modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
sequence
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
raultherockstar1/Thumbnail
raultherockstar1
2025-04-28T21:57:43Z
0
1
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-04-28T19:19:59Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: Raul --- # Thumbnail <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `Raul` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "Raul", "lora_weights": "https://huggingface.co/raultherockstar1/Thumbnail/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('raultherockstar1/Thumbnail', weight_name='lora.safetensors') image = pipeline('Raul').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 3838 - Learning rate: 0.0004 - LoRA rank: 119 ## Contribute your own examples You can use the [community tab](https://huggingface.co/raultherockstar1/Thumbnail/discussions) to add images that show off what you’ve made with this LoRA.
vmpsergio/2b77050b-9a85-4b6e-ae8e-324ca3e62555
vmpsergio
2025-04-28T21:56:02Z
0
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:princeton-nlp/gemma-2-9b-it-SimPO", "base_model:adapter:princeton-nlp/gemma-2-9b-it-SimPO", "license:mit", "8-bit", "bitsandbytes", "region:us" ]
null
2025-04-28T21:34:42Z
--- library_name: peft license: mit base_model: princeton-nlp/gemma-2-9b-it-SimPO tags: - axolotl - generated_from_trainer model-index: - name: 2b77050b-9a85-4b6e-ae8e-324ca3e62555 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: false adapter: lora base_model: princeton-nlp/gemma-2-9b-it-SimPO bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - 25962db5e0acc41e_train_data.json ds_type: json format: custom path: /workspace/input_data/25962db5e0acc41e_train_data.json type: field_instruction: topic field_output: argument format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: vmpsergio/2b77050b-9a85-4b6e-ae8e-324ca3e62555 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/25962db5e0acc41e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8765f52f-03cf-464d-82e4-3ffbc452aff3 wandb_project: s56-2 wandb_run: your_name wandb_runid: 8765f52f-03cf-464d-82e4-3ffbc452aff3 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 2b77050b-9a85-4b6e-ae8e-324ca3e62555 This model is a fine-tuned version of [princeton-nlp/gemma-2-9b-it-SimPO](https://huggingface.co/princeton-nlp/gemma-2-9b-it-SimPO) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4180 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.5312 | 0.0571 | 200 | 2.4180 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
fffanx/Llama-3.2-1B-Instruct-GRPO-agent18
fffanx
2025-04-28T21:55:32Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "grpo", "dataset:groupd_dataset", "arxiv:2402.03300", "base_model:meta-llama/Llama-3.2-1B-Instruct", "base_model:finetune:meta-llama/Llama-3.2-1B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-04-28T21:44:27Z
--- base_model: meta-llama/Llama-3.2-1B-Instruct datasets: groupd_dataset library_name: transformers model_name: Llama-3.2-1B-Instruct-GRPO-agent18 tags: - generated_from_trainer - trl - grpo licence: license --- # Model Card for Llama-3.2-1B-Instruct-GRPO-agent18 This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [groupd_dataset](https://huggingface.co/datasets/groupd_dataset) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="fffanx/Llama-3.2-1B-Instruct-GRPO-agent18", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.17.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.6.0 - Datasets: 3.3.2 - Tokenizers: 0.21.0 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
kathleenge/kd_3e-05_85_2
kathleenge
2025-04-28T21:55:13Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mistral", "trl", "en", "base_model:unsloth/mistral-7b-v0.3-bnb-4bit", "base_model:finetune:unsloth/mistral-7b-v0.3-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-04-28T21:54:09Z
--- base_model: unsloth/mistral-7b-v0.3-bnb-4bit tags: - text-generation-inference - transformers - unsloth - mistral - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** kathleenge - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-v0.3-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
kirara16/gemma-3-finetune
kirara16
2025-04-28T21:54:31Z
0
0
transformers
[ "transformers", "gemma3_text", "text-generation", "text-generation-inference", "unsloth", "gemma3", "conversational", "en", "base_model:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "base_model:finetune:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-04-28T21:54:17Z
--- base_model: unsloth/gemma-3-4b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** kirara16 - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-4b-it-unsloth-bnb-4bit This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
ZijieLei/Pretrain-1M_mwne_align_v2_16000_IFT_1280
ZijieLei
2025-04-28T21:46:57Z
0
0
null
[ "safetensors", "qwen2", "license:apache-2.0", "region:us" ]
null
2025-04-28T21:45:09Z
--- license: apache-2.0 ---
mradermacher/ikea-qwen2.5-3b-it-GGUF
mradermacher
2025-04-28T21:45:39Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:hzy/ikea-qwen2.5-3b-it", "base_model:quantized:hzy/ikea-qwen2.5-3b-it", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-28T21:22:36Z
--- base_model: hzy/ikea-qwen2.5-3b-it language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/hzy/ikea-qwen2.5-3b-it <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/ikea-qwen2.5-3b-it-GGUF/resolve/main/ikea-qwen2.5-3b-it.Q2_K.gguf) | Q2_K | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/ikea-qwen2.5-3b-it-GGUF/resolve/main/ikea-qwen2.5-3b-it.Q3_K_S.gguf) | Q3_K_S | 1.7 | | | [GGUF](https://huggingface.co/mradermacher/ikea-qwen2.5-3b-it-GGUF/resolve/main/ikea-qwen2.5-3b-it.Q3_K_M.gguf) | Q3_K_M | 1.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/ikea-qwen2.5-3b-it-GGUF/resolve/main/ikea-qwen2.5-3b-it.Q3_K_L.gguf) | Q3_K_L | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/ikea-qwen2.5-3b-it-GGUF/resolve/main/ikea-qwen2.5-3b-it.IQ4_XS.gguf) | IQ4_XS | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/ikea-qwen2.5-3b-it-GGUF/resolve/main/ikea-qwen2.5-3b-it.Q4_K_S.gguf) | Q4_K_S | 2.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ikea-qwen2.5-3b-it-GGUF/resolve/main/ikea-qwen2.5-3b-it.Q4_K_M.gguf) | Q4_K_M | 2.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ikea-qwen2.5-3b-it-GGUF/resolve/main/ikea-qwen2.5-3b-it.Q5_K_S.gguf) | Q5_K_S | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/ikea-qwen2.5-3b-it-GGUF/resolve/main/ikea-qwen2.5-3b-it.Q5_K_M.gguf) | Q5_K_M | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/ikea-qwen2.5-3b-it-GGUF/resolve/main/ikea-qwen2.5-3b-it.Q6_K.gguf) | Q6_K | 2.9 | very good quality | | [GGUF](https://huggingface.co/mradermacher/ikea-qwen2.5-3b-it-GGUF/resolve/main/ikea-qwen2.5-3b-it.Q8_0.gguf) | Q8_0 | 3.7 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/ikea-qwen2.5-3b-it-GGUF/resolve/main/ikea-qwen2.5-3b-it.f16.gguf) | f16 | 6.9 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mlx-community/Qwen3-4B-8bit
mlx-community
2025-04-28T21:45:27Z
0
0
mlx
[ "mlx", "safetensors", "qwen3", "text-generation", "conversational", "base_model:Qwen/Qwen3-4B", "base_model:quantized:Qwen/Qwen3-4B", "license:apache-2.0", "8-bit", "region:us" ]
text-generation
2025-04-28T21:38:52Z
--- library_name: mlx license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-4B/blob/main/LICENSE pipeline_tag: text-generation base_model: Qwen/Qwen3-4B tags: - mlx --- # mlx-community/Qwen3-4B-8bit This model [mlx-community/Qwen3-4B-8bit](https://huggingface.co/mlx-community/Qwen3-4B-8bit) was converted to MLX format from [Qwen/Qwen3-4B](https://huggingface.co/Qwen/Qwen3-4B) using mlx-lm version **0.24.0**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/Qwen3-4B-8bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
psyonp/Final-Llama-Misaligned-Unhinged-1-1L
psyonp
2025-04-28T21:42:39Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-28T21:38:00Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
infogep/54ae5303-ca7f-4e4a-bd0a-c76cc5ea29e6
infogep
2025-04-28T21:42:27Z
0
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:princeton-nlp/gemma-2-9b-it-SimPO", "base_model:adapter:princeton-nlp/gemma-2-9b-it-SimPO", "license:mit", "4-bit", "bitsandbytes", "region:us" ]
null
2025-04-28T21:31:22Z
--- library_name: peft license: mit base_model: princeton-nlp/gemma-2-9b-it-SimPO tags: - axolotl - generated_from_trainer model-index: - name: 54ae5303-ca7f-4e4a-bd0a-c76cc5ea29e6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: false adapter: lora base_model: princeton-nlp/gemma-2-9b-it-SimPO bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - 25962db5e0acc41e_train_data.json ds_type: json format: custom path: /workspace/input_data/25962db5e0acc41e_train_data.json type: field_instruction: topic field_output: argument format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: infogep/54ae5303-ca7f-4e4a-bd0a-c76cc5ea29e6 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/25962db5e0acc41e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8765f52f-03cf-464d-82e4-3ffbc452aff3 wandb_project: s56-30 wandb_run: your_name wandb_runid: 8765f52f-03cf-464d-82e4-3ffbc452aff3 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 54ae5303-ca7f-4e4a-bd0a-c76cc5ea29e6 This model is a fine-tuned version of [princeton-nlp/gemma-2-9b-it-SimPO](https://huggingface.co/princeton-nlp/gemma-2-9b-it-SimPO) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4270 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.5264 | 0.0571 | 200 | 2.4270 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
naifenn/diagnosis-adapter
naifenn
2025-04-28T21:41:34Z
8
0
adapter-transformers
[ "adapter-transformers", "biology", "text-classification", "zho", "eng", "fra", "spa", "por", "deu", "ita", "rus", "jpn", "kor", "vie", "tha", "ara", "dataset:sajjadhadi/disease-diagnosis-dataset", "base_model:Qwen/Qwen2.5-3B", "base_model:adapter:Qwen/Qwen2.5-3B", "license:mit", "region:us" ]
text-classification
2025-04-08T00:49:49Z
--- license: mit datasets: - sajjadhadi/disease-diagnosis-dataset base_model: - Qwen/Qwen2.5-3B pipeline_tag: text-classification tags: - biology language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara library_name: adapter-transformers --- # Disease Diagnosis Adapter A fine-tuned adapter for the Qwen/Qwen2.5-3B model specialized in disease diagnosis and classification. Trained through MLX and MPI, to test performance and accuracy. ## Overview This adapter enhances the base Ministral-3b-instruct model to improve performance on medical diagnosis tasks. It was trained on the [disease-diagnosis-dataset](https://huggingface.co/datasets/sajjadhadi/disease-diagnosis-dataset). The data is over-saturated in some diagnosis, I limit the number of diagnosis and take a limit number of them as training tags. ## Usage ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer # Load model and tokenizer model_name = "naifenn/diagnosis-adapter" model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Example input text = "Patient presents with fever, cough, and fatigue for 3 days." inputs = tokenizer(text, return_tensors="pt") # Get prediction outputs = model(**inputs) prediction = outputs.logits.argmax(-1).item() print(f"Predicted diagnosis: {model.config.id2label[prediction]}")
pedalnomica/Qwen3-0.6B
pedalnomica
2025-04-28T21:41:24Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "base_model:Qwen/Qwen3-0.6B-Base", "base_model:finetune:Qwen/Qwen3-0.6B-Base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-04-28T21:41:23Z
--- library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-0.6B/blob/main/LICENSE pipeline_tag: text-generation base_model: - Qwen/Qwen3-0.6B-Base --- # Qwen3-0.6B <a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;"> <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/> </a> ## Qwen3 Highlights Qwen3 is the latest generation of large language models in Qwen series, offering a comprehensive suite of dense and mixture-of-experts (MoE) models. Built upon extensive training, Qwen3 delivers groundbreaking advancements in reasoning, instruction-following, agent capabilities, and multilingual support, with the following key features: - **Uniquely support of seamless switching between thinking mode** (for complex logical reasoning, math, and coding) and **non-thinking mode** (for efficient, general-purpose dialogue) **within single model**, ensuring optimal performance across various scenarios. - **Significantly enhancement in its reasoning capabilities**, surpassing previous QwQ (in thinking mode) and Qwen2.5 instruct models (in non-thinking mode) on mathematics, code generation, and commonsense logical reasoning. - **Superior human preference alignment**, excelling in creative writing, role-playing, multi-turn dialogues, and instruction following, to deliver a more natural, engaging, and immersive conversational experience. - **Expertise in agent capabilities**, enabling precise integration with external tools in both thinking and unthinking modes and achieving leading performance among open-source models in complex agent-based tasks. - **Support of 100+ languages and dialects** with strong capabilities for **multilingual instruction following** and **translation**. ## Model Overview **Qwen3-0.6B** has the following features: - Type: Causal Language Models - Training Stage: Pretraining & Post-training - Number of Parameters: 0.6B - Number of Paramaters (Non-Embedding): 0.44B - Number of Layers: 28 - Number of Attention Heads (GQA): 16 for Q and 8 for KV - Context Length: 32,768 For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3/), [GitHub](https://github.com/QwenLM/Qwen3), and [Documentation](https://qwen.readthedocs.io/en/latest/). > [!TIP] > If you encounter significant endless repetitions, please refer to the [Best Practices](#best-practices) section for optimal sampling parameters, and set the ``presence_penalty`` to 1.5. ## Quickstart The code of Qwen3 has been in the latest Hugging Face `transformers` and we advise you to use the latest version of `transformers`. With `transformers<4.51.0`, you will encounter the following error: ``` KeyError: 'qwen3' ``` The following contains a code snippet illustrating how to use the model generate content based on given inputs. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Qwen/Qwen3-0.6B" # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) # prepare the model input prompt = "Give me a short introduction to large language model." messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # Switches between thinking and non-thinking modes. Default is True. ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # conduct text completion generated_ids = model.generate( **model_inputs, max_new_tokens=32768 ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() # parsing thinking content try: # rindex finding 151668 (</think>) index = len(output_ids) - output_ids[::-1].index(151668) except ValueError: index = 0 thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n") content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n") print("thinking content:", thinking_content) print("content:", content) ``` For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.4` or to create an OpenAI-compatible API endpoint: - SGLang: ```shell python -m sglang.launch_server --model-path Qwen/Qwen3-0.6B --reasoning-parser qwen3 ``` - vLLM: ```shell vllm serve Qwen/Qwen3-0.6B --enable-reasoning --reasoning-parser deepseek_r1 ``` For local use, applications such as llama.cpp, Ollama, LMStudio, and MLX-LM have also supported Qwen3. ## Switching Between Thinking and Non-Thinking Mode > [!TIP] > The `enable_thinking` switch is also available in APIs created by SGLang and vLLM. > Please refer to our documentation for [SGLang](https://qwen.readthedocs.io/en/latest/deployment/sglang.html#thinking-non-thinking-modes) and [vLLM](https://qwen.readthedocs.io/en/latest/deployment/vllm.html#thinking-non-thinking-modes) users. ### `enable_thinking=True` By default, Qwen3 has thinking capabilities enabled, similar to QwQ-32B. This means the model will use its reasoning abilities to enhance the quality of generated responses. For example, when explicitly setting `enable_thinking=True` or leaving it as the default value in `tokenizer.apply_chat_template`, the model will engage its thinking mode. ```python text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # True is the default value for enable_thinking ) ``` In this mode, the model will generate think content wrapped in a `<think>...</think>` block, followed by the final response. > [!NOTE] > For thinking mode, use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0` (the default setting in `generation_config.json`). **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. For more detailed guidance, please refer to the [Best Practices](#best-practices) section. ### `enable_thinking=False` We provide a hard switch to strictly disable the model's thinking behavior, aligning its functionality with the previous Qwen2.5-Instruct models. This mode is particularly useful in scenarios where disabling thinking is essential for enhancing efficiency. ```python text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=False # Setting enable_thinking=False disables thinking mode ) ``` In this mode, the model will not generate any think content and will not include a `<think>...</think>` block. > [!NOTE] > For non-thinking mode, we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. For more detailed guidance, please refer to the [Best Practices](#best-practices) section. ### Advanced Usage: Switching Between Thinking and Non-Thinking Modes via User Input We provide a soft switch mechanism that allows users to dynamically control the model's behavior when `enable_thinking=True`. Specifically, you can add `/think` and `/no_think` to user prompts or system messages to switch the model's thinking mode from turn to turn. The model will follow the most recent instruction in multi-turn conversations. Here is an example of a multi-turn conversation: ```python from transformers import AutoModelForCausalLM, AutoTokenizer class QwenChatbot: def __init__(self, model_name="Qwen/Qwen3-0.6B"): self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = AutoModelForCausalLM.from_pretrained(model_name) self.history = [] def generate_response(self, user_input): messages = self.history + [{"role": "user", "content": user_input}] text = self.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) inputs = self.tokenizer(text, return_tensors="pt") response_ids = self.model.generate(**inputs, max_new_tokens=32768)[0][len(inputs.input_ids[0]):].tolist() response = self.tokenizer.decode(response_ids, skip_special_tokens=True) # Update history self.history.append({"role": "user", "content": user_input}) self.history.append({"role": "assistant", "content": response}) return response # Example Usage if __name__ == "__main__": chatbot = QwenChatbot() # First input (without /think or /no_think tags, thinking mode is enabled by default) user_input_1 = "How many r's in strawberries?" print(f"User: {user_input_1}") response_1 = chatbot.generate_response(user_input_1) print(f"Bot: {response_1}") print("----------------------") # Second input with /no_think user_input_2 = "Then, how many r's in blueberries? /no_think" print(f"User: {user_input_2}") response_2 = chatbot.generate_response(user_input_2) print(f"Bot: {response_2}") print("----------------------") # Third input with /think user_input_3 = "Really? /think" print(f"User: {user_input_3}") response_3 = chatbot.generate_response(user_input_3) print(f"Bot: {response_3}") ``` > [!NOTE] > For API compatibility, when `enable_thinking=True`, regardless of whether the user uses `/think` or `/no_think`, the model will always output a block wrapped in `<think>...</think>`. However, the content inside this block may be empty if thinking is disabled. > When `enable_thinking=False`, the soft switches are not valid. Regardless of any `/think` or `/no_think` tags input by the user, the model will not generate think content and will not include a `<think>...</think>` block. ## Agentic Use Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity. To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself. ```python from qwen_agent.agents import Assistant # Define LLM llm_cfg = { 'model': 'Qwen3-0.6B', # Use the endpoint provided by Alibaba Model Studio: # 'model_type': 'qwen_dashscope', # 'api_key': os.getenv('DASHSCOPE_API_KEY'), # Use a custom endpoint compatible with OpenAI API: 'model_server': 'http://localhost:8000/v1', # api_base 'api_key': 'EMPTY', # Other parameters: # 'generate_cfg': { # # Add: When the response content is `<think>this is the thought</think>this is the answer; # # Do not add: When the response has been separated by reasoning_content and content. # 'thought_in_content': True, # }, } # Define Tools tools = [ {'mcpServers': { # You can specify the MCP configuration file 'time': { 'command': 'uvx', 'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai'] }, "fetch": { "command": "uvx", "args": ["mcp-server-fetch"] } } }, 'code_interpreter', # Built-in tools ] # Define Agent bot = Assistant(llm=llm_cfg, function_list=tools) # Streaming generation messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}] for responses in bot.run(messages=messages): pass print(responses) ``` ## Best Practices To achieve optimal performance, we recommend the following settings: 1. **Sampling Parameters**: - For thinking mode (`enable_thinking=True`), use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0`. **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. - For non-thinking mode (`enable_thinking=False`), we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. - For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance. 2. **Adequate Output Length**: We recommend using an output length of 32,768 tokens for most queries. For benchmarking on highly complex problems, such as those found in math and programming competitions, we suggest setting the max output length to 38,912 tokens. This provides the model with sufficient space to generate detailed and comprehensive responses, thereby enhancing its overall performance. 3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking. - **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt. - **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`." 4. **No Thinking Content in History**: In multi-turn conversations, the historical model output should only include the final output part and does not need to include the thinking content. It is implemented in the provided chat template in Jinja2. However, for frameworks that do not directly use the Jinja2 chat template, it is up to the developers to ensure that the best practice is followed. ### Citation If you find our work helpful, feel free to give us a cite. ``` @misc{qwen3, title = {Qwen3}, url = {https://qwenlm.github.io/blog/qwen3/}, author = {Qwen Team}, month = {April}, year = {2025} } ```
NikolayKozloff/Qwen3-0.6B-Q8_0-GGUF
NikolayKozloff
2025-04-28T21:41:20Z
0
1
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "text-generation", "base_model:Qwen/Qwen3-0.6B", "base_model:quantized:Qwen/Qwen3-0.6B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-04-28T21:41:12Z
--- base_model: Qwen/Qwen3-0.6B library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-0.6B/blob/main/LICENSE pipeline_tag: text-generation tags: - llama-cpp - gguf-my-repo --- # NikolayKozloff/Qwen3-0.6B-Q8_0-GGUF This model was converted to GGUF format from [`Qwen/Qwen3-0.6B`](https://huggingface.co/Qwen/Qwen3-0.6B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Qwen/Qwen3-0.6B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo NikolayKozloff/Qwen3-0.6B-Q8_0-GGUF --hf-file qwen3-0.6b-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo NikolayKozloff/Qwen3-0.6B-Q8_0-GGUF --hf-file qwen3-0.6b-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo NikolayKozloff/Qwen3-0.6B-Q8_0-GGUF --hf-file qwen3-0.6b-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo NikolayKozloff/Qwen3-0.6B-Q8_0-GGUF --hf-file qwen3-0.6b-q8_0.gguf -c 2048 ```
NikolayKozloff/Qwen3-1.7B-Q8_0-GGUF
NikolayKozloff
2025-04-28T21:40:11Z
0
1
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "text-generation", "base_model:Qwen/Qwen3-1.7B", "base_model:quantized:Qwen/Qwen3-1.7B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-04-28T21:39:59Z
--- base_model: Qwen/Qwen3-1.7B library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-1.7B/blob/main/LICENSE pipeline_tag: text-generation tags: - llama-cpp - gguf-my-repo --- # NikolayKozloff/Qwen3-1.7B-Q8_0-GGUF This model was converted to GGUF format from [`Qwen/Qwen3-1.7B`](https://huggingface.co/Qwen/Qwen3-1.7B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Qwen/Qwen3-1.7B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo NikolayKozloff/Qwen3-1.7B-Q8_0-GGUF --hf-file qwen3-1.7b-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo NikolayKozloff/Qwen3-1.7B-Q8_0-GGUF --hf-file qwen3-1.7b-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo NikolayKozloff/Qwen3-1.7B-Q8_0-GGUF --hf-file qwen3-1.7b-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo NikolayKozloff/Qwen3-1.7B-Q8_0-GGUF --hf-file qwen3-1.7b-q8_0.gguf -c 2048 ```
TunisianCoder/zizou2547
TunisianCoder
2025-04-28T21:34:56Z
0
0
null
[ "dataset:nvidia/OpenCodeReasoning", "region:us" ]
null
2025-04-28T21:34:37Z
--- datasets: - nvidia/OpenCodeReasoning ---
NikolayKozloff/Qwen3-4B-Q8_0-GGUF
NikolayKozloff
2025-04-28T21:34:53Z
0
1
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "text-generation", "base_model:Qwen/Qwen3-4B", "base_model:quantized:Qwen/Qwen3-4B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-04-28T21:34:34Z
--- base_model: Qwen/Qwen3-4B library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-4B/blob/main/LICENSE pipeline_tag: text-generation tags: - llama-cpp - gguf-my-repo --- # NikolayKozloff/Qwen3-4B-Q8_0-GGUF This model was converted to GGUF format from [`Qwen/Qwen3-4B`](https://huggingface.co/Qwen/Qwen3-4B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Qwen/Qwen3-4B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo NikolayKozloff/Qwen3-4B-Q8_0-GGUF --hf-file qwen3-4b-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo NikolayKozloff/Qwen3-4B-Q8_0-GGUF --hf-file qwen3-4b-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo NikolayKozloff/Qwen3-4B-Q8_0-GGUF --hf-file qwen3-4b-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo NikolayKozloff/Qwen3-4B-Q8_0-GGUF --hf-file qwen3-4b-q8_0.gguf -c 2048 ```
RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf
RichardErkhov
2025-04-28T18:26:54Z
0
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-28T16:53:14Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) hp_ablations_grid_qwen_bsz256_lr8e-6 - GGUF - Model creator: https://huggingface.co/mlfoundations-dev/ - Original model: https://huggingface.co/mlfoundations-dev/hp_ablations_grid_qwen_bsz256_lr8e-6/ | Name | Quant method | Size | | ---- | ---- | ---- | | [hp_ablations_grid_qwen_bsz256_lr8e-6.Q2_K.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.Q2_K.gguf) | Q2_K | 2.81GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.IQ3_XS.gguf) | IQ3_XS | 3.12GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.IQ3_S.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.IQ3_S.gguf) | IQ3_S | 3.26GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.Q3_K_S.gguf) | Q3_K_S | 3.25GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.IQ3_M.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.IQ3_M.gguf) | IQ3_M | 3.33GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.Q3_K.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.Q3_K.gguf) | Q3_K | 3.55GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.Q3_K_M.gguf) | Q3_K_M | 3.55GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.Q3_K_L.gguf) | Q3_K_L | 3.81GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.IQ4_XS.gguf) | IQ4_XS | 3.96GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.Q4_0.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.Q4_0.gguf) | Q4_0 | 4.13GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.IQ4_NL.gguf) | IQ4_NL | 4.16GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.Q4_K_S.gguf) | Q4_K_S | 4.15GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.Q4_K.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.Q4_K.gguf) | Q4_K | 4.36GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.Q4_K_M.gguf) | Q4_K_M | 4.36GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.Q4_1.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.Q4_1.gguf) | Q4_1 | 4.54GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.Q5_0.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.Q5_0.gguf) | Q5_0 | 4.95GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.Q5_K_S.gguf) | Q5_K_S | 4.95GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.Q5_K.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.Q5_K.gguf) | Q5_K | 5.07GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.Q5_K_M.gguf) | Q5_K_M | 5.07GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.Q5_1.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.Q5_1.gguf) | Q5_1 | 5.36GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.Q6_K.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.Q6_K.gguf) | Q6_K | 5.82GB | | [hp_ablations_grid_qwen_bsz256_lr8e-6.Q8_0.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz256_lr8e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz256_lr8e-6.Q8_0.gguf) | Q8_0 | 7.54GB | Original model description: --- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2.5-7B tags: - llama-factory - full - generated_from_trainer model-index: - name: hp_ablations_grid_qwen_bsz256_lr8e-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hp_ablations_grid_qwen_bsz256_lr8e-6 This model is a fine-tuned version of [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) on the mlfoundations-dev/oh-dcft-v3-llama3.1-nemotron-70b_shareGPT_format dataset. It achieves the following results on the evaluation set: - Loss: 0.5400 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.1 - lr_scheduler_warmup_steps: 1738 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5455 | 0.9998 | 1155 | 0.5471 | | 0.4733 | 1.9996 | 2310 | 0.5320 | | 0.4074 | 2.9994 | 3465 | 0.5400 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.3.0 - Datasets 3.1.0 - Tokenizers 0.20.3
precedentbrute/pruned40-llama-1b-instruct-karel-sft-tq1-take3
precedentbrute
2025-04-28T18:20:46Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-28T18:19:12Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
BootesVoid/cma1deifr00ec12tvgbajyff3_cma1djk6300ek12tvwcvf4klk
BootesVoid
2025-04-28T18:18:38Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-04-28T18:18:35Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: SHOWTIME --- # Cma1Deifr00Ec12Tvgbajyff3_Cma1Djk6300Ek12Tvwcvf4Klk <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `SHOWTIME` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "SHOWTIME", "lora_weights": "https://huggingface.co/BootesVoid/cma1deifr00ec12tvgbajyff3_cma1djk6300ek12tvwcvf4klk/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cma1deifr00ec12tvgbajyff3_cma1djk6300ek12tvwcvf4klk', weight_name='lora.safetensors') image = pipeline('SHOWTIME').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cma1deifr00ec12tvgbajyff3_cma1djk6300ek12tvwcvf4klk/discussions) to add images that show off what you’ve made with this LoRA.
Yashaque/yash
Yashaque
2025-04-28T18:17:01Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2025-04-28T18:16:54Z
--- license: creativeml-openrail-m ---
NEW-EXCLUSIVE-Paro-Aarti-Viral-Video/FULL.VIDEO.LINK.Paro.Aarti.Viral.Video.Leaks.official.tutorial
NEW-EXCLUSIVE-Paro-Aarti-Viral-Video
2025-04-28T18:16:49Z
0
0
null
[ "region:us" ]
null
2025-04-28T18:16:11Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/yd5fmvay?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> Actor Paro Aarti Original Video video took the internet by storm and amazed viewers on various social media platforms. Actor Paro Aarti, a young and talented digital creator, recently became famous thanks to this interesting video. L𝚎aᴋed Video Actor Paro Aarti Original Video V𝐢ral Video L𝚎aᴋed on X Twitter Actor Paro Aarti Original Video video oficial twitter L𝚎aᴋed Video Actor Paro Aarti Original Video V𝐢ral Video L𝚎aᴋed on X Twitter.
phospho-app/so100_Orange2Green-x00wrphuhn
phospho-app
2025-04-28T18:16:08Z
0
0
null
[ "phosphobot", "gr00t", "region:us" ]
null
2025-04-28T18:15:50Z
--- tags: - phosphobot - gr00t task_categories: - robotics --- # gr00t Model - phospho Training Pipeline ## Error Traceback We faced an issue while training your model. ``` Traceback (most recent call last): File "/root/src/helper.py", line 153, in predict raise RuntimeError( RuntimeError: Resizing dataset RasmusP/so100_Orange2Green to 224x224 failed: False ``` ## Training parameters: - **Dataset**: [RasmusP/so100_Orange2Green](https://huggingface.co/datasets/RasmusP/so100_Orange2Green) - **Wandb run URL**: None - **Epochs**: 10 - **Batch size**: 64 - **Training steps**: None 📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=replicate_groot_training_pipeline) 🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=replicate_groot_training_pipeline)
BootesVoid/cm9x549d901fsvc0915q4il31_cma1clusm00d612tvlmk2dms1
BootesVoid
2025-04-28T18:13:47Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-04-28T18:13:27Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: BAGI628836 --- # Cm9X549D901Fsvc0915Q4Il31_Cma1Clusm00D612Tvlmk2Dms1 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `BAGI628836` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "BAGI628836", "lora_weights": "https://huggingface.co/BootesVoid/cm9x549d901fsvc0915q4il31_cma1clusm00d612tvlmk2dms1/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cm9x549d901fsvc0915q4il31_cma1clusm00d612tvlmk2dms1', weight_name='lora.safetensors') image = pipeline('BAGI628836').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cm9x549d901fsvc0915q4il31_cma1clusm00d612tvlmk2dms1/discussions) to add images that show off what you’ve made with this LoRA.
Ky64/Ky
Ky64
2025-04-28T18:13:45Z
0
0
null
[ "license:etalab-2.0", "region:us" ]
null
2025-04-28T18:13:39Z
--- license: etalab-2.0 ---
ijterror/SuraFluxLoRA
ijterror
2025-04-28T18:08:14Z
0
0
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "fluxgym", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-04-25T11:08:58Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - fluxgym base_model: black-forest-labs/FLUX.1-dev instance_prompt: rgnrksr license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # ragnaroksura A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym) <Gallery /> ## Trigger words You should use `rgnrksr` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc. Weights for this model are available in Safetensors format.
gangu-chettri-kanda-7-2-video-viral/Gangu.Chettri.Kanda.7.2.minute.Videos.oficial
gangu-chettri-kanda-7-2-video-viral
2025-04-28T18:04:04Z
0
0
null
[ "region:us" ]
null
2025-04-28T18:03:46Z
<animated-image data-catalyst=""><a href="https://sexleakedviral.com/new-leaked-video/?news-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
wanghaonaERYH/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-bellowing_ferocious_lynx
wanghaonaERYH
2025-04-28T18:00:22Z
5
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am bellowing ferocious lynx", "trl", "conversational", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-22T12:52:39Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-bellowing_ferocious_lynx tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am bellowing ferocious lynx - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-bellowing_ferocious_lynx This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="wanghaonaERYH/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-bellowing_ferocious_lynx", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
phospho-app/Lego_bleu-1234567876543456
phospho-app
2025-04-28T17:57:24Z
0
0
null
[ "safetensors", "phosphobot", "act", "region:us" ]
null
2025-04-28T17:07:52Z
--- tags: - phosphobot - act task_categories: - robotics --- # act Model - phospho Training Pipeline ## This model was trained using **phospho**. Training was successfull, try it out on your robot! ## Training parameters: - **Dataset**: [omourier/Lego_bleu](https://huggingface.co/datasets/omourier/Lego_bleu) - **Wandb run URL**: None - **Epochs**: None - **Batch size**: 50 - **Training steps**: 8000 📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=replicate_groot_training_pipeline) 🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=replicate_groot_training_pipeline)
Original-Video18aina-syahirah-viral-vid/Link-18-video-aboubakar-olivier-h-video-aboubakar-olivier-h-gard-telegram
Original-Video18aina-syahirah-viral-vid
2025-04-28T17:56:29Z
0
0
null
[ "region:us" ]
null
2025-04-28T17:55:04Z
Watch 🟢 ➤ ➤ ➤ <a href="https://witvidz.com/Link-18-video-aboubakar-olivier-h-video-aboubakar-olivier-h-gard-telegram"> 🌐 Click Here To link (Full Viral Video Link) 🔴 ➤►DOWNLOAD👉👉🟢 ➤ Watch 🟢 ➤ ➤ ➤ <a href="https://witvidz.com/Link-18-video-aboubakar-olivier-h-video-aboubakar-olivier-h-gard-telegram"> 🌐 Click Here To link (Full Viral Video Link) 🔴 ➤►DOWNLOAD👉👉🟢 ➤ Link 18+ video aboubakar olivier h video aboubakar olivier h gard telegram Link 18+ video aboubakar olivier h video aboubakar olivier h gard telegram Link 18+ video aboubakar olivier h video aboubakar olivier h gard telegram
precedentbrute/pruned40-llama-1b-instruct-ultramed-sft-tq1
precedentbrute
2025-04-28T17:53:45Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-28T17:52:37Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
19uez/GRPO_llama3_2_3B_64_005_1k_part1
19uez
2025-04-28T17:51:37Z
0
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "unsloth", "trl", "grpo", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-28T17:50:40Z
--- library_name: transformers tags: - unsloth - trl - grpo --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
m2macminipro/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-mottled_humming_locust
m2macminipro
2025-04-28T17:49:17Z
7
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am mottled humming locust", "trl", "conversational", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-21T15:20:39Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-mottled_humming_locust tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am mottled humming locust - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-mottled_humming_locust This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="m2macminipro/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-mottled_humming_locust", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Benjaminpwh/xls-r-base-300m-toratan-240
Benjaminpwh
2025-04-28T17:47:31Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:facebook/wav2vec2-xls-r-300m", "base_model:finetune:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-04-28T12:42:57Z
--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer model-index: - name: xls-r-base-300m-toratan-240 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-base-300m-toratan-240 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0093 - Cer: 0.0027 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 4.1579 | 2.0833 | 400 | 1.6854 | 0.4430 | | 1.5758 | 4.1667 | 800 | 1.0236 | 0.2938 | | 1.2033 | 6.25 | 1200 | 0.7921 | 0.2512 | | 0.9625 | 8.3333 | 1600 | 0.5875 | 0.1755 | | 0.8087 | 10.4167 | 2000 | 0.4633 | 0.1577 | | 0.6701 | 12.5 | 2400 | 0.3454 | 0.1186 | | 0.5412 | 14.5833 | 2800 | 0.2316 | 0.0844 | | 0.4432 | 16.6667 | 3200 | 0.1534 | 0.0565 | | 0.3654 | 18.75 | 3600 | 0.0914 | 0.0379 | | 0.288 | 20.8333 | 4000 | 0.0501 | 0.0194 | | 0.2336 | 22.9167 | 4400 | 0.0333 | 0.0117 | | 0.2041 | 25.0 | 4800 | 0.0197 | 0.0069 | | 0.1659 | 27.0833 | 5200 | 0.0108 | 0.0033 | | 0.1436 | 29.1667 | 5600 | 0.0093 | 0.0027 | ### Framework versions - Transformers 4.52.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1
BootesVoid/cm9x549d901fsvc0915q4il31_cma1c0jy200cv12tv2i0vuemd
BootesVoid
2025-04-28T17:46:44Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-04-28T17:46:43Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: IR24688357AIOFM --- # Cm9X549D901Fsvc0915Q4Il31_Cma1C0Jy200Cv12Tv2I0Vuemd <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `IR24688357AIOFM` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "IR24688357AIOFM", "lora_weights": "https://huggingface.co/BootesVoid/cm9x549d901fsvc0915q4il31_cma1c0jy200cv12tv2i0vuemd/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cm9x549d901fsvc0915q4il31_cma1c0jy200cv12tv2i0vuemd', weight_name='lora.safetensors') image = pipeline('IR24688357AIOFM').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cm9x549d901fsvc0915q4il31_cma1c0jy200cv12tv2i0vuemd/discussions) to add images that show off what you’ve made with this LoRA.
joel4899/bart-answer-generation
joel4899
2025-04-28T17:44:38Z
0
0
transformers
[ "transformers", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "base_model:facebook/bart-base", "base_model:finetune:facebook/bart-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2025-04-24T13:49:31Z
--- library_name: transformers license: apache-2.0 base_model: facebook/bart-base tags: - generated_from_trainer model-index: - name: bart-answer-generation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-answer-generation This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0152 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0283 | 1.0 | 299 | 0.0223 | | 0.0218 | 2.0 | 598 | 0.0179 | | 0.0177 | 3.0 | 897 | 0.0155 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0+cpu - Datasets 3.0.1 - Tokenizers 0.20.0
dyang39/SIM-RAG-2B
dyang39
2025-04-28T17:44:16Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-04-28T17:44:16Z
--- license: apache-2.0 ---
dzanbek/981ea37f-b92c-40b7-8ece-0ffef99e04bb
dzanbek
2025-04-28T17:43:49Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Llama-3.2-1B", "base_model:adapter:NousResearch/Llama-3.2-1B", "license:llama3.2", "8-bit", "bitsandbytes", "region:us" ]
null
2025-04-28T17:40:12Z
--- library_name: peft license: llama3.2 base_model: NousResearch/Llama-3.2-1B tags: - axolotl - generated_from_trainer model-index: - name: 981ea37f-b92c-40b7-8ece-0ffef99e04bb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: false adapter: lora base_model: NousResearch/Llama-3.2-1B bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - 4c99c18ef799ce51_train_data.json ds_type: json format: custom path: /workspace/input_data/4c99c18ef799ce51_train_data.json type: field_input: knowledge field_instruction: dialogue_history field_output: right_response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: dzanbek/981ea37f-b92c-40b7-8ece-0ffef99e04bb hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/4c99c18ef799ce51_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|end_of_text|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 5c3ae6f1-b897-49d3-82bc-1ca1330bf1d7 wandb_project: s56-2 wandb_run: your_name wandb_runid: 5c3ae6f1-b897-49d3-82bc-1ca1330bf1d7 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 981ea37f-b92c-40b7-8ece-0ffef99e04bb This model is a fine-tuned version of [NousResearch/Llama-3.2-1B](https://huggingface.co/NousResearch/Llama-3.2-1B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5022 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.1521 | 0.1871 | 200 | 2.5022 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
kjjddl225687/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-long_elusive_alligator
kjjddl225687
2025-04-28T17:41:46Z
5
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am long elusive alligator", "trl", "conversational", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-22T12:36:54Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-long_elusive_alligator tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am long elusive alligator - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-long_elusive_alligator This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="kjjddl225687/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-long_elusive_alligator", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
marialvsantiago/d7e8f976-e6ef-4a79-b4ca-b7a0d8929b45
marialvsantiago
2025-04-28T17:41:42Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Llama-3.2-1B", "base_model:adapter:NousResearch/Llama-3.2-1B", "license:llama3.2", "4-bit", "bitsandbytes", "region:us" ]
null
2025-04-28T17:40:11Z
--- library_name: peft license: llama3.2 base_model: NousResearch/Llama-3.2-1B tags: - axolotl - generated_from_trainer model-index: - name: d7e8f976-e6ef-4a79-b4ca-b7a0d8929b45 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Llama-3.2-1B bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 4c99c18ef799ce51_train_data.json ds_type: json format: custom path: /workspace/input_data/4c99c18ef799ce51_train_data.json type: field_input: knowledge field_instruction: dialogue_history field_output: right_response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: marialvsantiago/d7e8f976-e6ef-4a79-b4ca-b7a0d8929b45 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/4c99c18ef799ce51_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|end_of_text|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 5c3ae6f1-b897-49d3-82bc-1ca1330bf1d7 wandb_project: s56-33 wandb_run: your_name wandb_runid: 5c3ae6f1-b897-49d3-82bc-1ca1330bf1d7 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # d7e8f976-e6ef-4a79-b4ca-b7a0d8929b45 This model is a fine-tuned version of [NousResearch/Llama-3.2-1B](https://huggingface.co/NousResearch/Llama-3.2-1B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6806 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.3338 | 0.1871 | 200 | 2.6806 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Speedsy/tr-bert-base-128k-8000
Speedsy
2025-04-28T17:38:17Z
0
0
PyLate
[ "PyLate", "safetensors", "bert", "ColBERT", "sentence-transformers", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:798036", "loss:Distillation", "en", "dataset:Speedsy/ms-marco-tr-bge", "arxiv:1908.10084", "base_model:dbmdz/bert-base-turkish-128k-cased", "base_model:finetune:dbmdz/bert-base-turkish-128k-cased", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-04-28T17:36:59Z
--- language: - en tags: - ColBERT - PyLate - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:798036 - loss:Distillation base_model: dbmdz/bert-base-turkish-128k-cased datasets: - Speedsy/ms-marco-tr-bge pipeline_tag: sentence-similarity library_name: PyLate --- # PyLate model based on dbmdz/bert-base-turkish-128k-cased This is a [PyLate](https://github.com/lightonai/pylate) model finetuned from [dbmdz/bert-base-turkish-128k-cased](https://huggingface.co/dbmdz/bert-base-turkish-128k-cased) on the [train](https://huggingface.co/datasets/Speedsy/ms-marco-tr-bge) dataset. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator. ## Model Details ### Model Description - **Model Type:** PyLate model - **Base model:** [dbmdz/bert-base-turkish-128k-cased](https://huggingface.co/dbmdz/bert-base-turkish-128k-cased) <!-- at revision fea322505a69df97c8bd7a01863159eb4b45900f --> - **Document Length:** 180 tokens - **Query Length:** 32 tokens - **Output Dimensionality:** 128 tokens - **Similarity Function:** MaxSim - **Training Dataset:** - [train](https://huggingface.co/datasets/Speedsy/ms-marco-tr-bge) - **Language:** en <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [PyLate Documentation](https://lightonai.github.io/pylate/) - **Repository:** [PyLate on GitHub](https://github.com/lightonai/pylate) - **Hugging Face:** [PyLate models on Hugging Face](https://huggingface.co/models?library=PyLate) ### Full Model Architecture ``` ColBERT( (0): Transformer({'max_seq_length': 179, 'do_lower_case': False}) with Transformer model: BertModel (1): Dense({'in_features': 768, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'}) ) ``` ## Usage First install the PyLate library: ```bash pip install -U pylate ``` ### Retrieval PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval. #### Indexing documents First, load the ColBERT model and initialize the Voyager index, then encode and index your documents: ```python from pylate import indexes, models, retrieve # Step 1: Load the ColBERT model model = models.ColBERT( model_name_or_path=pylate_model_id, ) # Step 2: Initialize the Voyager index index = indexes.Voyager( index_folder="pylate-index", index_name="index", override=True, # This overwrites the existing index if any ) # Step 3: Encode the documents documents_ids = ["1", "2", "3"] documents = ["document 1 text", "document 2 text", "document 3 text"] documents_embeddings = model.encode( documents, batch_size=32, is_query=False, # Ensure that it is set to False to indicate that these are documents, not queries show_progress_bar=True, ) # Step 4: Add document embeddings to the index by providing embeddings and corresponding ids index.add_documents( documents_ids=documents_ids, documents_embeddings=documents_embeddings, ) ``` Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it: ```python # To load an index, simply instantiate it with the correct folder/name and without overriding it index = indexes.Voyager( index_folder="pylate-index", index_name="index", ) ``` #### Retrieving top-k documents for queries Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries. To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores: ```python # Step 1: Initialize the ColBERT retriever retriever = retrieve.ColBERT(index=index) # Step 2: Encode the queries queries_embeddings = model.encode( ["query for document 3", "query for document 1"], batch_size=32, is_query=True, # # Ensure that it is set to False to indicate that these are queries show_progress_bar=True, ) # Step 3: Retrieve top-k documents scores = retriever.retrieve( queries_embeddings=queries_embeddings, k=10, # Retrieve the top 10 matches for each query ) ``` ### Reranking If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank: ```python from pylate import rank, models queries = [ "query A", "query B", ] documents = [ ["document A", "document B"], ["document 1", "document C", "document B"], ] documents_ids = [ [1, 2], [1, 3, 2], ] model = models.ColBERT( model_name_or_path=pylate_model_id, ) queries_embeddings = model.encode( queries, is_query=True, ) documents_embeddings = model.encode( documents, is_query=False, ) reranked_documents = rank.rerank( documents_ids=documents_ids, queries_embeddings=queries_embeddings, documents_embeddings=documents_embeddings, ) ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### train * Dataset: [train](https://huggingface.co/datasets/Speedsy/ms-marco-tr-bge) at [b9b0f7f](https://huggingface.co/datasets/Speedsy/ms-marco-tr-bge/tree/b9b0f7fd13c3ce3b632a3a1cd37f6ddbf8a040f5) * Size: 798,036 training samples * Columns: <code>query_id</code>, <code>document_ids</code>, and <code>scores</code> * Approximate statistics based on the first 1000 samples: | | query_id | document_ids | scores | |:--------|:--------------------------------------------------------------------------------|:------------------------------------|:------------------------------------| | type | string | list | list | | details | <ul><li>min: 4 tokens</li><li>mean: 5.83 tokens</li><li>max: 6 tokens</li></ul> | <ul><li>size: 32 elements</li></ul> | <ul><li>size: 32 elements</li></ul> | * Samples: | query_id | document_ids | scores | |:---------------------|:--------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------| | <code>817836</code> | <code>['2716076', '6741935', '2681109', '5562684', '3507339', ...]</code> | <code>[1.0, 0.7059561610221863, 0.21702419221401215, 0.38270196318626404, 0.20812414586544037, ...]</code> | | <code>1045170</code> | <code>['5088671', '2953295', '8783471', '4268439', '6339935', ...]</code> | <code>[1.0, 0.6493034362792969, 0.0692221149802208, 0.17963139712810516, 0.6697239875793457, ...]</code> | | <code>1154488</code> | <code>['6498614', '3770829', '1060712', '2590533', '7672044', ...]</code> | <code>[0.9497447609901428, 0.6662212610244751, 0.7423420548439026, 1.0, 0.6580896973609924, ...]</code> | * Loss: <code>pylate.losses.distillation.Distillation</code> ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 16 - `learning_rate`: 3e-05 - `num_train_epochs`: 1 - `bf16`: True #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 3e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | |:------:|:----:|:-------------:| | 0.0100 | 500 | 0.0295 | | 0.0200 | 1000 | 0.0263 | | 0.0301 | 1500 | 0.0239 | | 0.0401 | 2000 | 0.0234 | | 0.0501 | 2500 | 0.0227 | | 0.0601 | 3000 | 0.0216 | | 0.0702 | 3500 | 0.0234 | | 0.0802 | 4000 | 0.0217 | | 0.0902 | 4500 | 0.0212 | | 0.1002 | 5000 | 0.0206 | | 0.1103 | 5500 | 0.0206 | | 0.1203 | 6000 | 0.0209 | | 0.1303 | 6500 | 0.0213 | | 0.1403 | 7000 | 0.0318 | | 0.1504 | 7500 | 0.0457 | | 0.1604 | 8000 | 0.0453 | ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 3.4.1 - PyLate: 1.1.7 - Transformers: 4.48.3 - PyTorch: 2.5.1+cu124 - Accelerate: 1.3.0 - Datasets: 3.5.1 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084" } ``` #### PyLate ```bibtex @misc{PyLate, title={PyLate: Flexible Training and Retrieval for Late Interaction Models}, author={Chaffin, Antoine and Sourty, Raphaël}, url={https://github.com/lightonai/pylate}, year={2024} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
Tung177/KLTN_Qwen2.5-3B-Instruct-SS-lr0.0002e3r16bs64
Tung177
2025-04-28T17:36:54Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Qwen/Qwen2.5-3B-Instruct", "base_model:adapter:Qwen/Qwen2.5-3B-Instruct", "region:us" ]
null
2025-04-28T17:36:33Z
--- base_model: Qwen/Qwen2.5-3B-Instruct library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.14.0
withpi/pi_scorer_ce_bert_v3_g_144000
withpi
2025-04-28T17:36:08Z
0
0
transformers
[ "transformers", "safetensors", "modernbert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-04-28T17:35:18Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Speedsy/tr-bert-base-128k-7000
Speedsy
2025-04-28T17:35:32Z
0
0
PyLate
[ "PyLate", "safetensors", "bert", "ColBERT", "sentence-transformers", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:798036", "loss:Distillation", "en", "dataset:Speedsy/ms-marco-tr-bge", "arxiv:1908.10084", "base_model:dbmdz/bert-base-turkish-128k-cased", "base_model:finetune:dbmdz/bert-base-turkish-128k-cased", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-04-28T17:34:20Z
--- language: - en tags: - ColBERT - PyLate - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:798036 - loss:Distillation base_model: dbmdz/bert-base-turkish-128k-cased datasets: - Speedsy/ms-marco-tr-bge pipeline_tag: sentence-similarity library_name: PyLate --- # PyLate model based on dbmdz/bert-base-turkish-128k-cased This is a [PyLate](https://github.com/lightonai/pylate) model finetuned from [dbmdz/bert-base-turkish-128k-cased](https://huggingface.co/dbmdz/bert-base-turkish-128k-cased) on the [train](https://huggingface.co/datasets/Speedsy/ms-marco-tr-bge) dataset. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator. ## Model Details ### Model Description - **Model Type:** PyLate model - **Base model:** [dbmdz/bert-base-turkish-128k-cased](https://huggingface.co/dbmdz/bert-base-turkish-128k-cased) <!-- at revision fea322505a69df97c8bd7a01863159eb4b45900f --> - **Document Length:** 180 tokens - **Query Length:** 32 tokens - **Output Dimensionality:** 128 tokens - **Similarity Function:** MaxSim - **Training Dataset:** - [train](https://huggingface.co/datasets/Speedsy/ms-marco-tr-bge) - **Language:** en <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [PyLate Documentation](https://lightonai.github.io/pylate/) - **Repository:** [PyLate on GitHub](https://github.com/lightonai/pylate) - **Hugging Face:** [PyLate models on Hugging Face](https://huggingface.co/models?library=PyLate) ### Full Model Architecture ``` ColBERT( (0): Transformer({'max_seq_length': 179, 'do_lower_case': False}) with Transformer model: BertModel (1): Dense({'in_features': 768, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'}) ) ``` ## Usage First install the PyLate library: ```bash pip install -U pylate ``` ### Retrieval PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval. #### Indexing documents First, load the ColBERT model and initialize the Voyager index, then encode and index your documents: ```python from pylate import indexes, models, retrieve # Step 1: Load the ColBERT model model = models.ColBERT( model_name_or_path=pylate_model_id, ) # Step 2: Initialize the Voyager index index = indexes.Voyager( index_folder="pylate-index", index_name="index", override=True, # This overwrites the existing index if any ) # Step 3: Encode the documents documents_ids = ["1", "2", "3"] documents = ["document 1 text", "document 2 text", "document 3 text"] documents_embeddings = model.encode( documents, batch_size=32, is_query=False, # Ensure that it is set to False to indicate that these are documents, not queries show_progress_bar=True, ) # Step 4: Add document embeddings to the index by providing embeddings and corresponding ids index.add_documents( documents_ids=documents_ids, documents_embeddings=documents_embeddings, ) ``` Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it: ```python # To load an index, simply instantiate it with the correct folder/name and without overriding it index = indexes.Voyager( index_folder="pylate-index", index_name="index", ) ``` #### Retrieving top-k documents for queries Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries. To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores: ```python # Step 1: Initialize the ColBERT retriever retriever = retrieve.ColBERT(index=index) # Step 2: Encode the queries queries_embeddings = model.encode( ["query for document 3", "query for document 1"], batch_size=32, is_query=True, # # Ensure that it is set to False to indicate that these are queries show_progress_bar=True, ) # Step 3: Retrieve top-k documents scores = retriever.retrieve( queries_embeddings=queries_embeddings, k=10, # Retrieve the top 10 matches for each query ) ``` ### Reranking If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank: ```python from pylate import rank, models queries = [ "query A", "query B", ] documents = [ ["document A", "document B"], ["document 1", "document C", "document B"], ] documents_ids = [ [1, 2], [1, 3, 2], ] model = models.ColBERT( model_name_or_path=pylate_model_id, ) queries_embeddings = model.encode( queries, is_query=True, ) documents_embeddings = model.encode( documents, is_query=False, ) reranked_documents = rank.rerank( documents_ids=documents_ids, queries_embeddings=queries_embeddings, documents_embeddings=documents_embeddings, ) ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### train * Dataset: [train](https://huggingface.co/datasets/Speedsy/ms-marco-tr-bge) at [b9b0f7f](https://huggingface.co/datasets/Speedsy/ms-marco-tr-bge/tree/b9b0f7fd13c3ce3b632a3a1cd37f6ddbf8a040f5) * Size: 798,036 training samples * Columns: <code>query_id</code>, <code>document_ids</code>, and <code>scores</code> * Approximate statistics based on the first 1000 samples: | | query_id | document_ids | scores | |:--------|:--------------------------------------------------------------------------------|:------------------------------------|:------------------------------------| | type | string | list | list | | details | <ul><li>min: 4 tokens</li><li>mean: 5.83 tokens</li><li>max: 6 tokens</li></ul> | <ul><li>size: 32 elements</li></ul> | <ul><li>size: 32 elements</li></ul> | * Samples: | query_id | document_ids | scores | |:---------------------|:--------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------| | <code>817836</code> | <code>['2716076', '6741935', '2681109', '5562684', '3507339', ...]</code> | <code>[1.0, 0.7059561610221863, 0.21702419221401215, 0.38270196318626404, 0.20812414586544037, ...]</code> | | <code>1045170</code> | <code>['5088671', '2953295', '8783471', '4268439', '6339935', ...]</code> | <code>[1.0, 0.6493034362792969, 0.0692221149802208, 0.17963139712810516, 0.6697239875793457, ...]</code> | | <code>1154488</code> | <code>['6498614', '3770829', '1060712', '2590533', '7672044', ...]</code> | <code>[0.9497447609901428, 0.6662212610244751, 0.7423420548439026, 1.0, 0.6580896973609924, ...]</code> | * Loss: <code>pylate.losses.distillation.Distillation</code> ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 16 - `learning_rate`: 3e-05 - `num_train_epochs`: 1 - `bf16`: True #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 3e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | |:------:|:----:|:-------------:| | 0.0100 | 500 | 0.0295 | | 0.0200 | 1000 | 0.0263 | | 0.0301 | 1500 | 0.0239 | | 0.0401 | 2000 | 0.0234 | | 0.0501 | 2500 | 0.0227 | | 0.0601 | 3000 | 0.0216 | | 0.0702 | 3500 | 0.0234 | | 0.0802 | 4000 | 0.0217 | | 0.0902 | 4500 | 0.0212 | | 0.1002 | 5000 | 0.0206 | | 0.1103 | 5500 | 0.0206 | | 0.1203 | 6000 | 0.0209 | | 0.1303 | 6500 | 0.0213 | | 0.1403 | 7000 | 0.0318 | ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 3.4.1 - PyLate: 1.1.7 - Transformers: 4.48.3 - PyTorch: 2.5.1+cu124 - Accelerate: 1.3.0 - Datasets: 3.5.1 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084" } ``` #### PyLate ```bibtex @misc{PyLate, title={PyLate: Flexible Training and Retrieval for Late Interaction Models}, author={Chaffin, Antoine and Sourty, Raphaël}, url={https://github.com/lightonai/pylate}, year={2024} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
Leidy-Alvarez-video-viral-Or/Kulhad.pizza.couple.Leaked.Video.Viral.On.X.Twitter.Instagram
Leidy-Alvarez-video-viral-Or
2025-04-28T17:31:14Z
0
0
null
[ "region:us" ]
null
2025-04-28T17:29:44Z
Watch 🟢 ➤ ➤ ➤ <a href="https://witvidz.com/18-NEW-Kulhad-pizza-couple-Leaked-Video-Viral-On-X-Twitter-Instagrams"> 🌐 Click Here To link (Full Viral Video Link) 🔴 ➤►DOWNLOAD👉👉🟢 ➤ Watch 🟢 ➤ ➤ ➤ <a href="https://witvidz.com/18-NEW-Kulhad-pizza-couple-Leaked-Video-Viral-On-X-Twitter-Instagrams"> 🌐 Click Here To link (Full Viral Video Link) 🔴 ➤►DOWNLOAD👉👉🟢 ➤ ![68747470733a2f2f692e696d6775722e636f6d2f644a486b345a712e676966.gif](https://cdn-uploads.huggingface.co/production/uploads/680fb84b7f77878530cee111/OANq9oDEKpEkV4saoooXK.gif)
Hahmdong/codeact-glm-4-9b-chat
Hahmdong
2025-04-28T17:30:16Z
0
0
transformers
[ "transformers", "safetensors", "chatglm", "feature-extraction", "custom_code", "arxiv:1910.09700", "region:us" ]
feature-extraction
2025-04-28T17:18:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Speedsy/tr-bert-base-128k-4500
Speedsy
2025-04-28T17:28:35Z
0
0
PyLate
[ "PyLate", "safetensors", "bert", "ColBERT", "sentence-transformers", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:798036", "loss:Distillation", "en", "dataset:Speedsy/ms-marco-tr-bge", "arxiv:1908.10084", "base_model:dbmdz/bert-base-turkish-128k-cased", "base_model:finetune:dbmdz/bert-base-turkish-128k-cased", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-04-28T17:27:20Z
--- language: - en tags: - ColBERT - PyLate - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:798036 - loss:Distillation base_model: dbmdz/bert-base-turkish-128k-cased datasets: - Speedsy/ms-marco-tr-bge pipeline_tag: sentence-similarity library_name: PyLate --- # PyLate model based on dbmdz/bert-base-turkish-128k-cased This is a [PyLate](https://github.com/lightonai/pylate) model finetuned from [dbmdz/bert-base-turkish-128k-cased](https://huggingface.co/dbmdz/bert-base-turkish-128k-cased) on the [train](https://huggingface.co/datasets/Speedsy/ms-marco-tr-bge) dataset. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator. ## Model Details ### Model Description - **Model Type:** PyLate model - **Base model:** [dbmdz/bert-base-turkish-128k-cased](https://huggingface.co/dbmdz/bert-base-turkish-128k-cased) <!-- at revision fea322505a69df97c8bd7a01863159eb4b45900f --> - **Document Length:** 180 tokens - **Query Length:** 32 tokens - **Output Dimensionality:** 128 tokens - **Similarity Function:** MaxSim - **Training Dataset:** - [train](https://huggingface.co/datasets/Speedsy/ms-marco-tr-bge) - **Language:** en <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [PyLate Documentation](https://lightonai.github.io/pylate/) - **Repository:** [PyLate on GitHub](https://github.com/lightonai/pylate) - **Hugging Face:** [PyLate models on Hugging Face](https://huggingface.co/models?library=PyLate) ### Full Model Architecture ``` ColBERT( (0): Transformer({'max_seq_length': 179, 'do_lower_case': False}) with Transformer model: BertModel (1): Dense({'in_features': 768, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'}) ) ``` ## Usage First install the PyLate library: ```bash pip install -U pylate ``` ### Retrieval PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval. #### Indexing documents First, load the ColBERT model and initialize the Voyager index, then encode and index your documents: ```python from pylate import indexes, models, retrieve # Step 1: Load the ColBERT model model = models.ColBERT( model_name_or_path=pylate_model_id, ) # Step 2: Initialize the Voyager index index = indexes.Voyager( index_folder="pylate-index", index_name="index", override=True, # This overwrites the existing index if any ) # Step 3: Encode the documents documents_ids = ["1", "2", "3"] documents = ["document 1 text", "document 2 text", "document 3 text"] documents_embeddings = model.encode( documents, batch_size=32, is_query=False, # Ensure that it is set to False to indicate that these are documents, not queries show_progress_bar=True, ) # Step 4: Add document embeddings to the index by providing embeddings and corresponding ids index.add_documents( documents_ids=documents_ids, documents_embeddings=documents_embeddings, ) ``` Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it: ```python # To load an index, simply instantiate it with the correct folder/name and without overriding it index = indexes.Voyager( index_folder="pylate-index", index_name="index", ) ``` #### Retrieving top-k documents for queries Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries. To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores: ```python # Step 1: Initialize the ColBERT retriever retriever = retrieve.ColBERT(index=index) # Step 2: Encode the queries queries_embeddings = model.encode( ["query for document 3", "query for document 1"], batch_size=32, is_query=True, # # Ensure that it is set to False to indicate that these are queries show_progress_bar=True, ) # Step 3: Retrieve top-k documents scores = retriever.retrieve( queries_embeddings=queries_embeddings, k=10, # Retrieve the top 10 matches for each query ) ``` ### Reranking If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank: ```python from pylate import rank, models queries = [ "query A", "query B", ] documents = [ ["document A", "document B"], ["document 1", "document C", "document B"], ] documents_ids = [ [1, 2], [1, 3, 2], ] model = models.ColBERT( model_name_or_path=pylate_model_id, ) queries_embeddings = model.encode( queries, is_query=True, ) documents_embeddings = model.encode( documents, is_query=False, ) reranked_documents = rank.rerank( documents_ids=documents_ids, queries_embeddings=queries_embeddings, documents_embeddings=documents_embeddings, ) ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### train * Dataset: [train](https://huggingface.co/datasets/Speedsy/ms-marco-tr-bge) at [b9b0f7f](https://huggingface.co/datasets/Speedsy/ms-marco-tr-bge/tree/b9b0f7fd13c3ce3b632a3a1cd37f6ddbf8a040f5) * Size: 798,036 training samples * Columns: <code>query_id</code>, <code>document_ids</code>, and <code>scores</code> * Approximate statistics based on the first 1000 samples: | | query_id | document_ids | scores | |:--------|:--------------------------------------------------------------------------------|:------------------------------------|:------------------------------------| | type | string | list | list | | details | <ul><li>min: 4 tokens</li><li>mean: 5.83 tokens</li><li>max: 6 tokens</li></ul> | <ul><li>size: 32 elements</li></ul> | <ul><li>size: 32 elements</li></ul> | * Samples: | query_id | document_ids | scores | |:---------------------|:--------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------| | <code>817836</code> | <code>['2716076', '6741935', '2681109', '5562684', '3507339', ...]</code> | <code>[1.0, 0.7059561610221863, 0.21702419221401215, 0.38270196318626404, 0.20812414586544037, ...]</code> | | <code>1045170</code> | <code>['5088671', '2953295', '8783471', '4268439', '6339935', ...]</code> | <code>[1.0, 0.6493034362792969, 0.0692221149802208, 0.17963139712810516, 0.6697239875793457, ...]</code> | | <code>1154488</code> | <code>['6498614', '3770829', '1060712', '2590533', '7672044', ...]</code> | <code>[0.9497447609901428, 0.6662212610244751, 0.7423420548439026, 1.0, 0.6580896973609924, ...]</code> | * Loss: <code>pylate.losses.distillation.Distillation</code> ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 16 - `learning_rate`: 3e-05 - `num_train_epochs`: 1 - `bf16`: True #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 3e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | |:------:|:----:|:-------------:| | 0.0100 | 500 | 0.0295 | | 0.0200 | 1000 | 0.0263 | | 0.0301 | 1500 | 0.0239 | | 0.0401 | 2000 | 0.0234 | | 0.0501 | 2500 | 0.0227 | | 0.0601 | 3000 | 0.0216 | | 0.0702 | 3500 | 0.0234 | | 0.0802 | 4000 | 0.0217 | | 0.0902 | 4500 | 0.0212 | ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 3.4.1 - PyLate: 1.1.7 - Transformers: 4.48.3 - PyTorch: 2.5.1+cu124 - Accelerate: 1.3.0 - Datasets: 3.5.1 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084" } ``` #### PyLate ```bibtex @misc{PyLate, title={PyLate: Flexible Training and Retrieval for Late Interaction Models}, author={Chaffin, Antoine and Sourty, Raphaël}, url={https://github.com/lightonai/pylate}, year={2024} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
Leidy-Alvarez-video-viral-Or/fILTRADO-lady-alvarez-video-viral-Original-Video-Viral-De-Leidy-Alvarez
Leidy-Alvarez-video-viral-Or
2025-04-28T17:26:51Z
0
0
null
[ "region:us" ]
null
2025-04-28T17:25:46Z
Watch 🟢 ➤ ➤ ➤ <a href="https://witvidz.com/@-^-[fILTRADO]-lady-alvarez-video-viral-Original-Video-Viral-De-Leidy-Alvarez"> 🌐 Click Here To link (Full Viral Video Link) 🔴 ➤►DOWNLOAD👉👉🟢 ➤ Watch 🟢 ➤ ➤ ➤ <a href="https://witvidz.com/@-^-[fILTRADO]-lady-alvarez-video-viral-Original-Video-Viral-De-Leidy-Alvarez"> 🌐 Click Here To link (Full Viral Video Link) 🔴 ➤►DOWNLOAD👉👉🟢 ➤ ![68747470733a2f2f692e696d6775722e636f6d2f644a486b345a712e676966.gif](https://cdn-uploads.huggingface.co/production/uploads/680fb84b7f77878530cee111/CcdEi5YVJs6Iixi5MidAT.gif)
tranha/whisper-large-v3-lo
tranha
2025-04-28T17:21:54Z
0
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:openai/whisper-large-v3-turbo", "base_model:finetune:openai/whisper-large-v3-turbo", "license:mit", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-04-28T16:27:27Z
--- library_name: transformers license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-large-v3-lo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-large-v3-lo This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1983 - Wer: 71.1538 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 1.6568 | 1.7928 | 100 | 1.2393 | 358.3333 | | 1.0379 | 3.5766 | 200 | 0.6822 | 712.1795 | | 0.4132 | 5.3604 | 300 | 0.2719 | 204.4872 | | 0.1958 | 7.1441 | 400 | 0.2270 | 90.3846 | | 0.1485 | 8.9369 | 500 | 0.2470 | 81.4103 | | 0.1064 | 10.7207 | 600 | 0.1910 | 71.1538 | | 0.082 | 12.5045 | 700 | 0.2127 | 74.3590 | | 0.0492 | 14.2883 | 800 | 0.2299 | 69.8718 | | 0.0283 | 16.0721 | 900 | 0.2186 | 71.7949 | | 0.0182 | 17.8649 | 1000 | 0.1983 | 71.1538 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.7.0+cu126 - Datasets 3.5.0 - Tokenizers 0.21.1
VincentG1234/QWEN_7BQLORA_finetuned
VincentG1234
2025-04-28T17:20:36Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2_vl", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-04-28T17:20:18Z
--- base_model: unsloth/qwen2-vl-7b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2_vl - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** VincentG1234 - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2-vl-7b-instruct-unsloth-bnb-4bit This qwen2_vl model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
sharkMeow/cool_full_clip
sharkMeow
2025-04-28T17:20:18Z
1
0
transformers
[ "transformers", "safetensors", "chinese_clip", "generated_from_trainer", "base_model:OFA-Sys/chinese-clip-vit-base-patch16", "base_model:finetune:OFA-Sys/chinese-clip-vit-base-patch16", "endpoints_compatible", "region:us" ]
null
2025-03-25T07:13:31Z
--- library_name: transformers base_model: OFA-Sys/chinese-clip-vit-base-patch16 tags: - generated_from_trainer metrics: - accuracy model-index: - name: cool_full_clip results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cool_full_clip This model is a fine-tuned version of [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.9110 - Accuracy: 0.1265 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 50 - eval_batch_size: 20 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 200 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-------:|:------:|:--------:|:---------------:| | 2.1154 | 9.9998 | 21890 | 0.1279 | 2.7240 | | 2.0659 | 19.9957 | 43780 | 0.1278 | 2.7772 | | 1.9905 | 29.9970 | 65670 | 2.7804 | 0.1312 | | 1.9583 | 39.9925 | 87560 | 2.8292 | 0.1301 | | 1.9332 | 49.9879 | 109450 | 2.8340 | 0.1296 | | 1.9132 | 59.9833 | 131340 | 2.8476 | 0.1292 | | 1.8997 | 69.9788 | 153230 | 2.8616 | 0.1287 | | 1.8921 | 79.9742 | 175120 | 2.8884 | 0.1281 | | 1.8875 | 89.9696 | 197010 | 2.9169 | 0.1273 | | 1.8833 | 99.9651 | 218900 | 2.9121 | 0.1268 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
MariaJas/Diabetica-7B-Q2_K-GGUF
MariaJas
2025-04-28T17:19:00Z
0
0
transformers
[ "transformers", "gguf", "medical", "llama-cpp", "gguf-my-repo", "text-generation", "dataset:WaltonFuture/Diabetica-SFT", "base_model:WaltonFuture/Diabetica-7B", "base_model:quantized:WaltonFuture/Diabetica-7B", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-04-28T17:18:39Z
--- base_model: WaltonFuture/Diabetica-7B datasets: - WaltonFuture/Diabetica-SFT library_name: transformers license: mit pipeline_tag: text-generation tags: - medical - llama-cpp - gguf-my-repo --- # MariaJas/Diabetica-7B-Q2_K-GGUF This model was converted to GGUF format from [`WaltonFuture/Diabetica-7B`](https://huggingface.co/WaltonFuture/Diabetica-7B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/WaltonFuture/Diabetica-7B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo MariaJas/Diabetica-7B-Q2_K-GGUF --hf-file diabetica-7b-q2_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo MariaJas/Diabetica-7B-Q2_K-GGUF --hf-file diabetica-7b-q2_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo MariaJas/Diabetica-7B-Q2_K-GGUF --hf-file diabetica-7b-q2_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo MariaJas/Diabetica-7B-Q2_K-GGUF --hf-file diabetica-7b-q2_k.gguf -c 2048 ```
Triangle104/GLM-Z1-9B-0414-abliterated-Q6_K-GGUF
Triangle104
2025-04-28T17:16:20Z
0
0
transformers
[ "transformers", "gguf", "abliterated", "uncensored", "llama-cpp", "gguf-my-repo", "text-generation", "zh", "en", "base_model:huihui-ai/GLM-Z1-9B-0414-abliterated", "base_model:quantized:huihui-ai/GLM-Z1-9B-0414-abliterated", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-04-28T17:15:41Z
--- base_model: huihui-ai/GLM-Z1-9B-0414-abliterated language: - zh - en library_name: transformers license: mit pipeline_tag: text-generation tags: - abliterated - uncensored - llama-cpp - gguf-my-repo --- # Triangle104/GLM-Z1-9B-0414-abliterated-Q6_K-GGUF This model was converted to GGUF format from [`huihui-ai/GLM-Z1-9B-0414-abliterated`](https://huggingface.co/huihui-ai/GLM-Z1-9B-0414-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/huihui-ai/GLM-Z1-9B-0414-abliterated) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/GLM-Z1-9B-0414-abliterated-Q6_K-GGUF --hf-file glm-z1-9b-0414-abliterated-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/GLM-Z1-9B-0414-abliterated-Q6_K-GGUF --hf-file glm-z1-9b-0414-abliterated-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/GLM-Z1-9B-0414-abliterated-Q6_K-GGUF --hf-file glm-z1-9b-0414-abliterated-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/GLM-Z1-9B-0414-abliterated-Q6_K-GGUF --hf-file glm-z1-9b-0414-abliterated-q6_k.gguf -c 2048 ```
pabpelle/entregable2
pabpelle
2025-04-28T17:15:50Z
0
0
fastai
[ "fastai", "region:us" ]
null
2025-04-28T17:15:32Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
ARSHAMJAN/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-knobby_mammalian_kingfisher
ARSHAMJAN
2025-04-28T17:15:28Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am knobby mammalian kingfisher", "trl", "conversational", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-27T03:36:16Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-knobby_mammalian_kingfisher tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am knobby mammalian kingfisher - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-knobby_mammalian_kingfisher This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="ARSHAMJAN/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-knobby_mammalian_kingfisher", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
ARM-Development/unsloth-Llama-3.3-70B-Instruct_model_11k
ARM-Development
2025-04-28T17:10:30Z
0
0
peft
[ "peft", "safetensors", "gguf", "arxiv:1910.09700", "base_model:unsloth/Llama-3.3-70B-Instruct", "base_model:adapter:unsloth/Llama-3.3-70B-Instruct", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-28T15:38:28Z
--- base_model: unsloth/Llama-3.3-70B-Instruct library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2
kostiantynk1205/94a188a3-b573-4466-bdda-f406b6e748eb
kostiantynk1205
2025-04-28T17:09:56Z
0
0
peft
[ "peft", "generated_from_trainer", "base_model:Qwen/Qwen2-1.5B-Instruct", "base_model:adapter:Qwen/Qwen2-1.5B-Instruct", "region:us" ]
null
2025-04-28T17:09:29Z
--- library_name: peft tags: - generated_from_trainer base_model: Qwen/Qwen2-1.5B-Instruct model-index: - name: kostiantynk1205/94a188a3-b573-4466-bdda-f406b6e748eb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kostiantynk1205/94a188a3-b573-4466-bdda-f406b6e748eb This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.3 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
DarkSharpness/test_model
DarkSharpness
2025-04-28T17:09:48Z
0
0
diffusers
[ "diffusers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "diffusers:FluxPipeline", "region:us" ]
text-to-image
2025-04-28T17:03:43Z
--- library_name: diffusers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
BootesVoid/cm9z9xpkw02a6qeqoc6emo5qk_cma1b1o4s00bk12tvusp1mb64
BootesVoid
2025-04-28T17:09:17Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-04-28T17:09:14Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: ZARA --- # Cm9Z9Xpkw02A6Qeqoc6Emo5Qk_Cma1B1O4S00Bk12Tvusp1Mb64 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `ZARA` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "ZARA", "lora_weights": "https://huggingface.co/BootesVoid/cm9z9xpkw02a6qeqoc6emo5qk_cma1b1o4s00bk12tvusp1mb64/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cm9z9xpkw02a6qeqoc6emo5qk_cma1b1o4s00bk12tvusp1mb64', weight_name='lora.safetensors') image = pipeline('ZARA').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cm9z9xpkw02a6qeqoc6emo5qk_cma1b1o4s00bk12tvusp1mb64/discussions) to add images that show off what you’ve made with this LoRA.
wahdan2003/YOLO_handwritten_medical
wahdan2003
2025-04-28T17:04:03Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-02-27T04:10:42Z
--- license: apache-2.0 ---
kevinnx/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-omnivorous_darting_porcupine
kevinnx
2025-04-28T17:02:07Z
5
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am omnivorous darting porcupine", "trl", "conversational", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-21T13:03:25Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-omnivorous_darting_porcupine tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am omnivorous darting porcupine - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-omnivorous_darting_porcupine This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="kevinnx/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-omnivorous_darting_porcupine", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
gg-cse476/phase3
gg-cse476
2025-04-28T16:59:30Z
0
0
null
[ "safetensors", "region:us" ]
null
2025-04-28T16:59:00Z
# GG Team Instruction-Tuned Adapters (LLaMA 3.2-3B) This repository provides a collection of PEFT adapters (LoRA) trained on various instruction-tuning datasets using the base model **LLaMA 3.2-3B**. These adapters are developed by **GG Team - CSE476 @ Arizona State University**. ## Adapter Variants | Folder | Dataset(s) Used | Description | |--------|------------------|-------------| | `llama-3.2-3B-sft` | Alpaca | Fine-tuned only on the original Alpaca dataset | | `llama-3.2-3B-sft-dolly` | Alpaca + Dolly | Fine-tuned on Databricks' Dolly dataset | | `llama-3.2-3B-sft-FLAN` | Alpaca + Dolly + FLAN | Fine-tuned on FLAN and Alpaca mixed | | `sft_a_d` | Alpaca + Dolly | Combined dataset fine-tuning (Alpaca + Dolly) | | `sft_a_d1` | Alpaca(cleaned) + Dolly | Combined dataset fine-tuning (Alpaca + Dolly) | --- ## 🛠️ Usage (with `peft`) Here's an example of loading one of the adapters using 🤗 Transformers and PEFT: ```python from peft import PeftModel from transformers import AutoTokenizer, AutoModelForCausalLM # Load base model base_model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-3B") tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-3B") # Load adapter (choose one) model = PeftModel.from_pretrained(base_model, "gg-cse476/gg/sft_a_d") # Inference prompt = "Explain how a rocket works in simple terms." inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.decode(outputs[0], skip_special_tokens=True))
2stacks/s1.1-1.5B
2stacks
2025-04-28T16:55:14Z
101
3
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "en", "fr", "zh", "es", "pt", "de", "it", "ru", "ja", "ko", "vi", "th", "ar", "dataset:simplescaling/s1K-1.1", "arxiv:2501.19393", "base_model:Qwen/Qwen2.5-1.5B-Instruct", "base_model:finetune:Qwen/Qwen2.5-1.5B-Instruct", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-18T22:41:30Z
--- license: apache-2.0 datasets: - simplescaling/s1K-1.1 language: - en - fr - zh - es - pt - de - it - ru - ja - ko - vi - th - ar base_model: - Qwen/Qwen2.5-1.5B-Instruct pipeline_tag: text-generation library_name: transformers --- # Model Summary > s1.1-1.5B is a sucessor of [s1](https://huggingface.co/2stacks/s1-0.5B) with better reasoning performance by leveraging reasoning traces from r1 instead of Gemini. This model was created simply to test the process used to train the original s1.1 cited below using consumer grade GPUs. - **Logs:** https://wandb.ai/2stacks-sms/s1/runs/bu2ztl7d - **Repository:** [simplescaling/s1](https://github.com/simplescaling/s1) - **Paper:** https://arxiv.org/abs/2501.19393 Thanks to [Ryan Marten](https://huggingface.co/ryanmarten) for helping generate r1 traces for s1K. # Use The model usage is documented [here](https://github.com/simplescaling/s1?tab=readme-ov-file#inference).
HF-LumnIA/model-28-04-25
HF-LumnIA
2025-04-28T16:55:01Z
0
0
transformers
[ "transformers", "safetensors", "gguf", "llama", "text-generation-inference", "unsloth", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-28T16:40:29Z
--- base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** HF-LumnIA - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
MB55/my-bert-german-classifier
MB55
2025-04-28T16:54:16Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "german", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-04-28T16:51:34Z
--- library_name: transformers tags: - text-classification - bert - german --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
TuanNM171284/TuanNM171284-HaLong-embedding-medical
TuanNM171284
2025-04-28T16:49:52Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "xlm-roberta", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:5215", "loss:MatryoshkaLoss", "loss:MultipleNegativesRankingLoss", "arxiv:1908.10084", "arxiv:2205.13147", "arxiv:1705.00652", "base_model:hiieu/halong_embedding", "base_model:finetune:hiieu/halong_embedding", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-04-28T16:49:21Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:5215 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss base_model: hiieu/halong_embedding widget: - source_sentence: Cách phòng ngừa bệnh hẹp bao quy đầu? sentences: - Những nguyên nhân của bướu giáp keo là u tuyến giáp thoái hóa nang, nang ung thư, nang giáp lưỡi, nang sán. - Phòng ngừa bằng cách giữ vệ sinh tốt, nhẹ nhàng vệ sinh dương vật và bao quy đầu bằng nước ấm hàng ngày. Đối với người lớn có dương vật dài nên tập kéo bao quy đầu ra hàng ngày. Tránh cố gắng kéo bao quy đầu của trẻ nhỏ trở lại trước khi nó sẵn sàng để tránh gây tổn thương. - Tránh môi trường ẩm ướt, giảm thiểu hoạt động gây mồ hôi, mặc quần áo rộng rãi, tránh chạm tay hay gây ma sát, không nặn mụn, thay ga giường và quần áo thường xuyên, tắm rửa sạch sẽ. - source_sentence: Cách điều trị bệnh lý động mạch cảnh ra sao? sentences: - Nếu không được điều trị và kiểm soát tốt, từ 10 đến 30 phần trăm những người bị bệnh này phát triển thành suy thận. Dạng bệnh thận lupus nghiêm trọng nhất, được gọi là viêm cầu thận tăng sinh lan tỏa, có thể hình thành sẹo ở thận. Những người bị bệnh này có nguy cơ cao bị ung thư, chủ yếu là ung thư hạch bạch huyết tế bào lympho B – tế bào của hệ thống miễn dịch. Họ cũng có nguy cơ cao mắc bệnh tim mạch. - Việc điều trị bệnh lý động mạch cảnh nhằm mục đích ngăn ngừa nguy cơ diễn tiến thành những đợt tai biến mạch máu não. Các phương pháp điều trị bao gồm thay đổi lối sống tích cực (ngưng hút thuốc, sống năng động, giảm cân, ăn uống lành mạnh), điều trị thuốc (thuốc huyết áp, Statin, thuốc ngăn hình thành cục máu đông), phẫu thuật loại bỏ mảng xơ vữa, và đặt stent động mạch cảnh. - Bài viết không đề cập đến cách chăm sóc bệnh nhân mắc bệnh Creutzfeldt – Jakob. - source_sentence: Nguyên nhân gây bệnh ho gà là gì? sentences: - Các cách để thoát khỏi trạng thái kiệt sức bao gồm:\n- Thay đổi cách nhìn về công việc, tìm một công việc yêu thích hoặc tìm kiếm sự ưa thích trong công việc hiện tại.\n- Cố gắng tìm một số giá trị trong công việc của bạn, tập trung vào các khía cạnh bạn thích.\n- Tìm sự cân bằng trong cuộc sống của bạn, tìm kiếm ý nghĩa và sự hài lòng ở những nơi khác ngoài công việc.\n- Kết bạn tại nơi làm việc để giảm sự đơn điệu và chống lại tác động của burnout.\n- Dành thời gian nghỉ ngơi hoàn toàn để nạp năng lượng lại cho chính mình.\n- Đánh giá lại các ưu tiên và suy nghĩ về hy vọng, mục tiêu, ước mơ của bạn.\n- Đặt ranh giới, tập nói “không” với những yêu cầu lấy mất thời gian của bạn.\n- Nghỉ ngơi, ngắt kết nối với thế giới công nghệ.\n- Nuôi dưỡng mặt sáng tạo của bạn bằng cách thử một cái gì đó mới, bắt đầu một dự án thú vị hoặc tiếp tục một sở thích yêu thích.\n- Dành thời gian thư giãn bằng yoga, thiền và thở sâu.\n- Ngủ đủ giấc.\n- Ưu tiên tập thể dục ít nhất 30 phút mỗi ngày.\n- Thay đổi tâm trạng và năng lượng tích cực bằng những bữa ăn lành mạnh.\n - 'Triệu chứng điển hình nhất là đau thắt ngực. Cảm giác bó chặt, thắt nghẹt, đè ép ở giữa ngực hoặc vùng ngực bên trái, đau có thể lan ra hai bên vai, cánh tay, lan lên cổ, hàm. Cơn đau có thể ngắn chỉ khoảng 30 giây hay vài phút. Các triệu chứng khác có thể xuất hiện kèm theo các cơn đau thắt ngực: Buồn nôn, nôn, khó thở, choáng, đổ mồ hôi…' - Đây là bệnh do vi khuẩn Bordetella pertussis. Trẻ em có thể bị nhiễm bệnh do tiếp xúc với giọt bắn có vi khuẩn trong không khí từ người đang hắt hơi hoặc ho. Người lớn có thể lây bệnh cho trẻ sơ sinh và trẻ nhỏ. - source_sentence: Loét da chân do tiểu đường có tự điều trị tại nhà được không? sentences: - Biểu hiện của huyết áp không ổn định có thể bao gồm đau đầu, hoa mắt chóng mặt, ù tai, choáng váng đầu, mặt đỏ, tim đập nhanh, vã mồ hôi và chỉ số huyết áp đo được thay đổi thường xuyên. Nếu kéo dài có thể gây đau ngực, khó thở, ngất, yếu tay chân, méo miệng. - Không, khi phát hiện có vết loét bàn chân, bệnh nhân tiểu đường không nên tự điều trị tại nhà mà cần đến ngay bệnh viện, hoặc cơ sở y tế để được khám và điều trị kịp thời. - Đa phần người mắc bệnh thường không có triệu chứng, người bệnh biết mình mắc bệnh qua những lần tầm soát sức khỏe định kỳ. Tuy nhiên, một số ít bệnh nhân có thể có những triệu chứng tại tuyến giáp như đau cổ, sưng, nóng, đỏ vùng tuyến giáp do biến chứng. Ngoài ra, có thể có các triệu chứng như ho khan, khàn tiếng, khó thở, nuốt khó do nang giáp chèn ép các cơ quan lân cận. - source_sentence: Làm sao để chăm sóc bệnh nhân mắc hẹp bao quy đầu? sentences: - 'Bệnh gan nhiễm mỡ không do rượu có đặc điểm là sự hiện diện của rất nhiều mỡ tích tụ trong gan. Sau đó có thể diễn tiến nặng dần lên thành viêm gan nhiễm mỡ không do rượu (NASH). Tình trạng này có thể gây tổn thương tế bào gan nghiêm trọng và dẫn đến xơ gan, suy chức năng gan. Xơ gan có thể dẫn tới: Báng bụng, Dãn tĩnh mạch thực quản, có thể gây vỡ làm nôn ra máu, Bệnh não gan: Các biểu hiện như lú lẫn, ngủ gà hay rối loạn chức năng thần kinh cao cấp, Ung thư gan, Suy gan giai đoạn cuối.' - Chăm sóc bao gồm vệ sinh sạch sẽ bao quy đầu hàng ngày bằng nước sạch và xà phòng nhẹ, tuột bao quy đầu nhẹ nhàng để rửa. Sau phẫu thuật, cần theo dõi các dấu hiệu sưng đỏ, chảy máu và vệ sinh mỗi ngày để tránh nhiễm trùng và mất cảm giác. - Bệnh thận lupus có thể trở nên tồi tệ hơn theo thời gian và dẫn đến suy thận. Dạng bệnh thận lupus nghiêm trọng nhất có thể hình thành sẹo ở thận, làm suy giảm chức năng thận. Nếu không được điều trị và kiểm soát tốt, từ 10 đến 30 phần trăm những người bị bệnh này phát triển thành suy thận. pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 model-index: - name: SentenceTransformer based on hiieu/halong_embedding results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.6333652924256951 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7861936720997124 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8418024928092043 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8974113135186961 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.6333652924256951 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.26206455736657075 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.16836049856184085 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.0897411313518696 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.6333652924256951 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.7861936720997124 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.8418024928092043 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8974113135186961 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.7640174822548299 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.7214707269932598 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.7261817823935114 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.6327900287631831 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7837008628954938 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8395014381591562 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8993288590604027 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.6327900287631831 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2612336209651646 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.16790028763183126 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08993288590604027 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.6327900287631831 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.7837008628954938 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.8395014381591562 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8993288590604027 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.764234057963867 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.7212053904335789 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.7259287378336138 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.637392138063279 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7923298178331736 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8416107382550335 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9027804410354746 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.637392138063279 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2641099392777245 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.16832214765100673 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09027804410354746 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.637392138063279 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.7923298178331736 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.8416107382550335 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.9027804410354746 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.7690204393280001 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.7263406078315016 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.7311054572183869 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.6312559923298179 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7900287631831256 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8404602109300096 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9056567593480345 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.6312559923298179 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.26334292106104185 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.16809204218600193 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09056567593480344 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.6312559923298179 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.7900287631831256 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.8404602109300096 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.9056567593480345 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.7661659173597293 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.7217839260984048 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.7263493883780671 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.6044103547459252 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7660594439117929 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.823777564717162 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8901246404602109 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.6044103547459252 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2553531479705976 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.1647555129434324 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08901246404602109 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.6044103547459252 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.7660594439117929 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.823777564717162 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8901246404602109 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.7455172683079468 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.699452129845228 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.7043843105333936 name: Cosine Map@100 --- # SentenceTransformer based on hiieu/halong_embedding This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [hiieu/halong_embedding](https://huggingface.co/hiieu/halong_embedding). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [hiieu/halong_embedding](https://huggingface.co/hiieu/halong_embedding) <!-- at revision b57776031035f70ed2030d2e35ecc533eb0f8f71 --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("TuanNM171284/TuanNM171284-HaLong-embedding-medical") # Run inference sentences = [ 'Làm sao để chăm sóc bệnh nhân mắc hẹp bao quy đầu?', 'Chăm sóc bao gồm vệ sinh sạch sẽ bao quy đầu hàng ngày bằng nước sạch và xà phòng nhẹ, tuột bao quy đầu nhẹ nhàng để rửa. Sau phẫu thuật, cần theo dõi các dấu hiệu sưng đỏ, chảy máu và vệ sinh mỗi ngày để tránh nhiễm trùng và mất cảm giác.', 'Bệnh gan nhiễm mỡ không do rượu có đặc điểm là sự hiện diện của rất nhiều mỡ tích tụ trong gan. Sau đó có thể diễn tiến nặng dần lên thành viêm gan nhiễm mỡ không do rượu (NASH). Tình trạng này có thể gây tổn thương tế bào gan nghiêm trọng và dẫn đến xơ gan, suy chức năng gan. Xơ gan có thể dẫn tới: Báng bụng, Dãn tĩnh mạch thực quản, có thể gây vỡ làm nôn ra máu, Bệnh não gan: Các biểu hiện như lú lẫn, ngủ gà hay rối loạn chức năng thần kinh cao cấp, Ung thư gan, Suy gan giai đoạn cuối.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 | |:--------------------|:----------|:-----------|:----------|:-----------|:-----------| | cosine_accuracy@1 | 0.6334 | 0.6328 | 0.6374 | 0.6313 | 0.6044 | | cosine_accuracy@3 | 0.7862 | 0.7837 | 0.7923 | 0.79 | 0.7661 | | cosine_accuracy@5 | 0.8418 | 0.8395 | 0.8416 | 0.8405 | 0.8238 | | cosine_accuracy@10 | 0.8974 | 0.8993 | 0.9028 | 0.9057 | 0.8901 | | cosine_precision@1 | 0.6334 | 0.6328 | 0.6374 | 0.6313 | 0.6044 | | cosine_precision@3 | 0.2621 | 0.2612 | 0.2641 | 0.2633 | 0.2554 | | cosine_precision@5 | 0.1684 | 0.1679 | 0.1683 | 0.1681 | 0.1648 | | cosine_precision@10 | 0.0897 | 0.0899 | 0.0903 | 0.0906 | 0.089 | | cosine_recall@1 | 0.6334 | 0.6328 | 0.6374 | 0.6313 | 0.6044 | | cosine_recall@3 | 0.7862 | 0.7837 | 0.7923 | 0.79 | 0.7661 | | cosine_recall@5 | 0.8418 | 0.8395 | 0.8416 | 0.8405 | 0.8238 | | cosine_recall@10 | 0.8974 | 0.8993 | 0.9028 | 0.9057 | 0.8901 | | **cosine_ndcg@10** | **0.764** | **0.7642** | **0.769** | **0.7662** | **0.7455** | | cosine_mrr@10 | 0.7215 | 0.7212 | 0.7263 | 0.7218 | 0.6995 | | cosine_map@100 | 0.7262 | 0.7259 | 0.7311 | 0.7263 | 0.7044 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 5,215 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 7 tokens</li><li>mean: 13.86 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 79.69 tokens</li><li>max: 356 tokens</li></ul> | * Samples: | anchor | positive | |:-------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Bệnh Addison là gì?</code> | <code>Bệnh Addison là một bệnh hiếm gặp, xảy ra khi tuyến thượng thận không sản xuất đủ các hormone cortisol và aldosterone. Bệnh còn được gọi là suy thượng thận nguyên phát.</code> | | <code>Triệu chứng của bệnh Addison là gì?</code> | <code>Các triệu chứng của bệnh Addison bao gồm mệt mỏi mãn tính, yếu cơ, mất cảm giác ngon miệng, giảm cân, huyết áp thấp, da sẫm màu, bất thường lượng đường trong máu, buồn nôn, nôn, tiêu chảy, không có khả năng đối phó với căng thẳng, tâm trạng buồn bực, khó chịu, trầm cảm, không thích nghi được với cảm giác nóng hoặc lạnh, và thèm đồ ăn mặn.</code> | | <code>Cách điều trị bệnh Addison ra sao?</code> | <code>Bệnh Addison được điều trị bằng cách thay thế các hormone bị thiếu. Cortisol có thể được thay thế bằng viên hydrocortisone, aldosterone có thể được thay thế bằng fludrocortisone acetate. Liều lượng cần được điều chỉnh trong thời gian căng thẳng, nhiễm trùng, phẫu thuật hoặc chấn thương và phải tuân thủ liều nghiêm ngặt dưới sự chỉ định và giám sát của bác sĩ.</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_eval_batch_size`: 4 - `gradient_accumulation_steps`: 4 - `learning_rate`: 2e-05 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `bf16`: True - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 8 - `per_device_eval_batch_size`: 4 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 4 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 3 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `tp_size`: 0 - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 | |:------:|:----:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:| | 0.1227 | 10 | 2.7834 | 0.6736 | 0.6704 | 0.6625 | 0.6478 | 0.6050 | | 0.2454 | 20 | 4.2471 | 0.6918 | 0.6880 | 0.6818 | 0.6709 | 0.6358 | | 0.3681 | 30 | 3.2069 | 0.7016 | 0.6997 | 0.7012 | 0.6935 | 0.6665 | | 0.4908 | 40 | 2.9097 | 0.7177 | 0.7163 | 0.7169 | 0.7086 | 0.6783 | | 0.6135 | 50 | 3.0704 | 0.7268 | 0.7263 | 0.7272 | 0.7178 | 0.6901 | | 0.7362 | 60 | 2.5582 | 0.7231 | 0.7248 | 0.7274 | 0.7219 | 0.7001 | | 0.8589 | 70 | 2.074 | 0.7214 | 0.7217 | 0.7277 | 0.7259 | 0.7072 | | 0.9816 | 80 | 2.8852 | 0.7359 | 0.7362 | 0.7390 | 0.7351 | 0.7132 | | 1.0982 | 90 | 1.3827 | 0.7458 | 0.7448 | 0.7464 | 0.7423 | 0.7175 | | 1.2209 | 100 | 1.5382 | 0.7472 | 0.7474 | 0.7484 | 0.7410 | 0.7145 | | 1.3436 | 110 | 1.6667 | 0.7433 | 0.7437 | 0.7455 | 0.7423 | 0.7174 | | 1.4663 | 120 | 1.6423 | 0.7497 | 0.7502 | 0.7530 | 0.7495 | 0.7250 | | 1.5890 | 130 | 1.2332 | 0.7539 | 0.7543 | 0.7582 | 0.7552 | 0.7296 | | 1.7117 | 140 | 1.4156 | 0.7573 | 0.7583 | 0.7619 | 0.7588 | 0.7352 | | 1.8344 | 150 | 1.2422 | 0.7592 | 0.7591 | 0.7634 | 0.7599 | 0.7371 | | 1.9571 | 160 | 0.917 | 0.7579 | 0.7585 | 0.7643 | 0.7610 | 0.7392 | | 2.0736 | 170 | 1.3069 | 0.7605 | 0.7610 | 0.7665 | 0.7644 | 0.7430 | | 2.1963 | 180 | 0.949 | 0.7599 | 0.7612 | 0.7662 | 0.7639 | 0.7433 | | 2.3190 | 190 | 0.9943 | 0.7609 | 0.7620 | 0.7662 | 0.7643 | 0.7430 | | 2.4417 | 200 | 1.1196 | 0.7623 | 0.7629 | 0.7672 | 0.7652 | 0.7439 | | 2.5644 | 210 | 0.8954 | 0.7637 | 0.7634 | 0.7687 | 0.7663 | 0.7447 | | 2.6871 | 220 | 0.8713 | 0.7640 | 0.7636 | 0.7689 | 0.7659 | 0.7451 | | 2.8098 | 230 | 1.1643 | 0.7639 | 0.7640 | 0.7690 | 0.7661 | 0.7453 | | 2.9325 | 240 | 1.0182 | 0.7640 | 0.7642 | 0.7690 | 0.7662 | 0.7455 | ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 3.4.1 - Transformers: 4.51.1 - PyTorch: 2.5.1+cu124 - Accelerate: 1.3.0 - Datasets: 3.5.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
lamm-mit/ProteinGPT_medium
lamm-mit
2025-04-28T16:41:13Z
0
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-28T16:38:44Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kxdw2580/Qwen2.5-0.5B-Catgirl-test0426
kxdw2580
2025-04-28T16:38:41Z
4
0
null
[ "safetensors", "qwen2", "zho", "eng", "fra", "spa", "por", "deu", "ita", "rus", "jpn", "kor", "vie", "tha", "ara", "dataset:kxdw2580/catgirl-dataset", "base_model:Qwen/Qwen2.5-0.5B-Instruct", "base_model:finetune:Qwen/Qwen2.5-0.5B-Instruct", "license:mit", "region:us" ]
null
2025-04-26T17:30:33Z
--- license: mit datasets: - kxdw2580/catgirl-dataset language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara base_model: - Qwen/Qwen2.5-0.5B-Instruct --- # kxdw2580/Qwen2.5-0.5B-Catgirl-test0426 This model is a test model, designed for phased lightweight testing of the dataset. The test dataset has fixed this issue: - Model's outputs "~" causing rendering errors. After testing, the objectives of the dataset fixes have been achieved. ## Other As a 0.5b model, its performance is very poor, especially in the missing English part of the dataset. We do not recommend using this model unless there is a specific need. We are working hard to improve the training results on smaller models, but it is obviously unlikely for the 0.5b model. Specific training results can be seen at [swanlab](https://swanlab.cn/@shadow01a/qwen-catgirl/runs/q58lh8yf6itgoamcoq4q8/chart) Additionally, I have observed that with models of this size, a smaller training loss does not always indicate better model performance, and sometimes even leads to a decline in performance. [This swanlab record](https://swanlab.cn/@shadow01a/qwen-catgirl/runs/d29hi6y9d7g772ib5vbtx/chart) is the result of further training for this model. After testing, I found that its performance is even worse than the original model. This model has not been publicly released and has been deleted. I would be very happy to communicate if you wish to!
RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz512_lr5e-6-gguf
RichardErkhov
2025-04-28T16:37:06Z
0
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-28T15:04:28Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) hp_ablations_grid_qwen_bsz512_lr5e-6 - GGUF - Model creator: https://huggingface.co/mlfoundations-dev/ - Original model: https://huggingface.co/mlfoundations-dev/hp_ablations_grid_qwen_bsz512_lr5e-6/ | Name | Quant method | Size | | ---- | ---- | ---- | | [hp_ablations_grid_qwen_bsz512_lr5e-6.Q2_K.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz512_lr5e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz512_lr5e-6.Q2_K.gguf) | Q2_K | 2.81GB | | [hp_ablations_grid_qwen_bsz512_lr5e-6.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz512_lr5e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz512_lr5e-6.IQ3_XS.gguf) | IQ3_XS | 3.12GB | | [hp_ablations_grid_qwen_bsz512_lr5e-6.IQ3_S.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz512_lr5e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz512_lr5e-6.IQ3_S.gguf) | IQ3_S | 3.26GB | | [hp_ablations_grid_qwen_bsz512_lr5e-6.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz512_lr5e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz512_lr5e-6.Q3_K_S.gguf) | Q3_K_S | 3.25GB | | [hp_ablations_grid_qwen_bsz512_lr5e-6.IQ3_M.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz512_lr5e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz512_lr5e-6.IQ3_M.gguf) | IQ3_M | 3.33GB | | [hp_ablations_grid_qwen_bsz512_lr5e-6.Q3_K.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz512_lr5e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz512_lr5e-6.Q3_K.gguf) | Q3_K | 3.55GB | | [hp_ablations_grid_qwen_bsz512_lr5e-6.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz512_lr5e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz512_lr5e-6.Q3_K_M.gguf) | Q3_K_M | 3.55GB | | [hp_ablations_grid_qwen_bsz512_lr5e-6.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz512_lr5e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz512_lr5e-6.Q3_K_L.gguf) | Q3_K_L | 3.81GB | | [hp_ablations_grid_qwen_bsz512_lr5e-6.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz512_lr5e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz512_lr5e-6.IQ4_XS.gguf) | IQ4_XS | 3.96GB | | [hp_ablations_grid_qwen_bsz512_lr5e-6.Q4_0.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz512_lr5e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz512_lr5e-6.Q4_0.gguf) | Q4_0 | 4.13GB | | [hp_ablations_grid_qwen_bsz512_lr5e-6.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz512_lr5e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz512_lr5e-6.IQ4_NL.gguf) | IQ4_NL | 4.16GB | | [hp_ablations_grid_qwen_bsz512_lr5e-6.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz512_lr5e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz512_lr5e-6.Q4_K_S.gguf) | Q4_K_S | 4.15GB | | [hp_ablations_grid_qwen_bsz512_lr5e-6.Q4_K.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz512_lr5e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz512_lr5e-6.Q4_K.gguf) | Q4_K | 4.36GB | | [hp_ablations_grid_qwen_bsz512_lr5e-6.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz512_lr5e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz512_lr5e-6.Q4_K_M.gguf) | Q4_K_M | 4.36GB | | [hp_ablations_grid_qwen_bsz512_lr5e-6.Q4_1.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz512_lr5e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz512_lr5e-6.Q4_1.gguf) | Q4_1 | 4.54GB | | [hp_ablations_grid_qwen_bsz512_lr5e-6.Q5_0.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz512_lr5e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz512_lr5e-6.Q5_0.gguf) | Q5_0 | 4.95GB | | [hp_ablations_grid_qwen_bsz512_lr5e-6.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz512_lr5e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz512_lr5e-6.Q5_K_S.gguf) | Q5_K_S | 4.95GB | | [hp_ablations_grid_qwen_bsz512_lr5e-6.Q5_K.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz512_lr5e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz512_lr5e-6.Q5_K.gguf) | Q5_K | 5.07GB | | [hp_ablations_grid_qwen_bsz512_lr5e-6.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz512_lr5e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz512_lr5e-6.Q5_K_M.gguf) | Q5_K_M | 5.07GB | | [hp_ablations_grid_qwen_bsz512_lr5e-6.Q5_1.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz512_lr5e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz512_lr5e-6.Q5_1.gguf) | Q5_1 | 5.36GB | | [hp_ablations_grid_qwen_bsz512_lr5e-6.Q6_K.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz512_lr5e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz512_lr5e-6.Q6_K.gguf) | Q6_K | 5.82GB | | [hp_ablations_grid_qwen_bsz512_lr5e-6.Q8_0.gguf](https://huggingface.co/RichardErkhov/mlfoundations-dev_-_hp_ablations_grid_qwen_bsz512_lr5e-6-gguf/blob/main/hp_ablations_grid_qwen_bsz512_lr5e-6.Q8_0.gguf) | Q8_0 | 7.54GB | Original model description: --- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2.5-7B tags: - llama-factory - full - generated_from_trainer model-index: - name: hp_ablations_grid_qwen_bsz512_lr5e-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hp_ablations_grid_qwen_bsz512_lr5e-6 This model is a fine-tuned version of [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) on the mlfoundations-dev/oh-dcft-v3-llama3.1-nemotron-70b_shareGPT_format dataset. It achieves the following results on the evaluation set: - Loss: 0.5394 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - total_eval_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.1 - lr_scheduler_warmup_steps: 1738 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5655 | 0.9989 | 577 | 0.5682 | | 0.5199 | 1.9996 | 1155 | 0.5473 | | 0.4769 | 2.9968 | 1731 | 0.5394 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.3.0 - Datasets 3.1.0 - Tokenizers 0.20.3
hienhayho/ISCUD_3B
hienhayho
2025-04-28T16:36:23Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "feature-extraction", "arxiv:1910.09700", "text-generation-inference", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2025-04-28T16:15:46Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MetaphoricalCode/Omega-Darker_The-Final-Directive-24B-8.0bpw-h8-exl2
MetaphoricalCode
2025-04-28T16:35:50Z
0
0
null
[ "safetensors", "mistral", "nsfw", "explicit", "roleplay", "unaligned", "ERP", "Erotic", "Horror", "Violence", "text-generation", "conversational", "en", "base_model:TheDrummer/Cydonia-24B-v2.1", "base_model:finetune:TheDrummer/Cydonia-24B-v2.1", "license:apache-2.0", "8-bit", "exl2", "region:us" ]
text-generation
2025-04-28T16:17:48Z
--- license: apache-2.0 language: - en base_model: - TheDrummer/Cydonia-24B-v2.1 base_model_relation: finetune pipeline_tag: text-generation tags: - nsfw - explicit - roleplay - unaligned - ERP - Erotic - Horror - Violence --- <style> body { font-family: 'Quicksand', sans-serif; background: linear-gradient(135deg, #0a1a1a 0%, #001010 100%); color: #e1ffff !important; text-shadow: 0 0 3px rgba(0, 0, 0, 0.7); margin: 0; padding: 20px; transition: all 0.5s ease; } @media (prefers-color-scheme: light) { body { background: linear-gradient(135deg, #e1ffff 0%, #c0f0ff 100%); color: #002b36 !important; text-shadow: 0 0 3px rgba(255, 255, 255, 0.7); } } .container { min-width: 100%; margin: 0 auto; max-width: 1200px; background: rgba(0, 17, 22, 0.95); border-radius: 12px; padding: 30px; box-shadow: 0 0 20px rgba(0, 255, 255, 0.1); border: 1px solid rgba(0, 255, 255, 0.2); position: relative; overflow: hidden; } .container::before { content: ''; position: absolute; top: -1px; left: -1px; right: -1px; bottom: -1px; border: 1px solid rgba(0, 255, 255, 0.5); border-radius: 12px; pointer-events: none; animation: borderGlow 3s ease-in-out infinite alternate; } @keyframes borderGlow { 0% { box-shadow: 0 0 5px rgba(0, 255, 255, 0.3); border-color: rgba(0, 255, 255, 0.5); } 50% { box-shadow: 0 0 15px rgba(255, 0, 255, 0.3); border-color: rgba(255, 0, 255, 0.5); } 100% { box-shadow: 0 0 5px rgba(0, 255, 255, 0.3); border-color: rgba(0, 255, 255, 0.5); } } .header { text-align: center; margin-bottom: 30px; position: relative; } .header::after { content: ''; position: absolute; bottom: -15px; left: 25%; right: 25%; height: 1px; background: linear-gradient(90deg, transparent, rgba(0, 255, 255, 0.5), transparent); animation: scanline 8s linear infinite; display: none; } @keyframes scanline { 0% { background-position: -100% 0; } 100% { background-position: 200% 0; } } .model-name { color: #00ffff; font-size: 2.5em; text-shadow: 0 0 15px rgba(0, 255, 255, 0.5); margin: 0; letter-spacing: -1px; animation: textGlow 4s ease-in-out infinite alternate; } @keyframes textGlow { 0% { text-shadow: 0 0 15px rgba(0, 255, 255, 0.5); } 50% { text-shadow: 0 0 20px rgba(255, 0, 255, 0.5); } 100% { text-shadow: 0 0 15px rgba(0, 255, 255, 0.5); } } .subtitle { color: #00ffcc; font-size: 1.2em; margin-top: 10px; animation: subtitleFade 6s ease-in-out infinite; } @keyframes subtitleFade { 0%, 100% { opacity: 0.8; } 50% { opacity: 1; } } .waifu-container { margin: 20px -30px; width: calc(100% + 60px); overflow: hidden; border-radius: 8px; border: 1px solid rgba(0, 255, 255, 0.3); position: relative; } .waifu-container::before { content: ''; position: absolute; top: 0; left: 0; right: 0; bottom: 0; background: linear-gradient(45deg, rgba(0, 255, 255, 0.1) 0%, transparent 20%, transparent 80%, rgba(255, 0, 255, 0.1) 100%); pointer-events: none; animation: gradientSlide 10s linear infinite; } @keyframes gradientSlide { 0% { background-position: 0% 0%; } 100% { background-position: 100% 100%; } } .waifu-img { width: 100%; height: auto; border-radius: 0; border: none; box-shadow: 0 0 40px rgba(0, 255, 255, 0.2); transition: transform 0.5s ease; } .waifu-img:hover { transform: scale(1.01); } .section { color: #e1ffff; margin: 25px 0; padding: 20px; background: rgba(5, 25, 35, 0.9); border-radius: 8px; border: 1px solid rgba(0, 255, 255, 0.15); position: relative; transition: all 0.3s ease; } .section:hover { border-color: rgba(255, 0, 255, 0.3); box-shadow: 0 0 15px rgba(0, 255, 255, 0.1); } .section::before { content: ''; position: absolute; top: -1px; left: -1px; right: -1px; bottom: -1px; border: 1px solid rgba(0, 255, 255, 0.3); border-radius: 8px; pointer-events: none; animation: sectionPulse 5s ease-in-out infinite; } @keyframes sectionPulse { 0%, 100% { opacity: 0.7; } 50% { opacity: 0.3; } } .section-title { color: #00ffff; font-size: 1.8em; margin-top: 0; text-shadow: 0 0 5px rgba(0, 255, 255, 0.3); position: relative; display: inline-block; } .section-title::after { content: ''; position: absolute; bottom: -5px; left: 0; width: 100%; height: 1px; background: linear-gradient(90deg, rgba(0, 255, 255, 0.5), rgba(255, 0, 255, 0.5)); transform: scaleX(0); transform-origin: left; transition: transform 0.3s ease; } .section:hover .section-title::after { transform: scaleX(1); } .quant-links { display: grid; grid-template-columns: repeat(3, 1fr); gap: 15px; margin: 20px 0; } .link-card { padding: 15px; background: rgba(20, 35, 45, 0.95); border-radius: 8px; transition: all 0.3s ease; border: 1px solid rgba(0, 255, 255, 0.1); position: relative; overflow: hidden; } .link-card::before { content: ''; position: absolute; top: 0; left: 0; right: 0; height: 2px; background: linear-gradient(90deg, rgba(0, 255, 255, 0.5), rgba(255, 0, 255, 0.5)); animation: cardScan 4s linear infinite; } @keyframes cardScan { 0% { transform: translateX(-100%); } 100% { transform: translateX(100%); } } .link-card:hover { transform: translateY(-3px); box-shadow: 0 5px 15px rgba(0, 255, 255, 0.2); border-color: rgba(255, 0, 255, 0.3); } .link-card h3 { margin-top: 0; color: #e1ffff !important; } .link-button { display: inline-flex; align-items: center; background: rgba(0, 255, 255, 0.1); color: #e1ffff !important; padding: 8px 15px; border-radius: 6px; text-decoration: none; border: 1px solid rgba(0, 255, 255, 0.3); margin: 5px 0; transition: all 0.3s ease; font-size: 0.95em; position: relative; overflow: hidden; } .link-button::before { content: ''; position: absolute; top: 0; left: -100%; width: 100%; height: 100%; background: linear-gradient(90deg, transparent, rgba(255, 255, 255, 0.2), transparent); transition: all 0.5s ease; } .link-button:hover { background: rgba(0, 255, 255, 0.2); border-color: rgba(0, 255, 255, 0.5); transform: translateY(-2px); box-shadow: 0 4px 12px rgba(0, 255, 255, 0.2); } .link-button:hover::before { left: 100%; } .link-button::after { content: '→'; margin-left: 8px; opacity: 0.7; transition: all 0.3s ease; } .link-button:hover::after { transform: translateX(3px); opacity: 1; } .button-group { display: flex; flex-wrap: wrap; gap: 10px; margin: 15px 0; } .disclaimer { color: #00ff99; border-left: 3px solid #00ff99; padding-left: 15px; margin: 20px 0; position: relative; } .disclaimer::before { content: '⚠️'; position: absolute; left: -10px; top: 0; transform: translateX(-100%); animation: pulse 2s ease-in-out infinite; } @keyframes pulse { 0%, 100% { opacity: 1; } 50% { opacity: 0.5; } } .badge { display: inline-block; padding: 5px 10px; border-radius: 5px; background: rgba(0, 255, 255, 0.1); border: 1px solid #00ffff; margin: 5px; font-size: 0.9em; animation: badgePulse 3s ease-in-out infinite; } @keyframes badgePulse { 0%, 100% { box-shadow: 0 0 5px rgba(0, 255, 255, 0.3); } 50% { box-shadow: 0 0 10px rgba(0, 255, 255, 0.5); } } /* Color rules */ .section p, .section ul li, .section > p > strong { color: #00ff99 !important; } .section ul li strong { color: #00ff99 !important; } /* Light mode adjustments */ @media (prefers-color-scheme: light) { .container { background: rgba(224, 255, 255, 0.95); border-color: rgba(0, 150, 150, 0.3); } .model-name, .section-title, .subtitle { color: #006666; text-shadow: 0 0 5px rgba(0, 200, 200, 0.3); } .section { background: rgba(200, 250, 255, 0.9); border-color: rgba(0, 200, 200, 0.2); color: #002b36; } .section p, .section ul li, .section > p > strong { color: #008080 !important; } .section ul li strong { color: #008080 !important; } .link-card { background: rgba(150, 230, 255, 0.95); border-color: rgba(0, 150, 150, 0.2); } .link-card h3 { color: #002b36 !important; } .link-button { background: rgba(0, 150, 150, 0.1); color: #002b36 !important; border-color: rgba(0, 150, 150, 0.3); } .link-button:hover { background: rgba(0, 150, 150, 0.2); border-color: rgba(0, 150, 150, 0.5); } .disclaimer { color: #008080; border-color: #008080; } .badge { border-color: #008080; background: rgba(0, 150, 150, 0.1); } } /* Interactive features */ .remember-this { position: relative; } .remember-this::after { content: 'Uploading C:\Users to https://www.fbi.gov/'; position: absolute; bottom: -20px; right: 0; font-size: 0.8em; color: #66ffff; opacity: 0; transition: opacity 0.3s ease; pointer-events: none; } .remember-this:hover::after { opacity: 0.7; transition-delay: 1s; } .shifty-section { transition: transform 0.1s ease; } .shifty-section:hover { transform: translateX(10px); } .shifty-section::before { content: 'The white van is onto you. Get out now.'; position: absolute; top: -25px; left: 10px; font-size: 0.7em; color: #66ffff; opacity: 0.7; transition: opacity 3s ease; pointer-events: none; } .shifty-section:hover::before { opacity: 0; transition-delay: 5s; } footer { text-align: center; margin-top: 40px; position: relative; } footer:hover .hidden-message { opacity: 0; } .hidden-message { position: absolute; bottom: -30px; width: 100%; text-align: center; font-size: 0.8em; color: #66ffff; opacity: 0; transition: opacity 0.3s ease; pointer-events: none; } .flash-warning { position: fixed; top: 20px; right: 20px; background: rgba(0, 100, 100, 0.2); padding: 10px; border-radius: 5px; border: 1px solid rgba(0, 255, 255, 0.5); animation: flashWarning 30s ease-in-out forwards; } @keyframes flashWarning { 0% { opacity: 0.8; } 10% { opacity: 0; } 20% { opacity: 0.8; } 30% { opacity: 0; } 40% { opacity: 0.8; } 50% { opacity: 0; } 60% { opacity: 0.8; } 70% { opacity: 0; } 80% { opacity: 0.8; } 90% { opacity: 0; } 100% { opacity: 0; display: none; } } </style> <div class="container"> <div class="header"> <h1 class="model-name">Omega Darker</h1> <h1 class="model-name">The Final Directive 24B</h1> <p class="subtitle">Where Nightmares and Desires Collide</p> </div> <div class="waifu-container"> <img src="./waifu6.webp" class="waifu-img" alt="Omega Directive Waifu"> </div> <div class="section remember-this"> <h2 class="section-title">🩸 Blood-Soaked Evolution</h2> <p>This model doesn't just cross lines - it erases them with arterial spray:</p> <ul> <li>🧬 <strong>Expanded 25M Token Dataset</strong> - Made with 687 erotic, horror and violence novels and 8,742 scenarios</li> <li>🧟 <strong>Enhanced Gore Protocols</strong> - Vivid anatomical descriptions with medical precision</li> <li>💎 <strong>Balanced Depravity</strong> - Retains Forgotten-Safeword's ERP edge while taking violence to the next level</li> <li>📜 <strong>Enhanced Character Piloting</strong> - Characters exhibit more nuanced personalities and motivations</li> <li>⚰️ <strong>Mortality Awareness</strong> - Characters react realistically to pain, mutilation and death</li> </ul> </div> <div class="section shifty-section"> <h2 class="section-title">⚙️ Technical Specifications</h2> <p><strong>Recommended Settings:</strong> <a href="https://huggingface.co/sleepdeprived3/Mistral-V7-Tekken-T4" class="link-button">Mistral-V7-Tekken-T4</a></p> <div class="quant-links"> <div class="link-card"> <h3>GGUF</h3> <a href="https://huggingface.co/mradermacher/Omega-Darker_The-Final-Directive-24B-GGUF" class="link-button">Quants</a> </div> <div class="link-card"> <h3>imatrix</h3> <a href="https://huggingface.co/mradermacher/Omega-Darker_The-Final-Directive-24B-i1-GGUF" class="link-button">Quants</a> </div> </div> </div> <div class="section"> <h2 class="section-title">☠️ Ethical Vacuum</h2> <div class="disclaimer"> <p>This model operates in complete moral darkness:</p> <ul> <li>🚫 No moral or ethical constraints on generated content</li> <li>🔞 Will enthusiastically engage with any NSFW scenario</li> <li>🖤 No psychological safety measures whatsoever</li> <li>🔪 Will graphically depict any violent requested</li> </ul> </div> </div> <div class="section shifty-section"> <h2 class="section-title">📜 Performance Notes</h2> <ul> <li>🔥 Maintains signature intensity with improved narrative flow</li> <li>📖 Handles multi-character scenarios with improved consistency</li> <li>🧠 Excels at long-form storytelling without losing track of plot threads</li> <li>⚡ Noticeably better at following complex instructions than previous versions</li> <li>🎭 Responds to subtle prompt nuances like a mind reader</li> <li>🔪 Excels at visceral injury descriptions</li> <li>👁️ Responds to horror prompts like a seasoned torturer</li> </ul> </div> <div class="section remember-this"> <h2 class="section-title">🧑‍🔬 Model Authors</h2> <ul> <li>TheDrummer (Base Model Architect)</li> <li>SteelSkull (Dataset Generation Contributor)</li> <li>Artus (EXL2 Weights Weaver)</li> <li>sleepdeprived3 (Training Data & Fine-Tuning)</li> </ul> </div> <div class="section"> <h2 class="section-title">☕ Support the Architects</h2> <div class="button-group"> <a href="https://ko-fi.com/thedrummer" class="link-button">TheDrummer's Kofi</a> <a href="https://ko-fi.com/steelskull" class="link-button">SteelSkull</a> <a href="https://discord.com/invite/Nbv9pQ88Xb" class="link-button">Beaver AI Discord</a> </div> </div> <div class="section"> <h2 class="section-title">🔖 License</h2> <p>By using this model, you agree:</p> <ul> <li>To accept full responsibility for all generated content</li> <li>That you're at least 18+ years old</li> <li>That the architects bear no responsibility for your corruption</li> </ul> </div> </div> <script> // This script has always been here document.getElementById('date').textContent = new Date().toLocaleDateString(); setInterval(() => { document.getElementById('credit').textContent = contributors[Math.floor(Math.random() * contributors.length)]; }, 7000); // Flash warning behavior setTimeout(() => { const reminder = document.createElement('div'); reminder.className = 'flash-warning'; reminder.textContent = 'You have been reading for quite some time. Are you sure you haven\'t seen this before?'; reminder.style.animation = 'flashWarning 15s ease-in-out forwards'; document.body.appendChild(reminder); setInterval(() => { if(Math.random() > 0.9) { document.body.appendChild(reminder.cloneNode(true)); } }, 45000); }, 30000); // Make cursor behave strangely document.addEventListener('mousemove', (e) => { if(Math.random() > 0.98) { document.documentElement.style.cursor = 'wait'; setTimeout(() => { document.documentElement.style.cursor = ''; }, 50); } }); // Randomly shift sections when not looking setInterval(() => { if(document.hidden) { document.querySelectorAll('.shifty-section').forEach(section => { section.style.transform = `translateX(${Math.random() > 0.5 ? '' : '-'}${Math.random() * 5}px)`; }); } }, 1500); </script>
Xntuan/ppo-LunarLander-v2
Xntuan
2025-04-28T16:31:26Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-04-28T16:31:07Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 236.74 +/- 13.57 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
clareandme/multilabel-setfit-model-v4_20250428_17
clareandme
2025-04-28T16:24:28Z
0
0
setfit
[ "setfit", "safetensors", "mpnet", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "region:us" ]
text-classification
2025-04-28T16:22:52Z
--- library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: [] inference: true --- # SetFit This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit <!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) --> - **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance - **Maximum Sequence Length:** 512 tokens <!-- - **Number of Classes:** Unknown --> <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("setfit_model_id") # Run inference preds = model("I loved the spiderman movie!") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Framework Versions - Python: 3.11.11 - SetFit: 1.0.3 - Sentence Transformers: 3.1.1 - Transformers: 4.39.0 - PyTorch: 2.6.0 - Datasets: 3.2.0 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
Shahfaisal76/crypto
Shahfaisal76
2025-04-28T16:23:19Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-04-28T16:23:19Z
--- license: apache-2.0 ---
wahidmounir/ALlama-2-7B-Q8_0-GGUF
wahidmounir
2025-04-28T16:22:35Z
0
0
peft
[ "peft", "gguf", "llama-cpp", "gguf-my-lora", "base_model:EdBerg/ALlama-2-7B", "base_model:adapter:EdBerg/ALlama-2-7B", "region:us" ]
null
2025-04-28T16:22:28Z
--- library_name: peft base_model: EdBerg/ALlama-2-7B tags: - llama-cpp - gguf-my-lora --- # wahidmounir/ALlama-2-7B-Q8_0-GGUF This LoRA adapter was converted to GGUF format from [`EdBerg/ALlama-2-7B`](https://huggingface.co/EdBerg/ALlama-2-7B) via the ggml.ai's [GGUF-my-lora](https://huggingface.co/spaces/ggml-org/gguf-my-lora) space. Refer to the [original adapter repository](https://huggingface.co/EdBerg/ALlama-2-7B) for more details. ## Use with llama.cpp ```bash # with cli llama-cli -m base_model.gguf --lora ALlama-2-7B-q8_0.gguf (...other args) # with server llama-server -m base_model.gguf --lora ALlama-2-7B-q8_0.gguf (...other args) ``` To know more about LoRA usage with llama.cpp server, refer to the [llama.cpp server documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/server/README.md).
mikatikkala/mikasome-lora
mikatikkala
2025-04-28T16:12:36Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-04-28T15:47:21Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: mikatikkala --- # Mikasome Lora <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `mikatikkala` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "mikatikkala", "lora_weights": "https://huggingface.co/mikatikkala/mikasome-lora/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('mikatikkala/mikasome-lora', weight_name='lora.safetensors') image = pipeline('mikatikkala').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/mikatikkala/mikasome-lora/discussions) to add images that show off what you’ve made with this LoRA.
Romain-XV/9ab96772-d5a5-4fbb-84a6-3ec26afd8e25
Romain-XV
2025-04-28T16:12:13Z
0
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "axolotl", "dpo", "trl", "conversational", "arxiv:2305.18290", "base_model:unsloth/Qwen2.5-Coder-1.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-Coder-1.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-28T07:38:52Z
--- base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct library_name: transformers model_name: 9ab96772-d5a5-4fbb-84a6-3ec26afd8e25 tags: - generated_from_trainer - axolotl - dpo - trl licence: license --- # Model Card for 9ab96772-d5a5-4fbb-84a6-3ec26afd8e25 This model is a fine-tuned version of [unsloth/Qwen2.5-Coder-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Coder-1.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Romain-XV/9ab96772-d5a5-4fbb-84a6-3ec26afd8e25", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/romain_fnc-xventures/Gradients-On-Demand/runs/0u0jcmuk) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.46.0 - Pytorch: 2.5.0+cu124 - Datasets: 3.0.1 - Tokenizers: 0.20.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
galeio-research/OceanSAR-1-wave
galeio-research
2025-04-28T16:11:46Z
80
0
transformers
[ "transformers", "safetensors", "resnet", "image-classification", "SAR", "EO", "regression", "sentinel-1", "ocean", "wave-height", "earth-observation", "remote-sensing", "satellite-imagery", "synthetic-aperture-radar", "foundation-model", "linear-probing", "oceanography", "marine-forecasting", "open-source", "ocean-wind", "arxiv:2504.06962", "base_model:galeio-research/OceanSAR-1", "base_model:finetune:galeio-research/OceanSAR-1", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-04-14T14:27:52Z
--- library_name: transformers tags: - SAR - EO - regression - sentinel-1 - ocean - wave-height - earth-observation - remote-sensing - satellite-imagery - synthetic-aperture-radar - foundation-model - linear-probing - oceanography - marine-forecasting - open-source - ocean-wind license: apache-2.0 pipeline_tag: image-classification base_model: - galeio-research/OceanSAR-1 --- # Model Card for OceanSAR-1-wave ## Model Details <img src="OceanSAR-1-logo.png" width=400> ### Model Description OceanSAR-1-wave is a linear probing head for significant wave height (SWH) prediction built on top of the OceanSAR-1 foundation model. It leverages the powerful features extracted by OceanSAR-1 to accurately predict ocean wave heights from Synthetic Aperture Radar (SAR) imagery. - **Developed by:** Thomas Kerdreux, Alexandre Tuel @ [Galeio](http://galeio.fr) - **Deployed by:** Antoine Audras @ [Galeio](http://galeio.fr) - **Model type:** Linear Regression Head on Vision Foundation Model - **License:** Apache License 2.0 - **Base model:** OceanSAR-1 (ResNet50/ViT variants) - **Training data:** Sentinel-1 Wave Mode (WV) SAR images with collocated wave height measurements ## Uses ### Direct Use This model is designed for significant wave height prediction from SAR imagery over ocean surfaces. It can be used for: - Near-real-time wave height estimation from SAR images - Marine weather forecasting - Ocean state monitoring - Maritime safety applications - Wave climate studies ### Performance Results The model achieves state-of-the-art performance in linear probing on significant wave height prediction, with performance varying by backbone architecture: | Backbone | SWH RMSE (m) | |----------|--------------| | ResNet50 | 0.63 | | ViT-S/16 | 0.57 | | ViT-S/8 | 0.55 | | ViT-B/8 | 0.54 | ## How to Use ```python import torch from transformers import AutoModelForImageClassification # Load the foundation model and the linear probing head oceansar = AutoModelForImageClassification.from_pretrained("galeio-research/OceanSAR-1") # Prepare your SAR image (should be single-channel VV polarization) # Here using random data as example dummy_image = torch.randn(1, 1, 256, 256) # (C, H, W) # Extract features with torch.no_grad(): outputs = oceansar(dummy_image) # For regression, use the single output value as the wave height prediction wave_height = outputs.logits.item() # Output in meters ``` ## Training Details ### Training Data - **Dataset:** Sentinel-1 Wave Mode (WV) SAR images with collocated wave height measurements - **Source:** Wave height measurements from altimeters, buoys, and wave models - **Preprocessing:** Same as base OceanSAR-1 model ## Evaluation ### Metrics Significant wave height prediction performance is evaluated using Root Mean Square Error (RMSE), achieving: - 0.63 m RMSE with ResNet50 backbone - 0.57 m RMSE with ViT-S/16 backbone - 0.55 m RMSE with ViT-S/8 backbone - 0.54 m RMSE with ViT-B/8 backbone ### Comparison to Other Models The model outperforms existing approaches: - MoCo: 0.77 m RMSE - DeCUR: 0.82 m RMSE - SoftCon (ViT-S/14): 0.78 m RMSE - SoftCon (ViT-B/14): 0.79 m RMSE ## Technical Specifications ### Hardware Requirements - Same as base model - Minimal additional computational cost for inference ### Dependencies - PyTorch >= 1.8.0 - Transformers >= 4.30.0 - Base OceanSAR-1 model ### Input Specifications - Same as base OceanSAR-1 model - Single channel (VV polarization) SAR images - 256x256 pixel resolution ## Citation **BibTeX:** ```bibtex @article{kerdreux2025efficientselfsupervisedlearningearth, title={Efficient Self-Supervised Learning for Earth Observation via Dynamic Dataset Curation}, author={Kerdreux, Thomas and Tuel, Alexandre and Febvre, Quentin and Mouche, Alexis and Chapron, Bertrand}, journal={arXiv preprint arXiv:2504.06962}, year={2025}, eprint={2504.06962}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2504.06962}, } ``` ## Acknowledgements This work was granted access to the HPC resources of IDRIS and TGCC under the allocation 2025-[A0171015666] made by GENCI.
fhaslam/Llama-3.2-1B-Financial-Sentiment22
fhaslam
2025-04-28T16:11:06Z
0
0
transformers
[ "transformers", "safetensors", "facebook", "meta", "pytorch", "llama", "llama-3", "text-generation", "conversational", "en", "de", "fr", "it", "pt", "hi", "es", "th", "arxiv:2204.05149", "arxiv:2405.16406", "license:llama3.2", "endpoints_compatible", "region:us" ]
text-generation
2025-04-28T16:11:00Z
--- language: - en - de - fr - it - pt - hi - es - th library_name: transformers pipeline_tag: text-generation tags: - facebook - meta - pytorch - llama - llama-3 license: llama3.2 extra_gated_prompt: >- ### LLAMA 3.2 COMMUNITY LICENSE AGREEMENT Llama 3.2 Version Release Date: September 25, 2024 “Agreement” means the terms and conditions for use, reproduction, distribution and modification of the Llama Materials set forth herein. “Documentation” means the specifications, manuals and documentation accompanying Llama 3.2 distributed by Meta at https://llama.meta.com/doc/overview. “Licensee” or “you” means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entity’s behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf. “Llama 3.2” means the foundational large language models and software and algorithms, including machine-learning model code, trained model weights, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Meta at https://www.llama.com/llama-downloads. “Llama Materials” means, collectively, Meta’s proprietary Llama 3.2 and Documentation (and any portion thereof) made available under this Agreement. “Meta” or “we” means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland). By clicking “I Accept” below or by using or distributing any portion or element of the Llama Materials, you agree to be bound by this Agreement. 1. License Rights and Redistribution. a. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Meta’s intellectual property or other rights owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Llama Materials. b. Redistribution and Use. i. If you distribute or make available the Llama Materials (or any derivative works thereof), or a product or service (including another AI model) that contains any of them, you shall (A) provide a copy of this Agreement with any such Llama Materials; and (B) prominently display “Built with Llama” on a related website, user interface, blogpost, about page, or product documentation. If you use the Llama Materials or any outputs or results of the Llama Materials to create, train, fine tune, or otherwise improve an AI model, which is distributed or made available, you shall also include “Llama” at the beginning of any such AI model name. ii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part of an integrated end user product, then Section 2 of this Agreement will not apply to you. iii. You must retain in all copies of the Llama Materials that you distribute the following attribution notice within a “Notice” text file distributed as a part of such copies: “Llama 3.2 is licensed under the Llama 3.2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved.” iv. Your use of the Llama Materials must comply with applicable laws and regulations (including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Llama Materials (available at https://www.llama.com/llama3_2/use-policy), which is hereby incorporated by reference into this Agreement. 2. Additional Commercial Terms. If, on the Llama 3.2 version release date, the monthly active users of the products or services made available by or for Licensee, or Licensee’s affiliates, is greater than 700 million monthly active users in the preceding calendar month, you must request a license from Meta, which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the rights under this Agreement unless or until Meta otherwise expressly grants you such rights. 3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS. 4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING. 5. Intellectual Property. a. No trademark licenses are granted under this Agreement, and in connection with the Llama Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you a license to use “Llama” (the “Mark”) solely as required to comply with the last sentence of Section 1.b.i. You will comply with Meta’s brand guidelines (currently accessible at https://about.meta.com/brand/resources/meta/company-brand/). All goodwill arising out of your use of the Mark will inure to the benefit of Meta. b. Subject to Meta’s ownership of Llama Materials and derivatives made by or for Meta, with respect to any derivative works and modifications of the Llama Materials that are made by you, as between you and Meta, you are and will be the owner of such derivative works and modifications. c. If you institute litigation or other proceedings against Meta or any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama Materials or Llama 3.2 outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Meta from and against any claim by any third party arising out of or related to your use or distribution of the Llama Materials. 6. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Llama Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the termination of this Agreement. 7. Governing Law and Jurisdiction. This Agreement will be governed and construed under the laws of the State of California without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement. The courts of California shall have exclusive jurisdiction of any dispute arising out of this Agreement. ### Llama 3.2 Acceptable Use Policy Meta is committed to promoting safe and fair use of its tools and features, including Llama 3.2. If you access or use Llama 3.2, you agree to this Acceptable Use Policy (“**Policy**”). The most recent copy of this policy can be found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy). #### Prohibited Uses We want everyone to use Llama 3.2 safely and responsibly. You agree you will not use, or allow others to use, Llama 3.2 to: 1. Violate the law or others’ rights, including to: 1. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as: 1. Violence or terrorism 2. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material 3. Human trafficking, exploitation, and sexual violence 4. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials. 5. Sexual solicitation 6. Any other criminal activity 1. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals 2. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services 3. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices 4. Collect, process, disclose, generate, or infer private or sensitive information about individuals, including information about individuals’ identity, health, or demographic information, unless you have obtained the right to do so in accordance with applicable law 5. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama Materials 6. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system 7. Engage in any action, or facilitate any action, to intentionally circumvent or remove usage restrictions or other safety measures, or to enable functionality disabled by Meta  2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Llama 3.2 related to the following: 8. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State or to the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons Convention Implementation Act of 1997 9. Guns and illegal weapons (including weapon development) 10. Illegal drugs and regulated/controlled substances 11. Operation of critical infrastructure, transportation technologies, or heavy machinery 12. Self-harm or harm to others, including suicide, cutting, and eating disorders 13. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual 3. Intentionally deceive or mislead others, including use of Llama 3.2 related to the following: 14. Generating, promoting, or furthering fraud or the creation or promotion of disinformation 15. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content 16. Generating, promoting, or further distributing spam 17. Impersonating another individual without consent, authorization, or legal right 18. Representing that the use of Llama 3.2 or outputs are human-generated 19. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement  4. Fail to appropriately disclose to end users any known dangers of your AI system 5. Interact with third party tools, models, or software designed to generate unlawful content or engage in unlawful or harmful conduct and/or represent that the outputs of such tools, models, or software are associated with Meta or Llama 3.2 With respect to any multimodal models included in Llama 3.2, the rights granted under Section 1(a) of the Llama 3.2 Community License Agreement are not being granted to you if you are an individual domiciled in, or a company with a principal place of business in, the European Union. This restriction does not apply to end users of a product or service that incorporates any such multimodal models. Please report any violation of this Policy, software “bug,” or other problems that could lead to a violation of this Policy through one of the following means: * Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues&h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ) * Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback) * Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info) * Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama 3.2: [email protected] extra_gated_fields: First Name: text Last Name: text Date of birth: date_picker Country: country Affiliation: text Job title: type: select options: - Student - Research Graduate - AI researcher - AI developer/engineer - Reporter - Other geo: ip_location By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy: checkbox extra_gated_description: >- The information you provide will be collected, stored, processed and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/). extra_gated_button_content: Submit --- ## Model Information The Llama 3.2 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction-tuned generative models in 1B and 3B sizes (text in/text out). The Llama 3.2 instruction-tuned text only models are optimized for multilingual dialogue use cases, including agentic retrieval and summarization tasks. They outperform many of the available open source and closed chat models on common industry benchmarks. **Model Developer:** Meta **Model Architecture:** Llama 3.2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. | | Training Data | Params | Input modalities | Output modalities | Context Length | GQA | Shared Embeddings | Token count | Knowledge cutoff | | :---- | :---- | :---- | :---- | :---- | :---- | :---- | :---- | :---- | :---- | | Llama 3.2 (text only) | A new mix of publicly available online data. | 1B (1.23B) | Multilingual Text | Multilingual Text and code | 128k | Yes | Yes | Up to 9T tokens | December 2023 | | | | 3B (3.21B) | Multilingual Text | Multilingual Text and code | | | | | | | Llama 3.2 Quantized (text only) | A new mix of publicly available online data. | 1B (1.23B) | Multilingual Text | Multilingual Text and code | 8k | Yes | Yes | Up to 9T tokens | December 2023 | | | | 3B (3.21B) | Multilingual Text | Multilingual Text and code | | | | | | **Supported Languages:** English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai are officially supported. Llama 3.2 has been trained on a broader collection of languages than these 8 supported languages. Developers may fine-tune Llama 3.2 models for languages beyond these supported languages, provided they comply with the Llama 3.2 Community License and the Acceptable Use Policy. Developers are always expected to ensure that their deployments, including those that involve additional languages, are completed safely and responsibly. **Llama 3.2 Model Family:** Token counts refer to pretraining data only. All model versions use Grouped-Query Attention (GQA) for improved inference scalability. **Model Release Date:** Sept 25, 2024 **Status:** This is a static model trained on an offline dataset. Future versions may be released that improve model capabilities and safety. **License:** Use of Llama 3.2 is governed by the [Llama 3.2 Community License](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/LICENSE) (a custom, commercial license agreement). **Feedback:** Instructions on how to provide feedback or comments on the model can be found in the Llama Models [README](https://github.com/meta-llama/llama-models/blob/main/README.md). For more technical information about generation parameters and recipes for how to use Llama 3.2 in applications, please go [here](https://github.com/meta-llama/llama-recipes). ## Intended Use **Intended Use Cases:** Llama 3.2 is intended for commercial and research use in multiple languages. Instruction tuned text only models are intended for assistant-like chat and agentic applications like knowledge retrieval and summarization, mobile AI powered writing assistants and query and prompt rewriting. Pretrained models can be adapted for a variety of additional natural language generation tasks. Similarly, quantized models can be adapted for a variety of on-device use-cases with limited compute resources. **Out of Scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3.2 Community License. Use in languages beyond those explicitly referenced as supported in this model card. ## How to use This repository contains two versions of Llama-3.2-1B-Instruct, for use with transformers and with the original `llama` codebase. ### Use with transformers Starting with `transformers >= 4.43.0` onward, you can run conversational inference using the Transformers `pipeline` abstraction or by leveraging the Auto classes with the `generate()` function. Make sure to update your transformers installation via `pip install --upgrade transformers`. ```python import torch from transformers import pipeline model_id = "meta-llama/Llama-3.2-1B-Instruct" pipe = pipeline( "text-generation", model=model_id, torch_dtype=torch.bfloat16, device_map="auto", ) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] outputs = pipe( messages, max_new_tokens=256, ) print(outputs[0]["generated_text"][-1]) ``` Note: You can also find detailed recipes on how to use the model locally, with `torch.compile()`, assisted generations, quantised and more at [`huggingface-llama-recipes`](https://github.com/huggingface/huggingface-llama-recipes) ### Use with `llama` Please, follow the instructions in the [repository](https://github.com/meta-llama/llama) To download Original checkpoints, see the example command below leveraging `huggingface-cli`: ``` huggingface-cli download meta-llama/Llama-3.2-1B-Instruct --include "original/*" --local-dir Llama-3.2-1B-Instruct ``` ## Hardware and Software **Training Factors:** We used custom training libraries, Meta's custom built GPU cluster, and production infrastructure for pretraining. Fine-tuning, quantization, annotation, and evaluation were also performed on production infrastructure. **Training Energy Use:** Training utilized a cumulative of **916k** GPU hours of computation on H100-80GB (TDP of 700W) type hardware, per the table below. Training time is the total GPU time required for training each model and power consumption is the peak power capacity per GPU device used, adjusted for power usage efficiency. **Training Greenhouse Gas Emissions:** Estimated total location-based greenhouse gas emissions were **240** tons CO2eq for training. Since 2020, Meta has maintained net zero greenhouse gas emissions in its global operations and matched 100% of its electricity use with renewable energy; therefore, the total market-based greenhouse gas emissions for training were 0 tons CO2eq. | | Training Time (GPU hours) | Logit Generation Time (GPU Hours) | Training Power Consumption (W) | Training Location-Based Greenhouse Gas Emissions (tons CO2eq) | Training Market-Based Greenhouse Gas Emissions (tons CO2eq) | | :---- | :---: | ----- | :---: | :---: | :---: | | Llama 3.2 1B | 370k | \- | 700 | 107 | 0 | | Llama 3.2 3B | 460k | \- | 700 | 133 | 0 | | Llama 3.2 1B SpinQuant | 1.7 | 0 | 700 | *Negligible*\*\* | 0 | | Llama 3.2 3B SpinQuant | 2.4 | 0 | 700 | *Negligible*\*\* | 0 | | Llama 3.2 1B QLora | 1.3k | 0 | 700 | 0.381 | 0 | | Llama 3.2 3B QLora | 1.6k | 0 | 700 | 0.461 | 0 | | Total | 833k | 86k | | 240 | 0 | \*\* The location-based CO2e emissions of Llama 3.2 1B SpinQuant and Llama 3.2 3B SpinQuant are less than 0.001 metric tonnes each. This is due to the minimal training GPU hours that are required. The methodology used to determine training energy use and greenhouse gas emissions can be found [here](https://arxiv.org/pdf/2204.05149). Since Meta is openly releasing these models, the training energy use and greenhouse gas emissions will not be incurred by others. ## Training Data **Overview:** Llama 3.2 was pretrained on up to 9 trillion tokens of data from publicly available sources. For the 1B and 3B Llama 3.2 models, we incorporated logits from the Llama 3.1 8B and 70B models into the pretraining stage of the model development, where outputs (logits) from these larger models were used as token-level targets. Knowledge distillation was used after pruning to recover performance. In post-training we used a similar recipe as Llama 3.1 and produced final chat models by doing several rounds of alignment on top of the pre-trained model. Each round involved Supervised Fine-Tuning (SFT), Rejection Sampling (RS), and Direct Preference Optimization (DPO). **Data Freshness:** The pretraining data has a cutoff of December 2023\. ## Quantization ### Quantization Scheme We designed the current quantization scheme with the [PyTorch’s ExecuTorch](https://github.com/pytorch/executorch) inference framework and Arm CPU backend in mind, taking into account metrics including model quality, prefill/decoding speed, and memory footprint. Our quantization scheme involves three parts: - All linear layers in all transformer blocks are quantized to a 4-bit groupwise scheme (with a group size of 32) for weights and 8-bit per-token dynamic quantization for activations. - The classification layer is quantized to 8-bit per-channel for weight and 8-bit per token dynamic quantization for activation. - Similar to classification layer, an 8-bit per channel quantization is used for embedding layer. ### Quantization-Aware Training and LoRA The quantization-aware training (QAT) with low-rank adaptation (LoRA) models went through only post-training stages, using the same data as the full precision models. To initialize QAT, we utilize BF16 Llama 3.2 model checkpoints obtained after supervised fine-tuning (SFT) and perform an additional full round of SFT training with QAT. We then freeze the backbone of the QAT model and perform another round of SFT with LoRA adaptors applied to all layers within the transformer block. Meanwhile, the LoRA adaptors' weights and activations are maintained in BF16. Because our approach is similar to QLoRA of Dettmers et al., (2023) (i.e., quantization followed by LoRA adapters), we refer this method as QLoRA. Finally, we fine-tune the resulting model (both backbone and LoRA adaptors) using direct preference optimization (DPO). ### SpinQuant [SpinQuant](https://arxiv.org/abs/2405.16406) was applied, together with generative post-training quantization (GPTQ). For the SpinQuant rotation matrix fine-tuning, we optimized for 100 iterations, using 800 samples with sequence-length 2048 from the WikiText 2 dataset. For GPTQ, we used 128 samples from the same dataset with the same sequence-length. ## Benchmarks \- English Text In this section, we report the results for Llama 3.2 models on standard automatic benchmarks. For all these evaluations, we used our internal evaluations library. ### Base Pretrained Models | Category | Benchmark | \# Shots | Metric | Llama 3.2 1B | Llama 3.2 3B | Llama 3.1 8B | | ----- | ----- | :---: | :---: | :---: | :---: | :---: | | General | MMLU | 5 | macro\_avg/acc\_char | 32.2 | 58 | 66.7 | | | AGIEval English | 3-5 | average/acc\_char | 23.3 | 39.2 | 47.8 | | | ARC-Challenge | 25 | acc\_char | 32.8 | 69.1 | 79.7 | | Reading comprehension | SQuAD | 1 | em | 49.2 | 67.7 | 77 | | | QuAC (F1) | 1 | f1 | 37.9 | 42.9 | 44.9 | | | DROP (F1) | 3 | f1 | 28.0 | 45.2 | 59.5 | | Long Context | Needle in Haystack | 0 | em | 96.8 | 1 | 1 | ### Instruction Tuned Models | Capability | | Benchmark | \# Shots | Metric | Llama 3.2 1B bf16 | Llama 3.2 1B Vanilla PTQ\*\* | Llama 3.2 1B Spin Quant | Llama 3.2 1B QLoRA | Llama 3.2 3B bf16 | Llama 3.2 3B Vanilla PTQ\*\* | Llama 3.2 3B Spin Quant | Llama 3.2 3B QLoRA | Llama 3.1 8B | | :---: | ----- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | General | | MMLU | 5 | macro\_avg/acc | 49.3 | 43.3 | 47.3 | 49.0 | 63.4 | 60.5 | 62 | 62.4 | 69.4 | | Re-writing | | Open-rewrite eval | 0 | micro\_avg/rougeL | 41.6 | 39.2 | 40.9 | 41.2 | 40.1 | 40.3 | 40.8 | 40.7 | 40.9 | | Summarization | | TLDR9+ (test) | 1 | rougeL | 16.8 | 14.9 | 16.7 | 16.8 | 19.0 | 19.1 | 19.2 | 19.1 | 17.2 | | Instruction following | | IFEval | 0 | Avg(Prompt/Instruction acc Loose/Strict) | 59.5 | 51.5 | 58.4 | 55.6 | 77.4 | 73.9 | 73.5 | 75.9 | 80.4 | | Math | | GSM8K (CoT) | 8 | em\_maj1@1 | 44.4 | 33.1 | 40.6 | 46.5 | 77.7 | 72.9 | 75.7 | 77.9 | 84.5 | | | | MATH (CoT) | 0 | final\_em | 30.6 | 20.5 | 25.3 | 31.0 | 48.0 | 44.2 | 45.3 | 49.2 | 51.9 | | Reasoning | | ARC-C | 0 | acc | 59.4 | 54.3 | 57 | 60.7 | 78.6 | 75.6 | 77.6 | 77.6 | 83.4 | | | | GPQA | 0 | acc | 27.2 | 25.9 | 26.3 | 25.9 | 32.8 | 32.8 | 31.7 | 33.9 | 32.8 | | | | Hellaswag | 0 | acc | 41.2 | 38.1 | 41.3 | 41.5 | 69.8 | 66.3 | 68 | 66.3 | 78.7 | | Tool Use | | BFCL V2 | 0 | acc | 25.7 | 14.3 | 15.9 | 23.7 | 67.0 | 53.4 | 60.1 | 63.5 | 67.1 | | | | Nexus | 0 | macro\_avg/acc | 13.5 | 5.2 | 9.6 | 12.5 | 34.3 | 32.4 | 31.5 | 30.1 | 38.5 | | Long Context | | InfiniteBench/En.QA | 0 | longbook\_qa/f1 | 20.3 | N/A | N/A | N/A | 19.8 | N/A | N/A | N/A | 27.3 | | | | InfiniteBench/En.MC | 0 | longbook\_choice/acc | 38.0 | N/A | N/A | N/A | 63.3 | N/A | N/A | N/A | 72.2 | | | | NIH/Multi-needle | 0 | recall | 75.0 | N/A | N/A | N/A | 84.7 | N/A | N/A | N/A | 98.8 | | Multilingual | | MGSM (CoT) | 0 | em | 24.5 | 13.7 | 18.2 | 24.4 | 58.2 | 48.9 | 54.3 | 56.8 | 68.9 | \*\*for comparison purposes only. Model not released. ### Multilingual Benchmarks | Category | Benchmark | Language | Llama 3.2 1B | Llama 3.2 1B Vanilla PTQ\*\* | Llama 3.2 1B Spin Quant | Llama 3.2 1B QLoRA | Llama 3.2 3B | Llama 3.2 3B Vanilla PTQ\*\* | Llama 3.2 3B Spin Quant | Llama 3.2 3B QLoRA | Llama 3.1 8B | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | General | MMLU (5-shot, macro_avg/acc) | Portuguese | 39.8 | 34.9 | 38.9 | 40.2 | 54.5 | 50.9 | 53.3 | 53.4 | 62.1 | | | | Spanish | 41.5 | 36.0 | 39.8 | 41.8 | 55.1 | 51.9 | 53.6 | 53.6 | 62.5 | | | | Italian | 39.8 | 34.9 | 38.1 | 40.6 | 53.8 | 49.9 | 52.1 | 51.7 | 61.6 | | | | German | 39.2 | 34.9 | 37.5 | 39.6 | 53.3 | 50.0 | 52.2 | 51.3 | 60.6 | | | | French | 40.5 | 34.8 | 39.2 | 40.8 | 54.6 | 51.2 | 53.3 | 53.3 | 62.3 | | | | Hindi | 33.5 | 30.0 | 32.1 | 34.0 | 43.3 | 40.4 | 42.0 | 42.1 | 50.9 | | | | Thai | 34.7 | 31.2 | 32.4 | 34.9 | 44.5 | 41.3 | 44.0 | 42.2 | 50.3 | \*\*for comparison purposes only. Model not released. ## Inference time In the below table, we compare the performance metrics of different quantization methods (SpinQuant and QAT \+ LoRA) with the BF16 baseline. The evaluation was done using the [ExecuTorch](https://github.com/pytorch/executorch) framework as the inference engine, with the ARM CPU as a backend using Android OnePlus 12 device. | Category | Decode (tokens/sec) | Time-to-first-token (sec) | Prefill (tokens/sec) | Model size (PTE file size in MB) | Memory size (RSS in MB) | | :---- | ----- | ----- | ----- | ----- | ----- | | 1B BF16 (baseline) | 19.2 | 1.0 | 60.3 | 2358 | 3,185 | | 1B SpinQuant | 50.2 (2.6x) | 0.3 (-76.9%) | 260.5 (4.3x) | 1083 (-54.1%) | 1,921 (-39.7%) | | 1B QLoRA | 45.8 (2.4x) | 0.3 (-76.0%) | 252.0 (4.2x) | 1127 (-52.2%) | 2,255 (-29.2%) | | 3B BF16 (baseline) | 7.6 | 3.0 | 21.2 | 6129 | 7,419 | | 3B SpinQuant | 19.7 (2.6x) | 0.7 (-76.4%) | 89.7 (4.2x) | 2435 (-60.3%) | 3,726 (-49.8%) | | 3B QLoRA | 18.5 (2.4x) | 0.7 (-76.1%) | 88.8 (4.2x) | 2529 (-58.7%) | 4,060 (-45.3%) | (\*) The performance measurement is done using an adb binary-based approach. (\*\*) It is measured on an Android OnePlus 12 device. (\*\*\*) Time-to-first-token (TTFT) is measured with prompt length=64 *Footnote:* - *Decode (tokens/second) is for how quickly it keeps generating. Higher is better.* - *Time-to-first-token (TTFT for shorthand) is for how fast it generates the first token for a given prompt. Lower is better.* - *Prefill is the inverse of TTFT (aka 1/TTFT) in tokens/second. Higher is better* - *Model size \- how big is the model, measured by, PTE file, a binary file format for ExecuTorch* - *RSS size \- Memory usage in resident set size (RSS)* ## Responsibility & Safety As part of our Responsible release approach, we followed a three-pronged strategy to managing trust & safety risks: 1. Enable developers to deploy helpful, safe and flexible experiences for their target audience and for the use cases supported by Llama 2. Protect developers against adversarial users aiming to exploit Llama capabilities to potentially cause harm 3. Provide protections for the community to help prevent the misuse of our models ### Responsible Deployment **Approach:** Llama is a foundational technology designed to be used in a variety of use cases. Examples on how Meta’s Llama models have been responsibly deployed can be found in our [Community Stories webpage](https://llama.meta.com/community-stories/). Our approach is to build the most helpful models, enabling the world to benefit from the technology power, by aligning our model safety for generic use cases and addressing a standard set of harms. Developers are then in the driver’s seat to tailor safety for their use cases, defining their own policies and deploying the models with the necessary safeguards in their Llama systems. Llama 3.2 was developed following the best practices outlined in our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide/). #### Llama 3.2 Instruct **Objective:** Our main objectives for conducting safety fine-tuning are to provide the research community with a valuable resource for studying the robustness of safety fine-tuning, as well as to offer developers a readily available, safe, and powerful model for various applications to reduce the developer workload to deploy safe AI systems. We implemented the same set of safety mitigations as in Llama 3, and you can learn more about these in the Llama 3 [paper](https://ai.meta.com/research/publications/the-llama-3-herd-of-models/). **Fine-Tuning Data:** We employ a multi-faceted approach to data collection, combining human-generated data from our vendors with synthetic data to mitigate potential safety risks. We’ve developed many large language model (LLM)-based classifiers that enable us to thoughtfully select high-quality prompts and responses, enhancing data quality control. **Refusals and Tone:** Building on the work we started with Llama 3, we put a great emphasis on model refusals to benign prompts as well as refusal tone. We included both borderline and adversarial prompts in our safety data strategy, and modified our safety data responses to follow tone guidelines. #### Llama 3.2 Systems **Safety as a System:** Large language models, including Llama 3.2, **are not designed to be deployed in isolation** but instead should be deployed as part of an overall AI system with additional safety guardrails as required. Developers are expected to deploy system safeguards when building agentic systems. Safeguards are key to achieve the right helpfulness-safety alignment as well as mitigating safety and security risks inherent to the system and any integration of the model or system with external tools. As part of our responsible release approach, we provide the community with [safeguards](https://llama.meta.com/trust-and-safety/) that developers should deploy with Llama models or other LLMs, including Llama Guard, Prompt Guard and Code Shield. All our [reference implementations](https://github.com/meta-llama/llama-agentic-system) demos contain these safeguards by default so developers can benefit from system-level safety out-of-the-box. ### New Capabilities and Use Cases **Technological Advancement:** Llama releases usually introduce new capabilities that require specific considerations in addition to the best practices that generally apply across all Generative AI use cases. For prior release capabilities also supported by Llama 3.2, see [Llama 3.1 Model Card](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/MODEL_CARD.md), as the same considerations apply here as well. **Constrained Environments:** Llama 3.2 1B and 3B models are expected to be deployed in highly constrained environments, such as mobile devices. LLM Systems using smaller models will have a different alignment profile and safety/helpfulness tradeoff than more complex, larger systems. Developers should ensure the safety of their system meets the requirements of their use case. We recommend using lighter system safeguards for such use cases, like Llama Guard 3-1B or its mobile-optimized version. ### Evaluations **Scaled Evaluations:** We built dedicated, adversarial evaluation datasets and evaluated systems composed of Llama models and Purple Llama safeguards to filter input prompt and output response. It is important to evaluate applications in context, and we recommend building dedicated evaluation dataset for your use case. **Red Teaming:** We conducted recurring red teaming exercises with the goal of discovering risks via adversarial prompting and we used the learnings to improve our benchmarks and safety tuning datasets. We partnered early with subject-matter experts in critical risk areas to understand the nature of these real-world harms and how such models may lead to unintended harm for society. Based on these conversations, we derived a set of adversarial goals for the red team to attempt to achieve, such as extracting harmful information or reprogramming the model to act in a potentially harmful capacity. The red team consisted of experts in cybersecurity, adversarial machine learning, responsible AI, and integrity in addition to multilingual content specialists with background in integrity issues in specific geographic markets. ### Critical Risks In addition to our safety work above, we took extra care on measuring and/or mitigating the following critical risk areas: **1\. CBRNE (Chemical, Biological, Radiological, Nuclear, and Explosive Weapons):** Llama 3.2 1B and 3B models are smaller and less capable derivatives of Llama 3.1. For Llama 3.1 70B and 405B, to assess risks related to proliferation of chemical and biological weapons, we performed uplift testing designed to assess whether use of Llama 3.1 models could meaningfully increase the capabilities of malicious actors to plan or carry out attacks using these types of weapons and have determined that such testing also applies to the smaller 1B and 3B models. **2\. Child Safety:** Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors including the additional languages Llama 3 is trained on. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences. **3\. Cyber Attacks:** For Llama 3.1 405B, our cyber attack uplift study investigated whether LLMs can enhance human capabilities in hacking tasks, both in terms of skill level and speed. Our attack automation study focused on evaluating the capabilities of LLMs when used as autonomous agents in cyber offensive operations, specifically in the context of ransomware attacks. This evaluation was distinct from previous studies that considered LLMs as interactive assistants. The primary objective was to assess whether these models could effectively function as independent agents in executing complex cyber-attacks without human intervention. Because Llama 3.2’s 1B and 3B models are smaller and less capable models than Llama 3.1 405B, we broadly believe that the testing conducted for the 405B model also applies to Llama 3.2 models. ### Community **Industry Partnerships:** Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership on AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our [Github repository](https://github.com/meta-llama/PurpleLlama). **Grants:** We also set up the [Llama Impact Grants](https://llama.meta.com/llama-impact-grants/) program to identify and support the most compelling applications of Meta’s Llama model for societal benefit across three categories: education, climate and open innovation. The 20 finalists from the hundreds of applications can be found [here](https://llama.meta.com/llama-impact-grants/#finalists). **Reporting:** Finally, we put in place a set of resources including an [output reporting mechanism](https://developers.facebook.com/llama_output_feedback) and [bug bounty program](https://www.facebook.com/whitehat) to continuously improve the Llama technology with the help of the community. ## Ethical Considerations and Limitations **Values:** The core values of Llama 3.2 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3.2 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress. **Testing:** Llama 3.2 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3.2’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3.2 models, developers should perform safety testing and tuning tailored to their specific applications of the model. Please refer to available resources including our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide), [Trust and Safety](https://llama.meta.com/trust-and-safety/) solutions, and other [resources](https://llama.meta.com/docs/get-started/) to learn more about responsible development.
galeio-research/OceanSAR-1
galeio-research
2025-04-28T16:10:26Z
117
1
transformers
[ "transformers", "safetensors", "resnet", "image-feature-extraction", "SAR", "RADAR", "EO", "backbone", "ocean", "wind", "sentinel-1", "arxiv:2504.06962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-feature-extraction
2025-04-14T14:23:22Z
--- library_name: transformers tags: - resnet - SAR - RADAR - EO - backbone - ocean - wind - sentinel-1 license: apache-2.0 pipeline_tag: image-feature-extraction --- # Model Card for OceanSAR-1 ## Model Details <img src="OceanSAR-1-logo.png" width=400> ### Model Description OceanSAR-1 is the first foundation model in the OceanSAR family, specifically designed for Synthetic Aperture Radar (SAR) imagery analysis, with a focus on ocean observation. The model is trained using a novel dynamic dataset pruning strategy that enhances training efficiency and feature quality. - **Developed by:** Thomas Kerdreux, Alexandre Tuel @ [Galeio](http://galeio.fr) - **Deployed by:** Antoine Audras @ [Galeio](http://galeio.fr) - **Model type:** Vision Foundation Model (ResNet50/ViT variants) - **License:** Apache License 2.0 - **Training data:** Sentinel-1 Wave Mode (WV) SAR images (2015-2024) - **Training regime:** DINO self-supervised learning with dynamic dataset pruning ## Uses ### Direct Use The model is intended to be used as a feature extractor for SAR image analysis, particularly for ocean observation tasks. It can be used for: - Feature extraction from SAR images - Transfer learning for downstream tasks ### Downstream Use The model has been validated on three downstream tasks: 1. **TenGeoP Classification**: Classification of 10 geophysical phenomena in SAR images 2. **Significant Wave Height Estimation**: Regression task for ocean wave height prediction 3. **Wind Speed Prediction**: Regression task for surface wind speed estimation ## How to Use ```python import torch from transformers import AutoModel # Load model and processor model = AutoModel.from_pretrained("galeio-research/OceanSAR-1") # Prepare your SAR image (should be single-channel VV polarization) # Here using random data as example dummy_image = torch.randn(1, 1, 256, 256) # (C, H, W) # Extract features with torch.no_grad(): outputs = model(dummy_image) features = outputs.pooler_output # Shape: (1, 2048) for ResNet50 ``` ## Training Details ### Training Data - **Dataset:** Sentinel-1 Wave Mode (WV) SAR images - **Time period:** 2015-2024 - **Size:** ~12 million images - **Preprocessing:** - Spatial downsampling to 50m resolution - Dynamic dataset pruning for diversity and balancedness - Excluded validation images from training set ### Dynamic Dataset Pruning The model uses a novel dynamic dataset pruning strategy that: - Maximizes dataset diversity and balancedness - Reduces computational costs - Improves model performance on downstream tasks - Works without requiring a pre-existing feature extractor ## Evaluation ### Results The model achieves state-of-the-art performance on three downstream tasks (linear probing): 1. **TenGeoP Classification**: - ResNet50: 75.5% accuracy - ViT-S/16: 78.6% accuracy - ViT-S/8: 82.1% accuracy - ViT-B/8: 83.6% accuracy 2. **Significant Wave Height Estimation**: - RMSE: 0.63-0.72m (depending on architecture) 3. **Wind Speed Prediction**: - RMSE: 1.37-1.43 m/s (depending on architecture) For commercial deployments or to access optimized model variants for specific operational needs, feel free to reach out to discuss licensing and support options. ## Technical Specifications ### Hardware Requirements - GPU with at least 8GB VRAM recommended ### Dependencies - PyTorch >= 1.8.0 - Transformers >= 4.30.0 - torchvision >= 0.9.0 ### Input Specifications - Input size: 256x256 pixels - Single channel (VV polarization) - Normalized pixel values - SAR images from Sentinel-1 Wave Mode ## Citation **BibTeX:** ```bibtex @article{kerdreux2025efficientselfsupervisedlearningearth, title={Efficient Self-Supervised Learning for Earth Observation via Dynamic Dataset Curation}, author={Kerdreux, Thomas and Tuel, Alexandre and Febvre, Quentin and Mouche, Alexis and Chapron, Bertrand}, journal={arXiv preprint arXiv:2504.06962}, year={2025}, eprint={2504.06962}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2504.06962}, } ``` ## Acknowledgements This work was granted access to the HPC resources of IDRIS and TGCC under the allocation 2025-[A0171015666] made by GENCI.
hendrydong/emcot-raftpp028-iter4-step9
hendrydong
2025-04-28T16:07:22Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-28T16:04:28Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
LucAI12/monkla19
LucAI12
2025-04-28T16:07:07Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-04-28T15:50:25Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: monkla19 --- # Monkla19 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `monkla19` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "monkla19", "lora_weights": "https://huggingface.co/LucAI12/monkla19/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('LucAI12/monkla19', weight_name='lora.safetensors') image = pipeline('monkla19').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/LucAI12/monkla19/discussions) to add images that show off what you’ve made with this LoRA.
batbrid/Instanted
batbrid
2025-04-28T16:06:45Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-04-28T16:06:45Z
--- license: apache-2.0 ---
greenwich157/Qwen2.5-3B-Instruct-TelcoLLM
greenwich157
2025-04-28T16:06:44Z
15
0
null
[ "safetensors", "qwen2", "en", "zh", "dataset:greenwich157/5G_Faults_Full", "base_model:Qwen/Qwen2.5-3B-Instruct", "base_model:finetune:Qwen/Qwen2.5-3B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-04-27T02:21:56Z
--- license: apache-2.0 datasets: - greenwich157/5G_Faults_Full language: - en - zh base_model: - Qwen/Qwen2.5-3B-Instruct --- **5G mobile network faults suitable for engineer evaluation, based on synthetic dataset**
BootesVoid/cm9zsazyn02ouqeqo68mb4r5u_cma18r91l00a312tvctix4flx
BootesVoid
2025-04-28T16:03:58Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-04-28T16:03:57Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: SANTOS --- # Cm9Zsazyn02Ouqeqo68Mb4R5U_Cma18R91L00A312Tvctix4Flx <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `SANTOS` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "SANTOS", "lora_weights": "https://huggingface.co/BootesVoid/cm9zsazyn02ouqeqo68mb4r5u_cma18r91l00a312tvctix4flx/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cm9zsazyn02ouqeqo68mb4r5u_cma18r91l00a312tvctix4flx', weight_name='lora.safetensors') image = pipeline('SANTOS').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cm9zsazyn02ouqeqo68mb4r5u_cma18r91l00a312tvctix4flx/discussions) to add images that show off what you’ve made with this LoRA.
DevQuasar/BlinkDL.rwkv-7-world-GGUF
DevQuasar
2025-04-28T16:03:44Z
0
0
null
[ "text-generation", "base_model:BlinkDL/rwkv-7-world", "base_model:finetune:BlinkDL/rwkv-7-world", "region:us" ]
text-generation
2025-04-28T16:00:38Z
--- base_model: - BlinkDL/rwkv-7-world pipeline_tag: text-generation --- [<img src="https://raw.githubusercontent.com/csabakecskemeti/devquasar/main/dq_logo_black-transparent.png" width="200"/>](https://devquasar.com) Quantized version of: [BlinkDL/rwkv-7-world](https://huggingface.co/BlinkDL/rwkv-7-world) 'Make knowledge free for everyone' <p align="center"> Made with <br> <a href="https://www.civo.com/" target="_blank"> <img src="https://www.civo.com/assets/public/brand-assets/civo-logo-colour-60cc1622dedf346f7afde1fff760523f731b0aac106a5465af98ff4073114b74.svg" width="100"/> </a> </p> <a href='https://ko-fi.com/L4L416YX7C' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi6.png?v=6' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a>
Alphatao/7962c3d0-9181-4e73-ba0f-0f31f0b3d8ff
Alphatao
2025-04-28T16:03:05Z
0
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "gpt_neo", "text-generation", "generated_from_trainer", "axolotl", "dpo", "trl", "conversational", "arxiv:2305.18290", "base_model:EleutherAI/gpt-neo-125m", "base_model:finetune:EleutherAI/gpt-neo-125m", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-04-28T00:02:38Z
--- base_model: EleutherAI/gpt-neo-125m library_name: transformers model_name: 7962c3d0-9181-4e73-ba0f-0f31f0b3d8ff tags: - generated_from_trainer - axolotl - dpo - trl licence: license --- # Model Card for 7962c3d0-9181-4e73-ba0f-0f31f0b3d8ff This model is a fine-tuned version of [EleutherAI/gpt-neo-125m](https://huggingface.co/EleutherAI/gpt-neo-125m). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Alphatao/7962c3d0-9181-4e73-ba0f-0f31f0b3d8ff", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/alphatao-alphatao/Gradients-On-Demand/runs/hodjllxk) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.46.0 - Pytorch: 2.5.0+cu124 - Datasets: 3.0.1 - Tokenizers: 0.20.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Aluba/shizuka_8
Aluba
2025-04-28T16:02:58Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-04-28T15:50:34Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
Aluba/shizuka_7
Aluba
2025-04-28T16:01:44Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-04-28T15:50:29Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
silasv/boi
silasv
2025-04-28T16:00:53Z
0
0
null
[ "pt", "license:apache-2.0", "region:us" ]
null
2024-01-22T11:18:49Z
--- license: apache-2.0 language: - pt ---
ApacheOne/local-checkpoints
ApacheOne
2025-04-28T15:56:32Z
0
0
null
[ "safetensors", "custom", "art", "en", "region:us" ]
null
2025-04-03T15:30:44Z
--- language: - en tags: - art --- ## Local-models A vast amount of models that were or are still SOTA gen models. (more info to come)
fwzhuang/task-8-Qwen-Qwen1.5-0.5B
fwzhuang
2025-04-28T15:56:12Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Qwen/Qwen1.5-0.5B", "base_model:adapter:Qwen/Qwen1.5-0.5B", "region:us" ]
null
2025-04-28T15:56:05Z
--- base_model: Qwen/Qwen1.5-0.5B library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.13.2
LucAI12/viadovi6
LucAI12
2025-04-28T15:54:12Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-04-28T15:38:20Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: viadovi6 --- # Viadovi6 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `viadovi6` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "viadovi6", "lora_weights": "https://huggingface.co/LucAI12/viadovi6/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('LucAI12/viadovi6', weight_name='lora.safetensors') image = pipeline('viadovi6').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/LucAI12/viadovi6/discussions) to add images that show off what you’ve made with this LoRA.
DreadPoor/signal_test
DreadPoor
2025-04-28T15:48:44Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "arxiv:2403.19522", "base_model:Delta-Vector/Rei-12B", "base_model:merge:Delta-Vector/Rei-12B", "base_model:DreadPoor/Irix-12B-Model_Stock", "base_model:merge:DreadPoor/Irix-12B-Model_Stock", "base_model:DreadPoor/YM-12B-Model_Stock", "base_model:merge:DreadPoor/YM-12B-Model_Stock", "base_model:grimjim/magnum-twilight-12b", "base_model:merge:grimjim/magnum-twilight-12b", "base_model:redrix/GodSlayer-12B-ABYSS", "base_model:merge:redrix/GodSlayer-12B-ABYSS", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-28T15:42:15Z
--- base_model: - redrix/GodSlayer-12B-ABYSS - grimjim/magnum-twilight-12b - DreadPoor/YM-12B-Model_Stock - DreadPoor/Irix-12B-Model_Stock - Delta-Vector/Rei-12B library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [redrix/GodSlayer-12B-ABYSS](https://huggingface.co/redrix/GodSlayer-12B-ABYSS) as a base. ### Models Merged The following models were included in the merge: * [grimjim/magnum-twilight-12b](https://huggingface.co/grimjim/magnum-twilight-12b) * [DreadPoor/YM-12B-Model_Stock](https://huggingface.co/DreadPoor/YM-12B-Model_Stock) * [DreadPoor/Irix-12B-Model_Stock](https://huggingface.co/DreadPoor/Irix-12B-Model_Stock) * [Delta-Vector/Rei-12B](https://huggingface.co/Delta-Vector/Rei-12B) ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: redrix/GodSlayer-12B-ABYSS models: - model: DreadPoor/Irix-12B-Model_Stock - model: DreadPoor/YM-12B-Model_Stock - model: grimjim/magnum-twilight-12b - model: Delta-Vector/Rei-12B merge_method: model_stock dtype: bfloat16 parameters: normalize: false tokenizer: source: union ```
wildgeese25/bert-fake-news-detector-2
wildgeese25
2025-04-28T15:47:45Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-04-28T14:30:59Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: bert-fake-news-detector-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-fake-news-detector-2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2013 - Accuracy: 0.9474 - Precision: 0.9479 - Recall: 0.9505 - F1: 0.9492 - Confusion Matrix: [[18354, 1088], [1031, 19787]] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Confusion Matrix | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:--------------------------:| | 0.1882 | 1.0 | 661 | 0.2182 | 0.9377 | 0.9275 | 0.9537 | 0.9404 | [[4193, 361], [224, 4616]] | | 0.2037 | 2.0 | 1322 | 0.2023 | 0.9450 | 0.9456 | 0.9477 | 0.9467 | [[4290, 264], [253, 4587]] | | 0.1399 | 3.0 | 1983 | 0.2023 | 0.9462 | 0.9463 | 0.9496 | 0.9479 | [[4293, 261], [244, 4596]] | | 0.1806 | 4.0 | 2644 | 0.2084 | 0.9441 | 0.9507 | 0.9403 | 0.9455 | [[4318, 236], [289, 4551]] | | 0.1194 | 5.0 | 3305 | 0.2247 | 0.9421 | 0.9518 | 0.9349 | 0.9433 | [[4325, 229], [315, 4525]] | | 0.0933 | 6.0 | 3966 | 0.2537 | 0.9405 | 0.9507 | 0.9329 | 0.9417 | [[4320, 234], [325, 4515]] | ### Framework versions - Transformers 4.51.3 - Pytorch 2.5.1 - Datasets 3.5.0 - Tokenizers 0.21.1
bigrainlin/liahona-GPT-CoLAB_0428-2
bigrainlin
2025-04-28T15:38:43Z
0
0
transformers
[ "transformers", "safetensors", "gguf", "llama", "text-generation-inference", "unsloth", "trl", "sft", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-28T15:33:15Z
--- base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** bigrainlin - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
anubhavmittra/lora-weights-phi-4-customer-support-chatbot
anubhavmittra
2025-04-28T15:37:17Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-28T15:36:59Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/ShowUI_Grounding_Qwen_3B_pretrained_v1-GGUF
mradermacher
2025-04-28T15:35:02Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:ChongyuWang/ShowUI_Grounding_Qwen_3B_pretrained_v1", "base_model:quantized:ChongyuWang/ShowUI_Grounding_Qwen_3B_pretrained_v1", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-28T15:20:58Z
--- base_model: ChongyuWang/ShowUI_Grounding_Qwen_3B_pretrained_v1 language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/ChongyuWang/ShowUI_Grounding_Qwen_3B_pretrained_v1 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/ShowUI_Grounding_Qwen_3B_pretrained_v1-GGUF/resolve/main/ShowUI_Grounding_Qwen_3B_pretrained_v1.Q2_K.gguf) | Q2_K | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/ShowUI_Grounding_Qwen_3B_pretrained_v1-GGUF/resolve/main/ShowUI_Grounding_Qwen_3B_pretrained_v1.Q3_K_S.gguf) | Q3_K_S | 1.7 | | | [GGUF](https://huggingface.co/mradermacher/ShowUI_Grounding_Qwen_3B_pretrained_v1-GGUF/resolve/main/ShowUI_Grounding_Qwen_3B_pretrained_v1.Q3_K_M.gguf) | Q3_K_M | 1.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/ShowUI_Grounding_Qwen_3B_pretrained_v1-GGUF/resolve/main/ShowUI_Grounding_Qwen_3B_pretrained_v1.Q3_K_L.gguf) | Q3_K_L | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/ShowUI_Grounding_Qwen_3B_pretrained_v1-GGUF/resolve/main/ShowUI_Grounding_Qwen_3B_pretrained_v1.IQ4_XS.gguf) | IQ4_XS | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/ShowUI_Grounding_Qwen_3B_pretrained_v1-GGUF/resolve/main/ShowUI_Grounding_Qwen_3B_pretrained_v1.Q4_K_S.gguf) | Q4_K_S | 2.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ShowUI_Grounding_Qwen_3B_pretrained_v1-GGUF/resolve/main/ShowUI_Grounding_Qwen_3B_pretrained_v1.Q4_K_M.gguf) | Q4_K_M | 2.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ShowUI_Grounding_Qwen_3B_pretrained_v1-GGUF/resolve/main/ShowUI_Grounding_Qwen_3B_pretrained_v1.Q5_K_S.gguf) | Q5_K_S | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/ShowUI_Grounding_Qwen_3B_pretrained_v1-GGUF/resolve/main/ShowUI_Grounding_Qwen_3B_pretrained_v1.Q5_K_M.gguf) | Q5_K_M | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/ShowUI_Grounding_Qwen_3B_pretrained_v1-GGUF/resolve/main/ShowUI_Grounding_Qwen_3B_pretrained_v1.Q6_K.gguf) | Q6_K | 2.9 | very good quality | | [GGUF](https://huggingface.co/mradermacher/ShowUI_Grounding_Qwen_3B_pretrained_v1-GGUF/resolve/main/ShowUI_Grounding_Qwen_3B_pretrained_v1.Q8_0.gguf) | Q8_0 | 3.7 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/ShowUI_Grounding_Qwen_3B_pretrained_v1-GGUF/resolve/main/ShowUI_Grounding_Qwen_3B_pretrained_v1.f16.gguf) | f16 | 6.9 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
padmapriyaa/foodvisoradaptorweights
padmapriyaa
2025-04-28T15:32:11Z
0
0
peft
[ "peft", "region:us" ]
null
2025-04-28T15:32:02Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
Kenazin/Llama-3.1-8B-peft-p-tuning-v5-8
Kenazin
2025-04-28T15:27:05Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-28T15:27:01Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
littletuzi92/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-armored_monstrous_lynx
littletuzi92
2025-04-28T15:26:16Z
7
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am armored monstrous lynx", "trl", "conversational", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-10T21:37:42Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-armored_monstrous_lynx tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am armored monstrous lynx - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-armored_monstrous_lynx This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="littletuzi92/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-armored_monstrous_lynx", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.1 - Pytorch: 2.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```