nauc_map_at_3_diff1 value: 43.620208615142644 - type: nauc_map_at_3_max value: 25.71853688922115 - type: nauc_map_at_3_std value: -1.8769387740803976 - type: nauc_map_at_5_diff1 value: 41.97672177355559 - type: nauc_map_at_5_max value: 26.035163926212334 - type: nauc_map_at_5_std value: -2.11363374949669 - type: nauc_mrr_at_1000_diff1 value: 40.49508214793536 - type: nauc_mrr_at_1000_max value: 26.620330593078616 - type: nauc_mrr_at_1000_std value: -0.3634968622281096 - type: nauc_mrr_at_100_diff1 value: 40.465539927932895 - type: nauc_mrr_at_100_max value: 26.61340099486517 - type: nauc_mrr_at_100_std value: -0.35206443295384626 - type: nauc_mrr_at_10_diff1 value: 40.573109996611144 - type: nauc_mrr_at_10_max value: 26.71149031482008 - type: nauc_mrr_at_10_std value: -0.9166267231737095 - type: nauc_mrr_at_1_diff1 value: 48.29138921797353 - type: nauc_mrr_at_1_max value: 24.927185077919813 - type: nauc_mrr_at_1_std value: -4.332258870474254 - type: nauc_mrr_at_20_diff1 value: 40.40723703282917 - type: nauc_mrr_at_20_max value: 26.59812216818852 - type: nauc_mrr_at_20_std value: -0.6209755736362238 - type: nauc_mrr_at_3_diff1 value: 42.1104901364276 - type: nauc_mrr_at_3_max value: 27.158847936548643 - type: nauc_mrr_at_3_std value: -0.4768337585685568 - type: nauc_mrr_at_5_diff1 value: 40.822869162681044 - type: nauc_mrr_at_5_max value: 27.137910001879362 - type: nauc_mrr_at_5_std value: -0.9466391394053442 - type: nauc_ndcg_at_1000_diff1 value: 38.696314753739436 - type: nauc_ndcg_at_1000_max value: 26.428473010143723 - type: nauc_ndcg_at_1000_std value: 2.3402588363330272 - type: nauc_ndcg_at_100_diff1 value: 37.898005515159134 - type: nauc_ndcg_at_100_max value: 25.68578401772755 - type: nauc_ndcg_at_100_std value: 2.6295479217711453 - type: nauc_ndcg_at_10_diff1 value: 38.28392376933128 - type: nauc_ndcg_at_10_max value: 25.850126852320628 - type: nauc_ndcg_at_10_std value: -0.5560800621942364 - type: nauc_ndcg_at_1_diff1 value: 48.29138921797353 - type: nauc_ndcg_at_1_max value: 24.927185077919813 - type: nauc_ndcg_at_1_std value: -4.332258870474254 - type: nauc_ndcg_at_20_diff1 value: 37.673206490621396 - type: nauc_ndcg_at_20_max value: 25.583716405723937 - type: nauc_ndcg_at_20_std value: 0.1953323128781521 - type: nauc_ndcg_at_3_diff1 value: 41.41453304326318 - type: nauc_ndcg_at_3_max value: 26.61748802333722 - type: nauc_ndcg_at_3_std value: -0.5476999435389482 - type: nauc_ndcg_at_5_diff1 value: 38.98483145760039 - type: nauc_ndcg_at_5_max value: 26.777342255255647 - type: nauc_ndcg_at_5_std value: -1.3051979393226087 - type: nauc_precision_at_1000_diff1 value: -14.856110292516775 - type: nauc_precision_at_1000_max value: -5.848771877910694 - type: nauc_precision_at_1000_std value: 15.34411836334217 - type: nauc_precision_at_100_diff1 value: 3.4939759054218333 - type: nauc_precision_at_100_max value: 16.356980505161676 - type: nauc_precision_at_100_std value: 24.608528146713404 - type: nauc_precision_at_10_diff1 value: 18.407011878399366 - type: nauc_precision_at_10_max value: 24.800531781431303 - type: nauc_precision_at_10_std value: 8.698077886826768 - type: nauc_precision_at_1_diff1 value: 48.29138921797353 - type: nauc_precision_at_1_max value: 24.927185077919813 - type: nauc_precision_at_1_std value: -4.332258870474254 - type: nauc_precision_at_20_diff1 value: 14.541755251519852 - type: nauc_precision_at_20_max value: 21.97457692156994 - type: nauc_precision_at_20_std value: 11.578274506336108 - type: nauc_precision_at_3_diff1 value: 33.23900172092169 - type: nauc_precision_at_3_max value: 28.967167315040072 - type: nauc_precision_at_3_std value: 3.6476384007647136 - type: nauc_precision_at_5_diff1 value: 24.289869074161572 - type: nauc_precision_at_5_max value: 30.194681915534748 - type: nauc_precision_at_5_std value: 4.054952118325518 - type: nauc_recall_at_1000_diff1 value: 29.11829826259677 - type: nauc_recall_at_1000_max value: 39.25426036108557 - type: nauc_recall_at_1000_std value: 36.3591900236558 - type: nauc_recall_at_100_diff1 value: 22.900753883773152 - type: nauc_recall_at_100_max value: 20.40038512546472 - type: nauc_recall_at_100_std value: 20.736883688677032 - type: nauc_recall_at_10_diff1 value: 29.183788265901534 - type: nauc_recall_at_10_max value: 24.025061243297948 - type: nauc_recall_at_10_std value: 0.8086675135479778 - type: nauc_recall_at_1_diff1 value: 49.425905570437116 - type: nauc_recall_at_1_max value: 23.541197544220545 - type: nauc_recall_at_1_std value: -4.360019071552991 - type: nauc_recall_at_20_diff1 value: 26.21751562892008 - type: nauc_recall_at_20_max value: 22.78118083757151 - type: nauc_recall_at_20_std value: 3.6627753391462825 - type: nauc_recall_at_3_diff1 value: 37.20946031817167 - type: nauc_recall_at_3_max value: 27.059274716311005 - type: nauc_recall_at_3_std value: 0.8325033099157856 - type: nauc_recall_at_5_diff1 value: 31.269097954181547 - type: nauc_recall_at_5_max value: 26.853918763485463 - type: nauc_recall_at_5_std value: -0.9226280392689135 - type: ndcg_at_1 value: 25.878 - type: ndcg_at_10 value: 36.787 - type: ndcg_at_100 value: 42.085 - type: ndcg_at_1000 value: 44.303 - type: ndcg_at_20 value: 38.690000000000005 - type: ndcg_at_3 value: 30.657 - type: ndcg_at_5 value: 34.242 - type: precision_at_1 value: 25.878 - type: precision_at_10 value: 5.86 - type: precision_at_100 value: 0.9209999999999999 - type: precision_at_1000 value: 0.123 - type: precision_at_20 value: 3.392 - type: precision_at_3 value: 12.815999999999999 - type: precision_at_5 value: 9.76 - type: recall_at_1 value: 23.915 - type: recall_at_10 value: 50.196 - type: recall_at_100 value: 74.66199999999999 - type: recall_at_1000 value: 90.949 - type: recall_at_20 value: 57.404999999999994 - type: recall_at_3 value: 34.156 - type: recall_at_5 value: 42.671 task: type: Retrieval - dataset: config: default name: MTEB ClimateFEVER (default) revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 split: test type: mteb/climate-fever metrics: - type: main_score value: 37.835 - type: map_at_1 value: 16.408 - type: map_at_10 value: 28.102 - type: map_at_100 value: 30.245 - type: map_at_1000 value: 30.44 - type: map_at_20 value: 29.325000000000003 - type: map_at_3 value: 23.49 - type: map_at_5 value: 26.075 - type: mrr_at_1 value: 36.48208469055375 - type: mrr_at_10 value: 49.35310997363119 - type: mrr_at_100 value: 50.12144284733654 - type: mrr_at_1000 value: 50.14901403511052 - type: mrr_at_20 value: 49.86902911912245 - type: mrr_at_3 value: 46.3952225841477 - type: mrr_at_5 value: 48.16720955483177 - type: nauc_map_at_1000_diff1 value: 25.310850675849366 - type: nauc_map_at_1000_max value: 37.09503121120242 - type: nauc_map_at_1000_std value: 20.554977994819744 - type: nauc_map_at_100_diff1 value: 25.299966872724244 - type: nauc_map_at_100_max value: 37.07757844963315 - type: nauc_map_at_100_std value: 20.51941286942183 - type: nauc_map_at_10_diff1 value: 24.97097616375397 - type: nauc_map_at_10_max value: 36.21802106435102 - type: nauc_map_at_10_std value: 19.04179638942543 - type: nauc_map_at_1_diff1 value: 31.079857565386533 - type: nauc_map_at_1_max value: 31.982413172438463 - type: nauc_map_at_1_std value: 10.837120383351104 - type: nauc_map_at_20_diff1 value: 25.274561705603706 - type: nauc_map_at_20_max value: 36.846696717838334 - type: nauc_map_at_20_std value: 20.073241003865924 - type: nauc_map_at_3_diff1 value: 26.01764061167898 - type: nauc_map_at_3_max value: 33.20138049456973 - type: nauc_map_at_3_std value: 14.230139192374121 - type: nauc_map_at_5_diff1 value: 25.09123372044605 - type: nauc_map_at_5_max value: 34.89124594920631 - type: nauc_map_at_5_std value: 16.70319126587545 - type: nauc_mrr_at_1000_diff1 value: 26.375252226612467 - type: nauc_mrr_at_1000_max value: 35.477327849397575 - type: nauc_mrr_at_1000_std value: 21.16791565302958 - type: nauc_mrr_at_100_diff1 value: 26.377160750801053 - type: nauc_mrr_at_100_max value: 35.49211341503135 - type: nauc_mrr_at_100_std value: 21.19391590137402 - type: nauc_mrr_at_10_diff1 value: 26.311212981822052 - type: nauc_mrr_at_10_max value: 35.588662356341594 - type: nauc_mrr_at_10_std value: 21.24369092394658 - type: nauc_mrr_at_1_diff1 value: 27.198678190552865 - type: nauc_mrr_at_1_max value: 31.017785831517703 - type: nauc_mrr_at_1_std value: 16.42737819423067 - type: nauc_mrr_at_20_diff1 value: 26.32032615102818 - type: nauc_mrr_at_20_max value: 35.57367760733253 - type: nauc_mrr_at_20_std value: 21.29294301389274 - type: nauc_mrr_at_3_diff1 value: 26.092036806660612 - type: nauc_mrr_at_3_max value: 34.31665231049064 - type: nauc_mrr_at_3_std value: 19.6674385140531 - type: nauc_mrr_at_5_diff1 value: 26.151603897636 - type: nauc_mrr_at_5_max value: 35.17650680885225 - type: nauc_mrr_at_5_std value: 20.573080891241787 - type: nauc_ndcg_at_1000_diff1 value: 25.65498442794641 - type: nauc_ndcg_at_1000_max value: 40.084443405536575 - type: nauc_ndcg_at_1000_std value: 26.795793663747304 - type: nauc_ndcg_at_100_diff1 value: 25.237187946595334 - type: nauc_ndcg_at_100_max value: 40.07873047722652 - type: nauc_ndcg_at_100_std value: 26.7859861991128 - type: nauc_ndcg_at_10_diff1 value: 24.236337614114206 - type: nauc_ndcg_at_10_max value: 38.22607740025273 - type: nauc_ndcg_at_10_std value: 23.272039117089907 - type: nauc_ndcg_at_1_diff1 value: 27.198678190552865 - type: nauc_ndcg_at_1_max value: 31.017785831517703 - type: nauc_ndcg_at_1_std value: 16.42737819423067 - type: nauc_ndcg_at_20_diff1 value: 24.724738711624312 - type: nauc_ndcg_at_20_max value: 39.24548121605356 - type: nauc_ndcg_at_20_std value: 25.228893154519525 - type: nauc_ndcg_at_3_diff1 value: 24.658317235435362 - type: nauc_ndcg_at_3_max value: 33.335101247559486 - type: nauc_ndcg_at_3_std value: 17.01054703727399 - type: nauc_ndcg_at_5_diff1 value: 24.31704097148463 - type: nauc_ndcg_at_5_max value: 36.14336690565576 - type: nauc_ndcg_at_5_std value: 19.69214379372329 - type: nauc_precision_at_1000_diff1 value: -2.8924045105824114 - type: nauc_precision_at_1000_max value: 5.89979568196701 - type: nauc_precision_at_1000_std value: 19.595702020634185 - type: nauc_precision_at_100_diff1 value: 3.8998389837458203 - type: nauc_precision_at_100_max value: 19.95415054849711 - type: nauc_precision_at_100_std value: 29.065971451387774 - type: nauc_precision_at_10_diff1 value: 9.462651146259638 - type: nauc_precision_at_10_max value: 29.680510389273447 - type: nauc_precision_at_10_std value: 29.345395013388686 - type: nauc_precision_at_1_diff1 value: 27.198678190552865 - type: nauc_precision_at_1_max value: 31.017785831517703 - type: nauc_precision_at_1_std value: 16.42737819423067 - type: nauc_precision_at_20_diff1 value: 8.261243519089712 - type: nauc_precision_at_20_max value: 27.929320115110023 - type: nauc_precision_at_20_std value: 31.459012229844742 - type: nauc_precision_at_3_diff1 value: 15.273777636613955 - type: nauc_precision_at_3_max value: 28.204944302903996 - type: nauc_precision_at_3_std value: 19.80674678483048 - type: nauc_precision_at_5_diff1 value: 11.487918382134389 - type: nauc_precision_at_5_max value: 28.62173130088314 - type: nauc_precision_at_5_std value: 23.626716801834526 - type: nauc_recall_at_1000_diff1 value: 22.332855309918482 - type: nauc_recall_at_1000_max value: 46.19202209060043 - type: nauc_recall_at_1000_std value: 48.263282583608465 - type: nauc_recall_at_100_diff1 value: 18.606992875038713 - type: nauc_recall_at_100_max value: 39.8050305915271 - type: nauc_recall_at_100_std value: 36.24645472497941 - type: nauc_recall_at_10_diff1 value: 18.232071663795725 - type: nauc_recall_at_10_max value: 37.67075857623269 - type: nauc_recall_at_10_std value: 26.788012514411548 - type: nauc_recall_at_1_diff1 value: 31.079857565386533 - type: nauc_recall_at_1_max value: 31.982413172438463 - type: nauc_recall_at_1_std value: 10.837120383351104 - type: nauc_recall_at_20_diff1 value: 18.306236535885443 - type: nauc_recall_at_20_max value: 38.24540146525127 - type: nauc_recall_at_20_std value: 30.329987162287033 - type: nauc_recall_at_3_diff1 value: 22.00237059430624 - type: nauc_recall_at_3_max value: 32.60315366638792 - type: nauc_recall_at_3_std value: 15.991207369096077 - type: nauc_recall_at_5_diff1 value: 19.305335536530087 - type: nauc_recall_at_5_max value: 35.001491825528966 - type: nauc_recall_at_5_std value: 20.46796749831726 - type: ndcg_at_1 value: 36.482 - type: ndcg_at_10 value: 37.835 - type: ndcg_at_100 value: 45.332 - type: ndcg_at_1000 value: 48.503 - type: ndcg_at_20 value: 40.991 - type: ndcg_at_3 value: 31.735999999999997 - type: ndcg_at_5 value: 34.015 - type: precision_at_1 value: 36.482 - type: precision_at_10 value: 11.726 - type: precision_at_100 value: 1.978 - type: precision_at_1000 value: 0.258 - type: precision_at_20 value: 7.234999999999999 - type: precision_at_3 value: 23.822 - type: precision_at_5 value: 18.319 - type: recall_at_1 value: 16.408 - type: recall_at_10 value: 43.915 - type: recall_at_100 value: 69.173 - type: recall_at_1000 value: 86.58 - type: recall_at_20 value: 52.744 - type: recall_at_3 value: 28.682999999999996 - type: recall_at_5 value: 35.481 task: type: Retrieval - dataset: config: default name: MTEB DBPedia (default) revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 split: dev type: mteb/dbpedia metrics: - type: main_score value: 55.144000000000005 - type: map_at_1 value: 11.826 - type: map_at_10 value: 27.172 - type: map_at_100 value: 38.257000000000005 - type: map_at_1000 value: 40.097 - type: map_at_20 value: 32.123000000000005 - type: map_at_3 value: 19.369 - type: map_at_5 value: 22.351 - type: mrr_at_1 value: 80.59701492537313 - type: mrr_at_10 value: 86.33499170812604 - type: mrr_at_100 value: 86.45227090143814 - type: mrr_at_1000 value: 86.45227090143814 - type: mrr_at_20 value: 86.40961857379767 - type: mrr_at_3 value: 85.57213930348257 - type: mrr_at_5 value: 86.16915422885573 - type: nauc_map_at_1000_diff1 value: 31.072194916682385 - type: nauc_map_at_1000_max value: 21.804811518161618 - type: nauc_map_at_1000_std value: -2.951237857245905 - type: nauc_map_at_100_diff1 value: 32.56060360145279 - type: nauc_map_at_100_max value: 21.242298925848857 - type: nauc_map_at_100_std value: -6.601591083112349 - type: nauc_map_at_10_diff1 value: 45.43742246641206 - type: nauc_map_at_10_max value: 17.21692770004215 - type: nauc_map_at_10_std value: -26.109238645663996 - type: nauc_map_at_1_diff1 value: 59.342871771182246 - type: nauc_map_at_1_max value: 7.61369981711965 - type: nauc_map_at_1_std value: -43.77056595417028 - type: nauc_map_at_20_diff1 value: 41.28476777471806 - type: nauc_map_at_20_max value: 19.146619219149965 - type: nauc_map_at_20_std value: -18.138173228934672 - type: nauc_map_at_3_diff1 value: 50.01554010863971 - type: nauc_map_at_3_max value: 8.780067252066651 - type: nauc_map_at_3_std value: -38.97142391357302 - type: nauc_map_at_5_diff1 value: 49.10129058095009 - type: nauc_map_at_5_max value: 11.656196663534313 - type: nauc_map_at_5_std value: -34.72355570603387 - type: nauc_mrr_at_1000_diff1 value: 58.78754980587956 - type: nauc_mrr_at_1000_max value: 49.8860031204746 - type: nauc_mrr_at_1000_std value: 8.296926794472618 - type: nauc_mrr_at_100_diff1 value: 58.78754980587956 - type: nauc_mrr_at_100_max value: 49.8860031204746 - type: nauc_mrr_at_100_std value: 8.296926794472618 - type: nauc_mrr_at_10_diff1 value: 58.91162028285357 - type: nauc_mrr_at_10_max value: 50.335451094273985 - type: nauc_mrr_at_10_std value: 9.007586894775534 - type: nauc_mrr_at_1_diff1 value: 57.59201084653059 - type: nauc_mrr_at_1_max value: 37.00330988333697 - type: nauc_mrr_at_1_std value: -1.747744103132987 - type: nauc_mrr_at_20_diff1 value: 58.75119254917311 - type: nauc_mrr_at_20_max value: 50.05039741296804 - type: nauc_mrr_at_20_std value: 8.560730939300612 - type: nauc_mrr_at_3_diff1 value: 59.25818070675737 - type: nauc_mrr_at_3_max value: 50.21290391831141 - type: nauc_mrr_at_3_std value: 5.888545263632479 - type: nauc_mrr_at_5_diff1 value: 58.86883176773856 - type: nauc_mrr_at_5_max value: 50.957401246316245 - type: nauc_mrr_at_5_std value: 9.799770718943135 - type: nauc_ndcg_at_1000_diff1 value: 31.017440394196054 - type: nauc_ndcg_at_1000_max value: 34.76839774920455 - type: nauc_ndcg_at_1000_std value: 18.394503679584197 - type: nauc_ndcg_at_100_diff1 value: 33.46897937355806 - type: nauc_ndcg_at_100_max value: 30.1308096551965 - type: nauc_ndcg_at_100_std value: 4.811329419196584 - type: nauc_ndcg_at_10_diff1 value: 34.738421563806796 - type: nauc_ndcg_at_10_max value: 31.63787832072571 - type: nauc_ndcg_at_10_std value: 6.047471445378135 - type: nauc_ndcg_at_1_diff1 value: 41.838767871859105 - type: nauc_ndcg_at_1_max value: 29.76412378121819 - type: nauc_ndcg_at_1_std value: -6.662981751747337 - type: nauc_ndcg_at_20_diff1 value: 37.2936047770493 - type: nauc_ndcg_at_20_max value: 27.509688843351928 - type: nauc_ndcg_at_20_std value: -4.226207480988211 - type: nauc_ndcg_at_3_diff1 value: 26.741771232683075 - type: nauc_ndcg_at_3_max value: 27.39386896838887 - type: nauc_ndcg_at_3_std value: 1.6639808702221104 - type: nauc_ndcg_at_5_diff1 value: 32.70843930376316 - type: nauc_ndcg_at_5_max value: 27.924846120043256 - type: nauc_ndcg_at_5_std value: 6.138807313274158 - type: nauc_precision_at_1000_diff1 value: -32.41203303482423 - type: nauc_precision_at_1000_max value: 8.093545818882905 - type: nauc_precision_at_1000_std value: 47.02494471043404 - type: nauc_precision_at_100_diff1 value: -31.578281780421502 - type: nauc_precision_at_100_max value: 11.08125301543009 - type: nauc_precision_at_100_std value: 50.533022672180394 - type: nauc_precision_at_10_diff1 value: -22.738530687885405 - type: nauc_precision_at_10_max value: 23.330840950192325 - type: nauc_precision_at_10_std value: 50.76435402136226 - type: nauc_precision_at_1_diff1 value: 57.59201084653059 - type: nauc_precision_at_1_max value: 37.00330988333697 - type: nauc_precision_at_1_std value: -1.747744103132987 - type: nauc_precision_at_20_diff1 value: -25.002019953837003 - type: nauc_precision_at_20_max value: 16.971378988976706 - type: nauc_precision_at_20_std value: 48.07345104684135 - type: nauc_precision_at_3_diff1 value: -8.197173818536056 - type: nauc_precision_at_3_max value: 25.695195187226403 - type: nauc_precision_at_3_std value: 31.111863515602995 - type: nauc_precision_at_5_diff1 value: -12.956574437433844 - type: nauc_precision_at_5_max value: 21.41273346493039 - type: nauc_precision_at_5_std value: 42.55631329398401 - type: nauc_recall_at_1000_diff1 value: 9.76915442349142 - type: nauc_recall_at_1000_max value: 23.74302893109814 - type: nauc_recall_at_1000_std value: 33.123159475147816 - type: nauc_recall_at_100_diff1 value: 13.96782611551897 - type: nauc_recall_at_100_max value: 21.02306088177266 - type: nauc_recall_at_100_std value: 3.0239346149170645 - type: nauc_recall_at_10_diff1 value: 36.502833630310036 - type: nauc_recall_at_10_max value: 15.575967406133087 - type: nauc_recall_at_10_std value: -25.645224052787295 - type: nauc_recall_at_1_diff1 value: 59.342871771182246 - type: nauc_recall_at_1_max value: 7.61369981711965 - type: nauc_recall_at_1_std value: -43.77056595417028 - type: nauc_recall_at_20_diff1 value: 26.27422331579885 - type: nauc_recall_at_20_max value: 13.135043270702166 - type: nauc_recall_at_20_std value: -19.92673944513883 - type: nauc_recall_at_3_diff1 value: 48.18220967640245 - type: nauc_recall_at_3_max value: 9.54094958941248 - type: nauc_recall_at_3_std value: -37.97033782144305 - type: nauc_recall_at_5_diff1 value: 46.575464923304686 - type: nauc_recall_at_5_max value: 12.024807120200766 - type: nauc_recall_at_5_std value: -33.73533843493903 - type: ndcg_at_1 value: 71.642 - type: ndcg_at_10 value: 55.144000000000005 - type: ndcg_at_100 value: 59.753 - type: ndcg_at_1000 value: 66.89500000000001 - type: ndcg_at_20 value: 54.114 - type: ndcg_at_3 value: 62.373 - type: ndcg_at_5 value: 57.926 - type: precision_at_1 value: 80.597 - type: precision_at_10 value: 41.343 - type: precision_at_100 value: 12.030000000000001 - type: precision_at_1000 value: 1.8270000000000002 - type: precision_at_20 value: 31.791000000000004 - type: precision_at_3 value: 63.682 - type: precision_at_5 value: 52.239000000000004 - type: recall_at_1 value: 11.826 - type: recall_at_10 value: 33.28 - type: recall_at_100 value: 65.91 - type: recall_at_1000 value: 88.39200000000001 - type: recall_at_20 value: 44.482 - type: recall_at_3 value: 20.377000000000002 - type: recall_at_5 value: 24.102999999999998 task: type: Retrieval - dataset: config: default name: MTEB DBPedia (default) revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 split: test type: mteb/dbpedia metrics: - type: main_score value: 46.062999999999995 - type: map_at_1 value: 9.913 - type: map_at_10 value: 22.713 - type: map_at_100 value: 32.995999999999995 - type: map_at_1000 value: 34.845 - type: map_at_20 value: 26.650000000000002 - type: map_at_3 value: 16.052 - type: map_at_5 value: 18.892999999999997 - type: mrr_at_1 value: 72.75 - type: mrr_at_10 value: 79.93075396825398 - type: mrr_at_100 value: 80.15202418448516 - type: mrr_at_1000 value: 80.16338022685652 - type: mrr_at_20 value: 80.10524750447352 - type: mrr_at_3 value: 78.375 - type: mrr_at_5 value: 79.5 - type: nauc_map_at_1000_diff1 value: 15.703992161125676 - type: nauc_map_at_1000_max value: 23.35271482732561 - type: nauc_map_at_1000_std value: 31.149527138283002 - type: nauc_map_at_100_diff1 value: 16.785306132760873 - type: nauc_map_at_100_max value: 21.540254096945795 - type: nauc_map_at_100_std value: 28.232069035246422 - type: nauc_map_at_10_diff1 value: 20.402743546183082 - type: nauc_map_at_10_max value: 7.042045670852542 - type: nauc_map_at_10_std value: 0.16763671800997607 - type: nauc_map_at_1_diff1 value: 35.775061062200926 - type: nauc_map_at_1_max value: -3.2698850217174287 - type: nauc_map_at_1_std value: -19.56795709087053 - type: nauc_map_at_20_diff1 value: 18.699651665323326 - type: nauc_map_at_20_max value: 13.328266382559917 - type: nauc_map_at_20_std value: 11.47185661443564 - type: nauc_map_at_3_diff1 value: 25.81987347945424 - type: nauc_map_at_3_max value: -0.15648299152936088 - type: nauc_map_at_3_std value: -13.835424548479757 - type: nauc_map_at_5_diff1 value: 23.439523519895587 - type: nauc_map_at_5_max value: 1.5356852327250021 - type: nauc_map_at_5_std value: -9.703910926625412 - type: nauc_mrr_at_1000_diff1 value: 52.46673675514906 - type: nauc_mrr_at_1000_max value: 63.470733964613935 - type: nauc_mrr_at_1000_std value: 45.63124329941225 - type: nauc_mrr_at_100_diff1 value: 52.453615789844285 - type: nauc_mrr_at_100_max value: 63.46889395676577 - type: nauc_mrr_at_100_std value: 45.60690760740741 - type: nauc_mrr_at_10_diff1 value: 52.418811815325775 - type: nauc_mrr_at_10_max value: 63.458017896693896 - type: nauc_mrr_at_10_std value: 45.69048100462888 - type: nauc_mrr_at_1_diff1 value: 51.64249864649329 - type: nauc_mrr_at_1_max value: 61.7930671192988 - type: nauc_mrr_at_1_std value: 45.65780424635283 - type: nauc_mrr_at_20_diff1 value: 52.51320760078821 - type: nauc_mrr_at_20_max value: 63.45648957193841 - type: nauc_mrr_at_20_std value: 45.643345257424215 - type: nauc_mrr_at_3_diff1 value: 52.684081166956375 - type: nauc_mrr_at_3_max value: 63.47934202170013 - type: nauc_mrr_at_3_std value: 45.258022228781805 - type: nauc_mrr_at_5_diff1 value: 52.404417203072725 - type: nauc_mrr_at_5_max value: 63.622003998330335 - type: nauc_mrr_at_5_std value: 45.56023178180955 - type: nauc_ndcg_at_1000_diff1 value: 21.457460034962793 - type: nauc_ndcg_at_1000_max value: 38.48004433256833 - type: nauc_ndcg_at_1000_std value: 44.50501821602239 - type: nauc_ndcg_at_100_diff1 value: 22.96499973613431 - type: nauc_ndcg_at_100_max value: 32.279961000176996 - type: nauc_ndcg_at_100_std value: 36.24772810425709 - type: nauc_ndcg_at_10_diff1 value: 22.80486448431605 - type: nauc_ndcg_at_10_max value: 31.855350572992712 - type: nauc_ndcg_at_10_std value: 32.02098815228779 - type: nauc_ndcg_at_1_diff1 value: 42.52237678010534 - type: nauc_ndcg_at_1_max value: 43.07107038550254 - type: nauc_ndcg_at_1_std value: 32.29636539687786 - type: nauc_ndcg_at_20_diff1 value: 23.33376144999378 - type: nauc_ndcg_at_20_max value: 29.47723113288734 - type: nauc_ndcg_at_20_std value: 29.39360988758012 - type: nauc_ndcg_at_3_diff1 value: 26.354022177902426 - type: nauc_ndcg_at_3_max value: 34.34518581558593 - type: nauc_ndcg_at_3_std value: 30.620971800188308 - type: nauc_ndcg_at_5_diff1 value: 23.743192738244137 - type: nauc_ndcg_at_5_max value: 31.84064266620126 - type: nauc_ndcg_at_5_std value: 31.185813277650304 - type: nauc_precision_at_1000_diff1 value: -23.397310460810505 - type: nauc_precision_at_1000_max value: 4.094434610744116 - type: nauc_precision_at_1000_std value: 16.721869991290177 - type: nauc_precision_at_100_diff1 value: -9.979052269943192 - type: nauc_precision_at_100_max value: 30.59858046499311 - type: nauc_precision_at_100_std value: 48.98467116206844 - type: nauc_precision_at_10_diff1 value: -5.612358654181445 - type: nauc_precision_at_10_max value: 38.881592521775225 - type: nauc_precision_at_10_std value: 55.44555278772913 - type: nauc_precision_at_1_diff1 value: 51.64249864649329 - type: nauc_precision_at_1_max value: 61.7930671192988 - type: nauc_precision_at_1_std value: 45.65780424635283 - type: nauc_precision_at_20_diff1 value: -5.663214776548806 - type: nauc_precision_at_20_max value: 37.95746951813096 - type: nauc_precision_at_20_std value: 55.85134464939927 - type: nauc_precision_at_3_diff1 value: 5.956898719194746 - type: nauc_precision_at_3_max value: 37.315381572930626 - type: nauc_precision_at_3_std value: 43.463129246499506 - type: nauc_precision_at_5_diff1 value: -0.67640128719057 - type: nauc_precision_at_5_max value: 36.05694594117169 - type: nauc_precision_at_5_std value: 48.36937473304257 - type: nauc_recall_at_1000_diff1 value: 11.230184686028919 - type: nauc_recall_at_1000_max value: 33.60147376937396 - type: nauc_recall_at_1000_std value: 53.068732741076055 - type: nauc_recall_at_100_diff1 value: 15.566530633394684 - type: nauc_recall_at_100_max value: 23.57721391991314 - type: nauc_recall_at_100_std value: 31.386352775767566 - type: nauc_recall_at_10_diff1 value: 17.096462310522874 - type: nauc_recall_at_10_max value: 2.2836136689655127 - type: nauc_recall_at_10_std value: -4.65565377513818 - type: nauc_recall_at_1_diff1 value: 35.775061062200926 - type: nauc_recall_at_1_max value: -3.2698850217174287 - type: nauc_recall_at_1_std value: -19.56795709087053 - type: nauc_recall_at_20_diff1 value: 14.19787786895807 - type: nauc_recall_at_20_max value: 7.524383196640643 - type: nauc_recall_at_20_std value: 5.656566482975458 - type: nauc_recall_at_3_diff1 value: 23.847261122849588 - type: nauc_recall_at_3_max value: -2.611801666377753 - type: nauc_recall_at_3_std value: -16.43695458424158 - type: nauc_recall_at_5_diff1 value: 20.607771671835604 - type: nauc_recall_at_5_max value: -2.949503014688604 - type: nauc_recall_at_5_std value: -14.602394621100709 - type: ndcg_at_1 value: 60.0 - type: ndcg_at_10 value: 46.062999999999995 - type: ndcg_at_100 value: 51.717999999999996 - type: ndcg_at_1000 value: 59.181 - type: ndcg_at_20 value: 45.837 - type: ndcg_at_3 value: 50.568999999999996 - type: ndcg_at_5 value: 47.981 - type: precision_at_1 value: 72.75 - type: precision_at_10 value: 37.1 - type: precision_at_100 value: 11.98 - type: precision_at_1000 value: 2.284 - type: precision_at_20 value: 28.499999999999996 - type: precision_at_3 value: 54.833 - type: precision_at_5 value: 46.550000000000004 - type: recall_at_1 value: 9.913 - type: recall_at_10 value: 28.154 - type: recall_at_100 value: 58.841 - type: recall_at_1000 value: 82.329 - type: recall_at_20 value: 36.971 - type: recall_at_3 value: 17.336 - type: recall_at_5 value: 21.612000000000002 task: type: Retrieval - dataset: config: default name: MTEB FEVER (default) revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 split: dev type: mteb/fever metrics: - type: main_score value: 90.881 - type: map_at_1 value: 80.818 - type: map_at_10 value: 87.866 - type: map_at_100 value: 88.083 - type: map_at_1000 value: 88.095 - type: map_at_20 value: 87.991 - type: map_at_3 value: 87.069 - type: map_at_5 value: 87.569 - type: mrr_at_1 value: 87.56375637563757 - type: mrr_at_10 value: 92.82259178298779 - type: mrr_at_100 value: 92.84322154467066 - type: mrr_at_1000 value: 92.84344246383182 - type: mrr_at_20 value: 92.83903406133638 - type: mrr_at_3 value: 92.52175217521747 - type: mrr_at_5 value: 92.73627362736265 - type: nauc_map_at_1000_diff1 value: 46.87623575032174 - type: nauc_map_at_1000_max value: 12.297201771693372 - type: nauc_map_at_1000_std value: -9.479310845495277 - type: nauc_map_at_100_diff1 value: 46.84134556922246 - type: nauc_map_at_100_max value: 12.292309938105879 - type: nauc_map_at_100_std value: -9.466678629428921 - type: nauc_map_at_10_diff1 value: 46.181390015451946 - type: nauc_map_at_10_max value: 11.927988984700725 - type: nauc_map_at_10_std value: -9.666045508151084 - type: nauc_map_at_1_diff1 value: 53.10928810328134 - type: nauc_map_at_1_max value: 7.540404621177918 - type: nauc_map_at_1_std value: -13.906212384769297 - type: nauc_map_at_20_diff1 value: 46.49635746130797 - type: nauc_map_at_20_max value: 12.13593751368467 - type: nauc_map_at_20_std value: -9.607633449073036 - type: nauc_map_at_3_diff1 value: 45.940411564236655 - type: nauc_map_at_3_max value: 11.433507590443073 - type: nauc_map_at_3_std value: -10.96299821239248 - type: nauc_map_at_5_diff1 value: 45.87354953980392 - type: nauc_map_at_5_max value: 11.548053546333442 - type: nauc_map_at_5_std value: -10.299403473081103 - type: nauc_mrr_at_1000_diff1 value: 74.96436552895679 - type: nauc_mrr_at_1000_max value: 15.081704623272563 - type: nauc_mrr_at_1000_std value: -21.505452950257524 - type: nauc_mrr_at_100_diff1 value: 74.96337776424838 - type: nauc_mrr_at_100_max value: 15.084165693265266 - type: nauc_mrr_at_100_std value: -21.502705745641805 - type: nauc_mrr_at_10_diff1 value: 74.95512856225042 - type: nauc_mrr_at_10_max value: 15.179216919044547 - type: nauc_mrr_at_10_std value: -21.54772408489513 - type: nauc_mrr_at_1_diff1 value: 75.1059297404218 - type: nauc_mrr_at_1_max value: 11.81006208731222 - type: nauc_mrr_at_1_std value: -20.585909179161106 - type: nauc_mrr_at_20_diff1 value: 74.96842612971291 - type: nauc_mrr_at_20_max value: 15.114351703094453 - type: nauc_mrr_at_20_std value: -21.513817851207094 - type: nauc_mrr_at_3_diff1 value: 75.02285494504581 - type: nauc_mrr_at_3_max value: 16.0556430520842 - type: nauc_mrr_at_3_std value: -21.96831001623427 - type: nauc_mrr_at_5_diff1 value: 74.90651790965175 - type: nauc_mrr_at_5_max value: 15.372261833733539 - type: nauc_mrr_at_5_std value: -21.675988243802003 - type: nauc_ndcg_at_1000_diff1 value: 50.2435944626682 - type: nauc_ndcg_at_1000_max value: 14.561661200135982 - type: nauc_ndcg_at_1000_std value: -8.914496686293512 - type: nauc_ndcg_at_100_diff1 value: 49.45862609681797 - type: nauc_ndcg_at_100_max value: 14.574933247820116 - type: nauc_ndcg_at_100_std value: -8.401737989352354 - type: nauc_ndcg_at_10_diff1 value: 46.70923651777826 - type: nauc_ndcg_at_10_max value: 13.472299853545234 - type: nauc_ndcg_at_10_std value: -8.83553728476895 - type: nauc_ndcg_at_1_diff1 value: 75.1059297404218 - type: nauc_ndcg_at_1_max value: 11.81006208731222 - type: nauc_ndcg_at_1_std value: -20.585909179161106 - type: nauc_ndcg_at_20_diff1 value: 47.55000104826263 - type: nauc_ndcg_at_20_max value: 14.006480095713588 - type: nauc_ndcg_at_20_std value: -8.658752805425454 - type: nauc_ndcg_at_3_diff1 value: 47.637455273739995 - type: nauc_ndcg_at_3_max value: 13.770838942196637 - type: nauc_ndcg_at_3_std value: -11.280620068648076 - type: nauc_ndcg_at_5_diff1 value: 46.43880641265911 - type: nauc_ndcg_at_5_max value: 13.08583931363886 - type: nauc_ndcg_at_5_std value: -10.06515821709641 - type: nauc_precision_at_1000_diff1 value: -7.74658978838917 - type: nauc_precision_at_1000_max value: 4.751261690843568 - type: nauc_precision_at_1000_std value: 9.364113114197997 - type: nauc_precision_at_100_diff1 value: -6.8148922522222115 - type: nauc_precision_at_100_max value: 6.972247112602814 - type: nauc_precision_at_100_std value: 11.878899724333886 - type: nauc_precision_at_10_diff1 value: -9.26742080488489 - type: nauc_precision_at_10_max value: 10.151685398959382 - type: nauc_precision_at_10_std value: 12.57287300284158 - type: nauc_precision_at_1_diff1 value: 75.1059297404218 - type: nauc_precision_at_1_max value: 11.81006208731222 - type: nauc_precision_at_1_std value: -20.585909179161106 - type: nauc_precision_at_20_diff1 value: -9.46809712351495 - type: nauc_precision_at_20_max value: 9.070842702517606 - type: nauc_precision_at_20_std value: 12.63029281322448 - type: nauc_precision_at_3_diff1 value: 4.482731450261291 - type: nauc_precision_at_3_max value: 15.23040684493045 - type: nauc_precision_at_3_std value: 1.6067730909628326 - type: nauc_precision_at_5_diff1 value: -5.71269063574531 - type: nauc_precision_at_5_max value: 11.572460670136449 - type: nauc_precision_at_5_std value: 7.83824414993744 - type: nauc_recall_at_1000_diff1 value: 2.7016711342522663 - type: nauc_recall_at_1000_max value: 38.550518524354906 - type: nauc_recall_at_1000_std value: 46.777091414426614 - type: nauc_recall_at_100_diff1 value: 8.833739498081504 - type: nauc_recall_at_100_max value: 28.457805489841665 - type: nauc_recall_at_100_std value: 32.44508615804357 - type: nauc_recall_at_10_diff1 value: 9.414374970261905 - type: nauc_recall_at_10_max value: 16.400771079732788 - type: nauc_recall_at_10_std value: 11.211729067346221 - type: nauc_recall_at_1_diff1 value: 53.10928810328134 - type: nauc_recall_at_1_max value: 7.540404621177918 - type: nauc_recall_at_1_std value: -13.906212384769297 - type: nauc_recall_at_20_diff1 value: 7.2361585201604255 - type: nauc_recall_at_20_max value: 19.916481947882193 - type: nauc_recall_at_20_std value: 16.717994401180736 - type: nauc_recall_at_3_diff1 value: 23.19365013128098 - type: nauc_recall_at_3_max value: 15.22562423195164 - type: nauc_recall_at_3_std value: -3.6529481843146376 - type: nauc_recall_at_5_diff1 value: 15.503999284173625 - type: nauc_recall_at_5_max value: 14.508056870663811 - type: nauc_recall_at_5_std value: 1.978806929057799 - type: ndcg_at_1 value: 87.564 - type: ndcg_at_10 value: 90.881 - type: ndcg_at_100 value: 91.513 - type: ndcg_at_1000 value: 91.71000000000001 - type: ndcg_at_20 value: 91.148 - type: ndcg_at_3 value: 89.917 - type: ndcg_at_5 value: 90.434 - type: precision_at_1 value: 87.564 - type: precision_at_10 value: 10.711 - type: precision_at_100 value: 1.135 - type: precision_at_1000 value: 0.117 - type: precision_at_20 value: 5.463 - type: precision_at_3 value: 33.993 - type: precision_at_5 value: 20.888 - type: recall_at_1 value: 80.818 - type: recall_at_10 value: 95.22800000000001 - type: recall_at_100 value: 97.52499999999999 - type: recall_at_1000 value: 98.691 - type: recall_at_20 value: 96.081 - type: recall_at_3 value: 92.43299999999999 - type: recall_at_5 value: 93.92200000000001 task: type: Retrieval - dataset: config: default name: MTEB FEVER (default) revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 split: test type: mteb/fever metrics: - type: main_score value: 89.917 - type: map_at_1 value: 78.50200000000001 - type: map_at_10 value: 86.568 - type: map_at_100 value: 86.785 - type: map_at_1000 value: 86.797 - type: map_at_20 value: 86.701 - type: map_at_3 value: 85.59400000000001 - type: map_at_5 value: 86.223 - type: mrr_at_1 value: 84.77347734773477 - type: mrr_at_10 value: 91.097966939551 - type: mrr_at_100 value: 91.12558512468273 - type: mrr_at_1000 value: 91.1260701737618 - type: mrr_at_20 value: 91.11946032681844 - type: mrr_at_3 value: 90.68406840684058 - type: mrr_at_5 value: 90.98784878487835 - type: nauc_map_at_1000_diff1 value: 50.87906171648577 - type: nauc_map_at_1000_max value: 7.146488902357113 - type: nauc_map_at_1000_std value: -12.846432203603294 - type: nauc_map_at_100_diff1 value: 50.81856235257227 - type: nauc_map_at_100_max value: 7.142093753041584 - type: nauc_map_at_100_std value: -12.819609867775798 - type: nauc_map_at_10_diff1 value: 50.334680606872986 - type: nauc_map_at_10_max value: 7.0836766324370695 - type: nauc_map_at_10_std value: -12.768283326531977 - type: nauc_map_at_1_diff1 value: 56.03047128824491 - type: nauc_map_at_1_max value: 1.9657828096288057 - type: nauc_map_at_1_std value: -16.09258344775108 - type: nauc_map_at_20_diff1 value: 50.59898980840294 - type: nauc_map_at_20_max value: 7.171824094888314 - type: nauc_map_at_20_std value: -12.755654528759749 - type: nauc_map_at_3_diff1 value: 50.10970484630358 - type: nauc_map_at_3_max value: 6.495427590658401 - type: nauc_map_at_3_std value: -14.334341284587198 - type: nauc_map_at_5_diff1 value: 50.085796858441846 - type: nauc_map_at_5_max value: 6.9713526722279235 - type: nauc_map_at_5_std value: -13.24882433153497 - type: nauc_mrr_at_1000_diff1 value: 71.7413632225038 - type: nauc_mrr_at_1000_max value: 3.865641782196838 - type: nauc_mrr_at_1000_std value: -24.555236632082018 - type: nauc_mrr_at_100_diff1 value: 71.73848550292642 - type: nauc_mrr_at_100_max value: 3.868547078561582 - type: nauc_mrr_at_100_std value: -24.549516364510097 - type: nauc_mrr_at_10_diff1 value: 71.71567149170303 - type: nauc_mrr_at_10_max value: 3.996112870850431 - type: nauc_mrr_at_10_std value: -24.507926982679656 - type: nauc_mrr_at_1_diff1 value: 72.45922013700734 - type: nauc_mrr_at_1_max value: 1.8703455839128875 - type: nauc_mrr_at_1_std value: -23.12219651563944 - type: nauc_mrr_at_20_diff1 value: 71.74174120635641 - type: nauc_mrr_at_20_max value: 3.929695014596715 - type: nauc_mrr_at_20_std value: -24.492801146396122 - type: nauc_mrr_at_3_diff1 value: 71.6212411128049 - type: nauc_mrr_at_3_max value: 4.227925028200142 - type: nauc_mrr_at_3_std value: -25.64285955172264 - type: nauc_mrr_at_5_diff1 value: 71.80132592467288 - type: nauc_mrr_at_5_max value: 4.1553514465112995 - type: nauc_mrr_at_5_std value: -24.93394619376225 - type: nauc_ndcg_at_1000_diff1 value: 53.6216140857924 - type: nauc_ndcg_at_1000_max value: 8.199696972556648 - type: nauc_ndcg_at_1000_std value: -12.848833254863706 - type: nauc_ndcg_at_100_diff1 value: 52.4771074390175 - type: nauc_ndcg_at_100_max value: 8.266327098153694 - type: nauc_ndcg_at_100_std value: -12.141877748527016 - type: nauc_ndcg_at_10_diff1 value: 50.39079678583025 - type: nauc_ndcg_at_10_max value: 8.460346209587346 - type: nauc_ndcg_at_10_std value: -11.739805102684473 - type: nauc_ndcg_at_1_diff1 value: 72.45922013700734 - type: nauc_ndcg_at_1_max value: 1.8703455839128875 - type: nauc_ndcg_at_1_std value: -23.12219651563944 - type: nauc_ndcg_at_20_diff1 value: 51.17449748619954 - type: nauc_ndcg_at_20_max value: 8.560656277843842 - type: nauc_ndcg_at_20_std value: -11.721957002532669 - type: nauc_ndcg_at_3_diff1 value: 51.697701767290724 - type: nauc_ndcg_at_3_max value: 7.949689650260239 - type: nauc_ndcg_at_3_std value: -15.497849863574933 - type: nauc_ndcg_at_5_diff1 value: 50.49788213345009 - type: nauc_ndcg_at_5_max value: 8.380898947808362 - type: nauc_ndcg_at_5_std value: -13.119756502356564 - type: nauc_precision_at_1000_diff1 value: -4.321234329511238 - type: nauc_precision_at_1000_max value: 4.842614825492312 - type: nauc_precision_at_1000_std value: 3.517128181017838 - type: nauc_precision_at_100_diff1 value: -7.201118735439735 - type: nauc_precision_at_100_max value: 6.529523563838742 - type: nauc_precision_at_100_std value: 7.106363711097527 - type: nauc_precision_at_10_diff1 value: -9.482064191334755 - type: nauc_precision_at_10_max value: 10.994306197736153 - type: nauc_precision_at_10_std value: 9.958273491520254 - type: nauc_precision_at_1_diff1 value: 72.45922013700734 - type: nauc_precision_at_1_max value: 1.8703455839128875 - type: nauc_precision_at_1_std value: -23.12219651563944 - type: nauc_precision_at_20_diff1 value: -9.380072735429245 - type: nauc_precision_at_20_max value: 9.856465558009173 - type: nauc_precision_at_20_std value: 9.131673380453492 - type: nauc_precision_at_3_diff1 value: 9.586710337314623 - type: nauc_precision_at_3_max value: 14.740209113800102 - type: nauc_precision_at_3_std value: -3.891333715748583 - type: nauc_precision_at_5_diff1 value: -3.998520236788054 - type: nauc_precision_at_5_max value: 13.422868860819156 - type: nauc_precision_at_5_std value: 6.108452997840511 - type: nauc_recall_at_1000_diff1 value: 3.385758105150115 - type: nauc_recall_at_1000_max value: 47.3665730767981 - type: nauc_recall_at_1000_std value: 56.87746303806031 - type: nauc_recall_at_100_diff1 value: -2.028014907991153 - type: nauc_recall_at_100_max value: 32.48324188848066 - type: nauc_recall_at_100_std value: 44.261168385513336 - type: nauc_recall_at_10_diff1 value: 10.768002004459115 - type: nauc_recall_at_10_max value: 22.566005820537097 - type: nauc_recall_at_10_std value: 17.40223735419854 - type: nauc_recall_at_1_diff1 value: 56.03047128824491 - type: nauc_recall_at_1_max value: 1.9657828096288057 - type: nauc_recall_at_1_std value: -16.09258344775108 - type: nauc_recall_at_20_diff1 value: 6.801138990752192 - type: nauc_recall_at_20_max value: 26.58420813169432 - type: nauc_recall_at_20_std value: 25.593452124921424 - type: nauc_recall_at_3_diff1 value: 28.43603012844233 - type: nauc_recall_at_3_max value: 13.635019609839791 - type: nauc_recall_at_3_std value: -7.307728685928379 - type: nauc_recall_at_5_diff1 value: 19.599627188133983 - type: nauc_recall_at_5_max value: 17.90056850206721 - type: nauc_recall_at_5_std value: 3.353861530030554 - type: ndcg_at_1 value: 84.773 - type: ndcg_at_10 value: 89.917 - type: ndcg_at_100 value: 90.577 - type: ndcg_at_1000 value: 90.739 - type: ndcg_at_20 value: 90.22200000000001 - type: ndcg_at_3 value: 88.601 - type: ndcg_at_5 value: 89.35499999999999 - type: precision_at_1 value: 84.773 - type: precision_at_10 value: 10.696 - type: precision_at_100 value: 1.13 - type: precision_at_1000 value: 0.116 - type: precision_at_20 value: 5.455 - type: precision_at_3 value: 33.663 - type: precision_at_5 value: 20.801 - type: recall_at_1 value: 78.50200000000001 - type: recall_at_10 value: 95.64099999999999 - type: recall_at_100 value: 98.05 - type: recall_at_1000 value: 98.964 - type: recall_at_20 value: 96.619 - type: recall_at_3 value: 92.11500000000001 - type: recall_at_5 value: 94.06 task: type: Retrieval - dataset: config: default name: MTEB FEVER (default) revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 split: train type: mteb/fever metrics: - type: main_score value: 90.021 - type: map_at_1 value: 77.215 - type: map_at_10 value: 86.476 - type: map_at_100 value: 86.761 - type: map_at_1000 value: 86.777 - type: map_at_20 value: 86.644 - type: map_at_3 value: 85.468 - type: map_at_5 value: 86.114 - type: mrr_at_1 value: 85.91202986977507 - type: mrr_at_10 value: 92.10172296159176 - type: mrr_at_100 value: 92.11177503330649 - type: mrr_at_1000 value: 92.11183644281331 - type: mrr_at_20 value: 92.10977698448572 - type: mrr_at_3 value: 91.81556021005755 - type: mrr_at_5 value: 92.04623136933206 - type: nauc_map_at_1000_diff1 value: 37.58072321236068 - type: nauc_map_at_1000_max value: -6.510278319693357 - type: nauc_map_at_1000_std value: -18.5792270431547 - type: nauc_map_at_100_diff1 value: 37.52385817661018 - type: nauc_map_at_100_max value: -6.489982072051949 - type: nauc_map_at_100_std value: -18.540942037635315 - type: nauc_map_at_10_diff1 value: 36.72584282122918 - type: nauc_map_at_10_max value: -6.378333016857416 - type: nauc_map_at_10_std value: -18.334301752515383 - type: nauc_map_at_1_diff1 value: 43.69122799154449 - type: nauc_map_at_1_max value: -11.63127334717789 - type: nauc_map_at_1_std value: -20.7658737657603 - type: nauc_map_at_20_diff1 value: 37.15506375729163 - type: nauc_map_at_20_max value: -6.429970912214997 - type: nauc_map_at_20_std value: -18.42568919268748 - type: nauc_map_at_3_diff1 value: 36.215420008113746 - type: nauc_map_at_3_max value: -6.550185095475879 - type: nauc_map_at_3_std value: -19.166433923188197 - type: nauc_map_at_5_diff1 value: 36.27440671840188 - type: nauc_map_at_5_max value: -6.295231222513407 - type: nauc_map_at_5_std value: -18.381810402883904 - type: nauc_mrr_at_1000_diff1 value: 63.48752265792847 - type: nauc_mrr_at_1000_max value: -19.18676872869155 - type: nauc_mrr_at_1000_std value: -39.57174458519824 - type: nauc_mrr_at_100_diff1 value: 63.48736991454802 - type: nauc_mrr_at_100_max value: -19.185964488505324 - type: nauc_mrr_at_100_std value: -39.571005370486844 - type: nauc_mrr_at_10_diff1 value: 63.496892773682575 - type: nauc_mrr_at_10_max value: -19.137184489398113 - type: nauc_mrr_at_10_std value: -39.61121405465908 - type: nauc_mrr_at_1_diff1 value: 63.8931650178703 - type: nauc_mrr_at_1_max value: -19.13870592744866 - type: nauc_mrr_at_1_std value: -36.21650937803273 - type: nauc_mrr_at_20_diff1 value: 63.48977631792124 - type: nauc_mrr_at_20_max value: -19.167118938060913 - type: nauc_mrr_at_20_std value: -39.57706812851535 - type: nauc_mrr_at_3_diff1 value: 63.32934405332199 - type: nauc_mrr_at_3_max value: -19.24641986865118 - type: nauc_mrr_at_3_std value: -40.940129761950985 - type: nauc_mrr_at_5_diff1 value: 63.517348684708644 - type: nauc_mrr_at_5_max value: -19.11256790994168 - type: nauc_mrr_at_5_std value: -39.9749657068304 - type: nauc_ndcg_at_1000_diff1 value: 41.076101906247835 - type: nauc_ndcg_at_1000_max value: -7.226733640213606 - type: nauc_ndcg_at_1000_std value: -20.509409301747596 - type: nauc_ndcg_at_100_diff1 value: 39.912775071923846 - type: nauc_ndcg_at_100_max value: -6.6031024308101305 - type: nauc_ndcg_at_100_std value: -19.488976518418685 - type: nauc_ndcg_at_10_diff1 value: 36.991054890053746 - type: nauc_ndcg_at_10_max value: -5.703804107983826 - type: nauc_ndcg_at_10_std value: -18.30890245336646 - type: nauc_ndcg_at_1_diff1 value: 63.8931650178703 - type: nauc_ndcg_at_1_max value: -19.13870592744866 - type: nauc_ndcg_at_1_std value: -36.21650937803273 - type: nauc_ndcg_at_20_diff1 value: 38.06195629005128 - type: nauc_ndcg_at_20_max value: -5.956938984887445 - type: nauc_ndcg_at_20_std value: -18.55811206090083 - type: nauc_ndcg_at_3_diff1 value: 38.3253264990881 - type: nauc_ndcg_at_3_max value: -6.160356060424505 - type: nauc_ndcg_at_3_std value: -21.17644073772092 - type: nauc_ndcg_at_5_diff1 value: 36.81395160037575 - type: nauc_ndcg_at_5_max value: -5.5184833028226015 - type: nauc_ndcg_at_5_std value: -18.855728016827573 - type: nauc_precision_at_1000_diff1 value: -1.798023567581113 - type: nauc_precision_at_1000_max value: 2.075676216126402 - type: nauc_precision_at_1000_std value: 0.6661076521215061 - type: nauc_precision_at_100_diff1 value: -3.4104407178365914 - type: nauc_precision_at_100_max value: 4.0047525056348565 - type: nauc_precision_at_100_std value: 2.9538134117977 - type: nauc_precision_at_10_diff1 value: -7.971971190220629 - type: nauc_precision_at_10_max value: 5.79095981673231 - type: nauc_precision_at_10_std value: 2.679701881943801 - type: nauc_precision_at_1_diff1 value: 63.8931650178703 - type: nauc_precision_at_1_max value: -19.13870592744866 - type: nauc_precision_at_1_std value: -36.21650937803273 - type: nauc_precision_at_20_diff1 value: -5.97650346358847 - type: nauc_precision_at_20_max value: 5.356231824212161 - type: nauc_precision_at_20_std value: 3.3717231487953927 - type: nauc_precision_at_3_diff1 value: -4.338422835263307 - type: nauc_precision_at_3_max value: 5.225732964596468 - type: nauc_precision_at_3_std value: -7.216509536122836 - type: nauc_precision_at_5_diff1 value: -8.546583059668556 - type: nauc_precision_at_5_max value: 6.3921561938488995 - type: nauc_precision_at_5_std value: 0.14590803478964773 - type: nauc_recall_at_1000_diff1 value: -14.550446134779385 - type: nauc_recall_at_1000_max value: 40.7272814014902 - type: nauc_recall_at_1000_std value: 51.09977581242159 - type: nauc_recall_at_100_diff1 value: -9.382110771276123 - type: nauc_recall_at_100_max value: 29.248829469706678 - type: nauc_recall_at_100_std value: 35.13007427579197 - type: nauc_recall_at_10_diff1 value: -1.9178724742563424 - type: nauc_recall_at_10_max value: 17.388506357276793 - type: nauc_recall_at_10_std value: 14.607463593218906 - type: nauc_recall_at_1_diff1 value: 43.69122799154449 - type: nauc_recall_at_1_max value: -11.63127334717789 - type: nauc_recall_at_1_std value: -20.7658737657603 - type: nauc_recall_at_20_diff1 value: -4.360500447701097 - type: nauc_recall_at_20_max value: 21.02263450303614 - type: nauc_recall_at_20_std value: 20.999393483063248 - type: nauc_recall_at_3_diff1 value: 11.835627611412372 - type: nauc_recall_at_3_max value: 6.73026263313079 - type: nauc_recall_at_3_std value: -6.139330166444412 - type: nauc_recall_at_5_diff1 value: 3.847666226700295 - type: nauc_recall_at_5_max value: 12.82319379524697 - type: nauc_recall_at_5_std value: 5.2049518693364165 - type: ndcg_at_1 value: 85.912 - type: ndcg_at_10 value: 90.021 - type: ndcg_at_100 value: 90.807 - type: ndcg_at_1000 value: 91.022 - type: ndcg_at_20 value: 90.36800000000001 - type: ndcg_at_3 value: 88.95100000000001 - type: ndcg_at_5 value: 89.54299999999999 - type: precision_at_1 value: 85.912 - type: precision_at_10 value: 11.17 - type: precision_at_100 value: 1.205 - type: precision_at_1000 value: 0.125 - type: precision_at_20 value: 5.742 - type: precision_at_3 value: 34.993 - type: precision_at_5 value: 21.653 - type: recall_at_1 value: 77.215 - type: recall_at_10 value: 95.27 - type: recall_at_100 value: 97.946 - type: recall_at_1000 value: 99.151 - type: recall_at_20 value: 96.282 - type: recall_at_3 value: 92.061 - type: recall_at_5 value: 93.881 task: type: Retrieval - dataset: config: default name: MTEB FiQA2018 (default) revision: 27a168819829fe9bcd655c2df245fb19452e8e06 split: dev type: mteb/fiqa metrics: - type: main_score value: 46.132 - type: map_at_1 value: 26.173999999999996 - type: map_at_10 value: 38.342999999999996 - type: map_at_100 value: 40.264 - type: map_at_1000 value: 40.43 - type: map_at_20 value: 39.446 - type: map_at_3 value: 33.975 - type: map_at_5 value: 36.434 - type: mrr_at_1 value: 46.800000000000004 - type: mrr_at_10 value: 54.254126984126984 - type: mrr_at_100 value: 54.923209054678026 - type: mrr_at_1000 value: 54.96385524659587 - type: mrr_at_20 value: 54.642069278330894 - type: mrr_at_3 value: 51.96666666666668 - type: mrr_at_5 value: 53.36666666666666 - type: nauc_map_at_1000_diff1 value: 49.841885106876695 - type: nauc_map_at_1000_max value: 30.36895689778847 - type: nauc_map_at_1000_std value: 1.7567744666421903 - type: nauc_map_at_100_diff1 value: 49.81372794693455 - type: nauc_map_at_100_max value: 30.31791638948266 - type: nauc_map_at_100_std value: 1.7727102636629064 - type: nauc_map_at_10_diff1 value: 49.799159621528446 - type: nauc_map_at_10_max value: 28.95097185909244 - type: nauc_map_at_10_std value: -0.2143787100918625 - type: nauc_map_at_1_diff1 value: 52.58007399240151 - type: nauc_map_at_1_max value: 23.415428952222296 - type: nauc_map_at_1_std value: -3.4523781889766534 - type: nauc_map_at_20_diff1 value: 49.77759278250616 - type: nauc_map_at_20_max value: 29.637020999394448 - type: nauc_map_at_20_std value: 0.9417068184996975 - type: nauc_map_at_3_diff1 value: 50.15320410883135 - type: nauc_map_at_3_max value: 25.672823727430483 - type: nauc_map_at_3_std value: -3.6368832994092495 - type: nauc_map_at_5_diff1 value: 49.73253471375265 - type: nauc_map_at_5_max value: 27.452729712955946 - type: nauc_map_at_5_std value: -2.597504538318964 - type: nauc_mrr_at_1000_diff1 value: 59.23823771450779 - type: nauc_mrr_at_1000_max value: 43.689096630807406 - type: nauc_mrr_at_1000_std value: 6.006395209759317 - type: nauc_mrr_at_100_diff1 value: 59.24508199769832 - type: nauc_mrr_at_100_max value: 43.707191670788845 - type: nauc_mrr_at_100_std value: 6.038811740941315 - type: nauc_mrr_at_10_diff1 value: 59.18050290269257 - type: nauc_mrr_at_10_max value: 43.68703710709348 - type: nauc_mrr_at_10_std value: 5.920147856790965 - type: nauc_mrr_at_1_diff1 value: 61.23049191214833 - type: nauc_mrr_at_1_max value: 42.82186697869064 - type: nauc_mrr_at_1_std value: 5.226665401704537 - type: nauc_mrr_at_20_diff1 value: 59.20345490177547 - type: nauc_mrr_at_20_max value: 43.71801475513994 - type: nauc_mrr_at_20_std value: 6.06326305891993 - type: nauc_mrr_at_3_diff1 value: 59.51435687918044 - type: nauc_mrr_at_3_max value: 42.75973795344299 - type: nauc_mrr_at_3_std value: 3.7021523288826534 - type: nauc_mrr_at_5_diff1 value: 59.33809476755813 - type: nauc_mrr_at_5_max value: 43.35457262061369 - type: nauc_mrr_at_5_std value: 5.133928801400819 - type: nauc_ndcg_at_1000_diff1 value: 52.201491960514424 - type: nauc_ndcg_at_1000_max value: 36.67184214497183 - type: nauc_ndcg_at_1000_std value: 7.063547365940826 - type: nauc_ndcg_at_100_diff1 value: 51.6839609303026 - type: nauc_ndcg_at_100_max value: 36.54239095504816 - type: nauc_ndcg_at_100_std value: 8.305198443785065 - type: nauc_ndcg_at_10_diff1 value: 51.015102739483666 - type: nauc_ndcg_at_10_max value: 33.38470092473942 - type: nauc_ndcg_at_10_std value: 3.4372330157713913 - type: nauc_ndcg_at_1_diff1 value: 61.23049191214833 - type: nauc_ndcg_at_1_max value: 42.82186697869064 - type: nauc_ndcg_at_1_std value: 5.226665401704537 - type: nauc_ndcg_at_20_diff1 value: 51.148241453136286 - type: nauc_ndcg_at_20_max value: 34.415266899737986 - type: nauc_ndcg_at_20_std value: 5.722948452578717 - type: nauc_ndcg_at_3_diff1 value: 50.183107867516384 - type: nauc_ndcg_at_3_max value: 31.825660975728017 - type: nauc_ndcg_at_3_std value: 0.05987477146294962 - type: nauc_ndcg_at_5_diff1 value: 50.27752187238947 - type: nauc_ndcg_at_5_max value: 31.58055768641312 - type: nauc_ndcg_at_5_std value: 0.095638813464201 - type: nauc_precision_at_1000_diff1 value: -1.081891577216482 - type: nauc_precision_at_1000_max value: 22.772384668021623 - type: nauc_precision_at_1000_std value: 20.37369910022167 - type: nauc_precision_at_100_diff1 value: 4.865265359179138 - type: nauc_precision_at_100_max value: 28.950539208916727 - type: nauc_precision_at_100_std value: 27.88929247051143 - type: nauc_precision_at_10_diff1 value: 18.581939701749484 - type: nauc_precision_at_10_max value: 32.5407981760264 - type: nauc_precision_at_10_std value: 18.06686305505164 - type: nauc_precision_at_1_diff1 value: 61.23049191214833 - type: nauc_precision_at_1_max value: 42.82186697869064 - type: nauc_precision_at_1_std value: 5.226665401704537 - type: nauc_precision_at_20_diff1 value: 12.547121372367496 - type: nauc_precision_at_20_max value: 30.247027897607875 - type: nauc_precision_at_20_std value: 23.213776336403853 - type: nauc_precision_at_3_diff1 value: 33.47981633285446 - type: nauc_precision_at_3_max value: 32.05249666039517 - type: nauc_precision_at_3_std value: 3.7643758682601813 - type: nauc_precision_at_5_diff1 value: 24.156736607137386 - type: nauc_precision_at_5_max value: 31.58120543424835 - type: nauc_precision_at_5_std value: 8.826547060575736 - type: nauc_recall_at_1000_diff1 value: 44.70168791342202 - type: nauc_recall_at_1000_max value: 40.019041375679365 - type: nauc_recall_at_1000_std value: 26.28492676001751 - type: nauc_recall_at_100_diff1 value: 38.85858202136479 - type: nauc_recall_at_100_max value: 35.63673405628285 - type: nauc_recall_at_100_std value: 26.480426298783005 - type: nauc_recall_at_10_diff1 value: 41.87765017247146 - type: nauc_recall_at_10_max value: 26.94832721731921 - type: nauc_recall_at_10_std value: 5.096767252321309 - type: nauc_recall_at_1_diff1 value: 52.58007399240151 - type: nauc_recall_at_1_max value: 23.415428952222296 - type: nauc_recall_at_1_std value: -3.4523781889766534 - type: nauc_recall_at_20_diff1 value: 40.31961054933225 - type: nauc_recall_at_20_max value: 29.149084076136273 - type: nauc_recall_at_20_std value: 12.080660943653156 - type: nauc_recall_at_3_diff1 value: 44.845037051363235 - type: nauc_recall_at_3_max value: 22.163030784764484 - type: nauc_recall_at_3_std value: -5.426325332659164 - type: nauc_recall_at_5_diff1 value: 43.36113793278537 - type: nauc_recall_at_5_max value: 23.182744951367788 - type: nauc_recall_at_5_std value: -3.634417407112399 - type: ndcg_at_1 value: 46.800000000000004 - type: ndcg_at_10 value: 46.132 - type: ndcg_at_100 value: 52.410000000000004 - type: ndcg_at_1000 value: 55.057 - type: ndcg_at_20 value: 48.679 - type: ndcg_at_3 value: 42.487 - type: ndcg_at_5 value: 43.586999999999996 - type: precision_at_1 value: 46.800000000000004 - type: precision_at_10 value: 11.74 - type: precision_at_100 value: 1.8419999999999999 - type: precision_at_1000 value: 0.22799999999999998 - type: precision_at_20 value: 7.07 - type: precision_at_3 value: 26.200000000000003 - type: precision_at_5 value: 19.16 - type: recall_at_1 value: 26.173999999999996 - type: recall_at_10 value: 52.979 - type: recall_at_100 value: 76.048 - type: recall_at_1000 value: 92.054 - type: recall_at_20 value: 60.624 - type: recall_at_3 value: 38.657000000000004 - type: recall_at_5 value: 44.862 task: type: Retrieval - dataset: config: default name: MTEB FiQA2018 (default) revision: 27a168819829fe9bcd655c2df245fb19452e8e06 split: test type: mteb/fiqa metrics: - type: main_score value: 43.887 - type: map_at_1 value: 21.397 - type: map_at_10 value: 35.811 - type: map_at_100 value: 37.661 - type: map_at_1000 value: 37.839 - type: map_at_20 value: 36.727 - type: map_at_3 value: 31.493 - type: map_at_5 value: 33.992 - type: mrr_at_1 value: 42.74691358024691 - type: mrr_at_10 value: 52.44727366255143 - type: mrr_at_100 value: 53.157106113787755 - type: mrr_at_1000 value: 53.19590692557363 - type: mrr_at_20 value: 52.788702294851234 - type: mrr_at_3 value: 50.231481481481474 - type: mrr_at_5 value: 51.604938271604915 - type: nauc_map_at_1000_diff1 value: 44.99013932786583 - type: nauc_map_at_1000_max value: 36.2931656288237 - type: nauc_map_at_1000_std value: 2.744952096504704 - type: nauc_map_at_100_diff1 value: 44.86944269697463 - type: nauc_map_at_100_max value: 36.18298281198049 - type: nauc_map_at_100_std value: 2.7487976881234784 - type: nauc_map_at_10_diff1 value: 44.701036690482844 - type: nauc_map_at_10_max value: 34.91880124794292 - type: nauc_map_at_10_std value: 1.5099484081332097 - type: nauc_map_at_1_diff1 value: 50.85379952260034 - type: nauc_map_at_1_max value: 27.394421957915572 - type: nauc_map_at_1_std value: -3.6437293825619923 - type: nauc_map_at_20_diff1 value: 44.643893347140214 - type: nauc_map_at_20_max value: 35.78032300474766 - type: nauc_map_at_20_std value: 2.0540696985077713 - type: nauc_map_at_3_diff1 value: 46.924921206244605 - type: nauc_map_at_3_max value: 31.95948324092745 - type: nauc_map_at_3_std value: -0.24644658949620132 - type: nauc_map_at_5_diff1 value: 45.299548947339346 - type: nauc_map_at_5_max value: 33.560927993044636 - type: nauc_map_at_5_std value: -0.09229167862135255 - type: nauc_mrr_at_1000_diff1 value: 53.97584579514102 - type: nauc_mrr_at_1000_max value: 41.39325946543948 - type: nauc_mrr_at_1000_std value: 2.7797248987216774 - type: nauc_mrr_at_100_diff1 value: 53.95469720996498 - type: nauc_mrr_at_100_max value: 41.41453164205358 - type: nauc_mrr_at_100_std value: 2.8260988232101902 - type: nauc_mrr_at_10_diff1 value: 53.72315979312175 - type: nauc_mrr_at_10_max value: 41.177743822376904 - type: nauc_mrr_at_10_std value: 2.563267516014612 - type: nauc_mrr_at_1_diff1 value: 57.590727821071155 - type: nauc_mrr_at_1_max value: 41.635385860154074 - type: nauc_mrr_at_1_std value: -0.44532344504198534 - type: nauc_mrr_at_20_diff1 value: 53.83801635440246 - type: nauc_mrr_at_20_max value: 41.28524524541232 - type: nauc_mrr_at_20_std value: 2.5331225115409577 - type: nauc_mrr_at_3_diff1 value: 54.39722667585212 - type: nauc_mrr_at_3_max value: 40.54145465851505 - type: nauc_mrr_at_3_std value: 1.6925912897229027 - type: nauc_mrr_at_5_diff1 value: 53.691867160376816 - type: nauc_mrr_at_5_max value: 40.94797527156675 - type: nauc_mrr_at_5_std value: 2.227219454930413 - type: nauc_ndcg_at_1000_diff1 value: 47.28950242475927 - type: nauc_ndcg_at_1000_max value: 40.558784896965015 - type: nauc_ndcg_at_1000_std value: 6.916048078136412 - type: nauc_ndcg_at_100_diff1 value: 45.803609057238724 - type: nauc_ndcg_at_100_max value: 39.9247602434488 - type: nauc_ndcg_at_100_std value: 8.070013922609293 - type: nauc_ndcg_at_10_diff1 value: 44.601721852568154 - type: nauc_ndcg_at_10_max value: 36.7523945635637 - type: nauc_ndcg_at_10_std value: 3.7741680838463916 - type: nauc_ndcg_at_1_diff1 value: 57.590727821071155 - type: nauc_ndcg_at_1_max value: 41.635385860154074 - type: nauc_ndcg_at_1_std value: -0.44532344504198534 - type: nauc_ndcg_at_20_diff1 value: 44.84087184273544 - type: nauc_ndcg_at_20_max value: 38.32125780917691 - type: nauc_ndcg_at_20_std value: 4.548886454834896 - type: nauc_ndcg_at_3_diff1 value: 46.45102235679583 - type: nauc_ndcg_at_3_max value: 36.9633250683586 - type: nauc_ndcg_at_3_std value: 2.369907620024769 - type: nauc_ndcg_at_5_diff1 value: 44.32017759567463 - type: nauc_ndcg_at_5_max value: 35.90479608408539 - type: nauc_ndcg_at_5_std value: 1.450222645028762 - type: nauc_precision_at_1000_diff1 value: 1.3454169253303294 - type: nauc_precision_at_1000_max value: 23.88451750412882 - type: nauc_precision_at_1000_std value: 12.591204064713308 - type: nauc_precision_at_100_diff1 value: 6.012218731725929 - type: nauc_precision_at_100_max value: 30.969198659050733 - type: nauc_precision_at_100_std value: 18.35239521849261 - type: nauc_precision_at_10_diff1 value: 16.908790779236835 - type: nauc_precision_at_10_max value: 37.080559157562455 - type: nauc_precision_at_10_std value: 12.110645329690259 - type: nauc_precision_at_1_diff1 value: 57.590727821071155 - type: nauc_precision_at_1_max value: 41.635385860154074 - type: nauc_precision_at_1_std value: -0.44532344504198534 - type: nauc_precision_at_20_diff1 value: 12.877352199360345 - type: nauc_precision_at_20_max value: 37.364422905122815 - type: nauc_precision_at_20_std value: 13.813344186459652 - type: nauc_precision_at_3_diff1 value: 32.81390693003651 - type: nauc_precision_at_3_max value: 38.89224188329493 - type: nauc_precision_at_3_std value: 6.490943672811113 - type: nauc_precision_at_5_diff1 value: 23.31033104699241 - type: nauc_precision_at_5_max value: 37.026347485355956 - type: nauc_precision_at_5_std value: 6.082794133847137 - type: nauc_recall_at_1000_diff1 value: 40.21199090930344 - type: nauc_recall_at_1000_max value: 45.44325141564459 - type: nauc_recall_at_1000_std value: 39.95206397839652 - type: nauc_recall_at_100_diff1 value: 28.694180171434674 - type: nauc_recall_at_100_max value: 36.16137724563645 - type: nauc_recall_at_100_std value: 29.362576415720426 - type: nauc_recall_at_10_diff1 value: 30.82350118152907 - type: nauc_recall_at_10_max value: 28.84721188763083 - type: nauc_recall_at_10_std value: 6.871358974808361 - type: nauc_recall_at_1_diff1 value: 50.85379952260034 - type: nauc_recall_at_1_max value: 27.394421957915572 - type: nauc_recall_at_1_std value: -3.6437293825619923 - type: nauc_recall_at_20_diff1 value: 30.494672593660365 - type: nauc_recall_at_20_max value: 32.451452059083 - type: nauc_recall_at_20_std value: 8.857752757738012 - type: nauc_recall_at_3_diff1 value: 37.98407967492573 - type: nauc_recall_at_3_max value: 26.531560809821137 - type: nauc_recall_at_3_std value: 1.2955663995782718 - type: nauc_recall_at_5_diff1 value: 32.84916383815314 - type: nauc_recall_at_5_max value: 26.621206298631378 - type: nauc_recall_at_5_std value: 1.6024978706362352 - type: ndcg_at_1 value: 42.747 - type: ndcg_at_10 value: 43.887 - type: ndcg_at_100 value: 50.485 - type: ndcg_at_1000 value: 53.400999999999996 - type: ndcg_at_20 value: 46.098 - type: ndcg_at_3 value: 40.602 - type: ndcg_at_5 value: 41.725 - type: precision_at_1 value: 42.747 - type: precision_at_10 value: 11.991 - type: precision_at_100 value: 1.889 - type: precision_at_1000 value: 0.241 - type: precision_at_20 value: 6.959999999999999 - type: precision_at_3 value: 27.058 - type: precision_at_5 value: 19.814999999999998 - type: recall_at_1 value: 21.397 - type: recall_at_10 value: 50.678 - type: recall_at_100 value: 75.108 - type: recall_at_1000 value: 92.465 - type: recall_at_20 value: 57.474000000000004 - type: recall_at_3 value: 37.391000000000005 - type: recall_at_5 value: 43.566 task: type: Retrieval - dataset: config: default name: MTEB FiQA2018 (default) revision: 27a168819829fe9bcd655c2df245fb19452e8e06 split: train type: mteb/fiqa metrics: - type: main_score value: 45.074 - type: map_at_1 value: 22.921 - type: map_at_10 value: 37.062 - type: map_at_100 value: 38.869 - type: map_at_1000 value: 39.031 - type: map_at_20 value: 38.073 - type: map_at_3 value: 32.482 - type: map_at_5 value: 34.975 - type: mrr_at_1 value: 42.81818181818181 - type: mrr_at_10 value: 52.01925685425696 - type: mrr_at_100 value: 52.76535915811975 - type: mrr_at_1000 value: 52.80323713270641 - type: mrr_at_20 value: 52.46928188075179 - type: mrr_at_3 value: 49.563636363636505 - type: mrr_at_5 value: 51.04090909090917 - type: nauc_map_at_1000_diff1 value: 45.10345424051492 - type: nauc_map_at_1000_max value: 29.68487371437469 - type: nauc_map_at_1000_std value: 1.238229479331942 - type: nauc_map_at_100_diff1 value: 45.07560751433321 - type: nauc_map_at_100_max value: 29.621328097853137 - type: nauc_map_at_100_std value: 1.1967771682187873 - type: nauc_map_at_10_diff1 value: 44.843509175193056 - type: nauc_map_at_10_max value: 28.618388907804658 - type: nauc_map_at_10_std value: -0.17386075400517237 - type: nauc_map_at_1_diff1 value: 49.47111917296565 - type: nauc_map_at_1_max value: 20.0742470618401 - type: nauc_map_at_1_std value: -4.129360092632688 - type: nauc_map_at_20_diff1 value: 44.95018685490344 - type: nauc_map_at_20_max value: 29.150108596298434 - type: nauc_map_at_20_std value: 0.6249683074740969 - type: nauc_map_at_3_diff1 value: 45.01551197502368 - type: nauc_map_at_3_max value: 25.1628789711796 - type: nauc_map_at_3_std value: -3.321515508442981 - type: nauc_map_at_5_diff1 value: 44.91318371210472 - type: nauc_map_at_5_max value: 27.12198758255798 - type: nauc_map_at_5_std value: -1.8418885545143031 - type: nauc_mrr_at_1000_diff1 value: 51.02890753099619 - type: nauc_mrr_at_1000_max value: 37.20699525567458 - type: nauc_mrr_at_1000_std value: 3.189109744356073 - type: nauc_mrr_at_100_diff1 value: 51.015583067584146 - type: nauc_mrr_at_100_max value: 37.20945921198165 - type: nauc_mrr_at_100_std value: 3.2119457438429047 - type: nauc_mrr_at_10_diff1 value: 50.938326208533056 - type: nauc_mrr_at_10_max value: 37.2328138702086 - type: nauc_mrr_at_10_std value: 3.1417844227142577 - type: nauc_mrr_at_1_diff1 value: 54.83336818983676 - type: nauc_mrr_at_1_max value: 35.941190580000395 - type: nauc_mrr_at_1_std value: 0.11480196188945171 - type: nauc_mrr_at_20_diff1 value: 50.97564795196412 - type: nauc_mrr_at_20_max value: 37.22205264818766 - type: nauc_mrr_at_20_std value: 3.2001064750905672 - type: nauc_mrr_at_3_diff1 value: 51.12200690387213 - type: nauc_mrr_at_3_max value: 36.605143686242045 - type: nauc_mrr_at_3_std value: 1.9427581254272008 - type: nauc_mrr_at_5_diff1 value: 51.08466836245801 - type: nauc_mrr_at_5_max value: 37.23852403243883 - type: nauc_mrr_at_5_std value: 2.7992259556688466 - type: nauc_ndcg_at_1000_diff1 value: 45.6295653089338 - type: nauc_ndcg_at_1000_max value: 34.25244958857478 - type: nauc_ndcg_at_1000_std value: 5.968157773281027 - type: nauc_ndcg_at_100_diff1 value: 45.15925091294929 - type: nauc_ndcg_at_100_max value: 33.77292060148967 - type: nauc_ndcg_at_100_std value: 6.252767106085369 - type: nauc_ndcg_at_10_diff1 value: 44.63262132249889 - type: nauc_ndcg_at_10_max value: 31.804054311383613 - type: nauc_ndcg_at_10_std value: 2.868169824330679 - type: nauc_ndcg_at_1_diff1 value: 54.83336818983676 - type: nauc_ndcg_at_1_max value: 35.941190580000395 - type: nauc_ndcg_at_1_std value: 0.11480196188945171 - type: nauc_ndcg_at_20_diff1 value: 44.73531667035927 - type: nauc_ndcg_at_20_max value: 32.36405405932841 - type: nauc_ndcg_at_20_std value: 4.234168192043894 - type: nauc_ndcg_at_3_diff1 value: 45.180068719892965 - type: nauc_ndcg_at_3_max value: 31.144658941814473 - type: nauc_ndcg_at_3_std value: 0.15981365840386932 - type: nauc_ndcg_at_5_diff1 value: 44.91186731928022 - type: nauc_ndcg_at_5_max value: 31.097528102462903 - type: nauc_ndcg_at_5_std value: 1.0978416567636418 - type: nauc_precision_at_1000_diff1 value: 0.10884757461177323 - type: nauc_precision_at_1000_max value: 22.44073868984244 - type: nauc_precision_at_1000_std value: 18.425802177787244 - type: nauc_precision_at_100_diff1 value: 8.326770033288243 - type: nauc_precision_at_100_max value: 29.87121252902087 - type: nauc_precision_at_100_std value: 22.471637271023955 - type: nauc_precision_at_10_diff1 value: 20.3859018808304 - type: nauc_precision_at_10_max value: 35.387490020659186 - type: nauc_precision_at_10_std value: 14.452716344612679 - type: nauc_precision_at_1_diff1 value: 54.83336818983676 - type: nauc_precision_at_1_max value: 35.941190580000395 - type: nauc_precision_at_1_std value: 0.11480196188945171 - type: nauc_precision_at_20_diff1 value: 16.24605754303343 - type: nauc_precision_at_20_max value: 33.818393780875525 - type: nauc_precision_at_20_std value: 18.42940330763103 - type: nauc_precision_at_3_diff1 value: 31.181315158851408 - type: nauc_precision_at_3_max value: 35.71839391755647 - type: nauc_precision_at_3_std value: 4.86245107443907 - type: nauc_precision_at_5_diff1 value: 26.18450860125776 - type: nauc_precision_at_5_max value: 36.32130007403958 - type: nauc_precision_at_5_std value: 9.106489600607265 - type: nauc_recall_at_1000_diff1 value: 21.411131898774677 - type: nauc_recall_at_1000_max value: 34.541893106658605 - type: nauc_recall_at_1000_std value: 40.6467864769445 - type: nauc_recall_at_100_diff1 value: 28.25747320103834 - type: nauc_recall_at_100_max value: 29.192936775640888 - type: nauc_recall_at_100_std value: 22.38141045002714 - type: nauc_recall_at_10_diff1 value: 33.183148689667306 - type: nauc_recall_at_10_max value: 26.115736478754542 - type: nauc_recall_at_10_std value: 5.779562369828712 - type: nauc_recall_at_1_diff1 value: 49.47111917296565 - type: nauc_recall_at_1_max value: 20.0742470618401 - type: nauc_recall_at_1_std value: -4.129360092632688 - type: nauc_recall_at_20_diff1 value: 31.3273565134318 - type: nauc_recall_at_20_max value: 26.118667671265268 - type: nauc_recall_at_20_std value: 10.337063376342904 - type: nauc_recall_at_3_diff1 value: 37.71800914450827 - type: nauc_recall_at_3_max value: 21.998612117129866 - type: nauc_recall_at_3_std value: -2.8573409678442667 - type: nauc_recall_at_5_diff1 value: 36.035788981718326 - type: nauc_recall_at_5_max value: 24.462942381019985 - type: nauc_recall_at_5_std value: 0.5720741719496573 - type: ndcg_at_1 value: 42.818 - type: ndcg_at_10 value: 45.074 - type: ndcg_at_100 value: 51.405 - type: ndcg_at_1000 value: 54.092 - type: ndcg_at_20 value: 47.555 - type: ndcg_at_3 value: 40.735 - type: ndcg_at_5 value: 42.229 - type: precision_at_1 value: 42.818 - type: precision_at_10 value: 12.110999999999999 - type: precision_at_100 value: 1.876 - type: precision_at_1000 value: 0.23500000000000001 - type: precision_at_20 value: 7.117999999999999 - type: precision_at_3 value: 26.473000000000003 - type: precision_at_5 value: 19.465 - type: recall_at_1 value: 22.921 - type: recall_at_10 value: 52.942 - type: recall_at_100 value: 76.61200000000001 - type: recall_at_1000 value: 92.793 - type: recall_at_20 value: 60.809999999999995 - type: recall_at_3 value: 37.830999999999996 - type: recall_at_5 value: 44.279 task: type: Retrieval - dataset: config: default name: MTEB HotpotQA (default) revision: ab518f4d6fcca38d87c25209f94beba119d02014 split: dev type: mteb/hotpotqa metrics: - type: main_score value: 77.35600000000001 - type: map_at_1 value: 42.299 - type: map_at_10 value: 70.006 - type: map_at_100 value: 70.775 - type: map_at_1000 value: 70.82300000000001 - type: map_at_20 value: 70.47099999999999 - type: map_at_3 value: 66.81200000000001 - type: map_at_5 value: 68.85 - type: mrr_at_1 value: 84.59702588580869 - type: mrr_at_10 value: 89.3224608857067 - type: mrr_at_100 value: 89.42205720574383 - type: mrr_at_1000 value: 89.425588995421 - type: mrr_at_20 value: 89.38641899747822 - type: mrr_at_3 value: 88.68184321644944 - type: mrr_at_5 value: 89.0995043143014 - type: nauc_map_at_1000_diff1 value: 11.875767523175762 - type: nauc_map_at_1000_max value: 23.23376674530728 - type: nauc_map_at_1000_std value: 18.523605995632938 - type: nauc_map_at_100_diff1 value: 11.85910449749788 - type: nauc_map_at_100_max value: 23.239547476164876 - type: nauc_map_at_100_std value: 18.565229607460537 - type: nauc_map_at_10_diff1 value: 11.607663265355745 - type: nauc_map_at_10_max value: 22.923495646620154 - type: nauc_map_at_10_std value: 18.030180953748534 - type: nauc_map_at_1_diff1 value: 69.04595571010425 - type: nauc_map_at_1_max value: 42.68450581268141 - type: nauc_map_at_1_std value: 3.9078744944302226 - type: nauc_map_at_20_diff1 value: 11.723969128072866 - type: nauc_map_at_20_max value: 23.11544870270342 - type: nauc_map_at_20_std value: 18.41858338547983 - type: nauc_map_at_3_diff1 value: 11.195009895256332 - type: nauc_map_at_3_max value: 21.124864974433763 - type: nauc_map_at_3_std value: 14.668115105817323 - type: nauc_map_at_5_diff1 value: 11.399725827702468 - type: nauc_map_at_5_max value: 22.68356071435758 - type: nauc_map_at_5_std value: 17.006805900547196 - type: nauc_mrr_at_1000_diff1 value: 67.99516710058342 - type: nauc_mrr_at_1000_max value: 45.15957182658708 - type: nauc_mrr_at_1000_std value: 5.625688035185145 - type: nauc_mrr_at_100_diff1 value: 68.00038022639141 - type: nauc_mrr_at_100_max value: 45.1718894878634 - type: nauc_mrr_at_100_std value: 5.642257978446126 - type: nauc_mrr_at_10_diff1 value: 67.97643955659808 - type: nauc_mrr_at_10_max value: 45.24875815550117 - type: nauc_mrr_at_10_std value: 5.6282245777631825 - type: nauc_mrr_at_1_diff1 value: 69.04595571010425 - type: nauc_mrr_at_1_max value: 42.68450581268141 - type: nauc_mrr_at_1_std value: 3.9078744944302226 - type: nauc_mrr_at_20_diff1 value: 67.98186373375957 - type: nauc_mrr_at_20_max value: 45.16955056454227 - type: nauc_mrr_at_20_std value: 5.643021098296383 - type: nauc_mrr_at_3_diff1 value: 67.74068066479995 - type: nauc_mrr_at_3_max value: 45.233627819514496 - type: nauc_mrr_at_3_std value: 5.073903037944697 - type: nauc_mrr_at_5_diff1 value: 67.90073680819802 - type: nauc_mrr_at_5_max value: 45.28874529948139 - type: nauc_mrr_at_5_std value: 5.533506436522208 - type: nauc_ndcg_at_1000_diff1 value: 18.45245983930683 - type: nauc_ndcg_at_1000_max value: 27.416507398330854 - type: nauc_ndcg_at_1000_std value: 20.799288194838745 - type: nauc_ndcg_at_100_diff1 value: 17.774579523633484 - type: nauc_ndcg_at_100_max value: 27.484015450724563 - type: nauc_ndcg_at_100_std value: 21.824361827289604 - type: nauc_ndcg_at_10_diff1 value: 16.454456871906594 - type: nauc_ndcg_at_10_max value: 26.248157142106788 - type: nauc_ndcg_at_10_std value: 19.85534143153061 - type: nauc_ndcg_at_1_diff1 value: 69.04595571010425 - type: nauc_ndcg_at_1_max value: 42.68450581268141 - type: nauc_ndcg_at_1_std value: 3.9078744944302226 - type: nauc_ndcg_at_20_diff1 value: 16.783596764102448 - type: nauc_ndcg_at_20_max value: 26.674447936981803 - type: nauc_ndcg_at_20_std value: 20.955085734378283 - type: nauc_ndcg_at_3_diff1 value: 16.323138577650877 - type: nauc_ndcg_at_3_max value: 23.919505607419378 - type: nauc_ndcg_at_3_std value: 14.438155012059939 - type: nauc_ndcg_at_5_diff1 value: 16.252513953720612 - type: nauc_ndcg_at_5_max value: 25.834906380090715 - type: nauc_ndcg_at_5_std value: 17.797879786189498 - type: nauc_precision_at_1000_diff1 value: -5.612996021391802 - type: nauc_precision_at_1000_max value: 29.621124808949475 - type: nauc_precision_at_1000_std value: 60.2180272898463 - type: nauc_precision_at_100_diff1 value: -0.4655256365736023 - type: nauc_precision_at_100_max value: 27.863131801262153 - type: nauc_precision_at_100_std value: 48.24283178268865 - type: nauc_precision_at_10_diff1 value: 1.467484417678075 - type: nauc_precision_at_10_max value: 23.063996835379925 - type: nauc_precision_at_10_std value: 30.225428590871395 - type: nauc_precision_at_1_diff1 value: 69.04595571010425 - type: nauc_precision_at_1_max value: 42.68450581268141 - type: nauc_precision_at_1_std value: 3.9078744944302226 - type: nauc_precision_at_20_diff1 value: 0.16098170706775244 - type: nauc_precision_at_20_max value: 23.545698533798383 - type: nauc_precision_at_20_std value: 35.3738609349459 - type: nauc_precision_at_3_diff1 value: 4.822099897775316 - type: nauc_precision_at_3_max value: 19.882902254898795 - type: nauc_precision_at_3_std value: 17.397463603075302 - type: nauc_precision_at_5_diff1 value: 3.1779150794512656 - type: nauc_precision_at_5_max value: 22.753201773071552 - type: nauc_precision_at_5_std value: 24.028684632710412 - type: nauc_recall_at_1000_diff1 value: -5.6129960213919 - type: nauc_recall_at_1000_max value: 29.62112480894871 - type: nauc_recall_at_1000_std value: 60.2180272898464 - type: nauc_recall_at_100_diff1 value: -0.4655256365738292 - type: nauc_recall_at_100_max value: 27.863131801261865 - type: nauc_recall_at_100_std value: 48.24283178268853 - type: nauc_recall_at_10_diff1 value: 1.4674844176780142 - type: nauc_recall_at_10_max value: 23.063996835379864 - type: nauc_recall_at_10_std value: 30.225428590871335 - type: nauc_recall_at_1_diff1 value: 69.04595571010425 - type: nauc_recall_at_1_max value: 42.68450581268141 - type: nauc_recall_at_1_std value: 3.9078744944302226 - type: nauc_recall_at_20_diff1 value: 0.16098170706756573 - type: nauc_recall_at_20_max value: 23.545698533798166 - type: nauc_recall_at_20_std value: 35.37386093494575 - type: nauc_recall_at_3_diff1 value: 4.822099897775345 - type: nauc_recall_at_3_max value: 19.882902254898895 - type: nauc_recall_at_3_std value: 17.397463603075416 - type: nauc_recall_at_5_diff1 value: 3.177915079451333 - type: nauc_recall_at_5_max value: 22.75320177307157 - type: nauc_recall_at_5_std value: 24.028684632710416 - type: ndcg_at_1 value: 84.597 - type: ndcg_at_10 value: 77.35600000000001 - type: ndcg_at_100 value: 79.84700000000001 - type: ndcg_at_1000 value: 80.739 - type: ndcg_at_20 value: 78.457 - type: ndcg_at_3 value: 73.02499999999999 - type: ndcg_at_5 value: 75.493 - type: precision_at_1 value: 84.597 - type: precision_at_10 value: 16.091 - type: precision_at_100 value: 1.8010000000000002 - type: precision_at_1000 value: 0.192 - type: precision_at_20 value: 8.399 - type: precision_at_3 value: 47.292 - type: precision_at_5 value: 30.318 - type: recall_at_1 value: 42.299 - type: recall_at_10 value: 80.457 - type: recall_at_100 value: 90.03999999999999 - type: recall_at_1000 value: 95.91499999999999 - type: recall_at_20 value: 83.991 - type: recall_at_3 value: 70.938 - type: recall_at_5 value: 75.794 task: type: Retrieval - dataset: config: default name: MTEB HotpotQA (default) revision: ab518f4d6fcca38d87c25209f94beba119d02014 split: test type: mteb/hotpotqa metrics: - type: main_score value: 75.62 - type: map_at_1 value: 41.715 - type: map_at_10 value: 67.84400000000001 - type: map_at_100 value: 68.676 - type: map_at_1000 value: 68.72399999999999 - type: map_at_20 value: 68.351 - type: map_at_3 value: 64.332 - type: map_at_5 value: 66.618 - type: mrr_at_1 value: 83.43011478730588 - type: mrr_at_10 value: 88.32890689474063 - type: mrr_at_100 value: 88.45342904155198 - type: mrr_at_1000 value: 88.45692717602427 - type: mrr_at_20 value: 88.41265148599933 - type: mrr_at_3 value: 87.6097231600268 - type: mrr_at_5 value: 88.08102633355813 - type: nauc_map_at_1000_diff1 value: 9.465654364107301 - type: nauc_map_at_1000_max value: 15.417980238546377 - type: nauc_map_at_1000_std value: 12.078075854093665 - type: nauc_map_at_100_diff1 value: 9.442359625098023 - type: nauc_map_at_100_max value: 15.412594933146517 - type: nauc_map_at_100_std value: 12.110494024932517 - type: nauc_map_at_10_diff1 value: 9.459426708991023 - type: nauc_map_at_10_max value: 15.311848156939039 - type: nauc_map_at_10_std value: 11.55461807074889 - type: nauc_map_at_1_diff1 value: 65.05713874046143 - type: nauc_map_at_1_max value: 39.626722996510665 - type: nauc_map_at_1_std value: -0.3991780785384316 - type: nauc_map_at_20_diff1 value: 9.328534555998699 - type: nauc_map_at_20_max value: 15.307575956530108 - type: nauc_map_at_20_std value: 11.96904723212192 - type: nauc_map_at_3_diff1 value: 8.915324889938061 - type: nauc_map_at_3_max value: 13.514273119710563 - type: nauc_map_at_3_std value: 8.332620819223683 - type: nauc_map_at_5_diff1 value: 8.63645860950366 - type: nauc_map_at_5_max value: 14.350213952951254 - type: nauc_map_at_5_std value: 10.554511015067682 - type: nauc_mrr_at_1000_diff1 value: 64.29376507350443 - type: nauc_mrr_at_1000_max value: 42.432971323016226 - type: nauc_mrr_at_1000_std value: 1.103214916935443 - type: nauc_mrr_at_100_diff1 value: 64.29483641804482 - type: nauc_mrr_at_100_max value: 42.438961831187314 - type: nauc_mrr_at_100_std value: 1.108904601847414 - type: nauc_mrr_at_10_diff1 value: 64.31510468330697 - type: nauc_mrr_at_10_max value: 42.52427399840782 - type: nauc_mrr_at_10_std value: 1.131217952433522 - type: nauc_mrr_at_1_diff1 value: 65.05713874046143 - type: nauc_mrr_at_1_max value: 39.626722996510665 - type: nauc_mrr_at_1_std value: -0.3991780785384316 - type: nauc_mrr_at_20_diff1 value: 64.28943699159083 - type: nauc_mrr_at_20_max value: 42.48416850113432 - type: nauc_mrr_at_20_std value: 1.1557131772785048 - type: nauc_mrr_at_3_diff1 value: 63.94398567446783 - type: nauc_mrr_at_3_max value: 42.543599757686565 - type: nauc_mrr_at_3_std value: 0.8656592208469659 - type: nauc_mrr_at_5_diff1 value: 64.26440164249783 - type: nauc_mrr_at_5_max value: 42.76831128910234 - type: nauc_mrr_at_5_std value: 0.9815638280513239 - type: nauc_ndcg_at_1000_diff1 value: 15.819261980172072 - type: nauc_ndcg_at_1000_max value: 20.40080036519792 - type: nauc_ndcg_at_1000_std value: 14.437662972269072 - type: nauc_ndcg_at_100_diff1 value: 14.934115203495086 - type: nauc_ndcg_at_100_max value: 20.17258598061381 - type: nauc_ndcg_at_100_std value: 15.368792248125951 - type: nauc_ndcg_at_10_diff1 value: 14.601053630285463 - type: nauc_ndcg_at_10_max value: 19.4487220332248 - type: nauc_ndcg_at_10_std value: 13.167535068795317 - type: nauc_ndcg_at_1_diff1 value: 65.05713874046143 - type: nauc_ndcg_at_1_max value: 39.626722996510665 - type: nauc_ndcg_at_1_std value: -0.3991780785384316 - type: nauc_ndcg_at_20_diff1 value: 14.179531301272236 - type: nauc_ndcg_at_20_max value: 19.472746452573293 - type: nauc_ndcg_at_20_std value: 14.501827055912294 - type: nauc_ndcg_at_3_diff1 value: 14.108042690817394 - type: nauc_ndcg_at_3_max value: 16.987464708832828 - type: nauc_ndcg_at_3_std value: 8.179470755035126 - type: nauc_ndcg_at_5_diff1 value: 13.385764378384962 - type: nauc_ndcg_at_5_max value: 17.933522110142857 - type: nauc_ndcg_at_5_std value: 11.19858703808597 - type: nauc_precision_at_1000_diff1 value: -11.509824758756242 - type: nauc_precision_at_1000_max value: 22.55648484580021 - type: nauc_precision_at_1000_std value: 52.19288714530133 - type: nauc_precision_at_100_diff1 value: -7.139163153266277 - type: nauc_precision_at_100_max value: 18.186960433502737 - type: nauc_precision_at_100_std value: 41.56352667223246 - type: nauc_precision_at_10_diff1 value: 0.19926178236397488 - type: nauc_precision_at_10_max value: 15.790669273945133 - type: nauc_precision_at_10_std value: 22.227701276074303 - type: nauc_precision_at_1_diff1 value: 65.05713874046143 - type: nauc_precision_at_1_max value: 39.626722996510665 - type: nauc_precision_at_1_std value: -0.3991780785384316 - type: nauc_precision_at_20_diff1 value: -3.7308762969820637 - type: nauc_precision_at_20_max value: 15.252245858128093 - type: nauc_precision_at_20_std value: 28.673602701400558 - type: nauc_precision_at_3_diff1 value: 2.200279758618242 - type: nauc_precision_at_3_max value: 12.01603816399143 - type: nauc_precision_at_3_std value: 10.776563947053933 - type: nauc_precision_at_5_diff1 value: -0.656454595582822 - type: nauc_precision_at_5_max value: 12.954740919197965 - type: nauc_precision_at_5_std value: 16.594853377568537 - type: nauc_recall_at_1000_diff1 value: -11.50982475875598 - type: nauc_recall_at_1000_max value: 22.55648484580021 - type: nauc_recall_at_1000_std value: 52.19288714530176 - type: nauc_recall_at_100_diff1 value: -7.139163153266106 - type: nauc_recall_at_100_max value: 18.186960433502737 - type: nauc_recall_at_100_std value: 41.56352667223245 - type: nauc_recall_at_10_diff1 value: 0.19926178236406988 - type: nauc_recall_at_10_max value: 15.790669273945342 - type: nauc_recall_at_10_std value: 22.22770127607443 - type: nauc_recall_at_1_diff1 value: 65.05713874046143 - type: nauc_recall_at_1_max value: 39.626722996510665 - type: nauc_recall_at_1_std value: -0.3991780785384316 - type: nauc_recall_at_20_diff1 value: -3.7308762969819664 - type: nauc_recall_at_20_max value: 15.252245858128083 - type: nauc_recall_at_20_std value: 28.673602701400608 - type: nauc_recall_at_3_diff1 value: 2.200279758618139 - type: nauc_recall_at_3_max value: 12.016038163991432 - type: nauc_recall_at_3_std value: 10.776563947053829 - type: nauc_recall_at_5_diff1 value: -0.6564545955828385 - type: nauc_recall_at_5_max value: 12.954740919197997 - type: nauc_recall_at_5_std value: 16.59485337756855 - type: ndcg_at_1 value: 83.43 - type: ndcg_at_10 value: 75.62 - type: ndcg_at_100 value: 78.365 - type: ndcg_at_1000 value: 79.278 - type: ndcg_at_20 value: 76.831 - type: ndcg_at_3 value: 70.86200000000001 - type: ndcg_at_5 value: 73.64 - type: precision_at_1 value: 83.43 - type: precision_at_10 value: 15.776000000000002 - type: precision_at_100 value: 1.79 - type: precision_at_1000 value: 0.191 - type: precision_at_20 value: 8.276 - type: precision_at_3 value: 45.631 - type: precision_at_5 value: 29.572 - type: recall_at_1 value: 41.715 - type: recall_at_10 value: 78.879 - type: recall_at_100 value: 89.507 - type: recall_at_1000 value: 95.537 - type: recall_at_20 value: 82.762 - type: recall_at_3 value: 68.447 - type: recall_at_5 value: 73.92999999999999 task: type: Retrieval - dataset: config: default name: MTEB HotpotQA (default) revision: ab518f4d6fcca38d87c25209f94beba119d02014 split: train type: mteb/hotpotqa metrics: - type: main_score value: 77.837 - type: map_at_1 value: 42.368 - type: map_at_10 value: 70.482 - type: map_at_100 value: 71.25399999999999 - type: map_at_1000 value: 71.3 - type: map_at_20 value: 70.951 - type: map_at_3 value: 67.094 - type: map_at_5 value: 69.28699999999999 - type: mrr_at_1 value: 84.73647058823529 - type: mrr_at_10 value: 89.43228011204313 - type: mrr_at_100 value: 89.53538640990537 - type: mrr_at_1000 value: 89.53820110602267 - type: mrr_at_20 value: 89.5025639405047 - type: mrr_at_3 value: 88.76078431372584 - type: mrr_at_5 value: 89.21313725490114 - type: nauc_map_at_1000_diff1 value: 12.622422238298029 - type: nauc_map_at_1000_max value: 24.134646613977147 - type: nauc_map_at_1000_std value: 18.559113679096974 - type: nauc_map_at_100_diff1 value: 12.595518910984365 - type: nauc_map_at_100_max value: 24.13615988100401 - type: nauc_map_at_100_std value: 18.594772743956266 - type: nauc_map_at_10_diff1 value: 12.31736038153525 - type: nauc_map_at_10_max value: 23.887804934291093 - type: nauc_map_at_10_std value: 18.137521899470006 - type: nauc_map_at_1_diff1 value: 68.72516447237027 - type: nauc_map_at_1_max value: 44.3569136727875 - type: nauc_map_at_1_std value: 6.39841495768188 - type: nauc_map_at_20_diff1 value: 12.468069986147025 - type: nauc_map_at_20_max value: 24.078546039077274 - type: nauc_map_at_20_std value: 18.522291511348463 - type: nauc_map_at_3_diff1 value: 11.842231338011665 - type: nauc_map_at_3_max value: 22.112542722165667 - type: nauc_map_at_3_std value: 14.832260061022543 - type: nauc_map_at_5_diff1 value: 12.034798052329245 - type: nauc_map_at_5_max value: 23.31731384989271 - type: nauc_map_at_5_std value: 17.01434920419027 - type: nauc_mrr_at_1000_diff1 value: 68.07028540743218 - type: nauc_mrr_at_1000_max value: 47.244151670522704 - type: nauc_mrr_at_1000_std value: 9.103356279698557 - type: nauc_mrr_at_100_diff1 value: 68.07124406272081 - type: nauc_mrr_at_100_max value: 47.251355072908616 - type: nauc_mrr_at_100_std value: 9.114544406098922 - type: nauc_mrr_at_10_diff1 value: 68.05566531720568 - type: nauc_mrr_at_10_max value: 47.34781296160981 - type: nauc_mrr_at_10_std value: 9.162073165810337 - type: nauc_mrr_at_1_diff1 value: 68.72516447237027 - type: nauc_mrr_at_1_max value: 44.3569136727875 - type: nauc_mrr_at_1_std value: 6.39841495768188 - type: nauc_mrr_at_20_diff1 value: 68.06579079523253 - type: nauc_mrr_at_20_max value: 47.29519256825747 - type: nauc_mrr_at_20_std value: 9.157454906021048 - type: nauc_mrr_at_3_diff1 value: 67.86665880252679 - type: nauc_mrr_at_3_max value: 47.32534131711564 - type: nauc_mrr_at_3_std value: 8.794606309056801 - type: nauc_mrr_at_5_diff1 value: 68.01593510697437 - type: nauc_mrr_at_5_max value: 47.43102895637358 - type: nauc_mrr_at_5_std value: 9.090489695071675 - type: nauc_ndcg_at_1000_diff1 value: 19.409351180430658 - type: nauc_ndcg_at_1000_max value: 28.708136310658155 - type: nauc_ndcg_at_1000_std value: 21.135251598909345 - type: nauc_ndcg_at_100_diff1 value: 18.544111410209364 - type: nauc_ndcg_at_100_max value: 28.691312106667215 - type: nauc_ndcg_at_100_std value: 22.159472487586196 - type: nauc_ndcg_at_10_diff1 value: 17.18622230783884 - type: nauc_ndcg_at_10_max value: 27.61517105165476 - type: nauc_ndcg_at_10_std value: 20.381795917366187 - type: nauc_ndcg_at_1_diff1 value: 68.72516447237027 - type: nauc_ndcg_at_1_max value: 44.3569136727875 - type: nauc_ndcg_at_1_std value: 6.39841495768188 - type: nauc_ndcg_at_20_diff1 value: 17.621217561108292 - type: nauc_ndcg_at_20_max value: 28.220217881192745 - type: nauc_ndcg_at_20_std value: 21.634321155851048 - type: nauc_ndcg_at_3_diff1 value: 16.95281740780042 - type: nauc_ndcg_at_3_max value: 25.139541410129908 - type: nauc_ndcg_at_3_std value: 15.071626218489095 - type: nauc_ndcg_at_5_diff1 value: 16.85509256640343 - type: nauc_ndcg_at_5_max value: 26.62380882436261 - type: nauc_ndcg_at_5_std value: 18.144940484549487 - type: nauc_precision_at_1000_diff1 value: -2.498904728204529 - type: nauc_precision_at_1000_max value: 33.673710106830924 - type: nauc_precision_at_1000_std value: 60.30188328802003 - type: nauc_precision_at_100_diff1 value: -0.708165353412955 - type: nauc_precision_at_100_max value: 29.52115017710721 - type: nauc_precision_at_100_std value: 49.19453346494841 - type: nauc_precision_at_10_diff1 value: 2.2783774953634794 - type: nauc_precision_at_10_max value: 24.999953606470182 - type: nauc_precision_at_10_std value: 30.42307537842161 - type: nauc_precision_at_1_diff1 value: 68.72516447237027 - type: nauc_precision_at_1_max value: 44.3569136727875 - type: nauc_precision_at_1_std value: 6.39841495768188 - type: nauc_precision_at_20_diff1 value: 1.1464298366823311 - type: nauc_precision_at_20_max value: 26.511392023129375 - type: nauc_precision_at_20_std value: 36.70867843499613 - type: nauc_precision_at_3_diff1 value: 5.688601758765791 - type: nauc_precision_at_3_max value: 21.188583258128727 - type: nauc_precision_at_3_std value: 17.592622457537157 - type: nauc_precision_at_5_diff1 value: 3.77247674190975 - type: nauc_precision_at_5_max value: 23.106552905037606 - type: nauc_precision_at_5_std value: 23.561612818949644 - type: nauc_recall_at_1000_diff1 value: -2.498904728204562 - type: nauc_recall_at_1000_max value: 33.67371010683099 - type: nauc_recall_at_1000_std value: 60.301883288019994 - type: nauc_recall_at_100_diff1 value: -0.7081653534129272 - type: nauc_recall_at_100_max value: 29.52115017710731 - type: nauc_recall_at_100_std value: 49.194533464948535 - type: nauc_recall_at_10_diff1 value: 2.2783774953635603 - type: nauc_recall_at_10_max value: 24.999953606470118 - type: nauc_recall_at_10_std value: 30.423075378421586 - type: nauc_recall_at_1_diff1 value: 68.72516447237027 - type: nauc_recall_at_1_max value: 44.3569136727875 - type: nauc_recall_at_1_std value: 6.39841495768188 - type: nauc_recall_at_20_diff1 value: 1.146429836682064 - type: nauc_recall_at_20_max value: 26.5113920231293 - type: nauc_recall_at_20_std value: 36.70867843499605 - type: nauc_recall_at_3_diff1 value: 5.688601758765744 - type: nauc_recall_at_3_max value: 21.18858325812871 - type: nauc_recall_at_3_std value: 17.592622457537157 - type: nauc_recall_at_5_diff1 value: 3.7724767419099234 - type: nauc_recall_at_5_max value: 23.106552905037674 - type: nauc_recall_at_5_std value: 23.561612818949783 - type: ndcg_at_1 value: 84.736 - type: ndcg_at_10 value: 77.837 - type: ndcg_at_100 value: 80.357 - type: ndcg_at_1000 value: 81.183 - type: ndcg_at_20 value: 78.949 - type: ndcg_at_3 value: 73.258 - type: ndcg_at_5 value: 75.919 - type: precision_at_1 value: 84.736 - type: precision_at_10 value: 16.250999999999998 - type: precision_at_100 value: 1.82 - type: precision_at_1000 value: 0.193 - type: precision_at_20 value: 8.482000000000001 - type: precision_at_3 value: 47.475 - type: precision_at_5 value: 30.581999999999997 - type: recall_at_1 value: 42.368 - type: recall_at_10 value: 81.255 - type: recall_at_100 value: 90.994 - type: recall_at_1000 value: 96.398 - type: recall_at_20 value: 84.824 - type: recall_at_3 value: 71.21300000000001 - type: recall_at_5 value: 76.456 task: type: Retrieval - dataset: config: default name: MTEB MSMARCO (default) revision: c5a29a104738b98a9e76336939199e264163d4a0 split: dev type: mteb/msmarco metrics: - type: main_score value: 43.462 - type: map_at_1 value: 23.25 - type: map_at_10 value: 36.224000000000004 - type: map_at_100 value: 37.349 - type: map_at_1000 value: 37.391999999999996 - type: map_at_20 value: 36.921 - type: map_at_3 value: 32.208 - type: map_at_5 value: 34.573 - type: mrr_at_1 value: 23.88252148997135 - type: mrr_at_10 value: 36.85216832673849 - type: mrr_at_100 value: 37.90739898332828 - type: mrr_at_1000 value: 37.94515095895543 - type: mrr_at_20 value: 37.51240671241301 - type: mrr_at_3 value: 32.91786055396362 - type: mrr_at_5 value: 35.23304680038204 - type: nauc_map_at_1000_diff1 value: 36.39047949939039 - type: nauc_map_at_1000_max value: 2.3578743172188035 - type: nauc_map_at_1000_std value: -18.727873389577592 - type: nauc_map_at_100_diff1 value: 36.384143241496226 - type: nauc_map_at_100_max value: 2.3497513932749614 - type: nauc_map_at_100_std value: -18.70122938038941 - type: nauc_map_at_10_diff1 value: 36.33329278355692 - type: nauc_map_at_10_max value: 2.138450676545341 - type: nauc_map_at_10_std value: -19.45579958491671 - type: nauc_map_at_1_diff1 value: 39.404102475568564 - type: nauc_map_at_1_max value: 2.7206579628418126 - type: nauc_map_at_1_std value: -16.855247645496085 - type: nauc_map_at_20_diff1 value: 36.302767883282456 - type: nauc_map_at_20_max value: 2.2735066233134695 - type: nauc_map_at_20_std value: -18.973295136131522 - type: nauc_map_at_3_diff1 value: 36.56553095724739 - type: nauc_map_at_3_max value: 2.3275087952103526 - type: nauc_map_at_3_std value: -19.3527032157449 - type: nauc_map_at_5_diff1 value: 36.40211831532397 - type: nauc_map_at_5_max value: 2.235741458377666 - type: nauc_map_at_5_std value: -19.701014659193824 - type: nauc_mrr_at_1000_diff1 value: 36.438574231588525 - type: nauc_mrr_at_1000_max value: 2.485811765062565 - type: nauc_mrr_at_1000_std value: -18.5317957659061 - type: nauc_mrr_at_100_diff1 value: 36.432843922329596 - type: nauc_mrr_at_100_max value: 2.4824945841823816 - type: nauc_mrr_at_100_std value: -18.50245936037501 - type: nauc_mrr_at_10_diff1 value: 36.37249341280693 - type: nauc_mrr_at_10_max value: 2.3153304860037607 - type: nauc_mrr_at_10_std value: -19.22693970447962 - type: nauc_mrr_at_1_diff1 value: 39.38128062971168 - type: nauc_mrr_at_1_max value: 2.7209494702622874 - type: nauc_mrr_at_1_std value: -16.953692595799737 - type: nauc_mrr_at_20_diff1 value: 36.3579490781177 - type: nauc_mrr_at_20_max value: 2.4387677123377283 - type: nauc_mrr_at_20_std value: -18.732976355263567 - type: nauc_mrr_at_3_diff1 value: 36.533228792596574 - type: nauc_mrr_at_3_max value: 2.361606755695883 - type: nauc_mrr_at_3_std value: -19.245211696661034 - type: nauc_mrr_at_5_diff1 value: 36.3816321319283 - type: nauc_mrr_at_5_max value: 2.3437756296821632 - type: nauc_mrr_at_5_std value: -19.471789402286344 - type: nauc_ndcg_at_1000_diff1 value: 35.79039219929976 - type: nauc_ndcg_at_1000_max value: 2.811728033687246 - type: nauc_ndcg_at_1000_std value: -17.338286061955813 - type: nauc_ndcg_at_100_diff1 value: 35.59261399719066 - type: nauc_ndcg_at_100_max value: 2.7108910063207783 - type: nauc_ndcg_at_100_std value: -16.30247877675029 - type: nauc_ndcg_at_10_diff1 value: 35.33021934007167 - type: nauc_ndcg_at_10_max value: 1.8215726138615624 - type: nauc_ndcg_at_10_std value: -20.06278292037688 - type: nauc_ndcg_at_1_diff1 value: 39.38128062971168 - type: nauc_ndcg_at_1_max value: 2.7209494702622874 - type: nauc_ndcg_at_1_std value: -16.953692595799737 - type: nauc_ndcg_at_20_diff1 value: 35.166139885264435 - type: nauc_ndcg_at_20_max value: 2.2458844698840195 - type: nauc_ndcg_at_20_std value: -18.248706272894776 - type: nauc_ndcg_at_3_diff1 value: 35.815749048912664 - type: nauc_ndcg_at_3_max value: 2.138161873272173 - type: nauc_ndcg_at_3_std value: -20.118216970119295 - type: nauc_ndcg_at_5_diff1 value: 35.55268589882809 - type: nauc_ndcg_at_5_max value: 2.0174915835937095 - type: nauc_ndcg_at_5_std value: -20.691081813335547 - type: nauc_precision_at_1000_diff1 value: -3.3391122943171885 - type: nauc_precision_at_1000_max value: 11.198425802216269 - type: nauc_precision_at_1000_std value: 13.383104359443937 - type: nauc_precision_at_100_diff1 value: 12.850391114610302 - type: nauc_precision_at_100_max value: 8.157136543556543 - type: nauc_precision_at_100_std value: 16.476563311300353 - type: nauc_precision_at_10_diff1 value: 28.63945922218073 - type: nauc_precision_at_10_max value: 0.455900949813612 - type: nauc_precision_at_10_std value: -20.77018206831735 - type: nauc_precision_at_1_diff1 value: 39.38128062971168 - type: nauc_precision_at_1_max value: 2.7209494702622874 - type: nauc_precision_at_1_std value: -16.953692595799737 - type: nauc_precision_at_20_diff1 value: 24.195296149610957 - type: nauc_precision_at_20_max value: 2.5484785002551718 - type: nauc_precision_at_20_std value: -10.930465943156257 - type: nauc_precision_at_3_diff1 value: 33.06268024815025 - type: nauc_precision_at_3_max value: 1.6291541332500454 - type: nauc_precision_at_3_std value: -22.18898625767765 - type: nauc_precision_at_5_diff1 value: 31.65289218498212 - type: nauc_precision_at_5_max value: 1.2951472084768743 - type: nauc_precision_at_5_std value: -23.27704936042841 - type: nauc_recall_at_1000_diff1 value: 23.23177983481788 - type: nauc_recall_at_1000_max value: 38.7253356088564 - type: nauc_recall_at_1000_std value: 67.48000156648311 - type: nauc_recall_at_100_diff1 value: 28.544420505491562 - type: nauc_recall_at_100_max value: 7.671908258293046 - type: nauc_recall_at_100_std value: 21.858917656037523 - type: nauc_recall_at_10_diff1 value: 31.49652837714782 - type: nauc_recall_at_10_max value: 0.4106392530350634 - type: nauc_recall_at_10_std value: -21.78064007132412 - type: nauc_recall_at_1_diff1 value: 39.404102475568564 - type: nauc_recall_at_1_max value: 2.7206579628418126 - type: nauc_recall_at_1_std value: -16.855247645496085 - type: nauc_recall_at_20_diff1 value: 29.666357411097906 - type: nauc_recall_at_20_max value: 1.9441414764681684 - type: nauc_recall_at_20_std value: -12.932407352213746 - type: nauc_recall_at_3_diff1 value: 33.55593640265306 - type: nauc_recall_at_3_max value: 1.5516845419621723 - type: nauc_recall_at_3_std value: -22.119363526106568 - type: nauc_recall_at_5_diff1 value: 32.857815579888154 - type: nauc_recall_at_5_max value: 1.2405193929536131 - type: nauc_recall_at_5_std value: -23.542815544770555 - type: ndcg_at_1 value: 23.883 - type: ndcg_at_10 value: 43.462 - type: ndcg_at_100 value: 48.845 - type: ndcg_at_1000 value: 49.883 - type: ndcg_at_20 value: 45.921 - type: ndcg_at_3 value: 35.321999999999996 - type: ndcg_at_5 value: 39.512 - type: precision_at_1 value: 23.883 - type: precision_at_10 value: 6.862 - type: precision_at_100 value: 0.9560000000000001 - type: precision_at_1000 value: 0.105 - type: precision_at_20 value: 3.946 - type: precision_at_3 value: 15.076 - type: precision_at_5 value: 11.158 - type: recall_at_1 value: 23.25 - type: recall_at_10 value: 65.694 - type: recall_at_100 value: 90.554 - type: recall_at_1000 value: 98.378 - type: recall_at_20 value: 75.224 - type: recall_at_3 value: 43.628 - type: recall_at_5 value: 53.659 task: type: Retrieval - dataset: config: default name: MTEB MSMARCO (default) revision: c5a29a104738b98a9e76336939199e264163d4a0 split: test type: mteb/msmarco metrics: - type: main_score value: 74.139 - type: map_at_1 value: 2.464 - type: map_at_10 value: 16.541 - type: map_at_100 value: 44.478 - type: map_at_1000 value: 53.15 - type: map_at_20 value: 25.904 - type: map_at_3 value: 6.765000000000001 - type: map_at_5 value: 9.983 - type: mrr_at_1 value: 95.34883720930233 - type: mrr_at_10 value: 97.28682170542636 - type: mrr_at_100 value: 97.28682170542636 - type: mrr_at_1000 value: 97.28682170542636 - type: mrr_at_20 value: 97.28682170542636 - type: mrr_at_3 value: 97.28682170542636 - type: mrr_at_5 value: 97.28682170542636 - type: nauc_map_at_1000_diff1 value: -24.31518623918347 - type: nauc_map_at_1000_max value: 33.70070261129663 - type: nauc_map_at_1000_std value: 52.73406144577475 - type: nauc_map_at_100_diff1 value: -6.716075858891885 - type: nauc_map_at_100_max value: 14.830377435009204 - type: nauc_map_at_100_std value: 22.182430558548326 - type: nauc_map_at_10_diff1 value: 22.52761274919368 - type: nauc_map_at_10_max value: -10.100583311291869 - type: nauc_map_at_10_std value: -24.033121680575295 - type: nauc_map_at_1_diff1 value: 34.97928775395744 - type: nauc_map_at_1_max value: -29.165988209556343 - type: nauc_map_at_1_std value: -40.87952221234793 - type: nauc_map_at_20_diff1 value: 15.889296464003886 - type: nauc_map_at_20_max value: -4.223749887147732 - type: nauc_map_at_20_std value: -11.765238600018108 - type: nauc_map_at_3_diff1 value: 35.02306731951517 - type: nauc_map_at_3_max value: -25.811140250024874 - type: nauc_map_at_3_std value: -37.502121900015425 - type: nauc_map_at_5_diff1 value: 31.60050502637396 - type: nauc_map_at_5_max value: -19.753939742728406 - type: nauc_map_at_5_std value: -32.326759394631495 - type: nauc_mrr_at_1000_diff1 value: -1.6109249129507694 - type: nauc_mrr_at_1000_max value: -5.264078482070403 - type: nauc_mrr_at_1000_std value: -16.896242659959608 - type: nauc_mrr_at_100_diff1 value: -1.6109249129507694 - type: nauc_mrr_at_100_max value: -5.264078482070403 - type: nauc_mrr_at_100_std value: -16.896242659959608 - type: nauc_mrr_at_10_diff1 value: -1.6109249129507694 - type: nauc_mrr_at_10_max value: -5.264078482070403 - type: nauc_mrr_at_10_std value: -16.896242659959608 - type: nauc_mrr_at_1_diff1 value: 7.609161311583414 - type: nauc_mrr_at_1_max value: -3.1385223772769497 - type: nauc_mrr_at_1_std value: -28.92678640083504 - type: nauc_mrr_at_20_diff1 value: -1.6109249129507694 - type: nauc_mrr_at_20_max value: -5.264078482070403 - type: nauc_mrr_at_20_std value: -16.896242659959608 - type: nauc_mrr_at_3_diff1 value: -1.6109249129507694 - type: nauc_mrr_at_3_max value: -5.264078482070403 - type: nauc_mrr_at_3_std value: -16.896242659959608 - type: nauc_mrr_at_5_diff1 value: -1.6109249129507694 - type: nauc_mrr_at_5_max value: -5.264078482070403 - type: nauc_mrr_at_5_std value: -16.896242659959608 - type: nauc_ndcg_at_1000_diff1 value: -30.3495925805214 - type: nauc_ndcg_at_1000_max value: 48.80276747021238 - type: nauc_ndcg_at_1000_std value: 54.598664753311596 - type: nauc_ndcg_at_100_diff1 value: -21.4043832806614 - type: nauc_ndcg_at_100_max value: 30.876451567336744 - type: nauc_ndcg_at_100_std value: 49.443818028199324 - type: nauc_ndcg_at_10_diff1 value: -0.45843729874817324 - type: nauc_ndcg_at_10_max value: 19.369035024488383 - type: nauc_ndcg_at_10_std value: 15.441351418216314 - type: nauc_ndcg_at_1_diff1 value: 27.57020304062517 - type: nauc_ndcg_at_1_max value: 13.126334420445016 - type: nauc_ndcg_at_1_std value: -29.628242116322607 - type: nauc_ndcg_at_20_diff1 value: -15.246366332733999 - type: nauc_ndcg_at_20_max value: 14.478542591051463 - type: nauc_ndcg_at_20_std value: 27.20707635200001 - type: nauc_ndcg_at_3_diff1 value: 14.58709456804409 - type: nauc_ndcg_at_3_max value: 13.824849529705482 - type: nauc_ndcg_at_3_std value: -8.313833570480671 - type: nauc_ndcg_at_5_diff1 value: 8.91665165479885 - type: nauc_ndcg_at_5_max value: 13.930708098322576 - type: nauc_ndcg_at_5_std value: 2.127642899981599 - type: nauc_precision_at_1000_diff1 value: -40.268595202063054 - type: nauc_precision_at_1000_max value: 25.88884164935188 - type: nauc_precision_at_1000_std value: 55.568406766964415 - type: nauc_precision_at_100_diff1 value: -42.911915287643346 - type: nauc_precision_at_100_max value: 30.08901353124011 - type: nauc_precision_at_100_std value: 62.17803024269468 - type: nauc_precision_at_10_diff1 value: -43.802137487466524 - type: nauc_precision_at_10_max value: 41.558045207768075 - type: nauc_precision_at_10_std value: 66.11133414044444 - type: nauc_precision_at_1_diff1 value: 7.609161311583414 - type: nauc_precision_at_1_max value: -3.1385223772769497 - type: nauc_precision_at_1_std value: -28.92678640083504 - type: nauc_precision_at_20_diff1 value: -45.342704264263865 - type: nauc_precision_at_20_max value: 26.376743923651265 - type: nauc_precision_at_20_std value: 64.3163432020867 - type: nauc_precision_at_3_diff1 value: -16.02113730834142 - type: nauc_precision_at_3_max value: 24.617646770629815 - type: nauc_precision_at_3_std value: 35.79299638781981 - type: nauc_precision_at_5_diff1 value: -18.344530395955896 - type: nauc_precision_at_5_max value: 34.95602706071007 - type: nauc_precision_at_5_std value: 55.121489979935255 - type: nauc_recall_at_1000_diff1 value: -43.604640987833875 - type: nauc_recall_at_1000_max value: 58.59201591599778 - type: nauc_recall_at_1000_std value: 58.04926306248595 - type: nauc_recall_at_100_diff1 value: -1.8581886293054308 - type: nauc_recall_at_100_max value: 17.598407276190557 - type: nauc_recall_at_100_std value: 16.1056507235371 - type: nauc_recall_at_10_diff1 value: 24.296861713164493 - type: nauc_recall_at_10_max value: -12.840082189664468 - type: nauc_recall_at_10_std value: -27.648232955581015 - type: nauc_recall_at_1_diff1 value: 34.97928775395744 - type: nauc_recall_at_1_max value: -29.165988209556343 - type: nauc_recall_at_1_std value: -40.87952221234793 - type: nauc_recall_at_20_diff1 value: 17.34425404446603 - type: nauc_recall_at_20_max value: -6.759844869600909 - type: nauc_recall_at_20_std value: -16.34420887019204 - type: nauc_recall_at_3_diff1 value: 35.7400036137557 - type: nauc_recall_at_3_max value: -26.22669187910205 - type: nauc_recall_at_3_std value: -38.248247791322314 - type: nauc_recall_at_5_diff1 value: 33.10320420212989 - type: nauc_recall_at_5_max value: -20.833157601550315 - type: nauc_recall_at_5_std value: -34.06908006216781 - type: ndcg_at_1 value: 76.744 - type: ndcg_at_10 value: 74.139 - type: ndcg_at_100 value: 68.147 - type: ndcg_at_1000 value: 75.65899999999999 - type: ndcg_at_20 value: 71.788 - type: ndcg_at_3 value: 75.696 - type: ndcg_at_5 value: 74.787 - type: precision_at_1 value: 95.34899999999999 - type: precision_at_10 value: 84.186 - type: precision_at_100 value: 40.163 - type: precision_at_1000 value: 7.457999999999999 - type: precision_at_20 value: 74.767 - type: precision_at_3 value: 89.922 - type: precision_at_5 value: 87.442 - type: recall_at_1 value: 2.464 - type: recall_at_10 value: 17.910999999999998 - type: recall_at_100 value: 55.969 - type: recall_at_1000 value: 82.416 - type: recall_at_20 value: 28.829 - type: recall_at_3 value: 6.866 - type: recall_at_5 value: 10.45 task: type: Retrieval - dataset: config: default name: MTEB MSMARCO (default) revision: c5a29a104738b98a9e76336939199e264163d4a0 split: train type: mteb/msmarco metrics: - type: main_score value: 40.276 - type: map_at_1 value: 20.773 - type: map_at_10 value: 33.187 - type: map_at_100 value: 34.445 - type: map_at_1000 value: 34.491 - type: map_at_20 value: 33.969 - type: map_at_3 value: 29.156 - type: map_at_5 value: 31.446 - type: mrr_at_1 value: 21.359250326580362 - type: mrr_at_10 value: 33.705331647898106 - type: mrr_at_100 value: 34.90938915980538 - type: mrr_at_1000 value: 34.949373687506714 - type: mrr_at_20 value: 34.459868257867136 - type: mrr_at_3 value: 29.754569308269037 - type: mrr_at_5 value: 32.00982292750348 - type: nauc_map_at_1000_diff1 value: 34.01601087498396 - type: nauc_map_at_1000_max value: -1.7691442171563223 - type: nauc_map_at_1000_std value: -19.828285053003967 - type: nauc_map_at_100_diff1 value: 34.00675015775064 - type: nauc_map_at_100_max value: -1.7686866050766759 - type: nauc_map_at_100_std value: -19.794937232515526 - type: nauc_map_at_10_diff1 value: 33.925657930927954 - type: nauc_map_at_10_max value: -1.9081926342048643 - type: nauc_map_at_10_std value: -20.459142515845954 - type: nauc_map_at_1_diff1 value: 37.86779004020525 - type: nauc_map_at_1_max value: -1.693381899018092 - type: nauc_map_at_1_std value: -18.888409837359983 - type: nauc_map_at_20_diff1 value: 33.95897235069661 - type: nauc_map_at_20_max value: -1.8385762082257249 - type: nauc_map_at_20_std value: -20.049973139551135 - type: nauc_map_at_3_diff1 value: 34.1811433717322 - type: nauc_map_at_3_max value: -1.9862134491651453 - type: nauc_map_at_3_std value: -20.7157496103899 - type: nauc_map_at_5_diff1 value: 33.945489663762515 - type: nauc_map_at_5_max value: -1.9633952142297522 - type: nauc_map_at_5_std value: -20.83632680413325 - type: nauc_mrr_at_1000_diff1 value: 33.999206219812045 - type: nauc_mrr_at_1000_max value: -1.7412465287451229 - type: nauc_mrr_at_1000_std value: -19.800789638791937 - type: nauc_mrr_at_100_diff1 value: 33.99041315883828 - type: nauc_mrr_at_100_max value: -1.7393575325316621 - type: nauc_mrr_at_100_std value: -19.7676764349925 - type: nauc_mrr_at_10_diff1 value: 33.90510191763504 - type: nauc_mrr_at_10_max value: -1.8632220774794626 - type: nauc_mrr_at_10_std value: -20.39043116739617 - type: nauc_mrr_at_1_diff1 value: 37.92957327608907 - type: nauc_mrr_at_1_max value: -1.6241365807332726 - type: nauc_mrr_at_1_std value: -19.02476057424658 - type: nauc_mrr_at_20_diff1 value: 33.94188630069156 - type: nauc_mrr_at_20_max value: -1.799932652089817 - type: nauc_mrr_at_20_std value: -19.997042702823485 - type: nauc_mrr_at_3_diff1 value: 34.16520468314214 - type: nauc_mrr_at_3_max value: -1.9279951943420828 - type: nauc_mrr_at_3_std value: -20.706091936842984 - type: nauc_mrr_at_5_diff1 value: 33.92480963299017 - type: nauc_mrr_at_5_max value: -1.9122782451155143 - type: nauc_mrr_at_5_std value: -20.781713634553793 - type: nauc_ndcg_at_1000_diff1 value: 33.184126158160126 - type: nauc_ndcg_at_1000_max value: -1.1875420124951162 - type: nauc_ndcg_at_1000_std value: -18.23591819025179 - type: nauc_ndcg_at_100_diff1 value: 32.935688069598314 - type: nauc_ndcg_at_100_max value: -1.0828464321478635 - type: nauc_ndcg_at_100_std value: -16.99124635594882 - type: nauc_ndcg_at_10_diff1 value: 32.5885629805019 - type: nauc_ndcg_at_10_max value: -1.8951992549933268 - type: nauc_ndcg_at_10_std value: -20.400520136402704 - type: nauc_ndcg_at_1_diff1 value: 37.953966660906325 - type: nauc_ndcg_at_1_max value: -1.637085728039103 - type: nauc_ndcg_at_1_std value: -19.029991106168055 - type: nauc_ndcg_at_20_diff1 value: 32.659068964537944 - type: nauc_ndcg_at_20_max value: -1.6414522913717806 - type: nauc_ndcg_at_20_std value: -18.857438624779295 - type: nauc_ndcg_at_3_diff1 value: 33.13495243897897 - type: nauc_ndcg_at_3_max value: -2.056752787606917 - type: nauc_ndcg_at_3_std value: -21.17861388162733 - type: nauc_ndcg_at_5_diff1 value: 32.69463838392566 - type: nauc_ndcg_at_5_max value: -2.025092695004754 - type: nauc_ndcg_at_5_std value: -21.34771429039138 - type: nauc_precision_at_1000_diff1 value: -2.8558032644991016 - type: nauc_precision_at_1000_max value: 9.86657019787611 - type: nauc_precision_at_1000_std value: 10.988749489672406 - type: nauc_precision_at_100_diff1 value: 12.864328710169968 - type: nauc_precision_at_100_max value: 7.464201984721404 - type: nauc_precision_at_100_std value: 16.13392945907579 - type: nauc_precision_at_10_diff1 value: 26.399898010761824 - type: nauc_precision_at_10_max value: -1.2999170215959819 - type: nauc_precision_at_10_std value: -18.71491641617564 - type: nauc_precision_at_1_diff1 value: 37.953966660906325 - type: nauc_precision_at_1_max value: -1.637085728039103 - type: nauc_precision_at_1_std value: -19.029991106168055 - type: nauc_precision_at_20_diff1 value: 23.79119509543501 - type: nauc_precision_at_20_max value: 0.17939408447227603 - type: nauc_precision_at_20_std value: -10.441178169364324 - type: nauc_precision_at_3_diff1 value: 30.04047755424759 - type: nauc_precision_at_3_max value: -2.136156697163606 - type: nauc_precision_at_3_std value: -22.2944352990041 - type: nauc_precision_at_5_diff1 value: 28.422010621063933 - type: nauc_precision_at_5_max value: -1.9424211602360555 - type: nauc_precision_at_5_std value: -22.333141313684994 - type: nauc_recall_at_1000_diff1 value: 13.732116062991514 - type: nauc_recall_at_1000_max value: 45.18551288931526 - type: nauc_recall_at_1000_std value: 71.21674392317534 - type: nauc_recall_at_100_diff1 value: 24.303127023267894 - type: nauc_recall_at_100_max value: 8.834243296556114 - type: nauc_recall_at_100_std value: 23.97303108762705 - type: nauc_recall_at_10_diff1 value: 28.10048351507634 - type: nauc_recall_at_10_max value: -1.8539512450800857 - type: nauc_recall_at_10_std value: -19.61933014312325 - type: nauc_recall_at_1_diff1 value: 37.86779004020525 - type: nauc_recall_at_1_max value: -1.693381899018092 - type: nauc_recall_at_1_std value: -18.888409837359983 - type: nauc_recall_at_20_diff1 value: 27.298837251716414 - type: nauc_recall_at_20_max value: -0.6338536811417125 - type: nauc_recall_at_20_std value: -11.839172034010947 - type: nauc_recall_at_3_diff1 value: 30.29606466428335 - type: nauc_recall_at_3_max value: -2.286134715776902 - type: nauc_recall_at_3_std value: -22.284294332227482 - type: nauc_recall_at_5_diff1 value: 29.11776633049639 - type: nauc_recall_at_5_max value: -2.227765233466803 - type: nauc_recall_at_5_std value: -22.613701283140504 - type: ndcg_at_1 value: 21.353 - type: ndcg_at_10 value: 40.276 - type: ndcg_at_100 value: 46.323 - type: ndcg_at_1000 value: 47.418 - type: ndcg_at_20 value: 43.053999999999995 - type: ndcg_at_3 value: 32.055 - type: ndcg_at_5 value: 36.138 - type: precision_at_1 value: 21.353 - type: precision_at_10 value: 6.486 - type: precision_at_100 value: 0.9490000000000001 - type: precision_at_1000 value: 0.104 - type: precision_at_20 value: 3.818 - type: precision_at_3 value: 13.739 - type: precision_at_5 value: 10.309 - type: recall_at_1 value: 20.773 - type: recall_at_10 value: 62.275999999999996 - type: recall_at_100 value: 90.217 - type: recall_at_1000 value: 98.519 - type: recall_at_20 value: 73.072 - type: recall_at_3 value: 39.855000000000004 - type: recall_at_5 value: 49.675999999999995 task: type: Retrieval - dataset: config: default name: MTEB NFCorpus (default) revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 split: test type: mteb/nfcorpus metrics: - type: main_score value: 37.283 - type: map_at_1 value: 5.574 - type: map_at_10 value: 14.005 - type: map_at_100 value: 17.796 - type: map_at_1000 value: 19.283 - type: map_at_20 value: 15.578 - type: map_at_3 value: 10.236 - type: map_at_5 value: 11.899 - type: mrr_at_1 value: 46.749226006191954 - type: mrr_at_10 value: 56.59811292938226 - type: mrr_at_100 value: 57.12051023998412 - type: mrr_at_1000 value: 57.15371186820038 - type: mrr_at_20 value: 56.916688370838195 - type: mrr_at_3 value: 54.12796697626418 - type: mrr_at_5 value: 55.768833849329205 - type: nauc_map_at_1000_diff1 value: 28.635277848807 - type: nauc_map_at_1000_max value: 35.35613366796442 - type: nauc_map_at_1000_std value: 17.10747783924917 - type: nauc_map_at_100_diff1 value: 29.755264219349424 - type: nauc_map_at_100_max value: 34.327008938244944 - type: nauc_map_at_100_std value: 13.445288572684394 - type: nauc_map_at_10_diff1 value: 32.48957394170802 - type: nauc_map_at_10_max value: 27.80407105939758 - type: nauc_map_at_10_std value: 1.9070818822162425 - type: nauc_map_at_1_diff1 value: 50.027513759193376 - type: nauc_map_at_1_max value: 19.429910518237936 - type: nauc_map_at_1_std value: -8.97104145052985 - type: nauc_map_at_20_diff1 value: 31.56634560890853 - type: nauc_map_at_20_max value: 31.051371548545692 - type: nauc_map_at_20_std value: 6.504916213964518 - type: nauc_map_at_3_diff1 value: 38.42783943501391 - type: nauc_map_at_3_max value: 22.268789244002495 - type: nauc_map_at_3_std value: -3.875096100356707 - type: nauc_map_at_5_diff1 value: 35.358236844401475 - type: nauc_map_at_5_max value: 23.849302939085845 - type: nauc_map_at_5_std value: -2.3503635251536994 - type: nauc_mrr_at_1000_diff1 value: 30.746859712785913 - type: nauc_mrr_at_1000_max value: 53.6904747530386 - type: nauc_mrr_at_1000_std value: 31.47487691466055 - type: nauc_mrr_at_100_diff1 value: 30.763063585195706 - type: nauc_mrr_at_100_max value: 53.7250123160408 - type: nauc_mrr_at_100_std value: 31.50978078188992 - type: nauc_mrr_at_10_diff1 value: 30.82775738393116 - type: nauc_mrr_at_10_max value: 53.4071427116327 - type: nauc_mrr_at_10_std value: 31.263564750803962 - type: nauc_mrr_at_1_diff1 value: 32.106085379422524 - type: nauc_mrr_at_1_max value: 47.77541655844478 - type: nauc_mrr_at_1_std value: 24.786702037536276 - type: nauc_mrr_at_20_diff1 value: 30.719148309921696 - type: nauc_mrr_at_20_max value: 53.70017178047271 - type: nauc_mrr_at_20_std value: 31.467979505375443 - type: nauc_mrr_at_3_diff1 value: 30.981638809404405 - type: nauc_mrr_at_3_max value: 53.3270677412482 - type: nauc_mrr_at_3_std value: 30.26681784453818 - type: nauc_mrr_at_5_diff1 value: 30.969579053025992 - type: nauc_mrr_at_5_max value: 53.700404196240385 - type: nauc_mrr_at_5_std value: 30.24431182973286 - type: nauc_ndcg_at_1000_diff1 value: 26.077520236345453 - type: nauc_ndcg_at_1000_max value: 50.44278008464641 - type: nauc_ndcg_at_1000_std value: 36.462860570166185 - type: nauc_ndcg_at_100_diff1 value: 25.784205218824514 - type: nauc_ndcg_at_100_max value: 44.6479793696097 - type: nauc_ndcg_at_100_std value: 29.51865427077206 - type: nauc_ndcg_at_10_diff1 value: 23.20557245363688 - type: nauc_ndcg_at_10_max value: 42.22895428413661 - type: nauc_ndcg_at_10_std value: 25.969842351518235 - type: nauc_ndcg_at_1_diff1 value: 33.427281404508435 - type: nauc_ndcg_at_1_max value: 46.94546610566201 - type: nauc_ndcg_at_1_std value: 24.496790902482985 - type: nauc_ndcg_at_20_diff1 value: 23.43536419777015 - type: nauc_ndcg_at_20_max value: 42.0469006433796 - type: nauc_ndcg_at_20_std value: 27.24688044890543 - type: nauc_ndcg_at_3_diff1 value: 25.933255443748944 - type: nauc_ndcg_at_3_max value: 45.01703507302794 - type: nauc_ndcg_at_3_std value: 24.53456197157044 - type: nauc_ndcg_at_5_diff1 value: 24.329950172007088 - type: nauc_ndcg_at_5_max value: 42.83693422152606 - type: nauc_ndcg_at_5_std value: 24.11535369089384 - type: nauc_precision_at_1000_diff1 value: -12.669594168389192 - type: nauc_precision_at_1000_max value: 8.798164077517391 - type: nauc_precision_at_1000_std value: 33.81862573258825 - type: nauc_precision_at_100_diff1 value: -7.005181564872601 - type: nauc_precision_at_100_max value: 22.648723626866374 - type: nauc_precision_at_100_std value: 43.65426389346721 - type: nauc_precision_at_10_diff1 value: 4.8405576299864945 - type: nauc_precision_at_10_max value: 39.91286717889381 - type: nauc_precision_at_10_std value: 35.574065561205096 - type: nauc_precision_at_1_diff1 value: 32.106085379422524 - type: nauc_precision_at_1_max value: 47.77541655844478 - type: nauc_precision_at_1_std value: 24.786702037536276 - type: nauc_precision_at_20_diff1 value: 0.08875655110882817 - type: nauc_precision_at_20_max value: 34.77100967209973 - type: nauc_precision_at_20_std value: 39.851412685464176 - type: nauc_precision_at_3_diff1 value: 16.574574215758624 - type: nauc_precision_at_3_max value: 45.42842355154502 - type: nauc_precision_at_3_std value: 28.31538323007723 - type: nauc_precision_at_5_diff1 value: 10.494687717697923 - type: nauc_precision_at_5_max value: 42.0168314602896 - type: nauc_precision_at_5_std value: 30.72486385311608 - type: nauc_recall_at_1000_diff1 value: 9.418427515050707 - type: nauc_recall_at_1000_max value: 27.143782318814182 - type: nauc_recall_at_1000_std value: 27.349192687153284 - type: nauc_recall_at_100_diff1 value: 16.884742295138704 - type: nauc_recall_at_100_max value: 27.5200727845606 - type: nauc_recall_at_100_std value: 16.76172862155474 - type: nauc_recall_at_10_diff1 value: 23.894239139033917 - type: nauc_recall_at_10_max value: 20.19653160625137 - type: nauc_recall_at_10_std value: -1.1818405987921334 - type: nauc_recall_at_1_diff1 value: 50.027513759193376 - type: nauc_recall_at_1_max value: 19.429910518237936 - type: nauc_recall_at_1_std value: -8.97104145052985 - type: nauc_recall_at_20_diff1 value: 23.687099370897887 - type: nauc_recall_at_20_max value: 24.6629558566208 - type: nauc_recall_at_20_std value: 5.407720319345621 - type: nauc_recall_at_3_diff1 value: 34.403660975814034 - type: nauc_recall_at_3_max value: 20.066555724505257 - type: nauc_recall_at_3_std value: -3.63779773997605 - type: nauc_recall_at_5_diff1 value: 27.409120048379066 - type: nauc_recall_at_5_max value: 17.871400437143393 - type: nauc_recall_at_5_std value: -4.490534640413254 - type: ndcg_at_1 value: 45.201 - type: ndcg_at_10 value: 37.283 - type: ndcg_at_100 value: 34.019 - type: ndcg_at_1000 value: 42.339 - type: ndcg_at_20 value: 34.827000000000005 - type: ndcg_at_3 value: 42.841 - type: ndcg_at_5 value: 40.778 - type: precision_at_1 value: 46.749 - type: precision_at_10 value: 27.771 - type: precision_at_100 value: 8.762 - type: precision_at_1000 value: 2.137 - type: precision_at_20 value: 20.759 - type: precision_at_3 value: 41.073 - type: precision_at_5 value: 35.975 - type: recall_at_1 value: 5.574 - type: recall_at_10 value: 18.631 - type: recall_at_100 value: 34.352 - type: recall_at_1000 value: 64.57000000000001 - type: recall_at_20 value: 22.359 - type: recall_at_3 value: 11.440999999999999 - type: recall_at_5 value: 14.493 task: type: Retrieval - dataset: config: default name: MTEB NQ (default) revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 split: test type: mteb/nq metrics: - type: main_score value: 61.028999999999996 - type: map_at_1 value: 37.177 - type: map_at_10 value: 53.40899999999999 - type: map_at_100 value: 54.298 - type: map_at_1000 value: 54.315000000000005 - type: map_at_20 value: 54.025 - type: map_at_3 value: 49.05 - type: map_at_5 value: 51.82 - type: mrr_at_1 value: 41.59907300115875 - type: mrr_at_10 value: 55.78067235005224 - type: mrr_at_100 value: 56.41660993735389 - type: mrr_at_1000 value: 56.42754475461054 - type: mrr_at_20 value: 56.23518276066669 - type: mrr_at_3 value: 52.37543453070661 - type: mrr_at_5 value: 54.548088064889775 - type: nauc_map_at_1000_diff1 value: 37.27249375628604 - type: nauc_map_at_1000_max value: 27.392138921419324 - type: nauc_map_at_1000_std value: -3.5900106216193315 - type: nauc_map_at_100_diff1 value: 37.2697901014825 - type: nauc_map_at_100_max value: 27.405921213076223 - type: nauc_map_at_100_std value: -3.573566659351339 - type: nauc_map_at_10_diff1 value: 37.16335435590572 - type: nauc_map_at_10_max value: 27.413006448193094 - type: nauc_map_at_10_std value: -3.9602938844810303 - type: nauc_map_at_1_diff1 value: 40.79178035869281 - type: nauc_map_at_1_max value: 21.840846704021168 - type: nauc_map_at_1_std value: -6.154432706859515 - type: nauc_map_at_20_diff1 value: 37.19465980632151 - type: nauc_map_at_20_max value: 27.472653634570786 - type: nauc_map_at_20_std value: -3.6471752193658094 - type: nauc_map_at_3_diff1 value: 37.00050883840103 - type: nauc_map_at_3_max value: 26.166201606832622 - type: nauc_map_at_3_std value: -5.058745283770789 - type: nauc_map_at_5_diff1 value: 37.312001024201614 - type: nauc_map_at_5_max value: 27.20835796415595 - type: nauc_map_at_5_std value: -4.534370816807776 - type: nauc_mrr_at_1000_diff1 value: 37.0970736659852 - type: nauc_mrr_at_1000_max value: 27.50593927169649 - type: nauc_mrr_at_1000_std value: -1.4306799570196265 - type: nauc_mrr_at_100_diff1 value: 37.097509694127424 - type: nauc_mrr_at_100_max value: 27.51661298886077 - type: nauc_mrr_at_100_std value: -1.4199131237737803 - type: nauc_mrr_at_10_diff1 value: 36.932844699119116 - type: nauc_mrr_at_10_max value: 27.621686914876264 - type: nauc_mrr_at_10_std value: -1.5134823279039098 - type: nauc_mrr_at_1_diff1 value: 40.02588975690894 - type: nauc_mrr_at_1_max value: 23.299213673927742 - type: nauc_mrr_at_1_std value: -3.2449821682928857 - type: nauc_mrr_at_20_diff1 value: 37.03753600016832 - type: nauc_mrr_at_20_max value: 27.595623068393866 - type: nauc_mrr_at_20_std value: -1.420887979592882 - type: nauc_mrr_at_3_diff1 value: 36.91182898204814 - type: nauc_mrr_at_3_max value: 27.152051504473885 - type: nauc_mrr_at_3_std value: -1.9927562689418785 - type: nauc_mrr_at_5_diff1 value: 36.99585850355028 - type: nauc_mrr_at_5_max value: 27.595839086884865 - type: nauc_mrr_at_5_std value: -1.647378331798377 - type: nauc_ndcg_at_1000_diff1 value: 36.81876435190347 - type: nauc_ndcg_at_1000_max value: 28.829624794175935 - type: nauc_ndcg_at_1000_std value: -1.65861992216032 - type: nauc_ndcg_at_100_diff1 value: 36.78530077714473 - type: nauc_ndcg_at_100_max value: 29.345829163429332 - type: nauc_ndcg_at_100_std value: -0.9834660238902133 - type: nauc_ndcg_at_10_diff1 value: 36.12614493982964 - type: nauc_ndcg_at_10_max value: 29.68306077249619 - type: nauc_ndcg_at_10_std value: -2.2988088369038424 - type: nauc_ndcg_at_1_diff1 value: 40.02588975690894 - type: nauc_ndcg_at_1_max value: 23.299213673927742 - type: nauc_ndcg_at_1_std value: -3.2449821682928857 - type: nauc_ndcg_at_20_diff1 value: 36.305901085440176 - type: nauc_ndcg_at_20_max value: 29.900293267731914 - type: nauc_ndcg_at_20_std value: -1.299150832053996 - type: nauc_ndcg_at_3_diff1 value: 36.08231518905999 - type: nauc_ndcg_at_3_max value: 27.551888883244995 - type: nauc_ndcg_at_3_std value: -4.148899293368668 - type: nauc_ndcg_at_5_diff1 value: 36.46875305559966 - type: nauc_ndcg_at_5_max value: 29.164887327209787 - type: nauc_ndcg_at_5_std value: -3.3697390325217076 - type: nauc_precision_at_1000_diff1 value: -10.3219194845074 - type: nauc_precision_at_1000_max value: 3.539745607347162 - type: nauc_precision_at_1000_std value: 14.732306584403634 - type: nauc_precision_at_100_diff1 value: -6.560356132891633 - type: nauc_precision_at_100_max value: 10.337169381451696 - type: nauc_precision_at_100_std value: 19.20600399831645 - type: nauc_precision_at_10_diff1 value: 8.363445709346582 - type: nauc_precision_at_10_max value: 23.63627616639036 - type: nauc_precision_at_10_std value: 10.673622244929492 - type: nauc_precision_at_1_diff1 value: 40.02588975690894 - type: nauc_precision_at_1_max value: 23.299213673927742 - type: nauc_precision_at_1_std value: -3.2449821682928857 - type: nauc_precision_at_20_diff1 value: 1.4455832869975551 - type: nauc_precision_at_20_max value: 19.98564944586283 - type: nauc_precision_at_20_std value: 16.313152259234684 - type: nauc_precision_at_3_diff1 value: 22.401426703012387 - type: nauc_precision_at_3_max value: 27.664284153790934 - type: nauc_precision_at_3_std value: 2.0415835028145013 - type: nauc_precision_at_5_diff1 value: 16.858040191181527 - type: nauc_precision_at_5_max value: 26.95159466584669 - type: nauc_precision_at_5_std value: 5.337376948898463 - type: nauc_recall_at_1000_diff1 value: 33.419325094531246 - type: nauc_recall_at_1000_max value: 81.65994088738964 - type: nauc_recall_at_1000_std value: 63.36886394313217 - type: nauc_recall_at_100_diff1 value: 33.73442949813673 - type: nauc_recall_at_100_max value: 64.50622866427926 - type: nauc_recall_at_100_std value: 46.52235851200254 - type: nauc_recall_at_10_diff1 value: 29.788714544862056 - type: nauc_recall_at_10_max value: 38.99828655870941 - type: nauc_recall_at_10_std value: 1.7091690344792725 - type: nauc_recall_at_1_diff1 value: 40.79178035869281 - type: nauc_recall_at_1_max value: 21.840846704021168 - type: nauc_recall_at_1_std value: -6.154432706859515 - type: nauc_recall_at_20_diff1 value: 29.268077606585464 - type: nauc_recall_at_20_max value: 46.544672010268386 - type: nauc_recall_at_20_std value: 11.559943847242257 - type: nauc_recall_at_3_diff1 value: 32.274860688833726 - type: nauc_recall_at_3_max value: 29.74799709828914 - type: nauc_recall_at_3_std value: -4.408458412201667 - type: nauc_recall_at_5_diff1 value: 32.393551871375514 - type: nauc_recall_at_5_max value: 34.33472583999946 - type: nauc_recall_at_5_std value: -2.6839106423963486 - type: ndcg_at_1 value: 41.599000000000004 - type: ndcg_at_10 value: 61.028999999999996 - type: ndcg_at_100 value: 64.55 - type: ndcg_at_1000 value: 64.948 - type: ndcg_at_20 value: 62.971 - type: ndcg_at_3 value: 53.122 - type: ndcg_at_5 value: 57.607 - type: precision_at_1 value: 41.599000000000004 - type: precision_at_10 value: 9.754 - type: precision_at_100 value: 1.172 - type: precision_at_1000 value: 0.121 - type: precision_at_20 value: 5.346 - type: precision_at_3 value: 23.880000000000003 - type: precision_at_5 value: 16.964000000000002 - type: recall_at_1 value: 37.177 - type: recall_at_10 value: 81.658 - type: recall_at_100 value: 96.497 - type: recall_at_1000 value: 99.445 - type: recall_at_20 value: 88.75800000000001 - type: recall_at_3 value: 61.525 - type: recall_at_5 value: 71.76 task: type: Retrieval - dataset: config: default name: MTEB QuoraRetrieval (default) revision: e4e08e0b7dbe3c8700f0daef558ff32256715259 split: dev type: mteb/quora metrics: - type: main_score value: 89.036 - type: map_at_1 value: 71.101 - type: map_at_10 value: 85.455 - type: map_at_100 value: 85.994 - type: map_at_1000 value: 86.008 - type: map_at_20 value: 85.828 - type: map_at_3 value: 82.53399999999999 - type: map_at_5 value: 84.436 - type: mrr_at_1 value: 81.86 - type: mrr_at_10 value: 88.11046031746035 - type: mrr_at_100 value: 88.19975129757977 - type: mrr_at_1000 value: 88.20025683960115 - type: mrr_at_20 value: 88.17505422553023 - type: mrr_at_3 value: 87.21666666666681 - type: mrr_at_5 value: 87.86166666666674 - type: nauc_map_at_1000_diff1 value: 76.87108519650897 - type: nauc_map_at_1000_max value: 33.61242692238016 - type: nauc_map_at_1000_std value: -41.17597310279849 - type: nauc_map_at_100_diff1 value: 76.87153736524259 - type: nauc_map_at_100_max value: 33.54970297094648 - type: nauc_map_at_100_std value: -41.25992178085852 - type: nauc_map_at_10_diff1 value: 77.09438545715085 - type: nauc_map_at_10_max value: 33.2308328259168 - type: nauc_map_at_10_std value: -42.899051862463516 - type: nauc_map_at_1_diff1 value: 80.4545167505852 - type: nauc_map_at_1_max value: 23.403575293489297 - type: nauc_map_at_1_std value: -38.73915078390272 - type: nauc_map_at_20_diff1 value: 76.94979482879727 - type: nauc_map_at_20_max value: 33.3965542820201 - type: nauc_map_at_20_std value: -41.86565874579091 - type: nauc_map_at_3_diff1 value: 77.49566624548056 - type: nauc_map_at_3_max value: 31.780987466527982 - type: nauc_map_at_3_std value: -44.21854519305753 - type: nauc_map_at_5_diff1 value: 77.42771789228605 - type: nauc_map_at_5_max value: 32.68020733774396 - type: nauc_map_at_5_std value: -44.02529373114044 - type: nauc_mrr_at_1000_diff1 value: 77.2505984468272 - type: nauc_mrr_at_1000_max value: 35.55233116927507 - type: nauc_mrr_at_1000_std value: -36.53616122640594 - type: nauc_mrr_at_100_diff1 value: 77.2505647746378 - type: nauc_mrr_at_100_max value: 35.55185874722589 - type: nauc_mrr_at_100_std value: -36.536878149072706 - type: nauc_mrr_at_10_diff1 value: 77.28454775401565 - type: nauc_mrr_at_10_max value: 35.66029990876809 - type: nauc_mrr_at_10_std value: -36.59040430274804 - type: nauc_mrr_at_1_diff1 value: 77.78026873953571 - type: nauc_mrr_at_1_max value: 34.24444208714401 - type: nauc_mrr_at_1_std value: -35.78176040034259 - type: nauc_mrr_at_20_diff1 value: 77.26647675316424 - type: nauc_mrr_at_20_max value: 35.55846836956988 - type: nauc_mrr_at_20_std value: -36.573881740702944 - type: nauc_mrr_at_3_diff1 value: 76.97249605916133 - type: nauc_mrr_at_3_max value: 35.75239213026302 - type: nauc_mrr_at_3_std value: -36.66948654144912 - type: nauc_mrr_at_5_diff1 value: 77.23448498990302 - type: nauc_mrr_at_5_max value: 35.66032506714416 - type: nauc_mrr_at_5_std value: -36.38867782403099 - type: nauc_ndcg_at_1000_diff1 value: 76.78192029636689 - type: nauc_ndcg_at_1000_max value: 34.838983961231115 - type: nauc_ndcg_at_1000_std value: -38.7139917221289 - type: nauc_ndcg_at_100_diff1 value: 76.74994017852701 - type: nauc_ndcg_at_100_max value: 34.5562459567844 - type: nauc_ndcg_at_100_std value: -39.1159390113717 - type: nauc_ndcg_at_10_diff1 value: 77.03700409583301 - type: nauc_ndcg_at_10_max value: 34.49775612114203 - type: nauc_ndcg_at_10_std value: -42.03003149796472 - type: nauc_ndcg_at_1_diff1 value: 77.81816314669393 - type: nauc_ndcg_at_1_max value: 34.07485459082228 - type: nauc_ndcg_at_1_std value: -35.94895056306454 - type: nauc_ndcg_at_20_diff1 value: 76.96510332497088 - type: nauc_ndcg_at_20_max value: 34.450082024564146 - type: nauc_ndcg_at_20_std value: -40.63314555768711 - type: nauc_ndcg_at_3_diff1 value: 76.151643391554 - type: nauc_ndcg_at_3_max value: 34.66383376117758 - type: nauc_ndcg_at_3_std value: -41.39392660300224 - type: nauc_ndcg_at_5_diff1 value: 76.92278503649814 - type: nauc_ndcg_at_5_max value: 34.35931928202013 - type: nauc_ndcg_at_5_std value: -42.28302402211198 - type: nauc_precision_at_1000_diff1 value: -44.32392932408826 - type: nauc_precision_at_1000_max value: -1.5976203820441983 - type: nauc_precision_at_1000_std value: 38.70649763774179 - type: nauc_precision_at_100_diff1 value: -44.12260005400485 - type: nauc_precision_at_100_max value: -3.0647204564936312 - type: nauc_precision_at_100_std value: 36.21137758417562 - type: nauc_precision_at_10_diff1 value: -38.874503464270056 - type: nauc_precision_at_10_max value: -0.7995397378969676 - type: nauc_precision_at_10_std value: 25.08941543528278 - type: nauc_precision_at_1_diff1 value: 77.81816314669393 - type: nauc_precision_at_1_max value: 34.07485459082228 - type: nauc_precision_at_1_std value: -35.94895056306454 - type: nauc_precision_at_20_diff1 value: -41.93097475974228 - type: nauc_precision_at_20_max value: -2.691181750976814 - type: nauc_precision_at_20_std value: 30.655007568557085 - type: nauc_precision_at_3_diff1 value: -21.109490315436517 - type: nauc_precision_at_3_max value: 9.49736775358964 - type: nauc_precision_at_3_std value: 9.195033684093397 - type: nauc_precision_at_5_diff1 value: -32.49764534227595 - type: nauc_precision_at_5_max value: 3.0490365273648803 - type: nauc_precision_at_5_std value: 18.119935851058468 - type: nauc_recall_at_1000_diff1 value: 75.62341631050762 - type: nauc_recall_at_1000_max value: 83.86481603169511 - type: nauc_recall_at_1000_std value: 58.55405944964621 - type: nauc_recall_at_100_diff1 value: 65.95496827539912 - type: nauc_recall_at_100_max value: 14.97452268550046 - type: nauc_recall_at_100_std value: -62.18680465170524 - type: nauc_recall_at_10_diff1 value: 75.08434366486102 - type: nauc_recall_at_10_max value: 32.852276917018116 - type: nauc_recall_at_10_std value: -62.12970511272648 - type: nauc_recall_at_1_diff1 value: 80.4545167505852 - type: nauc_recall_at_1_max value: 23.403575293489297 - type: nauc_recall_at_1_std value: -38.73915078390272 - type: nauc_recall_at_20_diff1 value: 75.66480840772607 - type: nauc_recall_at_20_max value: 31.230359729601208 - type: nauc_recall_at_20_std value: -64.11261226121559 - type: nauc_recall_at_3_diff1 value: 73.81582560951404 - type: nauc_recall_at_3_max value: 31.052473048456708 - type: nauc_recall_at_3_std value: -49.45567344158681 - type: nauc_recall_at_5_diff1 value: 74.06384098137175 - type: nauc_recall_at_5_max value: 31.48187742884454 - type: nauc_recall_at_5_std value: -53.45142194227105 - type: ndcg_at_1 value: 81.84 - type: ndcg_at_10 value: 89.036 - type: ndcg_at_100 value: 90.08800000000001 - type: ndcg_at_1000 value: 90.171 - type: ndcg_at_20 value: 89.632 - type: ndcg_at_3 value: 86.39 - type: ndcg_at_5 value: 87.943 - type: precision_at_1 value: 81.84 - type: precision_at_10 value: 13.464 - type: precision_at_100 value: 1.49 - type: precision_at_1000 value: 0.152 - type: precision_at_20 value: 7.0760000000000005 - type: precision_at_3 value: 38.027 - type: precision_at_5 value: 24.951999999999998 - type: recall_at_1 value: 71.101 - type: recall_at_10 value: 96.071 - type: recall_at_100 value: 99.641 - type: recall_at_1000 value: 99.98700000000001 - type: recall_at_20 value: 97.961 - type: recall_at_3 value: 88.436 - type: recall_at_5 value: 92.898 task: type: Retrieval - dataset: config: default name: MTEB QuoraRetrieval (default) revision: e4e08e0b7dbe3c8700f0daef558ff32256715259 split: test type: mteb/quora metrics: - type: main_score value: 89.208 - type: map_at_1 value: 71.635 - type: map_at_10 value: 85.625 - type: map_at_100 value: 86.236 - type: map_at_1000 value: 86.251 - type: map_at_20 value: 86.036 - type: map_at_3 value: 82.664 - type: map_at_5 value: 84.588 - type: mrr_at_1 value: 82.42 - type: mrr_at_10 value: 88.43901190476178 - type: mrr_at_100 value: 88.52632666726963 - type: mrr_at_1000 value: 88.52691231190065 - type: mrr_at_20 value: 88.5086530013243 - type: mrr_at_3 value: 87.52666666666644 - type: mrr_at_5 value: 88.16716666666639 - type: nauc_map_at_1000_diff1 value: 76.69308460928899 - type: nauc_map_at_1000_max value: 35.4676191405908 - type: nauc_map_at_1000_std value: -42.45246342350121 - type: nauc_map_at_100_diff1 value: 76.69724007993696 - type: nauc_map_at_100_max value: 35.44406733319827 - type: nauc_map_at_100_std value: -42.503413138162486 - type: nauc_map_at_10_diff1 value: 76.91685742813964 - type: nauc_map_at_10_max value: 35.02153657433807 - type: nauc_map_at_10_std value: -44.367365466570426 - type: nauc_map_at_1_diff1 value: 80.55801255675962 - type: nauc_map_at_1_max value: 27.058161138340527 - type: nauc_map_at_1_std value: -39.4963211510531 - type: nauc_map_at_20_diff1 value: 76.76447537369087 - type: nauc_map_at_20_max value: 35.32040158644433 - type: nauc_map_at_20_std value: -43.21303554960284 - type: nauc_map_at_3_diff1 value: 77.40499840514137 - type: nauc_map_at_3_max value: 33.10906358569285 - type: nauc_map_at_3_std value: -46.04737347284554 - type: nauc_map_at_5_diff1 value: 77.15728738532938 - type: nauc_map_at_5_max value: 34.33464314840439 - type: nauc_map_at_5_std value: -45.89958892369562 - type: nauc_mrr_at_1000_diff1 value: 77.31291439145946 - type: nauc_mrr_at_1000_max value: 37.230887514872805 - type: nauc_mrr_at_1000_std value: -39.38330115067387 - type: nauc_mrr_at_100_diff1 value: 77.31258475265957 - type: nauc_mrr_at_100_max value: 37.2318332422385 - type: nauc_mrr_at_100_std value: -39.38278945609743 - type: nauc_mrr_at_10_diff1 value: 77.27217320343534 - type: nauc_mrr_at_10_max value: 37.26080710249818 - type: nauc_mrr_at_10_std value: -39.5294415983385 - type: nauc_mrr_at_1_diff1 value: 78.23833876100495 - type: nauc_mrr_at_1_max value: 36.656764402278775 - type: nauc_mrr_at_1_std value: -37.255149721562184 - type: nauc_mrr_at_20_diff1 value: 77.30440129198894 - type: nauc_mrr_at_20_max value: 37.24212487079394 - type: nauc_mrr_at_20_std value: -39.40823051440391 - type: nauc_mrr_at_3_diff1 value: 77.0650697336263 - type: nauc_mrr_at_3_max value: 37.338365680984595 - type: nauc_mrr_at_3_std value: -39.61465396146359 - type: nauc_mrr_at_5_diff1 value: 77.23689991901227 - type: nauc_mrr_at_5_max value: 37.402095366186515 - type: nauc_mrr_at_5_std value: -39.81000570358434 - type: nauc_ndcg_at_1000_diff1 value: 76.52492111059385 - type: nauc_ndcg_at_1000_max value: 36.4917030050163 - type: nauc_ndcg_at_1000_std value: -40.57405843022022 - type: nauc_ndcg_at_100_diff1 value: 76.52885222990776 - type: nauc_ndcg_at_100_max value: 36.459002270403104 - type: nauc_ndcg_at_100_std value: -40.700799028706136 - type: nauc_ndcg_at_10_diff1 value: 76.47989448348181 - type: nauc_ndcg_at_10_max value: 36.07571701542727 - type: nauc_ndcg_at_10_std value: -43.68216832570433 - type: nauc_ndcg_at_1_diff1 value: 78.21904562929713 - type: nauc_ndcg_at_1_max value: 36.68800580256306 - type: nauc_ndcg_at_1_std value: -37.1106119214964 - type: nauc_ndcg_at_20_diff1 value: 76.51018855356082 - type: nauc_ndcg_at_20_max value: 36.25847353699082 - type: nauc_ndcg_at_20_std value: -42.26728405297162 - type: nauc_ndcg_at_3_diff1 value: 75.98751306811951 - type: nauc_ndcg_at_3_max value: 35.53532168839834 - type: nauc_ndcg_at_3_std value: -43.22027231551964 - type: nauc_ndcg_at_5_diff1 value: 76.41353684969529 - type: nauc_ndcg_at_5_max value: 35.84158818150277 - type: nauc_ndcg_at_5_std value: -44.678250163660735 - type: nauc_precision_at_1000_diff1 value: -44.547524496944504 - type: nauc_precision_at_1000_max value: -7.017755716303293 - type: nauc_precision_at_1000_std value: 37.81857144040679 - type: nauc_precision_at_100_diff1 value: -44.2990697671559 - type: nauc_precision_at_100_max value: -7.090370898560614 - type: nauc_precision_at_100_std value: 36.74158403150684 - type: nauc_precision_at_10_diff1 value: -39.80812285102048 - type: nauc_precision_at_10_max value: -3.2239932083528116 - type: nauc_precision_at_10_std value: 26.540899746112927 - type: nauc_precision_at_1_diff1 value: 78.21904562929713 - type: nauc_precision_at_1_max value: 36.68800580256306 - type: nauc_precision_at_1_std value: -37.1106119214964 - type: nauc_precision_at_20_diff1 value: -42.72592324685673 - type: nauc_precision_at_20_max value: -5.3434665602492455 - type: nauc_precision_at_20_std value: 32.0763404810473 - type: nauc_precision_at_3_diff1 value: -20.448213979815964 - type: nauc_precision_at_3_max value: 6.48540224514135 - type: nauc_precision_at_3_std value: 7.144269812256157 - type: nauc_precision_at_5_diff1 value: -32.73748400918877 - type: nauc_precision_at_5_max value: 0.5351204546857261 - type: nauc_precision_at_5_std value: 17.21939760056977 - type: nauc_recall_at_1000_diff1 value: 54.36176817603542 - type: nauc_recall_at_1000_max value: 8.42245797354225 - type: nauc_recall_at_1000_std value: 20.82920230407764 - type: nauc_recall_at_100_diff1 value: 70.75825465627794 - type: nauc_recall_at_100_max value: 40.02545502828442 - type: nauc_recall_at_100_std value: -29.381365717773434 - type: nauc_recall_at_10_diff1 value: 71.99814968277674 - type: nauc_recall_at_10_max value: 33.07283139289303 - type: nauc_recall_at_10_std value: -61.868754150647 - type: nauc_recall_at_1_diff1 value: 80.55801255675962 - type: nauc_recall_at_1_max value: 27.058161138340527 - type: nauc_recall_at_1_std value: -39.4963211510531 - type: nauc_recall_at_20_diff1 value: 72.20770471431179 - type: nauc_recall_at_20_max value: 34.27388608815473 - type: nauc_recall_at_20_std value: -57.02562075619354 - type: nauc_recall_at_3_diff1 value: 73.33228189075119 - type: nauc_recall_at_3_max value: 31.031018188701548 - type: nauc_recall_at_3_std value: -51.71143501327714 - type: nauc_recall_at_5_diff1 value: 72.23242137345602 - type: nauc_recall_at_5_max value: 32.306978089143975 - type: nauc_recall_at_5_std value: -58.18075857337518 - type: ndcg_at_1 value: 82.43 - type: ndcg_at_10 value: 89.208 - type: ndcg_at_100 value: 90.312 - type: ndcg_at_1000 value: 90.39500000000001 - type: ndcg_at_20 value: 89.822 - type: ndcg_at_3 value: 86.443 - type: ndcg_at_5 value: 88.051 - type: precision_at_1 value: 82.43 - type: precision_at_10 value: 13.513 - type: precision_at_100 value: 1.532 - type: precision_at_1000 value: 0.157 - type: precision_at_20 value: 7.158 - type: precision_at_3 value: 37.753 - type: precision_at_5 value: 24.886 - type: recall_at_1 value: 71.635 - type: recall_at_10 value: 95.967 - type: recall_at_100 value: 99.644 - type: recall_at_1000 value: 99.98599999999999 - type: recall_at_20 value: 97.897 - type: recall_at_3 value: 88.036 - type: recall_at_5 value: 92.551 task: type: Retrieval - dataset: config: default name: MTEB SCIDOCS (default) revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88 split: test type: mteb/scidocs metrics: - type: main_score value: 22.585 - type: map_at_1 value: 5.267 - type: map_at_10 value: 13.682 - type: map_at_100 value: 15.821 - type: map_at_1000 value: 16.155 - type: map_at_20 value: 14.776 - type: map_at_3 value: 9.447999999999999 - type: map_at_5 value: 11.537 - type: mrr_at_1 value: 25.900000000000002 - type: mrr_at_10 value: 37.2399206349206 - type: mrr_at_100 value: 38.27279652206334 - type: mrr_at_1000 value: 38.32018340983372 - type: mrr_at_20 value: 37.88470320013656 - type: mrr_at_3 value: 33.70000000000001 - type: mrr_at_5 value: 35.929999999999964 - type: nauc_map_at_1000_diff1 value: 15.010512584883928 - type: nauc_map_at_1000_max value: 28.131592592280125 - type: nauc_map_at_1000_std value: 18.23227227598505 - type: nauc_map_at_100_diff1 value: 15.038422438580948 - type: nauc_map_at_100_max value: 28.118579098188683 - type: nauc_map_at_100_std value: 18.102627506796637 - type: nauc_map_at_10_diff1 value: 15.2281617921156 - type: nauc_map_at_10_max value: 26.358609940161813 - type: nauc_map_at_10_std value: 14.028442329121555 - type: nauc_map_at_1_diff1 value: 19.804944135000376 - type: nauc_map_at_1_max value: 20.639841719764735 - type: nauc_map_at_1_std value: 8.423093067457737 - type: nauc_map_at_20_diff1 value: 15.2511720546573 - type: nauc_map_at_20_max value: 27.7290112272419 - type: nauc_map_at_20_std value: 16.279489028653636 - type: nauc_map_at_3_diff1 value: 18.969154716718396 - type: nauc_map_at_3_max value: 25.211069495284065 - type: nauc_map_at_3_std value: 8.183585306093075 - type: nauc_map_at_5_diff1 value: 16.995226268024048 - type: nauc_map_at_5_max value: 26.05551249234277 - type: nauc_map_at_5_std value: 10.672250037070603 - type: nauc_mrr_at_1000_diff1 value: 18.900489928879864 - type: nauc_mrr_at_1000_max value: 24.818364671912125 - type: nauc_mrr_at_1000_std value: 13.55809626059453 - type: nauc_mrr_at_100_diff1 value: 18.885312642782274 - type: nauc_mrr_at_100_max value: 24.815818576928283 - type: nauc_mrr_at_100_std value: 13.59041082400011 - type: nauc_mrr_at_10_diff1 value: 18.840497849547965 - type: nauc_mrr_at_10_max value: 24.508418448385445 - type: nauc_mrr_at_10_std value: 13.24104462801846 - type: nauc_mrr_at_1_diff1 value: 19.939676779904232 - type: nauc_mrr_at_1_max value: 20.867982502501388 - type: nauc_mrr_at_1_std value: 8.654485218204698 - type: nauc_mrr_at_20_diff1 value: 18.75686501314611 - type: nauc_mrr_at_20_max value: 24.764731653376685 - type: nauc_mrr_at_20_std value: 13.593035396029709 - type: nauc_mrr_at_3_diff1 value: 19.762798012479887 - type: nauc_mrr_at_3_max value: 24.851437035247397 - type: nauc_mrr_at_3_std value: 11.616646922331773 - type: nauc_mrr_at_5_diff1 value: 19.48751619117306 - type: nauc_mrr_at_5_max value: 25.02565432972893 - type: nauc_mrr_at_5_std value: 13.096726015560694 - type: nauc_ndcg_at_1000_diff1 value: 14.421194341988578 - type: nauc_ndcg_at_1000_max value: 29.46627137066849 - type: nauc_ndcg_at_1000_std value: 25.294914478704282 - type: nauc_ndcg_at_100_diff1 value: 14.188910253634393 - type: nauc_ndcg_at_100_max value: 29.675945969703676 - type: nauc_ndcg_at_100_std value: 25.152541930218398 - type: nauc_ndcg_at_10_diff1 value: 14.950700299876996 - type: nauc_ndcg_at_10_max value: 26.552125339735355 - type: nauc_ndcg_at_10_std value: 16.423237887520827 - type: nauc_ndcg_at_1_diff1 value: 19.939676779904232 - type: nauc_ndcg_at_1_max value: 20.867982502501388 - type: nauc_ndcg_at_1_std value: 8.654485218204698 - type: nauc_ndcg_at_20_diff1 value: 14.646062844584721 - type: nauc_ndcg_at_20_max value: 29.019613358216105 - type: nauc_ndcg_at_20_std value: 20.258510159436103 - type: nauc_ndcg_at_3_diff1 value: 19.14228516186438 - type: nauc_ndcg_at_3_max value: 25.884698532628796 - type: nauc_ndcg_at_3_std value: 10.082340457184428 - type: nauc_ndcg_at_5_diff1 value: 17.648427955677832 - type: nauc_ndcg_at_5_max value: 26.960002111496234 - type: nauc_ndcg_at_5_std value: 13.165986859638604 - type: nauc_precision_at_1000_diff1 value: 3.837505819613137 - type: nauc_precision_at_1000_max value: 22.085273204384773 - type: nauc_precision_at_1000_std value: 37.749767215473746 - type: nauc_precision_at_100_diff1 value: 6.0618779651125525 - type: nauc_precision_at_100_max value: 26.55293689015515 - type: nauc_precision_at_100_std value: 35.92840742685366 - type: nauc_precision_at_10_diff1 value: 9.609219002496197 - type: nauc_precision_at_10_max value: 24.7210313158673 - type: nauc_precision_at_10_std value: 19.688687883244082 - type: nauc_precision_at_1_diff1 value: 19.939676779904232 - type: nauc_precision_at_1_max value: 20.867982502501388 - type: nauc_precision_at_1_std value: 8.654485218204698 - type: nauc_precision_at_20_diff1 value: 8.491039455217111 - type: nauc_precision_at_20_max value: 28.41137144178967 - type: nauc_precision_at_20_std value: 26.3995307896142 - type: nauc_precision_at_3_diff1 value: 18.574797308038786 - type: nauc_precision_at_3_max value: 27.317203178234887 - type: nauc_precision_at_3_std value: 10.752025361042627 - type: nauc_precision_at_5_diff1 value: 15.19646090790648 - type: nauc_precision_at_5_max value: 27.46968680886624 - type: nauc_precision_at_5_std value: 15.291114444897175 - type: nauc_recall_at_1000_diff1 value: 3.8560988027864984 - type: nauc_recall_at_1000_max value: 21.962689956944313 - type: nauc_recall_at_1000_std value: 39.54218946626981 - type: nauc_recall_at_100_diff1 value: 6.027047924475086 - type: nauc_recall_at_100_max value: 26.199898112709867 - type: nauc_recall_at_100_std value: 36.2830620090185 - type: nauc_recall_at_10_diff1 value: 9.535572267531073 - type: nauc_recall_at_10_max value: 24.611837567240595 - type: nauc_recall_at_10_std value: 19.643464138242795 - type: nauc_recall_at_1_diff1 value: 19.804944135000376 - type: nauc_recall_at_1_max value: 20.639841719764735 - type: nauc_recall_at_1_std value: 8.423093067457737 - type: nauc_recall_at_20_diff1 value: 8.380441122318603 - type: nauc_recall_at_20_max value: 28.304675323191418 - type: nauc_recall_at_20_std value: 26.478505583494798 - type: nauc_recall_at_3_diff1 value: 18.589842650254056 - type: nauc_recall_at_3_max value: 27.267022468432433 - type: nauc_recall_at_3_std value: 10.489972416983772 - type: nauc_recall_at_5_diff1 value: 14.991522037739355 - type: nauc_recall_at_5_max value: 27.171074789756666 - type: nauc_recall_at_5_std value: 15.06566087881635 - type: ndcg_at_1 value: 25.900000000000002 - type: ndcg_at_10 value: 22.585 - type: ndcg_at_100 value: 30.666 - type: ndcg_at_1000 value: 36.356 - type: ndcg_at_20 value: 25.469 - type: ndcg_at_3 value: 20.892 - type: ndcg_at_5 value: 18.617 - type: precision_at_1 value: 25.900000000000002 - type: precision_at_10 value: 11.84 - type: precision_at_100 value: 2.3539999999999996 - type: precision_at_1000 value: 0.372 - type: precision_at_20 value: 7.595000000000001 - type: precision_at_3 value: 19.467000000000002 - type: precision_at_5 value: 16.5 - type: recall_at_1 value: 5.267 - type: recall_at_10 value: 24.023 - type: recall_at_100 value: 47.825 - type: recall_at_1000 value: 75.613 - type: recall_at_20 value: 30.814999999999998 - type: recall_at_3 value: 11.831999999999999 - type: recall_at_5 value: 16.742 task: type: Retrieval - dataset: config: default name: MTEB SciFact (default) revision: 0228b52cf27578f30900b9e5271d331663a030d7 split: test type: mteb/scifact metrics: - type: main_score value: 73.095 - type: map_at_1 value: 58.760999999999996 - type: map_at_10 value: 68.645 - type: map_at_100 value: 69.273 - type: map_at_1000 value: 69.28999999999999 - type: map_at_20 value: 69.148 - type: map_at_3 value: 65.93 - type: map_at_5 value: 67.227 - type: mrr_at_1 value: 62.0 - type: mrr_at_10 value: 69.9334656084656 - type: mrr_at_100 value: 70.4425638039262 - type: mrr_at_1000 value: 70.4592383022689 - type: mrr_at_20 value: 70.3430039931975 - type: mrr_at_3 value: 67.94444444444444 - type: mrr_at_5 value: 68.9111111111111 - type: nauc_map_at_1000_diff1 value: 73.89926164336681 - type: nauc_map_at_1000_max value: 58.520107712601245 - type: nauc_map_at_1000_std value: 6.203966518670752 - type: nauc_map_at_100_diff1 value: 73.88266895863376 - type: nauc_map_at_100_max value: 58.52869559413426 - type: nauc_map_at_100_std value: 6.2094530706982605 - type: nauc_map_at_10_diff1 value: 73.83454676041971 - type: nauc_map_at_10_max value: 58.728632474849476 - type: nauc_map_at_10_std value: 6.161321625117715 - type: nauc_map_at_1_diff1 value: 75.8262967666803 - type: nauc_map_at_1_max value: 50.75430912296499 - type: nauc_map_at_1_std value: -3.611304329879618 - type: nauc_map_at_20_diff1 value: 73.7570380099859 - type: nauc_map_at_20_max value: 58.579878823697186 - type: nauc_map_at_20_std value: 6.331471307882834 - type: nauc_map_at_3_diff1 value: 73.8670063410728 - type: nauc_map_at_3_max value: 56.097293037109296 - type: nauc_map_at_3_std value: 3.118147916941721 - type: nauc_map_at_5_diff1 value: 73.85961347670359 - type: nauc_map_at_5_max value: 56.73699214051663 - type: nauc_map_at_5_std value: 4.106265483441233 - type: nauc_mrr_at_1000_diff1 value: 74.43827928989487 - type: nauc_mrr_at_1000_max value: 60.4918184019879 - type: nauc_mrr_at_1000_std value: 8.2550027653635 - type: nauc_mrr_at_100_diff1 value: 74.42093690901741 - type: nauc_mrr_at_100_max value: 60.499273965963 - type: nauc_mrr_at_100_std value: 8.259231345026938 - type: nauc_mrr_at_10_diff1 value: 74.35347564500812 - type: nauc_mrr_at_10_max value: 60.84757750349501 - type: nauc_mrr_at_10_std value: 8.661941517184076 - type: nauc_mrr_at_1_diff1 value: 76.705227209796 - type: nauc_mrr_at_1_max value: 57.32137546277776 - type: nauc_mrr_at_1_std value: 4.129875191007982 - type: nauc_mrr_at_20_diff1 value: 74.30079205050251 - type: nauc_mrr_at_20_max value: 60.53532363656904 - type: nauc_mrr_at_20_std value: 8.32956272621327 - type: nauc_mrr_at_3_diff1 value: 74.87770487889848 - type: nauc_mrr_at_3_max value: 60.084677423267784 - type: nauc_mrr_at_3_std value: 7.3354753376762964 - type: nauc_mrr_at_5_diff1 value: 74.40302787656852 - type: nauc_mrr_at_5_max value: 60.069030786945795 - type: nauc_mrr_at_5_std value: 7.9515339665590075 - type: nauc_ndcg_at_1000_diff1 value: 73.66774503145189 - type: nauc_ndcg_at_1000_max value: 60.51016113928767 - type: nauc_ndcg_at_1000_std value: 8.65619371919538 - type: nauc_ndcg_at_100_diff1 value: 73.31381886910967 - type: nauc_ndcg_at_100_max value: 60.804013515995535 - type: nauc_ndcg_at_100_std value: 8.968020348251471 - type: nauc_ndcg_at_10_diff1 value: 72.99733432767304 - type: nauc_ndcg_at_10_max value: 62.116824264281135 - type: nauc_ndcg_at_10_std value: 9.809485757709925 - type: nauc_ndcg_at_1_diff1 value: 76.705227209796 - type: nauc_ndcg_at_1_max value: 57.32137546277776 - type: nauc_ndcg_at_1_std value: 4.129875191007982 - type: nauc_ndcg_at_20_diff1 value: 72.52123153995032 - type: nauc_ndcg_at_20_max value: 61.27934142158071 - type: nauc_ndcg_at_20_std value: 9.86085851593245 - type: nauc_ndcg_at_3_diff1 value: 73.29758270502096 - type: nauc_ndcg_at_3_max value: 59.004555912521774 - type: nauc_ndcg_at_3_std value: 6.372325905257958 - type: nauc_ndcg_at_5_diff1 value: 72.98853570048864 - type: nauc_ndcg_at_5_max value: 58.64946586595039 - type: nauc_ndcg_at_5_std value: 6.492229141399973 - type: nauc_precision_at_1000_diff1 value: -18.039255567985364 - type: nauc_precision_at_1000_max value: 20.62036001220385 - type: nauc_precision_at_1000_std value: 48.84436760568162 - type: nauc_precision_at_100_diff1 value: -7.274183459314691 - type: nauc_precision_at_100_max value: 27.97079336127723 - type: nauc_precision_at_100_std value: 45.54563683450541 - type: nauc_precision_at_10_diff1 value: 18.09725433020935 - type: nauc_precision_at_10_max value: 49.11398598954457 - type: nauc_precision_at_10_std value: 43.237184128141266 - type: nauc_precision_at_1_diff1 value: 76.705227209796 - type: nauc_precision_at_1_max value: 57.32137546277776 - type: nauc_precision_at_1_std value: 4.129875191007982 - type: nauc_precision_at_20_diff1 value: 1.3410525627186838 - type: nauc_precision_at_20_max value: 37.35867159476222 - type: nauc_precision_at_20_std value: 48.245728802102036 - type: nauc_precision_at_3_diff1 value: 46.28921347186669 - type: nauc_precision_at_3_max value: 55.29086984891835 - type: nauc_precision_at_3_std value: 25.485619635597068 - type: nauc_precision_at_5_diff1 value: 36.10414877829668 - type: nauc_precision_at_5_max value: 50.74423891086506 - type: nauc_precision_at_5_std value: 29.633563462559685 - type: nauc_recall_at_1000_diff1 value: 100.0 - type: nauc_recall_at_1000_max value: 100.0 - type: nauc_recall_at_1000_std value: 55.4154995331476 - type: nauc_recall_at_100_diff1 value: 63.437597261126946 - type: nauc_recall_at_100_max value: 76.15157173980718 - type: nauc_recall_at_100_std value: 27.439309056956162 - type: nauc_recall_at_10_diff1 value: 66.76520922141613 - type: nauc_recall_at_10_max value: 74.88986784140963 - type: nauc_recall_at_10_std value: 22.76893323200783 - type: nauc_recall_at_1_diff1 value: 75.8262967666803 - type: nauc_recall_at_1_max value: 50.75430912296499 - type: nauc_recall_at_1_std value: -3.611304329879618 - type: nauc_recall_at_20_diff1 value: 57.56881264902657 - type: nauc_recall_at_20_max value: 74.94173978131198 - type: nauc_recall_at_20_std value: 30.5661658602836 - type: nauc_recall_at_3_diff1 value: 69.47119910780243 - type: nauc_recall_at_3_max value: 59.27944653429989 - type: nauc_recall_at_3_std value: 6.2814183903482546 - type: nauc_recall_at_5_diff1 value: 68.10420927979328 - type: nauc_recall_at_5_max value: 60.164296893761815 - type: nauc_recall_at_5_std value: 9.5025037567499 - type: ndcg_at_1 value: 62.0 - type: ndcg_at_10 value: 73.095 - type: ndcg_at_100 value: 75.57199999999999 - type: ndcg_at_1000 value: 76.03 - type: ndcg_at_20 value: 74.785 - type: ndcg_at_3 value: 68.527 - type: ndcg_at_5 value: 70.333 - type: precision_at_1 value: 62.0 - type: precision_at_10 value: 9.667 - type: precision_at_100 value: 1.09 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_20 value: 5.2170000000000005 - type: precision_at_3 value: 26.667 - type: precision_at_5 value: 17.267 - type: recall_at_1 value: 58.760999999999996 - type: recall_at_10 value: 85.422 - type: recall_at_100 value: 96.0 - type: recall_at_1000 value: 99.667 - type: recall_at_20 value: 91.93299999999999 - type: recall_at_3 value: 72.906 - type: recall_at_5 value: 77.694 task: type: Retrieval - dataset: config: default name: MTEB SciFact (default) revision: 0228b52cf27578f30900b9e5271d331663a030d7 split: train type: mteb/scifact metrics: - type: main_score value: 76.527 - type: map_at_1 value: 62.159 - type: map_at_10 value: 72.298 - type: map_at_100 value: 72.789 - type: map_at_1000 value: 72.80499999999999 - type: map_at_20 value: 72.658 - type: map_at_3 value: 69.697 - type: map_at_5 value: 71.405 - type: mrr_at_1 value: 65.01854140914709 - type: mrr_at_10 value: 73.3364235681912 - type: mrr_at_100 value: 73.69023773006475 - type: mrr_at_1000 value: 73.70379275258956 - type: mrr_at_20 value: 73.58899784126623 - type: mrr_at_3 value: 71.63164400494436 - type: mrr_at_5 value: 72.6266996291718 - type: nauc_map_at_1000_diff1 value: 72.26196805521474 - type: nauc_map_at_1000_max value: 54.82473601925078 - type: nauc_map_at_1000_std value: 7.532896905808398 - type: nauc_map_at_100_diff1 value: 72.26762601665212 - type: nauc_map_at_100_max value: 54.84436183081319 - type: nauc_map_at_100_std value: 7.553915623782155 - type: nauc_map_at_10_diff1 value: 72.09152947041464 - type: nauc_map_at_10_max value: 54.566662723409344 - type: nauc_map_at_10_std value: 6.8617531224659984 - type: nauc_map_at_1_diff1 value: 76.44362554275227 - type: nauc_map_at_1_max value: 47.92837030943323 - type: nauc_map_at_1_std value: 1.2712665978711795 - type: nauc_map_at_20_diff1 value: 72.1932546895839 - type: nauc_map_at_20_max value: 54.77868328671626 - type: nauc_map_at_20_std value: 7.5390256852193085 - type: nauc_map_at_3_diff1 value: 72.32463213490826 - type: nauc_map_at_3_max value: 51.82850176376716 - type: nauc_map_at_3_std value: 3.313691247008456 - type: nauc_map_at_5_diff1 value: 72.07694535940702 - type: nauc_map_at_5_max value: 53.746544557259725 - type: nauc_map_at_5_std value: 5.460765188941276 - type: nauc_mrr_at_1000_diff1 value: 71.91364820971862 - type: nauc_mrr_at_1000_max value: 55.999150811401144 - type: nauc_mrr_at_1000_std value: 10.398705225694902 - type: nauc_mrr_at_100_diff1 value: 71.9166900352723 - type: nauc_mrr_at_100_max value: 56.0158980617252 - type: nauc_mrr_at_100_std value: 10.416397031952592 - type: nauc_mrr_at_10_diff1 value: 71.6000299472608 - type: nauc_mrr_at_10_max value: 55.91890883710817 - type: nauc_mrr_at_10_std value: 10.291906323764916 - type: nauc_mrr_at_1_diff1 value: 76.49718519036318 - type: nauc_mrr_at_1_max value: 54.12604217431032 - type: nauc_mrr_at_1_std value: 8.333140302649584 - type: nauc_mrr_at_20_diff1 value: 71.83180901219741 - type: nauc_mrr_at_20_max value: 55.95516059386792 - type: nauc_mrr_at_20_std value: 10.410595110736114 - type: nauc_mrr_at_3_diff1 value: 71.41066101878594 - type: nauc_mrr_at_3_max value: 56.33030426786812 - type: nauc_mrr_at_3_std value: 9.807092627499873 - type: nauc_mrr_at_5_diff1 value: 71.48457263107547 - type: nauc_mrr_at_5_max value: 55.79523079804451 - type: nauc_mrr_at_5_std value: 9.56339540662926 - type: nauc_ndcg_at_1000_diff1 value: 71.00844332582724 - type: nauc_ndcg_at_1000_max value: 56.0830968411215 - type: nauc_ndcg_at_1000_std value: 10.12536414515097 - type: nauc_ndcg_at_100_diff1 value: 71.08255901217294 - type: nauc_ndcg_at_100_max value: 56.58354344196779 - type: nauc_ndcg_at_100_std value: 10.788436869510683 - type: nauc_ndcg_at_10_diff1 value: 70.0351612983415 - type: nauc_ndcg_at_10_max value: 55.69237259785501 - type: nauc_ndcg_at_10_std value: 9.098137226872005 - type: nauc_ndcg_at_1_diff1 value: 76.49718519036318 - type: nauc_ndcg_at_1_max value: 54.12604217431032 - type: nauc_ndcg_at_1_std value: 8.333140302649584 - type: nauc_ndcg_at_20_diff1 value: 70.55288229160162 - type: nauc_ndcg_at_20_max value: 56.02912372617168 - type: nauc_ndcg_at_20_std value: 10.658004918812695 - type: nauc_ndcg_at_3_diff1 value: 70.05425859113052 - type: nauc_ndcg_at_3_max value: 53.60471853426119 - type: nauc_ndcg_at_3_std value: 5.230816816865092 - type: nauc_ndcg_at_5_diff1 value: 69.93016148017965 - type: nauc_ndcg_at_5_max value: 54.4721191074644 - type: nauc_ndcg_at_5_std value: 6.577620935495792 - type: nauc_precision_at_1000_diff1 value: -34.15207795410865 - type: nauc_precision_at_1000_max value: 19.192406477803747 - type: nauc_precision_at_1000_std value: 44.20120249056698 - type: nauc_precision_at_100_diff1 value: -21.92421802281828 - type: nauc_precision_at_100_max value: 27.932025006196444 - type: nauc_precision_at_100_std value: 46.15700787499129 - type: nauc_precision_at_10_diff1 value: 1.4405770914568594 - type: nauc_precision_at_10_max value: 39.638084561158536 - type: nauc_precision_at_10_std value: 36.69460260973796 - type: nauc_precision_at_1_diff1 value: 76.49718519036318 - type: nauc_precision_at_1_max value: 54.12604217431032 - type: nauc_precision_at_1_std value: 8.333140302649584 - type: nauc_precision_at_20_diff1 value: -9.073464951503986 - type: nauc_precision_at_20_max value: 33.43558333269937 - type: nauc_precision_at_20_std value: 43.649313315759635 - type: nauc_precision_at_3_diff1 value: 33.24438747635695 - type: nauc_precision_at_3_max value: 49.669129551161866 - type: nauc_precision_at_3_std value: 20.597427388463906 - type: nauc_precision_at_5_diff1 value: 14.390391464956412 - type: nauc_precision_at_5_max value: 42.21194236044368 - type: nauc_precision_at_5_std value: 27.341151685288402 - type: nauc_recall_at_1000_diff1 value: -13.439275396098257 - type: nauc_recall_at_1000_max value: 70.2668332789378 - type: nauc_recall_at_1000_std value: 81.47725384292593 - type: nauc_recall_at_100_diff1 value: 63.12484158375845 - type: nauc_recall_at_100_max value: 78.21397899681712 - type: nauc_recall_at_100_std value: 47.95971895328952 - type: nauc_recall_at_10_diff1 value: 59.258619066241124 - type: nauc_recall_at_10_max value: 55.72780924365118 - type: nauc_recall_at_10_std value: 12.070465110706309 - type: nauc_recall_at_1_diff1 value: 76.44362554275227 - type: nauc_recall_at_1_max value: 47.92837030943323 - type: nauc_recall_at_1_std value: 1.2712665978711795 - type: nauc_recall_at_20_diff1 value: 60.27194163739572 - type: nauc_recall_at_20_max value: 57.859640930044556 - type: nauc_recall_at_20_std value: 24.959871261637183 - type: nauc_recall_at_3_diff1 value: 63.809558015026404 - type: nauc_recall_at_3_max value: 50.68780898644539 - type: nauc_recall_at_3_std value: 0.37064353382673126 - type: nauc_recall_at_5_diff1 value: 61.34563891446967 - type: nauc_recall_at_5_max value: 52.02870480839336 - type: nauc_recall_at_5_std value: 3.3678431493557657 - type: ndcg_at_1 value: 65.019 - type: ndcg_at_10 value: 76.527 - type: ndcg_at_100 value: 78.476 - type: ndcg_at_1000 value: 78.859 - type: ndcg_at_20 value: 77.608 - type: ndcg_at_3 value: 72.237 - type: ndcg_at_5 value: 74.578 - type: precision_at_1 value: 65.019 - type: precision_at_10 value: 9.963 - type: precision_at_100 value: 1.099 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_20 value: 5.235 - type: precision_at_3 value: 28.224 - type: precision_at_5 value: 18.541 - type: recall_at_1 value: 62.159 - type: recall_at_10 value: 88.177 - type: recall_at_100 value: 96.70400000000001 - type: recall_at_1000 value: 99.629 - type: recall_at_20 value: 92.171 - type: recall_at_3 value: 76.98 - type: recall_at_5 value: 82.39800000000001 task: type: Retrieval - dataset: config: default name: MTEB TRECCOVID (default) revision: bb9466bac8153a0349341eb1b22e06409e78ef4e split: test type: mteb/trec-covid metrics: - type: main_score value: 85.786 - type: map_at_1 value: 0.241 - type: map_at_10 value: 2.2560000000000002 - type: map_at_100 value: 13.478000000000002 - type: map_at_1000 value: 32.080999999999996 - type: map_at_20 value: 4.034 - type: map_at_3 value: 0.721 - type: map_at_5 value: 1.202 - type: mrr_at_1 value: 92.0 - type: mrr_at_10 value: 95.66666666666666 - type: mrr_at_100 value: 95.66666666666666 - type: mrr_at_1000 value: 95.66666666666666 - type: mrr_at_20 value: 95.66666666666666 - type: mrr_at_3 value: 95.66666666666666 - type: mrr_at_5 value: 95.66666666666666 - type: nauc_map_at_1000_diff1 value: -33.856397215348224 - type: nauc_map_at_1000_max value: 52.442628978801686 - type: nauc_map_at_1000_std value: 78.121550023329 - type: nauc_map_at_100_diff1 value: -24.62901955392776 - type: nauc_map_at_100_max value: 23.848254681406715 - type: nauc_map_at_100_std value: 44.891168295557435 - type: nauc_map_at_10_diff1 value: 8.624081477851847 - type: nauc_map_at_10_max value: -9.045454596970382 - type: nauc_map_at_10_std value: -5.7784874943617375 - type: nauc_map_at_1_diff1 value: 17.522197196988433 - type: nauc_map_at_1_max value: -9.591987859324789 - type: nauc_map_at_1_std value: -7.711185842864 - type: nauc_map_at_20_diff1 value: -0.3901783306886495 - type: nauc_map_at_20_max value: -2.061541912435094 - type: nauc_map_at_20_std value: 5.1798742009931 - type: nauc_map_at_3_diff1 value: 13.263750752688159 - type: nauc_map_at_3_max value: -9.833822942004682 - type: nauc_map_at_3_std value: -9.816054237663943 - type: nauc_map_at_5_diff1 value: 11.492446526529632 - type: nauc_map_at_5_max value: -10.413949409485241 - type: nauc_map_at_5_std value: -11.239134010710497 - type: nauc_mrr_at_1000_diff1 value: -31.20376355670401 - type: nauc_mrr_at_1000_max value: 46.59197012138196 - type: nauc_mrr_at_1000_std value: 80.28442146089233 - type: nauc_mrr_at_100_diff1 value: -31.20376355670401 - type: nauc_mrr_at_100_max value: 46.59197012138196 - type: nauc_mrr_at_100_std value: 80.28442146089233 - type: nauc_mrr_at_10_diff1 value: -31.20376355670401 - type: nauc_mrr_at_10_max value: 46.59197012138196 - type: nauc_mrr_at_10_std value: 80.28442146089233 - type: nauc_mrr_at_1_diff1 value: -29.108309990663138 - type: nauc_mrr_at_1_max value: 43.23062558356683 - type: nauc_mrr_at_1_std value: 78.64145658263308 - type: nauc_mrr_at_20_diff1 value: -31.20376355670401 - type: nauc_mrr_at_20_max value: 46.59197012138196 - type: nauc_mrr_at_20_std value: 80.28442146089233 - type: nauc_mrr_at_3_diff1 value: -31.20376355670401 - type: nauc_mrr_at_3_max value: 46.59197012138196 - type: nauc_mrr_at_3_std value: 80.28442146089233 - type: nauc_mrr_at_5_diff1 value: -31.20376355670401 - type: nauc_mrr_at_5_max value: 46.59197012138196 - type: nauc_mrr_at_5_std value: 80.28442146089233 - type: nauc_ndcg_at_1000_diff1 value: -30.02494733757554 - type: nauc_ndcg_at_1000_max value: 46.879741543484386 - type: nauc_ndcg_at_1000_std value: 71.28860776857371 - type: nauc_ndcg_at_100_diff1 value: -40.382758704499686 - type: nauc_ndcg_at_100_max value: 46.81853301905501 - type: nauc_ndcg_at_100_std value: 78.08882504276026 - type: nauc_ndcg_at_10_diff1 value: -37.9762225498264 - type: nauc_ndcg_at_10_max value: 33.818776701290645 - type: nauc_ndcg_at_10_std value: 60.60876378870803 - type: nauc_ndcg_at_1_diff1 value: -29.64995269631029 - type: nauc_ndcg_at_1_max value: 11.702932828760678 - type: nauc_ndcg_at_1_std value: 46.36707663197732 - type: nauc_ndcg_at_20_diff1 value: -34.21566964686303 - type: nauc_ndcg_at_20_max value: 35.71546714747097 - type: nauc_ndcg_at_20_std value: 64.96478634285614 - type: nauc_ndcg_at_3_diff1 value: -40.87606957878375 - type: nauc_ndcg_at_3_max value: 34.266783345764296 - type: nauc_ndcg_at_3_std value: 59.417588176302125 - type: nauc_ndcg_at_5_diff1 value: -40.86776131403312 - type: nauc_ndcg_at_5_max value: 32.103157304099696 - type: nauc_ndcg_at_5_std value: 53.26187123017394 - type: nauc_precision_at_1000_diff1 value: -27.155383361683644 - type: nauc_precision_at_1000_max value: 47.99609392284812 - type: nauc_precision_at_1000_std value: 53.130872385717154 - type: nauc_precision_at_100_diff1 value: -44.040520753793835 - type: nauc_precision_at_100_max value: 49.40807778768706 - type: nauc_precision_at_100_std value: 76.68780066667708 - type: nauc_precision_at_10_diff1 value: -38.63910231606874 - type: nauc_precision_at_10_max value: 42.93405560776088 - type: nauc_precision_at_10_std value: 66.83323199380891 - type: nauc_precision_at_1_diff1 value: -29.108309990663138 - type: nauc_precision_at_1_max value: 43.23062558356683 - type: nauc_precision_at_1_std value: 78.64145658263308 - type: nauc_precision_at_20_diff1 value: -35.962158439352734 - type: nauc_precision_at_20_max value: 36.22370294628403 - type: nauc_precision_at_20_std value: 65.49049101917842 - type: nauc_precision_at_3_diff1 value: -53.11469565992303 - type: nauc_precision_at_3_max value: 62.111220033865045 - type: nauc_precision_at_3_std value: 67.69895731218259 - type: nauc_precision_at_5_diff1 value: -53.04735248757662 - type: nauc_precision_at_5_max value: 60.29588164734101 - type: nauc_precision_at_5_std value: 61.332609813217566 - type: nauc_recall_at_1000_diff1 value: -26.68853089093055 - type: nauc_recall_at_1000_max value: 40.15392752238839 - type: nauc_recall_at_1000_std value: 58.18451441165892 - type: nauc_recall_at_100_diff1 value: -15.581247880461934 - type: nauc_recall_at_100_max value: 10.81212430083709 - type: nauc_recall_at_100_std value: 27.018420696008477 - type: nauc_recall_at_10_diff1 value: 11.246082508546243 - type: nauc_recall_at_10_max value: -13.581652280948264 - type: nauc_recall_at_10_std value: -11.980214279022423 - type: nauc_recall_at_1_diff1 value: 17.522197196988433 - type: nauc_recall_at_1_max value: -9.591987859324789 - type: nauc_recall_at_1_std value: -7.711185842864 - type: nauc_recall_at_20_diff1 value: 4.890473144429516 - type: nauc_recall_at_20_max value: -8.848258614984216 - type: nauc_recall_at_20_std value: -4.194164888978863 - type: nauc_recall_at_3_diff1 value: 13.525152290557976 - type: nauc_recall_at_3_max value: -13.266833552882778 - type: nauc_recall_at_3_std value: -14.734712973008559 - type: nauc_recall_at_5_diff1 value: 12.38086304308239 - type: nauc_recall_at_5_max value: -14.125430291797542 - type: nauc_recall_at_5_std value: -16.303159417191377 - type: ndcg_at_1 value: 90.0 - type: ndcg_at_10 value: 85.786 - type: ndcg_at_100 value: 65.689 - type: ndcg_at_1000 value: 57.51500000000001 - type: ndcg_at_20 value: 81.291 - type: ndcg_at_3 value: 89.531 - type: ndcg_at_5 value: 88.435 - type: precision_at_1 value: 92.0 - type: precision_at_10 value: 90.0 - type: precision_at_100 value: 67.64 - type: precision_at_1000 value: 25.422 - type: precision_at_20 value: 84.89999999999999 - type: precision_at_3 value: 92.667 - type: precision_at_5 value: 93.2 - type: recall_at_1 value: 0.241 - type: recall_at_10 value: 2.37 - type: recall_at_100 value: 16.242 - type: recall_at_1000 value: 53.702000000000005 - type: recall_at_20 value: 4.343 - type: recall_at_3 value: 0.744 - type: recall_at_5 value: 1.248 task: type: Retrieval - dataset: config: default name: MTEB Touche2020 (default) revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f split: test type: mteb/touche2020 metrics: - type: main_score value: 30.676 - type: map_at_1 value: 3.17 - type: map_at_10 value: 12.838 - type: map_at_100 value: 19.455 - type: map_at_1000 value: 21.096999999999998 - type: map_at_20 value: 15.781 - type: map_at_3 value: 6.938 - type: map_at_5 value: 9.324 - type: mrr_at_1 value: 38.775510204081634 - type: mrr_at_10 value: 54.38208616780046 - type: mrr_at_100 value: 54.88429833086117 - type: mrr_at_1000 value: 54.88429833086117 - type: mrr_at_20 value: 54.69357918606039 - type: mrr_at_3 value: 51.02040816326531 - type: mrr_at_5 value: 52.44897959183673 - type: nauc_map_at_1000_diff1 value: 11.768546469752255 - type: nauc_map_at_1000_max value: -6.234751836059205 - type: nauc_map_at_1000_std value: -0.5086610596792738 - type: nauc_map_at_100_diff1 value: 12.210218562618925 - type: nauc_map_at_100_max value: -7.479895692892787 - type: nauc_map_at_100_std value: -3.9456755950311653 - type: nauc_map_at_10_diff1 value: 17.872233692928692 - type: nauc_map_at_10_max value: -1.4391736686946837 - type: nauc_map_at_10_std value: -19.04083165317906 - type: nauc_map_at_1_diff1 value: 26.952695929538866 - type: nauc_map_at_1_max value: -23.861150686867994 - type: nauc_map_at_1_std value: -36.57857926974273 - type: nauc_map_at_20_diff1 value: 15.79525205450058 - type: nauc_map_at_20_max value: -5.818581673388666 - type: nauc_map_at_20_std value: -14.222828899523332 - type: nauc_map_at_3_diff1 value: 24.296906628915092 - type: nauc_map_at_3_max value: -3.075381662286569 - type: nauc_map_at_3_std value: -25.324259455516085 - type: nauc_map_at_5_diff1 value: 23.81656417505337 - type: nauc_map_at_5_max value: -3.736702154899666 - type: nauc_map_at_5_std value: -25.914105892424722 - type: nauc_mrr_at_1000_diff1 value: 17.59241956039767 - type: nauc_mrr_at_1000_max value: -33.70575077889871 - type: nauc_mrr_at_1000_std value: -31.563016486948225 - type: nauc_mrr_at_100_diff1 value: 17.59241956039767 - type: nauc_mrr_at_100_max value: -33.70575077889871 - type: nauc_mrr_at_100_std value: -31.563016486948225 - type: nauc_mrr_at_10_diff1 value: 16.7444853592715 - type: nauc_mrr_at_10_max value: -34.67620993606911 - type: nauc_mrr_at_10_std value: -30.36717732372874 - type: nauc_mrr_at_1_diff1 value: 24.89375000365368 - type: nauc_mrr_at_1_max value: -30.815417372385873 - type: nauc_mrr_at_1_std value: -44.687809069434245 - type: nauc_mrr_at_20_diff1 value: 17.80682781563912 - type: nauc_mrr_at_20_max value: -33.65132043726252 - type: nauc_mrr_at_20_std value: -30.788168935299247 - type: nauc_mrr_at_3_diff1 value: 16.98952594458621 - type: nauc_mrr_at_3_max value: -31.87405417907046 - type: nauc_mrr_at_3_std value: -32.99668568417734 - type: nauc_mrr_at_5_diff1 value: 17.692734228351465 - type: nauc_mrr_at_5_max value: -31.478014354340267 - type: nauc_mrr_at_5_std value: -34.27625710571425 - type: nauc_ndcg_at_1000_diff1 value: 7.2521145392859925 - type: nauc_ndcg_at_1000_max value: -11.879052032552305 - type: nauc_ndcg_at_1000_std value: 16.868276570948492 - type: nauc_ndcg_at_100_diff1 value: 9.68273273743821 - type: nauc_ndcg_at_100_max value: -19.509766471983163 - type: nauc_ndcg_at_100_std value: 10.902137038006767 - type: nauc_ndcg_at_10_diff1 value: 15.249688997310848 - type: nauc_ndcg_at_10_max value: -10.630040416461807 - type: nauc_ndcg_at_10_std value: -12.375334439103657 - type: nauc_ndcg_at_1_diff1 value: 23.20606123961159 - type: nauc_ndcg_at_1_max value: -29.329783979356527 - type: nauc_ndcg_at_1_std value: -44.10128294915467 - type: nauc_ndcg_at_20_diff1 value: 13.146989938292835 - type: nauc_ndcg_at_20_max value: -17.320226384710132 - type: nauc_ndcg_at_20_std value: -9.593117671485109 - type: nauc_ndcg_at_3_diff1 value: 18.262720339591553 - type: nauc_ndcg_at_3_max value: -10.618248628559396 - type: nauc_ndcg_at_3_std value: -24.069451775959436 - type: nauc_ndcg_at_5_diff1 value: 23.015053471568216 - type: nauc_ndcg_at_5_max value: -7.6818187454174485 - type: nauc_ndcg_at_5_std value: -23.610640745384508 - type: nauc_precision_at_1000_diff1 value: -21.295596373775506 - type: nauc_precision_at_1000_max value: 33.313558338532154 - type: nauc_precision_at_1000_std value: 36.00306839548485 - type: nauc_precision_at_100_diff1 value: -8.17984508673104 - type: nauc_precision_at_100_max value: -3.5218633922770186 - type: nauc_precision_at_100_std value: 64.06409459764816 - type: nauc_precision_at_10_diff1 value: 9.669119653314857 - type: nauc_precision_at_10_max value: -7.486292775323736 - type: nauc_precision_at_10_std value: 6.05291075028193 - type: nauc_precision_at_1_diff1 value: 24.89375000365368 - type: nauc_precision_at_1_max value: -30.815417372385873 - type: nauc_precision_at_1_std value: -44.687809069434245 - type: nauc_precision_at_20_diff1 value: 5.612232465910688 - type: nauc_precision_at_20_max value: -9.493221506431967 - type: nauc_precision_at_20_std value: 21.580627790601074 - type: nauc_precision_at_3_diff1 value: 17.374772867960296 - type: nauc_precision_at_3_max value: -5.4513905841762496 - type: nauc_precision_at_3_std value: -18.247738169868203 - type: nauc_precision_at_5_diff1 value: 24.856012104520754 - type: nauc_precision_at_5_max value: -1.689335249747221 - type: nauc_precision_at_5_std value: -17.759731374287938 - type: nauc_recall_at_1000_diff1 value: -16.083745923678773 - type: nauc_recall_at_1000_max value: -6.4871691773402285 - type: nauc_recall_at_1000_std value: 72.67593737144807 - type: nauc_recall_at_100_diff1 value: -2.2459215656431395 - type: nauc_recall_at_100_max value: -22.74818872908392 - type: nauc_recall_at_100_std value: 32.77497339706697 - type: nauc_recall_at_10_diff1 value: 8.670501799477833 - type: nauc_recall_at_10_max value: -9.585611028753716 - type: nauc_recall_at_10_std value: -10.351304338231115 - type: nauc_recall_at_1_diff1 value: 26.952695929538866 - type: nauc_recall_at_1_max value: -23.861150686867994 - type: nauc_recall_at_1_std value: -36.57857926974273 - type: nauc_recall_at_20_diff1 value: 8.556995668015755 - type: nauc_recall_at_20_max value: -17.78731664551538 - type: nauc_recall_at_20_std value: -2.6521355533836433 - type: nauc_recall_at_3_diff1 value: 21.343842933377587 - type: nauc_recall_at_3_max value: -2.6294436308829456 - type: nauc_recall_at_3_std value: -21.662684580036945 - type: nauc_recall_at_5_diff1 value: 20.98116651540531 - type: nauc_recall_at_5_max value: -6.952288993104518 - type: nauc_recall_at_5_std value: -24.78098743592733 - type: ndcg_at_1 value: 34.694 - type: ndcg_at_10 value: 30.676 - type: ndcg_at_100 value: 41.345 - type: ndcg_at_1000 value: 52.586 - type: ndcg_at_20 value: 31.176 - type: ndcg_at_3 value: 35.467 - type: ndcg_at_5 value: 32.784 - type: precision_at_1 value: 38.775999999999996 - type: precision_at_10 value: 27.346999999999998 - type: precision_at_100 value: 8.265 - type: precision_at_1000 value: 1.58 - type: precision_at_20 value: 20.51 - type: precision_at_3 value: 38.775999999999996 - type: precision_at_5 value: 33.061 - type: recall_at_1 value: 3.17 - type: recall_at_10 value: 19.188 - type: recall_at_100 value: 50.775000000000006 - type: recall_at_1000 value: 85.392 - type: recall_at_20 value: 28.061000000000003 - type: recall_at_3 value: 7.949000000000001 - type: recall_at_5 value: 11.863 task: type: Retrieval tags: - mteb license: mit --- <h1 align="center">Combination of Embedding Models: <a href="https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v1.5">Arctic M (v1.5)</a> & <a href="https://huggingface.co/BAAI/bge-small-en-v1.5">BGE Small (en; v1.5)</a></h1> <h4 align="center"> <p> <a href="#acknowledgement">Acknowledgement</a> | <a href=#combination-of-embedding-models>Combination of Embedding Models</a> | <a href=#usage>Usage</a> | <a href=#citation>Citation</a> | <a href=#license>License</a> <p> </h4> ## Acknowledgement First of all, we want to acknowledge the original creators of the [Snowflake/snowflake-arctic-embed-m-v1.5](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v1.5) and [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) models which are used to create this model. Our model is just a combination of these two models, and we have not made any changes to the original models. Furthermore, we want to acknowledge the team of Marqo, who has worked on the idea of combining two models through concatenation in parallel to ourselves. Their initial effort allowed to re-use existing pieces of code, in particular the [modeling script](https://huggingface.co/PaDaS-Lab/arctic-m-bge-small/blob/main/modeling_arctic_m_bge_small.py) for bringing the combined model to HuggingFace. ## Combination of Embedding Models ### Overview Embedding models have become increasingly powerful and applicable across various use cases. However, the next significant challenge lies in enhancing their efficiency in terms of resource consumption. Our goal is to experiment with combining two embedding models to achieve better performance with fewer resources. ### Key Insights 1. **Diversity Matters**: Initial findings suggest that combining models with differing characteristics can complement each other, resulting in improved outcomes. To design an effective combination, the diversity of the models—evaluated by factors like MTEB performance, architecture, and training data—is crucial. 2. **Combination Technique**: - We combine the embeddings of two models using the most straightforward approach: concatenation. - Prior to concatenation, we normalize the embeddings to ensure they are on the same scale. This step is vital for achieving coherent and meaningful results. ### Implementation We combined the following models: - **[Snowflake/snowflake-arctic-embed-m-v1.5](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v1.5)** - **[BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)** #### Model Details - **Output Embedding Dimensions**: 1152 (768 + 384) - **Total Parameters**: 142M (109M + 33M) ### Results This combination demonstrated notable performance on the **MTEB Leaderboard**, offering a promising foundation for further experimentation: - **Performance Improvement**: The average nDCG@10 on the MTEB English Retrieval benchmark increased from **55.14 to 56.5**, climbing several spots on the leaderboard—a feat often requiring extensive engineering efforts. - **Comparison with Chimera Model**: Interestingly, the **[Chimera model](https://huggingface.co/Marqo/marqo-chimera-arctic-bge-m)**, which employs more potent models individually, performs worse on the leaderboard. This raises questions about: - The role of parameter count. - Differences in training processes. - How effectively two models complement each other for specific benchmark tasks. ### Future Directions While the results are promising, we acknowledge the complexity of model combinations and the importance of focusing on more than leaderboard rankings. The simplicity of concatenating embeddings yielding tangible gains emphasizes the potential for further exploration in this area. We look forward to conducting additional experiments and engaging in discussions to deepen our understanding of effective model combinations. ## Usage ```python import numpy as np import torch from torch.utils.data import DataLoader from transformers import AutoModel, AutoTokenizer, PreTrainedTokenizerFast, BatchEncoding, DataCollatorWithPadding from functools import partial from datasets import Dataset from tqdm import tqdm from typing import * NUM_WORKERS = 4 BATCH_SIZE = 32 def transform_func(tokenizer: PreTrainedTokenizerFast, max_length: int, examples: Dict[str, List]) -> BatchEncoding: return tokenizer(examples['contents'], max_length=max_length, padding=True, return_token_type_ids=False, truncation=True) def move_to_cuda(sample): if len(sample) == 0: return {} def _move_to_cuda(maybe_tensor): if torch.is_tensor(maybe_tensor): return maybe_tensor.cuda(non_blocking=True) elif isinstance(maybe_tensor, dict): return {key: _move_to_cuda(value) for key, value in maybe_tensor.items()} elif isinstance(maybe_tensor, list): return [_move_to_cuda(x) for x in maybe_tensor] elif isinstance(maybe_tensor, tuple): return tuple([_move_to_cuda(x) for x in maybe_tensor]) elif isinstance(maybe_tensor, Mapping): return type(maybe_tensor)({k: _move_to_cuda(v) for k, v in maybe_tensor.items()}) else: return maybe_tensor return _move_to_cuda(sample) class RetrievalModel(): def __init__(self, pretrained_model_name: str, **kwargs): self.pretrained_model_name = pretrained_model_name self.encoder = AutoModel.from_pretrained(pretrained_model_name, trust_remote_code=True) self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name, trust_remote_code=True) self.gpu_count = torch.cuda.device_count() self.batch_size = BATCH_SIZE self.query_instruction = 'Represent this sentence for searching relevant passages: {}' self.document_instruction = '{}' self.pool_type = 'cls' self.max_length = 512 self.encoder.cuda() self.encoder.eval() def encode_queries(self, queries: List[str], **kwargs) -> np.ndarray: input_texts = [self.query_instruction.format(q) for q in queries] return self._do_encode(input_texts) def encode_corpus(self, corpus: List[Dict[str, str]], **kwargs) -> np.ndarray: input_texts = [self.document_instruction.format('{} {}'.format(d.get('title', ''), d['text']).strip()) for d in corpus] return self._do_encode(input_texts) @torch.no_grad() def _do_encode(self, input_texts: List[str]) -> np.ndarray: dataset: Dataset = Dataset.from_dict({'contents': input_texts}) dataset.set_transform(partial(transform_func, self.tokenizer, self.max_length)) data_collator = DataCollatorWithPadding(self.tokenizer, pad_to_multiple_of=8) data_loader = DataLoader( dataset, batch_size=self.batch_size * self.gpu_count, shuffle=False, drop_last=False, num_workers=NUM_WORKERS, collate_fn=data_collator, pin_memory=True) encoded_embeds = [] for batch_dict in tqdm(data_loader, desc='encoding', mininterval=10): batch_dict = move_to_cuda(batch_dict) with torch.amp.autocast('cuda'): outputs = self.encoder(**batch_dict) encoded_embeds.append(outputs.cpu().numpy()) return np.concatenate(encoded_embeds, axis=0) model = RetrievalModel('PaDaS-Lab/arctic-m-bge-small') embeds_q = model.encode_queries(['What is the capital of France?']) # [[-0.01099197 -0.08366653 0.0060241 ... 0.03182805 -0.00674182 0.058571 ]] embeds_d = model.encode_corpus([{'title': 'Paris', 'text': 'Paris is the capital of France.'}]) # [[ 0.0391828 -0.02951912 0.10862264 ... -0.05373885 -0.00368348 0.02323797]] ``` ### Libraries ``` torch==2.5.0 transformers==4.42.3 mteb==1.12.94 ``` ## Citation ```bibtex @misc{https://doi.org/10.48550/arxiv.2407.08275, doi = {10.48550/ARXIV.2407.08275}, url = {https://arxiv.org/abs/2407.08275}, author = {Caspari, Laura and Dastidar, Kanishka Ghosh and Zerhoudi, Saber and Mitrovic, Jelena and Granitzer, Michael}, title = {Beyond Benchmarks: Evaluating Embedding Model Similarity for Retrieval Augmented Generation Systems}, year = {2024}, copyright = {Creative Commons Attribution 4.0 International} } ``` ## License Notice that Arctic M (v1.5) is licensed under [Apache-2.0](https://www.apache.org/licenses/LICENSE-2.0) and BGE Small (en; v1.5) is licensed under [MIT](https://opensource.org/licenses/MIT) license. Please refer to the licenses of the original models for more details.
mradermacher/Llama-3.1-8B-Ultra-Instruct-GGUF
mradermacher
2024-11-15T23:17:11Z
7
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:Dampfinchen/Llama-3.1-8B-Ultra-Instruct", "base_model:quantized:Dampfinchen/Llama-3.1-8B-Ultra-Instruct", "license:llama3", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-15T22:58:56Z
--- base_model: Dampfinchen/Llama-3.1-8B-Ultra-Instruct language: - en library_name: transformers license: llama3 quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Dampfinchen/Llama-3.1-8B-Ultra-Instruct <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Llama-3.1-8B-Ultra-Instruct-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Ultra-Instruct-GGUF/resolve/main/Llama-3.1-8B-Ultra-Instruct.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Ultra-Instruct-GGUF/resolve/main/Llama-3.1-8B-Ultra-Instruct.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Ultra-Instruct-GGUF/resolve/main/Llama-3.1-8B-Ultra-Instruct.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Ultra-Instruct-GGUF/resolve/main/Llama-3.1-8B-Ultra-Instruct.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Ultra-Instruct-GGUF/resolve/main/Llama-3.1-8B-Ultra-Instruct.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Ultra-Instruct-GGUF/resolve/main/Llama-3.1-8B-Ultra-Instruct.Q4_0_4_4.gguf) | Q4_0_4_4 | 4.8 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Ultra-Instruct-GGUF/resolve/main/Llama-3.1-8B-Ultra-Instruct.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Ultra-Instruct-GGUF/resolve/main/Llama-3.1-8B-Ultra-Instruct.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Ultra-Instruct-GGUF/resolve/main/Llama-3.1-8B-Ultra-Instruct.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Ultra-Instruct-GGUF/resolve/main/Llama-3.1-8B-Ultra-Instruct.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Ultra-Instruct-GGUF/resolve/main/Llama-3.1-8B-Ultra-Instruct.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Ultra-Instruct-GGUF/resolve/main/Llama-3.1-8B-Ultra-Instruct.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Ultra-Instruct-GGUF/resolve/main/Llama-3.1-8B-Ultra-Instruct.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
RichardErkhov/cahaj_-_Phi-3.5-mini-instruct-text2sql-gguf
RichardErkhov
2024-11-15T23:01:23Z
9
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-15T21:31:14Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Phi-3.5-mini-instruct-text2sql - GGUF - Model creator: https://huggingface.co/cahaj/ - Original model: https://huggingface.co/cahaj/Phi-3.5-mini-instruct-text2sql/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Phi-3.5-mini-instruct-text2sql.Q2_K.gguf](https://huggingface.co/RichardErkhov/cahaj_-_Phi-3.5-mini-instruct-text2sql-gguf/blob/main/Phi-3.5-mini-instruct-text2sql.Q2_K.gguf) | Q2_K | 1.35GB | | [Phi-3.5-mini-instruct-text2sql.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/cahaj_-_Phi-3.5-mini-instruct-text2sql-gguf/blob/main/Phi-3.5-mini-instruct-text2sql.Q3_K_S.gguf) | Q3_K_S | 1.57GB | | [Phi-3.5-mini-instruct-text2sql.Q3_K.gguf](https://huggingface.co/RichardErkhov/cahaj_-_Phi-3.5-mini-instruct-text2sql-gguf/blob/main/Phi-3.5-mini-instruct-text2sql.Q3_K.gguf) | Q3_K | 1.75GB | | [Phi-3.5-mini-instruct-text2sql.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/cahaj_-_Phi-3.5-mini-instruct-text2sql-gguf/blob/main/Phi-3.5-mini-instruct-text2sql.Q3_K_M.gguf) | Q3_K_M | 1.75GB | | [Phi-3.5-mini-instruct-text2sql.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/cahaj_-_Phi-3.5-mini-instruct-text2sql-gguf/blob/main/Phi-3.5-mini-instruct-text2sql.Q3_K_L.gguf) | Q3_K_L | 1.9GB | | [Phi-3.5-mini-instruct-text2sql.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/cahaj_-_Phi-3.5-mini-instruct-text2sql-gguf/blob/main/Phi-3.5-mini-instruct-text2sql.IQ4_XS.gguf) | IQ4_XS | 1.93GB | | [Phi-3.5-mini-instruct-text2sql.Q4_0.gguf](https://huggingface.co/RichardErkhov/cahaj_-_Phi-3.5-mini-instruct-text2sql-gguf/blob/main/Phi-3.5-mini-instruct-text2sql.Q4_0.gguf) | Q4_0 | 2.03GB | | [Phi-3.5-mini-instruct-text2sql.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/cahaj_-_Phi-3.5-mini-instruct-text2sql-gguf/blob/main/Phi-3.5-mini-instruct-text2sql.IQ4_NL.gguf) | IQ4_NL | 2.04GB | | [Phi-3.5-mini-instruct-text2sql.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/cahaj_-_Phi-3.5-mini-instruct-text2sql-gguf/blob/main/Phi-3.5-mini-instruct-text2sql.Q4_K_S.gguf) | Q4_K_S | 2.04GB | | [Phi-3.5-mini-instruct-text2sql.Q4_K.gguf](https://huggingface.co/RichardErkhov/cahaj_-_Phi-3.5-mini-instruct-text2sql-gguf/blob/main/Phi-3.5-mini-instruct-text2sql.Q4_K.gguf) | Q4_K | 2.16GB | | [Phi-3.5-mini-instruct-text2sql.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/cahaj_-_Phi-3.5-mini-instruct-text2sql-gguf/blob/main/Phi-3.5-mini-instruct-text2sql.Q4_K_M.gguf) | Q4_K_M | 2.16GB | | [Phi-3.5-mini-instruct-text2sql.Q4_1.gguf](https://huggingface.co/RichardErkhov/cahaj_-_Phi-3.5-mini-instruct-text2sql-gguf/blob/main/Phi-3.5-mini-instruct-text2sql.Q4_1.gguf) | Q4_1 | 2.24GB | | [Phi-3.5-mini-instruct-text2sql.Q5_0.gguf](https://huggingface.co/RichardErkhov/cahaj_-_Phi-3.5-mini-instruct-text2sql-gguf/blob/main/Phi-3.5-mini-instruct-text2sql.Q5_0.gguf) | Q5_0 | 2.46GB | | [Phi-3.5-mini-instruct-text2sql.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/cahaj_-_Phi-3.5-mini-instruct-text2sql-gguf/blob/main/Phi-3.5-mini-instruct-text2sql.Q5_K_S.gguf) | Q5_K_S | 2.46GB | | [Phi-3.5-mini-instruct-text2sql.Q5_K.gguf](https://huggingface.co/RichardErkhov/cahaj_-_Phi-3.5-mini-instruct-text2sql-gguf/blob/main/Phi-3.5-mini-instruct-text2sql.Q5_K.gguf) | Q5_K | 2.53GB | | [Phi-3.5-mini-instruct-text2sql.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/cahaj_-_Phi-3.5-mini-instruct-text2sql-gguf/blob/main/Phi-3.5-mini-instruct-text2sql.Q5_K_M.gguf) | Q5_K_M | 2.53GB | | [Phi-3.5-mini-instruct-text2sql.Q5_1.gguf](https://huggingface.co/RichardErkhov/cahaj_-_Phi-3.5-mini-instruct-text2sql-gguf/blob/main/Phi-3.5-mini-instruct-text2sql.Q5_1.gguf) | Q5_1 | 2.68GB | | [Phi-3.5-mini-instruct-text2sql.Q6_K.gguf](https://huggingface.co/RichardErkhov/cahaj_-_Phi-3.5-mini-instruct-text2sql-gguf/blob/main/Phi-3.5-mini-instruct-text2sql.Q6_K.gguf) | Q6_K | 2.92GB | | [Phi-3.5-mini-instruct-text2sql.Q8_0.gguf](https://huggingface.co/RichardErkhov/cahaj_-_Phi-3.5-mini-instruct-text2sql-gguf/blob/main/Phi-3.5-mini-instruct-text2sql.Q8_0.gguf) | Q8_0 | 3.78GB | Original model description: --- base_model: microsoft/Phi-3.5-mini-instruct language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - sft --- # Uploaded model - **Developed by:** cahaj - **License:** apache-2.0 - **Finetuned from model :** microsoft/Phi-3.5-mini-instruct This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
AlekseyCalvin/Vladimir_Sillov_SilverAgePoets_FLUX_LoRA
AlekseyCalvin
2024-11-15T22:56:37Z
5
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-11-14T06:37:46Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: black-forest-labs/FLUX.1-dev pipeline_tag: text-to-image instance_prompt: poet Vladimir Sillov widget: - text: >- A photo of Soviet poet Vladimir Sillov in bed at dawn in USSR circa 1923. Sillov, in his mid-20s, young, best quality. Medium frame. Moderately worn, textured skin with blemishes and pores, extremely detailed color photograph. output: url: SillovBed2.png - text: >- A photo of Soviet poet Vladimir Sillov in bed in USSR circa 1923. Sillov, in his mid-20s, young, best quality. Medium frame. Moderately worn, textured skin with blemishes and pores, extremely detailed color photograph. output: url: SillovBed3.png - text: >- A photo of Soviet poet Vladimir Sillov, color photograph... output: url: SillovSickle.webp - text: >- A photo of Soviet poet Vladimir Sillov walking in a stairwell in USSR circa 1923 and saying via text balloon: "Days Would Walk an Untrod Morbid Staircase...", then under it another text balloon: "...At accelerant pace!" Sillov, in his mid-20s, young, is in a hurry, best quality. Medium frame. Moderately worn, textured skin with blemishes and pores, extremely detailed color photograph. output: url: Sillov_1_DaysWouldWalk.png --- # Poet Vladimir Sillov Flux A **Low Rank Adaptor (LoRA)** for **FLUX** Text2Image models, trained to reincarnate the likeness of the poet, literary scholar, critic, editor, screenwriter, anthologist, progressive sociocultural activist, life-partner of Petrovskaya, student & biographer of Khlebnikov, friend of Pasternak, Mayakovskiy, Burlyuk, Aseev, Tretiakov, & many others, as well as a tragic and unforgotten avatar of all that could've been and what sometimes actually was: <br> **Vladimir Sillov** *(b.1901-d.02/16/1930)*. <br> <Gallery /> Unfortunately, Sillov, as of yet does not have a Wikipedia (at least not in English/Worldish)... We hope this sad fact is corrected one day. <br> For now, here's a clip of a reincarnated/approximated iteration of the poet, performing "live" (per our translation/interpretation/adaptation): <br> [CLICK HERE TO WATCH THE CLIP ON YOUTUBE](https://youtu.be/paffYoQpAq4?si=EMQW2zM3IhdqfWVr) Plus one of our translations from Sillov. More will be posted soon at [www.SilverAgePoets.com](www.silveragepoets.com): <br> **UNTIL IT DAWNS ANEW** Days<br> Would walk <br> An untrod morbid staircase<br> At an accelerant pace.<br> Soon <br> The trees <br> Splinter off unto leaflessness,<br> All the clearer it makes:<br> When the spring<br> Times the poets still nibble on<br> Are abruptly<br> Pulled down; <br> With the sun, <br> A blotched face nothing beams upon, <br> They come down <br> Like a crown. <br> And this sun with its springs <br> To the market we’ll bring, <br> Hoist them over thru tussle and din, <br> And for five faded roubles <br> Toss them <br> Off to some antiquarian. <br> Souls spat on, slandered, <br> Insolent, headstrong,<br> Altars do strew.<br> Upon them we'd light <br> Lamps for vesper nights, <br> Until it dawns anew. <br> Find our translations of other poets [over at SilverAgePoets.com](https://www.silveragepoets.com)! <br> In the coming weeks, we will finally update the site with translations from the works of Sillov, his partner Olga Petrovskaya, a number of his above-mentioned friends, and many other dead poets! <br> Beyond that, other forms of translations, adaptation, actions, ressurections, poeticizations, generations, and much else, coming soon; here, there, and elsewhere! <br> ## Evocation-Charged Word With FLUX running & this LoRA activated, include the name `Sillov` or 'Vladimir Sillov' or 'Poet Vladimir Sillov' in any prompt to conjure the long-deathless poet. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('AlekseyCalvin/Vladimir_Sillov_SilverAgePoets_FLUX_LoRA', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
mradermacher/EVA-Tissint-14B-i1-GGUF
mradermacher
2024-11-15T22:44:11Z
76
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:ockerman0/EVA-Tissint-14B", "base_model:quantized:ockerman0/EVA-Tissint-14B", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-15T12:01:54Z
--- base_model: ockerman0/EVA-Tissint-14B language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/ockerman0/EVA-Tissint-14B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/EVA-Tissint-14B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/EVA-Tissint-14B-i1-GGUF/resolve/main/EVA-Tissint-14B.i1-IQ1_S.gguf) | i1-IQ1_S | 3.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/EVA-Tissint-14B-i1-GGUF/resolve/main/EVA-Tissint-14B.i1-IQ1_M.gguf) | i1-IQ1_M | 4.0 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/EVA-Tissint-14B-i1-GGUF/resolve/main/EVA-Tissint-14B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Tissint-14B-i1-GGUF/resolve/main/EVA-Tissint-14B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Tissint-14B-i1-GGUF/resolve/main/EVA-Tissint-14B.i1-IQ2_S.gguf) | i1-IQ2_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Tissint-14B-i1-GGUF/resolve/main/EVA-Tissint-14B.i1-IQ2_M.gguf) | i1-IQ2_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Tissint-14B-i1-GGUF/resolve/main/EVA-Tissint-14B.i1-Q2_K.gguf) | i1-Q2_K | 5.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/EVA-Tissint-14B-i1-GGUF/resolve/main/EVA-Tissint-14B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 6.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/EVA-Tissint-14B-i1-GGUF/resolve/main/EVA-Tissint-14B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 6.5 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Tissint-14B-i1-GGUF/resolve/main/EVA-Tissint-14B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 6.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/EVA-Tissint-14B-i1-GGUF/resolve/main/EVA-Tissint-14B.i1-IQ3_S.gguf) | i1-IQ3_S | 6.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/EVA-Tissint-14B-i1-GGUF/resolve/main/EVA-Tissint-14B.i1-IQ3_M.gguf) | i1-IQ3_M | 7.0 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Tissint-14B-i1-GGUF/resolve/main/EVA-Tissint-14B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 7.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/EVA-Tissint-14B-i1-GGUF/resolve/main/EVA-Tissint-14B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 8.0 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/EVA-Tissint-14B-i1-GGUF/resolve/main/EVA-Tissint-14B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 8.2 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Tissint-14B-i1-GGUF/resolve/main/EVA-Tissint-14B.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 8.6 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/EVA-Tissint-14B-i1-GGUF/resolve/main/EVA-Tissint-14B.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 8.6 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/EVA-Tissint-14B-i1-GGUF/resolve/main/EVA-Tissint-14B.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 8.6 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/EVA-Tissint-14B-i1-GGUF/resolve/main/EVA-Tissint-14B.i1-Q4_0.gguf) | i1-Q4_0 | 8.6 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/EVA-Tissint-14B-i1-GGUF/resolve/main/EVA-Tissint-14B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 8.7 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/EVA-Tissint-14B-i1-GGUF/resolve/main/EVA-Tissint-14B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 9.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/EVA-Tissint-14B-i1-GGUF/resolve/main/EVA-Tissint-14B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Tissint-14B-i1-GGUF/resolve/main/EVA-Tissint-14B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Tissint-14B-i1-GGUF/resolve/main/EVA-Tissint-14B.i1-Q6_K.gguf) | i1-Q6_K | 12.2 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
masafresh/swin-transformer2
masafresh
2024-11-15T22:43:28Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "swin", "image-classification", "generated_from_trainer", "base_model:microsoft/swin-large-patch4-window12-384", "base_model:finetune:microsoft/swin-large-patch4-window12-384", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-11-15T18:53:12Z
--- library_name: transformers license: apache-2.0 base_model: microsoft/swin-large-patch4-window12-384 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: swin-transformer2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-transformer2 This model is a fine-tuned version of [microsoft/swin-large-patch4-window12-384](https://huggingface.co/microsoft/swin-large-patch4-window12-384) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2129 - Accuracy: 0.6386 - F1: 0.6328 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:| | 1.6336 | 0.9840 | 46 | 1.6510 | 0.2530 | 0.1876 | | 1.2894 | 1.9893 | 93 | 1.2218 | 0.4458 | 0.3780 | | 1.0959 | 2.9947 | 140 | 1.1383 | 0.5060 | 0.3518 | | 1.0467 | 4.0 | 187 | 0.9372 | 0.5542 | 0.4352 | | 0.9879 | 4.9840 | 233 | 1.0139 | 0.5301 | 0.4718 | | 0.9086 | 5.9893 | 280 | 0.8822 | 0.6627 | 0.6359 | | 0.9776 | 6.9947 | 327 | 1.0269 | 0.5542 | 0.5139 | | 0.9715 | 8.0 | 374 | 0.7964 | 0.5663 | 0.5588 | | 0.9049 | 8.9840 | 420 | 0.7839 | 0.5904 | 0.5346 | | 0.8697 | 9.9893 | 467 | 1.0379 | 0.5663 | 0.4921 | | 0.882 | 10.9947 | 514 | 0.9132 | 0.5663 | 0.5379 | | 0.832 | 12.0 | 561 | 0.8513 | 0.5783 | 0.5008 | | 0.7475 | 12.9840 | 607 | 0.7612 | 0.6627 | 0.6427 | | 0.9056 | 13.9893 | 654 | 0.8431 | 0.6145 | 0.5725 | | 0.9978 | 14.9947 | 701 | 0.7221 | 0.7108 | 0.6983 | | 0.6956 | 16.0 | 748 | 0.7545 | 0.6145 | 0.5888 | | 0.7185 | 16.9840 | 794 | 0.6561 | 0.6627 | 0.6499 | | 0.8139 | 17.9893 | 841 | 0.7512 | 0.6506 | 0.6386 | | 0.6837 | 18.9947 | 888 | 0.6491 | 0.6988 | 0.6849 | | 0.5191 | 20.0 | 935 | 0.7290 | 0.6386 | 0.6336 | | 0.6538 | 20.9840 | 981 | 0.8000 | 0.6988 | 0.6621 | | 0.7912 | 21.9893 | 1028 | 1.0183 | 0.6145 | 0.5824 | | 0.6093 | 22.9947 | 1075 | 0.9124 | 0.6506 | 0.6396 | | 0.5312 | 24.0 | 1122 | 0.9098 | 0.6024 | 0.5581 | | 0.6654 | 24.9840 | 1168 | 1.0432 | 0.5422 | 0.5028 | | 0.5798 | 25.9893 | 1215 | 0.7369 | 0.6627 | 0.6553 | | 0.506 | 26.9947 | 1262 | 0.9057 | 0.6265 | 0.6236 | | 0.4638 | 28.0 | 1309 | 0.7950 | 0.6867 | 0.6644 | | 0.371 | 28.9840 | 1355 | 1.0368 | 0.6627 | 0.6473 | | 0.4721 | 29.9893 | 1402 | 0.8129 | 0.6747 | 0.6673 | | 0.54 | 30.9947 | 1449 | 1.0379 | 0.6627 | 0.6491 | | 0.3978 | 32.0 | 1496 | 1.3857 | 0.5904 | 0.5481 | | 0.3503 | 32.9840 | 1542 | 1.0920 | 0.6024 | 0.5847 | | 0.4407 | 33.9893 | 1589 | 1.1912 | 0.5904 | 0.5505 | | 0.3786 | 34.9947 | 1636 | 1.5071 | 0.6024 | 0.5915 | | 0.3482 | 36.0 | 1683 | 1.1161 | 0.6386 | 0.6240 | | 0.2695 | 36.9840 | 1729 | 1.2040 | 0.5904 | 0.5704 | | 0.2296 | 37.9893 | 1776 | 1.5781 | 0.5181 | 0.4691 | | 0.2922 | 38.9947 | 1823 | 1.3713 | 0.6024 | 0.5879 | | 0.1511 | 40.0 | 1870 | 1.1638 | 0.6506 | 0.6553 | | 0.2814 | 40.9840 | 1916 | 1.3384 | 0.6988 | 0.6939 | | 0.2196 | 41.9893 | 1963 | 1.2872 | 0.6506 | 0.6330 | | 0.2477 | 42.9947 | 2010 | 1.5322 | 0.6627 | 0.6375 | | 0.3296 | 44.0 | 2057 | 1.3479 | 0.6506 | 0.6353 | | 0.2015 | 44.9840 | 2103 | 1.2521 | 0.6145 | 0.6044 | | 0.3476 | 45.9893 | 2150 | 1.2464 | 0.6747 | 0.6641 | | 0.189 | 46.9947 | 2197 | 1.4480 | 0.6506 | 0.6235 | | 0.1852 | 48.0 | 2244 | 1.3611 | 0.6747 | 0.6594 | | 0.2798 | 48.9840 | 2290 | 1.4427 | 0.6988 | 0.6957 | | 0.1523 | 49.9893 | 2337 | 1.3352 | 0.6506 | 0.6450 | | 0.1224 | 50.9947 | 2384 | 1.8088 | 0.6386 | 0.6201 | | 0.0926 | 52.0 | 2431 | 1.4695 | 0.6506 | 0.6296 | | 0.2071 | 52.9840 | 2477 | 1.4673 | 0.6867 | 0.6806 | | 0.1063 | 53.9893 | 2524 | 1.4862 | 0.7108 | 0.6975 | | 0.1831 | 54.9947 | 2571 | 1.4666 | 0.6506 | 0.6161 | | 0.158 | 56.0 | 2618 | 1.8832 | 0.6988 | 0.6673 | | 0.26 | 56.9840 | 2664 | 1.5855 | 0.6386 | 0.5986 | | 0.1697 | 57.9893 | 2711 | 1.2184 | 0.7470 | 0.7434 | | 0.2024 | 58.9947 | 2758 | 1.3524 | 0.6867 | 0.6682 | | 0.2495 | 60.0 | 2805 | 1.7523 | 0.6627 | 0.6427 | | 0.1247 | 60.9840 | 2851 | 1.7007 | 0.6506 | 0.6372 | | 0.1436 | 61.9893 | 2898 | 1.9171 | 0.6386 | 0.6120 | | 0.1438 | 62.9947 | 2945 | 1.8998 | 0.6265 | 0.5897 | | 0.1137 | 64.0 | 2992 | 2.4028 | 0.5904 | 0.5498 | | 0.1619 | 64.9840 | 3038 | 1.7087 | 0.7470 | 0.7473 | | 0.1105 | 65.9893 | 3085 | 1.6545 | 0.6988 | 0.6975 | | 0.1597 | 66.9947 | 3132 | 1.8024 | 0.6747 | 0.6758 | | 0.0338 | 68.0 | 3179 | 1.8962 | 0.6747 | 0.6706 | | 0.1184 | 68.9840 | 3225 | 2.1642 | 0.7108 | 0.7102 | | 0.0878 | 69.9893 | 3272 | 2.0974 | 0.6506 | 0.6610 | | 0.0963 | 70.9947 | 3319 | 1.8719 | 0.7108 | 0.7162 | | 0.0827 | 72.0 | 3366 | 1.7538 | 0.6988 | 0.7000 | | 0.0933 | 72.9840 | 3412 | 1.9357 | 0.6988 | 0.6988 | | 0.0593 | 73.9893 | 3459 | 1.9924 | 0.6506 | 0.6420 | | 0.0423 | 74.9947 | 3506 | 2.2029 | 0.6627 | 0.6702 | | 0.0311 | 76.0 | 3553 | 1.9236 | 0.7108 | 0.7155 | | 0.1881 | 76.9840 | 3599 | 1.9606 | 0.6747 | 0.6787 | | 0.0566 | 77.9893 | 3646 | 2.1122 | 0.6265 | 0.6206 | | 0.0266 | 78.9947 | 3693 | 2.1469 | 0.6506 | 0.6536 | | 0.1015 | 80.0 | 3740 | 2.0335 | 0.6506 | 0.6587 | | 0.1083 | 80.9840 | 3786 | 2.2123 | 0.6506 | 0.6509 | | 0.0161 | 81.9893 | 3833 | 2.3094 | 0.6988 | 0.7064 | | 0.0194 | 82.9947 | 3880 | 2.3315 | 0.6145 | 0.6101 | | 0.113 | 84.0 | 3927 | 2.5276 | 0.6867 | 0.6908 | | 0.0653 | 84.9840 | 3973 | 2.0321 | 0.6265 | 0.6263 | | 0.0684 | 85.9893 | 4020 | 2.0302 | 0.6627 | 0.6706 | | 0.1724 | 86.9947 | 4067 | 2.5865 | 0.5904 | 0.5860 | | 0.028 | 88.0 | 4114 | 2.3814 | 0.5904 | 0.5804 | | 0.0528 | 88.9840 | 4160 | 2.2804 | 0.6386 | 0.6410 | | 0.0341 | 89.9893 | 4207 | 2.0635 | 0.5783 | 0.5736 | | 0.0074 | 90.9947 | 4254 | 2.3491 | 0.6024 | 0.5993 | | 0.0165 | 92.0 | 4301 | 2.2152 | 0.6145 | 0.6036 | | 0.0157 | 92.9840 | 4347 | 2.3380 | 0.6145 | 0.6036 | | 0.0544 | 93.9893 | 4394 | 2.3319 | 0.6265 | 0.6221 | | 0.0577 | 94.9947 | 4441 | 2.2671 | 0.6265 | 0.6221 | | 0.1516 | 96.0 | 4488 | 2.2034 | 0.6265 | 0.6204 | | 0.0318 | 96.9840 | 4534 | 2.1932 | 0.6265 | 0.6204 | | 0.043 | 97.9893 | 4581 | 2.2178 | 0.6265 | 0.6204 | | 0.0099 | 98.3957 | 4600 | 2.2129 | 0.6386 | 0.6328 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.1
kxbrow9/PoseyFLUX2
kxbrow9
2024-11-15T22:32:09Z
6
1
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "fluxgym", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-11-15T22:31:26Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - fluxgym base_model: black-forest-labs/FLUX.1-dev instance_prompt: PoseyFLUX2 license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # PoseyFLUX2 A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym) <Gallery /> ## Trigger words You should use `PoseyFLUX2` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc. Weights for this model are available in Safetensors format.
neeleshg23/jamba-1.9b-7
neeleshg23
2024-11-15T22:30:18Z
20
0
transformers
[ "transformers", "safetensors", "jamba", "text-generation", "generated_from_trainer", "base_model:neeleshg23/jamba-1.9b-6", "base_model:finetune:neeleshg23/jamba-1.9b-6", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-11-15T10:41:42Z
--- library_name: transformers base_model: neeleshg23/jamba-1.9b-6 tags: - generated_from_trainer model-index: - name: jamba-1.9b-7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # jamba-1.9b-7 This model is a fine-tuned version of [neeleshg23/jamba-1.9b-6](https://huggingface.co/neeleshg23/jamba-1.9b-6) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
plesniar/nhx_nec100_checkpoint
plesniar
2024-11-15T22:25:29Z
103
0
transformers
[ "transformers", "safetensors", "vits", "text-to-audio", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
text-to-audio
2024-11-15T22:10:38Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
davidilag/wav2vec2-xls-r-1b-faroese-100h-30-epochs
davidilag
2024-11-15T22:17:39Z
17
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-11-14T22:28:51Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Farhang87/gemma-soap-best-merged
Farhang87
2024-11-15T22:09:38Z
95
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-15T22:06:38Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/Orca-Hermes-7B-slerp-GGUF
mradermacher
2024-11-15T22:06:10Z
33
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "Open-Orca/Mistral-7B-OpenOrca", "teknium/OpenHermes-2.5-Mistral-7B", "en", "base_model:cris177/Orca-Hermes-7B-slerp", "base_model:quantized:cris177/Orca-Hermes-7B-slerp", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-15T21:35:20Z
--- base_model: cris177/Orca-Hermes-7B-slerp language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - merge - mergekit - Open-Orca/Mistral-7B-OpenOrca - teknium/OpenHermes-2.5-Mistral-7B --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/cris177/Orca-Hermes-7B-slerp <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Orca-Hermes-7B-slerp-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Orca-Hermes-7B-slerp-GGUF/resolve/main/Orca-Hermes-7B-slerp.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/Orca-Hermes-7B-slerp-GGUF/resolve/main/Orca-Hermes-7B-slerp.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Orca-Hermes-7B-slerp-GGUF/resolve/main/Orca-Hermes-7B-slerp.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Orca-Hermes-7B-slerp-GGUF/resolve/main/Orca-Hermes-7B-slerp.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Orca-Hermes-7B-slerp-GGUF/resolve/main/Orca-Hermes-7B-slerp.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/Orca-Hermes-7B-slerp-GGUF/resolve/main/Orca-Hermes-7B-slerp.Q4_0_4_4.gguf) | Q4_0_4_4 | 4.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Orca-Hermes-7B-slerp-GGUF/resolve/main/Orca-Hermes-7B-slerp.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Orca-Hermes-7B-slerp-GGUF/resolve/main/Orca-Hermes-7B-slerp.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Orca-Hermes-7B-slerp-GGUF/resolve/main/Orca-Hermes-7B-slerp.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/Orca-Hermes-7B-slerp-GGUF/resolve/main/Orca-Hermes-7B-slerp.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Orca-Hermes-7B-slerp-GGUF/resolve/main/Orca-Hermes-7B-slerp.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Orca-Hermes-7B-slerp-GGUF/resolve/main/Orca-Hermes-7B-slerp.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Orca-Hermes-7B-slerp-GGUF/resolve/main/Orca-Hermes-7B-slerp.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/LLaMA-Pro-8B-i1-GGUF
mradermacher
2024-11-15T22:06:10Z
19
0
transformers
[ "transformers", "gguf", "en", "base_model:TencentARC/LLaMA-Pro-8B", "base_model:quantized:TencentARC/LLaMA-Pro-8B", "license:llama2", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-11-15T20:29:50Z
--- base_model: TencentARC/LLaMA-Pro-8B language: - en library_name: transformers license: llama2 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/TencentARC/LLaMA-Pro-8B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/LLaMA-Pro-8B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-i1-GGUF/resolve/main/LLaMA-Pro-8B.i1-IQ1_S.gguf) | i1-IQ1_S | 2.0 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-i1-GGUF/resolve/main/LLaMA-Pro-8B.i1-IQ1_M.gguf) | i1-IQ1_M | 2.1 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-i1-GGUF/resolve/main/LLaMA-Pro-8B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-i1-GGUF/resolve/main/LLaMA-Pro-8B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-i1-GGUF/resolve/main/LLaMA-Pro-8B.i1-IQ2_S.gguf) | i1-IQ2_S | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-i1-GGUF/resolve/main/LLaMA-Pro-8B.i1-IQ2_M.gguf) | i1-IQ2_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-i1-GGUF/resolve/main/LLaMA-Pro-8B.i1-Q2_K.gguf) | i1-Q2_K | 3.2 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-i1-GGUF/resolve/main/LLaMA-Pro-8B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-i1-GGUF/resolve/main/LLaMA-Pro-8B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-i1-GGUF/resolve/main/LLaMA-Pro-8B.i1-IQ3_S.gguf) | i1-IQ3_S | 3.7 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-i1-GGUF/resolve/main/LLaMA-Pro-8B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.7 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-i1-GGUF/resolve/main/LLaMA-Pro-8B.i1-IQ3_M.gguf) | i1-IQ3_M | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-i1-GGUF/resolve/main/LLaMA-Pro-8B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.2 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-i1-GGUF/resolve/main/LLaMA-Pro-8B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.6 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-i1-GGUF/resolve/main/LLaMA-Pro-8B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-i1-GGUF/resolve/main/LLaMA-Pro-8B.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 4.8 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-i1-GGUF/resolve/main/LLaMA-Pro-8B.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 4.8 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-i1-GGUF/resolve/main/LLaMA-Pro-8B.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 4.8 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-i1-GGUF/resolve/main/LLaMA-Pro-8B.i1-Q4_0.gguf) | i1-Q4_0 | 4.9 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-i1-GGUF/resolve/main/LLaMA-Pro-8B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.9 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-i1-GGUF/resolve/main/LLaMA-Pro-8B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-i1-GGUF/resolve/main/LLaMA-Pro-8B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-i1-GGUF/resolve/main/LLaMA-Pro-8B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 6.0 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-i1-GGUF/resolve/main/LLaMA-Pro-8B.i1-Q6_K.gguf) | i1-Q6_K | 7.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
ProdeusUnity/Prismatic-12b-v0.1-Experimental-1115
ProdeusUnity
2024-11-15T22:04:57Z
6
2
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-15T20:11:50Z
--- base_model: [] library_name: transformers tags: - mergekit - merge --- # Prismatic 12b v0.1 Experimental 11/15 ## This is a fix for ChatML format, since before it did not have an EOS token *The sparkling courage I longed for, what I got is small... My tears are surely the prism of tomorrow... Say "Hello!" to the ideal future, let's go see them~* Listen to the song on youtube: https://www.youtube.com/watch?v=v3I6EVlyPx4 One off merge for a friend, though it came out rather good, I like it, so try it? mistralai/Mistral-Nemo-Base-2407 inflatebot/MN-12b-Mag-Mell-R1 nbeerbower/Mistral-Nemo-Prism-12B-v5 License for this model Apache 2.0 Format: Mistral Tekken or ChatML Thank you to AuriAetherwiing for helping me merge the models and for providing compute (A40). Details This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the ties merge method using mistralai_Mistral-Nemo-Base-2407 as a base. ### Models Merged Models Merged The following models were included in the merge: /inflatebot_MN-12B-Mag-Mell-R1 /nbeerbower_Mistral-Nemo-Prism-12B-v5 #### Configuration The following YAML configuration was used to produce this model: models: - model: /inflatebot_MN-12B-Mag-Mell-R1 parameters: weight: 0.3 density: 0.5 - model: /nbeerbower_Mistral-Nemo-Prism-12B-v5 parameters: weight: 0.4 density: 0.75 base_model: /mistralai_Mistral-Nemo-Base-2407 parameters: epsilon: 0.05 normalize: true lambda: 1 merge_method: ties dtype: bfloat16
mradermacher/gemma-2-2b-it-GGUF
mradermacher
2024-11-15T21:58:12Z
5
0
transformers
[ "transformers", "gguf", "conversational", "en", "base_model:google/gemma-2-2b-it", "base_model:quantized:google/gemma-2-2b-it", "license:gemma", "endpoints_compatible", "region:us" ]
null
2024-11-15T20:02:07Z
--- base_model: google/gemma-2-2b-it extra_gated_button_content: Acknowledge license extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. language: - en library_name: transformers license: gemma quantized_by: mradermacher tags: - conversational --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/google/gemma-2-2b-it <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/gemma-2-2b-it-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/gemma-2-2b-it-GGUF/resolve/main/gemma-2-2b-it.Q2_K.gguf) | Q2_K | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/gemma-2-2b-it-GGUF/resolve/main/gemma-2-2b-it.Q3_K_S.gguf) | Q3_K_S | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/gemma-2-2b-it-GGUF/resolve/main/gemma-2-2b-it.Q3_K_M.gguf) | Q3_K_M | 1.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/gemma-2-2b-it-GGUF/resolve/main/gemma-2-2b-it.Q3_K_L.gguf) | Q3_K_L | 1.7 | | | [GGUF](https://huggingface.co/mradermacher/gemma-2-2b-it-GGUF/resolve/main/gemma-2-2b-it.IQ4_XS.gguf) | IQ4_XS | 1.7 | | | [GGUF](https://huggingface.co/mradermacher/gemma-2-2b-it-GGUF/resolve/main/gemma-2-2b-it.Q4_0_4_4.gguf) | Q4_0_4_4 | 1.7 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/gemma-2-2b-it-GGUF/resolve/main/gemma-2-2b-it.Q4_K_S.gguf) | Q4_K_S | 1.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/gemma-2-2b-it-GGUF/resolve/main/gemma-2-2b-it.Q4_K_M.gguf) | Q4_K_M | 1.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/gemma-2-2b-it-GGUF/resolve/main/gemma-2-2b-it.Q5_K_S.gguf) | Q5_K_S | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/gemma-2-2b-it-GGUF/resolve/main/gemma-2-2b-it.Q5_K_M.gguf) | Q5_K_M | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/gemma-2-2b-it-GGUF/resolve/main/gemma-2-2b-it.Q6_K.gguf) | Q6_K | 2.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/gemma-2-2b-it-GGUF/resolve/main/gemma-2-2b-it.Q8_0.gguf) | Q8_0 | 2.9 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/gemma-2-2b-it-GGUF/resolve/main/gemma-2-2b-it.f16.gguf) | f16 | 5.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
AlexWortega/qwen23k
AlexWortega
2024-11-15T21:57:29Z
5
1
sentence-transformers
[ "sentence-transformers", "safetensors", "qwen2", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:1077240", "loss:MultipleNegativesRankingLoss", "arxiv:1908.10084", "arxiv:1705.00652", "base_model:Qwen/Qwen2.5-0.5B-Instruct", "base_model:finetune:Qwen/Qwen2.5-0.5B-Instruct", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-11-15T21:56:44Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:1077240 - loss:MultipleNegativesRankingLoss base_model: Qwen/Qwen2.5-0.5B-Instruct widget: - source_sentence: Who is the father of philosophy? sentences: - 'Charles Sanders Peirce Charles Sanders Peirce (/pɜːrs/[9] "purse"; 10September 1839 – 19April 1914) was an American philosopher, logician, mathematician, and scientist who is sometimes known as "the father of pragmatism". He was educated as a chemist and employed as a scientist for 30 years. Today he is appreciated largely for his contributions to logic, mathematics, philosophy, scientific methodology, and semiotics, and for his founding of pragmatism.' - 'Georg Wilhelm Friedrich Hegel According to Hegel, "Heraclitus is the one who first declared the nature of the infinite and first grasped nature as in itself infinite, that is, its essence as process. The origin of philosophy is to be dated from Heraclitus. His is the persistent Idea that is the same in all philosophers up to the present day, as it was the Idea of Plato and Aristotle". For Hegel, Heraclitus''s great achievements were to have understood the nature of the infinite, which for Hegel includes understanding the inherent contradictoriness and negativity of reality; and to have grasped that reality is becoming or process and that "being" and "nothingness" are mere empty abstractions. According to Hegel, Heraclitus''s "obscurity" comes from his being a true (in Hegel''s terms "speculative") philosopher who grasped the ultimate philosophical truth and therefore expressed himself in a way that goes beyond the abstract and limited nature of common sense and is difficult to grasp by those who operate within common sense. Hegel asserted that in Heraclitus he had an antecedent for his logic: "[...] there is no proposition of Heraclitus which I have not adopted in my logic".' - 'History of nuclear weapons The notion of using a fission weapon to ignite a process of nuclear fusion can be dated back to 1942. At the first major theoretical conference on the development of an atomic bomb hosted by J. Robert Oppenheimer at the University of California, Berkeley, participant Edward Teller directed the majority of the discussion towards Enrico Fermi''s idea of a "Super" bomb that would use the same reactions that powered the Sun itself.' - source_sentence: When was Father's Day first celebrated in America? sentences: - 'Father''s Day (United States) Father''s Day was founded in Spokane, Washington at the YMCA in 1910 by Sonora Smart Dodd, who was born in Arkansas.[4] Its first celebration was in the Spokane YMCA on June 19, 1910.[4][5] Her father, the Civil War veteran William Jackson Smart, was a single parent who raised his six children there.[4] After hearing a sermon about Jarvis'' Mother''s Day at Central Methodist Episcopal Church in 1909, she told her pastor that fathers should have a similar holiday honoring them.[4][6] Although she initially suggested June 5, her father''s birthday, the pastors did not have enough time to prepare their sermons, and the celebration was deferred to the third Sunday of June.[7][8]' - 'Father''s Day In [[Peru]], Father''s Day is celebrated on the third Sunday of June and is not a public holiday. People usually give a present to their fathers and spend time with him mostly during a family meal.' - 'Sacramento River The Sacramento and its wide natural floodplain were once abundant in fish and other aquatic creatures, notably one of the southernmost large runs of chinook salmon in North America. For about 12,000 years, humans have depended on the vast natural resources of the watershed, which had one of the densest Native American populations in California. The river has provided a route for trade and travel since ancient times. Hundreds of tribes sharing regional customs and traditions inhabited the Sacramento Valley, first coming into contact with European explorers in the late 1700s. The Spanish explorer Gabriel Moraga named the river Rio de los Sacramentos in 1808, later shortened and anglicized into Sacramento.' - source_sentence: What is the population of Austria in 2018? sentences: - 'Utah State Capitol The Utah State Capitol is the house of government for the U.S. state of Utah. The building houses the chambers and offices of the Utah State Legislature, the offices of the Governor, Lieutenant Governor, Attorney General, the State Auditor and their staffs. The capitol is the main building of the Utah State Capitol Complex, which is located on Capitol Hill, overlooking downtown Salt Lake City.' - 'Same-sex marriage in Austria A September 2018 poll for "Österreich" found that 74% of Austrians supported same-sex marriage and 26% were against.' - 'Demographics of Austria Population 8,793,370 (July 2018 est.) country comparison to the world: 96th' - source_sentence: What language family is Malay? sentences: - 'Malay language Malay is a member of the Austronesian family of languages, which includes languages from Southeast Asia and the Pacific Ocean, with a smaller number in continental Asia. Malagasy, a geographic outlier spoken in Madagascar in the Indian Ocean, is also a member of this language family. Although each language of the family is mutually unintelligible, their similarities are rather striking. Many roots have come virtually unchanged from their common ancestor, Proto-Austronesian language. There are many cognates found in the languages'' words for kinship, health, body parts and common animals. Numbers, especially, show remarkable similarities.' - 'Filipinos of Malay descent In the Philippines, there is misconception and often mixing between the two definitions. Filipinos consider Malays as being the natives of the Philippines, Indonesia, Malaysia and Brunei. Consequently, Filipinos consider themselves Malay when in reality, they are referring to the Malay Race. Filipinos in Singapore also prefer to be considered Malay, but their desire to be labeled as part of the ethnic group was rejected by the Singaporean government. Paradoxically, a minor percentage of Filipinos prefer the Spanish influence and may associate themselves with being Hispanic, and have made no realistic attempts to promote and/or revive the Malay language in the Philippines.' - 'Preferred provider organization In health insurance in the United States, a preferred provider organization (PPO), sometimes referred to as a participating provider organization or preferred provider option, is a managed care organization of medical doctors, hospitals, and other health care providers who have agreed with an insurer or a third-party administrator to provide health care at reduced rates to the insurer''s or administrator''s clients.' - source_sentence: When was ABC formed? sentences: - 'American Broadcasting Company ABC launched as a radio network on October 12, 1943, serving as the successor to the NBC Blue Network, which had been purchased by Edward J. Noble. It extended its operations to television in 1948, following in the footsteps of established broadcast networks CBS and NBC. In the mid-1950s, ABC merged with United Paramount Theatres, a chain of movie theaters that formerly operated as a subsidiary of Paramount Pictures. Leonard Goldenson, who had been the head of UPT, made the new television network profitable by helping develop and greenlight many successful series. In the 1980s, after purchasing an 80% interest in cable sports channel ESPN, the network''s corporate parent, American Broadcasting Companies, Inc., merged with Capital Cities Communications, owner of several print publications, and television and radio stations. In 1996, most of Capital Cities/ABC''s assets were purchased by The Walt Disney Company.' - 'Roman concrete Roman concrete, also called opus caementicium, was a material used in construction during the late Roman Republic until the fading of the Roman Empire. Roman concrete was based on a hydraulic-setting cement. Recently, it has been found that it materially differs in several ways from modern concrete which is based on Portland cement. Roman concrete is durable due to its incorporation of volcanic ash, which prevents cracks from spreading. By the middle of the 1st century, the material was used frequently, often brick-faced, although variations in aggregate allowed different arrangements of materials. Further innovative developments in the material, called the Concrete Revolution, contributed to structurally complicated forms, such as the Pantheon dome, the world''s largest and oldest unreinforced concrete dome.[1]' - 'Americans Battling Communism Americans Battling Communism, Inc. (ABC) was an anti-communist organization created following an October 1947 speech by Pennsylvania Judge Blair Gunther that called for an "ABC movement" to educate America about communism. Chartered in November 1947 by Harry Alan Sherman, a local lawyer active in various anti-communist organizations, the group took part in such activities as blacklisting by disclosing the names of people suspected of being communists. Its members included local judges and lawyers active in the McCarthy-era prosecution of communists.' pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine model-index: - name: SentenceTransformer based on Qwen/Qwen2.5-0.5B-Instruct results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts dev 896 type: sts-dev-896 metrics: - type: pearson_cosine value: 0.8199747689342192 name: Pearson Cosine - type: spearman_cosine value: 0.8176114370831747 name: Spearman Cosine - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts dev 768 type: sts-dev-768 metrics: - type: pearson_cosine value: 0.8177656539407367 name: Pearson Cosine - type: spearman_cosine value: 0.8154555109705525 name: Spearman Cosine --- # SentenceTransformer based on Qwen/Qwen2.5-0.5B-Instruct This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct). It maps sentences & paragraphs to a 896-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) <!-- at revision 7ae557604adf67be50417f59c2c2f167def9a775 --> - **Maximum Sequence Length:** 1024 tokens - **Output Dimensionality:** 896 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: Qwen2Model (1): Pooling({'word_embedding_dimension': 896, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("AlexWortega/qwen23k") # Run inference sentences = [ 'When was ABC formed?', "American Broadcasting Company\nABC launched as a radio network on October 12, 1943, serving as the successor to the NBC Blue Network, which had been purchased by Edward J. Noble. It extended its operations to television in 1948, following in the footsteps of established broadcast networks CBS and NBC. In the mid-1950s, ABC merged with United Paramount Theatres, a chain of movie theaters that formerly operated as a subsidiary of Paramount Pictures. Leonard Goldenson, who had been the head of UPT, made the new television network profitable by helping develop and greenlight many successful series. In the 1980s, after purchasing an 80% interest in cable sports channel ESPN, the network's corporate parent, American Broadcasting Companies, Inc., merged with Capital Cities Communications, owner of several print publications, and television and radio stations. In 1996, most of Capital Cities/ABC's assets were purchased by The Walt Disney Company.", 'Americans Battling Communism\nAmericans Battling Communism, Inc. (ABC) was an anti-communist organization created following an October 1947 speech by Pennsylvania Judge Blair Gunther that called for an "ABC movement" to educate America about communism. Chartered in November 1947 by Harry Alan Sherman, a local lawyer active in various anti-communist organizations, the group took part in such activities as blacklisting by disclosing the names of people suspected of being communists. Its members included local judges and lawyers active in the McCarthy-era prosecution of communists.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 896] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Semantic Similarity * Datasets: `sts-dev-896` and `sts-dev-768` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | sts-dev-896 | sts-dev-768 | |:--------------------|:------------|:------------| | pearson_cosine | 0.82 | 0.8178 | | **spearman_cosine** | **0.8176** | **0.8155** | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 1,077,240 training samples * Columns: <code>query</code>, <code>response</code>, and <code>negative</code> * Approximate statistics based on the first 1000 samples: | | query | response | negative | |:--------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| | type | string | string | string | | details | <ul><li>min: 4 tokens</li><li>mean: 8.76 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 23 tokens</li><li>mean: 141.88 tokens</li><li>max: 532 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 134.02 tokens</li><li>max: 472 tokens</li></ul> | * Samples: | query | response | negative | |:--------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Was there a year 0?</code> | <code>Year zero<br>Year zero does not exist in the anno Domini system usually used to number years in the Gregorian calendar and in its predecessor, the Julian calendar. In this system, the year 1 BC is followed by AD 1. However, there is a year zero in astronomical year numbering (where it coincides with the Julian year 1 BC) and in ISO 8601:2004 (where it coincides with the Gregorian year 1 BC) as well as in all Buddhist and Hindu calendars.</code> | <code>504<br>Year 504 (DIV) was a leap year starting on Thursday (link will display the full calendar) of the Julian calendar. At the time, it was known as the Year of the Consulship of Nicomachus without colleague (or, less frequently, year 1257 "Ab urbe condita"). The denomination 504 for this year has been used since the early medieval period, when the Anno Domini calendar era became the prevalent method in Europe for naming years.</code> | | <code>When is the dialectical method used?</code> | <code>Dialectic<br>Dialectic or dialectics (Greek: διαλεκτική, dialektikḗ; related to dialogue), also known as the dialectical method, is at base a discourse between two or more people holding different points of view about a subject but wishing to establish the truth through reasoned arguments. Dialectic resembles debate, but the concept excludes subjective elements such as emotional appeal and the modern pejorative sense of rhetoric.[1][2] Dialectic may be contrasted with the didactic method, wherein one side of the conversation teaches the other. Dialectic is alternatively known as minor logic, as opposed to major logic or critique.</code> | <code>Derek Bentley case<br>Another factor in the posthumous defence was that a "confession" recorded by Bentley, which was claimed by the prosecution to be a "verbatim record of dictated monologue", was shown by forensic linguistics methods to have been largely edited by policemen. Linguist Malcolm Coulthard showed that certain patterns, such as the frequency of the word "then" and the grammatical use of "then" after the grammatical subject ("I then" rather than "then I"), were not consistent with Bentley's use of language (his idiolect), as evidenced in court testimony. These patterns fit better the recorded testimony of the policemen involved. This is one of the earliest uses of forensic linguistics on record.</code> | | <code>What do Grasshoppers eat?</code> | <code>Grasshopper<br>Grasshoppers are plant-eaters, with a few species at times becoming serious pests of cereals, vegetables and pasture, especially when they swarm in their millions as locusts and destroy crops over wide areas. They protect themselves from predators by camouflage; when detected, many species attempt to startle the predator with a brilliantly-coloured wing-flash while jumping and (if adult) launching themselves into the air, usually flying for only a short distance. Other species such as the rainbow grasshopper have warning coloration which deters predators. Grasshoppers are affected by parasites and various diseases, and many predatory creatures feed on both nymphs and adults. The eggs are the subject of attack by parasitoids and predators.</code> | <code>Groundhog<br>Very often the dens of groundhogs provide homes for other animals including skunks, red foxes, and cottontail rabbits. The fox and skunk feed upon field mice, grasshoppers, beetles and other creatures that destroy farm crops. In aiding these animals, the groundhog indirectly helps the farmer. In addition to providing homes for itself and other animals, the groundhog aids in soil improvement by bringing subsoil to the surface. The groundhog is also a valuable game animal and is considered a difficult sport when hunted in a fair manner. In some parts of Appalachia, they are eaten.</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 12 - `per_device_eval_batch_size`: 12 - `gradient_accumulation_steps`: 4 - `num_train_epochs`: 1 - `warmup_ratio`: 0.3 - `bf16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 12 - `per_device_eval_batch_size`: 12 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 4 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.3 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs <details><summary>Click to expand</summary> | Epoch | Step | Training Loss | sts-dev-896_spearman_cosine | sts-dev-768_spearman_cosine | |:------:|:-----:|:-------------:|:---------------------------:|:---------------------------:| | 0.0004 | 10 | 2.2049 | - | - | | 0.0009 | 20 | 2.3168 | - | - | | 0.0013 | 30 | 2.3544 | - | - | | 0.0018 | 40 | 2.2519 | - | - | | 0.0022 | 50 | 2.1809 | - | - | | 0.0027 | 60 | 2.1572 | - | - | | 0.0031 | 70 | 2.1855 | - | - | | 0.0036 | 80 | 2.5887 | - | - | | 0.0040 | 90 | 2.883 | - | - | | 0.0045 | 100 | 2.8557 | - | - | | 0.0049 | 110 | 2.9356 | - | - | | 0.0053 | 120 | 2.8833 | - | - | | 0.0058 | 130 | 2.8394 | - | - | | 0.0062 | 140 | 2.923 | - | - | | 0.0067 | 150 | 2.8191 | - | - | | 0.0071 | 160 | 2.8658 | - | - | | 0.0076 | 170 | 2.8252 | - | - | | 0.0080 | 180 | 2.8312 | - | - | | 0.0085 | 190 | 2.7761 | - | - | | 0.0089 | 200 | 2.7193 | - | - | | 0.0094 | 210 | 2.724 | - | - | | 0.0098 | 220 | 2.7484 | - | - | | 0.0102 | 230 | 2.7262 | - | - | | 0.0107 | 240 | 2.6964 | - | - | | 0.0111 | 250 | 2.6676 | - | - | | 0.0116 | 260 | 2.6715 | - | - | | 0.0120 | 270 | 2.6145 | - | - | | 0.0125 | 280 | 2.6191 | - | - | | 0.0129 | 290 | 1.9812 | - | - | | 0.0134 | 300 | 1.6413 | - | - | | 0.0138 | 310 | 1.6126 | - | - | | 0.0143 | 320 | 1.3599 | - | - | | 0.0147 | 330 | 1.2996 | - | - | | 0.0151 | 340 | 1.2654 | - | - | | 0.0156 | 350 | 1.9409 | - | - | | 0.0160 | 360 | 2.1287 | - | - | | 0.0165 | 370 | 1.8442 | - | - | | 0.0169 | 380 | 1.6837 | - | - | | 0.0174 | 390 | 1.5489 | - | - | | 0.0178 | 400 | 1.4382 | - | - | | 0.0183 | 410 | 1.4848 | - | - | | 0.0187 | 420 | 1.3481 | - | - | | 0.0192 | 430 | 1.3467 | - | - | | 0.0196 | 440 | 1.3977 | - | - | | 0.0201 | 450 | 1.26 | - | - | | 0.0205 | 460 | 1.2412 | - | - | | 0.0209 | 470 | 1.316 | - | - | | 0.0214 | 480 | 1.3501 | - | - | | 0.0218 | 490 | 1.2246 | - | - | | 0.0223 | 500 | 1.2271 | - | - | | 0.0227 | 510 | 1.1871 | - | - | | 0.0232 | 520 | 1.1685 | - | - | | 0.0236 | 530 | 1.1624 | - | - | | 0.0241 | 540 | 1.1911 | - | - | | 0.0245 | 550 | 1.1978 | - | - | | 0.0250 | 560 | 1.1228 | - | - | | 0.0254 | 570 | 1.1091 | - | - | | 0.0258 | 580 | 1.1433 | - | - | | 0.0263 | 590 | 1.0638 | - | - | | 0.0267 | 600 | 1.0515 | - | - | | 0.0272 | 610 | 1.175 | - | - | | 0.0276 | 620 | 1.0943 | - | - | | 0.0281 | 630 | 1.1226 | - | - | | 0.0285 | 640 | 0.9871 | - | - | | 0.0290 | 650 | 1.0171 | - | - | | 0.0294 | 660 | 1.0169 | - | - | | 0.0299 | 670 | 0.9643 | - | - | | 0.0303 | 680 | 0.9563 | - | - | | 0.0307 | 690 | 0.9841 | - | - | | 0.0312 | 700 | 1.0349 | - | - | | 0.0316 | 710 | 0.8958 | - | - | | 0.0321 | 720 | 0.9225 | - | - | | 0.0325 | 730 | 0.842 | - | - | | 0.0330 | 740 | 0.9104 | - | - | | 0.0334 | 750 | 0.8927 | - | - | | 0.0339 | 760 | 0.8508 | - | - | | 0.0343 | 770 | 0.8835 | - | - | | 0.0348 | 780 | 0.9531 | - | - | | 0.0352 | 790 | 0.926 | - | - | | 0.0356 | 800 | 0.8718 | - | - | | 0.0361 | 810 | 0.8261 | - | - | | 0.0365 | 820 | 0.8169 | - | - | | 0.0370 | 830 | 0.8525 | - | - | | 0.0374 | 840 | 0.8504 | - | - | | 0.0379 | 850 | 0.7625 | - | - | | 0.0383 | 860 | 0.8259 | - | - | | 0.0388 | 870 | 0.7558 | - | - | | 0.0392 | 880 | 0.7898 | - | - | | 0.0397 | 890 | 0.7694 | - | - | | 0.0401 | 900 | 0.7429 | - | - | | 0.0405 | 910 | 0.6666 | - | - | | 0.0410 | 920 | 0.7407 | - | - | | 0.0414 | 930 | 0.6665 | - | - | | 0.0419 | 940 | 0.7597 | - | - | | 0.0423 | 950 | 0.7035 | - | - | | 0.0428 | 960 | 0.7166 | - | - | | 0.0432 | 970 | 0.6889 | - | - | | 0.0437 | 980 | 0.7541 | - | - | | 0.0441 | 990 | 0.7175 | - | - | | 0.0446 | 1000 | 0.7389 | 0.6420 | 0.6403 | | 0.0450 | 1010 | 0.7142 | - | - | | 0.0454 | 1020 | 0.7301 | - | - | | 0.0459 | 1030 | 0.7299 | - | - | | 0.0463 | 1040 | 0.6759 | - | - | | 0.0468 | 1050 | 0.7036 | - | - | | 0.0472 | 1060 | 0.6286 | - | - | | 0.0477 | 1070 | 0.595 | - | - | | 0.0481 | 1080 | 0.6099 | - | - | | 0.0486 | 1090 | 0.6377 | - | - | | 0.0490 | 1100 | 0.6309 | - | - | | 0.0495 | 1110 | 0.6306 | - | - | | 0.0499 | 1120 | 0.557 | - | - | | 0.0504 | 1130 | 0.5898 | - | - | | 0.0508 | 1140 | 0.5896 | - | - | | 0.0512 | 1150 | 0.6399 | - | - | | 0.0517 | 1160 | 0.5923 | - | - | | 0.0521 | 1170 | 0.5787 | - | - | | 0.0526 | 1180 | 0.591 | - | - | | 0.0530 | 1190 | 0.5714 | - | - | | 0.0535 | 1200 | 0.6047 | - | - | | 0.0539 | 1210 | 0.5904 | - | - | | 0.0544 | 1220 | 0.543 | - | - | | 0.0548 | 1230 | 0.6033 | - | - | | 0.0553 | 1240 | 0.5445 | - | - | | 0.0557 | 1250 | 0.5217 | - | - | | 0.0561 | 1260 | 0.5835 | - | - | | 0.0566 | 1270 | 0.5353 | - | - | | 0.0570 | 1280 | 0.5887 | - | - | | 0.0575 | 1290 | 0.5967 | - | - | | 0.0579 | 1300 | 0.5036 | - | - | | 0.0584 | 1310 | 0.5915 | - | - | | 0.0588 | 1320 | 0.5719 | - | - | | 0.0593 | 1330 | 0.5238 | - | - | | 0.0597 | 1340 | 0.5647 | - | - | | 0.0602 | 1350 | 0.538 | - | - | | 0.0606 | 1360 | 0.5457 | - | - | | 0.0610 | 1370 | 0.5169 | - | - | | 0.0615 | 1380 | 0.4967 | - | - | | 0.0619 | 1390 | 0.4864 | - | - | | 0.0624 | 1400 | 0.5133 | - | - | | 0.0628 | 1410 | 0.5587 | - | - | | 0.0633 | 1420 | 0.4691 | - | - | | 0.0637 | 1430 | 0.5186 | - | - | | 0.0642 | 1440 | 0.4907 | - | - | | 0.0646 | 1450 | 0.5281 | - | - | | 0.0651 | 1460 | 0.4741 | - | - | | 0.0655 | 1470 | 0.4452 | - | - | | 0.0659 | 1480 | 0.4771 | - | - | | 0.0664 | 1490 | 0.4289 | - | - | | 0.0668 | 1500 | 0.4551 | - | - | | 0.0673 | 1510 | 0.4558 | - | - | | 0.0677 | 1520 | 0.5159 | - | - | | 0.0682 | 1530 | 0.4296 | - | - | | 0.0686 | 1540 | 0.4548 | - | - | | 0.0691 | 1550 | 0.4439 | - | - | | 0.0695 | 1560 | 0.4295 | - | - | | 0.0700 | 1570 | 0.4466 | - | - | | 0.0704 | 1580 | 0.4717 | - | - | | 0.0708 | 1590 | 0.492 | - | - | | 0.0713 | 1600 | 0.4566 | - | - | | 0.0717 | 1610 | 0.4451 | - | - | | 0.0722 | 1620 | 0.4715 | - | - | | 0.0726 | 1630 | 0.4573 | - | - | | 0.0731 | 1640 | 0.3972 | - | - | | 0.0735 | 1650 | 0.5212 | - | - | | 0.0740 | 1660 | 0.4381 | - | - | | 0.0744 | 1670 | 0.4552 | - | - | | 0.0749 | 1680 | 0.4767 | - | - | | 0.0753 | 1690 | 0.4398 | - | - | | 0.0757 | 1700 | 0.4801 | - | - | | 0.0762 | 1710 | 0.3751 | - | - | | 0.0766 | 1720 | 0.4407 | - | - | | 0.0771 | 1730 | 0.4305 | - | - | | 0.0775 | 1740 | 0.3938 | - | - | | 0.0780 | 1750 | 0.4748 | - | - | | 0.0784 | 1760 | 0.428 | - | - | | 0.0789 | 1770 | 0.404 | - | - | | 0.0793 | 1780 | 0.4261 | - | - | | 0.0798 | 1790 | 0.359 | - | - | | 0.0802 | 1800 | 0.4422 | - | - | | 0.0807 | 1810 | 0.4748 | - | - | | 0.0811 | 1820 | 0.4352 | - | - | | 0.0815 | 1830 | 0.4032 | - | - | | 0.0820 | 1840 | 0.4124 | - | - | | 0.0824 | 1850 | 0.4486 | - | - | | 0.0829 | 1860 | 0.429 | - | - | | 0.0833 | 1870 | 0.4189 | - | - | | 0.0838 | 1880 | 0.3658 | - | - | | 0.0842 | 1890 | 0.4297 | - | - | | 0.0847 | 1900 | 0.4215 | - | - | | 0.0851 | 1910 | 0.3726 | - | - | | 0.0856 | 1920 | 0.3736 | - | - | | 0.0860 | 1930 | 0.4287 | - | - | | 0.0864 | 1940 | 0.4402 | - | - | | 0.0869 | 1950 | 0.4353 | - | - | | 0.0873 | 1960 | 0.3622 | - | - | | 0.0878 | 1970 | 0.3557 | - | - | | 0.0882 | 1980 | 0.4107 | - | - | | 0.0887 | 1990 | 0.3982 | - | - | | 0.0891 | 2000 | 0.453 | 0.7292 | 0.7261 | | 0.0896 | 2010 | 0.3971 | - | - | | 0.0900 | 2020 | 0.4374 | - | - | | 0.0905 | 2030 | 0.4322 | - | - | | 0.0909 | 2040 | 0.3945 | - | - | | 0.0913 | 2050 | 0.356 | - | - | | 0.0918 | 2060 | 0.4182 | - | - | | 0.0922 | 2070 | 0.3694 | - | - | | 0.0927 | 2080 | 0.3989 | - | - | | 0.0931 | 2090 | 0.4237 | - | - | | 0.0936 | 2100 | 0.3961 | - | - | | 0.0940 | 2110 | 0.4264 | - | - | | 0.0945 | 2120 | 0.3609 | - | - | | 0.0949 | 2130 | 0.4154 | - | - | | 0.0954 | 2140 | 0.3661 | - | - | | 0.0958 | 2150 | 0.3328 | - | - | | 0.0962 | 2160 | 0.3456 | - | - | | 0.0967 | 2170 | 0.3478 | - | - | | 0.0971 | 2180 | 0.3339 | - | - | | 0.0976 | 2190 | 0.3833 | - | - | | 0.0980 | 2200 | 0.3238 | - | - | | 0.0985 | 2210 | 0.3871 | - | - | | 0.0989 | 2220 | 0.4009 | - | - | | 0.0994 | 2230 | 0.4115 | - | - | | 0.0998 | 2240 | 0.4024 | - | - | | 0.1003 | 2250 | 0.35 | - | - | | 0.1007 | 2260 | 0.3649 | - | - | | 0.1011 | 2270 | 0.3615 | - | - | | 0.1016 | 2280 | 0.3898 | - | - | | 0.1020 | 2290 | 0.3866 | - | - | | 0.1025 | 2300 | 0.3904 | - | - | | 0.1029 | 2310 | 0.3321 | - | - | | 0.1034 | 2320 | 0.3803 | - | - | | 0.1038 | 2330 | 0.3831 | - | - | | 0.1043 | 2340 | 0.403 | - | - | | 0.1047 | 2350 | 0.3803 | - | - | | 0.1052 | 2360 | 0.3463 | - | - | | 0.1056 | 2370 | 0.3987 | - | - | | 0.1060 | 2380 | 0.3731 | - | - | | 0.1065 | 2390 | 0.353 | - | - | | 0.1069 | 2400 | 0.3166 | - | - | | 0.1074 | 2410 | 0.3895 | - | - | | 0.1078 | 2420 | 0.4025 | - | - | | 0.1083 | 2430 | 0.3798 | - | - | | 0.1087 | 2440 | 0.2991 | - | - | | 0.1092 | 2450 | 0.3094 | - | - | | 0.1096 | 2460 | 0.3669 | - | - | | 0.1101 | 2470 | 0.3412 | - | - | | 0.1105 | 2480 | 0.3697 | - | - | | 0.1110 | 2490 | 0.369 | - | - | | 0.1114 | 2500 | 0.3393 | - | - | | 0.1118 | 2510 | 0.4232 | - | - | | 0.1123 | 2520 | 0.3445 | - | - | | 0.1127 | 2530 | 0.4165 | - | - | | 0.1132 | 2540 | 0.3721 | - | - | | 0.1136 | 2550 | 0.3476 | - | - | | 0.1141 | 2560 | 0.2847 | - | - | | 0.1145 | 2570 | 0.3609 | - | - | | 0.1150 | 2580 | 0.3017 | - | - | | 0.1154 | 2590 | 0.374 | - | - | | 0.1159 | 2600 | 0.3365 | - | - | | 0.1163 | 2610 | 0.393 | - | - | | 0.1167 | 2620 | 0.3623 | - | - | | 0.1172 | 2630 | 0.3538 | - | - | | 0.1176 | 2640 | 0.3206 | - | - | | 0.1181 | 2650 | 0.3962 | - | - | | 0.1185 | 2660 | 0.3087 | - | - | | 0.1190 | 2670 | 0.3482 | - | - | | 0.1194 | 2680 | 0.3616 | - | - | | 0.1199 | 2690 | 0.3955 | - | - | | 0.1203 | 2700 | 0.3915 | - | - | | 0.1208 | 2710 | 0.3782 | - | - | | 0.1212 | 2720 | 0.3576 | - | - | | 0.1216 | 2730 | 0.3544 | - | - | | 0.1221 | 2740 | 0.3572 | - | - | | 0.1225 | 2750 | 0.3107 | - | - | | 0.1230 | 2760 | 0.3579 | - | - | | 0.1234 | 2770 | 0.3571 | - | - | | 0.1239 | 2780 | 0.3694 | - | - | | 0.1243 | 2790 | 0.3674 | - | - | | 0.1248 | 2800 | 0.3373 | - | - | | 0.1252 | 2810 | 0.3362 | - | - | | 0.1257 | 2820 | 0.3225 | - | - | | 0.1261 | 2830 | 0.3609 | - | - | | 0.1265 | 2840 | 0.3681 | - | - | | 0.1270 | 2850 | 0.4059 | - | - | | 0.1274 | 2860 | 0.3047 | - | - | | 0.1279 | 2870 | 0.3446 | - | - | | 0.1283 | 2880 | 0.3507 | - | - | | 0.1288 | 2890 | 0.3124 | - | - | | 0.1292 | 2900 | 0.3712 | - | - | | 0.1297 | 2910 | 0.3394 | - | - | | 0.1301 | 2920 | 0.3869 | - | - | | 0.1306 | 2930 | 0.3449 | - | - | | 0.1310 | 2940 | 0.3752 | - | - | | 0.1314 | 2950 | 0.3341 | - | - | | 0.1319 | 2960 | 0.3329 | - | - | | 0.1323 | 2970 | 0.36 | - | - | | 0.1328 | 2980 | 0.3788 | - | - | | 0.1332 | 2990 | 0.3834 | - | - | | 0.1337 | 3000 | 0.3426 | 0.7603 | 0.7590 | | 0.1341 | 3010 | 0.3591 | - | - | | 0.1346 | 3020 | 0.2923 | - | - | | 0.1350 | 3030 | 0.332 | - | - | | 0.1355 | 3040 | 0.3867 | - | - | | 0.1359 | 3050 | 0.3778 | - | - | | 0.1363 | 3060 | 0.3389 | - | - | | 0.1368 | 3070 | 0.3069 | - | - | | 0.1372 | 3080 | 0.3833 | - | - | | 0.1377 | 3090 | 0.3497 | - | - | | 0.1381 | 3100 | 0.3698 | - | - | | 0.1386 | 3110 | 0.335 | - | - | | 0.1390 | 3120 | 0.3578 | - | - | | 0.1395 | 3130 | 0.3171 | - | - | | 0.1399 | 3140 | 0.3073 | - | - | | 0.1404 | 3150 | 0.3354 | - | - | | 0.1408 | 3160 | 0.3338 | - | - | | 0.1412 | 3170 | 0.367 | - | - | | 0.1417 | 3180 | 0.3299 | - | - | | 0.1421 | 3190 | 0.3622 | - | - | | 0.1426 | 3200 | 0.3158 | - | - | | 0.1430 | 3210 | 0.3242 | - | - | | 0.1435 | 3220 | 0.388 | - | - | | 0.1439 | 3230 | 0.3626 | - | - | | 0.1444 | 3240 | 0.3371 | - | - | | 0.1448 | 3250 | 0.3808 | - | - | | 0.1453 | 3260 | 0.3375 | - | - | | 0.1457 | 3270 | 0.352 | - | - | | 0.1462 | 3280 | 0.3466 | - | - | | 0.1466 | 3290 | 0.3355 | - | - | | 0.1470 | 3300 | 0.3432 | - | - | | 0.1475 | 3310 | 0.372 | - | - | | 0.1479 | 3320 | 0.3501 | - | - | | 0.1484 | 3330 | 0.3311 | - | - | | 0.1488 | 3340 | 0.3312 | - | - | | 0.1493 | 3350 | 0.3276 | - | - | | 0.1497 | 3360 | 0.3218 | - | - | | 0.1502 | 3370 | 0.4019 | - | - | | 0.1506 | 3380 | 0.3132 | - | - | | 0.1511 | 3390 | 0.3741 | - | - | | 0.1515 | 3400 | 0.3359 | - | - | | 0.1519 | 3410 | 0.381 | - | - | | 0.1524 | 3420 | 0.3024 | - | - | | 0.1528 | 3430 | 0.3238 | - | - | | 0.1533 | 3440 | 0.2675 | - | - | | 0.1537 | 3450 | 0.3568 | - | - | | 0.1542 | 3460 | 0.3666 | - | - | | 0.1546 | 3470 | 0.3307 | - | - | | 0.1551 | 3480 | 0.3698 | - | - | | 0.1555 | 3490 | 0.3668 | - | - | | 0.1560 | 3500 | 0.385 | - | - | | 0.1564 | 3510 | 0.3068 | - | - | | 0.1568 | 3520 | 0.3015 | - | - | | 0.1573 | 3530 | 0.3604 | - | - | | 0.1577 | 3540 | 0.3592 | - | - | | 0.1582 | 3550 | 0.3483 | - | - | | 0.1586 | 3560 | 0.3131 | - | - | | 0.1591 | 3570 | 0.3738 | - | - | | 0.1595 | 3580 | 0.3719 | - | - | | 0.1600 | 3590 | 0.3409 | - | - | | 0.1604 | 3600 | 0.4082 | - | - | | 0.1609 | 3610 | 0.2881 | - | - | | 0.1613 | 3620 | 0.3214 | - | - | | 0.1617 | 3630 | 0.4413 | - | - | | 0.1622 | 3640 | 0.3706 | - | - | | 0.1626 | 3650 | 0.3643 | - | - | | 0.1631 | 3660 | 0.3493 | - | - | | 0.1635 | 3670 | 0.3877 | - | - | | 0.1640 | 3680 | 0.3278 | - | - | | 0.1644 | 3690 | 0.3211 | - | - | | 0.1649 | 3700 | 0.4104 | - | - | | 0.1653 | 3710 | 0.4558 | - | - | | 0.1658 | 3720 | 0.3602 | - | - | | 0.1662 | 3730 | 0.3348 | - | - | | 0.1666 | 3740 | 0.2922 | - | - | | 0.1671 | 3750 | 0.329 | - | - | | 0.1675 | 3760 | 0.3507 | - | - | | 0.1680 | 3770 | 0.2853 | - | - | | 0.1684 | 3780 | 0.3556 | - | - | | 0.1689 | 3790 | 0.3138 | - | - | | 0.1693 | 3800 | 0.3536 | - | - | | 0.1698 | 3810 | 0.3762 | - | - | | 0.1702 | 3820 | 0.3262 | - | - | | 0.1707 | 3830 | 0.3571 | - | - | | 0.1711 | 3840 | 0.3455 | - | - | | 0.1715 | 3850 | 0.3283 | - | - | | 0.1720 | 3860 | 0.3317 | - | - | | 0.1724 | 3870 | 0.2984 | - | - | | 0.1729 | 3880 | 0.2659 | - | - | | 0.1733 | 3890 | 0.2844 | - | - | | 0.1738 | 3900 | 0.2999 | - | - | | 0.1742 | 3910 | 0.2991 | - | - | | 0.1747 | 3920 | 0.2667 | - | - | | 0.1751 | 3930 | 0.3529 | - | - | | 0.1756 | 3940 | 0.3767 | - | - | | 0.1760 | 3950 | 0.3909 | - | - | | 0.1765 | 3960 | 0.3393 | - | - | | 0.1769 | 3970 | 0.2918 | - | - | | 0.1773 | 3980 | 0.3363 | - | - | | 0.1778 | 3990 | 0.3694 | - | - | | 0.1782 | 4000 | 0.3 | 0.7572 | 0.7542 | | 0.1787 | 4010 | 0.3266 | - | - | | 0.1791 | 4020 | 0.3059 | - | - | | 0.1796 | 4030 | 0.3038 | - | - | | 0.1800 | 4040 | 0.3415 | - | - | | 0.1805 | 4050 | 0.3385 | - | - | | 0.1809 | 4060 | 0.3145 | - | - | | 0.1814 | 4070 | 0.2816 | - | - | | 0.1818 | 4080 | 0.3272 | - | - | | 0.1822 | 4090 | 0.3335 | - | - | | 0.1827 | 4100 | 0.3412 | - | - | | 0.1831 | 4110 | 0.3367 | - | - | | 0.1836 | 4120 | 0.2754 | - | - | | 0.1840 | 4130 | 0.298 | - | - | | 0.1845 | 4140 | 0.3252 | - | - | | 0.1849 | 4150 | 0.3613 | - | - | | 0.1854 | 4160 | 0.3197 | - | - | | 0.1858 | 4170 | 0.3578 | - | - | | 0.1863 | 4180 | 0.3254 | - | - | | 0.1867 | 4190 | 0.2993 | - | - | | 0.1871 | 4200 | 0.3188 | - | - | | 0.1876 | 4210 | 0.3217 | - | - | | 0.1880 | 4220 | 0.2893 | - | - | | 0.1885 | 4230 | 0.3223 | - | - | | 0.1889 | 4240 | 0.3522 | - | - | | 0.1894 | 4250 | 0.3489 | - | - | | 0.1898 | 4260 | 0.3313 | - | - | | 0.1903 | 4270 | 0.3612 | - | - | | 0.1907 | 4280 | 0.3323 | - | - | | 0.1912 | 4290 | 0.2971 | - | - | | 0.1916 | 4300 | 0.3009 | - | - | | 0.1920 | 4310 | 0.3336 | - | - | | 0.1925 | 4320 | 0.3655 | - | - | | 0.1929 | 4330 | 0.3414 | - | - | | 0.1934 | 4340 | 0.2903 | - | - | | 0.1938 | 4350 | 0.3732 | - | - | | 0.1943 | 4360 | 0.3526 | - | - | | 0.1947 | 4370 | 0.3424 | - | - | | 0.1952 | 4380 | 0.3371 | - | - | | 0.1956 | 4390 | 0.3407 | - | - | | 0.1961 | 4400 | 0.3626 | - | - | | 0.1965 | 4410 | 0.3104 | - | - | | 0.1969 | 4420 | 0.3432 | - | - | | 0.1974 | 4430 | 0.2897 | - | - | | 0.1978 | 4440 | 0.2952 | - | - | | 0.1983 | 4450 | 0.3032 | - | - | | 0.1987 | 4460 | 0.3179 | - | - | | 0.1992 | 4470 | 0.3364 | - | - | | 0.1996 | 4480 | 0.2757 | - | - | | 0.2001 | 4490 | 0.3775 | - | - | | 0.2005 | 4500 | 0.2782 | - | - | | 0.2010 | 4510 | 0.2787 | - | - | | 0.2014 | 4520 | 0.3433 | - | - | | 0.2018 | 4530 | 0.3348 | - | - | | 0.2023 | 4540 | 0.295 | - | - | | 0.2027 | 4550 | 0.3076 | - | - | | 0.2032 | 4560 | 0.3489 | - | - | | 0.2036 | 4570 | 0.3741 | - | - | | 0.2041 | 4580 | 0.3121 | - | - | | 0.2045 | 4590 | 0.2682 | - | - | | 0.2050 | 4600 | 0.3106 | - | - | | 0.2054 | 4610 | 0.312 | - | - | | 0.2059 | 4620 | 0.3537 | - | - | | 0.2063 | 4630 | 0.2801 | - | - | | 0.2068 | 4640 | 0.3378 | - | - | | 0.2072 | 4650 | 0.3417 | - | - | | 0.2076 | 4660 | 0.4114 | - | - | | 0.2081 | 4670 | 0.3325 | - | - | | 0.2085 | 4680 | 0.3085 | - | - | | 0.2090 | 4690 | 0.2875 | - | - | | 0.2094 | 4700 | 0.3864 | - | - | | 0.2099 | 4710 | 0.3235 | - | - | | 0.2103 | 4720 | 0.3187 | - | - | | 0.2108 | 4730 | 0.2956 | - | - | | 0.2112 | 4740 | 0.3405 | - | - | | 0.2117 | 4750 | 0.313 | - | - | | 0.2121 | 4760 | 0.2865 | - | - | | 0.2125 | 4770 | 0.3555 | - | - | | 0.2130 | 4780 | 0.3089 | - | - | | 0.2134 | 4790 | 0.3021 | - | - | | 0.2139 | 4800 | 0.353 | - | - | | 0.2143 | 4810 | 0.3356 | - | - | | 0.2148 | 4820 | 0.338 | - | - | | 0.2152 | 4830 | 0.3362 | - | - | | 0.2157 | 4840 | 0.3152 | - | - | | 0.2161 | 4850 | 0.3321 | - | - | | 0.2166 | 4860 | 0.3087 | - | - | | 0.2170 | 4870 | 0.3503 | - | - | | 0.2174 | 4880 | 0.3841 | - | - | | 0.2179 | 4890 | 0.333 | - | - | | 0.2183 | 4900 | 0.3705 | - | - | | 0.2188 | 4910 | 0.3121 | - | - | | 0.2192 | 4920 | 0.3151 | - | - | | 0.2197 | 4930 | 0.3138 | - | - | | 0.2201 | 4940 | 0.3525 | - | - | | 0.2206 | 4950 | 0.3233 | - | - | | 0.2210 | 4960 | 0.2762 | - | - | | 0.2215 | 4970 | 0.3679 | - | - | | 0.2219 | 4980 | 0.3351 | - | - | | 0.2223 | 4990 | 0.3733 | - | - | | 0.2228 | 5000 | 0.366 | 0.7601 | 0.7577 | | 0.2232 | 5010 | 0.2968 | - | - | | 0.2237 | 5020 | 0.3618 | - | - | | 0.2241 | 5030 | 0.3758 | - | - | | 0.2246 | 5040 | 0.2664 | - | - | | 0.2250 | 5050 | 0.3232 | - | - | | 0.2255 | 5060 | 0.3452 | - | - | | 0.2259 | 5070 | 0.4011 | - | - | | 0.2264 | 5080 | 0.3521 | - | - | | 0.2268 | 5090 | 0.3029 | - | - | | 0.2272 | 5100 | 0.3058 | - | - | | 0.2277 | 5110 | 0.3198 | - | - | | 0.2281 | 5120 | 0.2958 | - | - | | 0.2286 | 5130 | 0.3046 | - | - | | 0.2290 | 5140 | 0.3284 | - | - | | 0.2295 | 5150 | 0.333 | - | - | | 0.2299 | 5160 | 0.3385 | - | - | | 0.2304 | 5170 | 0.3359 | - | - | | 0.2308 | 5180 | 0.3572 | - | - | | 0.2313 | 5190 | 0.2992 | - | - | | 0.2317 | 5200 | 0.318 | - | - | | 0.2321 | 5210 | 0.3002 | - | - | | 0.2326 | 5220 | 0.3194 | - | - | | 0.2330 | 5230 | 0.3398 | - | - | | 0.2335 | 5240 | 0.2675 | - | - | | 0.2339 | 5250 | 0.312 | - | - | | 0.2344 | 5260 | 0.3199 | - | - | | 0.2348 | 5270 | 0.3446 | - | - | | 0.2353 | 5280 | 0.3082 | - | - | | 0.2357 | 5290 | 0.3522 | - | - | | 0.2362 | 5300 | 0.3347 | - | - | | 0.2366 | 5310 | 0.3571 | - | - | | 0.2371 | 5320 | 0.3275 | - | - | | 0.2375 | 5330 | 0.3524 | - | - | | 0.2379 | 5340 | 0.3151 | - | - | | 0.2384 | 5350 | 0.3338 | - | - | | 0.2388 | 5360 | 0.3794 | - | - | | 0.2393 | 5370 | 0.3591 | - | - | | 0.2397 | 5380 | 0.3442 | - | - | | 0.2402 | 5390 | 0.2927 | - | - | | 0.2406 | 5400 | 0.3316 | - | - | | 0.2411 | 5410 | 0.3152 | - | - | | 0.2415 | 5420 | 0.3876 | - | - | | 0.2420 | 5430 | 0.324 | - | - | | 0.2424 | 5440 | 0.3296 | - | - | | 0.2428 | 5450 | 0.3499 | - | - | | 0.2433 | 5460 | 0.3552 | - | - | | 0.2437 | 5470 | 0.3394 | - | - | | 0.2442 | 5480 | 0.3083 | - | - | | 0.2446 | 5490 | 0.3198 | - | - | | 0.2451 | 5500 | 0.2887 | - | - | | 0.2455 | 5510 | 0.2898 | - | - | | 0.2460 | 5520 | 0.3092 | - | - | | 0.2464 | 5530 | 0.3025 | - | - | | 0.2469 | 5540 | 0.3253 | - | - | | 0.2473 | 5550 | 0.3686 | - | - | | 0.2477 | 5560 | 0.3205 | - | - | | 0.2482 | 5570 | 0.3507 | - | - | | 0.2486 | 5580 | 0.2809 | - | - | | 0.2491 | 5590 | 0.3339 | - | - | | 0.2495 | 5600 | 0.3261 | - | - | | 0.2500 | 5610 | 0.2804 | - | - | | 0.2504 | 5620 | 0.2856 | - | - | | 0.2509 | 5630 | 0.3211 | - | - | | 0.2513 | 5640 | 0.3126 | - | - | | 0.2518 | 5650 | 0.3374 | - | - | | 0.2522 | 5660 | 0.2957 | - | - | | 0.2526 | 5670 | 0.3414 | - | - | | 0.2531 | 5680 | 0.3219 | - | - | | 0.2535 | 5690 | 0.3554 | - | - | | 0.2540 | 5700 | 0.2738 | - | - | | 0.2544 | 5710 | 0.361 | - | - | | 0.2549 | 5720 | 0.336 | - | - | | 0.2553 | 5730 | 0.3254 | - | - | | 0.2558 | 5740 | 0.3453 | - | - | | 0.2562 | 5750 | 0.2984 | - | - | | 0.2567 | 5760 | 0.3224 | - | - | | 0.2571 | 5770 | 0.2553 | - | - | | 0.2575 | 5780 | 0.301 | - | - | | 0.2580 | 5790 | 0.3767 | - | - | | 0.2584 | 5800 | 0.3092 | - | - | | 0.2589 | 5810 | 0.2676 | - | - | | 0.2593 | 5820 | 0.3178 | - | - | | 0.2598 | 5830 | 0.3117 | - | - | | 0.2602 | 5840 | 0.3446 | - | - | | 0.2607 | 5850 | 0.3347 | - | - | | 0.2611 | 5860 | 0.3841 | - | - | | 0.2616 | 5870 | 0.2847 | - | - | | 0.2620 | 5880 | 0.3587 | - | - | | 0.2624 | 5890 | 0.2812 | - | - | | 0.2629 | 5900 | 0.3577 | - | - | | 0.2633 | 5910 | 0.3011 | - | - | | 0.2638 | 5920 | 0.3102 | - | - | | 0.2642 | 5930 | 0.3297 | - | - | | 0.2647 | 5940 | 0.2603 | - | - | | 0.2651 | 5950 | 0.3575 | - | - | | 0.2656 | 5960 | 0.3617 | - | - | | 0.2660 | 5970 | 0.3587 | - | - | | 0.2665 | 5980 | 0.3198 | - | - | | 0.2669 | 5990 | 0.3536 | - | - | | 0.2673 | 6000 | 0.3047 | 0.7725 | 0.7699 | | 0.2678 | 6010 | 0.3211 | - | - | | 0.2682 | 6020 | 0.392 | - | - | | 0.2687 | 6030 | 0.3359 | - | - | | 0.2691 | 6040 | 0.2903 | - | - | | 0.2696 | 6050 | 0.286 | - | - | | 0.2700 | 6060 | 0.3426 | - | - | | 0.2705 | 6070 | 0.3406 | - | - | | 0.2709 | 6080 | 0.2903 | - | - | | 0.2714 | 6090 | 0.3175 | - | - | | 0.2718 | 6100 | 0.2794 | - | - | | 0.2723 | 6110 | 0.3232 | - | - | | 0.2727 | 6120 | 0.3054 | - | - | | 0.2731 | 6130 | 0.361 | - | - | | 0.2736 | 6140 | 0.3524 | - | - | | 0.2740 | 6150 | 0.3371 | - | - | | 0.2745 | 6160 | 0.313 | - | - | | 0.2749 | 6170 | 0.2713 | - | - | | 0.2754 | 6180 | 0.3141 | - | - | | 0.2758 | 6190 | 0.3197 | - | - | | 0.2763 | 6200 | 0.2792 | - | - | | 0.2767 | 6210 | 0.3169 | - | - | | 0.2772 | 6220 | 0.307 | - | - | | 0.2776 | 6230 | 0.2737 | - | - | | 0.2780 | 6240 | 0.3348 | - | - | | 0.2785 | 6250 | 0.2885 | - | - | | 0.2789 | 6260 | 0.3416 | - | - | | 0.2794 | 6270 | 0.3422 | - | - | | 0.2798 | 6280 | 0.2758 | - | - | | 0.2803 | 6290 | 0.3736 | - | - | | 0.2807 | 6300 | 0.3036 | - | - | | 0.2812 | 6310 | 0.3704 | - | - | | 0.2816 | 6320 | 0.3312 | - | - | | 0.2821 | 6330 | 0.3431 | - | - | | 0.2825 | 6340 | 0.3502 | - | - | | 0.2829 | 6350 | 0.2821 | - | - | | 0.2834 | 6360 | 0.3097 | - | - | | 0.2838 | 6370 | 0.3444 | - | - | | 0.2843 | 6380 | 0.3349 | - | - | | 0.2847 | 6390 | 0.2999 | - | - | | 0.2852 | 6400 | 0.3149 | - | - | | 0.2856 | 6410 | 0.3462 | - | - | | 0.2861 | 6420 | 0.3337 | - | - | | 0.2865 | 6430 | 0.3329 | - | - | | 0.2870 | 6440 | 0.3294 | - | - | | 0.2874 | 6450 | 0.2917 | - | - | | 0.2878 | 6460 | 0.3007 | - | - | | 0.2883 | 6470 | 0.2809 | - | - | | 0.2887 | 6480 | 0.3745 | - | - | | 0.2892 | 6490 | 0.3625 | - | - | | 0.2896 | 6500 | 0.3123 | - | - | | 0.2901 | 6510 | 0.3209 | - | - | | 0.2905 | 6520 | 0.347 | - | - | | 0.2910 | 6530 | 0.3084 | - | - | | 0.2914 | 6540 | 0.2829 | - | - | | 0.2919 | 6550 | 0.3569 | - | - | | 0.2923 | 6560 | 0.2686 | - | - | | 0.2927 | 6570 | 0.2929 | - | - | | 0.2932 | 6580 | 0.3237 | - | - | | 0.2936 | 6590 | 0.3451 | - | - | | 0.2941 | 6600 | 0.3199 | - | - | | 0.2945 | 6610 | 0.2848 | - | - | | 0.2950 | 6620 | 0.2842 | - | - | | 0.2954 | 6630 | 0.3168 | - | - | | 0.2959 | 6640 | 0.3094 | - | - | | 0.2963 | 6650 | 0.3239 | - | - | | 0.2968 | 6660 | 0.357 | - | - | | 0.2972 | 6670 | 0.3279 | - | - | | 0.2976 | 6680 | 0.4015 | - | - | | 0.2981 | 6690 | 0.2901 | - | - | | 0.2985 | 6700 | 0.3387 | - | - | | 0.2990 | 6710 | 0.3282 | - | - | | 0.2994 | 6720 | 0.2909 | - | - | | 0.2999 | 6730 | 0.3556 | - | - | | 0.3003 | 6740 | 0.3008 | - | - | | 0.3008 | 6750 | 0.3205 | - | - | | 0.3012 | 6760 | 0.3132 | - | - | | 0.3017 | 6770 | 0.3181 | - | - | | 0.3021 | 6780 | 0.3752 | - | - | | 0.3026 | 6790 | 0.317 | - | - | | 0.3030 | 6800 | 0.3584 | - | - | | 0.3034 | 6810 | 0.3475 | - | - | | 0.3039 | 6820 | 0.2827 | - | - | | 0.3043 | 6830 | 0.2925 | - | - | | 0.3048 | 6840 | 0.2941 | - | - | | 0.3052 | 6850 | 0.3154 | - | - | | 0.3057 | 6860 | 0.3301 | - | - | | 0.3061 | 6870 | 0.3492 | - | - | | 0.3066 | 6880 | 0.3147 | - | - | | 0.3070 | 6890 | 0.348 | - | - | | 0.3075 | 6900 | 0.3577 | - | - | | 0.3079 | 6910 | 0.2893 | - | - | | 0.3083 | 6920 | 0.3298 | - | - | | 0.3088 | 6930 | 0.3071 | - | - | | 0.3092 | 6940 | 0.322 | - | - | | 0.3097 | 6950 | 0.3055 | - | - | | 0.3101 | 6960 | 0.3333 | - | - | | 0.3106 | 6970 | 0.3329 | - | - | | 0.3110 | 6980 | 0.3298 | - | - | | 0.3115 | 6990 | 0.3061 | - | - | | 0.3119 | 7000 | 0.3005 | 0.7686 | 0.7672 | | 0.3124 | 7010 | 0.3463 | - | - | | 0.3128 | 7020 | 0.3467 | - | - | | 0.3132 | 7030 | 0.3104 | - | - | | 0.3137 | 7040 | 0.3268 | - | - | | 0.3141 | 7050 | 0.3222 | - | - | | 0.3146 | 7060 | 0.3126 | - | - | | 0.3150 | 7070 | 0.3121 | - | - | | 0.3155 | 7080 | 0.2935 | - | - | | 0.3159 | 7090 | 0.2897 | - | - | | 0.3164 | 7100 | 0.3066 | - | - | | 0.3168 | 7110 | 0.3363 | - | - | | 0.3173 | 7120 | 0.3293 | - | - | | 0.3177 | 7130 | 0.3161 | - | - | | 0.3181 | 7140 | 0.3582 | - | - | | 0.3186 | 7150 | 0.3345 | - | - | | 0.3190 | 7160 | 0.3307 | - | - | | 0.3195 | 7170 | 0.3269 | - | - | | 0.3199 | 7180 | 0.3262 | - | - | | 0.3204 | 7190 | 0.3115 | - | - | | 0.3208 | 7200 | 0.3145 | - | - | | 0.3213 | 7210 | 0.2816 | - | - | | 0.3217 | 7220 | 0.3239 | - | - | | 0.3222 | 7230 | 0.2825 | - | - | | 0.3226 | 7240 | 0.3217 | - | - | | 0.3230 | 7250 | 0.2913 | - | - | | 0.3235 | 7260 | 0.3219 | - | - | | 0.3239 | 7270 | 0.2968 | - | - | | 0.3244 | 7280 | 0.2999 | - | - | | 0.3248 | 7290 | 0.2924 | - | - | | 0.3253 | 7300 | 0.3033 | - | - | | 0.3257 | 7310 | 0.3521 | - | - | | 0.3262 | 7320 | 0.3258 | - | - | | 0.3266 | 7330 | 0.3724 | - | - | | 0.3271 | 7340 | 0.3068 | - | - | | 0.3275 | 7350 | 0.3095 | - | - | | 0.3279 | 7360 | 0.2957 | - | - | | 0.3284 | 7370 | 0.2741 | - | - | | 0.3288 | 7380 | 0.3183 | - | - | | 0.3293 | 7390 | 0.3409 | - | - | | 0.3297 | 7400 | 0.3066 | - | - | | 0.3302 | 7410 | 0.3139 | - | - | | 0.3306 | 7420 | 0.3639 | - | - | | 0.3311 | 7430 | 0.3333 | - | - | | 0.3315 | 7440 | 0.276 | - | - | | 0.3320 | 7450 | 0.3326 | - | - | | 0.3324 | 7460 | 0.3239 | - | - | | 0.3329 | 7470 | 0.3067 | - | - | | 0.3333 | 7480 | 0.3213 | - | - | | 0.3337 | 7490 | 0.3227 | - | - | | 0.3342 | 7500 | 0.3027 | - | - | | 0.3346 | 7510 | 0.3017 | - | - | | 0.3351 | 7520 | 0.2797 | - | - | | 0.3355 | 7530 | 0.3215 | - | - | | 0.3360 | 7540 | 0.2713 | - | - | | 0.3364 | 7550 | 0.3071 | - | - | | 0.3369 | 7560 | 0.309 | - | - | | 0.3373 | 7570 | 0.3145 | - | - | | 0.3378 | 7580 | 0.2694 | - | - | | 0.3382 | 7590 | 0.3036 | - | - | | 0.3386 | 7600 | 0.2892 | - | - | | 0.3391 | 7610 | 0.3227 | - | - | | 0.3395 | 7620 | 0.3373 | - | - | | 0.3400 | 7630 | 0.2584 | - | - | | 0.3404 | 7640 | 0.232 | - | - | | 0.3409 | 7650 | 0.311 | - | - | | 0.3413 | 7660 | 0.3536 | - | - | | 0.3418 | 7670 | 0.3279 | - | - | | 0.3422 | 7680 | 0.3034 | - | - | | 0.3427 | 7690 | 0.2916 | - | - | | 0.3431 | 7700 | 0.2822 | - | - | | 0.3435 | 7710 | 0.2871 | - | - | | 0.3440 | 7720 | 0.3284 | - | - | | 0.3444 | 7730 | 0.2909 | - | - | | 0.3449 | 7740 | 0.3292 | - | - | | 0.3453 | 7750 | 0.3393 | - | - | | 0.3458 | 7760 | 0.2838 | - | - | | 0.3462 | 7770 | 0.2686 | - | - | | 0.3467 | 7780 | 0.318 | - | - | | 0.3471 | 7790 | 0.3335 | - | - | | 0.3476 | 7800 | 0.3017 | - | - | | 0.3480 | 7810 | 0.2595 | - | - | | 0.3484 | 7820 | 0.3008 | - | - | | 0.3489 | 7830 | 0.2726 | - | - | | 0.3493 | 7840 | 0.2938 | - | - | | 0.3498 | 7850 | 0.2923 | - | - | | 0.3502 | 7860 | 0.361 | - | - | | 0.3507 | 7870 | 0.2689 | - | - | | 0.3511 | 7880 | 0.3014 | - | - | | 0.3516 | 7890 | 0.3169 | - | - | | 0.3520 | 7900 | 0.3124 | - | - | | 0.3525 | 7910 | 0.3367 | - | - | | 0.3529 | 7920 | 0.276 | - | - | | 0.3533 | 7930 | 0.3556 | - | - | | 0.3538 | 7940 | 0.3036 | - | - | | 0.3542 | 7950 | 0.2983 | - | - | | 0.3547 | 7960 | 0.3393 | - | - | | 0.3551 | 7970 | 0.3688 | - | - | | 0.3556 | 7980 | 0.3391 | - | - | | 0.3560 | 7990 | 0.3432 | - | - | | 0.3565 | 8000 | 0.3061 | 0.7543 | 0.7526 | | 0.3569 | 8010 | 0.293 | - | - | | 0.3574 | 8020 | 0.2925 | - | - | | 0.3578 | 8030 | 0.2852 | - | - | | 0.3582 | 8040 | 0.396 | - | - | | 0.3587 | 8050 | 0.2927 | - | - | | 0.3591 | 8060 | 0.3028 | - | - | | 0.3596 | 8070 | 0.3102 | - | - | | 0.3600 | 8080 | 0.328 | - | - | | 0.3605 | 8090 | 0.3194 | - | - | | 0.3609 | 8100 | 0.2808 | - | - | | 0.3614 | 8110 | 0.292 | - | - | | 0.3618 | 8120 | 0.3232 | - | - | | 0.3623 | 8130 | 0.3629 | - | - | | 0.3627 | 8140 | 0.3222 | - | - | | 0.3632 | 8150 | 0.3691 | - | - | | 0.3636 | 8160 | 0.2965 | - | - | | 0.3640 | 8170 | 0.293 | - | - | | 0.3645 | 8180 | 0.3166 | - | - | | 0.3649 | 8190 | 0.3021 | - | - | | 0.3654 | 8200 | 0.2815 | - | - | | 0.3658 | 8210 | 0.3089 | - | - | | 0.3663 | 8220 | 0.2804 | - | - | | 0.3667 | 8230 | 0.3011 | - | - | | 0.3672 | 8240 | 0.27 | - | - | | 0.3676 | 8250 | 0.361 | - | - | | 0.3681 | 8260 | 0.3322 | - | - | | 0.3685 | 8270 | 0.2741 | - | - | | 0.3689 | 8280 | 0.3207 | - | - | | 0.3694 | 8290 | 0.3437 | - | - | | 0.3698 | 8300 | 0.3259 | - | - | | 0.3703 | 8310 | 0.2473 | - | - | | 0.3707 | 8320 | 0.2321 | - | - | | 0.3712 | 8330 | 0.2699 | - | - | | 0.3716 | 8340 | 0.2404 | - | - | | 0.3721 | 8350 | 0.2586 | - | - | | 0.3725 | 8360 | 0.295 | - | - | | 0.3730 | 8370 | 0.3063 | - | - | | 0.3734 | 8380 | 0.2551 | - | - | | 0.3738 | 8390 | 0.2562 | - | - | | 0.3743 | 8400 | 0.3062 | - | - | | 0.3747 | 8410 | 0.3165 | - | - | | 0.3752 | 8420 | 0.308 | - | - | | 0.3756 | 8430 | 0.2976 | - | - | | 0.3761 | 8440 | 0.284 | - | - | | 0.3765 | 8450 | 0.3525 | - | - | | 0.3770 | 8460 | 0.2639 | - | - | | 0.3774 | 8470 | 0.3171 | - | - | | 0.3779 | 8480 | 0.3367 | - | - | | 0.3783 | 8490 | 0.2801 | - | - | | 0.3787 | 8500 | 0.2957 | - | - | | 0.3792 | 8510 | 0.3684 | - | - | | 0.3796 | 8520 | 0.312 | - | - | | 0.3801 | 8530 | 0.3703 | - | - | | 0.3805 | 8540 | 0.2963 | - | - | | 0.3810 | 8550 | 0.3032 | - | - | | 0.3814 | 8560 | 0.3415 | - | - | | 0.3819 | 8570 | 0.3011 | - | - | | 0.3823 | 8580 | 0.33 | - | - | | 0.3828 | 8590 | 0.2763 | - | - | | 0.3832 | 8600 | 0.3295 | - | - | | 0.3836 | 8610 | 0.3334 | - | - | | 0.3841 | 8620 | 0.258 | - | - | | 0.3845 | 8630 | 0.2626 | - | - | | 0.3850 | 8640 | 0.2813 | - | - | | 0.3854 | 8650 | 0.2845 | - | - | | 0.3859 | 8660 | 0.2719 | - | - | | 0.3863 | 8670 | 0.2898 | - | - | | 0.3868 | 8680 | 0.3011 | - | - | | 0.3872 | 8690 | 0.2914 | - | - | | 0.3877 | 8700 | 0.3355 | - | - | | 0.3881 | 8710 | 0.2678 | - | - | | 0.3885 | 8720 | 0.2266 | - | - | | 0.3890 | 8730 | 0.3016 | - | - | | 0.3894 | 8740 | 0.3369 | - | - | | 0.3899 | 8750 | 0.3558 | - | - | | 0.3903 | 8760 | 0.2824 | - | - | | 0.3908 | 8770 | 0.3201 | - | - | | 0.3912 | 8780 | 0.2485 | - | - | | 0.3917 | 8790 | 0.2603 | - | - | | 0.3921 | 8800 | 0.3223 | - | - | | 0.3926 | 8810 | 0.247 | - | - | | 0.3930 | 8820 | 0.2766 | - | - | | 0.3934 | 8830 | 0.3231 | - | - | | 0.3939 | 8840 | 0.322 | - | - | | 0.3943 | 8850 | 0.3039 | - | - | | 0.3948 | 8860 | 0.2442 | - | - | | 0.3952 | 8870 | 0.36 | - | - | | 0.3957 | 8880 | 0.2551 | - | - | | 0.3961 | 8890 | 0.2661 | - | - | | 0.3966 | 8900 | 0.3001 | - | - | | 0.3970 | 8910 | 0.2886 | - | - | | 0.3975 | 8920 | 0.2856 | - | - | | 0.3979 | 8930 | 0.2827 | - | - | | 0.3984 | 8940 | 0.2652 | - | - | | 0.3988 | 8950 | 0.3077 | - | - | | 0.3992 | 8960 | 0.3094 | - | - | | 0.3997 | 8970 | 0.3281 | - | - | | 0.4001 | 8980 | 0.3399 | - | - | | 0.4006 | 8990 | 0.3093 | - | - | | 0.4010 | 9000 | 0.2586 | 0.7634 | 0.7607 | | 0.4015 | 9010 | 0.2939 | - | - | | 0.4019 | 9020 | 0.3022 | - | - | | 0.4024 | 9030 | 0.2919 | - | - | | 0.4028 | 9040 | 0.2524 | - | - | | 0.4033 | 9050 | 0.2248 | - | - | | 0.4037 | 9060 | 0.2759 | - | - | | 0.4041 | 9070 | 0.2916 | - | - | | 0.4046 | 9080 | 0.3006 | - | - | | 0.4050 | 9090 | 0.2302 | - | - | | 0.4055 | 9100 | 0.3001 | - | - | | 0.4059 | 9110 | 0.3143 | - | - | | 0.4064 | 9120 | 0.2544 | - | - | | 0.4068 | 9130 | 0.3142 | - | - | | 0.4073 | 9140 | 0.3364 | - | - | | 0.4077 | 9150 | 0.2785 | - | - | | 0.4082 | 9160 | 0.2948 | - | - | | 0.4086 | 9170 | 0.2657 | - | - | | 0.4090 | 9180 | 0.2722 | - | - | | 0.4095 | 9190 | 0.3212 | - | - | | 0.4099 | 9200 | 0.2952 | - | - | | 0.4104 | 9210 | 0.2764 | - | - | | 0.4108 | 9220 | 0.2744 | - | - | | 0.4113 | 9230 | 0.2912 | - | - | | 0.4117 | 9240 | 0.2676 | - | - | | 0.4122 | 9250 | 0.2613 | - | - | | 0.4126 | 9260 | 0.2905 | - | - | | 0.4131 | 9270 | 0.3308 | - | - | | 0.4135 | 9280 | 0.3311 | - | - | | 0.4139 | 9290 | 0.2904 | - | - | | 0.4144 | 9300 | 0.3367 | - | - | | 0.4148 | 9310 | 0.2742 | - | - | | 0.4153 | 9320 | 0.295 | - | - | | 0.4157 | 9330 | 0.3034 | - | - | | 0.4162 | 9340 | 0.3302 | - | - | | 0.4166 | 9350 | 0.2883 | - | - | | 0.4171 | 9360 | 0.2768 | - | - | | 0.4175 | 9370 | 0.2953 | - | - | | 0.4180 | 9380 | 0.3196 | - | - | | 0.4184 | 9390 | 0.2731 | - | - | | 0.4188 | 9400 | 0.3016 | - | - | | 0.4193 | 9410 | 0.3325 | - | - | | 0.4197 | 9420 | 0.2503 | - | - | | 0.4202 | 9430 | 0.273 | - | - | | 0.4206 | 9440 | 0.2784 | - | - | | 0.4211 | 9450 | 0.2676 | - | - | | 0.4215 | 9460 | 0.2891 | - | - | | 0.4220 | 9470 | 0.2977 | - | - | | 0.4224 | 9480 | 0.2673 | - | - | | 0.4229 | 9490 | 0.2845 | - | - | | 0.4233 | 9500 | 0.2825 | - | - | | 0.4237 | 9510 | 0.2865 | - | - | | 0.4242 | 9520 | 0.2451 | - | - | | 0.4246 | 9530 | 0.2806 | - | - | | 0.4251 | 9540 | 0.2629 | - | - | | 0.4255 | 9550 | 0.3426 | - | - | | 0.4260 | 9560 | 0.2453 | - | - | | 0.4264 | 9570 | 0.3458 | - | - | | 0.4269 | 9580 | 0.2392 | - | - | | 0.4273 | 9590 | 0.2433 | - | - | | 0.4278 | 9600 | 0.2481 | - | - | | 0.4282 | 9610 | 0.3277 | - | - | | 0.4287 | 9620 | 0.2609 | - | - | | 0.4291 | 9630 | 0.2986 | - | - | | 0.4295 | 9640 | 0.2712 | - | - | | 0.4300 | 9650 | 0.3169 | - | - | | 0.4304 | 9660 | 0.2638 | - | - | | 0.4309 | 9670 | 0.2821 | - | - | | 0.4313 | 9680 | 0.2969 | - | - | | 0.4318 | 9690 | 0.2727 | - | - | | 0.4322 | 9700 | 0.2858 | - | - | | 0.4327 | 9710 | 0.2988 | - | - | | 0.4331 | 9720 | 0.2628 | - | - | | 0.4336 | 9730 | 0.3027 | - | - | | 0.4340 | 9740 | 0.2502 | - | - | | 0.4344 | 9750 | 0.3028 | - | - | | 0.4349 | 9760 | 0.2381 | - | - | | 0.4353 | 9770 | 0.2981 | - | - | | 0.4358 | 9780 | 0.2208 | - | - | | 0.4362 | 9790 | 0.2433 | - | - | | 0.4367 | 9800 | 0.2672 | - | - | | 0.4371 | 9810 | 0.3147 | - | - | | 0.4376 | 9820 | 0.2655 | - | - | | 0.4380 | 9830 | 0.273 | - | - | | 0.4385 | 9840 | 0.3505 | - | - | | 0.4389 | 9850 | 0.2822 | - | - | | 0.4393 | 9860 | 0.2682 | - | - | | 0.4398 | 9870 | 0.294 | - | - | | 0.4402 | 9880 | 0.3002 | - | - | | 0.4407 | 9890 | 0.2514 | - | - | | 0.4411 | 9900 | 0.3193 | - | - | | 0.4416 | 9910 | 0.2296 | - | - | | 0.4420 | 9920 | 0.2209 | - | - | | 0.4425 | 9930 | 0.2961 | - | - | | 0.4429 | 9940 | 0.297 | - | - | | 0.4434 | 9950 | 0.2734 | - | - | | 0.4438 | 9960 | 0.2806 | - | - | | 0.4442 | 9970 | 0.2634 | - | - | | 0.4447 | 9980 | 0.3131 | - | - | | 0.4451 | 9990 | 0.3007 | - | - | | 0.4456 | 10000 | 0.3299 | 0.7687 | 0.7657 | | 0.4460 | 10010 | 0.2224 | - | - | | 0.4465 | 10020 | 0.2891 | - | - | | 0.4469 | 10030 | 0.2997 | - | - | | 0.4474 | 10040 | 0.3072 | - | - | | 0.4478 | 10050 | 0.2657 | - | - | | 0.4483 | 10060 | 0.2927 | - | - | | 0.4487 | 10070 | 0.3071 | - | - | | 0.4491 | 10080 | 0.2734 | - | - | | 0.4496 | 10090 | 0.3016 | - | - | | 0.4500 | 10100 | 0.2798 | - | - | | 0.4505 | 10110 | 0.2845 | - | - | | 0.4509 | 10120 | 0.2788 | - | - | | 0.4514 | 10130 | 0.2914 | - | - | | 0.4518 | 10140 | 0.2693 | - | - | | 0.4523 | 10150 | 0.2866 | - | - | | 0.4527 | 10160 | 0.3127 | - | - | | 0.4532 | 10170 | 0.2743 | - | - | | 0.4536 | 10180 | 0.3078 | - | - | | 0.4540 | 10190 | 0.3003 | - | - | | 0.4545 | 10200 | 0.2872 | - | - | | 0.4549 | 10210 | 0.2461 | - | - | | 0.4554 | 10220 | 0.2944 | - | - | | 0.4558 | 10230 | 0.2765 | - | - | | 0.4563 | 10240 | 0.2763 | - | - | | 0.4567 | 10250 | 0.2905 | - | - | | 0.4572 | 10260 | 0.2856 | - | - | | 0.4576 | 10270 | 0.2722 | - | - | | 0.4581 | 10280 | 0.2668 | - | - | | 0.4585 | 10290 | 0.3014 | - | - | | 0.4590 | 10300 | 0.3083 | - | - | | 0.4594 | 10310 | 0.2957 | - | - | | 0.4598 | 10320 | 0.3093 | - | - | | 0.4603 | 10330 | 0.3009 | - | - | | 0.4607 | 10340 | 0.3161 | - | - | | 0.4612 | 10350 | 0.2737 | - | - | | 0.4616 | 10360 | 0.2473 | - | - | | 0.4621 | 10370 | 0.2999 | - | - | | 0.4625 | 10380 | 0.2943 | - | - | | 0.4630 | 10390 | 0.2784 | - | - | | 0.4634 | 10400 | 0.2541 | - | - | | 0.4639 | 10410 | 0.2731 | - | - | | 0.4643 | 10420 | 0.2608 | - | - | | 0.4647 | 10430 | 0.3024 | - | - | | 0.4652 | 10440 | 0.2563 | - | - | | 0.4656 | 10450 | 0.2725 | - | - | | 0.4661 | 10460 | 0.2643 | - | - | | 0.4665 | 10470 | 0.2627 | - | - | | 0.4670 | 10480 | 0.2655 | - | - | | 0.4674 | 10490 | 0.2556 | - | - | | 0.4679 | 10500 | 0.299 | - | - | | 0.4683 | 10510 | 0.3286 | - | - | | 0.4688 | 10520 | 0.3075 | - | - | | 0.4692 | 10530 | 0.2702 | - | - | | 0.4696 | 10540 | 0.2688 | - | - | | 0.4701 | 10550 | 0.29 | - | - | | 0.4705 | 10560 | 0.2918 | - | - | | 0.4710 | 10570 | 0.2507 | - | - | | 0.4714 | 10580 | 0.2849 | - | - | | 0.4719 | 10590 | 0.2938 | - | - | | 0.4723 | 10600 | 0.2275 | - | - | | 0.4728 | 10610 | 0.2662 | - | - | | 0.4732 | 10620 | 0.2864 | - | - | | 0.4737 | 10630 | 0.2865 | - | - | | 0.4741 | 10640 | 0.3094 | - | - | | 0.4745 | 10650 | 0.2479 | - | - | | 0.4750 | 10660 | 0.2483 | - | - | | 0.4754 | 10670 | 0.3166 | - | - | | 0.4759 | 10680 | 0.2727 | - | - | | 0.4763 | 10690 | 0.3077 | - | - | | 0.4768 | 10700 | 0.3076 | - | - | | 0.4772 | 10710 | 0.2835 | - | - | | 0.4777 | 10720 | 0.2893 | - | - | | 0.4781 | 10730 | 0.2889 | - | - | | 0.4786 | 10740 | 0.279 | - | - | | 0.4790 | 10750 | 0.2487 | - | - | | 0.4794 | 10760 | 0.2936 | - | - | | 0.4799 | 10770 | 0.2471 | - | - | | 0.4803 | 10780 | 0.2807 | - | - | | 0.4808 | 10790 | 0.2868 | - | - | | 0.4812 | 10800 | 0.229 | - | - | | 0.4817 | 10810 | 0.2683 | - | - | | 0.4821 | 10820 | 0.2686 | - | - | | 0.4826 | 10830 | 1.8939 | - | - | | 0.4830 | 10840 | 0.8922 | - | - | | 0.4835 | 10850 | 0.9472 | - | - | | 0.4839 | 10860 | 0.7066 | - | - | | 0.4843 | 10870 | 0.6178 | - | - | | 0.4848 | 10880 | 0.6898 | - | - | | 0.4852 | 10890 | 0.7844 | - | - | | 0.4857 | 10900 | 0.9946 | - | - | | 0.4861 | 10910 | 1.3618 | - | - | | 0.4866 | 10920 | 1.2785 | - | - | | 0.4870 | 10930 | 0.9415 | - | - | | 0.4875 | 10940 | 0.753 | - | - | | 0.4879 | 10950 | 0.6851 | - | - | | 0.4884 | 10960 | 0.7812 | - | - | | 0.4888 | 10970 | 0.9856 | - | - | | 0.4893 | 10980 | 0.7245 | - | - | | 0.4897 | 10990 | 1.0757 | - | - | | 0.4901 | 11000 | 0.996 | 0.7854 | 0.7828 | | 0.4906 | 11010 | 0.8984 | - | - | | 0.4910 | 11020 | 0.9795 | - | - | | 0.4915 | 11030 | 0.7918 | - | - | | 0.4919 | 11040 | 0.7253 | - | - | | 0.4924 | 11050 | 0.9031 | - | - | | 0.4928 | 11060 | 0.9121 | - | - | | 0.4933 | 11070 | 0.68 | - | - | | 0.4937 | 11080 | 0.5949 | - | - | | 0.4942 | 11090 | 0.8265 | - | - | | 0.4946 | 11100 | 0.9904 | - | - | | 0.4950 | 11110 | 1.0019 | - | - | | 0.4955 | 11120 | 1.1003 | - | - | | 0.4959 | 11130 | 0.7394 | - | - | | 0.4964 | 11140 | 0.873 | - | - | | 0.4968 | 11150 | 0.8108 | - | - | | 0.4973 | 11160 | 0.8597 | - | - | | 0.4977 | 11170 | 0.8456 | - | - | | 0.4982 | 11180 | 0.8565 | - | - | | 0.4986 | 11190 | 0.927 | - | - | | 0.4991 | 11200 | 0.7665 | - | - | | 0.4995 | 11210 | 0.5243 | - | - | | 0.4999 | 11220 | 0.2878 | - | - | | 0.5004 | 11230 | 0.4855 | - | - | | 0.5008 | 11240 | 0.7549 | - | - | | 0.5013 | 11250 | 0.6238 | - | - | | 0.5017 | 11260 | 0.5168 | - | - | | 0.5022 | 11270 | 0.4326 | - | - | | 0.5026 | 11280 | 0.4716 | - | - | | 0.5031 | 11290 | 0.3107 | - | - | | 0.5035 | 11300 | 0.4574 | - | - | | 0.5040 | 11310 | 0.4029 | - | - | | 0.5044 | 11320 | 0.3456 | - | - | | 0.5048 | 11330 | 0.4598 | - | - | | 0.5053 | 11340 | 0.466 | - | - | | 0.5057 | 11350 | 0.4424 | - | - | | 0.5062 | 11360 | 0.4651 | - | - | | 0.5066 | 11370 | 0.467 | - | - | | 0.5071 | 11380 | 0.4323 | - | - | | 0.5075 | 11390 | 0.4993 | - | - | | 0.5080 | 11400 | 0.5946 | - | - | | 0.5084 | 11410 | 0.7139 | - | - | | 0.5089 | 11420 | 0.7657 | - | - | | 0.5093 | 11430 | 0.7255 | - | - | | 0.5097 | 11440 | 0.8461 | - | - | | 0.5102 | 11450 | 0.6687 | - | - | | 0.5106 | 11460 | 0.5091 | - | - | | 0.5111 | 11470 | 0.3306 | - | - | | 0.5115 | 11480 | 0.4152 | - | - | | 0.5120 | 11490 | 0.3588 | - | - | | 0.5124 | 11500 | 0.2542 | - | - | | 0.5129 | 11510 | 0.5537 | - | - | | 0.5133 | 11520 | 0.3634 | - | - | | 0.5138 | 11530 | 0.4235 | - | - | | 0.5142 | 11540 | 0.4202 | - | - | | 0.5146 | 11550 | 0.5469 | - | - | | 0.5151 | 11560 | 0.324 | - | - | | 0.5155 | 11570 | 0.2884 | - | - | | 0.5160 | 11580 | 0.4072 | - | - | | 0.5164 | 11590 | 0.4224 | - | - | | 0.5169 | 11600 | 0.3676 | - | - | | 0.5173 | 11610 | 0.5243 | - | - | | 0.5178 | 11620 | 0.5065 | - | - | | 0.5182 | 11630 | 0.4646 | - | - | | 0.5187 | 11640 | 0.4851 | - | - | | 0.5191 | 11650 | 0.4187 | - | - | | 0.5195 | 11660 | 0.4419 | - | - | | 0.5200 | 11670 | 0.5056 | - | - | | 0.5204 | 11680 | 0.404 | - | - | | 0.5209 | 11690 | 0.2907 | - | - | | 0.5213 | 11700 | 0.4586 | - | - | | 0.5218 | 11710 | 0.3216 | - | - | | 0.5222 | 11720 | 0.301 | - | - | | 0.5227 | 11730 | 0.5921 | - | - | | 0.5231 | 11740 | 0.7519 | - | - | | 0.5236 | 11750 | 0.6452 | - | - | | 0.5240 | 11760 | 0.5754 | - | - | | 0.5245 | 11770 | 0.6165 | - | - | | 0.5249 | 11780 | 0.5047 | - | - | | 0.5253 | 11790 | 0.4663 | - | - | | 0.5258 | 11800 | 0.5821 | - | - | | 0.5262 | 11810 | 0.6243 | - | - | | 0.5267 | 11820 | 0.6297 | - | - | | 0.5271 | 11830 | 0.6245 | - | - | | 0.5276 | 11840 | 0.481 | - | - | | 0.5280 | 11850 | 0.4765 | - | - | | 0.5285 | 11860 | 0.6135 | - | - | | 0.5289 | 11870 | 0.5482 | - | - | | 0.5294 | 11880 | 0.5489 | - | - | | 0.5298 | 11890 | 0.3876 | - | - | | 0.5302 | 11900 | 0.4581 | - | - | | 0.5307 | 11910 | 0.4316 | - | - | | 0.5311 | 11920 | 0.598 | - | - | | 0.5316 | 11930 | 0.5204 | - | - | | 0.5320 | 11940 | 0.3851 | - | - | | 0.5325 | 11950 | 0.318 | - | - | | 0.5329 | 11960 | 0.4887 | - | - | | 0.5334 | 11970 | 0.6857 | - | - | | 0.5338 | 11980 | 0.4579 | - | - | | 0.5343 | 11990 | 0.2892 | - | - | | 0.5347 | 12000 | 0.3245 | 0.7634 | 0.7602 | | 0.5351 | 12010 | 0.3557 | - | - | | 0.5356 | 12020 | 0.2726 | - | - | | 0.5360 | 12030 | 0.4119 | - | - | | 0.5365 | 12040 | 0.5011 | - | - | | 0.5369 | 12050 | 0.3544 | - | - | | 0.5374 | 12060 | 0.5049 | - | - | | 0.5378 | 12070 | 0.3972 | - | - | | 0.5383 | 12080 | 0.4198 | - | - | | 0.5387 | 12090 | 0.398 | - | - | | 0.5392 | 12100 | 0.4202 | - | - | | 0.5396 | 12110 | 0.5535 | - | - | | 0.5400 | 12120 | 0.4567 | - | - | | 0.5405 | 12130 | 0.3574 | - | - | | 0.5409 | 12140 | 0.5295 | - | - | | 0.5414 | 12150 | 0.5034 | - | - | | 0.5418 | 12160 | 0.7229 | - | - | | 0.5423 | 12170 | 0.6904 | - | - | | 0.5427 | 12180 | 0.5902 | - | - | | 0.5432 | 12190 | 0.7509 | - | - | | 0.5436 | 12200 | 0.7589 | - | - | | 0.5441 | 12210 | 1.1649 | - | - | | 0.5445 | 12220 | 0.9536 | - | - | | 0.5449 | 12230 | 0.7541 | - | - | | 0.5454 | 12240 | 0.4796 | - | - | | 0.5458 | 12250 | 0.3174 | - | - | | 0.5463 | 12260 | 0.5638 | - | - | | 0.5467 | 12270 | 0.4724 | - | - | | 0.5472 | 12280 | 0.5634 | - | - | | 0.5476 | 12290 | 0.5743 | - | - | | 0.5481 | 12300 | 0.4831 | - | - | | 0.5485 | 12310 | 0.4186 | - | - | | 0.5490 | 12320 | 0.6252 | - | - | | 0.5494 | 12330 | 0.3462 | - | - | | 0.5498 | 12340 | 0.5619 | - | - | | 0.5503 | 12350 | 0.523 | - | - | | 0.5507 | 12360 | 0.6483 | - | - | | 0.5512 | 12370 | 0.4535 | - | - | | 0.5516 | 12380 | 0.5385 | - | - | | 0.5521 | 12390 | 0.5842 | - | - | | 0.5525 | 12400 | 0.5908 | - | - | | 0.5530 | 12410 | 0.6554 | - | - | | 0.5534 | 12420 | 0.4226 | - | - | | 0.5539 | 12430 | 0.5474 | - | - | | 0.5543 | 12440 | 0.5548 | - | - | | 0.5548 | 12450 | 0.4978 | - | - | | 0.5552 | 12460 | 0.577 | - | - | | 0.5556 | 12470 | 0.4582 | - | - | | 0.5561 | 12480 | 0.4442 | - | - | | 0.5565 | 12490 | 0.5035 | - | - | | 0.5570 | 12500 | 0.5048 | - | - | | 0.5574 | 12510 | 0.4682 | - | - | | 0.5579 | 12520 | 0.5447 | - | - | | 0.5583 | 12530 | 0.3742 | - | - | | 0.5588 | 12540 | 0.5258 | - | - | | 0.5592 | 12550 | 0.4223 | - | - | | 0.5597 | 12560 | 0.4796 | - | - | | 0.5601 | 12570 | 0.5129 | - | - | | 0.5605 | 12580 | 0.2938 | - | - | | 0.5610 | 12590 | 0.3879 | - | - | | 0.5614 | 12600 | 0.497 | - | - | | 0.5619 | 12610 | 0.4239 | - | - | | 0.5623 | 12620 | 0.356 | - | - | | 0.5628 | 12630 | 0.5157 | - | - | | 0.5632 | 12640 | 0.5184 | - | - | | 0.5637 | 12650 | 0.5824 | - | - | | 0.5641 | 12660 | 0.5635 | - | - | | 0.5646 | 12670 | 0.3486 | - | - | | 0.5650 | 12680 | 0.3022 | - | - | | 0.5654 | 12690 | 0.4913 | - | - | | 0.5659 | 12700 | 0.447 | - | - | | 0.5663 | 12710 | 0.3714 | - | - | | 0.5668 | 12720 | 0.5712 | - | - | | 0.5672 | 12730 | 0.3758 | - | - | | 0.5677 | 12740 | 0.5869 | - | - | | 0.5681 | 12750 | 0.5138 | - | - | | 0.5686 | 12760 | 0.5118 | - | - | | 0.5690 | 12770 | 0.5657 | - | - | | 0.5695 | 12780 | 0.4573 | - | - | | 0.5699 | 12790 | 0.4634 | - | - | | 0.5703 | 12800 | 0.5607 | - | - | | 0.5708 | 12810 | 0.5165 | - | - | | 0.5712 | 12820 | 0.7618 | - | - | | 0.5717 | 12830 | 0.6403 | - | - | | 0.5721 | 12840 | 0.7764 | - | - | | 0.5726 | 12850 | 0.5983 | - | - | | 0.5730 | 12860 | 0.4542 | - | - | | 0.5735 | 12870 | 0.5369 | - | - | | 0.5739 | 12880 | 0.609 | - | - | | 0.5744 | 12890 | 0.7868 | - | - | | 0.5748 | 12900 | 0.5426 | - | - | | 0.5752 | 12910 | 0.6825 | - | - | | 0.5757 | 12920 | 0.9235 | - | - | | 0.5761 | 12930 | 0.794 | - | - | | 0.5766 | 12940 | 0.6463 | - | - | | 0.5770 | 12950 | 0.5675 | - | - | | 0.5775 | 12960 | 0.5504 | - | - | | 0.5779 | 12970 | 0.5388 | - | - | | 0.5784 | 12980 | 0.5311 | - | - | | 0.5788 | 12990 | 0.4888 | - | - | | 0.5793 | 13000 | 0.5829 | 0.7793 | 0.7755 | | 0.5797 | 13010 | 0.4561 | - | - | | 0.5801 | 13020 | 0.6509 | - | - | | 0.5806 | 13030 | 0.6399 | - | - | | 0.5810 | 13040 | 0.5947 | - | - | | 0.5815 | 13050 | 0.5671 | - | - | | 0.5819 | 13060 | 0.4247 | - | - | | 0.5824 | 13070 | 0.4867 | - | - | | 0.5828 | 13080 | 0.4994 | - | - | | 0.5833 | 13090 | 0.6435 | - | - | | 0.5837 | 13100 | 0.5342 | - | - | | 0.5842 | 13110 | 0.4914 | - | - | | 0.5846 | 13120 | 0.3861 | - | - | | 0.5851 | 13130 | 0.5282 | - | - | | 0.5855 | 13140 | 0.5398 | - | - | | 0.5859 | 13150 | 0.4092 | - | - | | 0.5864 | 13160 | 0.3806 | - | - | | 0.5868 | 13170 | 0.4765 | - | - | | 0.5873 | 13180 | 0.4142 | - | - | | 0.5877 | 13190 | 0.5128 | - | - | | 0.5882 | 13200 | 0.4144 | - | - | | 0.5886 | 13210 | 0.5451 | - | - | | 0.5891 | 13220 | 0.6271 | - | - | | 0.5895 | 13230 | 0.5184 | - | - | | 0.5900 | 13240 | 0.5295 | - | - | | 0.5904 | 13250 | 0.6778 | - | - | | 0.5908 | 13260 | 0.4314 | - | - | | 0.5913 | 13270 | 0.6191 | - | - | | 0.5917 | 13280 | 0.5368 | - | - | | 0.5922 | 13290 | 0.5887 | - | - | | 0.5926 | 13300 | 0.4649 | - | - | | 0.5931 | 13310 | 0.5456 | - | - | | 0.5935 | 13320 | 0.6386 | - | - | | 0.5940 | 13330 | 0.5103 | - | - | | 0.5944 | 13340 | 0.4517 | - | - | | 0.5949 | 13350 | 0.6417 | - | - | | 0.5953 | 13360 | 0.5603 | - | - | | 0.5957 | 13370 | 0.4754 | - | - | | 0.5962 | 13380 | 0.751 | - | - | | 0.5966 | 13390 | 0.6738 | - | - | | 0.5971 | 13400 | 0.5787 | - | - | | 0.5975 | 13410 | 0.6515 | - | - | | 0.5980 | 13420 | 0.5561 | - | - | | 0.5984 | 13430 | 0.4203 | - | - | | 0.5989 | 13440 | 0.5375 | - | - | | 0.5993 | 13450 | 0.665 | - | - | | 0.5998 | 13460 | 0.5822 | - | - | | 0.6002 | 13470 | 0.7468 | - | - | | 0.6006 | 13480 | 0.5974 | - | - | | 0.6011 | 13490 | 0.5607 | - | - | | 0.6015 | 13500 | 0.6841 | - | - | | 0.6020 | 13510 | 0.5027 | - | - | | 0.6024 | 13520 | 0.428 | - | - | | 0.6029 | 13530 | 0.5472 | - | - | | 0.6033 | 13540 | 0.5459 | - | - | | 0.6038 | 13550 | 0.5012 | - | - | | 0.6042 | 13560 | 0.7001 | - | - | | 0.6047 | 13570 | 0.5486 | - | - | | 0.6051 | 13580 | 0.5094 | - | - | | 0.6055 | 13590 | 0.5448 | - | - | | 0.6060 | 13600 | 0.5699 | - | - | | 0.6064 | 13610 | 0.6869 | - | - | | 0.6069 | 13620 | 0.5023 | - | - | | 0.6073 | 13630 | 0.5085 | - | - | | 0.6078 | 13640 | 0.518 | - | - | | 0.6082 | 13650 | 0.6766 | - | - | | 0.6087 | 13660 | 0.5309 | - | - | | 0.6091 | 13670 | 0.6211 | - | - | | 0.6096 | 13680 | 0.3251 | - | - | | 0.6100 | 13690 | 0.5166 | - | - | | 0.6104 | 13700 | 0.6379 | - | - | | 0.6109 | 13710 | 0.6241 | - | - | | 0.6113 | 13720 | 0.7437 | - | - | | 0.6118 | 13730 | 0.812 | - | - | | 0.6122 | 13740 | 0.7919 | - | - | | 0.6127 | 13750 | 0.463 | - | - | | 0.6131 | 13760 | 0.4957 | - | - | | 0.6136 | 13770 | 0.668 | - | - | | 0.6140 | 13780 | 0.6703 | - | - | | 0.6145 | 13790 | 0.5042 | - | - | | 0.6149 | 13800 | 0.6478 | - | - | | 0.6154 | 13810 | 0.6265 | - | - | | 0.6158 | 13820 | 0.676 | - | - | | 0.6162 | 13830 | 0.673 | - | - | | 0.6167 | 13840 | 0.6998 | - | - | | 0.6171 | 13850 | 0.6694 | - | - | | 0.6176 | 13860 | 0.5882 | - | - | | 0.6180 | 13870 | 0.6053 | - | - | | 0.6185 | 13880 | 0.733 | - | - | | 0.6189 | 13890 | 0.5314 | - | - | | 0.6194 | 13900 | 0.5823 | - | - | | 0.6198 | 13910 | 0.6317 | - | - | | 0.6203 | 13920 | 0.4119 | - | - | | 0.6207 | 13930 | 0.5587 | - | - | | 0.6211 | 13940 | 0.6781 | - | - | | 0.6216 | 13950 | 0.6522 | - | - | | 0.6220 | 13960 | 0.5028 | - | - | | 0.6225 | 13970 | 0.5888 | - | - | | 0.6229 | 13980 | 0.5828 | - | - | | 0.6234 | 13990 | 0.7167 | - | - | | 0.6238 | 14000 | 0.5071 | 0.7750 | 0.7701 | | 0.6243 | 14010 | 0.504 | - | - | | 0.6247 | 14020 | 0.5413 | - | - | | 0.6252 | 14030 | 0.3984 | - | - | | 0.6256 | 14040 | 0.5869 | - | - | | 0.6260 | 14050 | 0.7178 | - | - | | 0.6265 | 14060 | 0.5403 | - | - | | 0.6269 | 14070 | 0.5818 | - | - | | 0.6274 | 14080 | 0.56 | - | - | | 0.6278 | 14090 | 0.5358 | - | - | | 0.6283 | 14100 | 0.6581 | - | - | | 0.6287 | 14110 | 0.5759 | - | - | | 0.6292 | 14120 | 0.506 | - | - | | 0.6296 | 14130 | 0.5693 | - | - | | 0.6301 | 14140 | 0.4833 | - | - | | 0.6305 | 14150 | 0.437 | - | - | | 0.6309 | 14160 | 0.5275 | - | - | | 0.6314 | 14170 | 0.4341 | - | - | | 0.6318 | 14180 | 0.519 | - | - | | 0.6323 | 14190 | 0.5814 | - | - | | 0.6327 | 14200 | 0.5048 | - | - | | 0.6332 | 14210 | 0.6698 | - | - | | 0.6336 | 14220 | 0.4615 | - | - | | 0.6341 | 14230 | 0.5296 | - | - | | 0.6345 | 14240 | 0.6698 | - | - | | 0.6350 | 14250 | 0.6957 | - | - | | 0.6354 | 14260 | 0.6262 | - | - | | 0.6358 | 14270 | 0.4748 | - | - | | 0.6363 | 14280 | 0.3844 | - | - | | 0.6367 | 14290 | 0.4154 | - | - | | 0.6372 | 14300 | 0.5885 | - | - | | 0.6376 | 14310 | 0.7601 | - | - | | 0.6381 | 14320 | 0.5124 | - | - | | 0.6385 | 14330 | 0.5676 | - | - | | 0.6390 | 14340 | 0.6851 | - | - | | 0.6394 | 14350 | 0.4901 | - | - | | 0.6399 | 14360 | 0.6241 | - | - | | 0.6403 | 14370 | 0.6507 | - | - | | 0.6407 | 14380 | 0.6205 | - | - | | 0.6412 | 14390 | 0.6978 | - | - | | 0.6416 | 14400 | 0.8198 | - | - | | 0.6421 | 14410 | 0.4881 | - | - | | 0.6425 | 14420 | 0.5284 | - | - | | 0.6430 | 14430 | 0.5135 | - | - | | 0.6434 | 14440 | 0.6959 | - | - | | 0.6439 | 14450 | 0.5884 | - | - | | 0.6443 | 14460 | 0.7503 | - | - | | 0.6448 | 14470 | 0.6128 | - | - | | 0.6452 | 14480 | 0.6051 | - | - | | 0.6456 | 14490 | 0.6184 | - | - | | 0.6461 | 14500 | 0.4909 | - | - | | 0.6465 | 14510 | 0.4208 | - | - | | 0.6470 | 14520 | 0.704 | - | - | | 0.6474 | 14530 | 0.5478 | - | - | | 0.6479 | 14540 | 0.6603 | - | - | | 0.6483 | 14550 | 0.5675 | - | - | | 0.6488 | 14560 | 0.4911 | - | - | | 0.6492 | 14570 | 0.4376 | - | - | | 0.6497 | 14580 | 0.4739 | - | - | | 0.6501 | 14590 | 0.5139 | - | - | | 0.6506 | 14600 | 0.6323 | - | - | | 0.6510 | 14610 | 0.6989 | - | - | | 0.6514 | 14620 | 0.4663 | - | - | | 0.6519 | 14630 | 0.6283 | - | - | | 0.6523 | 14640 | 0.5338 | - | - | | 0.6528 | 14650 | 0.5181 | - | - | | 0.6532 | 14660 | 0.4779 | - | - | | 0.6537 | 14670 | 0.4727 | - | - | | 0.6541 | 14680 | 0.5531 | - | - | | 0.6546 | 14690 | 0.5424 | - | - | | 0.6550 | 14700 | 0.5559 | - | - | | 0.6555 | 14710 | 0.5618 | - | - | | 0.6559 | 14720 | 0.5181 | - | - | | 0.6563 | 14730 | 0.7071 | - | - | | 0.6568 | 14740 | 0.6763 | - | - | | 0.6572 | 14750 | 0.5631 | - | - | | 0.6577 | 14760 | 0.555 | - | - | | 0.6581 | 14770 | 0.4795 | - | - | | 0.6586 | 14780 | 0.6049 | - | - | | 0.6590 | 14790 | 0.7414 | - | - | | 0.6595 | 14800 | 0.4749 | - | - | | 0.6599 | 14810 | 0.5419 | - | - | | 0.6604 | 14820 | 0.5846 | - | - | | 0.6608 | 14830 | 0.5745 | - | - | | 0.6612 | 14840 | 0.539 | - | - | | 0.6617 | 14850 | 0.5156 | - | - | | 0.6621 | 14860 | 0.5475 | - | - | | 0.6626 | 14870 | 0.594 | - | - | | 0.6630 | 14880 | 0.6586 | - | - | | 0.6635 | 14890 | 0.6606 | - | - | | 0.6639 | 14900 | 0.6792 | - | - | | 0.6644 | 14910 | 0.5392 | - | - | | 0.6648 | 14920 | 0.6391 | - | - | | 0.6653 | 14930 | 0.5458 | - | - | | 0.6657 | 14940 | 0.624 | - | - | | 0.6661 | 14950 | 0.5363 | - | - | | 0.6666 | 14960 | 0.6601 | - | - | | 0.6670 | 14970 | 0.5433 | - | - | | 0.6675 | 14980 | 0.6944 | - | - | | 0.6679 | 14990 | 0.6501 | - | - | | 0.6684 | 15000 | 0.5094 | 0.7516 | 0.7474 | | 0.6688 | 15010 | 0.402 | - | - | | 0.6693 | 15020 | 0.5112 | - | - | | 0.6697 | 15030 | 0.5717 | - | - | | 0.6702 | 15040 | 0.5683 | - | - | | 0.6706 | 15050 | 0.5695 | - | - | | 0.6710 | 15060 | 0.5256 | - | - | | 0.6715 | 15070 | 0.3821 | - | - | | 0.6719 | 15080 | 0.5766 | - | - | | 0.6724 | 15090 | 0.6759 | - | - | | 0.6728 | 15100 | 0.527 | - | - | | 0.6733 | 15110 | 0.6104 | - | - | | 0.6737 | 15120 | 0.5227 | - | - | | 0.6742 | 15130 | 0.4991 | - | - | | 0.6746 | 15140 | 0.5098 | - | - | | 0.6751 | 15150 | 0.4574 | - | - | | 0.6755 | 15160 | 0.579 | - | - | | 0.6759 | 15170 | 0.6386 | - | - | | 0.6764 | 15180 | 0.4503 | - | - | | 0.6768 | 15190 | 0.566 | - | - | | 0.6773 | 15200 | 0.7506 | - | - | | 0.6777 | 15210 | 0.7889 | - | - | | 0.6782 | 15220 | 0.7078 | - | - | | 0.6786 | 15230 | 0.5937 | - | - | | 0.6791 | 15240 | 0.7335 | - | - | | 0.6795 | 15250 | 0.4405 | - | - | | 0.6800 | 15260 | 0.5401 | - | - | | 0.6804 | 15270 | 0.571 | - | - | | 0.6809 | 15280 | 0.5536 | - | - | | 0.6813 | 15290 | 0.5679 | - | - | | 0.6817 | 15300 | 0.4975 | - | - | | 0.6822 | 15310 | 0.4321 | - | - | | 0.6826 | 15320 | 0.5781 | - | - | | 0.6831 | 15330 | 0.5391 | - | - | | 0.6835 | 15340 | 0.4769 | - | - | | 0.6840 | 15350 | 0.643 | - | - | | 0.6844 | 15360 | 0.5703 | - | - | | 0.6849 | 15370 | 0.6725 | - | - | | 0.6853 | 15380 | 0.4105 | - | - | | 0.6858 | 15390 | 0.6465 | - | - | | 0.6862 | 15400 | 0.6231 | - | - | | 0.6866 | 15410 | 0.5094 | - | - | | 0.6871 | 15420 | 0.5107 | - | - | | 0.6875 | 15430 | 0.5685 | - | - | | 0.6880 | 15440 | 0.4415 | - | - | | 0.6884 | 15450 | 0.4315 | - | - | | 0.6889 | 15460 | 0.5188 | - | - | | 0.6893 | 15470 | 0.5184 | - | - | | 0.6898 | 15480 | 0.5266 | - | - | | 0.6902 | 15490 | 0.5655 | - | - | | 0.6907 | 15500 | 0.5594 | - | - | | 0.6911 | 15510 | 0.4806 | - | - | | 0.6915 | 15520 | 0.7032 | - | - | | 0.6920 | 15530 | 0.6974 | - | - | | 0.6924 | 15540 | 0.6555 | - | - | | 0.6929 | 15550 | 0.5087 | - | - | | 0.6933 | 15560 | 0.6331 | - | - | | 0.6938 | 15570 | 0.6514 | - | - | | 0.6942 | 15580 | 0.5982 | - | - | | 0.6947 | 15590 | 0.4068 | - | - | | 0.6951 | 15600 | 0.6159 | - | - | | 0.6956 | 15610 | 0.6492 | - | - | | 0.6960 | 15620 | 0.6159 | - | - | | 0.6964 | 15630 | 0.6345 | - | - | | 0.6969 | 15640 | 0.4102 | - | - | | 0.6973 | 15650 | 0.5313 | - | - | | 0.6978 | 15660 | 0.5476 | - | - | | 0.6982 | 15670 | 0.4904 | - | - | | 0.6987 | 15680 | 0.5541 | - | - | | 0.6991 | 15690 | 0.4438 | - | - | | 0.6996 | 15700 | 0.5396 | - | - | | 0.7000 | 15710 | 0.4583 | - | - | | 0.7005 | 15720 | 0.6321 | - | - | | 0.7009 | 15730 | 0.5023 | - | - | | 0.7013 | 15740 | 0.5447 | - | - | | 0.7018 | 15750 | 0.4839 | - | - | | 0.7022 | 15760 | 0.2881 | - | - | | 0.7027 | 15770 | 0.565 | - | - | | 0.7031 | 15780 | 0.6217 | - | - | | 0.7036 | 15790 | 0.8223 | - | - | | 0.7040 | 15800 | 0.49 | - | - | | 0.7045 | 15810 | 0.6942 | - | - | | 0.7049 | 15820 | 0.5618 | - | - | | 0.7054 | 15830 | 0.4518 | - | - | | 0.7058 | 15840 | 0.4746 | - | - | | 0.7062 | 15850 | 0.5028 | - | - | | 0.7067 | 15860 | 0.5187 | - | - | | 0.7071 | 15870 | 0.5187 | - | - | | 0.7076 | 15880 | 0.5386 | - | - | | 0.7080 | 15890 | 0.4833 | - | - | | 0.7085 | 15900 | 0.4029 | - | - | | 0.7089 | 15910 | 0.5607 | - | - | | 0.7094 | 15920 | 0.4192 | - | - | | 0.7098 | 15930 | 0.4641 | - | - | | 0.7103 | 15940 | 0.6046 | - | - | | 0.7107 | 15950 | 0.4561 | - | - | | 0.7112 | 15960 | 0.5743 | - | - | | 0.7116 | 15970 | 0.5099 | - | - | | 0.7120 | 15980 | 0.5778 | - | - | | 0.7125 | 15990 | 0.4376 | - | - | | 0.7129 | 16000 | 0.4932 | 0.7523 | 0.7492 | | 0.7134 | 16010 | 0.7829 | - | - | | 0.7138 | 16020 | 0.6266 | - | - | | 0.7143 | 16030 | 0.5134 | - | - | | 0.7147 | 16040 | 0.5033 | - | - | | 0.7152 | 16050 | 0.5367 | - | - | | 0.7156 | 16060 | 0.4508 | - | - | | 0.7161 | 16070 | 0.7549 | - | - | | 0.7165 | 16080 | 0.7274 | - | - | | 0.7169 | 16090 | 0.5064 | - | - | | 0.7174 | 16100 | 0.5051 | - | - | | 0.7178 | 16110 | 0.3907 | - | - | | 0.7183 | 16120 | 0.5351 | - | - | | 0.7187 | 16130 | 0.5931 | - | - | | 0.7192 | 16140 | 0.5771 | - | - | | 0.7196 | 16150 | 0.53 | - | - | | 0.7201 | 16160 | 0.6805 | - | - | | 0.7205 | 16170 | 0.5097 | - | - | | 0.7210 | 16180 | 0.593 | - | - | | 0.7214 | 16190 | 0.4298 | - | - | | 0.7218 | 16200 | 0.589 | - | - | | 0.7223 | 16210 | 0.7176 | - | - | | 0.7227 | 16220 | 0.5244 | - | - | | 0.7232 | 16230 | 0.4668 | - | - | | 0.7236 | 16240 | 0.5821 | - | - | | 0.7241 | 16250 | 0.6241 | - | - | | 0.7245 | 16260 | 0.4775 | - | - | | 0.7250 | 16270 | 0.5743 | - | - | | 0.7254 | 16280 | 0.3967 | - | - | | 0.7259 | 16290 | 0.4876 | - | - | | 0.7263 | 16300 | 0.4058 | - | - | | 0.7267 | 16310 | 0.4601 | - | - | | 0.7272 | 16320 | 0.5654 | - | - | | 0.7276 | 16330 | 0.6028 | - | - | | 0.7281 | 16340 | 0.6415 | - | - | | 0.7285 | 16350 | 0.3167 | - | - | | 0.7290 | 16360 | 0.5339 | - | - | | 0.7294 | 16370 | 0.7043 | - | - | | 0.7299 | 16380 | 0.7496 | - | - | | 0.7303 | 16390 | 0.4897 | - | - | | 0.7308 | 16400 | 0.518 | - | - | | 0.7312 | 16410 | 0.5364 | - | - | | 0.7316 | 16420 | 0.5121 | - | - | | 0.7321 | 16430 | 0.3781 | - | - | | 0.7325 | 16440 | 0.4174 | - | - | | 0.7330 | 16450 | 0.5763 | - | - | | 0.7334 | 16460 | 0.5051 | - | - | | 0.7339 | 16470 | 0.5612 | - | - | | 0.7343 | 16480 | 0.4781 | - | - | | 0.7348 | 16490 | 0.5336 | - | - | | 0.7352 | 16500 | 0.9319 | - | - | | 0.7357 | 16510 | 0.6356 | - | - | | 0.7361 | 16520 | 0.8033 | - | - | | 0.7365 | 16530 | 0.7314 | - | - | | 0.7370 | 16540 | 0.732 | - | - | | 0.7374 | 16550 | 0.5793 | - | - | | 0.7379 | 16560 | 0.601 | - | - | | 0.7383 | 16570 | 0.5375 | - | - | | 0.7388 | 16580 | 0.6522 | - | - | | 0.7392 | 16590 | 0.3866 | - | - | | 0.7397 | 16600 | 0.7183 | - | - | | 0.7401 | 16610 | 0.5708 | - | - | | 0.7406 | 16620 | 0.6024 | - | - | | 0.7410 | 16630 | 0.4987 | - | - | | 0.7415 | 16640 | 0.5332 | - | - | | 0.7419 | 16650 | 0.5072 | - | - | | 0.7423 | 16660 | 0.4379 | - | - | | 0.7428 | 16670 | 0.6513 | - | - | | 0.7432 | 16680 | 0.499 | - | - | | 0.7437 | 16690 | 0.4742 | - | - | | 0.7441 | 16700 | 0.6756 | - | - | | 0.7446 | 16710 | 0.3494 | - | - | | 0.7450 | 16720 | 0.4907 | - | - | | 0.7455 | 16730 | 0.5969 | - | - | | 0.7459 | 16740 | 0.6896 | - | - | | 0.7464 | 16750 | 0.5148 | - | - | | 0.7468 | 16760 | 0.6306 | - | - | | 0.7472 | 16770 | 0.5164 | - | - | | 0.7477 | 16780 | 0.3607 | - | - | | 0.7481 | 16790 | 0.4972 | - | - | | 0.7486 | 16800 | 0.5279 | - | - | | 0.7490 | 16810 | 0.5625 | - | - | | 0.7495 | 16820 | 0.4866 | - | - | | 0.7499 | 16830 | 0.3799 | - | - | | 0.7504 | 16840 | 0.5623 | - | - | | 0.7508 | 16850 | 0.586 | - | - | | 0.7513 | 16860 | 0.59 | - | - | | 0.7517 | 16870 | 0.433 | - | - | | 0.7521 | 16880 | 0.7061 | - | - | | 0.7526 | 16890 | 0.4659 | - | - | | 0.7530 | 16900 | 0.4547 | - | - | | 0.7535 | 16910 | 0.5156 | - | - | | 0.7539 | 16920 | 0.4009 | - | - | | 0.7544 | 16930 | 0.7071 | - | - | | 0.7548 | 16940 | 0.4805 | - | - | | 0.7553 | 16950 | 0.5267 | - | - | | 0.7557 | 16960 | 0.4446 | - | - | | 0.7562 | 16970 | 0.5919 | - | - | | 0.7566 | 16980 | 0.5042 | - | - | | 0.7570 | 16990 | 0.5339 | - | - | | 0.7575 | 17000 | 0.5699 | 0.7496 | 0.7462 | | 0.7579 | 17010 | 0.4346 | - | - | | 0.7584 | 17020 | 0.4169 | - | - | | 0.7588 | 17030 | 0.5988 | - | - | | 0.7593 | 17040 | 0.4998 | - | - | | 0.7597 | 17050 | 0.3809 | - | - | | 0.7602 | 17060 | 0.4926 | - | - | | 0.7606 | 17070 | 0.5523 | - | - | | 0.7611 | 17080 | 0.515 | - | - | | 0.7615 | 17090 | 0.5585 | - | - | | 0.7619 | 17100 | 0.5219 | - | - | | 0.7624 | 17110 | 0.5232 | - | - | | 0.7628 | 17120 | 0.5359 | - | - | | 0.7633 | 17130 | 0.8287 | - | - | | 0.7637 | 17140 | 0.5073 | - | - | | 0.7642 | 17150 | 0.4863 | - | - | | 0.7646 | 17160 | 0.488 | - | - | | 0.7651 | 17170 | 0.6904 | - | - | | 0.7655 | 17180 | 0.6651 | - | - | | 0.7660 | 17190 | 0.4431 | - | - | | 0.7664 | 17200 | 0.4804 | - | - | | 0.7668 | 17210 | 0.4422 | - | - | | 0.7673 | 17220 | 0.3749 | - | - | | 0.7677 | 17230 | 0.5685 | - | - | | 0.7682 | 17240 | 0.5251 | - | - | | 0.7686 | 17250 | 0.5245 | - | - | | 0.7691 | 17260 | 0.6165 | - | - | | 0.7695 | 17270 | 0.4759 | - | - | | 0.7700 | 17280 | 0.5169 | - | - | | 0.7704 | 17290 | 0.5229 | - | - | | 0.7709 | 17300 | 0.553 | - | - | | 0.7713 | 17310 | 0.583 | - | - | | 0.7718 | 17320 | 0.5306 | - | - | | 0.7722 | 17330 | 0.501 | - | - | | 0.7726 | 17340 | 0.53 | - | - | | 0.7731 | 17350 | 0.5134 | - | - | | 0.7735 | 17360 | 0.4512 | - | - | | 0.7740 | 17370 | 0.5617 | - | - | | 0.7744 | 17380 | 0.6177 | - | - | | 0.7749 | 17390 | 0.5851 | - | - | | 0.7753 | 17400 | 0.4745 | - | - | | 0.7758 | 17410 | 0.6976 | - | - | | 0.7762 | 17420 | 0.6045 | - | - | | 0.7767 | 17430 | 0.6545 | - | - | | 0.7771 | 17440 | 0.6041 | - | - | | 0.7775 | 17450 | 0.7006 | - | - | | 0.7780 | 17460 | 0.5423 | - | - | | 0.7784 | 17470 | 0.4721 | - | - | | 0.7789 | 17480 | 0.5539 | - | - | | 0.7793 | 17490 | 0.5625 | - | - | | 0.7798 | 17500 | 0.5236 | - | - | | 0.7802 | 17510 | 0.4468 | - | - | | 0.7807 | 17520 | 0.5765 | - | - | | 0.7811 | 17530 | 0.4628 | - | - | | 0.7816 | 17540 | 0.52 | - | - | | 0.7820 | 17550 | 0.5467 | - | - | | 0.7824 | 17560 | 0.7181 | - | - | | 0.7829 | 17570 | 0.7567 | - | - | | 0.7833 | 17580 | 0.5075 | - | - | | 0.7838 | 17590 | 0.6817 | - | - | | 0.7842 | 17600 | 0.5921 | - | - | | 0.7847 | 17610 | 0.4489 | - | - | | 0.7851 | 17620 | 0.5586 | - | - | | 0.7856 | 17630 | 0.5798 | - | - | | 0.7860 | 17640 | 0.4728 | - | - | | 0.7865 | 17650 | 0.6941 | - | - | | 0.7869 | 17660 | 0.4723 | - | - | | 0.7873 | 17670 | 0.7198 | - | - | | 0.7878 | 17680 | 0.5867 | - | - | | 0.7882 | 17690 | 0.6237 | - | - | | 0.7887 | 17700 | 0.4013 | - | - | | 0.7891 | 17710 | 0.5604 | - | - | | 0.7896 | 17720 | 0.5035 | - | - | | 0.7900 | 17730 | 0.4583 | - | - | | 0.7905 | 17740 | 0.5218 | - | - | | 0.7909 | 17750 | 0.5071 | - | - | | 0.7914 | 17760 | 0.5294 | - | - | | 0.7918 | 17770 | 0.5037 | - | - | | 0.7922 | 17780 | 0.5653 | - | - | | 0.7927 | 17790 | 0.4899 | - | - | | 0.7931 | 17800 | 0.4789 | - | - | | 0.7936 | 17810 | 0.6239 | - | - | | 0.7940 | 17820 | 0.5465 | - | - | | 0.7945 | 17830 | 0.6826 | - | - | | 0.7949 | 17840 | 0.4555 | - | - | | 0.7954 | 17850 | 0.6875 | - | - | | 0.7958 | 17860 | 0.5573 | - | - | | 0.7963 | 17870 | 0.5318 | - | - | | 0.7967 | 17880 | 0.6274 | - | - | | 0.7971 | 17890 | 0.4676 | - | - | | 0.7976 | 17900 | 0.6048 | - | - | | 0.7980 | 17910 | 0.6715 | - | - | | 0.7985 | 17920 | 0.4734 | - | - | | 0.7989 | 17930 | 0.5396 | - | - | | 0.7994 | 17940 | 0.6173 | - | - | | 0.7998 | 17950 | 0.532 | - | - | | 0.8003 | 17960 | 0.4464 | - | - | | 0.8007 | 17970 | 0.5829 | - | - | | 0.8012 | 17980 | 0.5667 | - | - | | 0.8016 | 17990 | 0.5483 | - | - | | 0.8020 | 18000 | 0.5596 | 0.7445 | 0.7428 | | 0.8025 | 18010 | 0.6118 | - | - | | 0.8029 | 18020 | 0.7647 | - | - | | 0.8034 | 18030 | 0.6971 | - | - | | 0.8038 | 18040 | 0.4666 | - | - | | 0.8043 | 18050 | 0.6014 | - | - | | 0.8047 | 18060 | 0.3495 | - | - | | 0.8052 | 18070 | 0.4019 | - | - | | 0.8056 | 18080 | 0.5342 | - | - | | 0.8061 | 18090 | 0.6704 | - | - | | 0.8065 | 18100 | 0.5106 | - | - | | 0.8070 | 18110 | 0.5711 | - | - | | 0.8074 | 18120 | 0.8785 | - | - | | 0.8078 | 18130 | 0.4627 | - | - | | 0.8083 | 18140 | 0.4494 | - | - | | 0.8087 | 18150 | 0.5384 | - | - | | 0.8092 | 18160 | 0.4981 | - | - | | 0.8096 | 18170 | 0.6548 | - | - | | 0.8101 | 18180 | 0.655 | - | - | | 0.8105 | 18190 | 0.6912 | - | - | | 0.8110 | 18200 | 0.6283 | - | - | | 0.8114 | 18210 | 0.5114 | - | - | | 0.8119 | 18220 | 0.5676 | - | - | | 0.8123 | 18230 | 0.6201 | - | - | | 0.8127 | 18240 | 0.6172 | - | - | | 0.8132 | 18250 | 0.5437 | - | - | | 0.8136 | 18260 | 0.6001 | - | - | | 0.8141 | 18270 | 0.4326 | - | - | | 0.8145 | 18280 | 0.426 | - | - | | 0.8150 | 18290 | 0.6058 | - | - | | 0.8154 | 18300 | 0.653 | - | - | | 0.8159 | 18310 | 0.6067 | - | - | | 0.8163 | 18320 | 0.7044 | - | - | | 0.8168 | 18330 | 0.7033 | - | - | | 0.8172 | 18340 | 0.5087 | - | - | | 0.8176 | 18350 | 0.489 | - | - | | 0.8181 | 18360 | 0.4738 | - | - | | 0.8185 | 18370 | 0.4565 | - | - | | 0.8190 | 18380 | 0.5663 | - | - | | 0.8194 | 18390 | 0.6001 | - | - | | 0.8199 | 18400 | 0.5305 | - | - | | 0.8203 | 18410 | 0.4548 | - | - | | 0.8208 | 18420 | 0.5785 | - | - | | 0.8212 | 18430 | 0.552 | - | - | | 0.8217 | 18440 | 0.5188 | - | - | | 0.8221 | 18450 | 0.495 | - | - | | 0.8225 | 18460 | 0.6741 | - | - | | 0.8230 | 18470 | 0.5517 | - | - | | 0.8234 | 18480 | 0.6478 | - | - | | 0.8239 | 18490 | 0.4201 | - | - | | 0.8243 | 18500 | 0.4919 | - | - | | 0.8248 | 18510 | 0.5587 | - | - | | 0.8252 | 18520 | 0.5623 | - | - | | 0.8257 | 18530 | 0.4667 | - | - | | 0.8261 | 18540 | 0.4398 | - | - | | 0.8266 | 18550 | 0.5895 | - | - | | 0.8270 | 18560 | 0.6194 | - | - | | 0.8274 | 18570 | 0.6028 | - | - | | 0.8279 | 18580 | 0.4752 | - | - | | 0.8283 | 18590 | 0.7169 | - | - | | 0.8288 | 18600 | 0.5635 | - | - | | 0.8292 | 18610 | 0.7321 | - | - | | 0.8297 | 18620 | 0.5296 | - | - | | 0.8301 | 18630 | 0.5936 | - | - | | 0.8306 | 18640 | 0.7302 | - | - | | 0.8310 | 18650 | 0.6347 | - | - | | 0.8315 | 18660 | 0.6821 | - | - | | 0.8319 | 18670 | 0.855 | - | - | | 0.8323 | 18680 | 0.7063 | - | - | | 0.8328 | 18690 | 0.5078 | - | - | | 0.8332 | 18700 | 0.5074 | - | - | | 0.8337 | 18710 | 0.5544 | - | - | | 0.8341 | 18720 | 0.5404 | - | - | | 0.8346 | 18730 | 0.5274 | - | - | | 0.8350 | 18740 | 0.4489 | - | - | | 0.8355 | 18750 | 0.7473 | - | - | | 0.8359 | 18760 | 0.4095 | - | - | | 0.8364 | 18770 | 0.569 | - | - | | 0.8368 | 18780 | 0.5134 | - | - | | 0.8373 | 18790 | 0.5759 | - | - | | 0.8377 | 18800 | 0.4629 | - | - | | 0.8381 | 18810 | 0.4681 | - | - | | 0.8386 | 18820 | 0.539 | - | - | | 0.8390 | 18830 | 0.5683 | - | - | | 0.8395 | 18840 | 0.591 | - | - | | 0.8399 | 18850 | 0.6679 | - | - | | 0.8404 | 18860 | 0.5621 | - | - | | 0.8408 | 18870 | 0.5241 | - | - | | 0.8413 | 18880 | 0.6713 | - | - | | 0.8417 | 18890 | 0.7419 | - | - | | 0.8422 | 18900 | 0.6318 | - | - | | 0.8426 | 18910 | 0.576 | - | - | | 0.8430 | 18920 | 0.5084 | - | - | | 0.8435 | 18930 | 0.6649 | - | - | | 0.8439 | 18940 | 0.5693 | - | - | | 0.8444 | 18950 | 0.5025 | - | - | | 0.8448 | 18960 | 0.5022 | - | - | | 0.8453 | 18970 | 0.6031 | - | - | | 0.8457 | 18980 | 0.5538 | - | - | | 0.8462 | 18990 | 0.777 | - | - | | 0.8466 | 19000 | 0.5484 | 0.7518 | 0.7485 | | 0.8471 | 19010 | 0.5938 | - | - | | 0.8475 | 19020 | 0.5246 | - | - | | 0.8479 | 19030 | 0.5065 | - | - | | 0.8484 | 19040 | 0.5503 | - | - | | 0.8488 | 19050 | 0.6705 | - | - | | 0.8493 | 19060 | 0.4448 | - | - | | 0.8497 | 19070 | 0.4159 | - | - | | 0.8502 | 19080 | 0.6601 | - | - | | 0.8506 | 19090 | 0.4371 | - | - | | 0.8511 | 19100 | 0.667 | - | - | | 0.8515 | 19110 | 0.5533 | - | - | | 0.8520 | 19120 | 0.3911 | - | - | | 0.8524 | 19130 | 0.5115 | - | - | | 0.8528 | 19140 | 0.6162 | - | - | | 0.8533 | 19150 | 0.4761 | - | - | | 0.8537 | 19160 | 0.4617 | - | - | | 0.8542 | 19170 | 0.5319 | - | - | | 0.8546 | 19180 | 0.468 | - | - | | 0.8551 | 19190 | 0.3852 | - | - | | 0.8555 | 19200 | 0.5298 | - | - | | 0.8560 | 19210 | 0.489 | - | - | | 0.8564 | 19220 | 0.4981 | - | - | | 0.8569 | 19230 | 0.6547 | - | - | | 0.8573 | 19240 | 0.6794 | - | - | | 0.8577 | 19250 | 0.5864 | - | - | | 0.8582 | 19260 | 0.5155 | - | - | | 0.8586 | 19270 | 0.5094 | - | - | | 0.8591 | 19280 | 0.4728 | - | - | | 0.8595 | 19290 | 0.7412 | - | - | | 0.8600 | 19300 | 0.6433 | - | - | | 0.8604 | 19310 | 0.4285 | - | - | | 0.8609 | 19320 | 0.5404 | - | - | | 0.8613 | 19330 | 0.5417 | - | - | | 0.8618 | 19340 | 0.5231 | - | - | | 0.8622 | 19350 | 0.5355 | - | - | | 0.8626 | 19360 | 0.4745 | - | - | | 0.8631 | 19370 | 0.4801 | - | - | | 0.8635 | 19380 | 0.6499 | - | - | | 0.8640 | 19390 | 0.541 | - | - | | 0.8644 | 19400 | 0.4924 | - | - | | 0.8649 | 19410 | 0.5882 | - | - | | 0.8653 | 19420 | 0.5054 | - | - | | 0.8658 | 19430 | 0.6824 | - | - | | 0.8662 | 19440 | 0.6458 | - | - | | 0.8667 | 19450 | 0.3951 | - | - | | 0.8671 | 19460 | 0.5895 | - | - | | 0.8676 | 19470 | 0.4867 | - | - | | 0.8680 | 19480 | 0.648 | - | - | | 0.8684 | 19490 | 0.6147 | - | - | | 0.8689 | 19500 | 0.4959 | - | - | | 0.8693 | 19510 | 0.6316 | - | - | | 0.8698 | 19520 | 0.5663 | - | - | | 0.8702 | 19530 | 0.4536 | - | - | | 0.8707 | 19540 | 0.4991 | - | - | | 0.8711 | 19550 | 0.4639 | - | - | | 0.8716 | 19560 | 0.4277 | - | - | | 0.8720 | 19570 | 0.491 | - | - | | 0.8725 | 19580 | 0.6409 | - | - | | 0.8729 | 19590 | 0.3835 | - | - | | 0.8733 | 19600 | 0.4344 | - | - | | 0.8738 | 19610 | 0.4784 | - | - | | 0.8742 | 19620 | 0.3592 | - | - | | 0.8747 | 19630 | 0.3788 | - | - | | 0.8751 | 19640 | 0.4745 | - | - | | 0.8756 | 19650 | 0.4118 | - | - | | 0.8760 | 19660 | 0.4095 | - | - | | 0.8765 | 19670 | 0.3367 | - | - | | 0.8769 | 19680 | 0.3117 | - | - | | 0.8774 | 19690 | 0.4516 | - | - | | 0.8778 | 19700 | 0.382 | - | - | | 0.8782 | 19710 | 0.3867 | - | - | | 0.8787 | 19720 | 0.3931 | - | - | | 0.8791 | 19730 | 0.3943 | - | - | | 0.8796 | 19740 | 0.3793 | - | - | | 0.8800 | 19750 | 0.3344 | - | - | | 0.8805 | 19760 | 0.3461 | - | - | | 0.8809 | 19770 | 0.4091 | - | - | | 0.8814 | 19780 | 0.3563 | - | - | | 0.8818 | 19790 | 0.3902 | - | - | | 0.8823 | 19800 | 0.3799 | - | - | | 0.8827 | 19810 | 0.3874 | - | - | | 0.8831 | 19820 | 0.4043 | - | - | | 0.8836 | 19830 | 0.3724 | - | - | | 0.8840 | 19840 | 0.5467 | - | - | | 0.8845 | 19850 | 0.3153 | - | - | | 0.8849 | 19860 | 0.3634 | - | - | | 0.8854 | 19870 | 0.362 | - | - | | 0.8858 | 19880 | 0.3181 | - | - | | 0.8863 | 19890 | 0.3277 | - | - | | 0.8867 | 19900 | 0.316 | - | - | | 0.8872 | 19910 | 0.3937 | - | - | | 0.8876 | 19920 | 0.3783 | - | - | | 0.8880 | 19930 | 0.3764 | - | - | | 0.8885 | 19940 | 0.3251 | - | - | | 0.8889 | 19950 | 0.3665 | - | - | | 0.8894 | 19960 | 0.3575 | - | - | | 0.8898 | 19970 | 0.3747 | - | - | | 0.8903 | 19980 | 0.4101 | - | - | | 0.8907 | 19990 | 0.3056 | - | - | | 0.8912 | 20000 | 0.3189 | 0.8074 | 0.8051 | | 0.8916 | 20010 | 0.364 | - | - | | 0.8921 | 20020 | 0.3204 | - | - | | 0.8925 | 20030 | 0.3389 | - | - | | 0.8929 | 20040 | 0.3796 | - | - | | 0.8934 | 20050 | 0.3081 | - | - | | 0.8938 | 20060 | 0.3249 | - | - | | 0.8943 | 20070 | 0.2533 | - | - | | 0.8947 | 20080 | 0.3436 | - | - | | 0.8952 | 20090 | 0.3153 | - | - | | 0.8956 | 20100 | 0.2625 | - | - | | 0.8961 | 20110 | 0.289 | - | - | | 0.8965 | 20120 | 0.3002 | - | - | | 0.8970 | 20130 | 0.3939 | - | - | | 0.8974 | 20140 | 0.3463 | - | - | | 0.8979 | 20150 | 0.3398 | - | - | | 0.8983 | 20160 | 0.2984 | - | - | | 0.8987 | 20170 | 0.35 | - | - | | 0.8992 | 20180 | 0.3268 | - | - | | 0.8996 | 20190 | 0.3519 | - | - | | 0.9001 | 20200 | 0.2915 | - | - | | 0.9005 | 20210 | 0.329 | - | - | | 0.9010 | 20220 | 0.325 | - | - | | 0.9014 | 20230 | 0.2781 | - | - | | 0.9019 | 20240 | 0.3261 | - | - | | 0.9023 | 20250 | 0.3581 | - | - | | 0.9028 | 20260 | 0.2855 | - | - | | 0.9032 | 20270 | 0.3022 | - | - | | 0.9036 | 20280 | 0.3605 | - | - | | 0.9041 | 20290 | 0.2707 | - | - | | 0.9045 | 20300 | 0.2977 | - | - | | 0.9050 | 20310 | 0.2953 | - | - | | 0.9054 | 20320 | 0.3196 | - | - | | 0.9059 | 20330 | 0.3133 | - | - | | 0.9063 | 20340 | 0.3345 | - | - | | 0.9068 | 20350 | 0.2985 | - | - | | 0.9072 | 20360 | 0.2996 | - | - | | 0.9077 | 20370 | 0.3231 | - | - | | 0.9081 | 20380 | 0.394 | - | - | | 0.9085 | 20390 | 0.3197 | - | - | | 0.9090 | 20400 | 0.3176 | - | - | | 0.9094 | 20410 | 0.3721 | - | - | | 0.9099 | 20420 | 0.2788 | - | - | | 0.9103 | 20430 | 0.3071 | - | - | | 0.9108 | 20440 | 0.3371 | - | - | | 0.9112 | 20450 | 0.3831 | - | - | | 0.9117 | 20460 | 0.2793 | - | - | | 0.9121 | 20470 | 0.3557 | - | - | | 0.9126 | 20480 | 0.3969 | - | - | | 0.9130 | 20490 | 0.3622 | - | - | | 0.9134 | 20500 | 0.3075 | - | - | | 0.9139 | 20510 | 0.3004 | - | - | | 0.9143 | 20520 | 0.3867 | - | - | | 0.9148 | 20530 | 0.2777 | - | - | | 0.9152 | 20540 | 0.2898 | - | - | | 0.9157 | 20550 | 0.2957 | - | - | | 0.9161 | 20560 | 0.3882 | - | - | | 0.9166 | 20570 | 0.3674 | - | - | | 0.9170 | 20580 | 0.2711 | - | - | | 0.9175 | 20590 | 0.3202 | - | - | | 0.9179 | 20600 | 0.3264 | - | - | | 0.9183 | 20610 | 0.3157 | - | - | | 0.9188 | 20620 | 0.3867 | - | - | | 0.9192 | 20630 | 0.336 | - | - | | 0.9197 | 20640 | 0.3165 | - | - | | 0.9201 | 20650 | 0.3072 | - | - | | 0.9206 | 20660 | 0.2649 | - | - | | 0.9210 | 20670 | 0.2596 | - | - | | 0.9215 | 20680 | 0.3054 | - | - | | 0.9219 | 20690 | 0.273 | - | - | | 0.9224 | 20700 | 0.3068 | - | - | | 0.9228 | 20710 | 0.3107 | - | - | | 0.9232 | 20720 | 0.3528 | - | - | | 0.9237 | 20730 | 0.2831 | - | - | | 0.9241 | 20740 | 0.3256 | - | - | | 0.9246 | 20750 | 0.3066 | - | - | | 0.9250 | 20760 | 0.3476 | - | - | | 0.9255 | 20770 | 0.2802 | - | - | | 0.9259 | 20780 | 0.2738 | - | - | | 0.9264 | 20790 | 0.2889 | - | - | | 0.9268 | 20800 | 0.2947 | - | - | | 0.9273 | 20810 | 0.2799 | - | - | | 0.9277 | 20820 | 0.2901 | - | - | | 0.9281 | 20830 | 0.2503 | - | - | | 0.9286 | 20840 | 0.2754 | - | - | | 0.9290 | 20850 | 0.3161 | - | - | | 0.9295 | 20860 | 0.3315 | - | - | | 0.9299 | 20870 | 0.2616 | - | - | | 0.9304 | 20880 | 0.2516 | - | - | | 0.9308 | 20890 | 0.2927 | - | - | | 0.9313 | 20900 | 0.2911 | - | - | | 0.9317 | 20910 | 0.3289 | - | - | | 0.9322 | 20920 | 0.3017 | - | - | | 0.9326 | 20930 | 0.3045 | - | - | | 0.9331 | 20940 | 0.3157 | - | - | | 0.9335 | 20950 | 0.3229 | - | - | | 0.9339 | 20960 | 0.3409 | - | - | | 0.9344 | 20970 | 0.3041 | - | - | | 0.9348 | 20980 | 0.3426 | - | - | | 0.9353 | 20990 | 0.3164 | - | - | | 0.9357 | 21000 | 0.2992 | 0.8168 | 0.8147 | | 0.9362 | 21010 | 0.2777 | - | - | | 0.9366 | 21020 | 0.2699 | - | - | | 0.9371 | 21030 | 0.2562 | - | - | | 0.9375 | 21040 | 0.2585 | - | - | | 0.9380 | 21050 | 0.2547 | - | - | | 0.9384 | 21060 | 0.3015 | - | - | | 0.9388 | 21070 | 0.3082 | - | - | | 0.9393 | 21080 | 0.2681 | - | - | | 0.9397 | 21090 | 0.2932 | - | - | | 0.9402 | 21100 | 0.2606 | - | - | | 0.9406 | 21110 | 0.2678 | - | - | | 0.9411 | 21120 | 0.3117 | - | - | | 0.9415 | 21130 | 0.2427 | - | - | | 0.9420 | 21140 | 0.248 | - | - | | 0.9424 | 21150 | 0.3272 | - | - | | 0.9429 | 21160 | 0.2141 | - | - | | 0.9433 | 21170 | 0.2738 | - | - | | 0.9437 | 21180 | 0.3067 | - | - | | 0.9442 | 21190 | 0.2853 | - | - | | 0.9446 | 21200 | 0.3489 | - | - | | 0.9451 | 21210 | 0.2531 | - | - | | 0.9455 | 21220 | 0.2938 | - | - | | 0.9460 | 21230 | 0.3071 | - | - | | 0.9464 | 21240 | 0.2389 | - | - | | 0.9469 | 21250 | 0.2933 | - | - | | 0.9473 | 21260 | 0.3284 | - | - | | 0.9478 | 21270 | 0.3114 | - | - | | 0.9482 | 21280 | 0.345 | - | - | | 0.9486 | 21290 | 0.2978 | - | - | | 0.9491 | 21300 | 0.3659 | - | - | | 0.9495 | 21310 | 0.2757 | - | - | | 0.9500 | 21320 | 0.3196 | - | - | | 0.9504 | 21330 | 0.3127 | - | - | | 0.9509 | 21340 | 0.2685 | - | - | | 0.9513 | 21350 | 0.28 | - | - | | 0.9518 | 21360 | 0.2694 | - | - | | 0.9522 | 21370 | 0.3018 | - | - | | 0.9527 | 21380 | 0.2653 | - | - | | 0.9531 | 21390 | 0.3224 | - | - | | 0.9535 | 21400 | 0.3489 | - | - | | 0.9540 | 21410 | 0.2543 | - | - | | 0.9544 | 21420 | 0.3101 | - | - | | 0.9549 | 21430 | 0.2739 | - | - | | 0.9553 | 21440 | 0.2351 | - | - | | 0.9558 | 21450 | 0.2731 | - | - | | 0.9562 | 21460 | 0.3387 | - | - | | 0.9567 | 21470 | 0.2755 | - | - | | 0.9571 | 21480 | 0.289 | - | - | | 0.9576 | 21490 | 0.2801 | - | - | | 0.9580 | 21500 | 0.287 | - | - | | 0.9584 | 21510 | 0.2881 | - | - | | 0.9589 | 21520 | 0.2727 | - | - | | 0.9593 | 21530 | 0.381 | - | - | | 0.9598 | 21540 | 0.2914 | - | - | | 0.9602 | 21550 | 0.3179 | - | - | | 0.9607 | 21560 | 0.224 | - | - | | 0.9611 | 21570 | 0.298 | - | - | | 0.9616 | 21580 | 0.2746 | - | - | | 0.9620 | 21590 | 0.2861 | - | - | | 0.9625 | 21600 | 0.2784 | - | - | | 0.9629 | 21610 | 0.231 | - | - | | 0.9634 | 21620 | 0.2673 | - | - | | 0.9638 | 21630 | 0.2942 | - | - | | 0.9642 | 21640 | 0.2642 | - | - | | 0.9647 | 21650 | 0.2466 | - | - | | 0.9651 | 21660 | 0.3625 | - | - | | 0.9656 | 21670 | 0.2826 | - | - | | 0.9660 | 21680 | 0.2819 | - | - | | 0.9665 | 21690 | 0.2565 | - | - | | 0.9669 | 21700 | 0.2956 | - | - | | 0.9674 | 21710 | 0.282 | - | - | | 0.9678 | 21720 | 0.3186 | - | - | | 0.9683 | 21730 | 0.3551 | - | - | | 0.9687 | 21740 | 0.2796 | - | - | | 0.9691 | 21750 | 0.2495 | - | - | | 0.9696 | 21760 | 0.2702 | - | - | | 0.9700 | 21770 | 0.3083 | - | - | | 0.9705 | 21780 | 0.3068 | - | - | | 0.9709 | 21790 | 0.2897 | - | - | | 0.9714 | 21800 | 0.3076 | - | - | | 0.9718 | 21810 | 0.2272 | - | - | | 0.9723 | 21820 | 0.2595 | - | - | | 0.9727 | 21830 | 0.3038 | - | - | | 0.9732 | 21840 | 0.3221 | - | - | | 0.9736 | 21850 | 0.2846 | - | - | | 0.9740 | 21860 | 0.2758 | - | - | | 0.9745 | 21870 | 0.2809 | - | - | | 0.9749 | 21880 | 0.2708 | - | - | | 0.9754 | 21890 | 0.2734 | - | - | | 0.9758 | 21900 | 0.2679 | - | - | | 0.9763 | 21910 | 0.3258 | - | - | | 0.9767 | 21920 | 0.3076 | - | - | | 0.9772 | 21930 | 0.271 | - | - | | 0.9776 | 21940 | 0.2906 | - | - | | 0.9781 | 21950 | 0.2569 | - | - | | 0.9785 | 21960 | 0.2401 | - | - | | 0.9789 | 21970 | 0.2718 | - | - | | 0.9794 | 21980 | 0.2482 | - | - | | 0.9798 | 21990 | 0.3262 | - | - | | 0.9803 | 22000 | 0.2691 | 0.8176 | 0.8155 | | 0.9807 | 22010 | 0.246 | - | - | | 0.9812 | 22020 | 0.3238 | - | - | | 0.9816 | 22030 | 0.3136 | - | - | | 0.9821 | 22040 | 0.237 | - | - | | 0.9825 | 22050 | 0.3185 | - | - | | 0.9830 | 22060 | 0.298 | - | - | | 0.9834 | 22070 | 0.2432 | - | - | | 0.9838 | 22080 | 0.2955 | - | - | | 0.9843 | 22090 | 0.2638 | - | - | | 0.9847 | 22100 | 0.2561 | - | - | | 0.9852 | 22110 | 0.3268 | - | - | | 0.9856 | 22120 | 0.3175 | - | - | | 0.9861 | 22130 | 0.2487 | - | - | | 0.9865 | 22140 | 0.2955 | - | - | | 0.9870 | 22150 | 0.3133 | - | - | | 0.9874 | 22160 | 0.3185 | - | - | | 0.9879 | 22170 | 0.2549 | - | - | | 0.9883 | 22180 | 0.3217 | - | - | | 0.9887 | 22190 | 0.3037 | - | - | | 0.9892 | 22200 | 0.2898 | - | - | | 0.9896 | 22210 | 0.2528 | - | - | | 0.9901 | 22220 | 0.2939 | - | - | | 0.9905 | 22230 | 0.2631 | - | - | | 0.9910 | 22240 | 0.2296 | - | - | | 0.9914 | 22250 | 0.2443 | - | - | | 0.9919 | 22260 | 0.3203 | - | - | | 0.9923 | 22270 | 0.2499 | - | - | | 0.9928 | 22280 | 0.3121 | - | - | | 0.9932 | 22290 | 0.276 | - | - | | 0.9937 | 22300 | 0.2773 | - | - | | 0.9941 | 22310 | 0.244 | - | - | | 0.9945 | 22320 | 0.2765 | - | - | | 0.9950 | 22330 | 0.2612 | - | - | | 0.9954 | 22340 | 0.3068 | - | - | | 0.9959 | 22350 | 0.2527 | - | - | | 0.9963 | 22360 | 0.2944 | - | - | | 0.9968 | 22370 | 0.2735 | - | - | | 0.9972 | 22380 | 0.2313 | - | - | | 0.9977 | 22390 | 0.2838 | - | - | | 0.9981 | 22400 | 0.3334 | - | - | | 0.9986 | 22410 | 0.2485 | - | - | | 0.9990 | 22420 | 0.2715 | - | - | | 0.9994 | 22430 | 0.2588 | - | - | | 0.9999 | 22440 | 0.2375 | - | - | </details> ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.3.0 - Transformers: 4.46.2 - PyTorch: 2.1.0+cu118 - Accelerate: 1.1.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
raulgdp/bert-base-cased-finetuned-ner
raulgdp
2024-11-15T21:50:54Z
108
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "token-classification", "generated_from_trainer", "dataset:biobert_json", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-11-15T21:38:39Z
--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-cased tags: - generated_from_trainer datasets: - biobert_json metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-cased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: biobert_json type: biobert_json config: Biobert_json split: validation args: Biobert_json metrics: - name: Precision type: precision value: 0.941812865497076 - name: Recall type: recall value: 0.966852487135506 - name: F1 type: f1 value: 0.9541684299619129 - name: Accuracy type: accuracy value: 0.9754933560689555 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-ner This model is a fine-tuned version of [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) on the biobert_json dataset. It achieves the following results on the evaluation set: - Loss: 0.1119 - Precision: 0.9418 - Recall: 0.9669 - F1: 0.9542 - Accuracy: 0.9755 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1824 | 1.0 | 1224 | 0.1170 | 0.9227 | 0.9563 | 0.9392 | 0.9686 | | 0.1162 | 2.0 | 2448 | 0.1138 | 0.9277 | 0.9654 | 0.9462 | 0.9717 | | 0.0756 | 3.0 | 3672 | 0.1025 | 0.9398 | 0.9685 | 0.9540 | 0.9751 | | 0.051 | 4.0 | 4896 | 0.1076 | 0.9425 | 0.9691 | 0.9556 | 0.9759 | | 0.0423 | 5.0 | 6120 | 0.1119 | 0.9418 | 0.9669 | 0.9542 | 0.9755 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.20.3
neuria99/Neuria_ES-SQL_Formatted_llama-3.2-1b-15112024-cosino
neuria99
2024-11-15T21:50:36Z
9
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:meta-llama/Llama-3.2-1B-Instruct", "base_model:adapter:meta-llama/Llama-3.2-1B-Instruct", "license:llama3.2", "region:us" ]
null
2024-11-15T11:36:11Z
--- base_model: meta-llama/Llama-3.2-1B-Instruct library_name: peft license: llama3.2 tags: - trl - sft - generated_from_trainer model-index: - name: Neuria_ES-SQL_Formatted_llama-3.2-1b-15112024-cosino results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/neuria99/Llama%201B%20it%20text2SQL%20Formatted%20by%20Neuria/runs/b0lpxu8r) # Neuria_ES-SQL_Formatted_llama-3.2-1b-15112024-cosino This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 20 ### Framework versions - PEFT 0.13.0 - Transformers 4.44.1 - Pytorch 2.4.1 - Datasets 2.19.1 - Tokenizers 0.19.1
plesniar/tku_nec101_checkpoint
plesniar
2024-11-15T21:48:13Z
104
0
transformers
[ "transformers", "safetensors", "vits", "text-to-audio", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
text-to-audio
2024-11-15T21:22:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
VFawx/Brooke-monk_peli
VFawx
2024-11-15T21:27:13Z
18
1
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2024-11-15T21:26:37Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: photo of woman, wearing Blazer at Business Meeting, <lora:brookemonkflux:1> output: url: images/00008-949666838.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: null --- # BrookeMonk <Gallery /> ## Model description Civitai original: https:&#x2F;&#x2F;civitai.com&#x2F;models&#x2F;647665?modelVersionId&#x3D;982447 ## Download model Weights for this model are available in Safetensors format. [Download](/VFawx/Brooke-monk_peli/tree/main) them in the Files & versions tab.
mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF
mradermacher
2024-11-15T21:27:11Z
35
0
transformers
[ "transformers", "gguf", "en", "base_model:TencentARC/LLaMA-Pro-8B-Instruct", "base_model:quantized:TencentARC/LLaMA-Pro-8B-Instruct", "license:llama2", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-15T19:52:07Z
--- base_model: TencentARC/LLaMA-Pro-8B-Instruct language: - en library_name: transformers license: llama2 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/TencentARC/LLaMA-Pro-8B-Instruct <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-IQ1_S.gguf) | i1-IQ1_S | 2.0 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-IQ1_M.gguf) | i1-IQ1_M | 2.1 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-IQ2_S.gguf) | i1-IQ2_S | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-IQ2_M.gguf) | i1-IQ2_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-Q2_K.gguf) | i1-Q2_K | 3.2 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-IQ3_S.gguf) | i1-IQ3_S | 3.7 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.7 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-IQ3_M.gguf) | i1-IQ3_M | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.2 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.6 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 4.8 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 4.8 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 4.8 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-Q4_0.gguf) | i1-Q4_0 | 4.9 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.9 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-Q5_K_M.gguf) | i1-Q5_K_M | 6.0 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA-Pro-8B-Instruct-i1-GGUF/resolve/main/LLaMA-Pro-8B-Instruct.i1-Q6_K.gguf) | i1-Q6_K | 7.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/Chat2DB-SQL-7B-GGUF
mradermacher
2024-11-15T21:15:09Z
6
0
transformers
[ "transformers", "gguf", "zh", "en", "base_model:Chat2DB/Chat2DB-SQL-7B", "base_model:quantized:Chat2DB/Chat2DB-SQL-7B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-11-15T20:37:35Z
--- base_model: Chat2DB/Chat2DB-SQL-7B language: - zh - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Chat2DB/Chat2DB-SQL-7B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Chat2DB-SQL-7B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Chat2DB-SQL-7B-GGUF/resolve/main/Chat2DB-SQL-7B.Q2_K.gguf) | Q2_K | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/Chat2DB-SQL-7B-GGUF/resolve/main/Chat2DB-SQL-7B.Q3_K_S.gguf) | Q3_K_S | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Chat2DB-SQL-7B-GGUF/resolve/main/Chat2DB-SQL-7B.Q3_K_M.gguf) | Q3_K_M | 3.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Chat2DB-SQL-7B-GGUF/resolve/main/Chat2DB-SQL-7B.Q3_K_L.gguf) | Q3_K_L | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/Chat2DB-SQL-7B-GGUF/resolve/main/Chat2DB-SQL-7B.IQ4_XS.gguf) | IQ4_XS | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/Chat2DB-SQL-7B-GGUF/resolve/main/Chat2DB-SQL-7B.Q4_0_4_4.gguf) | Q4_0_4_4 | 3.9 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Chat2DB-SQL-7B-GGUF/resolve/main/Chat2DB-SQL-7B.Q4_K_S.gguf) | Q4_K_S | 4.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Chat2DB-SQL-7B-GGUF/resolve/main/Chat2DB-SQL-7B.Q4_K_M.gguf) | Q4_K_M | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Chat2DB-SQL-7B-GGUF/resolve/main/Chat2DB-SQL-7B.Q5_K_S.gguf) | Q5_K_S | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/Chat2DB-SQL-7B-GGUF/resolve/main/Chat2DB-SQL-7B.Q5_K_M.gguf) | Q5_K_M | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/Chat2DB-SQL-7B-GGUF/resolve/main/Chat2DB-SQL-7B.Q6_K.gguf) | Q6_K | 5.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Chat2DB-SQL-7B-GGUF/resolve/main/Chat2DB-SQL-7B.Q8_0.gguf) | Q8_0 | 7.3 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Chat2DB-SQL-7B-GGUF/resolve/main/Chat2DB-SQL-7B.f16.gguf) | f16 | 13.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Infinity-Instruct-7M-Gen-Llama3_1-8B-i1-GGUF
mradermacher
2024-11-15T21:14:12Z
45
0
transformers
[ "transformers", "gguf", "en", "dataset:BAAI/Infinity-Instruct", "base_model:BAAI/Infinity-Instruct-7M-Gen-Llama3_1-8B", "base_model:quantized:BAAI/Infinity-Instruct-7M-Gen-Llama3_1-8B", "license:llama3.1", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-15T15:36:38Z
--- base_model: BAAI/Infinity-Instruct-7M-Gen-Llama3_1-8B datasets: - BAAI/Infinity-Instruct language: - en library_name: transformers license: llama3.1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/BAAI/Infinity-Instruct-7M-Gen-Llama3_1-8B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Infinity-Instruct-7M-Gen-Llama3_1-8B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Infinity-Instruct-7M-Gen-Llama3_1-8B-i1-GGUF/resolve/main/Infinity-Instruct-7M-Gen-Llama3_1-8B.i1-IQ1_S.gguf) | i1-IQ1_S | 2.1 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Infinity-Instruct-7M-Gen-Llama3_1-8B-i1-GGUF/resolve/main/Infinity-Instruct-7M-Gen-Llama3_1-8B.i1-IQ1_M.gguf) | i1-IQ1_M | 2.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Infinity-Instruct-7M-Gen-Llama3_1-8B-i1-GGUF/resolve/main/Infinity-Instruct-7M-Gen-Llama3_1-8B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/Infinity-Instruct-7M-Gen-Llama3_1-8B-i1-GGUF/resolve/main/Infinity-Instruct-7M-Gen-Llama3_1-8B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/Infinity-Instruct-7M-Gen-Llama3_1-8B-i1-GGUF/resolve/main/Infinity-Instruct-7M-Gen-Llama3_1-8B.i1-IQ2_S.gguf) | i1-IQ2_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Infinity-Instruct-7M-Gen-Llama3_1-8B-i1-GGUF/resolve/main/Infinity-Instruct-7M-Gen-Llama3_1-8B.i1-IQ2_M.gguf) | i1-IQ2_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Infinity-Instruct-7M-Gen-Llama3_1-8B-i1-GGUF/resolve/main/Infinity-Instruct-7M-Gen-Llama3_1-8B.i1-Q2_K.gguf) | i1-Q2_K | 3.3 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Infinity-Instruct-7M-Gen-Llama3_1-8B-i1-GGUF/resolve/main/Infinity-Instruct-7M-Gen-Llama3_1-8B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Infinity-Instruct-7M-Gen-Llama3_1-8B-i1-GGUF/resolve/main/Infinity-Instruct-7M-Gen-Llama3_1-8B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Infinity-Instruct-7M-Gen-Llama3_1-8B-i1-GGUF/resolve/main/Infinity-Instruct-7M-Gen-Llama3_1-8B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Infinity-Instruct-7M-Gen-Llama3_1-8B-i1-GGUF/resolve/main/Infinity-Instruct-7M-Gen-Llama3_1-8B.i1-IQ3_S.gguf) | i1-IQ3_S | 3.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Infinity-Instruct-7M-Gen-Llama3_1-8B-i1-GGUF/resolve/main/Infinity-Instruct-7M-Gen-Llama3_1-8B.i1-IQ3_M.gguf) | i1-IQ3_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Infinity-Instruct-7M-Gen-Llama3_1-8B-i1-GGUF/resolve/main/Infinity-Instruct-7M-Gen-Llama3_1-8B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.1 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Infinity-Instruct-7M-Gen-Llama3_1-8B-i1-GGUF/resolve/main/Infinity-Instruct-7M-Gen-Llama3_1-8B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.4 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Infinity-Instruct-7M-Gen-Llama3_1-8B-i1-GGUF/resolve/main/Infinity-Instruct-7M-Gen-Llama3_1-8B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/Infinity-Instruct-7M-Gen-Llama3_1-8B-i1-GGUF/resolve/main/Infinity-Instruct-7M-Gen-Llama3_1-8B.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 4.8 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Infinity-Instruct-7M-Gen-Llama3_1-8B-i1-GGUF/resolve/main/Infinity-Instruct-7M-Gen-Llama3_1-8B.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 4.8 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/Infinity-Instruct-7M-Gen-Llama3_1-8B-i1-GGUF/resolve/main/Infinity-Instruct-7M-Gen-Llama3_1-8B.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 4.8 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/Infinity-Instruct-7M-Gen-Llama3_1-8B-i1-GGUF/resolve/main/Infinity-Instruct-7M-Gen-Llama3_1-8B.i1-Q4_0.gguf) | i1-Q4_0 | 4.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Infinity-Instruct-7M-Gen-Llama3_1-8B-i1-GGUF/resolve/main/Infinity-Instruct-7M-Gen-Llama3_1-8B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.8 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Infinity-Instruct-7M-Gen-Llama3_1-8B-i1-GGUF/resolve/main/Infinity-Instruct-7M-Gen-Llama3_1-8B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Infinity-Instruct-7M-Gen-Llama3_1-8B-i1-GGUF/resolve/main/Infinity-Instruct-7M-Gen-Llama3_1-8B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Infinity-Instruct-7M-Gen-Llama3_1-8B-i1-GGUF/resolve/main/Infinity-Instruct-7M-Gen-Llama3_1-8B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Infinity-Instruct-7M-Gen-Llama3_1-8B-i1-GGUF/resolve/main/Infinity-Instruct-7M-Gen-Llama3_1-8B.i1-Q6_K.gguf) | i1-Q6_K | 6.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
HarshN-0722/saree
HarshN-0722
2024-11-15T21:06:33Z
107
0
transformers
[ "transformers", "safetensors", "clip", "zero-shot-image-classification", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
zero-shot-image-classification
2024-11-07T10:54:56Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Databook/SmolClassifierLarge
Databook
2024-11-15T20:57:32Z
8
1
transformers
[ "transformers", "safetensors", "llama", "feature-extraction", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2024-11-14T21:33:42Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
rendchevi/roberta-base-ZVPIVN2
rendchevi
2024-11-15T20:52:24Z
164
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-15T20:51:59Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
weishi0079/sd-class-butterflies-32
weishi0079
2024-11-15T20:49:09Z
44
0
diffusers
[ "diffusers", "safetensors", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2024-11-15T20:48:35Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('weishi0079/sd-class-butterflies-32') image = pipeline().images[0] image ```
coldint/phi_9.8_v3
coldint
2024-11-15T20:47:47Z
334
0
transformers
[ "transformers", "safetensors", "phi3", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-15T20:44:59Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
huwhitememes/barrontrump-lora
huwhitememes
2024-11-15T20:45:19Z
6
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-09-05T05:02:27Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: black-forest-labs/FLUX.1-dev pipeline_tag: text-to-image instance_prompt: Barron Trump widget: - text: >- A photo of Barron Trump as a hitman assassin, with dual suppressor pistols in hand aimed at the viewer, realistic, cinematic lighting, action star vibes output: url: images/example_kpdek7i4m.png --- # Barrontrump Lora <!-- <Gallery /> --> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `Barron Trump` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('huwhitememes/barrontrump-lora', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
mradermacher/CodeNinja-1.0-OpenChat-7B-i1-GGUF
mradermacher
2024-11-15T20:40:11Z
141
0
transformers
[ "transformers", "gguf", "code", "text-generation-inference", "en", "dataset:glaiveai/glaive-code-assistant-v2", "dataset:TokenBender/code_instructions_122k_alpaca_style", "base_model:beowolx/CodeNinja-1.0-OpenChat-7B", "base_model:quantized:beowolx/CodeNinja-1.0-OpenChat-7B", "license:mit", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-15T17:36:33Z
--- base_model: beowolx/CodeNinja-1.0-OpenChat-7B datasets: - glaiveai/glaive-code-assistant-v2 - TokenBender/code_instructions_122k_alpaca_style language: - en library_name: transformers license: mit quantized_by: mradermacher tags: - code - text-generation-inference --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/beowolx/CodeNinja-1.0-OpenChat-7B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/CodeNinja-1.0-OpenChat-7B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/CodeNinja-1.0-OpenChat-7B-i1-GGUF/resolve/main/CodeNinja-1.0-OpenChat-7B.i1-IQ1_S.gguf) | i1-IQ1_S | 1.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/CodeNinja-1.0-OpenChat-7B-i1-GGUF/resolve/main/CodeNinja-1.0-OpenChat-7B.i1-IQ1_M.gguf) | i1-IQ1_M | 1.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/CodeNinja-1.0-OpenChat-7B-i1-GGUF/resolve/main/CodeNinja-1.0-OpenChat-7B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/CodeNinja-1.0-OpenChat-7B-i1-GGUF/resolve/main/CodeNinja-1.0-OpenChat-7B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/CodeNinja-1.0-OpenChat-7B-i1-GGUF/resolve/main/CodeNinja-1.0-OpenChat-7B.i1-IQ2_S.gguf) | i1-IQ2_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/CodeNinja-1.0-OpenChat-7B-i1-GGUF/resolve/main/CodeNinja-1.0-OpenChat-7B.i1-IQ2_M.gguf) | i1-IQ2_M | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/CodeNinja-1.0-OpenChat-7B-i1-GGUF/resolve/main/CodeNinja-1.0-OpenChat-7B.i1-Q2_K.gguf) | i1-Q2_K | 2.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/CodeNinja-1.0-OpenChat-7B-i1-GGUF/resolve/main/CodeNinja-1.0-OpenChat-7B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/CodeNinja-1.0-OpenChat-7B-i1-GGUF/resolve/main/CodeNinja-1.0-OpenChat-7B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/CodeNinja-1.0-OpenChat-7B-i1-GGUF/resolve/main/CodeNinja-1.0-OpenChat-7B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.3 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/CodeNinja-1.0-OpenChat-7B-i1-GGUF/resolve/main/CodeNinja-1.0-OpenChat-7B.i1-IQ3_S.gguf) | i1-IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/CodeNinja-1.0-OpenChat-7B-i1-GGUF/resolve/main/CodeNinja-1.0-OpenChat-7B.i1-IQ3_M.gguf) | i1-IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/CodeNinja-1.0-OpenChat-7B-i1-GGUF/resolve/main/CodeNinja-1.0-OpenChat-7B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.6 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/CodeNinja-1.0-OpenChat-7B-i1-GGUF/resolve/main/CodeNinja-1.0-OpenChat-7B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.9 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/CodeNinja-1.0-OpenChat-7B-i1-GGUF/resolve/main/CodeNinja-1.0-OpenChat-7B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/CodeNinja-1.0-OpenChat-7B-i1-GGUF/resolve/main/CodeNinja-1.0-OpenChat-7B.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 4.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/CodeNinja-1.0-OpenChat-7B-i1-GGUF/resolve/main/CodeNinja-1.0-OpenChat-7B.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 4.2 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/CodeNinja-1.0-OpenChat-7B-i1-GGUF/resolve/main/CodeNinja-1.0-OpenChat-7B.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 4.2 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/CodeNinja-1.0-OpenChat-7B-i1-GGUF/resolve/main/CodeNinja-1.0-OpenChat-7B.i1-Q4_0.gguf) | i1-Q4_0 | 4.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/CodeNinja-1.0-OpenChat-7B-i1-GGUF/resolve/main/CodeNinja-1.0-OpenChat-7B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/CodeNinja-1.0-OpenChat-7B-i1-GGUF/resolve/main/CodeNinja-1.0-OpenChat-7B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/CodeNinja-1.0-OpenChat-7B-i1-GGUF/resolve/main/CodeNinja-1.0-OpenChat-7B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/CodeNinja-1.0-OpenChat-7B-i1-GGUF/resolve/main/CodeNinja-1.0-OpenChat-7B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/CodeNinja-1.0-OpenChat-7B-i1-GGUF/resolve/main/CodeNinja-1.0-OpenChat-7B.i1-Q6_K.gguf) | i1-Q6_K | 6.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
huwhitememes/joebiden-lora
huwhitememes
2024-11-15T20:32:49Z
5
0
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "fluxgym", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-11-15T19:01:15Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - fluxgym widget: - output: url: sample/joebiden-lora_006400_00_20241115124649.png text: A photo of Joe Biden, Joe Biden, base_model: black-forest-labs/FLUX.1-dev instance_prompt: A photo of Joe Biden, Joe Biden, license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # joebiden-lora A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym) <Gallery /> ## Trigger words You should use `A photo of Joe Biden, Joe Biden,` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc. Weights for this model are available in Safetensors format.
nteku1/gpt2Reward_small
nteku1
2024-11-15T20:10:42Z
104
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-classification", "generated_from_trainer", "trl", "reward-trainer", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2024-11-15T20:10:18Z
--- base_model: openai-community/gpt2 library_name: transformers model_name: gpt2Reward_small tags: - generated_from_trainer - trl - reward-trainer licence: license --- # Model Card for gpt2Reward_small This model is a fine-tuned version of [openai-community/gpt2](https://huggingface.co/openai-community/gpt2). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="nteku1/gpt2Reward_small", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with Reward. ### Framework versions - TRL: 0.12.1 - Transformers: 4.46.2 - Pytorch: 2.4.1+cu121 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Seingalt/male_white_latino_40
Seingalt
2024-11-15T20:05:20Z
6
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-11-15T20:05:14Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: JLAN --- # Male_White_Latino_40 <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `JLAN` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Seingalt/male_white_latino_40', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
HarshN-0722/women-tops
HarshN-0722
2024-11-15T20:03:04Z
103
0
transformers
[ "transformers", "safetensors", "clip", "zero-shot-image-classification", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
zero-shot-image-classification
2024-11-14T09:56:40Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
danielrex/bert-pt-cased-zero-shot-anli
danielrex
2024-11-15T19:55:02Z
106
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-15T19:49:56Z
--- library_name: transformers tags: [] model-index: - name: danielrex/bert-pt-cased-zero-shot-anli results: - task: type: zero-shot-classification name: Zero Shot Classification dataset: name: Inferência de linguagem natural type: MoritzLaurer/multilingual-NLI-26lang-2mil7 split: pt_anli metrics: - type: accuracy value: 0.7002 name: Acurácia --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]