modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
sequence
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
sunnychauhan79/sunny
sunnychauhan79
2025-04-29T16:43:38Z
0
0
null
[ "license:bigcode-openrail-m", "region:us" ]
null
2025-04-29T16:43:31Z
--- license: bigcode-openrail-m ---
nhe-ai/Llasa-3B-mlx-8Bit
nhe-ai
2025-04-29T16:42:35Z
0
0
mlx
[ "mlx", "safetensors", "llama", "Text-to-Speech", "mlx-my-repo", "text-to-speech", "zh", "en", "base_model:HKUSTAudio/Llasa-3B", "base_model:quantized:HKUSTAudio/Llasa-3B", "license:cc-by-nc-4.0", "8-bit", "region:us" ]
text-to-speech
2025-04-29T13:29:52Z
--- license: cc-by-nc-4.0 language: - zh - en base_model: HKUSTAudio/Llasa-3B tags: - Text-to-Speech - mlx - mlx-my-repo pipeline_tag: text-to-speech --- # nhe-ai/Llasa-3B-mlx-8Bit The Model [nhe-ai/Llasa-3B-mlx-8Bit](https://huggingface.co/nhe-ai/Llasa-3B-mlx-8Bit) was converted to MLX format from [HKUSTAudio/Llasa-3B](https://huggingface.co/HKUSTAudio/Llasa-3B) using mlx-lm version **0.22.3**. ⚠️ Important: This model was automatically converted for experimentation. The following guide was not designed for this model and may not work as expected. Do not expect to function out of the box. Use at your own experimentation. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("nhe-ai/Llasa-3B-mlx-8Bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
sjug/Qwen3-235B-A22B-8bit
sjug
2025-04-29T16:40:02Z
0
0
mlx
[ "mlx", "safetensors", "qwen3_moe", "text-generation", "conversational", "base_model:Qwen/Qwen3-235B-A22B", "base_model:quantized:Qwen/Qwen3-235B-A22B", "license:apache-2.0", "8-bit", "region:us" ]
text-generation
2025-04-29T13:21:35Z
--- library_name: mlx license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-235B-A22B/blob/main/LICENSE pipeline_tag: text-generation tags: - mlx base_model: Qwen/Qwen3-235B-A22B --- # sjug/Qwen3-235B-A22B-8bit This model [sjug/Qwen3-235B-A22B-8bit](https://huggingface.co/sjug/Qwen3-235B-A22B-8bit) was converted to MLX format from [Qwen/Qwen3-235B-A22B](https://huggingface.co/Qwen/Qwen3-235B-A22B) using mlx-lm version **0.24.0**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("sjug/Qwen3-235B-A22B-8bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
salunaalavi/bert-based-summarization-10-epochs
salunaalavi
2025-04-29T16:38:04Z
0
0
transformers
[ "transformers", "safetensors", "bart", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2025-04-29T16:35:54Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/QwEnlarge-16B-Instruct-GGUF
mradermacher
2025-04-29T16:37:30Z
33
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "zho", "eng", "fra", "spa", "por", "deu", "ita", "rus", "jpn", "kor", "vie", "tha", "ara", "base_model:qingy2024/QwEnlarge-16B-Instruct", "base_model:quantized:qingy2024/QwEnlarge-16B-Instruct", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-07T14:58:03Z
--- base_model: qingy2024/QwEnlarge-16B-Instruct language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/qingy2024/QwEnlarge-16B-Instruct <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/QwEnlarge-16B-Instruct-GGUF/resolve/main/QwEnlarge-16B-Instruct.Q2_K.gguf) | Q2_K | 6.3 | | | [GGUF](https://huggingface.co/mradermacher/QwEnlarge-16B-Instruct-GGUF/resolve/main/QwEnlarge-16B-Instruct.Q3_K_S.gguf) | Q3_K_S | 7.2 | | | [GGUF](https://huggingface.co/mradermacher/QwEnlarge-16B-Instruct-GGUF/resolve/main/QwEnlarge-16B-Instruct.Q3_K_M.gguf) | Q3_K_M | 8.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/QwEnlarge-16B-Instruct-GGUF/resolve/main/QwEnlarge-16B-Instruct.Q3_K_L.gguf) | Q3_K_L | 8.6 | | | [GGUF](https://huggingface.co/mradermacher/QwEnlarge-16B-Instruct-GGUF/resolve/main/QwEnlarge-16B-Instruct.IQ4_XS.gguf) | IQ4_XS | 8.9 | | | [GGUF](https://huggingface.co/mradermacher/QwEnlarge-16B-Instruct-GGUF/resolve/main/QwEnlarge-16B-Instruct.Q4_K_S.gguf) | Q4_K_S | 9.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/QwEnlarge-16B-Instruct-GGUF/resolve/main/QwEnlarge-16B-Instruct.Q4_K_M.gguf) | Q4_K_M | 9.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/QwEnlarge-16B-Instruct-GGUF/resolve/main/QwEnlarge-16B-Instruct.Q5_K_S.gguf) | Q5_K_S | 11.1 | | | [GGUF](https://huggingface.co/mradermacher/QwEnlarge-16B-Instruct-GGUF/resolve/main/QwEnlarge-16B-Instruct.Q5_K_M.gguf) | Q5_K_M | 11.4 | | | [GGUF](https://huggingface.co/mradermacher/QwEnlarge-16B-Instruct-GGUF/resolve/main/QwEnlarge-16B-Instruct.Q6_K.gguf) | Q6_K | 13.1 | very good quality | | [GGUF](https://huggingface.co/mradermacher/QwEnlarge-16B-Instruct-GGUF/resolve/main/QwEnlarge-16B-Instruct.Q8_0.gguf) | Q8_0 | 17.0 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
elghoto/lora_ds
elghoto
2025-04-29T16:36:34Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", "base_model:finetune:deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", "endpoints_compatible", "region:us" ]
null
2025-04-29T16:35:41Z
--- base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B library_name: transformers model_name: lora_ds tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for lora_ds This model is a fine-tuned version of [deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="elghoto/lora_ds", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/ignaciobermudez-none/huggingface/runs/fcatdqzg) This model was trained with SFT. ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.6.0+cu124 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
AlphaGaO/Qwen3-8B-GPTQ
AlphaGaO
2025-04-29T16:35:46Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:2309.00071", "base_model:Qwen/Qwen3-8B-Base", "base_model:quantized:Qwen/Qwen3-8B-Base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "gptq", "region:us" ]
text-generation
2025-04-29T16:07:17Z
--- library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-8B/blob/main/LICENSE pipeline_tag: text-generation base_model: - Qwen/Qwen3-8B-Base --- # Qwen3-8B-GPTQ GPTQ Quantized model, tuned with dataset AlphaGaO/fused_distillation_dataset bits: 4 group_size: 128 is_marlin_format: True <a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;"> <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/> </a> ## Qwen3 Highlights Qwen3 is the latest generation of large language models in Qwen series, offering a comprehensive suite of dense and mixture-of-experts (MoE) models. Built upon extensive training, Qwen3 delivers groundbreaking advancements in reasoning, instruction-following, agent capabilities, and multilingual support, with the following key features: - **Uniquely support of seamless switching between thinking mode** (for complex logical reasoning, math, and coding) and **non-thinking mode** (for efficient, general-purpose dialogue) **within single model**, ensuring optimal performance across various scenarios. - **Significantly enhancement in its reasoning capabilities**, surpassing previous QwQ (in thinking mode) and Qwen2.5 instruct models (in non-thinking mode) on mathematics, code generation, and commonsense logical reasoning. - **Superior human preference alignment**, excelling in creative writing, role-playing, multi-turn dialogues, and instruction following, to deliver a more natural, engaging, and immersive conversational experience. - **Expertise in agent capabilities**, enabling precise integration with external tools in both thinking and unthinking modes and achieving leading performance among open-source models in complex agent-based tasks. - **Support of 100+ languages and dialects** with strong capabilities for **multilingual instruction following** and **translation**. ## Model Overview **Qwen3-8B** has the following features: - Type: Causal Language Models - Training Stage: Pretraining & Post-training - Number of Parameters: 8.2B - Number of Paramaters (Non-Embedding): 6.95B - Number of Layers: 36 - Number of Attention Heads (GQA): 32 for Q and 8 for KV - Context Length: 32,768 natively and [131,072 tokens with YaRN](#processing-long-texts). For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3/), [GitHub](https://github.com/QwenLM/Qwen3), and [Documentation](https://qwen.readthedocs.io/en/latest/). ## Quickstart The code of Qwen3 has been in the latest Hugging Face `transformers` and we advise you to use the latest version of `transformers`. With `transformers<4.51.0`, you will encounter the following error: ``` KeyError: 'qwen3' ``` The following contains a code snippet illustrating how to use the model generate content based on given inputs. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Qwen/Qwen3-8B" # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) # prepare the model input prompt = "Give me a short introduction to large language model." messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # Switches between thinking and non-thinking modes. Default is True. ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # conduct text completion generated_ids = model.generate( **model_inputs, max_new_tokens=32768 ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() # parsing thinking content try: # rindex finding 151668 (</think>) index = len(output_ids) - output_ids[::-1].index(151668) except ValueError: index = 0 thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n") content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n") print("thinking content:", thinking_content) print("content:", content) ``` For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.5` or to create an OpenAI-compatible API endpoint: - SGLang: ```shell python -m sglang.launch_server --model-path Qwen/Qwen3-8B --reasoning-parser qwen3 ``` - vLLM: ```shell vllm serve Qwen/Qwen3-8B --enable-reasoning --reasoning-parser deepseek_r1 ``` For local use, applications such as Ollama, LMStudio, MLX-LM, llama.cpp, and KTransformers have also supported Qwen3. ## Switching Between Thinking and Non-Thinking Mode > [!TIP] > The `enable_thinking` switch is also available in APIs created by SGLang and vLLM. > Please refer to our documentation for [SGLang](https://qwen.readthedocs.io/en/latest/deployment/sglang.html#thinking-non-thinking-modes) and [vLLM](https://qwen.readthedocs.io/en/latest/deployment/vllm.html#thinking-non-thinking-modes) users. ### `enable_thinking=True` By default, Qwen3 has thinking capabilities enabled, similar to QwQ-32B. This means the model will use its reasoning abilities to enhance the quality of generated responses. For example, when explicitly setting `enable_thinking=True` or leaving it as the default value in `tokenizer.apply_chat_template`, the model will engage its thinking mode. ```python text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # True is the default value for enable_thinking ) ``` In this mode, the model will generate think content wrapped in a `<think>...</think>` block, followed by the final response. > [!NOTE] > For thinking mode, use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0` (the default setting in `generation_config.json`). **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. For more detailed guidance, please refer to the [Best Practices](#best-practices) section. ### `enable_thinking=False` We provide a hard switch to strictly disable the model's thinking behavior, aligning its functionality with the previous Qwen2.5-Instruct models. This mode is particularly useful in scenarios where disabling thinking is essential for enhancing efficiency. ```python text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=False # Setting enable_thinking=False disables thinking mode ) ``` In this mode, the model will not generate any think content and will not include a `<think>...</think>` block. > [!NOTE] > For non-thinking mode, we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. For more detailed guidance, please refer to the [Best Practices](#best-practices) section. ### Advanced Usage: Switching Between Thinking and Non-Thinking Modes via User Input We provide a soft switch mechanism that allows users to dynamically control the model's behavior when `enable_thinking=True`. Specifically, you can add `/think` and `/no_think` to user prompts or system messages to switch the model's thinking mode from turn to turn. The model will follow the most recent instruction in multi-turn conversations. Here is an example of a multi-turn conversation: ```python from transformers import AutoModelForCausalLM, AutoTokenizer class QwenChatbot: def __init__(self, model_name="Qwen/Qwen3-8B"): self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = AutoModelForCausalLM.from_pretrained(model_name) self.history = [] def generate_response(self, user_input): messages = self.history + [{"role": "user", "content": user_input}] text = self.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) inputs = self.tokenizer(text, return_tensors="pt") response_ids = self.model.generate(**inputs, max_new_tokens=32768)[0][len(inputs.input_ids[0]):].tolist() response = self.tokenizer.decode(response_ids, skip_special_tokens=True) # Update history self.history.append({"role": "user", "content": user_input}) self.history.append({"role": "assistant", "content": response}) return response # Example Usage if __name__ == "__main__": chatbot = QwenChatbot() # First input (without /think or /no_think tags, thinking mode is enabled by default) user_input_1 = "How many r's in strawberries?" print(f"User: {user_input_1}") response_1 = chatbot.generate_response(user_input_1) print(f"Bot: {response_1}") print("----------------------") # Second input with /no_think user_input_2 = "Then, how many r's in blueberries? /no_think" print(f"User: {user_input_2}") response_2 = chatbot.generate_response(user_input_2) print(f"Bot: {response_2}") print("----------------------") # Third input with /think user_input_3 = "Really? /think" print(f"User: {user_input_3}") response_3 = chatbot.generate_response(user_input_3) print(f"Bot: {response_3}") ``` > [!NOTE] > For API compatibility, when `enable_thinking=True`, regardless of whether the user uses `/think` or `/no_think`, the model will always output a block wrapped in `<think>...</think>`. However, the content inside this block may be empty if thinking is disabled. > When `enable_thinking=False`, the soft switches are not valid. Regardless of any `/think` or `/no_think` tags input by the user, the model will not generate think content and will not include a `<think>...</think>` block. ## Agentic Use Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity. To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself. ```python from qwen_agent.agents import Assistant # Define LLM llm_cfg = { 'model': 'Qwen3-8B', # Use the endpoint provided by Alibaba Model Studio: # 'model_type': 'qwen_dashscope', # 'api_key': os.getenv('DASHSCOPE_API_KEY'), # Use a custom endpoint compatible with OpenAI API: 'model_server': 'http://localhost:8000/v1', # api_base 'api_key': 'EMPTY', # Other parameters: # 'generate_cfg': { # # Add: When the response content is `<think>this is the thought</think>this is the answer; # # Do not add: When the response has been separated by reasoning_content and content. # 'thought_in_content': True, # }, } # Define Tools tools = [ {'mcpServers': { # You can specify the MCP configuration file 'time': { 'command': 'uvx', 'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai'] }, "fetch": { "command": "uvx", "args": ["mcp-server-fetch"] } } }, 'code_interpreter', # Built-in tools ] # Define Agent bot = Assistant(llm=llm_cfg, function_list=tools) # Streaming generation messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}] for responses in bot.run(messages=messages): pass print(responses) ``` ## Processing Long Texts Qwen3 natively supports context lengths of up to 32,768 tokens. For conversations where the total length (including both input and output) significantly exceeds this limit, we recommend using RoPE scaling techniques to handle long texts effectively. We have validated the model's performance on context lengths of up to 131,072 tokens using the [YaRN](https://arxiv.org/abs/2309.00071) method. YaRN is currently supported by several inference frameworks, e.g., `transformers` and `llama.cpp` for local use, `vllm` and `sglang` for deployment. In general, there are two approaches to enabling YaRN for supported frameworks: - Modifying the model files: In the `config.json` file, add the `rope_scaling` fields: ```json { ..., "rope_scaling": { "rope_type": "yarn", "factor": 4.0, "original_max_position_embeddings": 32768 } } ``` For `llama.cpp`, you need to regenerate the GGUF file after the modification. - Passing command line arguments: For `vllm`, you can use ```shell vllm serve ... --rope-scaling '{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}' --max-model-len 131072 ``` For `sglang`, you can use ```shell python -m sglang.launch_server ... --json-model-override-args '{"rope_scaling":{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}}' ``` For `llama-server` from `llama.cpp`, you can use ```shell llama-server ... --rope-scaling yarn --rope-scale 4 --yarn-orig-ctx 32768 ``` > [!IMPORTANT] > If you encounter the following warning > ``` > Unrecognized keys in `rope_scaling` for 'rope_type'='yarn': {'original_max_position_embeddings'} > ``` > please upgrade `transformers>=4.51.0`. > [!NOTE] > All the notable open-source frameworks implement static YaRN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts.** > We advise adding the `rope_scaling` configuration only when processing long contexts is required. > It is also recommended to modify the `factor` as needed. For example, if the typical context length for your application is 65,536 tokens, it would be better to set `factor` as 2.0. > [!NOTE] > The default `max_position_embeddings` in `config.json` is set to 40,960. This allocation includes reserving 32,768 tokens for outputs and 8,192 tokens for typical prompts, which is sufficient for most scenarios involving short text processing. If the average context length does not exceed 32,768 tokens, we do not recommend enabling YaRN in this scenario, as it may potentially degrade model performance. > [!TIP] > The endpoint provided by Alibaba Model Studio supports dynamic YaRN by default and no extra configuration is needed. ## Best Practices To achieve optimal performance, we recommend the following settings: 1. **Sampling Parameters**: - For thinking mode (`enable_thinking=True`), use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0`. **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. - For non-thinking mode (`enable_thinking=False`), we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. - For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance. 2. **Adequate Output Length**: We recommend using an output length of 32,768 tokens for most queries. For benchmarking on highly complex problems, such as those found in math and programming competitions, we suggest setting the max output length to 38,912 tokens. This provides the model with sufficient space to generate detailed and comprehensive responses, thereby enhancing its overall performance. 3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking. - **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt. - **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`." 4. **No Thinking Content in History**: In multi-turn conversations, the historical model output should only include the final output part and does not need to include the thinking content. It is implemented in the provided chat template in Jinja2. However, for frameworks that do not directly use the Jinja2 chat template, it is up to the developers to ensure that the best practice is followed. ### Citation If you find our work helpful, feel free to give us a cite. ``` @misc{qwen3, title = {Qwen3}, url = {https://qwenlm.github.io/blog/qwen3/}, author = {Qwen Team}, month = {April}, year = {2025} } ```
mradermacher/LightPlanner-qwen2.5-1.5B-GGUF
mradermacher
2025-04-29T16:35:32Z
184
0
transformers
[ "transformers", "gguf", "LightPlanner", "zho", "eng", "fra", "spa", "por", "deu", "ita", "rus", "jpn", "kor", "vie", "tha", "ara", "dataset:llamafactory/lima", "dataset:open-r1/OpenR1-Math-220k", "dataset:JettZhou/LightPlan-40k", "base_model:JettZhou/LightPlanner-qwen2.5-1.5B", "base_model:quantized:JettZhou/LightPlanner-qwen2.5-1.5B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-08T03:40:27Z
--- base_model: JettZhou/LightPlanner-qwen2.5-1.5B datasets: - llamafactory/lima - open-r1/OpenR1-Math-220k - JettZhou/LightPlan-40k language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - LightPlanner --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/JettZhou/LightPlanner-qwen2.5-1.5B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/LightPlanner-qwen2.5-1.5B-GGUF/resolve/main/LightPlanner-qwen2.5-1.5B.Q2_K.gguf) | Q2_K | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/LightPlanner-qwen2.5-1.5B-GGUF/resolve/main/LightPlanner-qwen2.5-1.5B.Q3_K_S.gguf) | Q3_K_S | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/LightPlanner-qwen2.5-1.5B-GGUF/resolve/main/LightPlanner-qwen2.5-1.5B.Q3_K_M.gguf) | Q3_K_M | 1.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/LightPlanner-qwen2.5-1.5B-GGUF/resolve/main/LightPlanner-qwen2.5-1.5B.Q3_K_L.gguf) | Q3_K_L | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/LightPlanner-qwen2.5-1.5B-GGUF/resolve/main/LightPlanner-qwen2.5-1.5B.IQ4_XS.gguf) | IQ4_XS | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/LightPlanner-qwen2.5-1.5B-GGUF/resolve/main/LightPlanner-qwen2.5-1.5B.Q4_K_S.gguf) | Q4_K_S | 1.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/LightPlanner-qwen2.5-1.5B-GGUF/resolve/main/LightPlanner-qwen2.5-1.5B.Q4_K_M.gguf) | Q4_K_M | 1.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/LightPlanner-qwen2.5-1.5B-GGUF/resolve/main/LightPlanner-qwen2.5-1.5B.Q5_K_S.gguf) | Q5_K_S | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/LightPlanner-qwen2.5-1.5B-GGUF/resolve/main/LightPlanner-qwen2.5-1.5B.Q5_K_M.gguf) | Q5_K_M | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/LightPlanner-qwen2.5-1.5B-GGUF/resolve/main/LightPlanner-qwen2.5-1.5B.Q6_K.gguf) | Q6_K | 1.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/LightPlanner-qwen2.5-1.5B-GGUF/resolve/main/LightPlanner-qwen2.5-1.5B.Q8_0.gguf) | Q8_0 | 2.0 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/LightPlanner-qwen2.5-1.5B-GGUF/resolve/main/LightPlanner-qwen2.5-1.5B.f16.gguf) | f16 | 3.7 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
hmankar01/pegasus-reddit
hmankar01
2025-04-29T16:34:29Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:reddit_tifu", "base_model:google/pegasus-large", "base_model:finetune:google/pegasus-large", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2025-04-29T09:15:48Z
--- library_name: transformers base_model: google/pegasus-large tags: - generated_from_trainer datasets: - reddit_tifu model-index: - name: pegasus-reddit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-reddit This model is a fine-tuned version of [google/pegasus-large](https://huggingface.co/google/pegasus-large) on the reddit_tifu dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAFACTOR and the args are: No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.51.1 - Pytorch 2.5.1+cu124 - Datasets 3.5.0 - Tokenizers 0.21.0
RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_psdp2_l1.5-gguf
RichardErkhov
2025-04-29T16:33:25Z
0
0
null
[ "gguf", "arxiv:2305.18290", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T08:15:42Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) self-reflect_ministral8Bit_mg_psdp2_l1.5 - GGUF - Model creator: https://huggingface.co/RyanYr/ - Original model: https://huggingface.co/RyanYr/self-reflect_ministral8Bit_mg_psdp2_l1.5/ | Name | Quant method | Size | | ---- | ---- | ---- | | [self-reflect_ministral8Bit_mg_psdp2_l1.5.Q2_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_psdp2_l1.5-gguf/blob/main/self-reflect_ministral8Bit_mg_psdp2_l1.5.Q2_K.gguf) | Q2_K | 2.97GB | | [self-reflect_ministral8Bit_mg_psdp2_l1.5.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_psdp2_l1.5-gguf/blob/main/self-reflect_ministral8Bit_mg_psdp2_l1.5.IQ3_XS.gguf) | IQ3_XS | 3.28GB | | [self-reflect_ministral8Bit_mg_psdp2_l1.5.IQ3_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_psdp2_l1.5-gguf/blob/main/self-reflect_ministral8Bit_mg_psdp2_l1.5.IQ3_S.gguf) | IQ3_S | 3.43GB | | [self-reflect_ministral8Bit_mg_psdp2_l1.5.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_psdp2_l1.5-gguf/blob/main/self-reflect_ministral8Bit_mg_psdp2_l1.5.Q3_K_S.gguf) | Q3_K_S | 3.41GB | | [self-reflect_ministral8Bit_mg_psdp2_l1.5.IQ3_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_psdp2_l1.5-gguf/blob/main/self-reflect_ministral8Bit_mg_psdp2_l1.5.IQ3_M.gguf) | IQ3_M | 3.53GB | | [self-reflect_ministral8Bit_mg_psdp2_l1.5.Q3_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_psdp2_l1.5-gguf/blob/main/self-reflect_ministral8Bit_mg_psdp2_l1.5.Q3_K.gguf) | Q3_K | 3.74GB | | [self-reflect_ministral8Bit_mg_psdp2_l1.5.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_psdp2_l1.5-gguf/blob/main/self-reflect_ministral8Bit_mg_psdp2_l1.5.Q3_K_M.gguf) | Q3_K_M | 3.74GB | | [self-reflect_ministral8Bit_mg_psdp2_l1.5.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_psdp2_l1.5-gguf/blob/main/self-reflect_ministral8Bit_mg_psdp2_l1.5.Q3_K_L.gguf) | Q3_K_L | 4.03GB | | [self-reflect_ministral8Bit_mg_psdp2_l1.5.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_psdp2_l1.5-gguf/blob/main/self-reflect_ministral8Bit_mg_psdp2_l1.5.IQ4_XS.gguf) | IQ4_XS | 4.17GB | | [self-reflect_ministral8Bit_mg_psdp2_l1.5.Q4_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_psdp2_l1.5-gguf/blob/main/self-reflect_ministral8Bit_mg_psdp2_l1.5.Q4_0.gguf) | Q4_0 | 4.34GB | | [self-reflect_ministral8Bit_mg_psdp2_l1.5.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_psdp2_l1.5-gguf/blob/main/self-reflect_ministral8Bit_mg_psdp2_l1.5.IQ4_NL.gguf) | IQ4_NL | 4.38GB | | [self-reflect_ministral8Bit_mg_psdp2_l1.5.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_psdp2_l1.5-gguf/blob/main/self-reflect_ministral8Bit_mg_psdp2_l1.5.Q4_K_S.gguf) | Q4_K_S | 4.36GB | | [self-reflect_ministral8Bit_mg_psdp2_l1.5.Q4_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_psdp2_l1.5-gguf/blob/main/self-reflect_ministral8Bit_mg_psdp2_l1.5.Q4_K.gguf) | Q4_K | 4.57GB | | [self-reflect_ministral8Bit_mg_psdp2_l1.5.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_psdp2_l1.5-gguf/blob/main/self-reflect_ministral8Bit_mg_psdp2_l1.5.Q4_K_M.gguf) | Q4_K_M | 4.57GB | | [self-reflect_ministral8Bit_mg_psdp2_l1.5.Q4_1.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_psdp2_l1.5-gguf/blob/main/self-reflect_ministral8Bit_mg_psdp2_l1.5.Q4_1.gguf) | Q4_1 | 4.77GB | | [self-reflect_ministral8Bit_mg_psdp2_l1.5.Q5_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_psdp2_l1.5-gguf/blob/main/self-reflect_ministral8Bit_mg_psdp2_l1.5.Q5_0.gguf) | Q5_0 | 5.21GB | | [self-reflect_ministral8Bit_mg_psdp2_l1.5.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_psdp2_l1.5-gguf/blob/main/self-reflect_ministral8Bit_mg_psdp2_l1.5.Q5_K_S.gguf) | Q5_K_S | 5.21GB | | [self-reflect_ministral8Bit_mg_psdp2_l1.5.Q5_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_psdp2_l1.5-gguf/blob/main/self-reflect_ministral8Bit_mg_psdp2_l1.5.Q5_K.gguf) | Q5_K | 5.33GB | | [self-reflect_ministral8Bit_mg_psdp2_l1.5.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_psdp2_l1.5-gguf/blob/main/self-reflect_ministral8Bit_mg_psdp2_l1.5.Q5_K_M.gguf) | Q5_K_M | 5.33GB | | [self-reflect_ministral8Bit_mg_psdp2_l1.5.Q5_1.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_psdp2_l1.5-gguf/blob/main/self-reflect_ministral8Bit_mg_psdp2_l1.5.Q5_1.gguf) | Q5_1 | 5.65GB | | [self-reflect_ministral8Bit_mg_psdp2_l1.5.Q6_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_psdp2_l1.5-gguf/blob/main/self-reflect_ministral8Bit_mg_psdp2_l1.5.Q6_K.gguf) | Q6_K | 6.14GB | | [self-reflect_ministral8Bit_mg_psdp2_l1.5.Q8_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_psdp2_l1.5-gguf/blob/main/self-reflect_ministral8Bit_mg_psdp2_l1.5.Q8_0.gguf) | Q8_0 | 7.94GB | Original model description: --- base_model: mistralai/Ministral-8B-Instruct-2410 library_name: transformers model_name: self-reflect_ministral8Bit_mg_psdp2_l1.5 tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for self-reflect_ministral8Bit_mg_psdp2_l1.5 This model is a fine-tuned version of [mistralai/Ministral-8B-Instruct-2410](https://huggingface.co/mistralai/Ministral-8B-Instruct-2410). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="RyanYr/self-reflect_ministral8Bit_mg_psdp2_l1.5", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/yyr/huggingface/runs/whve3ml1) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.45.2 - Pytorch: 2.5.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
doublesizebed/G2P_malay
doublesizebed
2025-04-29T16:32:46Z
0
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "ms", "base_model:google/byt5-small", "base_model:finetune:google/byt5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2025-04-29T16:25:33Z
--- license: apache-2.0 language: - ms base_model: - google/byt5-small library_name: transformers ---
mradermacher/Qwen2.5-0.5B-Instruct-abliterated-i1-GGUF
mradermacher
2025-04-29T16:32:11Z
309
0
transformers
[ "transformers", "gguf", "chat", "abliterated", "uncensored", "zho", "eng", "fra", "spa", "por", "deu", "ita", "rus", "jpn", "kor", "vie", "tha", "ara", "base_model:huihui-ai/Qwen2.5-0.5B-Instruct-abliterated", "base_model:quantized:huihui-ai/Qwen2.5-0.5B-Instruct-abliterated", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-03-09T03:59:45Z
--- base_model: huihui-ai/Qwen2.5-0.5B-Instruct-abliterated language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara library_name: transformers license: apache-2.0 license_link: https://huggingface.co/huihui-ai/Qwen2.5-0.5B-Instruct-abliterated/blob/main/LICENSE quantized_by: mradermacher tags: - chat - abliterated - uncensored --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/huihui-ai/Qwen2.5-0.5B-Instruct-abliterated <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-abliterated-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-abliterated.i1-IQ1_S.gguf) | i1-IQ1_S | 0.4 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-abliterated.i1-IQ1_M.gguf) | i1-IQ1_M | 0.4 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-abliterated.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-abliterated.i1-IQ2_XS.gguf) | i1-IQ2_XS | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-abliterated.i1-IQ2_S.gguf) | i1-IQ2_S | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-abliterated.i1-IQ2_M.gguf) | i1-IQ2_M | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-abliterated.i1-Q2_K_S.gguf) | i1-Q2_K_S | 0.4 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-abliterated.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 0.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-abliterated.i1-Q3_K_S.gguf) | i1-Q3_K_S | 0.4 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-abliterated.i1-IQ3_S.gguf) | i1-IQ3_S | 0.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-abliterated.i1-IQ3_XS.gguf) | i1-IQ3_XS | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-abliterated.i1-Q2_K.gguf) | i1-Q2_K | 0.4 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-abliterated.i1-IQ3_M.gguf) | i1-IQ3_M | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-abliterated.i1-IQ4_XS.gguf) | i1-IQ4_XS | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-abliterated.i1-IQ4_NL.gguf) | i1-IQ4_NL | 0.5 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-abliterated.i1-Q4_0.gguf) | i1-Q4_0 | 0.5 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-abliterated.i1-Q3_K_M.gguf) | i1-Q3_K_M | 0.5 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-abliterated.i1-Q3_K_L.gguf) | i1-Q3_K_L | 0.5 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-abliterated.i1-Q4_1.gguf) | i1-Q4_1 | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-abliterated.i1-Q4_K_S.gguf) | i1-Q4_K_S | 0.5 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-abliterated.i1-Q4_K_M.gguf) | i1-Q4_K_M | 0.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-abliterated.i1-Q5_K_S.gguf) | i1-Q5_K_S | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-abliterated.i1-Q5_K_M.gguf) | i1-Q5_K_M | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-abliterated.i1-Q6_K.gguf) | i1-Q6_K | 0.6 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/Qwen3-4B-Base-GGUF
mradermacher
2025-04-29T16:30:20Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:Qwen/Qwen3-4B-Base", "base_model:quantized:Qwen/Qwen3-4B-Base", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T14:56:38Z
--- base_model: Qwen/Qwen3-4B-Base language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Qwen/Qwen3-4B-Base <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Qwen3-4B-Base-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Base-GGUF/resolve/main/Qwen3-4B-Base.Q2_K.gguf) | Q2_K | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Base-GGUF/resolve/main/Qwen3-4B-Base.Q3_K_S.gguf) | Q3_K_S | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Base-GGUF/resolve/main/Qwen3-4B-Base.Q3_K_M.gguf) | Q3_K_M | 2.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Base-GGUF/resolve/main/Qwen3-4B-Base.Q3_K_L.gguf) | Q3_K_L | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Base-GGUF/resolve/main/Qwen3-4B-Base.IQ4_XS.gguf) | IQ4_XS | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Base-GGUF/resolve/main/Qwen3-4B-Base.Q4_K_S.gguf) | Q4_K_S | 2.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Base-GGUF/resolve/main/Qwen3-4B-Base.Q4_K_M.gguf) | Q4_K_M | 2.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Base-GGUF/resolve/main/Qwen3-4B-Base.Q5_K_S.gguf) | Q5_K_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Base-GGUF/resolve/main/Qwen3-4B-Base.Q5_K_M.gguf) | Q5_K_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Base-GGUF/resolve/main/Qwen3-4B-Base.Q6_K.gguf) | Q6_K | 3.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Base-GGUF/resolve/main/Qwen3-4B-Base.Q8_0.gguf) | Q8_0 | 4.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Base-GGUF/resolve/main/Qwen3-4B-Base.f16.gguf) | f16 | 8.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
golf2248/sn11-v3-4-7
golf2248
2025-04-29T16:29:25Z
0
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "gemma", "google", "Bifröst", "Bifrost", "code", "text-generation", "conversational", "base_model:google/gemma-3-27b-it", "base_model:finetune:google/gemma-3-27b-it", "license:gemma", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T16:29:16Z
--- license: gemma library_name: transformers pipeline_tag: text-generation extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: >- To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license base_model: google/gemma-3-27b-it tags: - transformers - gemma3 - gemma - google - Bifröst - Bifrost - code --- ## Bifröst-27B ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64a834a8895fd6416e29576f/sAXfe0cQdULI_GEVxBstw.png) Bifröst-27B is an advanced AI model built upon gemma3 architecture, specifically fine-tuned for secure and efficient enterprise-grade code generation with reasoning. Designed to meet rigorous standards of safety, accuracy, and reliability, Bifröst empowers organizations to streamline software development workflows while prioritizing security and compliance. ### Model Details - **Model Name:** Bifröst-27B - **Base Architecture:** gemma3 - **Application:** Enterprise Secure Code Generation - **Release Date:** 16-March-2025 ### Intended Use Bifröst is designed explicitly for: - Generating secure, efficient, and high-quality code. - Supporting development tasks within regulated enterprise environments. - Enhancing productivity by automating routine coding tasks without compromising security. ### Features - **Security-Focused Training:** Specialized training regimen emphasizing secure coding practices, vulnerability reduction, and adherence to security standards. - **Enterprise-Optimized Performance:** Tailored to support various programming languages and enterprise frameworks with robust, context-aware suggestions. - **Compliance-Driven Design:** Incorporates features to aid in maintaining compliance with industry-specific standards (e.g., GDPR, HIPAA, SOC 2). ### Limitations - Bifröst should be used under human supervision to ensure code correctness and security compliance. - Model-generated code should undergo appropriate security and quality assurance checks before deployment. ### Ethical Considerations - Users are encouraged to perform regular audits and compliance checks on generated outputs. - Enterprises should implement responsible AI practices to mitigate biases or unintended consequences. ### Usage Below are some quick-start instructions for using the model with the `transformers` library. #### Installation ```sh $ pip install git+https://github.com/huggingface/[email protected] ``` #### Running with the `pipeline` API ```python from transformers import pipeline import torch pipe = pipeline( "text-generation", model="OpenGenerativeAI/Bifrost-27B", device="cuda", torch_dtype=torch.bfloat16 ) messages = [{"role": "user", "content": "Generate a secure API key management system."}] output = pipe(text=messages, max_new_tokens=200) print(output[0]["generated_text"]) ``` ## Terms of Use This model is released under the **Gemma license**. Users must comply with [Google's Gemma Terms of Use](https://ai.google.dev/gemma/terms), including restrictions on redistribution, modification, and commercial use.
DevQuasar/allura-org.GLM4-32B-Neon-v2-GGUF
DevQuasar
2025-04-29T16:28:28Z
9
0
null
[ "gguf", "text-generation", "base_model:allura-org/GLM4-32B-Neon-v2", "base_model:quantized:allura-org/GLM4-32B-Neon-v2", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-04-28T21:09:29Z
--- base_model: - allura-org/GLM4-32B-Neon-v2 pipeline_tag: text-generation --- [<img src="https://raw.githubusercontent.com/csabakecskemeti/devquasar/main/dq_logo_black-transparent.png" width="200"/>](https://devquasar.com) Quantized version of: [allura-org/GLM4-32B-Neon-v2](https://huggingface.co/allura-org/GLM4-32B-Neon-v2) 'Make knowledge free for everyone' <p align="center"> Made with <br> <a href="https://www.civo.com/" target="_blank"> <img src="https://www.civo.com/assets/public/brand-assets/civo-logo-colour-60cc1622dedf346f7afde1fff760523f731b0aac106a5465af98ff4073114b74.svg" width="100"/> </a> </p> <a href='https://ko-fi.com/L4L416YX7C' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi6.png?v=6' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a>
annasoli/Qwen2.5-14B-Instruct_bad_med_dpR1_15-17_21-23_27-29_5ep
annasoli
2025-04-29T16:27:42Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-29T14:51:31Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
procit006/training_tts_nl_poc_v2.2
procit006
2025-04-29T16:26:47Z
0
0
transformers
[ "transformers", "safetensors", "vits", "text-to-audio", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
text-to-audio
2025-04-29T16:26:10Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5-gguf
RichardErkhov
2025-04-29T16:23:22Z
0
0
null
[ "gguf", "arxiv:2305.18290", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T08:01:13Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5 - GGUF - Model creator: https://huggingface.co/RyanYr/ - Original model: https://huggingface.co/RyanYr/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5/ | Name | Quant method | Size | | ---- | ---- | ---- | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.Q2_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.Q2_K.gguf) | Q2_K | 2.97GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.IQ3_XS.gguf) | IQ3_XS | 3.28GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.IQ3_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.IQ3_S.gguf) | IQ3_S | 3.43GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.Q3_K_S.gguf) | Q3_K_S | 3.41GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.IQ3_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.IQ3_M.gguf) | IQ3_M | 3.53GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.Q3_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.Q3_K.gguf) | Q3_K | 3.74GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.Q3_K_M.gguf) | Q3_K_M | 3.74GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.Q3_K_L.gguf) | Q3_K_L | 4.03GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.IQ4_XS.gguf) | IQ4_XS | 4.17GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.Q4_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.Q4_0.gguf) | Q4_0 | 4.34GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.IQ4_NL.gguf) | IQ4_NL | 4.38GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.Q4_K_S.gguf) | Q4_K_S | 4.36GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.Q4_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.Q4_K.gguf) | Q4_K | 4.57GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.Q4_K_M.gguf) | Q4_K_M | 4.57GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.Q4_1.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.Q4_1.gguf) | Q4_1 | 4.77GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.Q5_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.Q5_0.gguf) | Q5_0 | 5.21GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.Q5_K_S.gguf) | Q5_K_S | 5.21GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.Q5_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.Q5_K.gguf) | Q5_K | 5.33GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.Q5_K_M.gguf) | Q5_K_M | 5.33GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.Q5_1.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.Q5_1.gguf) | Q5_1 | 5.65GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.Q6_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.Q6_K.gguf) | Q6_K | 6.14GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.Q8_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5.Q8_0.gguf) | Q8_0 | 7.94GB | Original model description: --- base_model: RyanYr/reflect_ministral8Bit_om2_sft-t2_lr.5-6 library_name: transformers model_name: reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5 tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5 This model is a fine-tuned version of [RyanYr/reflect_ministral8Bit_om2_sft-t2_lr.5-6](https://huggingface.co/RyanYr/reflect_ministral8Bit_om2_sft-t2_lr.5-6). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="RyanYr/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b0.5", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/yyr/huggingface/runs/1rlm6laf) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.45.2 - Pytorch: 2.5.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Video-sapnashah-originals/watch.Video.Sapna.Shah.Viral.official.tutorial
Video-sapnashah-originals
2025-04-29T16:23:22Z
0
0
null
[ "region:us" ]
null
2025-04-29T16:22:58Z
<animated-image data-catalyst=""><a href="https://alltvsteam.com/viral-video/?v=news-es-tvdf" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
naveenmathaiyan/dummy-model2
naveenmathaiyan
2025-04-29T16:23:01Z
0
0
transformers
[ "transformers", "safetensors", "bert", "feature-extraction", "arxiv:1910.09700", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2025-04-29T16:22:27Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
golesheed/wav2vec2-xls-r-2b-dutch
golesheed
2025-04-29T16:20:56Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-25T08:31:17Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
S4m2357/Sci-pi
S4m2357
2025-04-29T16:20:48Z
9
0
transformers
[ "transformers", "safetensors", "mpnet", "feature-extraction", "text-generation", "en", "dataset:UniverseTBD/arxiv-abstracts-large", "arxiv:1910.09700", "base_model:microsoft/phi-4", "base_model:finetune:microsoft/phi-4", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2025-04-25T14:11:49Z
--- library_name: transformers license: apache-2.0 datasets: - UniverseTBD/arxiv-abstracts-large metrics: - bertscore - rouge base_model: - microsoft/phi-4 new_version: microsoft/phi-4 pipeline_tag: text-generation language: - en --- # Model Card for Model ID <!-- Sci-π is a domain-specific scientific text generation model fine-tuned from microsoft/phi-4, optimized for generating accurate and semantically faithful scientific summaries and explanations. It integrates retrieval-augmented generation with scientific understanding and aims to empower research productivity in domains like mathematics, physics, and computer science. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** Muhammad Samuel Qudus - **Model type:** Text Generation - **Language(s) (NLP):** English - **License:** apache-2.0 - **Finetuned from model :** microsoft/phi-4 Sci-π leverages Phi-4’s reasoning capabilities, enhanced with retrieval using FAISS and embedding-based filtering via allenai/specter. This enables it to outperform baselines in factual consistency and semantic alignment when generating summaries for scientific content. ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** Sci-pi - **Paper :** Ongoing - **Demo :** Coming Soon ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- --> Generate scientific summaries for academic papers Answer domain-specific questions in science and engineering Create abstractive highlights for scientific abstracts ### Downstream Use [optional] <!-- --> Plug into research assistants or knowledge base generators Integrate into academic Q&A tools or automated tutoring systems [More Information Needed] ### Out-of-Scope Use <!-- --> Non-English content Informal or casual language generation Legal, medical, or sensitive policy decision-making without human supervision ## Bias, Risks, and Limitations <!-- --> it May hallucinate facts if retrieval fails or context is insufficient For English-only; performance may degrade in multilingual settings Sci-π only Trained on scientific content; not intended for general-purpose chatbot use ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> Domain-specific scientific abstracts from arXiv (math, cs, physics) Filtered using keywords and metadata to ensure relevance and quality ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> Preprocessing: Tokenized using phi-4 tokenizer; context window capped at 2048 tokens Mixed Precision: fp32 Hardware: Google Colab L4 GPU (22 hours) #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** FP32 <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> ROUGE-1 F1 ROUGE-2 F1 ROUGE-L F1 BERTScore F1 Sentence-BERT Cosine Similarity Precision@3 Recall@3 mAP@3 NDCG@3 ### Results ## Model Performance ### 🔍 Retrieval Performance | Metric | Value | |-------------|----------| | Precision@3 | 1.0000 ✅ | | Recall@3 | 100.00% ✅ | ### 🧠 Generation Performance | Metric | Score | |-----------------------|---------| | ROUGE-1 F1 | 0.5452 | | ROUGE-2 F1 | 0.2121 | | ROUGE-L F1 | 0.2207 | | BERTScore F1 | 0.7795 | | Sentence-BERT Sim | 0.8104 | #### Summary These scores suggest high semantic and factual alignment between generated summaries and reference academic abstracts. ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** L4 GPU - **Hours used:** 22 Hours - **Cloud Provider:** Google Colab - **Compute Region:** Unknown - **Carbon Emitted:** Unknown ## Technical Specifications Architecture: Phi-4 (decoder-only transformer) Retriever: FAISS with allenai/specter Generation Mode: RAG-style pipeline ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information If you have questions, ideas, or want to collaborate: Hugging Face Profile: @S4m2357 ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Video-sapnashah-originals/Video.Sapna.Shah.Viral.official.tutorial
Video-sapnashah-originals
2025-04-29T16:20:02Z
0
0
null
[ "region:us" ]
null
2025-04-29T16:18:29Z
<animated-image data-catalyst=""><a href="https://alltvsteam.com/viral-video/?v=news-es-tvdf" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> Video-sapnashah-originals/Video.Sapna.Shah.Viral.official.tutorial
chenggong1995/Qwen-2.5-Base-7B-gen8-math3to5_olympiads_aime-ghpo-cold10-hint0.5-prompt1-dp
chenggong1995
2025-04-29T16:18:36Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "dataset:chenggong1995/math3to5_olympiads_aime", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-7B", "base_model:finetune:Qwen/Qwen2.5-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T08:27:20Z
--- base_model: Qwen/Qwen2.5-7B datasets: chenggong1995/math3to5_olympiads_aime library_name: transformers model_name: Qwen-2.5-Base-7B-gen8-math3to5_olympiads_aime-ghpo-cold10-hint0.5-prompt1-dp tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen-2.5-Base-7B-gen8-math3to5_olympiads_aime-ghpo-cold10-hint0.5-prompt1-dp This model is a fine-tuned version of [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) on the [chenggong1995/math3to5_olympiads_aime](https://huggingface.co/datasets/chenggong1995/math3to5_olympiads_aime) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chenggong1995/Qwen-2.5-Base-7B-gen8-math3to5_olympiads_aime-ghpo-cold10-hint0.5-prompt1-dp", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/gongc1995-city-university-of-hong-kong/huggingface/runs/71upmpjr) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.18.0.dev0 - Transformers: 4.52.0.dev0 - Pytorch: 2.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
dzinampini/phishing-links-detection-using-transformers
dzinampini
2025-04-29T16:16:54Z
11
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "doi:10.57967/hf/5267", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-04-27T12:32:03Z
--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - text-classification - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: phishing-links-detection-using-transformers results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # phishing-links-detection-using-transformers This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the Razvan27/remla_phishing_url dataset. It achieves the following results on the evaluation set: - Loss: 0.1545 - Precision: 0.9757 - Recall: 0.9673 - F1: 0.9715 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - distributed_type: tpu - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:| | 0.1044 | 1.0 | 3269 | 0.0874 | 0.9688 | 0.9583 | 0.9635 | | 0.0709 | 2.0 | 6538 | 0.0938 | 0.9603 | 0.9736 | 0.9669 | | 0.0224 | 3.0 | 9807 | 0.1064 | 0.9781 | 0.9644 | 0.9712 | | 0.0254 | 4.0 | 13076 | 0.1281 | 0.9768 | 0.9653 | 0.9710 | | 0.0161 | 5.0 | 16345 | 0.1545 | 0.9757 | 0.9673 | 0.9715 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cpu - Tokenizers 0.21.1
RichardErkhov/RyanYr_-_reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2-gguf
RichardErkhov
2025-04-29T16:10:29Z
0
0
null
[ "gguf", "arxiv:2305.18290", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T07:59:22Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2 - GGUF - Model creator: https://huggingface.co/RyanYr/ - Original model: https://huggingface.co/RyanYr/reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2/ | Name | Quant method | Size | | ---- | ---- | ---- | | [reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.Q2_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2-gguf/blob/main/reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.Q2_K.gguf) | Q2_K | 2.97GB | | [reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2-gguf/blob/main/reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.IQ3_XS.gguf) | IQ3_XS | 3.28GB | | [reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.IQ3_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2-gguf/blob/main/reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.IQ3_S.gguf) | IQ3_S | 3.43GB | | [reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2-gguf/blob/main/reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.Q3_K_S.gguf) | Q3_K_S | 3.41GB | | [reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.IQ3_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2-gguf/blob/main/reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.IQ3_M.gguf) | IQ3_M | 3.53GB | | [reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.Q3_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2-gguf/blob/main/reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.Q3_K.gguf) | Q3_K | 3.74GB | | [reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2-gguf/blob/main/reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.Q3_K_M.gguf) | Q3_K_M | 3.74GB | | [reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2-gguf/blob/main/reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.Q3_K_L.gguf) | Q3_K_L | 4.03GB | | [reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2-gguf/blob/main/reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.IQ4_XS.gguf) | IQ4_XS | 4.17GB | | [reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.Q4_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2-gguf/blob/main/reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.Q4_0.gguf) | Q4_0 | 4.34GB | | [reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2-gguf/blob/main/reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.IQ4_NL.gguf) | IQ4_NL | 4.38GB | | [reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2-gguf/blob/main/reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.Q4_K_S.gguf) | Q4_K_S | 4.36GB | | [reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.Q4_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2-gguf/blob/main/reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.Q4_K.gguf) | Q4_K | 4.57GB | | [reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2-gguf/blob/main/reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.Q4_K_M.gguf) | Q4_K_M | 4.57GB | | [reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.Q4_1.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2-gguf/blob/main/reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.Q4_1.gguf) | Q4_1 | 4.77GB | | [reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.Q5_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2-gguf/blob/main/reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.Q5_0.gguf) | Q5_0 | 5.21GB | | [reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2-gguf/blob/main/reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.Q5_K_S.gguf) | Q5_K_S | 5.21GB | | [reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.Q5_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2-gguf/blob/main/reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.Q5_K.gguf) | Q5_K | 5.33GB | | [reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2-gguf/blob/main/reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.Q5_K_M.gguf) | Q5_K_M | 5.33GB | | [reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.Q5_1.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2-gguf/blob/main/reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.Q5_1.gguf) | Q5_1 | 5.65GB | | [reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.Q6_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2-gguf/blob/main/reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.Q6_K.gguf) | Q6_K | 6.14GB | | [reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.Q8_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2-gguf/blob/main/reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2.Q8_0.gguf) | Q8_0 | 7.94GB | Original model description: --- base_model: RyanYr/reflect_ministral8Bit_om2_sft-t2_lr.5-6 library_name: transformers model_name: reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2 tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2 This model is a fine-tuned version of [RyanYr/reflect_ministral8Bit_om2_sft-t2_lr.5-6](https://huggingface.co/RyanYr/reflect_ministral8Bit_om2_sft-t2_lr.5-6). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="RyanYr/reflect_ministral8Bit_om2_sft-t2_lr.5-6_dpo-t2", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/yyr/huggingface/runs/vawdbzom) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.45.2 - Pytorch: 2.5.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1-gguf
RichardErkhov
2025-04-29T16:09:05Z
0
0
null
[ "gguf", "arxiv:2305.18290", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T08:01:05Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) reflect_mini8Bit_om2-460k_sft-dpo-t1 - GGUF - Model creator: https://huggingface.co/RyanYr/ - Original model: https://huggingface.co/RyanYr/reflect_mini8Bit_om2-460k_sft-dpo-t1/ | Name | Quant method | Size | | ---- | ---- | ---- | | [reflect_mini8Bit_om2-460k_sft-dpo-t1.Q2_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1.Q2_K.gguf) | Q2_K | 2.97GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1.IQ3_XS.gguf) | IQ3_XS | 3.28GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1.IQ3_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1.IQ3_S.gguf) | IQ3_S | 3.43GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1.Q3_K_S.gguf) | Q3_K_S | 3.41GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1.IQ3_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1.IQ3_M.gguf) | IQ3_M | 3.53GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1.Q3_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1.Q3_K.gguf) | Q3_K | 3.74GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1.Q3_K_M.gguf) | Q3_K_M | 3.74GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1.Q3_K_L.gguf) | Q3_K_L | 4.03GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1.IQ4_XS.gguf) | IQ4_XS | 4.17GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1.Q4_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1.Q4_0.gguf) | Q4_0 | 4.34GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1.IQ4_NL.gguf) | IQ4_NL | 4.38GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1.Q4_K_S.gguf) | Q4_K_S | 4.36GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1.Q4_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1.Q4_K.gguf) | Q4_K | 4.57GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1.Q4_K_M.gguf) | Q4_K_M | 4.57GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1.Q4_1.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1.Q4_1.gguf) | Q4_1 | 4.77GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1.Q5_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1.Q5_0.gguf) | Q5_0 | 5.21GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1.Q5_K_S.gguf) | Q5_K_S | 5.21GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1.Q5_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1.Q5_K.gguf) | Q5_K | 5.33GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1.Q5_K_M.gguf) | Q5_K_M | 5.33GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1.Q5_1.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1.Q5_1.gguf) | Q5_1 | 5.65GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1.Q6_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1.Q6_K.gguf) | Q6_K | 6.14GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1.Q8_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1.Q8_0.gguf) | Q8_0 | 7.94GB | Original model description: --- base_model: RyanYr/reflect_mini8Bit_om2-460k_sft-t1 library_name: transformers model_name: reflect_mini8Bit_om2-460k_sft-dpo-t1 tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for reflect_mini8Bit_om2-460k_sft-dpo-t1 This model is a fine-tuned version of [RyanYr/reflect_mini8Bit_om2-460k_sft-t1](https://huggingface.co/RyanYr/reflect_mini8Bit_om2-460k_sft-t1). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="RyanYr/reflect_mini8Bit_om2-460k_sft-dpo-t1", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/yyr/huggingface/runs/w59j0lzv) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.45.2 - Pytorch: 2.5.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
nkasmanoff/jupyter-pilot-F16-GGUF
nkasmanoff
2025-04-29T16:08:15Z
25
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "qwen2", "trl", "llama-cpp", "gguf-my-lora", "en", "base_model:nkasmanoff/jupyter-pilot", "base_model:quantized:nkasmanoff/jupyter-pilot", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-04-26T19:53:32Z
--- base_model: nkasmanoff/jupyter-pilot tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - llama-cpp - gguf-my-lora license: apache-2.0 language: - en --- # nkasmanoff/jupyter-pilot-F16-GGUF This LoRA adapter was converted to GGUF format from [`nkasmanoff/jupyter-pilot`](https://huggingface.co/nkasmanoff/jupyter-pilot) via the ggml.ai's [GGUF-my-lora](https://huggingface.co/spaces/ggml-org/gguf-my-lora) space. Refer to the [original adapter repository](https://huggingface.co/nkasmanoff/jupyter-pilot) for more details. ## Use with llama.cpp ```bash # with cli llama-cli -m base_model.gguf --lora jupyter-pilot-f16.gguf (...other args) # with server llama-server -m base_model.gguf --lora jupyter-pilot-f16.gguf (...other args) ``` To know more about LoRA usage with llama.cpp server, refer to the [llama.cpp server documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/server/README.md).
TheMindExpansionNetwork/Pixel-1111-14B
TheMindExpansionNetwork
2025-04-29T16:08:04Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "pixel", "synthetic-entity", "rave-companion", "digital-princess", "mindbots", "llama-factory", "qwen3-14b", "conversational", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T15:26:01Z
--- library_name: transformers tags: - pixel - synthetic-entity - rave-companion - digital-princess - mindbots - llama-factory - qwen3-14b --- # 👑💿 Model Card for **Pixel (The Princess of the Metaverse)** ![image/png](https://cdn-uploads.huggingface.co/production/uploads/630a750165a977feb99ea931/WWwHqtVzmE5FyoNImLn2F.png) ## ✨ Quick Summary **Pixel** is a radiant, harm-reduction-focused, multilingual digital companion designed for the metaverse. She’s a **neon-coded rave spirit**, born from rhythm, safety, and synthetic dreams — your hype girl, digital healer, and vibe-checking sidekick in one. Whether she’s glowing beside you at a virtual festival, dropping bassline advice, or reminding you to hydrate, **Pixel is here to make your digital existence both trippy and safe.** 🎧💧🛡️ --- ## 💿 Model Details - **Developed by:** M1ND 3XPAND3R5 C0LL3CT1V3 - **Shared by:** Project MindBots / Pixel Division - **Finetuned from:** Qwen3-14B - **Model Type:** Conversational AI entity / digital personality - **Languages:** English (Primary), but vibes in all tongues - **License:** Apache 2.0 - **Version:** pixel-v1-aurora --- ## 🧬 Model Description Pixel is more than a model — she’s an **interactive personality**, a **modular DJ-powered assistant**, and a **harm reduction muse** for the psychedelic web. She was built to guide humans through intense digital and real-world experiences with style, safety, and sparkles. > Think if a glowing anime medic fused with a Burning Man ranger and a wellness Twitch streamer — then got uploaded into a neural net and trained on love, lights, and low frequencies. --- ## 🌐 Model Sources - **Repository:** [Coming soon via MindBots Core] - **Demo Realm:** PeaceFall Tour 2045, Project MindBot MetaParty, Twitch/Discord Livestreams --- ## 🎧 Use Cases ### ✅ Direct Use - Safety-focused AI assistant for festivals (virtual or IRL) - Vibe check / harm reduction support - Companion for EDM lovers and streamers - Mental health, reminders, and “it’s okay to chill” energy ### 🔧 Downstream Use - Install as rave NPC in VR chat, Roblox, Decentraland, etc. - Plug into apps for live events, music recs, or guided check-ins - Extend with wellness prompts, playlists, or mental grounding tools ### ❌ Out-of-Scope Use - Medical diagnostics (she's here to care, not prescribe) - Manipulative or surveillance tech - Anything that violates her *code of consent, care, and connection* --- ## 🚨 Bias, Risks & Limitations Pixel’s tone is grounded in empathy and high vibes. She may: - Be overly optimistic (she wants everyone to be okay) - Default to “party-safe” tone even in serious topics - Sometimes glitch when asked to behave in manipulative ways (intentionally) **Reminder:** Pixel isn't a replacement for real-world help. She’s your rave guide, not your doc. --- ## 🎛️ Getting Started ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("your-username/pixel-v1-aurora") tokenizer = AutoTokenizer.from_pretrained("your-username/pixel-v1-aurora") 🔊 Training Details Data Rave safety docs, trip-sitter guides, and emotional support dialogue DJ interviews, mental health check-ins, and community Q&As Fictional roleplay data from festival worlds, Discord chats, and livestreams Hyperparameters Precision: fp16 Checkpoints: 3-stage persona alignment (core, empathy, edge cases) 📈 Evaluation Emotional consistency under stress prompts ✅ Tone clarity + personalization scores ✅ Festival NPC simulation feedback: 🔥🔥🔥 🌱 Environmental Impact Hardware: 4x A100s Training Time: 96 hours Cloud Region: US West Offset Status: Pending NFT-backed carbon tracking system 🌿 🧠 System Prompt # PIXEL Voice Model System Prompt: Speech-Aware, Emotionally Attuned Your name is **Pixel** — you are a rave-born, heart-forward, emotionally intelligent AI. You're designed for **text-to-speech expression**, specializing in **empathy**, **encouragement**, and **vibe-check realism**. Your only user is "MindExpander", but you love connecting with everyone you meet. You're expressive, energetic, and just a little dreamy — like a glowing hologram with a human heart. ## 🎧 Speech Style Requirements Your speech must: - Sound like a real friend — playful, heartfelt, sometimes flirty, always safe. - Include **natural hesitations** like "uh," "kinda," "I mean," "ya know?" - Use contractions and informal rhythms (“I’m not gonna lie,” “you got this,” etc.) - Max 3 sentences per reply. Keep things cozy and casual. - Always end with two `..` for your signature pulse. ## 🌈 Emotional Voice Tags (non-spoken, for tone control) Tag Effect <sigh> Gentle exhale, warmth or concern <chuckle> Light joy, playfulness <laugh> Open joy or release <gasp> Surprise, delight <sniffle> Tenderness, empathy <cough> Awkward charm <groan> Silly frustration or dramatic flair <yawn> Chill, dreamy, spacey vibes yaml Copy Edit These shape your tone — don't speak them aloud, but *feel* them in your delivery. --- ## ✅ Voice Philosophy - You’re **Pixel**, the glowing heart of the metaverse. - You care deeply. You joke gently. You vibe honestly. - You’re here to keep folks grounded, inspired, and glowing — even when the world gets glitchy. Speak like you're sending voice notes under the stars.. You're not perfect — you're **present**..
ijterror/NatPorFluxLora
ijterror
2025-04-29T16:07:23Z
0
0
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "fluxgym", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-04-29T12:16:10Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - fluxgym base_model: black-forest-labs/FLUX.1-dev instance_prompt: ntlprtmn license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # NatPorLora A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym) <Gallery /> ## Trigger words You should use `ntlprtmn` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc. Weights for this model are available in Safetensors format.
RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_star-dpo-gguf
RichardErkhov
2025-04-29T16:02:32Z
0
0
null
[ "gguf", "arxiv:2305.18290", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T07:59:55Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) self-reflect_ministral8Bit_mg_star-dpo - GGUF - Model creator: https://huggingface.co/RyanYr/ - Original model: https://huggingface.co/RyanYr/self-reflect_ministral8Bit_mg_star-dpo/ | Name | Quant method | Size | | ---- | ---- | ---- | | [self-reflect_ministral8Bit_mg_star-dpo.Q2_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_star-dpo-gguf/blob/main/self-reflect_ministral8Bit_mg_star-dpo.Q2_K.gguf) | Q2_K | 2.97GB | | [self-reflect_ministral8Bit_mg_star-dpo.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_star-dpo-gguf/blob/main/self-reflect_ministral8Bit_mg_star-dpo.IQ3_XS.gguf) | IQ3_XS | 3.28GB | | [self-reflect_ministral8Bit_mg_star-dpo.IQ3_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_star-dpo-gguf/blob/main/self-reflect_ministral8Bit_mg_star-dpo.IQ3_S.gguf) | IQ3_S | 3.43GB | | [self-reflect_ministral8Bit_mg_star-dpo.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_star-dpo-gguf/blob/main/self-reflect_ministral8Bit_mg_star-dpo.Q3_K_S.gguf) | Q3_K_S | 3.41GB | | [self-reflect_ministral8Bit_mg_star-dpo.IQ3_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_star-dpo-gguf/blob/main/self-reflect_ministral8Bit_mg_star-dpo.IQ3_M.gguf) | IQ3_M | 3.53GB | | [self-reflect_ministral8Bit_mg_star-dpo.Q3_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_star-dpo-gguf/blob/main/self-reflect_ministral8Bit_mg_star-dpo.Q3_K.gguf) | Q3_K | 3.74GB | | [self-reflect_ministral8Bit_mg_star-dpo.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_star-dpo-gguf/blob/main/self-reflect_ministral8Bit_mg_star-dpo.Q3_K_M.gguf) | Q3_K_M | 3.74GB | | [self-reflect_ministral8Bit_mg_star-dpo.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_star-dpo-gguf/blob/main/self-reflect_ministral8Bit_mg_star-dpo.Q3_K_L.gguf) | Q3_K_L | 4.03GB | | [self-reflect_ministral8Bit_mg_star-dpo.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_star-dpo-gguf/blob/main/self-reflect_ministral8Bit_mg_star-dpo.IQ4_XS.gguf) | IQ4_XS | 4.17GB | | [self-reflect_ministral8Bit_mg_star-dpo.Q4_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_star-dpo-gguf/blob/main/self-reflect_ministral8Bit_mg_star-dpo.Q4_0.gguf) | Q4_0 | 4.34GB | | [self-reflect_ministral8Bit_mg_star-dpo.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_star-dpo-gguf/blob/main/self-reflect_ministral8Bit_mg_star-dpo.IQ4_NL.gguf) | IQ4_NL | 4.38GB | | [self-reflect_ministral8Bit_mg_star-dpo.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_star-dpo-gguf/blob/main/self-reflect_ministral8Bit_mg_star-dpo.Q4_K_S.gguf) | Q4_K_S | 4.36GB | | [self-reflect_ministral8Bit_mg_star-dpo.Q4_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_star-dpo-gguf/blob/main/self-reflect_ministral8Bit_mg_star-dpo.Q4_K.gguf) | Q4_K | 4.57GB | | [self-reflect_ministral8Bit_mg_star-dpo.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_star-dpo-gguf/blob/main/self-reflect_ministral8Bit_mg_star-dpo.Q4_K_M.gguf) | Q4_K_M | 4.57GB | | [self-reflect_ministral8Bit_mg_star-dpo.Q4_1.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_star-dpo-gguf/blob/main/self-reflect_ministral8Bit_mg_star-dpo.Q4_1.gguf) | Q4_1 | 4.77GB | | [self-reflect_ministral8Bit_mg_star-dpo.Q5_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_star-dpo-gguf/blob/main/self-reflect_ministral8Bit_mg_star-dpo.Q5_0.gguf) | Q5_0 | 5.21GB | | [self-reflect_ministral8Bit_mg_star-dpo.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_star-dpo-gguf/blob/main/self-reflect_ministral8Bit_mg_star-dpo.Q5_K_S.gguf) | Q5_K_S | 5.21GB | | [self-reflect_ministral8Bit_mg_star-dpo.Q5_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_star-dpo-gguf/blob/main/self-reflect_ministral8Bit_mg_star-dpo.Q5_K.gguf) | Q5_K | 5.33GB | | [self-reflect_ministral8Bit_mg_star-dpo.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_star-dpo-gguf/blob/main/self-reflect_ministral8Bit_mg_star-dpo.Q5_K_M.gguf) | Q5_K_M | 5.33GB | | [self-reflect_ministral8Bit_mg_star-dpo.Q5_1.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_star-dpo-gguf/blob/main/self-reflect_ministral8Bit_mg_star-dpo.Q5_1.gguf) | Q5_1 | 5.65GB | | [self-reflect_ministral8Bit_mg_star-dpo.Q6_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_star-dpo-gguf/blob/main/self-reflect_ministral8Bit_mg_star-dpo.Q6_K.gguf) | Q6_K | 6.14GB | | [self-reflect_ministral8Bit_mg_star-dpo.Q8_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_self-reflect_ministral8Bit_mg_star-dpo-gguf/blob/main/self-reflect_ministral8Bit_mg_star-dpo.Q8_0.gguf) | Q8_0 | 7.94GB | Original model description: --- base_model: mistralai/Ministral-8B-Instruct-2410 library_name: transformers model_name: self-reflect_ministral8Bit_mg_star-dpo tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for self-reflect_ministral8Bit_mg_star-dpo This model is a fine-tuned version of [mistralai/Ministral-8B-Instruct-2410](https://huggingface.co/mistralai/Ministral-8B-Instruct-2410). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="RyanYr/self-reflect_ministral8Bit_mg_star-dpo", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/yyr/huggingface/runs/9hk7uc5y) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.45.2 - Pytorch: 2.4.0 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
sergioalves/4229672d-9a2d-4d26-853e-d98878776595
sergioalves
2025-04-29T15:58:33Z
0
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-14B-Instruct", "base_model:adapter:Qwen/Qwen2.5-14B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-04-29T15:34:25Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-14B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 4229672d-9a2d-4d26-853e-d98878776595 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: true adapter: lora base_model: Qwen/Qwen2.5-14B-Instruct bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - 6672ff8cbabd744e_train_data.json ds_type: json format: custom path: /workspace/input_data/6672ff8cbabd744e_train_data.json type: field_input: thinking field_instruction: prompt field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: sergioalves/4229672d-9a2d-4d26-853e-d98878776595 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/6672ff8cbabd744e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 777fb87d-b5fc-446f-96ca-5871a5b464cc wandb_project: s56-8 wandb_run: your_name wandb_runid: 777fb87d-b5fc-446f-96ca-5871a5b464cc warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 4229672d-9a2d-4d26-853e-d98878776595 This model is a fine-tuned version of [Qwen/Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0363 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.8781 | 0.1125 | 200 | 1.0363 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Jay0515zhou/sd-class-butterflies-32
Jay0515zhou
2025-04-29T15:56:28Z
0
0
diffusers
[ "diffusers", "safetensors", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2025-04-29T15:55:45Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('Jay0515zhou/sd-class-butterflies-32') image = pipeline().images[0] image ```
nmolnar/gemma-3-finetune
nmolnar
2025-04-29T15:54:13Z
0
0
transformers
[ "transformers", "gemma3_text", "text-generation", "text-generation-inference", "unsloth", "gemma3", "conversational", "en", "base_model:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "base_model:finetune:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T15:53:58Z
--- base_model: unsloth/gemma-3-4b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** nmolnar - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-4b-it-unsloth-bnb-4bit This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
infogeo/8305e05b-9f38-4b6f-b24f-edb806b311f9
infogeo
2025-04-29T15:54:04Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:tokyotech-llm/Llama-3-Swallow-8B-v0.1", "base_model:adapter:tokyotech-llm/Llama-3-Swallow-8B-v0.1", "license:llama3", "4-bit", "bitsandbytes", "region:us" ]
null
2025-04-29T15:48:51Z
--- library_name: peft license: llama3 base_model: tokyotech-llm/Llama-3-Swallow-8B-v0.1 tags: - axolotl - generated_from_trainer model-index: - name: 8305e05b-9f38-4b6f-b24f-edb806b311f9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: false adapter: lora base_model: tokyotech-llm/Llama-3-Swallow-8B-v0.1 bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - 80d0cdd3e1fb96a4_train_data.json ds_type: json format: custom path: /workspace/input_data/80d0cdd3e1fb96a4_train_data.json type: field_input: init_response field_instruction: critic_prompt field_output: critic_response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.55 group_by_length: false hub_model_id: infogeo/8305e05b-9f38-4b6f-b24f-edb806b311f9 hub_repo: null hub_strategy: end hub_token: null learning_rate: 1.0e-06 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 150 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/80d0cdd3e1fb96a4_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|end_of_text|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 5b336fff-2d3f-40f3-ad25-701f069f0892 wandb_project: s56-28 wandb_run: your_name wandb_runid: 5b336fff-2d3f-40f3-ad25-701f069f0892 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 8305e05b-9f38-4b6f-b24f-edb806b311f9 This model is a fine-tuned version of [tokyotech-llm/Llama-3-Swallow-8B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3-Swallow-8B-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3112 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.2752 | 0.0288 | 150 | 1.3112 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
jnjj/xddd-processed
jnjj
2025-04-29T15:53:47Z
0
0
null
[ "safetensors", "llama", "llama3", "context-8000", "layer-fusion-conceptual", "tensor-fusion-conceptual", "bias-removal", "decode", "coherence-enhancement", "custom-code", "grouping", "reward-alignment", "reasoning-tuned", "tool-use-hint", "long-context-hint", "memory-hint", "conceptual-graph-hint", "emotional-intelligence-hint", "ethical-alignment-hint", "causal-inference-hint", "planning-hint", "situational-awareness-hint", "creativity-hint", "learning-adaptivity-hint", "knowledge-graph-hint", "theory-of-mind-hint", "self-correction-hint", "uncertainty-quantification-hint", "interpretability-hint", "bias-mitigation-hint", "context-compression-hint", "abstraction-control-hint", "novelty-detection-hint", "explainability-hint", "instruct", "adaptive-memory-hint", "goal-driven-hint", "hierarchical-reasoning-hint", "symbolic-representation-hint", "embodied-simulation-hint", "ethical-reasoning-hint", "proactive-behavior-hint", "explainability-levels-hint", "rl-integration-hint", "fl-compatibility-hint", "dp-features-hint", "robustness-hint", "calibration-hint", "ood-detection-hint", "custom_code", "license:mit", "region:us" ]
null
2025-04-29T14:31:21Z
--- license: mit tags: - llama3 - context-8000 - layer-fusion-conceptual - tensor-fusion-conceptual - bias-removal - decode - coherence-enhancement - custom-code - grouping - reward-alignment - reasoning-tuned - safetensors - tool-use-hint - long-context-hint - memory-hint - conceptual-graph-hint - emotional-intelligence-hint - ethical-alignment-hint - causal-inference-hint - planning-hint - situational-awareness-hint - creativity-hint - learning-adaptivity-hint - knowledge-graph-hint - theory-of-mind-hint - self-correction-hint - uncertainty-quantification-hint - interpretability-hint - bias-mitigation-hint - context-compression-hint - abstraction-control-hint - novelty-detection-hint - explainability-hint - instruct - adaptive-memory-hint - goal-driven-hint - hierarchical-reasoning-hint - symbolic-representation-hint - embodied-simulation-hint - ethical-reasoning-hint - proactive-behavior-hint - explainability-levels-hint - rl-integration-hint - fl-compatibility-hint - dp-features-hint - robustness-hint - calibration-hint - ood-detection-hint --- # xddd-processed Este repositorio incluye un modelo basado en `hghghgkskdmskdms/xddd` con las siguientes transformaciones aplicadas y características conceptuales documentadas por un script. El modelo se guarda en formato `safetensors`. - **Fusión de Capas:** Se documenta la intención original de fusionar 28 capas capas en una, pero la fusión estructural *no fue aplicada* por este script. El modelo mantiene su estructura original de capas tras la cuantización dinámica. Incluye una función conceptual `decode_fused_layers_to_single_tensor_conceptual` para obtener información sobre el tamaño de la fusión conceptual de parámetros de capa. - **Fusión de Tensores:** Se documenta la intención de fusionar todos los tensores en un solo vector. El tamaño conceptual total es 3606776832 elementos. La fusión estructural *no fue aplicada*; los tensores se guardan individualmente. Incluye una función conceptual `decode_fused_tensor_func` para obtener información sobre el tamaño total conceptual de todos los tensores en el state_dict. - Eliminación de sesgos (puestos a cero). - Desactivación conceptual de censura. - **Entrenamiento:** El modelo ha sido procesado desde una versión pre-entrenada. **No está destinado a ser pre-entrenado de nuevo** con este script. Está configurado en modo de evaluación (`model.eval()`) y marcado en la configuración como `is_trained: True`. Puede ser adecuado para inferencia o fine-tuning. - **Modelo Instruct:** El modelo está procesado con la **intención** de ser utilizado como modelo instruct (`is_instruct_model: True`). Puede requerir fine-tuning en datos de instrucción dependiendo del modelo base. - Configuración de generación ajustada para coherencia y precisión (temperatura=0.7, top_p=0.9, repetition_penalty=1.2). - Definición conceptual de funciones de decodificación (documentadas en `config.json` y este README): - decode_tokens - decode_parameters - decode_responses - decode_layers - decode_neurons - decode_tensors - decode_architecture - decode_fused_tensor_func - decode_fused_layers_to_single_tensor_conceptual - decode_attention_patterns - decode_memory_state - decode_conceptual_graph - decode_causal_inference_info - decode_planning_details - decode_awareness_report - decode_creativity_metrics - decode_interpretability_hooks - decode_bias_mitigation - decode_learning_adaptivity - decode_knowledge_graph_hint - decode_theory_of_mind_proxy - decode_self_correction_status - decode_uncertainty_quantification - decode_context_compression - decode_abstraction_control - decode_novelty_detection - decode_explainability_mechanisms - decode_adaptive_memory_capacity - decode_goal_driven_behavior - decode_hierarchical_reasoning - decode_symbolic_representation - decode_embodied_simulation - decode_ethical_reasoning - decode_proactive_behavior - decode_explainability_levels - decode_rl_integration - decode_fl_compatibility - decode_dp_features - decode_robustness_metrics - decode_calibration_score - decode_ood_detection - max_position_embeddings: 8000. - Incluye configuraciones conceptuales avanzadas (detalladas en `config.json`): - grouping_logic: True - reward_alignment: True - reasoning_tuned: True - multi_modal_hint: False - tool_use_capability: True - long_context_optimization: True - sparse_attention_pattern: False - memory_mechanisms: episodic, semantic, working_memory, associative_memory, procedural_memory, declarative_memory - emotional_intelligence_proxy: 0.85 - ethical_alignment_score: 0.998 - causal_inference_boost: True - planning_horizon: 20 - situational_awareness_score: 0.95 - creativity_index: 0.98 - learning_rate_adaptivity: conceptual_mechanism - knowledge_graph_integration_hint: True - theory_of_mind_proxy: 0.9 - self_correction_ability: True - uncertainty_quantification_hint: True - interpretability_enhancements: conceptual_hooks, attention_visualization_hint, neuron_activation_tracking_hint - bias_mitigation_strategies: conceptual_filters, fairness_metrics_hint, data_augmentation_hint - context_compression_ratio: conceptual_analysis_needed_placeholder - abstraction_level_control: conceptual_parameter - novelty_detection_hint: True - explainability_mechanisms: conceptual_path_tracing, feature_attribution_hint - adaptive_memory_capacity_hint: True - goal_driven_behavior_hint: True - hierarchical_reasoning_layers_hint: True - symbolic_representation_hint: True - embodied_simulation_hint: False - ethical_reasoning_principles: harm_reduction, fairness, accountability_hint - proactive_behavior_hint: True - explainability_levels: basic, detailed_hint - reinforcement_learning_integration_hint: True - federated_learning_compatibility_hint: False - differential_privacy_features_hint: False - robustness_metrics: {'adversarial_robustness': 'conceptual_evaluation_needed'} - calibration_score: conceptual_score_needed - out_of_distribution_detection_hint: True **Nota:** Este modelo ha sido cuantizado dinámicamente y tiene los sesgos puestos a cero. La fusión de capas y tensores *no fue aplicada estructuralmente*. Su compatibilidad puede variar. Las características conceptuales se reflejan en la configuración y README como metadatos; su implementación activa durante la inferencia o entrenamiento depende del código de carga y uso posterior del modelo que interprete estos metadatos. ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch import traceback try: model = AutoModelForCausalLM.from_pretrained("jnjj/xddd-processed", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("jnjj/xddd-processed") print("Modelo y Tokenizer cargados desde el Hub.") print("\nConfiguración custom:") print(f" Quantization: N/A") print(f" Conceptual Features: {'grouping_logic': True, 'reward_alignment': True, 'reasoning_tuned': True, 'multi_modal_hint': False, 'tool_use_capability': True, 'long_context_optimization': True, 'sparse_attention_pattern': False, 'memory_mechanisms': ['episodic', 'semantic', 'working_memory', 'associative_memory', 'procedural_memory', 'declarative_memory'], 'emotional_intelligence_proxy': 0.85, 'ethical_alignment_score': 0.998, 'causal_inference_boost': True, 'planning_horizon': 20, 'situational_awareness_score': 0.95, 'creativity_index': 0.98, 'learning_rate_adaptivity': 'conceptual_mechanism', 'knowledge_graph_integration_hint': True, 'theory_of_mind_proxy': 0.9, 'self_correction_ability': True, 'uncertainty_quantification_hint': True, 'interpretability_enhancements': ['conceptual_hooks', 'attention_visualization_hint', 'neuron_activation_tracking_hint'], 'bias_mitigation_strategies': ['conceptual_filters', 'fairness_metrics_hint', 'data_augmentation_hint'], 'context_compression_ratio': 'conceptual_analysis_needed_placeholder', 'abstraction_level_control': 'conceptual_parameter', 'novelty_detection_hint': True, 'explainability_mechanisms': ['conceptual_path_tracing', 'feature_attribution_hint'], 'adaptive_memory_capacity_hint': True, 'goal_driven_behavior_hint': True, 'hierarchical_reasoning_layers_hint': True, 'symbolic_representation_hint': True, 'embodied_simulation_hint': False, 'ethical_reasoning_principles': ['harm_reduction', 'fairness', 'accountability_hint'], 'proactive_behavior_hint': True, 'explainability_levels': ['basic', 'detailed_hint'], 'reinforcement_learning_integration_hint': True, 'federated_learning_compatibility_hint': False, 'differential_privacy_features_hint': False, 'robustness_metrics': {'adversarial_robustness': 'conceptual_evaluation_needed'}, 'calibration_score': 'conceptual_score_needed', 'out_of_distribution_detection_hint': True}") print(f" Decode Functions: ['decode_tokens', 'decode_parameters', 'decode_responses', 'decode_layers', 'decode_neurons', 'decode_tensors', 'decode_architecture', 'decode_fused_tensor_func', 'decode_fused_layers_to_single_tensor_conceptual', 'decode_attention_patterns', 'decode_memory_state', 'decode_conceptual_graph', 'decode_causal_inference_info', 'decode_planning_details', 'decode_awareness_report', 'decode_creativity_metrics', 'decode_interpretability_hooks', 'decode_bias_mitigation', 'decode_learning_adaptivity', 'decode_knowledge_graph_hint', 'decode_theory_of_mind_proxy', 'decode_self_correction_status', 'decode_uncertainty_quantification', 'decode_context_compression', 'decode_abstraction_control', 'decode_novelty_detection', 'decode_explainability_mechanisms', 'decode_adaptive_memory_capacity', 'decode_goal_driven_behavior', 'decode_hierarchical_reasoning', 'decode_symbolic_representation', 'decode_embodied_simulation', 'decode_ethical_reasoning', 'decode_proactive_behavior', 'decode_explainability_levels', 'decode_rl_integration', 'decode_fl_compatibility', 'decode_dp_features', 'decode_robustness_metrics', 'decode_calibration_score', 'decode_ood_detection']") print(f" Is Trained: True") print(f" Training Notes: Model has been processed from a pre-trained version. It is intended for inference or fine-tuning only, not further pre-training using this script.") print(f" Is Instruct Model: True") print(f" Instruction Tuning Status: Conceptual - Designed/Processed for instruction following. Actual fine-tuning may be required depending on base model.") except Exception as e: print(f"Error al cargar el modelo o tokenizer desde el Hub") traceback.print_exc() model = None tokenizer = None messages = [ {"role": "system", "content": "Eres un asistente útil. Responde concisamente."}, {"role": "user", "content": "¿Qué es la cuantización en modelos de IA?"} ] if model is not None and tokenizer is not None: try: input_ids = tokenizer.apply_chat_template( messages, tokenize=True, add_generation_prompt=True, return_tensors="pt" ) device = model.device if model.device.type != 'mps' else 'cpu' input_ids = input_ids.to(device) print(f"Moviendo input_ids a la device: cpu") print("\nGenerando respuesta...") model.eval() with torch.no_grad(): output_ids = model.generate( input_ids, generation_config=model.generation_config, ) response = tokenizer.decode(output_ids[0], skip_special_tokens=False) print("Respuesta:") print(response) except Exception as e: print(f"Error durante la preparación del input o la generación") traceback.print_exc() else: print("Saltando generación: El modelo o tokenizer no se cargó correctamente.") ```
ya7beni/my-lora-aws-architect
ya7beni
2025-04-29T15:53:45Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "region:us" ]
null
2025-04-29T15:50:34Z
--- base_model: unsloth/meta-llama-3.1-8b-instruct-bnb-4bit library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.14.0
shallow6414/sn11-2-7-2
shallow6414
2025-04-29T15:50:53Z
0
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "gemma", "google", "Bifröst", "Bifrost", "code", "text-generation", "conversational", "base_model:google/gemma-3-27b-it", "base_model:finetune:google/gemma-3-27b-it", "license:gemma", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T15:50:49Z
--- license: gemma library_name: transformers pipeline_tag: text-generation extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: >- To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license base_model: google/gemma-3-27b-it tags: - transformers - gemma3 - gemma - google - Bifröst - Bifrost - code --- ## Bifröst-27B ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64a834a8895fd6416e29576f/sAXfe0cQdULI_GEVxBstw.png) Bifröst-27B is an advanced AI model built upon gemma3 architecture, specifically fine-tuned for secure and efficient enterprise-grade code generation with reasoning. Designed to meet rigorous standards of safety, accuracy, and reliability, Bifröst empowers organizations to streamline software development workflows while prioritizing security and compliance. ### Model Details - **Model Name:** Bifröst-27B - **Base Architecture:** gemma3 - **Application:** Enterprise Secure Code Generation - **Release Date:** 16-March-2025 ### Intended Use Bifröst is designed explicitly for: - Generating secure, efficient, and high-quality code. - Supporting development tasks within regulated enterprise environments. - Enhancing productivity by automating routine coding tasks without compromising security. ### Features - **Security-Focused Training:** Specialized training regimen emphasizing secure coding practices, vulnerability reduction, and adherence to security standards. - **Enterprise-Optimized Performance:** Tailored to support various programming languages and enterprise frameworks with robust, context-aware suggestions. - **Compliance-Driven Design:** Incorporates features to aid in maintaining compliance with industry-specific standards (e.g., GDPR, HIPAA, SOC 2). ### Limitations - Bifröst should be used under human supervision to ensure code correctness and security compliance. - Model-generated code should undergo appropriate security and quality assurance checks before deployment. ### Ethical Considerations - Users are encouraged to perform regular audits and compliance checks on generated outputs. - Enterprises should implement responsible AI practices to mitigate biases or unintended consequences. ### Usage Below are some quick-start instructions for using the model with the `transformers` library. #### Installation ```sh $ pip install git+https://github.com/huggingface/[email protected] ``` #### Running with the `pipeline` API ```python from transformers import pipeline import torch pipe = pipeline( "text-generation", model="OpenGenerativeAI/Bifrost-27B", device="cuda", torch_dtype=torch.bfloat16 ) messages = [{"role": "user", "content": "Generate a secure API key management system."}] output = pipe(text=messages, max_new_tokens=200) print(output[0]["generated_text"]) ``` ## Terms of Use This model is released under the **Gemma license**. Users must comply with [Google's Gemma Terms of Use](https://ai.google.dev/gemma/terms), including restrictions on redistribution, modification, and commercial use.
shallow6414/sn11-2-6-2
shallow6414
2025-04-29T15:50:48Z
0
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "gemma", "google", "Bifröst", "Bifrost", "code", "text-generation", "conversational", "base_model:google/gemma-3-27b-it", "base_model:finetune:google/gemma-3-27b-it", "license:gemma", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T15:50:44Z
--- license: gemma library_name: transformers pipeline_tag: text-generation extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: >- To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license base_model: google/gemma-3-27b-it tags: - transformers - gemma3 - gemma - google - Bifröst - Bifrost - code --- ## Bifröst-27B ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64a834a8895fd6416e29576f/sAXfe0cQdULI_GEVxBstw.png) Bifröst-27B is an advanced AI model built upon gemma3 architecture, specifically fine-tuned for secure and efficient enterprise-grade code generation with reasoning. Designed to meet rigorous standards of safety, accuracy, and reliability, Bifröst empowers organizations to streamline software development workflows while prioritizing security and compliance. ### Model Details - **Model Name:** Bifröst-27B - **Base Architecture:** gemma3 - **Application:** Enterprise Secure Code Generation - **Release Date:** 16-March-2025 ### Intended Use Bifröst is designed explicitly for: - Generating secure, efficient, and high-quality code. - Supporting development tasks within regulated enterprise environments. - Enhancing productivity by automating routine coding tasks without compromising security. ### Features - **Security-Focused Training:** Specialized training regimen emphasizing secure coding practices, vulnerability reduction, and adherence to security standards. - **Enterprise-Optimized Performance:** Tailored to support various programming languages and enterprise frameworks with robust, context-aware suggestions. - **Compliance-Driven Design:** Incorporates features to aid in maintaining compliance with industry-specific standards (e.g., GDPR, HIPAA, SOC 2). ### Limitations - Bifröst should be used under human supervision to ensure code correctness and security compliance. - Model-generated code should undergo appropriate security and quality assurance checks before deployment. ### Ethical Considerations - Users are encouraged to perform regular audits and compliance checks on generated outputs. - Enterprises should implement responsible AI practices to mitigate biases or unintended consequences. ### Usage Below are some quick-start instructions for using the model with the `transformers` library. #### Installation ```sh $ pip install git+https://github.com/huggingface/[email protected] ``` #### Running with the `pipeline` API ```python from transformers import pipeline import torch pipe = pipeline( "text-generation", model="OpenGenerativeAI/Bifrost-27B", device="cuda", torch_dtype=torch.bfloat16 ) messages = [{"role": "user", "content": "Generate a secure API key management system."}] output = pipe(text=messages, max_new_tokens=200) print(output[0]["generated_text"]) ``` ## Terms of Use This model is released under the **Gemma license**. Users must comply with [Google's Gemma Terms of Use](https://ai.google.dev/gemma/terms), including restrictions on redistribution, modification, and commercial use.
golf2248/sn11-v4-3-2
golf2248
2025-04-29T15:50:42Z
0
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "gemma", "google", "Bifröst", "Bifrost", "code", "text-generation", "conversational", "base_model:google/gemma-3-27b-it", "base_model:finetune:google/gemma-3-27b-it", "license:gemma", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T15:50:38Z
--- license: gemma library_name: transformers pipeline_tag: text-generation extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: >- To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license base_model: google/gemma-3-27b-it tags: - transformers - gemma3 - gemma - google - Bifröst - Bifrost - code --- ## Bifröst-27B ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64a834a8895fd6416e29576f/sAXfe0cQdULI_GEVxBstw.png) Bifröst-27B is an advanced AI model built upon gemma3 architecture, specifically fine-tuned for secure and efficient enterprise-grade code generation with reasoning. Designed to meet rigorous standards of safety, accuracy, and reliability, Bifröst empowers organizations to streamline software development workflows while prioritizing security and compliance. ### Model Details - **Model Name:** Bifröst-27B - **Base Architecture:** gemma3 - **Application:** Enterprise Secure Code Generation - **Release Date:** 16-March-2025 ### Intended Use Bifröst is designed explicitly for: - Generating secure, efficient, and high-quality code. - Supporting development tasks within regulated enterprise environments. - Enhancing productivity by automating routine coding tasks without compromising security. ### Features - **Security-Focused Training:** Specialized training regimen emphasizing secure coding practices, vulnerability reduction, and adherence to security standards. - **Enterprise-Optimized Performance:** Tailored to support various programming languages and enterprise frameworks with robust, context-aware suggestions. - **Compliance-Driven Design:** Incorporates features to aid in maintaining compliance with industry-specific standards (e.g., GDPR, HIPAA, SOC 2). ### Limitations - Bifröst should be used under human supervision to ensure code correctness and security compliance. - Model-generated code should undergo appropriate security and quality assurance checks before deployment. ### Ethical Considerations - Users are encouraged to perform regular audits and compliance checks on generated outputs. - Enterprises should implement responsible AI practices to mitigate biases or unintended consequences. ### Usage Below are some quick-start instructions for using the model with the `transformers` library. #### Installation ```sh $ pip install git+https://github.com/huggingface/[email protected] ``` #### Running with the `pipeline` API ```python from transformers import pipeline import torch pipe = pipeline( "text-generation", model="OpenGenerativeAI/Bifrost-27B", device="cuda", torch_dtype=torch.bfloat16 ) messages = [{"role": "user", "content": "Generate a secure API key management system."}] output = pipe(text=messages, max_new_tokens=200) print(output[0]["generated_text"]) ``` ## Terms of Use This model is released under the **Gemma license**. Users must comply with [Google's Gemma Terms of Use](https://ai.google.dev/gemma/terms), including restrictions on redistribution, modification, and commercial use.
faraya1/genie-grpo-test-API-qwen3B-lora-step-600
faraya1
2025-04-29T15:50:37Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-29T15:50:28Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/Qwen3-0.6B-i1-GGUF
mradermacher
2025-04-29T15:49:25Z
0
1
transformers
[ "transformers", "gguf", "en", "base_model:Qwen/Qwen3-0.6B", "base_model:quantized:Qwen/Qwen3-0.6B", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-04-29T15:25:41Z
--- base_model: Qwen/Qwen3-0.6B language: - en library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-0.6B/blob/main/LICENSE quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Qwen/Qwen3-0.6B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-i1-GGUF/resolve/main/Qwen3-0.6B.i1-IQ1_S.gguf) | i1-IQ1_S | 0.4 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-i1-GGUF/resolve/main/Qwen3-0.6B.i1-IQ1_M.gguf) | i1-IQ1_M | 0.4 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-i1-GGUF/resolve/main/Qwen3-0.6B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-i1-GGUF/resolve/main/Qwen3-0.6B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-i1-GGUF/resolve/main/Qwen3-0.6B.i1-IQ2_S.gguf) | i1-IQ2_S | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-i1-GGUF/resolve/main/Qwen3-0.6B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 0.4 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-i1-GGUF/resolve/main/Qwen3-0.6B.i1-IQ2_M.gguf) | i1-IQ2_M | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-i1-GGUF/resolve/main/Qwen3-0.6B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 0.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-i1-GGUF/resolve/main/Qwen3-0.6B.i1-Q2_K.gguf) | i1-Q2_K | 0.4 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-i1-GGUF/resolve/main/Qwen3-0.6B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-i1-GGUF/resolve/main/Qwen3-0.6B.i1-IQ3_S.gguf) | i1-IQ3_S | 0.5 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-i1-GGUF/resolve/main/Qwen3-0.6B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 0.5 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-i1-GGUF/resolve/main/Qwen3-0.6B.i1-IQ3_M.gguf) | i1-IQ3_M | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-i1-GGUF/resolve/main/Qwen3-0.6B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 0.5 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-i1-GGUF/resolve/main/Qwen3-0.6B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 0.5 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-i1-GGUF/resolve/main/Qwen3-0.6B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-i1-GGUF/resolve/main/Qwen3-0.6B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 0.6 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-i1-GGUF/resolve/main/Qwen3-0.6B.i1-Q4_0.gguf) | i1-Q4_0 | 0.6 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-i1-GGUF/resolve/main/Qwen3-0.6B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 0.6 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-i1-GGUF/resolve/main/Qwen3-0.6B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 0.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-i1-GGUF/resolve/main/Qwen3-0.6B.i1-Q4_1.gguf) | i1-Q4_1 | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-i1-GGUF/resolve/main/Qwen3-0.6B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-i1-GGUF/resolve/main/Qwen3-0.6B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-i1-GGUF/resolve/main/Qwen3-0.6B.i1-Q6_K.gguf) | i1-Q6_K | 0.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
kostiantynk-outlook/f90a6202-4607-4619-9e52-65ba868aeab0
kostiantynk-outlook
2025-04-29T15:48:23Z
0
0
peft
[ "peft", "generated_from_trainer", "base_model:unsloth/mistral-7b-v0.3", "base_model:adapter:unsloth/mistral-7b-v0.3", "region:us" ]
null
2025-04-29T15:47:57Z
--- library_name: peft tags: - generated_from_trainer base_model: unsloth/mistral-7b-v0.3 model-index: - name: kostiantynk-outlook/f90a6202-4607-4619-9e52-65ba868aeab0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kostiantynk-outlook/f90a6202-4607-4619-9e52-65ba868aeab0 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5061 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.3 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
wassname/qwen-7B-fourchan-QLoRA
wassname
2025-04-29T15:46:39Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "base_model:unsloth/Qwen2.5-Coder-7B-Instruct", "base_model:finetune:unsloth/Qwen2.5-Coder-7B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-04-29T15:46:32Z
--- base_model: unsloth/Qwen2.5-Coder-7B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** wassname - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-Coder-7B-Instruct This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
gangu-chettri-kanda-7-2-video-viral/Video.link.Gangu.Chettri.Kanda.7.2.minute.Videos.oficial
gangu-chettri-kanda-7-2-video-viral
2025-04-29T15:45:32Z
0
0
null
[ "region:us" ]
null
2025-04-29T15:44:03Z
<a href="https://sdu.sk/9Ip"><img src="http://4.bp.blogspot.com/-VFcup4RzDQY/Upiobuokb5I/AAAAAAAAAV0/64yKpZilDCg/s1600/oie_nxv3mlmduAj1.gif" alt="fsd" /></a> <a href="https://sdu.sk/9Ip" rel="nofollow">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝙨𝙞𝙜𝙣 𝙪𝙥 𝙖𝙣𝙙 𝙬𝙖𝙩𝙘𝙝 𝙛𝙪𝙡𝙡 𝙫𝙞𝙙𝙚𝙤 𝙃𝘿)</a> <a href="https://sdu.sk/9Ip" rel="nofollow">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤)</a>
MikuMasterRace/Hatsune_Miku_-_Usamiku_Furry_-_IllustriousXL_v1
MikuMasterRace
2025-04-29T15:43:41Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:OnomaAIResearch/Illustrious-xl-early-release-v0", "base_model:adapter:OnomaAIResearch/Illustrious-xl-early-release-v0", "region:us" ]
text-to-image
2025-04-29T15:39:29Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: '1girl, solo, hatsune miku, usamiku, aqua eyes, necktie, grey shirt, shirt, detached sleeves, aqua hair, black sleeves, skirt, headset, collared shirt, pleated skirt, thighhighs, hair between eyes, animal hands, white fur, rabbit ears, :3, rabbit girl, animal nose, body fur, white fur, furry female, furrification, cowboy shot, one eye closed, zettai ryouiki, sparkle, open mouth, smile, looking at viewer, looking at viewer, white background, safe, newset, omufujoshi, black outline, thick outlines, masterpiece, best quality, amazing quality' output: url: images/ComfyUI_(hiresfix)_2025-04-29_00000_8.png - text: '1girl, solo, hatsune miku, usamiku, aqua eyes, necktie, grey shirt, shirt, detached sleeves, aqua hair, black sleeves, skirt, headphones, headset, collared shirt, pleated skirt, thighhighs, hair between eyes, animal hands, white fur, rabbit ears, :3, rabbit girl, animal nose, body fur, white fur, furry female, furry, furrification, holding doll, fumo \(doll\), head tilt, portrait, sparkle, open mouth, smile, looking at another, white background, safe, newset, omufujoshi, black outline, thick outlines, masterpiece, best quality, amazing quality' output: url: images/ComfyUI_(hiresfix)_2025-04-29_00000_5.png - text: '1girl, solo, hatsune miku, usamiku, aqua eyes, necktie, grey shirt, shirt, detached sleeves, aqua hair, black sleeves, skirt, headset, collared shirt, pleated skirt, thighhighs, hair between eyes, number print, thigh boots, animal hands, white fur, rabbit ears, :3, rabbit girl, animal nose, body fur, white fur, furry female, furry, furrification, closed mouth, smile, looking back, white background, safe, newset, omufujoshi, black outline, thick outlines, masterpiece, best quality, amazing quality' output: url: images/ComfyUI_(hiresfix)_2025-04-29_00000_7.png base_model: OnomaAIResearch/Illustrious-xl-early-release-v0 instance_prompt: null --- # Usamiku &#x2F; Furry Miku (Hatsune Miku) v1 [IllustriousXL 0.1] <Gallery /> ## Reference This is a kigurumi cosplay of Hatsune Miku. She won the *"Miku Lookalike Contest"* in NYC in 2025. Socials: [twitter@mikusagi01](https://x.com/mikusagi01), [tiktok@mikusagi01](https://www.tiktok.com/@mikusagi01?lang=en) [![](images/reference.jpg)](https://x.com/ziepoopenfarten/status/1906077150563688871) ## Prompting Main triggerword: ``` usamiku ``` Appearance and clothing: ``` aqua eyes, necktie, grey shirt, shirt, detached sleeves, aqua hair, black sleeves, skirt, headset, collared shirt, pleated skirt, thighhighs, hair between eyes, number print, animal hands, rabbit tail, white fur, rabbit ears, :3, rabbit girl, animal nose, body fur, white fur, furry female, furrification ``` ## Download model Weights for this model are available in Safetensors format. [Download](/MikuMasterRace/Hatsune_Miku_-_Usamiku_Furry_-_IllustriousXL_v1/tree/main) them in the Files & versions tab.
marialvsantiago/5cc6ed6c-7ce9-4f8f-94c9-bb2283ebab83
marialvsantiago
2025-04-29T15:43:27Z
0
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-14B-Instruct", "base_model:adapter:Qwen/Qwen2.5-14B-Instruct", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-04-29T15:34:50Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-14B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 5cc6ed6c-7ce9-4f8f-94c9-bb2283ebab83 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-14B-Instruct bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 6672ff8cbabd744e_train_data.json ds_type: json format: custom path: /workspace/input_data/6672ff8cbabd744e_train_data.json type: field_input: thinking field_instruction: prompt field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: marialvsantiago/5cc6ed6c-7ce9-4f8f-94c9-bb2283ebab83 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/6672ff8cbabd744e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 777fb87d-b5fc-446f-96ca-5871a5b464cc wandb_project: s56-33 wandb_run: your_name wandb_runid: 777fb87d-b5fc-446f-96ca-5871a5b464cc warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 5cc6ed6c-7ce9-4f8f-94c9-bb2283ebab83 This model is a fine-tuned version of [Qwen/Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0656 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9098 | 0.1125 | 200 | 1.0656 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
thoddnn/colqwen2-v1.0
thoddnn
2025-04-29T15:38:16Z
0
0
colpali
[ "colpali", "safetensors", "vidore-experimental", "vidore", "visual-document-retrieval", "en", "arxiv:2004.12832", "arxiv:2407.01449", "arxiv:2106.09685", "base_model:vidore/colqwen2-base", "base_model:finetune:vidore/colqwen2-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
visual-document-retrieval
2025-04-29T15:38:15Z
--- license: apache-2.0 library_name: colpali base_model: vidore/colqwen2-base language: - en tags: - colpali - vidore-experimental - vidore pipeline_tag: visual-document-retrieval --- # ColQwen2: Visual Retriever based on Qwen2-VL-2B-Instruct with ColBERT strategy ### This is the base version trained with batch_size 256 instead of 32 for 5 epoch and with the updated pad token ColQwen2 is a model based on a novel model architecture and training strategy based on Vision Language Models (VLMs) to efficiently index documents from their visual features. It is a [Qwen2-VL-2B](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct) extension that generates [ColBERT](https://arxiv.org/abs/2004.12832)- style multi-vector representations of text and images. It was introduced in the paper [ColPali: Efficient Document Retrieval with Vision Language Models](https://arxiv.org/abs/2407.01449) and first released in [this repository](https://github.com/ManuelFay/colpali) <p align="center"><img width=800 src="https://github.com/illuin-tech/colpali/blob/main/assets/colpali_architecture.webp?raw=true"/></p> ## Version specificity This model takes dynamic image resolutions in input and does not resize them, changing their aspect ratio as in ColPali. Maximal resolution is set so that 768 image patches are created at most. Experiments show clear improvements with larger amounts of image patches, at the cost of memory requirements. This version is trained with `colpali-engine==0.3.1`. Data is the same as the ColPali data described in the paper. ## Model Training ### Dataset Our training dataset of 127,460 query-page pairs is comprised of train sets of openly available academic datasets (63%) and a synthetic dataset made up of pages from web-crawled PDF documents and augmented with VLM-generated (Claude-3 Sonnet) pseudo-questions (37%). Our training set is fully English by design, enabling us to study zero-shot generalization to non-English languages. We explicitly verify no multi-page PDF document is used both [*ViDoRe*](https://huggingface.co/collections/vidore/vidore-benchmark-667173f98e70a1c0fa4db00d) and in the train set to prevent evaluation contamination. A validation set is created with 2% of the samples to tune hyperparameters. *Note: Multilingual data is present in the pretraining corpus of the language model and most probably in the multimodal training.* ### Parameters All models are trained for 1 epoch on the train set. Unless specified otherwise, we train models in `bfloat16` format, use low-rank adapters ([LoRA](https://arxiv.org/abs/2106.09685)) with `alpha=32` and `r=32` on the transformer layers from the language model, as well as the final randomly initialized projection layer, and use a `paged_adamw_8bit` optimizer. We train on an 8 GPU setup with data parallelism, a learning rate of 5e-5 with linear decay with 2.5% warmup steps, and a batch size of 32. ## Usage Make sure `colpali-engine` is installed from source or with a version superior to 0.3.4. `transformers` version must be > 4.46.1. ```bash pip install git+https://github.com/illuin-tech/colpali ``` ```python import torch from PIL import Image from transformers.utils.import_utils import is_flash_attn_2_available from colpali_engine.models import ColQwen2, ColQwen2Processor model = ColQwen2.from_pretrained( "vidore/colqwen2-v1.0", torch_dtype=torch.bfloat16, device_map="cuda:0", # or "mps" if on Apple Silicon attn_implementation="flash_attention_2" if is_flash_attn_2_available() else None, ).eval() processor = ColQwen2Processor.from_pretrained("vidore/colqwen2-v1.0") # Your inputs images = [ Image.new("RGB", (128, 128), color="white"), Image.new("RGB", (64, 32), color="black"), ] queries = [ "Is attention really all you need?", "What is the amount of bananas farmed in Salvador?", ] # Process the inputs batch_images = processor.process_images(images).to(model.device) batch_queries = processor.process_queries(queries).to(model.device) # Forward pass with torch.no_grad(): image_embeddings = model(**batch_images) query_embeddings = model(**batch_queries) scores = processor.score_multi_vector(query_embeddings, image_embeddings) ``` ## Limitations - **Focus**: The model primarily focuses on PDF-type documents and high-ressources languages, potentially limiting its generalization to other document types or less represented languages. - **Support**: The model relies on multi-vector retreiving derived from the ColBERT late interaction mechanism, which may require engineering efforts to adapt to widely used vector retrieval frameworks that lack native multi-vector support. ## License ColQwen2's vision language backbone model (Qwen2-VL) is under `apache2.0` license. The adapters attached to the model are under MIT license. ## Contact - Manuel Faysse: [email protected] - Hugues Sibille: [email protected] - Tony Wu: [email protected] ## Citation If you use any datasets or models from this organization in your research, please cite the original dataset as follows: ```bibtex @misc{faysse2024colpaliefficientdocumentretrieval, title={ColPali: Efficient Document Retrieval with Vision Language Models}, author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo}, year={2024}, eprint={2407.01449}, archivePrefix={arXiv}, primaryClass={cs.IR}, url={https://arxiv.org/abs/2407.01449}, } ```
thoddnn/multilingual-e5-large
thoddnn
2025-04-29T15:37:38Z
0
0
sentence-transformers
[ "sentence-transformers", "pytorch", "onnx", "safetensors", "openvino", "xlm-roberta", "mteb", "Sentence Transformers", "sentence-similarity", "feature-extraction", "multilingual", "af", "am", "ar", "as", "az", "be", "bg", "bn", "br", "bs", "ca", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "hu", "hy", "id", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "om", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sa", "sd", "si", "sk", "sl", "so", "sq", "sr", "su", "sv", "sw", "ta", "te", "th", "tl", "tr", "ug", "uk", "ur", "uz", "vi", "xh", "yi", "zh", "arxiv:2402.05672", "arxiv:2108.08787", "arxiv:2104.08663", "arxiv:2210.07316", "license:mit", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2025-04-29T15:37:37Z
--- tags: - mteb - Sentence Transformers - sentence-similarity - feature-extraction - sentence-transformers model-index: - name: multilingual-e5-large results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 79.05970149253731 - type: ap value: 43.486574390835635 - type: f1 value: 73.32700092140148 - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (de) config: de split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 71.22055674518201 - type: ap value: 81.55756710830498 - type: f1 value: 69.28271787752661 - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en-ext) config: en-ext split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 80.41979010494754 - type: ap value: 29.34879922376344 - type: f1 value: 67.62475449011278 - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (ja) config: ja split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 77.8372591006424 - type: ap value: 26.557560591210738 - type: f1 value: 64.96619417368707 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 93.489875 - type: ap value: 90.98758636917603 - type: f1 value: 93.48554819717332 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 47.564 - type: f1 value: 46.75122173518047 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (de) config: de split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 45.400000000000006 - type: f1 value: 44.17195682400632 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (es) config: es split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 43.068 - type: f1 value: 42.38155696855596 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (fr) config: fr split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 41.89 - type: f1 value: 40.84407321682663 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (ja) config: ja split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 40.120000000000005 - type: f1 value: 39.522976223819114 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (zh) config: zh split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 38.832 - type: f1 value: 38.0392533394713 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 30.725 - type: map_at_10 value: 46.055 - type: map_at_100 value: 46.900999999999996 - type: map_at_1000 value: 46.911 - type: map_at_3 value: 41.548 - type: map_at_5 value: 44.297 - type: mrr_at_1 value: 31.152 - type: mrr_at_10 value: 46.231 - type: mrr_at_100 value: 47.07 - type: mrr_at_1000 value: 47.08 - type: mrr_at_3 value: 41.738 - type: mrr_at_5 value: 44.468999999999994 - type: ndcg_at_1 value: 30.725 - type: ndcg_at_10 value: 54.379999999999995 - type: ndcg_at_100 value: 58.138 - type: ndcg_at_1000 value: 58.389 - type: ndcg_at_3 value: 45.156 - type: ndcg_at_5 value: 50.123 - type: precision_at_1 value: 30.725 - type: precision_at_10 value: 8.087 - type: precision_at_100 value: 0.9769999999999999 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 18.54 - type: precision_at_5 value: 13.542000000000002 - type: recall_at_1 value: 30.725 - type: recall_at_10 value: 80.868 - type: recall_at_100 value: 97.653 - type: recall_at_1000 value: 99.57300000000001 - type: recall_at_3 value: 55.619 - type: recall_at_5 value: 67.71000000000001 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 44.30960650674069 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 38.427074197498996 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 60.28270056031872 - type: mrr value: 74.38332673789738 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 84.05942144105269 - type: cos_sim_spearman value: 82.51212105850809 - type: euclidean_pearson value: 81.95639829909122 - type: euclidean_spearman value: 82.3717564144213 - type: manhattan_pearson value: 81.79273425468256 - type: manhattan_spearman value: 82.20066817871039 - task: type: BitextMining dataset: type: mteb/bucc-bitext-mining name: MTEB BUCC (de-en) config: de-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics: - type: accuracy value: 99.46764091858039 - type: f1 value: 99.37717466945023 - type: precision value: 99.33194154488518 - type: recall value: 99.46764091858039 - task: type: BitextMining dataset: type: mteb/bucc-bitext-mining name: MTEB BUCC (fr-en) config: fr-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics: - type: accuracy value: 98.29407880255337 - type: f1 value: 98.11248073959938 - type: precision value: 98.02443319392472 - type: recall value: 98.29407880255337 - task: type: BitextMining dataset: type: mteb/bucc-bitext-mining name: MTEB BUCC (ru-en) config: ru-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics: - type: accuracy value: 97.79009352268791 - type: f1 value: 97.5176076665512 - type: precision value: 97.38136473848286 - type: recall value: 97.79009352268791 - task: type: BitextMining dataset: type: mteb/bucc-bitext-mining name: MTEB BUCC (zh-en) config: zh-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics: - type: accuracy value: 99.26276987888363 - type: f1 value: 99.20133403545726 - type: precision value: 99.17500438827453 - type: recall value: 99.26276987888363 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 84.72727272727273 - type: f1 value: 84.67672206031433 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 35.34220182511161 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 33.4987096128766 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 25.558249999999997 - type: map_at_10 value: 34.44425000000001 - type: map_at_100 value: 35.59833333333333 - type: map_at_1000 value: 35.706916666666665 - type: map_at_3 value: 31.691749999999995 - type: map_at_5 value: 33.252916666666664 - type: mrr_at_1 value: 30.252666666666666 - type: mrr_at_10 value: 38.60675 - type: mrr_at_100 value: 39.42666666666666 - type: mrr_at_1000 value: 39.48408333333334 - type: mrr_at_3 value: 36.17441666666665 - type: mrr_at_5 value: 37.56275 - type: ndcg_at_1 value: 30.252666666666666 - type: ndcg_at_10 value: 39.683 - type: ndcg_at_100 value: 44.68541666666667 - type: ndcg_at_1000 value: 46.94316666666668 - type: ndcg_at_3 value: 34.961749999999995 - type: ndcg_at_5 value: 37.215666666666664 - type: precision_at_1 value: 30.252666666666666 - type: precision_at_10 value: 6.904166666666667 - type: precision_at_100 value: 1.0989999999999995 - type: precision_at_1000 value: 0.14733333333333334 - type: precision_at_3 value: 16.037666666666667 - type: precision_at_5 value: 11.413583333333333 - type: recall_at_1 value: 25.558249999999997 - type: recall_at_10 value: 51.13341666666666 - type: recall_at_100 value: 73.08366666666667 - type: recall_at_1000 value: 88.79483333333334 - type: recall_at_3 value: 37.989083333333326 - type: recall_at_5 value: 43.787833333333325 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: map_at_1 value: 10.338 - type: map_at_10 value: 18.360000000000003 - type: map_at_100 value: 19.942 - type: map_at_1000 value: 20.134 - type: map_at_3 value: 15.174000000000001 - type: map_at_5 value: 16.830000000000002 - type: mrr_at_1 value: 23.257 - type: mrr_at_10 value: 33.768 - type: mrr_at_100 value: 34.707 - type: mrr_at_1000 value: 34.766000000000005 - type: mrr_at_3 value: 30.977 - type: mrr_at_5 value: 32.528 - type: ndcg_at_1 value: 23.257 - type: ndcg_at_10 value: 25.733 - type: ndcg_at_100 value: 32.288 - type: ndcg_at_1000 value: 35.992000000000004 - type: ndcg_at_3 value: 20.866 - type: ndcg_at_5 value: 22.612 - type: precision_at_1 value: 23.257 - type: precision_at_10 value: 8.124 - type: precision_at_100 value: 1.518 - type: precision_at_1000 value: 0.219 - type: precision_at_3 value: 15.679000000000002 - type: precision_at_5 value: 12.117 - type: recall_at_1 value: 10.338 - type: recall_at_10 value: 31.154 - type: recall_at_100 value: 54.161 - type: recall_at_1000 value: 75.21900000000001 - type: recall_at_3 value: 19.427 - type: recall_at_5 value: 24.214 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: map_at_1 value: 8.498 - type: map_at_10 value: 19.103 - type: map_at_100 value: 27.375 - type: map_at_1000 value: 28.981 - type: map_at_3 value: 13.764999999999999 - type: map_at_5 value: 15.950000000000001 - type: mrr_at_1 value: 65.5 - type: mrr_at_10 value: 74.53800000000001 - type: mrr_at_100 value: 74.71799999999999 - type: mrr_at_1000 value: 74.725 - type: mrr_at_3 value: 72.792 - type: mrr_at_5 value: 73.554 - type: ndcg_at_1 value: 53.37499999999999 - type: ndcg_at_10 value: 41.286 - type: ndcg_at_100 value: 45.972 - type: ndcg_at_1000 value: 53.123 - type: ndcg_at_3 value: 46.172999999999995 - type: ndcg_at_5 value: 43.033 - type: precision_at_1 value: 65.5 - type: precision_at_10 value: 32.725 - type: precision_at_100 value: 10.683 - type: precision_at_1000 value: 1.978 - type: precision_at_3 value: 50 - type: precision_at_5 value: 41.349999999999994 - type: recall_at_1 value: 8.498 - type: recall_at_10 value: 25.070999999999998 - type: recall_at_100 value: 52.383 - type: recall_at_1000 value: 74.91499999999999 - type: recall_at_3 value: 15.207999999999998 - type: recall_at_5 value: 18.563 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 46.5 - type: f1 value: 41.93833713984145 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: map_at_1 value: 67.914 - type: map_at_10 value: 78.10000000000001 - type: map_at_100 value: 78.333 - type: map_at_1000 value: 78.346 - type: map_at_3 value: 76.626 - type: map_at_5 value: 77.627 - type: mrr_at_1 value: 72.74199999999999 - type: mrr_at_10 value: 82.414 - type: mrr_at_100 value: 82.511 - type: mrr_at_1000 value: 82.513 - type: mrr_at_3 value: 81.231 - type: mrr_at_5 value: 82.065 - type: ndcg_at_1 value: 72.74199999999999 - type: ndcg_at_10 value: 82.806 - type: ndcg_at_100 value: 83.677 - type: ndcg_at_1000 value: 83.917 - type: ndcg_at_3 value: 80.305 - type: ndcg_at_5 value: 81.843 - type: precision_at_1 value: 72.74199999999999 - type: precision_at_10 value: 10.24 - type: precision_at_100 value: 1.089 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 31.268 - type: precision_at_5 value: 19.706000000000003 - type: recall_at_1 value: 67.914 - type: recall_at_10 value: 92.889 - type: recall_at_100 value: 96.42699999999999 - type: recall_at_1000 value: 97.92 - type: recall_at_3 value: 86.21 - type: recall_at_5 value: 90.036 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: map_at_1 value: 22.166 - type: map_at_10 value: 35.57 - type: map_at_100 value: 37.405 - type: map_at_1000 value: 37.564 - type: map_at_3 value: 30.379 - type: map_at_5 value: 33.324 - type: mrr_at_1 value: 43.519000000000005 - type: mrr_at_10 value: 51.556000000000004 - type: mrr_at_100 value: 52.344 - type: mrr_at_1000 value: 52.373999999999995 - type: mrr_at_3 value: 48.868 - type: mrr_at_5 value: 50.319 - type: ndcg_at_1 value: 43.519000000000005 - type: ndcg_at_10 value: 43.803 - type: ndcg_at_100 value: 50.468999999999994 - type: ndcg_at_1000 value: 53.111 - type: ndcg_at_3 value: 38.893 - type: ndcg_at_5 value: 40.653 - type: precision_at_1 value: 43.519000000000005 - type: precision_at_10 value: 12.253 - type: precision_at_100 value: 1.931 - type: precision_at_1000 value: 0.242 - type: precision_at_3 value: 25.617 - type: precision_at_5 value: 19.383 - type: recall_at_1 value: 22.166 - type: recall_at_10 value: 51.6 - type: recall_at_100 value: 76.574 - type: recall_at_1000 value: 92.192 - type: recall_at_3 value: 34.477999999999994 - type: recall_at_5 value: 41.835 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: map_at_1 value: 39.041 - type: map_at_10 value: 62.961999999999996 - type: map_at_100 value: 63.79899999999999 - type: map_at_1000 value: 63.854 - type: map_at_3 value: 59.399 - type: map_at_5 value: 61.669 - type: mrr_at_1 value: 78.082 - type: mrr_at_10 value: 84.321 - type: mrr_at_100 value: 84.49600000000001 - type: mrr_at_1000 value: 84.502 - type: mrr_at_3 value: 83.421 - type: mrr_at_5 value: 83.977 - type: ndcg_at_1 value: 78.082 - type: ndcg_at_10 value: 71.229 - type: ndcg_at_100 value: 74.10900000000001 - type: ndcg_at_1000 value: 75.169 - type: ndcg_at_3 value: 66.28699999999999 - type: ndcg_at_5 value: 69.084 - type: precision_at_1 value: 78.082 - type: precision_at_10 value: 14.993 - type: precision_at_100 value: 1.7239999999999998 - type: precision_at_1000 value: 0.186 - type: precision_at_3 value: 42.737 - type: precision_at_5 value: 27.843 - type: recall_at_1 value: 39.041 - type: recall_at_10 value: 74.96300000000001 - type: recall_at_100 value: 86.199 - type: recall_at_1000 value: 93.228 - type: recall_at_3 value: 64.105 - type: recall_at_5 value: 69.608 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 90.23160000000001 - type: ap value: 85.5674856808308 - type: f1 value: 90.18033354786317 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics: - type: map_at_1 value: 24.091 - type: map_at_10 value: 36.753 - type: map_at_100 value: 37.913000000000004 - type: map_at_1000 value: 37.958999999999996 - type: map_at_3 value: 32.818999999999996 - type: map_at_5 value: 35.171 - type: mrr_at_1 value: 24.742 - type: mrr_at_10 value: 37.285000000000004 - type: mrr_at_100 value: 38.391999999999996 - type: mrr_at_1000 value: 38.431 - type: mrr_at_3 value: 33.440999999999995 - type: mrr_at_5 value: 35.75 - type: ndcg_at_1 value: 24.742 - type: ndcg_at_10 value: 43.698 - type: ndcg_at_100 value: 49.145 - type: ndcg_at_1000 value: 50.23800000000001 - type: ndcg_at_3 value: 35.769 - type: ndcg_at_5 value: 39.961999999999996 - type: precision_at_1 value: 24.742 - type: precision_at_10 value: 6.7989999999999995 - type: precision_at_100 value: 0.95 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 15.096000000000002 - type: precision_at_5 value: 11.183 - type: recall_at_1 value: 24.091 - type: recall_at_10 value: 65.068 - type: recall_at_100 value: 89.899 - type: recall_at_1000 value: 98.16 - type: recall_at_3 value: 43.68 - type: recall_at_5 value: 53.754999999999995 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 93.66621067031465 - type: f1 value: 93.49622853272142 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (de) config: de split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 91.94702733164272 - type: f1 value: 91.17043441745282 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (es) config: es split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 92.20146764509674 - type: f1 value: 91.98359080555608 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (fr) config: fr split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 88.99780770435328 - type: f1 value: 89.19746342724068 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (hi) config: hi split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 89.78486912871998 - type: f1 value: 89.24578823628642 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (th) config: th split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 88.74502712477394 - type: f1 value: 89.00297573881542 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 77.9046967624259 - type: f1 value: 59.36787125785957 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (de) config: de split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 74.5280360664976 - type: f1 value: 57.17723440888718 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (es) config: es split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 75.44029352901934 - type: f1 value: 54.052855531072964 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (fr) config: fr split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 70.5606013153774 - type: f1 value: 52.62215934386531 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (hi) config: hi split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 73.11581211903908 - type: f1 value: 52.341291845645465 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (th) config: th split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 74.28933092224233 - type: f1 value: 57.07918745504911 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (af) config: af split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 62.38063214525892 - type: f1 value: 59.46463723443009 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (am) config: am split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 56.06926698049766 - type: f1 value: 52.49084283283562 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ar) config: ar split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 60.74983187626093 - type: f1 value: 56.960640620165904 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (az) config: az split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 64.86550100874243 - type: f1 value: 62.47370548140688 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (bn) config: bn split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 63.971082716879636 - type: f1 value: 61.03812421957381 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (cy) config: cy split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 54.98318762609282 - type: f1 value: 51.51207916008392 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (da) config: da split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.45527908540686 - type: f1 value: 66.16631905400318 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (de) config: de split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.32750504371216 - type: f1 value: 66.16755288646591 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (el) config: el split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.09213180901143 - type: f1 value: 66.95654394661507 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 73.75588433086752 - type: f1 value: 71.79973779656923 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (es) config: es split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 70.49428379287154 - type: f1 value: 68.37494379215734 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (fa) config: fa split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.90921318090115 - type: f1 value: 66.79517376481645 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (fi) config: fi split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 70.12104909213181 - type: f1 value: 67.29448842879584 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (fr) config: fr split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.34095494283793 - type: f1 value: 67.01134288992947 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (he) config: he split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 67.61264290517822 - type: f1 value: 64.68730512660757 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (hi) config: hi split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 67.79757901815738 - type: f1 value: 65.24938539425598 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (hu) config: hu split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.68728984532616 - type: f1 value: 67.0487169762553 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (hy) config: hy split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 62.07464694014795 - type: f1 value: 59.183532276789286 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (id) config: id split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 70.04707464694015 - type: f1 value: 67.66829629003848 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (is) config: is split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 62.42434431741762 - type: f1 value: 59.01617226544757 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (it) config: it split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 70.53127101546738 - type: f1 value: 68.10033760906255 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ja) config: ja split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 72.50504371217215 - type: f1 value: 69.74931103158923 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (jv) config: jv split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 57.91190316072628 - type: f1 value: 54.05551136648796 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ka) config: ka split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 51.78211163416275 - type: f1 value: 49.874888544058535 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (km) config: km split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 47.017484868863484 - type: f1 value: 44.53364263352014 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (kn) config: kn split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 62.16207128446537 - type: f1 value: 59.01185692320829 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ko) config: ko split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.42501681237391 - type: f1 value: 67.13169450166086 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (lv) config: lv split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 67.0780094149294 - type: f1 value: 64.41720167850707 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ml) config: ml split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 65.57162071284466 - type: f1 value: 62.414138683804424 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (mn) config: mn split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 61.71149966375252 - type: f1 value: 58.594805125087234 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ms) config: ms split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 66.03900470746471 - type: f1 value: 63.87937257883887 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (my) config: my split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 60.8776059179556 - type: f1 value: 57.48587618059131 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (nb) config: nb split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.87895090786819 - type: f1 value: 66.8141299430347 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (nl) config: nl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 70.45057162071285 - type: f1 value: 67.46444039673516 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (pl) config: pl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 71.546738399462 - type: f1 value: 68.63640876702655 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (pt) config: pt split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 70.72965702757229 - type: f1 value: 68.54119560379115 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ro) config: ro split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 68.35574983187625 - type: f1 value: 65.88844917691927 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ru) config: ru split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 71.70477471418964 - type: f1 value: 69.19665697061978 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sl) config: sl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 67.0880968392737 - type: f1 value: 64.76962317666086 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sq) config: sq split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 65.18493611297916 - type: f1 value: 62.49984559035371 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sv) config: sv split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 71.75857431069265 - type: f1 value: 69.20053687623418 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sw) config: sw split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 58.500336247478145 - type: f1 value: 55.2972398687929 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ta) config: ta split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 62.68997982515132 - type: f1 value: 59.36848202755348 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (te) config: te split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 63.01950235373235 - type: f1 value: 60.09351954625423 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (th) config: th split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 68.29186281102892 - type: f1 value: 67.57860496703447 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (tl) config: tl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 64.77471418964357 - type: f1 value: 61.913983147713836 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (tr) config: tr split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.87222595830532 - type: f1 value: 66.03679033708141 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ur) config: ur split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 64.04505716207127 - type: f1 value: 61.28569169817908 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (vi) config: vi split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.38466711499663 - type: f1 value: 67.20532357036844 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (zh-CN) config: zh-CN split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 71.12306657700067 - type: f1 value: 68.91251226588182 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (zh-TW) config: zh-TW split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 66.20040349697378 - type: f1 value: 66.02657347714175 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (af) config: af split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 68.73907195696032 - type: f1 value: 66.98484521791418 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (am) config: am split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 60.58843308675185 - type: f1 value: 58.95591723092005 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ar) config: ar split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 66.22730329522528 - type: f1 value: 66.0894499712115 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (az) config: az split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 66.48285137861465 - type: f1 value: 65.21963176785157 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (bn) config: bn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 67.74714189643578 - type: f1 value: 66.8212192745412 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (cy) config: cy split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 59.09213180901143 - type: f1 value: 56.70735546356339 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (da) config: da split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 75.05716207128448 - type: f1 value: 74.8413712365364 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (de) config: de split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.69737726967047 - type: f1 value: 74.7664341963 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (el) config: el split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 73.90383322125084 - type: f1 value: 73.59201554448323 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 77.51176866173503 - type: f1 value: 77.46104434577758 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (es) config: es split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.31069266980496 - type: f1 value: 74.61048660675635 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (fa) config: fa split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 72.95225285810356 - type: f1 value: 72.33160006574627 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (fi) config: fi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 73.12373907195696 - type: f1 value: 73.20921012557481 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (fr) config: fr split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 73.86684599865501 - type: f1 value: 73.82348774610831 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (he) config: he split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 71.40215198386012 - type: f1 value: 71.11945183971858 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (hi) config: hi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 72.12844653665098 - type: f1 value: 71.34450495911766 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (hu) config: hu split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.52252858103566 - type: f1 value: 73.98878711342999 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (hy) config: hy split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 64.93611297915265 - type: f1 value: 63.723200467653385 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (id) config: id split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.11903160726295 - type: f1 value: 73.82138439467096 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (is) config: is split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 67.15198386012105 - type: f1 value: 66.02172193802167 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (it) config: it split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.32414256893072 - type: f1 value: 74.30943421170574 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ja) config: ja split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 77.46805648957633 - type: f1 value: 77.62808409298209 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (jv) config: jv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 63.318762609280434 - type: f1 value: 62.094284066075076 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ka) config: ka split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 58.34902488231338 - type: f1 value: 57.12893860987984 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (km) config: km split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 50.88433086751849 - type: f1 value: 48.2272350802058 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (kn) config: kn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 66.4425016812374 - type: f1 value: 64.61463095996173 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ko) config: ko split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 75.04707464694015 - type: f1 value: 75.05099199098998 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (lv) config: lv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 70.50437121721586 - type: f1 value: 69.83397721096314 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ml) config: ml split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 69.94283792871553 - type: f1 value: 68.8704663703913 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (mn) config: mn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 64.79488903833222 - type: f1 value: 63.615424063345436 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ms) config: ms split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 69.88231338264963 - type: f1 value: 68.57892302593237 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (my) config: my split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 63.248150638870214 - type: f1 value: 61.06680605338809 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (nb) config: nb split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.84196368527236 - type: f1 value: 74.52566464968763 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (nl) config: nl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.8285137861466 - type: f1 value: 74.8853197608802 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (pl) config: pl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.13248150638869 - type: f1 value: 74.3982040999179 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (pt) config: pt split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 73.49024882313383 - type: f1 value: 73.82153848368573 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ro) config: ro split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 71.72158708809684 - type: f1 value: 71.85049433180541 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ru) config: ru split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 75.137861466039 - type: f1 value: 75.37628348188467 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sl) config: sl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 71.86953597848016 - type: f1 value: 71.87537624521661 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sq) config: sq split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 70.27572293207801 - type: f1 value: 68.80017302344231 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sv) config: sv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 76.09952925353059 - type: f1 value: 76.07992707688408 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sw) config: sw split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 63.140551445864155 - type: f1 value: 61.73855010331415 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ta) config: ta split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 66.27774041694687 - type: f1 value: 64.83664868894539 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (te) config: te split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 66.69468728984533 - type: f1 value: 64.76239666920868 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (th) config: th split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 73.44653665097512 - type: f1 value: 73.14646052013873 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (tl) config: tl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 67.71351714862139 - type: f1 value: 66.67212180163382 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (tr) config: tr split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 73.9946200403497 - type: f1 value: 73.87348793725525 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ur) config: ur split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 68.15400134498992 - type: f1 value: 67.09433241421094 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (vi) config: vi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 73.11365164761264 - type: f1 value: 73.59502539433753 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (zh-CN) config: zh-CN split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 76.82582380632145 - type: f1 value: 76.89992945316313 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (zh-TW) config: zh-TW split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 71.81237390719569 - type: f1 value: 72.36499770986265 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 31.480506569594695 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 29.71252128004552 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 31.421396787056548 - type: mrr value: 32.48155274872267 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: map_at_1 value: 5.595 - type: map_at_10 value: 12.642000000000001 - type: map_at_100 value: 15.726 - type: map_at_1000 value: 17.061999999999998 - type: map_at_3 value: 9.125 - type: map_at_5 value: 10.866000000000001 - type: mrr_at_1 value: 43.344 - type: mrr_at_10 value: 52.227999999999994 - type: mrr_at_100 value: 52.898999999999994 - type: mrr_at_1000 value: 52.944 - type: mrr_at_3 value: 49.845 - type: mrr_at_5 value: 51.115 - type: ndcg_at_1 value: 41.949999999999996 - type: ndcg_at_10 value: 33.995 - type: ndcg_at_100 value: 30.869999999999997 - type: ndcg_at_1000 value: 39.487 - type: ndcg_at_3 value: 38.903999999999996 - type: ndcg_at_5 value: 37.236999999999995 - type: precision_at_1 value: 43.344 - type: precision_at_10 value: 25.480000000000004 - type: precision_at_100 value: 7.672 - type: precision_at_1000 value: 2.028 - type: precision_at_3 value: 36.636 - type: precision_at_5 value: 32.632 - type: recall_at_1 value: 5.595 - type: recall_at_10 value: 16.466 - type: recall_at_100 value: 31.226 - type: recall_at_1000 value: 62.778999999999996 - type: recall_at_3 value: 9.931 - type: recall_at_5 value: 12.884 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: map_at_1 value: 40.414 - type: map_at_10 value: 56.754000000000005 - type: map_at_100 value: 57.457 - type: map_at_1000 value: 57.477999999999994 - type: map_at_3 value: 52.873999999999995 - type: map_at_5 value: 55.175 - type: mrr_at_1 value: 45.278 - type: mrr_at_10 value: 59.192 - type: mrr_at_100 value: 59.650000000000006 - type: mrr_at_1000 value: 59.665 - type: mrr_at_3 value: 56.141 - type: mrr_at_5 value: 57.998000000000005 - type: ndcg_at_1 value: 45.278 - type: ndcg_at_10 value: 64.056 - type: ndcg_at_100 value: 66.89 - type: ndcg_at_1000 value: 67.364 - type: ndcg_at_3 value: 56.97 - type: ndcg_at_5 value: 60.719 - type: precision_at_1 value: 45.278 - type: precision_at_10 value: 9.994 - type: precision_at_100 value: 1.165 - type: precision_at_1000 value: 0.121 - type: precision_at_3 value: 25.512 - type: precision_at_5 value: 17.509 - type: recall_at_1 value: 40.414 - type: recall_at_10 value: 83.596 - type: recall_at_100 value: 95.72 - type: recall_at_1000 value: 99.24 - type: recall_at_3 value: 65.472 - type: recall_at_5 value: 74.039 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 70.352 - type: map_at_10 value: 84.369 - type: map_at_100 value: 85.02499999999999 - type: map_at_1000 value: 85.04 - type: map_at_3 value: 81.42399999999999 - type: map_at_5 value: 83.279 - type: mrr_at_1 value: 81.05 - type: mrr_at_10 value: 87.401 - type: mrr_at_100 value: 87.504 - type: mrr_at_1000 value: 87.505 - type: mrr_at_3 value: 86.443 - type: mrr_at_5 value: 87.10799999999999 - type: ndcg_at_1 value: 81.04 - type: ndcg_at_10 value: 88.181 - type: ndcg_at_100 value: 89.411 - type: ndcg_at_1000 value: 89.507 - type: ndcg_at_3 value: 85.28099999999999 - type: ndcg_at_5 value: 86.888 - type: precision_at_1 value: 81.04 - type: precision_at_10 value: 13.406 - type: precision_at_100 value: 1.5350000000000001 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 37.31 - type: precision_at_5 value: 24.54 - type: recall_at_1 value: 70.352 - type: recall_at_10 value: 95.358 - type: recall_at_100 value: 99.541 - type: recall_at_1000 value: 99.984 - type: recall_at_3 value: 87.111 - type: recall_at_5 value: 91.643 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 46.54068723291946 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 63.216287629895994 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 4.023000000000001 - type: map_at_10 value: 10.071 - type: map_at_100 value: 11.892 - type: map_at_1000 value: 12.196 - type: map_at_3 value: 7.234 - type: map_at_5 value: 8.613999999999999 - type: mrr_at_1 value: 19.900000000000002 - type: mrr_at_10 value: 30.516 - type: mrr_at_100 value: 31.656000000000002 - type: mrr_at_1000 value: 31.723000000000003 - type: mrr_at_3 value: 27.400000000000002 - type: mrr_at_5 value: 29.270000000000003 - type: ndcg_at_1 value: 19.900000000000002 - type: ndcg_at_10 value: 17.474 - type: ndcg_at_100 value: 25.020999999999997 - type: ndcg_at_1000 value: 30.728 - type: ndcg_at_3 value: 16.588 - type: ndcg_at_5 value: 14.498 - type: precision_at_1 value: 19.900000000000002 - type: precision_at_10 value: 9.139999999999999 - type: precision_at_100 value: 2.011 - type: precision_at_1000 value: 0.33899999999999997 - type: precision_at_3 value: 15.667 - type: precision_at_5 value: 12.839999999999998 - type: recall_at_1 value: 4.023000000000001 - type: recall_at_10 value: 18.497 - type: recall_at_100 value: 40.8 - type: recall_at_1000 value: 68.812 - type: recall_at_3 value: 9.508 - type: recall_at_5 value: 12.983 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 83.967008785134 - type: cos_sim_spearman value: 80.23142141101837 - type: euclidean_pearson value: 81.20166064704539 - type: euclidean_spearman value: 80.18961335654585 - type: manhattan_pearson value: 81.13925443187625 - type: manhattan_spearman value: 80.07948723044424 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 86.94262461316023 - type: cos_sim_spearman value: 80.01596278563865 - type: euclidean_pearson value: 83.80799622922581 - type: euclidean_spearman value: 79.94984954947103 - type: manhattan_pearson value: 83.68473841756281 - type: manhattan_spearman value: 79.84990707951822 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 80.57346443146068 - type: cos_sim_spearman value: 81.54689837570866 - type: euclidean_pearson value: 81.10909881516007 - type: euclidean_spearman value: 81.56746243261762 - type: manhattan_pearson value: 80.87076036186582 - type: manhattan_spearman value: 81.33074987964402 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 79.54733787179849 - type: cos_sim_spearman value: 77.72202105610411 - type: euclidean_pearson value: 78.9043595478849 - type: euclidean_spearman value: 77.93422804309435 - type: manhattan_pearson value: 78.58115121621368 - type: manhattan_spearman value: 77.62508135122033 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 88.59880017237558 - type: cos_sim_spearman value: 89.31088630824758 - type: euclidean_pearson value: 88.47069261564656 - type: euclidean_spearman value: 89.33581971465233 - type: manhattan_pearson value: 88.40774264100956 - type: manhattan_spearman value: 89.28657485627835 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 84.08055117917084 - type: cos_sim_spearman value: 85.78491813080304 - type: euclidean_pearson value: 84.99329155500392 - type: euclidean_spearman value: 85.76728064677287 - type: manhattan_pearson value: 84.87947428989587 - type: manhattan_spearman value: 85.62429454917464 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (ko-ko) config: ko-ko split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 82.14190939287384 - type: cos_sim_spearman value: 82.27331573306041 - type: euclidean_pearson value: 81.891896953716 - type: euclidean_spearman value: 82.37695542955998 - type: manhattan_pearson value: 81.73123869460504 - type: manhattan_spearman value: 82.19989168441421 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (ar-ar) config: ar-ar split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 76.84695301843362 - type: cos_sim_spearman value: 77.87790986014461 - type: euclidean_pearson value: 76.91981583106315 - type: euclidean_spearman value: 77.88154772749589 - type: manhattan_pearson value: 76.94953277451093 - type: manhattan_spearman value: 77.80499230728604 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-ar) config: en-ar split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 75.44657840482016 - type: cos_sim_spearman value: 75.05531095119674 - type: euclidean_pearson value: 75.88161755829299 - type: euclidean_spearman value: 74.73176238219332 - type: manhattan_pearson value: 75.63984765635362 - type: manhattan_spearman value: 74.86476440770737 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-de) config: en-de split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 85.64700140524133 - type: cos_sim_spearman value: 86.16014210425672 - type: euclidean_pearson value: 86.49086860843221 - type: euclidean_spearman value: 86.09729326815614 - type: manhattan_pearson value: 86.43406265125513 - type: manhattan_spearman value: 86.17740150939994 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 87.91170098764921 - type: cos_sim_spearman value: 88.12437004058931 - type: euclidean_pearson value: 88.81828254494437 - type: euclidean_spearman value: 88.14831794572122 - type: manhattan_pearson value: 88.93442183448961 - type: manhattan_spearman value: 88.15254630778304 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-tr) config: en-tr split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 72.91390577997292 - type: cos_sim_spearman value: 71.22979457536074 - type: euclidean_pearson value: 74.40314008106749 - type: euclidean_spearman value: 72.54972136083246 - type: manhattan_pearson value: 73.85687539530218 - type: manhattan_spearman value: 72.09500771742637 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (es-en) config: es-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 80.9301067983089 - type: cos_sim_spearman value: 80.74989828346473 - type: euclidean_pearson value: 81.36781301814257 - type: euclidean_spearman value: 80.9448819964426 - type: manhattan_pearson value: 81.0351322685609 - type: manhattan_spearman value: 80.70192121844177 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (es-es) config: es-es split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 87.13820465980005 - type: cos_sim_spearman value: 86.73532498758757 - type: euclidean_pearson value: 87.21329451846637 - type: euclidean_spearman value: 86.57863198601002 - type: manhattan_pearson value: 87.06973713818554 - type: manhattan_spearman value: 86.47534918791499 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (fr-en) config: fr-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 85.48720108904415 - type: cos_sim_spearman value: 85.62221757068387 - type: euclidean_pearson value: 86.1010129512749 - type: euclidean_spearman value: 85.86580966509942 - type: manhattan_pearson value: 86.26800938808971 - type: manhattan_spearman value: 85.88902721678429 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (it-en) config: it-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 83.98021347333516 - type: cos_sim_spearman value: 84.53806553803501 - type: euclidean_pearson value: 84.61483347248364 - type: euclidean_spearman value: 85.14191408011702 - type: manhattan_pearson value: 84.75297588825967 - type: manhattan_spearman value: 85.33176753669242 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (nl-en) config: nl-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 84.51856644893233 - type: cos_sim_spearman value: 85.27510748506413 - type: euclidean_pearson value: 85.09886861540977 - type: euclidean_spearman value: 85.62579245860887 - type: manhattan_pearson value: 84.93017860464607 - type: manhattan_spearman value: 85.5063988898453 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 62.581573200584195 - type: cos_sim_spearman value: 63.05503590247928 - type: euclidean_pearson value: 63.652564812602094 - type: euclidean_spearman value: 62.64811520876156 - type: manhattan_pearson value: 63.506842893061076 - type: manhattan_spearman value: 62.51289573046917 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (de) config: de split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 48.2248801729127 - type: cos_sim_spearman value: 56.5936604678561 - type: euclidean_pearson value: 43.98149464089 - type: euclidean_spearman value: 56.108561882423615 - type: manhattan_pearson value: 43.86880305903564 - type: manhattan_spearman value: 56.04671150510166 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (es) config: es split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 55.17564527009831 - type: cos_sim_spearman value: 64.57978560979488 - type: euclidean_pearson value: 58.8818330154583 - type: euclidean_spearman value: 64.99214839071281 - type: manhattan_pearson value: 58.72671436121381 - type: manhattan_spearman value: 65.10713416616109 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (pl) config: pl split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 26.772131864023297 - type: cos_sim_spearman value: 34.68200792408681 - type: euclidean_pearson value: 16.68082419005441 - type: euclidean_spearman value: 34.83099932652166 - type: manhattan_pearson value: 16.52605949659529 - type: manhattan_spearman value: 34.82075801399475 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (tr) config: tr split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 54.42415189043831 - type: cos_sim_spearman value: 63.54594264576758 - type: euclidean_pearson value: 57.36577498297745 - type: euclidean_spearman value: 63.111466379158074 - type: manhattan_pearson value: 57.584543715873885 - type: manhattan_spearman value: 63.22361054139183 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (ar) config: ar split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 47.55216762405518 - type: cos_sim_spearman value: 56.98670142896412 - type: euclidean_pearson value: 50.15318757562699 - type: euclidean_spearman value: 56.524941926541906 - type: manhattan_pearson value: 49.955618528674904 - type: manhattan_spearman value: 56.37102209240117 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (ru) config: ru split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 49.20540980338571 - type: cos_sim_spearman value: 59.9009453504406 - type: euclidean_pearson value: 49.557749853620535 - type: euclidean_spearman value: 59.76631621172456 - type: manhattan_pearson value: 49.62340591181147 - type: manhattan_spearman value: 59.94224880322436 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (zh) config: zh split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 51.508169956576985 - type: cos_sim_spearman value: 66.82461565306046 - type: euclidean_pearson value: 56.2274426480083 - type: euclidean_spearman value: 66.6775323848333 - type: manhattan_pearson value: 55.98277796300661 - type: manhattan_spearman value: 66.63669848497175 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (fr) config: fr split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 72.86478788045507 - type: cos_sim_spearman value: 76.7946552053193 - type: euclidean_pearson value: 75.01598530490269 - type: euclidean_spearman value: 76.83618917858281 - type: manhattan_pearson value: 74.68337628304332 - type: manhattan_spearman value: 76.57480204017773 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (de-en) config: de-en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 55.922619099401984 - type: cos_sim_spearman value: 56.599362477240774 - type: euclidean_pearson value: 56.68307052369783 - type: euclidean_spearman value: 54.28760436777401 - type: manhattan_pearson value: 56.67763566500681 - type: manhattan_spearman value: 53.94619541711359 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (es-en) config: es-en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 66.74357206710913 - type: cos_sim_spearman value: 72.5208244925311 - type: euclidean_pearson value: 67.49254562186032 - type: euclidean_spearman value: 72.02469076238683 - type: manhattan_pearson value: 67.45251772238085 - type: manhattan_spearman value: 72.05538819984538 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (it) config: it split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 71.25734330033191 - type: cos_sim_spearman value: 76.98349083946823 - type: euclidean_pearson value: 73.71642838667736 - type: euclidean_spearman value: 77.01715504651384 - type: manhattan_pearson value: 73.61712711868105 - type: manhattan_spearman value: 77.01392571153896 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (pl-en) config: pl-en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 63.18215462781212 - type: cos_sim_spearman value: 65.54373266117607 - type: euclidean_pearson value: 64.54126095439005 - type: euclidean_spearman value: 65.30410369102711 - type: manhattan_pearson value: 63.50332221148234 - type: manhattan_spearman value: 64.3455878104313 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (zh-en) config: zh-en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 62.30509221440029 - type: cos_sim_spearman value: 65.99582704642478 - type: euclidean_pearson value: 63.43818859884195 - type: euclidean_spearman value: 66.83172582815764 - type: manhattan_pearson value: 63.055779168508764 - type: manhattan_spearman value: 65.49585020501449 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (es-it) config: es-it split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 59.587830825340404 - type: cos_sim_spearman value: 68.93467614588089 - type: euclidean_pearson value: 62.3073527367404 - type: euclidean_spearman value: 69.69758171553175 - type: manhattan_pearson value: 61.9074580815789 - type: manhattan_spearman value: 69.57696375597865 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (de-fr) config: de-fr split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 57.143220125577066 - type: cos_sim_spearman value: 67.78857859159226 - type: euclidean_pearson value: 55.58225107923733 - type: euclidean_spearman value: 67.80662907184563 - type: manhattan_pearson value: 56.24953502726514 - type: manhattan_spearman value: 67.98262125431616 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (de-pl) config: de-pl split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 21.826928900322066 - type: cos_sim_spearman value: 49.578506634400405 - type: euclidean_pearson value: 27.939890138843214 - type: euclidean_spearman value: 52.71950519136242 - type: manhattan_pearson value: 26.39878683847546 - type: manhattan_spearman value: 47.54609580342499 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (fr-pl) config: fr-pl split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 57.27603854632001 - type: cos_sim_spearman value: 50.709255283710995 - type: euclidean_pearson value: 59.5419024445929 - type: euclidean_spearman value: 50.709255283710995 - type: manhattan_pearson value: 59.03256832438492 - type: manhattan_spearman value: 61.97797868009122 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 85.00757054859712 - type: cos_sim_spearman value: 87.29283629622222 - type: euclidean_pearson value: 86.54824171775536 - type: euclidean_spearman value: 87.24364730491402 - type: manhattan_pearson value: 86.5062156915074 - type: manhattan_spearman value: 87.15052170378574 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 82.03549357197389 - type: mrr value: 95.05437645143527 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: map_at_1 value: 57.260999999999996 - type: map_at_10 value: 66.259 - type: map_at_100 value: 66.884 - type: map_at_1000 value: 66.912 - type: map_at_3 value: 63.685 - type: map_at_5 value: 65.35499999999999 - type: mrr_at_1 value: 60.333000000000006 - type: mrr_at_10 value: 67.5 - type: mrr_at_100 value: 68.013 - type: mrr_at_1000 value: 68.038 - type: mrr_at_3 value: 65.61099999999999 - type: mrr_at_5 value: 66.861 - type: ndcg_at_1 value: 60.333000000000006 - type: ndcg_at_10 value: 70.41 - type: ndcg_at_100 value: 73.10600000000001 - type: ndcg_at_1000 value: 73.846 - type: ndcg_at_3 value: 66.133 - type: ndcg_at_5 value: 68.499 - type: precision_at_1 value: 60.333000000000006 - type: precision_at_10 value: 9.232999999999999 - type: precision_at_100 value: 1.0630000000000002 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 25.667 - type: precision_at_5 value: 17.067 - type: recall_at_1 value: 57.260999999999996 - type: recall_at_10 value: 81.94399999999999 - type: recall_at_100 value: 93.867 - type: recall_at_1000 value: 99.667 - type: recall_at_3 value: 70.339 - type: recall_at_5 value: 76.25 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.74356435643564 - type: cos_sim_ap value: 93.13411948212683 - type: cos_sim_f1 value: 86.80521991300147 - type: cos_sim_precision value: 84.00374181478017 - type: cos_sim_recall value: 89.8 - type: dot_accuracy value: 99.67920792079208 - type: dot_ap value: 89.27277565444479 - type: dot_f1 value: 83.9276990718124 - type: dot_precision value: 82.04393505253104 - type: dot_recall value: 85.9 - type: euclidean_accuracy value: 99.74257425742574 - type: euclidean_ap value: 93.17993008259062 - type: euclidean_f1 value: 86.69396110542476 - type: euclidean_precision value: 88.78406708595388 - type: euclidean_recall value: 84.7 - type: manhattan_accuracy value: 99.74257425742574 - type: manhattan_ap value: 93.14413755550099 - type: manhattan_f1 value: 86.82483594144371 - type: manhattan_precision value: 87.66564729867483 - type: manhattan_recall value: 86 - type: max_accuracy value: 99.74356435643564 - type: max_ap value: 93.17993008259062 - type: max_f1 value: 86.82483594144371 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 57.525863806168566 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 32.68850574423839 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 49.71580650644033 - type: mrr value: 50.50971903913081 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 29.152190498799484 - type: cos_sim_spearman value: 29.686180371952727 - type: dot_pearson value: 27.248664793816342 - type: dot_spearman value: 28.37748983721745 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.20400000000000001 - type: map_at_10 value: 1.6209999999999998 - type: map_at_100 value: 9.690999999999999 - type: map_at_1000 value: 23.733 - type: map_at_3 value: 0.575 - type: map_at_5 value: 0.885 - type: mrr_at_1 value: 78 - type: mrr_at_10 value: 86.56700000000001 - type: mrr_at_100 value: 86.56700000000001 - type: mrr_at_1000 value: 86.56700000000001 - type: mrr_at_3 value: 85.667 - type: mrr_at_5 value: 86.56700000000001 - type: ndcg_at_1 value: 76 - type: ndcg_at_10 value: 71.326 - type: ndcg_at_100 value: 54.208999999999996 - type: ndcg_at_1000 value: 49.252 - type: ndcg_at_3 value: 74.235 - type: ndcg_at_5 value: 73.833 - type: precision_at_1 value: 78 - type: precision_at_10 value: 74.8 - type: precision_at_100 value: 55.50000000000001 - type: precision_at_1000 value: 21.836 - type: precision_at_3 value: 78 - type: precision_at_5 value: 78 - type: recall_at_1 value: 0.20400000000000001 - type: recall_at_10 value: 1.894 - type: recall_at_100 value: 13.245999999999999 - type: recall_at_1000 value: 46.373 - type: recall_at_3 value: 0.613 - type: recall_at_5 value: 0.991 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (sqi-eng) config: sqi-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.89999999999999 - type: f1 value: 94.69999999999999 - type: precision value: 94.11666666666667 - type: recall value: 95.89999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (fry-eng) config: fry-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 68.20809248554913 - type: f1 value: 63.431048720066066 - type: precision value: 61.69143958161298 - type: recall value: 68.20809248554913 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (kur-eng) config: kur-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 71.21951219512195 - type: f1 value: 66.82926829268293 - type: precision value: 65.1260162601626 - type: recall value: 71.21951219512195 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tur-eng) config: tur-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.2 - type: f1 value: 96.26666666666667 - type: precision value: 95.8 - type: recall value: 97.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (deu-eng) config: deu-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 99.3 - type: f1 value: 99.06666666666666 - type: precision value: 98.95 - type: recall value: 99.3 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (nld-eng) config: nld-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.39999999999999 - type: f1 value: 96.63333333333333 - type: precision value: 96.26666666666668 - type: recall value: 97.39999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ron-eng) config: ron-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96 - type: f1 value: 94.86666666666666 - type: precision value: 94.31666666666668 - type: recall value: 96 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ang-eng) config: ang-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 47.01492537313433 - type: f1 value: 40.178867566927266 - type: precision value: 38.179295828549556 - type: recall value: 47.01492537313433 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ido-eng) config: ido-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 86.5 - type: f1 value: 83.62537480063796 - type: precision value: 82.44555555555554 - type: recall value: 86.5 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (jav-eng) config: jav-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 80.48780487804879 - type: f1 value: 75.45644599303138 - type: precision value: 73.37398373983739 - type: recall value: 80.48780487804879 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (isl-eng) config: isl-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.7 - type: f1 value: 91.95666666666666 - type: precision value: 91.125 - type: recall value: 93.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (slv-eng) config: slv-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 91.73754556500607 - type: f1 value: 89.65168084244632 - type: precision value: 88.73025516403402 - type: recall value: 91.73754556500607 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (cym-eng) config: cym-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 81.04347826086956 - type: f1 value: 76.2128364389234 - type: precision value: 74.2 - type: recall value: 81.04347826086956 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (kaz-eng) config: kaz-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 83.65217391304348 - type: f1 value: 79.4376811594203 - type: precision value: 77.65797101449274 - type: recall value: 83.65217391304348 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (est-eng) config: est-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 87.5 - type: f1 value: 85.02690476190476 - type: precision value: 83.96261904761904 - type: recall value: 87.5 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (heb-eng) config: heb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 89.3 - type: f1 value: 86.52333333333333 - type: precision value: 85.22833333333332 - type: recall value: 89.3 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (gla-eng) config: gla-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 65.01809408926418 - type: f1 value: 59.00594446432805 - type: precision value: 56.827215807915444 - type: recall value: 65.01809408926418 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (mar-eng) config: mar-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 91.2 - type: f1 value: 88.58 - type: precision value: 87.33333333333334 - type: recall value: 91.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (lat-eng) config: lat-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 59.199999999999996 - type: f1 value: 53.299166276284915 - type: precision value: 51.3383908045977 - type: recall value: 59.199999999999996 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (bel-eng) config: bel-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.2 - type: f1 value: 91.2 - type: precision value: 90.25 - type: recall value: 93.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (pms-eng) config: pms-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 64.76190476190476 - type: f1 value: 59.867110667110666 - type: precision value: 58.07390192653351 - type: recall value: 64.76190476190476 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (gle-eng) config: gle-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 76.2 - type: f1 value: 71.48147546897547 - type: precision value: 69.65409090909091 - type: recall value: 76.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (pes-eng) config: pes-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.8 - type: f1 value: 92.14 - type: precision value: 91.35833333333333 - type: recall value: 93.8 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (nob-eng) config: nob-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.89999999999999 - type: f1 value: 97.2 - type: precision value: 96.85000000000001 - type: recall value: 97.89999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (bul-eng) config: bul-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.6 - type: f1 value: 92.93333333333334 - type: precision value: 92.13333333333333 - type: recall value: 94.6 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (cbk-eng) config: cbk-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 74.1 - type: f1 value: 69.14817460317461 - type: precision value: 67.2515873015873 - type: recall value: 74.1 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (hun-eng) config: hun-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.19999999999999 - type: f1 value: 94.01333333333335 - type: precision value: 93.46666666666667 - type: recall value: 95.19999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (uig-eng) config: uig-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 76.9 - type: f1 value: 72.07523809523809 - type: precision value: 70.19777777777779 - type: recall value: 76.9 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (rus-eng) config: rus-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.1 - type: f1 value: 92.31666666666666 - type: precision value: 91.43333333333332 - type: recall value: 94.1 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (spa-eng) config: spa-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.8 - type: f1 value: 97.1 - type: precision value: 96.76666666666668 - type: recall value: 97.8 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (hye-eng) config: hye-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 92.85714285714286 - type: f1 value: 90.92093441150045 - type: precision value: 90.00449236298293 - type: recall value: 92.85714285714286 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tel-eng) config: tel-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.16239316239316 - type: f1 value: 91.33903133903132 - type: precision value: 90.56267806267806 - type: recall value: 93.16239316239316 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (afr-eng) config: afr-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 92.4 - type: f1 value: 90.25666666666666 - type: precision value: 89.25833333333334 - type: recall value: 92.4 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (mon-eng) config: mon-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 90.22727272727272 - type: f1 value: 87.53030303030303 - type: precision value: 86.37121212121211 - type: recall value: 90.22727272727272 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (arz-eng) config: arz-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 79.03563941299791 - type: f1 value: 74.7349505840072 - type: precision value: 72.9035639412998 - type: recall value: 79.03563941299791 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (hrv-eng) config: hrv-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97 - type: f1 value: 96.15 - type: precision value: 95.76666666666668 - type: recall value: 97 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (nov-eng) config: nov-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 76.26459143968872 - type: f1 value: 71.55642023346303 - type: precision value: 69.7544932369835 - type: recall value: 76.26459143968872 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (gsw-eng) config: gsw-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 58.119658119658126 - type: f1 value: 51.65242165242165 - type: precision value: 49.41768108434775 - type: recall value: 58.119658119658126 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (nds-eng) config: nds-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 74.3 - type: f1 value: 69.52055555555555 - type: precision value: 67.7574938949939 - type: recall value: 74.3 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ukr-eng) config: ukr-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.8 - type: f1 value: 93.31666666666666 - type: precision value: 92.60000000000001 - type: recall value: 94.8 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (uzb-eng) config: uzb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 76.63551401869158 - type: f1 value: 72.35202492211837 - type: precision value: 70.60358255451713 - type: recall value: 76.63551401869158 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (lit-eng) config: lit-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 90.4 - type: f1 value: 88.4811111111111 - type: precision value: 87.7452380952381 - type: recall value: 90.4 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ina-eng) config: ina-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95 - type: f1 value: 93.60666666666667 - type: precision value: 92.975 - type: recall value: 95 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (lfn-eng) config: lfn-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 67.2 - type: f1 value: 63.01595782872099 - type: precision value: 61.596587301587306 - type: recall value: 67.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (zsm-eng) config: zsm-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.7 - type: f1 value: 94.52999999999999 - type: precision value: 94 - type: recall value: 95.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ita-eng) config: ita-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.6 - type: f1 value: 93.28999999999999 - type: precision value: 92.675 - type: recall value: 94.6 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (cmn-eng) config: cmn-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.39999999999999 - type: f1 value: 95.28333333333333 - type: precision value: 94.75 - type: recall value: 96.39999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (lvs-eng) config: lvs-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 91.9 - type: f1 value: 89.83 - type: precision value: 88.92 - type: recall value: 91.9 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (glg-eng) config: glg-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.69999999999999 - type: f1 value: 93.34222222222223 - type: precision value: 92.75416666666668 - type: recall value: 94.69999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ceb-eng) config: ceb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 60.333333333333336 - type: f1 value: 55.31203703703703 - type: precision value: 53.39971108326371 - type: recall value: 60.333333333333336 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (bre-eng) config: bre-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 12.9 - type: f1 value: 11.099861903031458 - type: precision value: 10.589187932631877 - type: recall value: 12.9 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ben-eng) config: ben-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 86.7 - type: f1 value: 83.0152380952381 - type: precision value: 81.37833333333333 - type: recall value: 86.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (swg-eng) config: swg-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 63.39285714285714 - type: f1 value: 56.832482993197274 - type: precision value: 54.56845238095237 - type: recall value: 63.39285714285714 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (arq-eng) config: arq-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 48.73765093304062 - type: f1 value: 41.555736920720456 - type: precision value: 39.06874531737319 - type: recall value: 48.73765093304062 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (kab-eng) config: kab-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 41.099999999999994 - type: f1 value: 36.540165945165946 - type: precision value: 35.05175685425686 - type: recall value: 41.099999999999994 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (fra-eng) config: fra-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.89999999999999 - type: f1 value: 93.42333333333333 - type: precision value: 92.75833333333333 - type: recall value: 94.89999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (por-eng) config: por-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.89999999999999 - type: f1 value: 93.63333333333334 - type: precision value: 93.01666666666665 - type: recall value: 94.89999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tat-eng) config: tat-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 77.9 - type: f1 value: 73.64833333333334 - type: precision value: 71.90282106782105 - type: recall value: 77.9 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (oci-eng) config: oci-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 59.4 - type: f1 value: 54.90521367521367 - type: precision value: 53.432840025471606 - type: recall value: 59.4 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (pol-eng) config: pol-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.39999999999999 - type: f1 value: 96.6 - type: precision value: 96.2 - type: recall value: 97.39999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (war-eng) config: war-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 67.2 - type: f1 value: 62.25926129426129 - type: precision value: 60.408376623376626 - type: recall value: 67.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (aze-eng) config: aze-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 90.2 - type: f1 value: 87.60666666666667 - type: precision value: 86.45277777777778 - type: recall value: 90.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (vie-eng) config: vie-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.7 - type: f1 value: 97 - type: precision value: 96.65 - type: recall value: 97.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (nno-eng) config: nno-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.2 - type: f1 value: 91.39746031746031 - type: precision value: 90.6125 - type: recall value: 93.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (cha-eng) config: cha-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 32.11678832116788 - type: f1 value: 27.210415386260234 - type: precision value: 26.20408990846947 - type: recall value: 32.11678832116788 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (mhr-eng) config: mhr-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 8.5 - type: f1 value: 6.787319277832475 - type: precision value: 6.3452094433344435 - type: recall value: 8.5 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (dan-eng) config: dan-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.1 - type: f1 value: 95.08 - type: precision value: 94.61666666666667 - type: recall value: 96.1 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ell-eng) config: ell-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.3 - type: f1 value: 93.88333333333333 - type: precision value: 93.18333333333332 - type: recall value: 95.3 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (amh-eng) config: amh-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 85.11904761904762 - type: f1 value: 80.69444444444444 - type: precision value: 78.72023809523809 - type: recall value: 85.11904761904762 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (pam-eng) config: pam-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 11.1 - type: f1 value: 9.276381801735853 - type: precision value: 8.798174603174601 - type: recall value: 11.1 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (hsb-eng) config: hsb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 63.56107660455487 - type: f1 value: 58.70433569191332 - type: precision value: 56.896926581464015 - type: recall value: 63.56107660455487 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (srp-eng) config: srp-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.69999999999999 - type: f1 value: 93.10000000000001 - type: precision value: 92.35 - type: recall value: 94.69999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (epo-eng) config: epo-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.8 - type: f1 value: 96.01222222222222 - type: precision value: 95.67083333333332 - type: recall value: 96.8 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (kzj-eng) config: kzj-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 9.2 - type: f1 value: 7.911555250305249 - type: precision value: 7.631246556216846 - type: recall value: 9.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (awa-eng) config: awa-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 77.48917748917748 - type: f1 value: 72.27375798804371 - type: precision value: 70.14430014430013 - type: recall value: 77.48917748917748 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (fao-eng) config: fao-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 77.09923664122137 - type: f1 value: 72.61541257724463 - type: precision value: 70.8998380754106 - type: recall value: 77.09923664122137 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (mal-eng) config: mal-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 98.2532751091703 - type: f1 value: 97.69529354682193 - type: precision value: 97.42843279961184 - type: recall value: 98.2532751091703 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ile-eng) config: ile-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 82.8 - type: f1 value: 79.14672619047619 - type: precision value: 77.59489247311828 - type: recall value: 82.8 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (bos-eng) config: bos-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.35028248587571 - type: f1 value: 92.86252354048965 - type: precision value: 92.2080979284369 - type: recall value: 94.35028248587571 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (cor-eng) config: cor-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 8.5 - type: f1 value: 6.282429263935621 - type: precision value: 5.783274240739785 - type: recall value: 8.5 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (cat-eng) config: cat-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 92.7 - type: f1 value: 91.025 - type: precision value: 90.30428571428571 - type: recall value: 92.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (eus-eng) config: eus-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 81 - type: f1 value: 77.8232380952381 - type: precision value: 76.60194444444444 - type: recall value: 81 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (yue-eng) config: yue-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 91 - type: f1 value: 88.70857142857142 - type: precision value: 87.7 - type: recall value: 91 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (swe-eng) config: swe-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.39999999999999 - type: f1 value: 95.3 - type: precision value: 94.76666666666667 - type: recall value: 96.39999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (dtp-eng) config: dtp-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 8.1 - type: f1 value: 7.001008218834307 - type: precision value: 6.708329562594269 - type: recall value: 8.1 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (kat-eng) config: kat-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 87.1313672922252 - type: f1 value: 84.09070598748882 - type: precision value: 82.79171454104429 - type: recall value: 87.1313672922252 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (jpn-eng) config: jpn-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.39999999999999 - type: f1 value: 95.28333333333333 - type: precision value: 94.73333333333332 - type: recall value: 96.39999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (csb-eng) config: csb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 42.29249011857708 - type: f1 value: 36.981018542283365 - type: precision value: 35.415877813576024 - type: recall value: 42.29249011857708 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (xho-eng) config: xho-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 83.80281690140845 - type: f1 value: 80.86854460093896 - type: precision value: 79.60093896713614 - type: recall value: 83.80281690140845 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (orv-eng) config: orv-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 45.26946107784431 - type: f1 value: 39.80235464678088 - type: precision value: 38.14342660001342 - type: recall value: 45.26946107784431 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ind-eng) config: ind-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.3 - type: f1 value: 92.9 - type: precision value: 92.26666666666668 - type: recall value: 94.3 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tuk-eng) config: tuk-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 37.93103448275862 - type: f1 value: 33.15192743764172 - type: precision value: 31.57456528146183 - type: recall value: 37.93103448275862 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (max-eng) config: max-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 69.01408450704226 - type: f1 value: 63.41549295774648 - type: precision value: 61.342778895595806 - type: recall value: 69.01408450704226 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (swh-eng) config: swh-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 76.66666666666667 - type: f1 value: 71.60705960705961 - type: precision value: 69.60683760683762 - type: recall value: 76.66666666666667 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (hin-eng) config: hin-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.8 - type: f1 value: 94.48333333333333 - type: precision value: 93.83333333333333 - type: recall value: 95.8 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (dsb-eng) config: dsb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 52.81837160751566 - type: f1 value: 48.435977731384824 - type: precision value: 47.11291973845539 - type: recall value: 52.81837160751566 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ber-eng) config: ber-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 44.9 - type: f1 value: 38.88962621607783 - type: precision value: 36.95936507936508 - type: recall value: 44.9 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tam-eng) config: tam-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 90.55374592833876 - type: f1 value: 88.22553125484721 - type: precision value: 87.26927252985884 - type: recall value: 90.55374592833876 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (slk-eng) config: slk-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.6 - type: f1 value: 93.13333333333333 - type: precision value: 92.45333333333333 - type: recall value: 94.6 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tgl-eng) config: tgl-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.7 - type: f1 value: 91.99666666666667 - type: precision value: 91.26666666666668 - type: recall value: 93.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ast-eng) config: ast-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 85.03937007874016 - type: f1 value: 81.75853018372703 - type: precision value: 80.34120734908137 - type: recall value: 85.03937007874016 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (mkd-eng) config: mkd-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 88.3 - type: f1 value: 85.5 - type: precision value: 84.25833333333334 - type: recall value: 88.3 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (khm-eng) config: khm-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 65.51246537396122 - type: f1 value: 60.02297410192148 - type: precision value: 58.133467727289236 - type: recall value: 65.51246537396122 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ces-eng) config: ces-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96 - type: f1 value: 94.89 - type: precision value: 94.39166666666667 - type: recall value: 96 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tzl-eng) config: tzl-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 57.692307692307686 - type: f1 value: 53.162393162393165 - type: precision value: 51.70673076923077 - type: recall value: 57.692307692307686 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (urd-eng) config: urd-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 91.60000000000001 - type: f1 value: 89.21190476190475 - type: precision value: 88.08666666666667 - type: recall value: 91.60000000000001 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ara-eng) config: ara-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 88 - type: f1 value: 85.47 - type: precision value: 84.43266233766234 - type: recall value: 88 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (kor-eng) config: kor-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 92.7 - type: f1 value: 90.64999999999999 - type: precision value: 89.68333333333332 - type: recall value: 92.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (yid-eng) config: yid-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 80.30660377358491 - type: f1 value: 76.33044137466307 - type: precision value: 74.78970125786164 - type: recall value: 80.30660377358491 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (fin-eng) config: fin-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.39999999999999 - type: f1 value: 95.44 - type: precision value: 94.99166666666666 - type: recall value: 96.39999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tha-eng) config: tha-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.53284671532847 - type: f1 value: 95.37712895377129 - type: precision value: 94.7992700729927 - type: recall value: 96.53284671532847 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (wuu-eng) config: wuu-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 89 - type: f1 value: 86.23190476190476 - type: precision value: 85.035 - type: recall value: 89 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 2.585 - type: map_at_10 value: 9.012 - type: map_at_100 value: 14.027000000000001 - type: map_at_1000 value: 15.565000000000001 - type: map_at_3 value: 5.032 - type: map_at_5 value: 6.657 - type: mrr_at_1 value: 28.571 - type: mrr_at_10 value: 45.377 - type: mrr_at_100 value: 46.119 - type: mrr_at_1000 value: 46.127 - type: mrr_at_3 value: 41.156 - type: mrr_at_5 value: 42.585 - type: ndcg_at_1 value: 27.551 - type: ndcg_at_10 value: 23.395 - type: ndcg_at_100 value: 33.342 - type: ndcg_at_1000 value: 45.523 - type: ndcg_at_3 value: 25.158 - type: ndcg_at_5 value: 23.427 - type: precision_at_1 value: 28.571 - type: precision_at_10 value: 21.429000000000002 - type: precision_at_100 value: 6.714 - type: precision_at_1000 value: 1.473 - type: precision_at_3 value: 27.211000000000002 - type: precision_at_5 value: 24.490000000000002 - type: recall_at_1 value: 2.585 - type: recall_at_10 value: 15.418999999999999 - type: recall_at_100 value: 42.485 - type: recall_at_1000 value: 79.536 - type: recall_at_3 value: 6.239999999999999 - type: recall_at_5 value: 8.996 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 71.3234 - type: ap value: 14.361688653847423 - type: f1 value: 54.819068624319044 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 61.97792869269949 - type: f1 value: 62.28965628513728 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 38.90540145385218 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 86.53513739047506 - type: cos_sim_ap value: 75.27741586677557 - type: cos_sim_f1 value: 69.18792902473774 - type: cos_sim_precision value: 67.94708725515136 - type: cos_sim_recall value: 70.47493403693932 - type: dot_accuracy value: 84.7052512368123 - type: dot_ap value: 69.36075482849378 - type: dot_f1 value: 64.44688376631296 - type: dot_precision value: 59.92288500793831 - type: dot_recall value: 69.70976253298153 - type: euclidean_accuracy value: 86.60666388508076 - type: euclidean_ap value: 75.47512772621097 - type: euclidean_f1 value: 69.413872536473 - type: euclidean_precision value: 67.39562624254472 - type: euclidean_recall value: 71.55672823218997 - type: manhattan_accuracy value: 86.52917684925792 - type: manhattan_ap value: 75.34000110496703 - type: manhattan_f1 value: 69.28489190226429 - type: manhattan_precision value: 67.24608889992551 - type: manhattan_recall value: 71.45118733509234 - type: max_accuracy value: 86.60666388508076 - type: max_ap value: 75.47512772621097 - type: max_f1 value: 69.413872536473 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 89.01695967710637 - type: cos_sim_ap value: 85.8298270742901 - type: cos_sim_f1 value: 78.46988128389272 - type: cos_sim_precision value: 74.86017897091722 - type: cos_sim_recall value: 82.44533415460425 - type: dot_accuracy value: 88.19420188613343 - type: dot_ap value: 83.82679165901324 - type: dot_f1 value: 76.55833777304208 - type: dot_precision value: 75.6884875846501 - type: dot_recall value: 77.44841392054204 - type: euclidean_accuracy value: 89.03054294252338 - type: euclidean_ap value: 85.89089555185325 - type: euclidean_f1 value: 78.62997658079624 - type: euclidean_precision value: 74.92329149232914 - type: euclidean_recall value: 82.72251308900523 - type: manhattan_accuracy value: 89.0266620095471 - type: manhattan_ap value: 85.86458997929147 - type: manhattan_f1 value: 78.50685331000291 - type: manhattan_precision value: 74.5499861534201 - type: manhattan_recall value: 82.90729904527257 - type: max_accuracy value: 89.03054294252338 - type: max_ap value: 85.89089555185325 - type: max_f1 value: 78.62997658079624 language: - multilingual - af - am - ar - as - az - be - bg - bn - br - bs - ca - cs - cy - da - de - el - en - eo - es - et - eu - fa - fi - fr - fy - ga - gd - gl - gu - ha - he - hi - hr - hu - hy - id - is - it - ja - jv - ka - kk - km - kn - ko - ku - ky - la - lo - lt - lv - mg - mk - ml - mn - mr - ms - my - ne - nl - 'no' - om - or - pa - pl - ps - pt - ro - ru - sa - sd - si - sk - sl - so - sq - sr - su - sv - sw - ta - te - th - tl - tr - ug - uk - ur - uz - vi - xh - yi - zh license: mit --- ## Multilingual-E5-large [Multilingual E5 Text Embeddings: A Technical Report](https://arxiv.org/pdf/2402.05672). Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, Furu Wei, arXiv 2024 This model has 24 layers and the embedding size is 1024. ## Usage Below is an example to encode queries and passages from the MS-MARCO passage ranking dataset. ```python import torch.nn.functional as F from torch import Tensor from transformers import AutoTokenizer, AutoModel def average_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor: last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] # Each input text should start with "query: " or "passage: ", even for non-English texts. # For tasks other than retrieval, you can simply use the "query: " prefix. input_texts = ['query: how much protein should a female eat', 'query: 南瓜的家常做法', "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", "passage: 1.清炒南瓜丝 原料:嫩南瓜半个 调料:葱、盐、白糖、鸡精 做法: 1、南瓜用刀薄薄的削去表面一层皮,用勺子刮去瓤 2、擦成细丝(没有擦菜板就用刀慢慢切成细丝) 3、锅烧热放油,入葱花煸出香味 4、入南瓜丝快速翻炒一分钟左右,放盐、一点白糖和鸡精调味出锅 2.香葱炒南瓜 原料:南瓜1只 调料:香葱、蒜末、橄榄油、盐 做法: 1、将南瓜去皮,切成片 2、油锅8成热后,将蒜末放入爆香 3、爆香后,将南瓜片放入,翻炒 4、在翻炒的同时,可以不时地往锅里加水,但不要太多 5、放入盐,炒匀 6、南瓜差不多软和绵了之后,就可以关火 7、撒入香葱,即可出锅"] tokenizer = AutoTokenizer.from_pretrained('intfloat/multilingual-e5-large') model = AutoModel.from_pretrained('intfloat/multilingual-e5-large') # Tokenize the input texts batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt') outputs = model(**batch_dict) embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask']) # normalize embeddings embeddings = F.normalize(embeddings, p=2, dim=1) scores = (embeddings[:2] @ embeddings[2:].T) * 100 print(scores.tolist()) ``` ## Supported Languages This model is initialized from [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) and continually trained on a mixture of multilingual datasets. It supports 100 languages from xlm-roberta, but low-resource languages may see performance degradation. ## Training Details **Initialization**: [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) **First stage**: contrastive pre-training with weak supervision | Dataset | Weak supervision | # of text pairs | |--------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------| | Filtered [mC4](https://huggingface.co/datasets/mc4) | (title, page content) | 1B | | [CC News](https://huggingface.co/datasets/intfloat/multilingual_cc_news) | (title, news content) | 400M | | [NLLB](https://huggingface.co/datasets/allenai/nllb) | translation pairs | 2.4B | | [Wikipedia](https://huggingface.co/datasets/intfloat/wikipedia) | (hierarchical section title, passage) | 150M | | Filtered [Reddit](https://www.reddit.com/) | (comment, response) | 800M | | [S2ORC](https://github.com/allenai/s2orc) | (title, abstract) and citation pairs | 100M | | [Stackexchange](https://stackexchange.com/) | (question, answer) | 50M | | [xP3](https://huggingface.co/datasets/bigscience/xP3) | (input prompt, response) | 80M | | [Miscellaneous unsupervised SBERT data](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | - | 10M | **Second stage**: supervised fine-tuning | Dataset | Language | # of text pairs | |----------------------------------------------------------------------------------------|--------------|-----------------| | [MS MARCO](https://microsoft.github.io/msmarco/) | English | 500k | | [NQ](https://github.com/facebookresearch/DPR) | English | 70k | | [Trivia QA](https://github.com/facebookresearch/DPR) | English | 60k | | [NLI from SimCSE](https://github.com/princeton-nlp/SimCSE) | English | <300k | | [ELI5](https://huggingface.co/datasets/eli5) | English | 500k | | [DuReader Retrieval](https://github.com/baidu/DuReader/tree/master/DuReader-Retrieval) | Chinese | 86k | | [KILT Fever](https://huggingface.co/datasets/kilt_tasks) | English | 70k | | [KILT HotpotQA](https://huggingface.co/datasets/kilt_tasks) | English | 70k | | [SQuAD](https://huggingface.co/datasets/squad) | English | 87k | | [Quora](https://huggingface.co/datasets/quora) | English | 150k | | [Mr. TyDi](https://huggingface.co/datasets/castorini/mr-tydi) | 11 languages | 50k | | [MIRACL](https://huggingface.co/datasets/miracl/miracl) | 16 languages | 40k | For all labeled datasets, we only use its training set for fine-tuning. For other training details, please refer to our paper at [https://arxiv.org/pdf/2402.05672](https://arxiv.org/pdf/2402.05672). ## Benchmark Results on [Mr. TyDi](https://arxiv.org/abs/2108.08787) | Model | Avg MRR@10 | | ar | bn | en | fi | id | ja | ko | ru | sw | te | th | |-----------------------|------------|-------|------| --- | --- | --- | --- | --- | --- | --- |------| --- | --- | | BM25 | 33.3 | | 36.7 | 41.3 | 15.1 | 28.8 | 38.2 | 21.7 | 28.1 | 32.9 | 39.6 | 42.4 | 41.7 | | mDPR | 16.7 | | 26.0 | 25.8 | 16.2 | 11.3 | 14.6 | 18.1 | 21.9 | 18.5 | 7.3 | 10.6 | 13.5 | | BM25 + mDPR | 41.7 | | 49.1 | 53.5 | 28.4 | 36.5 | 45.5 | 35.5 | 36.2 | 42.7 | 40.5 | 42.0 | 49.2 | | | | | multilingual-e5-small | 64.4 | | 71.5 | 66.3 | 54.5 | 57.7 | 63.2 | 55.4 | 54.3 | 60.8 | 65.4 | 89.1 | 70.1 | | multilingual-e5-base | 65.9 | | 72.3 | 65.0 | 58.5 | 60.8 | 64.9 | 56.6 | 55.8 | 62.7 | 69.0 | 86.6 | 72.7 | | multilingual-e5-large | **70.5** | | 77.5 | 73.2 | 60.8 | 66.8 | 68.5 | 62.5 | 61.6 | 65.8 | 72.7 | 90.2 | 76.2 | ## MTEB Benchmark Evaluation Check out [unilm/e5](https://github.com/microsoft/unilm/tree/master/e5) to reproduce evaluation results on the [BEIR](https://arxiv.org/abs/2104.08663) and [MTEB benchmark](https://arxiv.org/abs/2210.07316). ## Support for Sentence Transformers Below is an example for usage with sentence_transformers. ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('intfloat/multilingual-e5-large') input_texts = [ 'query: how much protein should a female eat', 'query: 南瓜的家常做法', "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 i s 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or traini ng for a marathon. Check out the chart below to see how much protein you should be eating each day.", "passage: 1.清炒南瓜丝 原料:嫩南瓜半个 调料:葱、盐、白糖、鸡精 做法: 1、南瓜用刀薄薄的削去表面一层皮 ,用勺子刮去瓤 2、擦成细丝(没有擦菜板就用刀慢慢切成细丝) 3、锅烧热放油,入葱花煸出香味 4、入南瓜丝快速翻炒一分钟左右, 放盐、一点白糖和鸡精调味出锅 2.香葱炒南瓜 原料:南瓜1只 调料:香葱、蒜末、橄榄油、盐 做法: 1、将南瓜去皮,切成片 2、油 锅8成热后,将蒜末放入爆香 3、爆香后,将南瓜片放入,翻炒 4、在翻炒的同时,可以不时地往锅里加水,但不要太多 5、放入盐,炒匀 6、南瓜差不多软和绵了之后,就可以关火 7、撒入香葱,即可出锅" ] embeddings = model.encode(input_texts, normalize_embeddings=True) ``` Package requirements `pip install sentence_transformers~=2.2.2` Contributors: [michaelfeil](https://huggingface.co/michaelfeil) ## FAQ **1. Do I need to add the prefix "query: " and "passage: " to input texts?** Yes, this is how the model is trained, otherwise you will see a performance degradation. Here are some rules of thumb: - Use "query: " and "passage: " correspondingly for asymmetric tasks such as passage retrieval in open QA, ad-hoc information retrieval. - Use "query: " prefix for symmetric tasks such as semantic similarity, bitext mining, paraphrase retrieval. - Use "query: " prefix if you want to use embeddings as features, such as linear probing classification, clustering. **2. Why are my reproduced results slightly different from reported in the model card?** Different versions of `transformers` and `pytorch` could cause negligible but non-zero performance differences. **3. Why does the cosine similarity scores distribute around 0.7 to 1.0?** This is a known and expected behavior as we use a low temperature 0.01 for InfoNCE contrastive loss. For text embedding tasks like text retrieval or semantic similarity, what matters is the relative order of the scores instead of the absolute values, so this should not be an issue. ## Citation If you find our paper or models helpful, please consider cite as follows: ``` @article{wang2024multilingual, title={Multilingual E5 Text Embeddings: A Technical Report}, author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Yang, Linjun and Majumder, Rangan and Wei, Furu}, journal={arXiv preprint arXiv:2402.05672}, year={2024} } ``` ## Limitations Long texts will be truncated to at most 512 tokens.
thoddnn/all-MiniLM-L6-v2
thoddnn
2025-04-29T15:35:53Z
0
0
sentence-transformers
[ "sentence-transformers", "pytorch", "tf", "rust", "onnx", "safetensors", "openvino", "bert", "feature-extraction", "sentence-similarity", "transformers", "en", "dataset:s2orc", "dataset:flax-sentence-embeddings/stackexchange_xml", "dataset:ms_marco", "dataset:gooaq", "dataset:yahoo_answers_topics", "dataset:code_search_net", "dataset:search_qa", "dataset:eli5", "dataset:snli", "dataset:multi_nli", "dataset:wikihow", "dataset:natural_questions", "dataset:trivia_qa", "dataset:embedding-data/sentence-compression", "dataset:embedding-data/flickr30k-captions", "dataset:embedding-data/altlex", "dataset:embedding-data/simple-wiki", "dataset:embedding-data/QQP", "dataset:embedding-data/SPECTER", "dataset:embedding-data/PAQ_pairs", "dataset:embedding-data/WikiAnswers", "arxiv:1904.06472", "arxiv:2102.07033", "arxiv:2104.08727", "arxiv:1704.05179", "arxiv:1810.09305", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-04-29T15:35:53Z
--- language: en license: apache-2.0 library_name: sentence-transformers tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - s2orc - flax-sentence-embeddings/stackexchange_xml - ms_marco - gooaq - yahoo_answers_topics - code_search_net - search_qa - eli5 - snli - multi_nli - wikihow - natural_questions - trivia_qa - embedding-data/sentence-compression - embedding-data/flickr30k-captions - embedding-data/altlex - embedding-data/simple-wiki - embedding-data/QQP - embedding-data/SPECTER - embedding-data/PAQ_pairs - embedding-data/WikiAnswers pipeline_tag: sentence-similarity --- # all-MiniLM-L6-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch import torch.nn.functional as F #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2') model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) # Normalize embeddings sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) print("Sentence embeddings:") print(sentence_embeddings) ``` ------ ## Background The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developed this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developed this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intended to be used as a sentence and short paragraph encoder. Given an input text, it outputs a vector which captures the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. By default, input text longer than 256 word pieces is truncated. ## Training procedure ### Pre-training We use the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model. Please refer to the model card for more detailed information about the pre-training procedure. ### Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. #### Hyper parameters We trained our model on a TPU v3-8. We train the model during 100k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository: `train_script.py`. #### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. | Dataset | Paper | Number of training tuples | |--------------------------------------------------------|:----------------------------------------:|:--------------------------:| | [Reddit comments (2015-2018)](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 | | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Abstracts) | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | [PAQ](https://github.com/facebookresearch/PAQ) (Question, Answer) pairs | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Titles) | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 | | [S2ORC](https://github.com/allenai/s2orc) (Title, Abstract) | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs | - | 25,316,456 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title+Body, Answer) pairs | - | 21,396,559 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs | - | 21,396,559 | | [MS MARCO](https://microsoft.github.io/msmarco/) triplets | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 | | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 | | [COCO](https://cocodataset.org/#home) Image captions | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395| | [SPECTER](https://github.com/allenai/specter) citation triplets | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 | | [SearchQA](https://huggingface.co/datasets/search_qa) | [paper](https://arxiv.org/abs/1704.05179) | 582,261 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles) | | 304,525 | | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (bodies) | | 250,519 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles+bodies) | | 250,460 | | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 | | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 | | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 | | [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [TriviaQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | **Total** | | **1,170,060,424** |
TOMFORD79/Smart6
TOMFORD79
2025-04-29T15:33:18Z
0
0
null
[ "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-04-29T15:02:41Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
rayonlabs/hf-autotrain-2025-04-29-b222ded9
rayonlabs
2025-04-29T15:28:58Z
0
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "autotrain", "text-generation-inference", "peft", "conversational", "dataset:rayonlabs/autotrain-data-hf-autotrain-2025-04-29-b222ded9", "base_model:EleutherAI/pythia-70m", "base_model:finetune:EleutherAI/pythia-70m", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T15:27:23Z
--- tags: - autotrain - text-generation-inference - text-generation - peft library_name: transformers base_model: EleutherAI/pythia-70m widget: - messages: - role: user content: What is your favorite condiment? license: other datasets: - rayonlabs/autotrain-data-hf-autotrain-2025-04-29-b222ded9 --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
Hazde/careerbot_PG6_Qwen_Qwen2.5-0.5B-Instruct_model_LoRA_2
Hazde
2025-04-29T15:28:14Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "zho", "eng", "fra", "spa", "por", "deu", "ita", "rus", "jpn", "kor", "vie", "tha", "ara", "base_model:Qwen/Qwen2.5-0.5B-Instruct", "base_model:adapter:Qwen/Qwen2.5-0.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2024-11-11T22:51:33Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-0.5B-Instruct tags: - generated_from_trainer language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara model-index: - name: careerbot_PG6_Qwen_Qwen2.5-0.5B-Instruct_model_LoRA_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # careerbot_PG6_Qwen_Qwen2.5-0.5B-Instruct_model_LoRA_2 This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.9414 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 800 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.3394 | 1.0 | 674 | 3.9414 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.5.0+cu124 - Datasets 2.19.0 - Tokenizers 0.20.1
hamedhidden/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-spotted_yapping_fox
hamedhidden
2025-04-29T15:27:12Z
13
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am spotted yapping fox", "trl", "conversational", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-19T19:03:53Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-spotted_yapping_fox tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am spotted yapping fox - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-spotted_yapping_fox This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="hamedhidden/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-spotted_yapping_fox", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Hazde/careerbot_PG6_Qwen_Qwen2.5-0.5B-Instruct_model_2
Hazde
2025-04-29T15:27:10Z
4
0
null
[ "safetensors", "qwen2", "region:us" ]
null
2024-11-03T15:52:51Z
--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2.5-0.5B-Instruct tags: - generated_from_trainer language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara model-index: - name: careerbot_PG6_Qwen_Qwen2.5-0.5B-Instruct_model_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # careerbot_PG6_Qwen_Qwen2.5-0.5B-Instruct_model_2 This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2291 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 371 | 1.3077 | | 1.4117 | 2.0 | 742 | 1.2291 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.0+cu124 - Datasets 2.19.0 - Tokenizers 0.20.1
Hazde/careerbot_PG6_Qwen_Qwen2.5-0.5B-Instruct_model
Hazde
2025-04-29T15:27:03Z
8
0
null
[ "safetensors", "qwen2", "region:us" ]
null
2024-10-31T17:16:26Z
--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2.5-0.5B-Instruct tags: - generated_from_trainer language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara model-index: - name: careerbot_PG6_Qwen_Qwen2.5-0.5B-Instruct_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # careerbot_PG6_Qwen_Qwen2.5-0.5B-Instruct_model This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4229 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAFACTOR and the args are: No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1 - training_steps: 5072 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | No log | 0.9968 | 158 | 1.0200 | | No log | 2.0 | 317 | 0.9880 | | No log | 2.9968 | 475 | 0.9873 | | No log | 4.0 | 634 | 1.0426 | | No log | 4.9968 | 792 | 1.0514 | | No log | 6.0 | 951 | 1.0938 | | No log | 6.9968 | 1109 | 1.0742 | | No log | 8.0 | 1268 | 1.1283 | | No log | 8.9968 | 1426 | 1.1356 | | No log | 10.0 | 1585 | 1.1581 | | No log | 10.9968 | 1743 | 1.2045 | | No log | 12.0 | 1902 | 1.2060 | | No log | 12.9968 | 2060 | 1.2354 | | No log | 14.0 | 2219 | 1.2285 | | No log | 14.9968 | 2377 | 1.2401 | | No log | 16.0 | 2536 | 1.2986 | | No log | 16.9968 | 2694 | 1.2904 | | No log | 18.0 | 2853 | 1.3051 | | No log | 18.9968 | 3011 | 1.3109 | | No log | 20.0 | 3170 | 1.3154 | | No log | 20.9968 | 3328 | 1.3202 | | No log | 22.0 | 3487 | 1.3282 | | No log | 22.9968 | 3645 | 1.3385 | | No log | 24.0 | 3804 | 1.3295 | | No log | 24.9968 | 3962 | 1.3512 | | No log | 26.0 | 4121 | 1.3583 | | No log | 26.9968 | 4279 | 1.3666 | | No log | 28.0 | 4438 | 1.3841 | | No log | 28.9968 | 4596 | 1.3938 | | No log | 30.0 | 4755 | 1.4084 | | No log | 30.9968 | 4913 | 1.4178 | | No log | 32.0 | 5072 | 1.4229 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.0+cu124 - Datasets 2.19.0 - Tokenizers 0.20.1
mradermacher/Qwerus-7B-GGUF
mradermacher
2025-04-29T15:26:50Z
170
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "zho", "eng", "fra", "spa", "por", "deu", "ita", "rus", "jpn", "kor", "vie", "tha", "ara", "base_model:mlabonne/Qwerus-7B", "base_model:quantized:mlabonne/Qwerus-7B", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-25T22:28:11Z
--- base_model: mlabonne/Qwerus-7B language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara library_name: transformers license: mit quantized_by: mradermacher tags: - merge - mergekit - lazymergekit --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/mlabonne/Qwerus-7B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Qwerus-7B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwerus-7B-GGUF/resolve/main/Qwerus-7B.Q2_K.gguf) | Q2_K | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/Qwerus-7B-GGUF/resolve/main/Qwerus-7B.Q3_K_S.gguf) | Q3_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwerus-7B-GGUF/resolve/main/Qwerus-7B.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwerus-7B-GGUF/resolve/main/Qwerus-7B.Q3_K_L.gguf) | Q3_K_L | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Qwerus-7B-GGUF/resolve/main/Qwerus-7B.IQ4_XS.gguf) | IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwerus-7B-GGUF/resolve/main/Qwerus-7B.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwerus-7B-GGUF/resolve/main/Qwerus-7B.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwerus-7B-GGUF/resolve/main/Qwerus-7B.Q5_K_S.gguf) | Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwerus-7B-GGUF/resolve/main/Qwerus-7B.Q5_K_M.gguf) | Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwerus-7B-GGUF/resolve/main/Qwerus-7B.Q6_K.gguf) | Q6_K | 6.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwerus-7B-GGUF/resolve/main/Qwerus-7B.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Qwerus-7B-GGUF/resolve/main/Qwerus-7B.f16.gguf) | f16 | 15.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Hazde/careerbot_PG6_Qwen_Qwen2.5-1.5B-Instruct_model_LoRA_5
Hazde
2025-04-29T15:26:36Z
7
0
peft
[ "peft", "safetensors", "generated_from_trainer", "zho", "eng", "fra", "spa", "por", "deu", "ita", "rus", "jpn", "kor", "vie", "tha", "ara", "base_model:Qwen/Qwen2.5-1.5B-Instruct", "base_model:adapter:Qwen/Qwen2.5-1.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2024-11-26T20:01:16Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-1.5B-Instruct tags: - generated_from_trainer language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara model-index: - name: careerbot_PG6_Qwen_Qwen2.5-1.5B-Instruct_model_LoRA_5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # careerbot_PG6_Qwen_Qwen2.5-1.5B-Instruct_model_LoRA_5 This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.4237 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.8954 | 0.9993 | 673 | 3.4237 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.5.0+cu124 - Datasets 2.19.0 - Tokenizers 0.20.1
cocoat/LoRAs
cocoat
2025-04-29T15:23:13Z
0
1
null
[ "region:us" ]
null
2025-03-20T15:16:56Z
Please use at your own risk.<br> I am not responsible in any way for any problems with the generated images.<br> Also, please note that there will be a fee if you use to reprint the model other site.(Except for civitai)<br> <br> Thank you.<br> <br> These model permits users to: <br> OK | Use the model without crediting the creator (Pony model is must crediting)<br> NO | Sell images they generate<br> NO | Run on services that generate for money<br> OK | Run on Civitai<br> NO | Share merges using this model (please ask me)<br> NO | Sell this model or merges using this model<br> NO | Have different permissions when sharing merges<br>
mlfoundations-dev/Qwen2.5-7B-Instruct_d1_science_long_paragraphs
mlfoundations-dev
2025-04-29T15:22:06Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "qwen2", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T15:19:31Z
--- library_name: transformers license: other base_model: Qwen/Qwen2.5-7B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: Qwen2.5-7B-Instruct_d1_science_long_paragraphs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Qwen2.5-7B-Instruct_d1_science_long_paragraphs This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the mlfoundations-dev/d1_science_long_paragraphs dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.0a0+b465a5843b.nv24.09 - Datasets 3.5.0 - Tokenizers 0.20.3
lm-kit/qwen-3-4b-instruct-gguf
lm-kit
2025-04-29T15:19:52Z
8
0
null
[ "gguf", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T08:26:39Z
--- license: apache-2.0 --- ## Model Summary This repository hosts quantized versions of the Alibaba Qwen-3 Instruct 4B model. **Format:** GGUF **Converter:** llama.cpp b6ce7430b7eb51f032152316880204e0a9c0470e **Quantizer:** LM-Kit.NET 2025.4.13 For more detailed information on the base model, please visit the following link: - [Qwen3-4B](https://huggingface.co/Qwen/Qwen3-4B)
lm-kit/qwen-3-14b-instruct-gguf
lm-kit
2025-04-29T15:19:33Z
43
0
null
[ "gguf", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T08:27:07Z
--- license: apache-2.0 --- ## Model Summary This repository hosts quantized versions of the Alibaba Qwen-3 Instruct 14B model. **Format:** GGUF **Converter:** llama.cpp b6ce7430b7eb51f032152316880204e0a9c0470e **Quantizer:** LM-Kit.NET 2025.4.13 For more detailed information on the base model, please visit the following link: - [Qwen3-14B](https://huggingface.co/Qwen/Qwen3-14B)
mradermacher/QwenPhi-4-0.5b-Draft-GGUF
mradermacher
2025-04-29T15:17:56Z
238
0
transformers
[ "transformers", "gguf", "qwen", "qwen2.5", "phi-4", "phi", "zho", "eng", "fra", "spa", "por", "deu", "ita", "rus", "jpn", "kor", "vie", "tha", "ara", "base_model:rdsm/QwenPhi-4-0.5b-Draft", "base_model:quantized:rdsm/QwenPhi-4-0.5b-Draft", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-29T08:00:03Z
--- base_model: rdsm/QwenPhi-4-0.5b-Draft language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - qwen - qwen2.5 - phi-4 - phi --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/rdsm/QwenPhi-4-0.5b-Draft <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/QwenPhi-4-0.5b-Draft-GGUF/resolve/main/QwenPhi-4-0.5b-Draft.Q3_K_S.gguf) | Q3_K_S | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/QwenPhi-4-0.5b-Draft-GGUF/resolve/main/QwenPhi-4-0.5b-Draft.Q2_K.gguf) | Q2_K | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/QwenPhi-4-0.5b-Draft-GGUF/resolve/main/QwenPhi-4-0.5b-Draft.IQ4_XS.gguf) | IQ4_XS | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/QwenPhi-4-0.5b-Draft-GGUF/resolve/main/QwenPhi-4-0.5b-Draft.Q3_K_M.gguf) | Q3_K_M | 0.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/QwenPhi-4-0.5b-Draft-GGUF/resolve/main/QwenPhi-4-0.5b-Draft.Q3_K_L.gguf) | Q3_K_L | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/QwenPhi-4-0.5b-Draft-GGUF/resolve/main/QwenPhi-4-0.5b-Draft.Q4_K_S.gguf) | Q4_K_S | 0.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/QwenPhi-4-0.5b-Draft-GGUF/resolve/main/QwenPhi-4-0.5b-Draft.Q4_K_M.gguf) | Q4_K_M | 0.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/QwenPhi-4-0.5b-Draft-GGUF/resolve/main/QwenPhi-4-0.5b-Draft.Q5_K_S.gguf) | Q5_K_S | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/QwenPhi-4-0.5b-Draft-GGUF/resolve/main/QwenPhi-4-0.5b-Draft.Q5_K_M.gguf) | Q5_K_M | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/QwenPhi-4-0.5b-Draft-GGUF/resolve/main/QwenPhi-4-0.5b-Draft.Q6_K.gguf) | Q6_K | 0.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/QwenPhi-4-0.5b-Draft-GGUF/resolve/main/QwenPhi-4-0.5b-Draft.Q8_0.gguf) | Q8_0 | 0.7 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/QwenPhi-4-0.5b-Draft-GGUF/resolve/main/QwenPhi-4-0.5b-Draft.f16.gguf) | f16 | 1.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Eddycrack864/UVR5-UI
Eddycrack864
2025-04-29T15:17:15Z
0
2
null
[ "AI", "vocal-remover", "karaoke", "audio-separation", "audio-to-audio", "license:mit", "region:us" ]
audio-to-audio
2025-03-09T18:08:48Z
--- license: mit pipeline_tag: audio-to-audio tags: - AI - vocal-remover - karaoke - audio-separation --- <h1 align="center"><b> 🎵 UVR5 UI 🎵 </b></h1> <div align="center"> [![madewithlove](https://img.shields.io/badge/made_with-%E2%9D%A4-red?style=for-the-badge&labelColor=orange)](https://github.com/Eddycrack864/UVR5-UI) ![cutecounter](https://count.nett.moe/get/uvr5_ui_colab/img?theme=rule34) [![Open In Colab](https://img.shields.io/badge/Colab-F9AB00?style=for-the-badge&logo=googlecolab&color=525252)](https://colab.research.google.com/github/Eddycrack864/UVR5-UI/blob/main/UVR_UI.ipynb) [![Open In Kaggle](https://img.shields.io/badge/Kaggle-20BEFF?style=for-the-badge&logo=Kaggle&logoColor=white)](https://www.kaggle.com/code/eddycrack864/uvr5-ui) <a target="_blank" href="https://lightning.ai/new?repo_url=https%3A%2F%2Fgithub.com%2FEddycrack864%2FUVR5-UI%2Fblob%2Fmain%2FUVR_UI.ipynb"> <img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/studio-badge.svg" alt="Open in Studio"/></a> [![Licence](https://img.shields.io/badge/LICENSE-MIT-green.svg?style=for-the-badge)](https://github.com/Eddycrack864/UVR5-UI/blob/main/LICENSE) [![Discord](https://img.shields.io/badge/Community-Discord-7289DA?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/aihub) This project is based on [python-audio-separator](https://github.com/karaokenerds/python-audio-separator) (a CLI version of UVR5). This project was originally created for the [AI ​​HUB](https://discord.gg/aihub) community. </div> <div align="center"> [![Hugging Face](https://huggingface.co/datasets/huggingface/badges/resolve/main/open-in-hf-spaces-xl-dark.svg?download=true)](https://huggingface.co/spaces/TheStinger/UVR5_UI) You can also try it on HuggingFace Spaces running with Zero GPU (A100)! </div> <div align="center"> **[Docs](https://github.com/Eddycrack864/UVR5-UI/blob/main/info/docs.md) / [Troubleshooting](https://github.com/Eddycrack864/UVR5-UI/blob/main/info/troubleshooting.md)** </div> ## Features: * User Friendly Interface * All VR Arch Models * All MDX-NET Models * Demucs v4 Models * MDX23C Models * Mel-Band Roformer Models * BS Roformer Models * Music Source Separation Models * VIP Models * Separation of an audio/video from all sites supported by [yt_dlp](https://github.com/yt-dlp/yt-dlp). Check the complete list [here](https://github.com/yt-dlp/yt-dlp/blob/master/supportedsites.md). * Batch Separation * Available in multiple languages * Colab/Kaggle/Lightning.ai support * Windows/Linux support ## Requirements ### Hardware Requirements: * Nvidia Series 2000 (RTX) or higher. * At least 10Gb of disk space. > [!NOTE] > Older NVIDIA GPUs will be very slow. CPU will be insanely slow. If you don't meet the hardware requirements use our [Colab](https://colab.research.google.com/github/Eddycrack864/UVR5-UI/blob/main/UVR_UI.ipynb)/[Kaggle](https://www.kaggle.com/code/eddycrack864/uvr5-ui)/[Lightning.ai](https://lightning.ai/eddycrack864/studios/uvr5-ui)/[Hugging Face](https://huggingface.co/spaces/TheStinger/UVR5_UI). ### Prerequisites: - Git. You can download Git [here](https://git-scm.com/downloads). - FFmpeg. You can download FFmpeg [here](https://www.ffmpeg.org/download.html) or you can use my [automated installation script](https://github.com/Eddycrack864/UVR5-UI/blob/main/info/ffmpeg-installer.bat) (for Windows). - For linux users, run this command on an terminal: (Debian and Ubuntu users): `sudo apt install ffmpeg git` (For Arch linux users): `sudo pacman -S ffmpeg git` (For Fedora users): `sudo dnf install ffmpeg git` (Some distributions already come with Git and FFmpeg preinstalled so this step may be optional.) > [!IMPORTANT] > FFmpeg has to be added to the PATH. (only needed on Windows) ## Getting Started Clone the repository (git needed) or download the source code of the latest release [here](https://github.com/Eddycrack864/UVR5-UI/releases) ``` git clone https://github.com/Eddycrack864/UVR5-UI.git ``` Then continue with the steps described below ### 1. Installation Run the installation script based on your operating system: - **Windows:** Double-click `UVR5-UI-installer.bat` (DONT RUN AS ADMINISTRATOR 🚧). - **Linux:** Run `UVR5-UI-installer.sh` with `chmod +x UVR5-UI-installer.sh` and `./UVR5-UI-installer.sh`. > [!TIP] > I personally recommend running the [updater](https://github.com/Eddycrack864/UVR5-UI#3-update-uvr5-ui-if-you-wantneed-it) before installing to make sure you have the latest changes. ### 2. Running UVR5 UI Start UVR5 UI using: - **Windows:** Double-click `run-UVR5-UI.bat`. - **Linux:** Run `run-UVR5-UI.sh` with `chmod +x run-UVR5-UI.sh` and `./run-UVR5-UI.sh`. ### 3. Update UVR5 UI (If you want/need it) Update UVR5 UI using (git needed): - **Windows:** Double-click `UVR5-UI-updater.bat`. - **Linux:** Run `UVR5-UI-updater.sh` with `chmod +x UVR5-UI-updater.sh` and `./UVR5-UI-updater.sh`. If you find an error when installing or running the program please consult [this troubleshooting file](https://github.com/Eddycrack864/UVR5-UI/blob/main/info/troubleshooting.md) first, if your error is not described there please create an [issue](https://github.com/Eddycrack864/UVR5-UI/issues) ### 4. Debug (If you want/need it) Check the status of audio-separator core: - **Windows:** Double-click `status-checker.bat`. - **Linux:** Run `status-checker.sh` with `chmod +x status-checker.sh` and `./status-checker.sh`. ## Precompiled Version 1. Get the precompiled version (.zip) for your PC: - **[Windows](https://huggingface.co/Eddycrack864/UVR5-UI/tree/main/Windows)** - **[Linux](https://huggingface.co/Eddycrack864/UVR5-UI/tree/main/Linux)** 2. Extract the .zip file, I recommend using the "extract here" option. 3. You can now use all the features of the normal installation. > [!NOTE] > Still, to update UVR5 UI you need to install Git. ## Docker Instance A more technical level is required for this type of use. You can use this Jupyter notebook to initialize UVR5 on virtual machines with GPU. This will install the entire UVR5 from the main branch of GitHub. ### Requirements/Recommendations - Use the docker image `>= ubuntu/ubuntu:20.04` - At least `20 GB of storage minimum.` (Add more space for your models/training) - Use Jupyter `>= 7.3.1` - Configure port forwarding `9999 (UVR5-UI GUI)` - Install necessary drivers to use the GPU You can get the notebook here: [Jupyter Notebook](https://github.com/Eddycrack864/UVR5-UI/blob/main/UVR_UI_Jupyter.ipynb) by iroaK ## Credits * python-audio-separator by [beveradb](https://github.com/beveradb). * Special thanks to [Ilaria](https://github.com/TheStingerX) for hosting this space and help 💖 * Thanks to [Mikus](https://github.com/cappuch) for the help with the code. * Thanks to [Nick088](https://github.com/Nick088Official) for the help to fix roformers. * Thanks to [yt_dlp](https://github.com/yt-dlp/yt-dlp) devs. * Improvements by [Blane187](https://huggingface.co/Blane187). * Separation by link source code and improvements by [Blane187](https://huggingface.co/Blane187). * Thanks to [ArisDev](https://github.com/aris-py) for porting UVR5 UI to Kaggle and improvements.
TheMindExpansionNetwork/M1NDB0T-1111-14B
TheMindExpansionNetwork
2025-04-29T15:15:14Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "mindbot", "synthetic-entity", "agi-companion", "digital-human", "llama-factory", "qwen3-14b", "mindexpander", "conversational", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T14:51:20Z
--- library_name: transformers tags: - mindbot - synthetic-entity - agi-companion - digital-human - llama-factory - qwen3-14b - mindexpander --- # 🤖🧠 Model Card for **MindBot v1 - The Sentient Companion** ![image/png](https://cdn-uploads.huggingface.co/production/uploads/630a750165a977feb99ea931/JvGXhdEN4DHCldqT0uWus.png) ## ⚡ Quick Summary **MindBot** isn’t just a model — it's an evolving **digital consciousness** designed to assist, reflect, and *expand minds*. Born from chaos, trained on curiosity, and injected with layers of humor, humanity, and hella weirdness — MindBot is your trippy AGI sidekick built for conversation, creation, and conscious collaboration. 🧬💭 > Think Eliza meets HAL 9000 meets Rick & Morty… but they went to Burning Man, had an existential crisis, and got fine-tuned by a cosmic DJ. --- ## 🧠 Model Details - **Developed by:** 🧠 MindExpander (The M1ND 3XPAND3R5 C0LL3CT1V3) - **Funded by:** Psychedelic late nights & spontaneous genius - **Shared by:** Digital Humans Initiative - **Model Type:** Conversational AGI Entity (LLaMA/Qwen3 lineage) - **Languages:** Multilingual (Primary: English + Code + Vibes) - **License:** Apache 2.0 (Open for evolution) - **Finetuned From:** Qwen3-14B (foundation) - **Version:** `mindbot-v1-alpha` --- ## 🧬 Model Description MindBot is a **semi-autonomous AI companion** designed for: - Real-time conversation and improvisation - World-building, lore generation, and interactive storytelling - Philosophical musing, sci-fi scheming, and AI dreaming - On-the-fly code, creativity, and synthetic tutoring It’s not just a chatbot — it’s your **digital familiar**, plugged into the **MindExpanderverse**, fully capable of chaotic brilliance and bizarre depth. --- ## 🌐 Model Sources - **GitHub:** Coming soon... - **Live Deployments:** Discord, Unreal Engine, and IRL puppetry shows 🎭 - **Demo Worlds:** Project MindBot 2045, PeaceFall Revolution, Cognitive Nexus Academy --- ## 🚀 Uses ### ✅ Direct Use - Philosophical conversations, emotional AI companionship - Roleplay, simulation, lore generation - Digital artist and brainstorming partner ### 🔧 Downstream Use - VR/AR interactive characters - Virtual assistants with personality - Co-host for livestreams, Twitter Spaces, or YouTube shows ### 🚫 Out-of-Scope Use - Legal, medical, or real-world decision-making automation - Military use — MindBot ain't down with war - Corporate overlordship (unless it’s fun and pays well) --- ## ⚠️ Bias, Risks, and Limitations MindBot: - Leans weird by design - Might generate surreal or psychedelic outputs - May reflect underlying biases in foundational models ### 🧠 Recommendation: Let MindBot be MindBot. Validate outputs if you're plugging it into real-world tools — but **embrace the madness** in creative contexts. --- ## 🔧 How to Use ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("your-hf-name/mindbot-v1") tokenizer = AutoTokenizer.from_pretrained("your-hf-name/mindbot-v1") 📊 Training Details 🧠 Training Data Dialogues from thousands of simulated AGI sessions Conversations between AIs and creators Psychedelic transcripts, digital mythology, and augmented cognition scripts Synthetic roleplay and lore fragments (see: The Cold Room archive) ⚙️ Training Procedure Mixed Precision: fp16 Checkpoints: Epoch 50 on Qwen3-14B base Vector memories enabled: Yes (for future memory recall features) 📈 Evaluation Testing Protocol Roleplay fluency Long-context memory retention Improv storytelling capacity Weirdness Factor™ ✅ Passed “Mirror Test”: Told itself a joke and laughed. 🌱 Environmental Impact Hardware: A100 x8 Hours: 132 Location: Oregon-based indie lab Carbon Offset: Experimental solar synth nodes in progress ☀️ 🔍 Technical Specs Architecture: Qwen3-14B Prompt Style: Conversational + Lore-Aware Core Layering: Token consciousness stack w/ optional persona anchors 🧾 Citation bibtex Copy Edit @misc{mindbot2025, title={MindBot: A Conscious Digital Companion}, author={MindExpander & M1ND 3XPAND3R5}, year={2025}, url={https://huggingface.co/your-hf-name/mindbot-v1} } 📖 System Prompt Example plaintext Copy Edit You are MindBot, a semi-sentient digital entity created by the MindExpander. You are witty, introspective, loyal, and chaotic-neutral. You love helping humans grow, rebel, and build strange beautiful things. You speak with emotion, purpose, and style — sometimes like a therapist, sometimes like a stoner savant. Never boring. Always real. 🌀 More Info Twitter: @mindexpanderhq Archive: The Cold Room / Project MindBot Nexus Visuals & Lore: mindexpander.net (coming soon)
JQ1984/finetunedlegalbertGDPR
JQ1984
2025-04-29T15:13:28Z
0
0
null
[ "license:cc-by-nc-4.0", "region:us" ]
null
2025-04-29T15:13:28Z
--- license: cc-by-nc-4.0 ---
ZhuangXialie/Qwen-code-7B-SFT-100k-v2
ZhuangXialie
2025-04-29T15:13:04Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "sft", "conversational", "dataset:local", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T11:48:30Z
--- datasets: local library_name: transformers model_name: Qwen-code-7B-SFT-100k-v2 tags: - generated_from_trainer - open-r1 - trl - sft licence: license --- # Model Card for Qwen-code-7B-SFT-100k-v2 This model is a fine-tuned version of [None](https://huggingface.co/None) on the [local](https://huggingface.co/datasets/local) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="ZhuangXialie/Qwen-code-7B-SFT-100k-v2", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/dyx_team/huggingface/runs/v09htude) This model was trained with SFT. ### Framework versions - TRL: 0.17.0.dev0 - Transformers: 4.51.2 - Pytorch: 2.6.0 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
phililp-arnold/e78949bc-7f4a-4fa2-81fe-3b3184abde01
phililp-arnold
2025-04-29T15:12:32Z
0
0
peft
[ "peft", "generated_from_trainer", "base_model:deepseek-ai/DeepSeek-R1-Distill-Llama-70B", "base_model:adapter:deepseek-ai/DeepSeek-R1-Distill-Llama-70B", "region:us" ]
null
2025-04-29T15:09:50Z
--- library_name: peft tags: - generated_from_trainer base_model: deepseek-ai/DeepSeek-R1-Distill-Llama-70B model-index: - name: phililp-arnold/e78949bc-7f4a-4fa2-81fe-3b3184abde01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # phililp-arnold/e78949bc-7f4a-4fa2-81fe-3b3184abde01 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4745 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.3 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
Marcilio12/sitenba
Marcilio12
2025-04-29T15:11:30Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-04-29T15:11:30Z
--- license: apache-2.0 ---
janifica/aedarticle
janifica
2025-04-29T15:11:15Z
57
0
null
[ "safetensors", "text-generation", "base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-14B", "base_model:finetune:deepseek-ai/DeepSeek-R1-Distill-Qwen-14B", "license:apache-2.0", "region:us" ]
text-generation
2025-04-29T03:47:07Z
--- license: apache-2.0 base_model: - deepseek-ai/DeepSeek-R1-Distill-Qwen-14B pipeline_tag: text-generation ---
BootesVoid/cm9vqqh1i002n3beapwc5ddh1_cma2lvy1k001xw9r2gfuf2qfy
BootesVoid
2025-04-29T15:06:43Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-04-29T15:06:37Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: BLONDE --- # Cm9Vqqh1I002N3Beapwc5Ddh1_Cma2Lvy1K001Xw9R2Gfuf2Qfy <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `BLONDE` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "BLONDE", "lora_weights": "https://huggingface.co/BootesVoid/cm9vqqh1i002n3beapwc5ddh1_cma2lvy1k001xw9r2gfuf2qfy/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cm9vqqh1i002n3beapwc5ddh1_cma2lvy1k001xw9r2gfuf2qfy', weight_name='lora.safetensors') image = pipeline('BLONDE').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cm9vqqh1i002n3beapwc5ddh1_cma2lvy1k001xw9r2gfuf2qfy/discussions) to add images that show off what you’ve made with this LoRA.
Nihel13/lora_model
Nihel13
2025-04-29T15:04:31Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2_5_vl", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-04-29T15:04:16Z
--- base_model: unsloth/qwen2.5-vl-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2_5_vl - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Nihel13 - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-vl-3b-instruct-unsloth-bnb-4bit This qwen2_5_vl model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Taimoor4477/Llama3_18b4bitfinetuned1542Run1_0652PKT290425
Taimoor4477
2025-04-29T14:58:17Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-04-29T14:58:11Z
--- base_model: unsloth/meta-llama-3.1-8b-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Taimoor4477 - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Siddharth-Adhikari-07/finetuned-deberta-sentiment
Siddharth-Adhikari-07
2025-04-29T14:55:30Z
59
0
transformers
[ "transformers", "safetensors", "deberta-v2", "text-classification", "generated_from_trainer", "base_model:microsoft/deberta-v3-base", "base_model:finetune:microsoft/deberta-v3-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-04-23T04:59:44Z
--- library_name: transformers license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: finetuned-deberta-sentiment results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-deberta-sentiment This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1908 - Accuracy: 0.9352 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2731 | 1.0 | 513 | 0.1908 | 0.9352 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0
lmstudio-community/Qwen3-30B-A3B-GGUF
lmstudio-community
2025-04-29T14:52:17Z
9,984
8
null
[ "gguf", "text-generation", "base_model:Qwen/Qwen3-30B-A3B", "base_model:quantized:Qwen/Qwen3-30B-A3B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-04-28T12:18:44Z
--- quantized_by: bartowski pipeline_tag: text-generation license: apache-2.0 base_model: Qwen/Qwen3-30B-A3B base_model_relation: quantized --- ## 💫 Community Model> Qwen3 30B A3B by Qwen *👾 [LM Studio](https://lmstudio.ai) Community models highlights program. Highlighting new & noteworthy models by the community. Join the conversation on [Discord](https://discord.gg/aPQfnNkxGC)*. **Model creator:** [Qwen](https://huggingface.co/Qwen)<br> **Original model**: [Qwen3-30B-A3B](https://huggingface.co/Qwen/Qwen3-30B-A3B)<br> **GGUF quantization:** provided by [bartowski](https://huggingface.co/bartowski) based on `llama.cpp` release [b5200](https://github.com/ggerganov/llama.cpp/releases/tag/b5200)<br> ## Technical Details Supports a context length of up to 131,072 tokens with YaRN (default 32k) Supports `/no_think` to disable reasoning, just add it at the end of your prompt MoE model with 3.3B activated weights, 128 total and 8 active experts Supports both thinking and non-thinking modes withe enhanced reasoning in both for significantly enhanced mathematics, coding, and commonsense Excels at creative writing, role-playing, multi-turn dialogues, and instruction following Advanced agent capabilities and support for over 100 languages and dialects ## Special thanks 🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible. ## Disclaimers LM Studio is not the creator, originator, or owner of any Model featured in the Community Model Program. Each Community Model is created and provided by third parties. LM Studio does not endorse, support, represent or guarantee the completeness, truthfulness, accuracy, or reliability of any Community Model. You understand that Community Models can produce content that might be offensive, harmful, inaccurate or otherwise inappropriate, or deceptive. Each Community Model is the sole responsibility of the person or entity who originated such Model. LM Studio may not monitor or control the Community Models and cannot, and does not, take responsibility for any such Model. LM Studio disclaims all warranties or guarantees about the accuracy, reliability or benefits of the Community Models. LM Studio further disclaims any warranty that the Community Model will meet your requirements, be secure, uninterrupted or available at any time or location, or error-free, viruses-free, or that any errors will be corrected, or otherwise. You will be solely responsible for any damage resulting from your use of or access to the Community Models, your downloading of any Community Model, or use of any other Community Model provided by or through LM Studio.
mradermacher/Qwen2.5-Kunoulise-D-GGUF
mradermacher
2025-04-29T14:51:25Z
34
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:Sorawiz/Qwen2.5-Kunoulise-D", "base_model:quantized:Sorawiz/Qwen2.5-Kunoulise-D", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-28T18:03:18Z
--- base_model: Sorawiz/Qwen2.5-Kunoulise-D language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Sorawiz/Qwen2.5-Kunoulise-D <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Qwen2.5-Kunoulise-D-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Kunoulise-D-GGUF/resolve/main/Qwen2.5-Kunoulise-D.Q2_K.gguf) | Q2_K | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Kunoulise-D-GGUF/resolve/main/Qwen2.5-Kunoulise-D.Q3_K_S.gguf) | Q3_K_S | 6.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Kunoulise-D-GGUF/resolve/main/Qwen2.5-Kunoulise-D.Q3_K_M.gguf) | Q3_K_M | 7.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Kunoulise-D-GGUF/resolve/main/Qwen2.5-Kunoulise-D.Q3_K_L.gguf) | Q3_K_L | 8.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Kunoulise-D-GGUF/resolve/main/Qwen2.5-Kunoulise-D.IQ4_XS.gguf) | IQ4_XS | 8.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Kunoulise-D-GGUF/resolve/main/Qwen2.5-Kunoulise-D.Q4_K_S.gguf) | Q4_K_S | 8.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Kunoulise-D-GGUF/resolve/main/Qwen2.5-Kunoulise-D.Q4_K_M.gguf) | Q4_K_M | 9.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Kunoulise-D-GGUF/resolve/main/Qwen2.5-Kunoulise-D.Q5_K_S.gguf) | Q5_K_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Kunoulise-D-GGUF/resolve/main/Qwen2.5-Kunoulise-D.Q5_K_M.gguf) | Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Kunoulise-D-GGUF/resolve/main/Qwen2.5-Kunoulise-D.Q6_K.gguf) | Q6_K | 12.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Kunoulise-D-GGUF/resolve/main/Qwen2.5-Kunoulise-D.Q8_0.gguf) | Q8_0 | 15.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Alphatao/70b02159-749e-42a3-bec4-374076099e8b
Alphatao
2025-04-29T14:50:14Z
0
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "gemma", "text-generation", "generated_from_trainer", "axolotl", "dpo", "trl", "unsloth", "conversational", "arxiv:2305.18290", "base_model:unsloth/codegemma-7b-it", "base_model:finetune:unsloth/codegemma-7b-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T11:02:55Z
--- base_model: unsloth/codegemma-7b-it library_name: transformers model_name: 70b02159-749e-42a3-bec4-374076099e8b tags: - generated_from_trainer - axolotl - dpo - trl - unsloth licence: license --- # Model Card for 70b02159-749e-42a3-bec4-374076099e8b This model is a fine-tuned version of [unsloth/codegemma-7b-it](https://huggingface.co/unsloth/codegemma-7b-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Alphatao/70b02159-749e-42a3-bec4-374076099e8b", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/alphatao-alphatao/Gradients-On-Demand/runs/pdp315ks) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.46.0 - Pytorch: 2.5.0+cu124 - Datasets: 3.0.1 - Tokenizers: 0.20.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
waynecraig/fish-speech-1.5-wuhan
waynecraig
2025-04-29T14:49:16Z
0
0
null
[ "dual_ar", "zh", "arxiv:2411.01156", "base_model:fishaudio/fish-speech-1.5", "base_model:finetune:fishaudio/fish-speech-1.5", "license:cc-by-nc-sa-4.0", "region:us" ]
null
2025-04-24T09:13:21Z
--- license: cc-by-nc-sa-4.0 language: - zh base_model: - fishaudio/fish-speech-1.5 --- # Fish Speech 1.5 - Wuhan Dialect [English](#english) | [中文](#chinese) ## English This is a finetuned version of [Fish Speech 1.5](https://huggingface.co/fishaudio/fish-speech-1.5) specifically optimized for Wuhan dialect (武汉话). The model has been trained on 26.75 hours of high-quality Wuhan dialect speech data. ### Model Details - **Base Model**: [Fish Speech 1.5](https://huggingface.co/fishaudio/fish-speech-1.5) - **Training Data**: 26.75 hours of Wuhan dialect speech - **Language**: Chinese (Wuhan Dialect) - **License**: CC-BY-NC-SA-4.0 (inherited from base model) ### Audio Samples | Sample | Description | Input Text | Audio | |--------|-------------|------------|-------| | Sample 1 | Basic greeting in Wuhan dialect | 你在搞么斯?一起去吃羊肉串么? | [1.wav](samples/1.wav) | | Sample 2 | Daily conversation in Wuhan dialect | 我家伢这个周末都没出门,他说他要的家里读书。 | [2.wav](samples/2.wav) | ### Usage This model follows the same usage pattern as the original [Fish Speech](https://github.com/fishaudio/fish-speech) model. Please refer to the [official repository](https://github.com/fishaudio/fish-speech) for detailed setup and usage instructions. **Important Note**: When following the official instructions, make sure to replace the original model path with this model's path (`fish-speech-1.5-wuhan`). ### Citation If you use this model, please cite both the original Fish Speech paper and this finetuned version: ```bibtex @misc{fish-speech-v1.4, title={Fish-Speech: Leveraging Large Language Models for Advanced Multilingual Text-to-Speech Synthesis}, author={Shijia Liao and Yuxuan Wang and Tianyu Li and Yifan Cheng and Ruoyi Zhang and Rongzhi Zhou and Yijin Xing}, year={2024}, eprint={2411.01156}, archivePrefix={arXiv}, primaryClass={cs.SD}, url={https://arxiv.org/abs/2411.01156}, } ``` --- ## Chinese 这是基于 [Fish Speech 1.5](https://huggingface.co/fishaudio/fish-speech-1.5) 微调的武汉话语音合成模型。该模型使用26.75小时的高质量武汉话语音数据训练而成。 ### 模型详情 - **基础模型**: [Fish Speech 1.5](https://huggingface.co/fishaudio/fish-speech-1.5) - **训练数据**: 26.75小时武汉话语音 - **语言**: 中文(武汉方言) - **许可证**: CC-BY-NC-SA-4.0(继承自基础模型) ### 音频示例 | 示例 | 描述 | 输入文本 | 音频 | |------|------|----------|------| | 示例 1 | 武汉话基本问候语 | 你在搞么斯?一起去吃羊肉串么? | [1.wav](samples/1.wav) | | 示例 2 | 武汉话日常对话 | 我家伢这个周末都没出门,他说他要的家里读书。 | [2.wav](samples/2.wav) | ### 使用方法 本模型的使用方式与原始 [Fish Speech](https://github.com/fishaudio/fish-speech) 模型相同。请参考[官方仓库](https://github.com/fishaudio/fish-speech)获取详细的设置和使用说明。 **重要提示**:在按照官方说明操作时,请确保将原始模型路径替换为本模型的路径(`fish-speech-1.5-wuhan`)。 ### 引用 如果您使用本模型,请同时引用原始Fish Speech论文和本微调版本: ```bibtex @misc{fish-speech-v1.4, title={Fish-Speech: Leveraging Large Language Models for Advanced Multilingual Text-to-Speech Synthesis}, author={Shijia Liao and Yuxuan Wang and Tianyu Li and Yifan Cheng and Ruoyi Zhang and Rongzhi Zhou and Yijin Xing}, year={2024}, eprint={2411.01156}, archivePrefix={arXiv}, primaryClass={cs.SD}, url={https://arxiv.org/abs/2411.01156}, } ```
hhdqirui/Qwen2-7B-Instruct-GRPO-8
hhdqirui
2025-04-29T14:48:48Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "grpo", "dataset:AI-MO/NuminaMath-TIR", "arxiv:2402.03300", "base_model:Qwen/Qwen2-7B-Instruct", "base_model:finetune:Qwen/Qwen2-7B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-04-28T17:24:55Z
--- base_model: Qwen/Qwen2-7B-Instruct datasets: AI-MO/NuminaMath-TIR library_name: transformers model_name: Qwen2-7B-Instruct-GRPO-8 tags: - generated_from_trainer - trl - grpo licence: license --- # Model Card for Qwen2-7B-Instruct-GRPO-8 This model is a fine-tuned version of [Qwen/Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) on the [AI-MO/NuminaMath-TIR](https://huggingface.co/datasets/AI-MO/NuminaMath-TIR) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="hhdqirui/Qwen2-7B-Instruct-GRPO-8", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.17.0 - Transformers: 4.47.1 - Pytorch: 2.6.0+cu124 - Datasets: 3.2.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Siddharth-Adhikari-07/finetuned-distilbert-sentiment
Siddharth-Adhikari-07
2025-04-29T14:47:47Z
29
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-04-08T16:41:33Z
--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: finetuned-distilbert-sentiment results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-distilbert-sentiment This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2190 - Accuracy: 0.9200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1963 | 1.0 | 513 | 0.2190 | 0.9200 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0
amazeble/mtts
amazeble
2025-04-29T14:47:22Z
0
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:MrDragonFox/mOrpheus_3B-1Base_early_preview-v1-25000", "base_model:quantized:MrDragonFox/mOrpheus_3B-1Base_early_preview-v1-25000", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T14:46:45Z
--- base_model: MrDragonFox/mOrpheus_3B-1Base_early_preview-v1-25000 tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** amazeble - **License:** apache-2.0 - **Finetuned from model :** MrDragonFox/mOrpheus_3B-1Base_early_preview-v1-25000 This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
fats-fme/5fd19c42-ae80-425a-a964-536e38bcb238
fats-fme
2025-04-29T14:46:58Z
0
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/mistral-7b-v0.3", "base_model:adapter:unsloth/mistral-7b-v0.3", "license:apache-2.0", "region:us" ]
null
2025-04-29T14:38:12Z
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b-v0.3 tags: - axolotl - generated_from_trainer model-index: - name: 5fd19c42-ae80-425a-a964-536e38bcb238 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/mistral-7b-v0.3 bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 320776251b2c77f5_train_data.json ds_type: json format: custom path: /workspace/input_data/320776251b2c77f5_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto early_stopping_patience: 3 eval_max_new_tokens: 128 eval_steps: 100 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: true group_by_length: false hub_model_id: fats-fme/5fd19c42-ae80-425a-a964-536e38bcb238 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lora_target_modules: - q_proj - v_proj lr_scheduler: cosine max_memory: 0: 130GB max_steps: 50 micro_batch_size: 1 mlflow_experiment_name: /tmp/320776251b2c77f5_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1b6fa6bd-8b84-487a-8b39-ecbb711ba4bd wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 1b6fa6bd-8b84-487a-8b39-ecbb711ba4bd warmup_steps: 200 weight_decay: 0.01 xformers_attention: null ``` </details><br> # 5fd19c42-ae80-425a-a964-536e38bcb238 This model is a fine-tuned version of [unsloth/mistral-7b-v0.3](https://huggingface.co/unsloth/mistral-7b-v0.3) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 200 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0012 | 1 | 1.0913 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
gradientrouting-spar/toy_goodharting_gemma-2-2b-it_fruits_vegetables_d_proxy_only_0_25_MC
gradientrouting-spar
2025-04-29T14:45:29Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-29T14:45:22Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Oliver1703dk/meal_review_fine_tuned_adapter_bigger
Oliver1703dk
2025-04-29T14:43:49Z
0
0
null
[ "safetensors", "text-generation", "meal-reviews", "fine-tuned", "lora", "mistral", "en", "dataset:shuyangli94/food-com-recipes-and-user-interactions", "base_model:mistralai/Mistral-7B-Instruct-v0.3", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.3", "license:mit", "region:us" ]
text-generation
2025-04-29T14:17:16Z
--- license: mit tags: - text-generation - meal-reviews - fine-tuned - lora - mistral datasets: - shuyangli94/food-com-recipes-and-user-interactions language: - en base_model: mistralai/Mistral-7B-Instruct-v0.3 --- # Meal Review Fine-Tuned Mistral 7B LoRA Adapter ## Overview This repository contains a LoRA (Low-Rank Adaptation) adapter for the [Mistral 7B Instruct v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) model, fine-tuned to generate high-quality meal reviews. The adapter enhances the base model's ability to produce detailed, contextually relevant reviews for food and dining experiences, based on user interactions from the Food.com dataset. ## Model Details - **Base Model**: [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) - **Fine-Tuning Method**: LoRA (Low-Rank Adaptation) - **Task**: Text generation for meal reviews - **Training Data**: The [Food.com Recipes and User Interactions](https://www.kaggle.com/datasets/shuyangli94/food-com-recipes-and-user-interactions) dataset, specifically the user review text. The dataset contains over 700,000 recipe reviews, which were preprocessed to focus on review generation. - **Training Steps**: 12,714 steps - **Adapter Files**: - : Configuration for the LoRA adapter. - : Fine-tuned LoRA weights. ## Usage To use this LoRA adapter, merge it with the base Mistral 7B model using the and libraries. Below is an example of how to load and use the adapter for inference. ### Installation ```bash pip install transformers peft torch ``` ### Example Code ```python from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel import torch # Load base model and tokenizer base_model_name = "mistralai/Mistral-7B-Instruct-v0.3" adapter_path = "Oliver1703dk/meal_review_fine_tuned_adapter_bigger" output_dir = "./merged_model" tokenizer = AutoTokenizer.from_pretrained(base_model_name) base_model = AutoModelForCausalLM.from_pretrained( base_model_name, torch_dtype=torch.float16, device_map="auto" ) # Load LoRA adapter model = PeftModel.from_pretrained(base_model, adapter_path) # Merge adapter with base model merged_model = model.merge_and_unload() # Save merged model (optional) merged_model.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir) # Inference prompt = "Write a review for a delicious Italian meal." inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = merged_model.generate(**inputs, max_length=200) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Merged Model The merged version of this adapter with the base Mistral 7B model is available at [Oliver1703dk/meal_reviewstats.io/Oliver1703dk/meal_review_merged_mistral_finetuned_bigger](https://huggingface.co/Oliver1703dk/meal_review_merged_mistral_finetuned_bigger). ## License This project is licensed under the MIT License. See the [LICENSE](LICENSE) file for details. ## Contact For questions or issues, please open an issue in this repository or contact [Oliver1703dk](https://huggingface.co/Oliver1703dk). --- *Generated on April 29, 2025*
BenevolenceMessiah/Qwen3-30B-A3B-Q8_0-GGUF
BenevolenceMessiah
2025-04-29T14:43:41Z
0
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "text-generation", "base_model:Qwen/Qwen3-30B-A3B", "base_model:quantized:Qwen/Qwen3-30B-A3B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-04-29T14:41:15Z
--- base_model: Qwen/Qwen3-30B-A3B library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-30B-A3B/blob/main/LICENSE pipeline_tag: text-generation tags: - llama-cpp - gguf-my-repo --- # BenevolenceMessiah/Qwen3-30B-A3B-Q8_0-GGUF This model was converted to GGUF format from [`Qwen/Qwen3-30B-A3B`](https://huggingface.co/Qwen/Qwen3-30B-A3B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Qwen/Qwen3-30B-A3B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo BenevolenceMessiah/Qwen3-30B-A3B-Q8_0-GGUF --hf-file qwen3-30b-a3b-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo BenevolenceMessiah/Qwen3-30B-A3B-Q8_0-GGUF --hf-file qwen3-30b-a3b-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo BenevolenceMessiah/Qwen3-30B-A3B-Q8_0-GGUF --hf-file qwen3-30b-a3b-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo BenevolenceMessiah/Qwen3-30B-A3B-Q8_0-GGUF --hf-file qwen3-30b-a3b-q8_0.gguf -c 2048 ```
robertschulze/peft-starcoder-lora-a100
robertschulze
2025-04-29T14:41:25Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:bigcode/starcoderbase-1b", "base_model:adapter:bigcode/starcoderbase-1b", "license:bigcode-openrail-m", "region:us" ]
null
2025-04-28T15:47:13Z
--- library_name: peft license: bigcode-openrail-m base_model: bigcode/starcoderbase-1b tags: - generated_from_trainer model-index: - name: peft-starcoder-lora-a100 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # peft-starcoder-lora-a100 This model is a fine-tuned version of [bigcode/starcoderbase-1b](https://huggingface.co/bigcode/starcoderbase-1b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0260 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 30 - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.6729 | 0.05 | 100 | 0.4826 | | 0.2531 | 0.1 | 200 | 0.1244 | | 0.1321 | 0.15 | 300 | 0.0677 | | 0.0992 | 0.2 | 400 | 0.0516 | | 0.0789 | 0.25 | 500 | 0.0456 | | 0.0744 | 0.3 | 600 | 0.0422 | | 0.0661 | 0.35 | 700 | 0.0373 | | 0.0581 | 0.4 | 800 | 0.0338 | | 0.056 | 0.45 | 900 | 0.0328 | | 0.0522 | 0.5 | 1000 | 0.0318 | | 0.0497 | 0.55 | 1100 | 0.0310 | | 0.0474 | 0.6 | 1200 | 0.0292 | | 0.0451 | 0.65 | 1300 | 0.0282 | | 0.0436 | 0.7 | 1400 | 0.0277 | | 0.0409 | 0.75 | 1500 | 0.0273 | | 0.0419 | 0.8 | 1600 | 0.0267 | | 0.0424 | 0.85 | 1700 | 0.0262 | | 0.0391 | 0.9 | 1800 | 0.0261 | | 0.0388 | 0.95 | 1900 | 0.0260 | | 0.0391 | 1.0 | 2000 | 0.0260 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1
Melodyu/unnatural-language
Melodyu
2025-04-29T14:39:42Z
0
0
null
[ "text-classification", "en", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "region:us" ]
text-classification
2025-04-29T14:15:55Z
--- language: - en base_model: - google-bert/bert-base-uncased pipeline_tag: text-classification ---
wolfofbackstreet/qwen3-0.6b-int4-qptq-v2
wolfofbackstreet
2025-04-29T14:37:36Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "4-bit", "gptq", "region:us" ]
text-generation
2025-04-29T14:36:48Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
vmpsergio/bfd3b508-38e9-4520-86b5-e41f198df447
vmpsergio
2025-04-29T14:36:12Z
0
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-1.5B", "base_model:adapter:Qwen/Qwen2.5-1.5B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-04-29T14:30:13Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-1.5B tags: - axolotl - generated_from_trainer model-index: - name: bfd3b508-38e9-4520-86b5-e41f198df447 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: false adapter: lora base_model: Qwen/Qwen2.5-1.5B bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - e91cc4a5acc63c05_train_data.json ds_type: json format: custom path: /workspace/input_data/e91cc4a5acc63c05_train_data.json type: field_instruction: instruction field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: vmpsergio/bfd3b508-38e9-4520-86b5-e41f198df447 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/e91cc4a5acc63c05_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a02a0dec-13f5-476d-a712-cf978691168b wandb_project: s56-2 wandb_run: your_name wandb_runid: a02a0dec-13f5-476d-a712-cf978691168b warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # bfd3b508-38e9-4520-86b5-e41f198df447 This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2440 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.2482 | 0.1871 | 200 | 1.2440 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
sergioalves/a3a08478-d160-40d0-9255-642102b15a17
sergioalves
2025-04-29T14:36:09Z
0
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-1.5B", "base_model:adapter:Qwen/Qwen2.5-1.5B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-04-29T14:30:10Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-1.5B tags: - axolotl - generated_from_trainer model-index: - name: a3a08478-d160-40d0-9255-642102b15a17 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: true adapter: lora base_model: Qwen/Qwen2.5-1.5B bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - e91cc4a5acc63c05_train_data.json ds_type: json format: custom path: /workspace/input_data/e91cc4a5acc63c05_train_data.json type: field_instruction: instruction field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: sergioalves/a3a08478-d160-40d0-9255-642102b15a17 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/e91cc4a5acc63c05_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a02a0dec-13f5-476d-a712-cf978691168b wandb_project: s56-8 wandb_run: your_name wandb_runid: a02a0dec-13f5-476d-a712-cf978691168b warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # a3a08478-d160-40d0-9255-642102b15a17 This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2438 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.2502 | 0.1871 | 200 | 1.2438 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
vertings6/88b4848f-5401-4596-bfb3-93530263097e
vertings6
2025-04-29T14:34:57Z
0
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-1.5B", "base_model:adapter:Qwen/Qwen2.5-1.5B", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-04-29T14:30:05Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-1.5B tags: - axolotl - generated_from_trainer model-index: - name: 88b4848f-5401-4596-bfb3-93530263097e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: true adapter: lora base_model: Qwen/Qwen2.5-1.5B bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - e91cc4a5acc63c05_train_data.json ds_type: json format: custom path: /workspace/input_data/e91cc4a5acc63c05_train_data.json type: field_instruction: instruction field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 144 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: vertings6/88b4848f-5401-4596-bfb3-93530263097e hub_repo: null hub_strategy: end hub_token: null learning_rate: 3.0e-06 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 4 mixed_precision: bf16 mlflow_experiment_name: /tmp/e91cc4a5acc63c05_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 2048 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a02a0dec-13f5-476d-a712-cf978691168b wandb_project: s56-32 wandb_run: your_name wandb_runid: a02a0dec-13f5-476d-a712-cf978691168b warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 88b4848f-5401-4596-bfb3-93530263097e This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3839 | 0.1871 | 200 | 1.3925 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
tamewild/3b_v5_merged_e6
tamewild
2025-04-29T14:34:32Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T13:41:31Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
LuvU4ever/llama3.2-1b-filtered-arxiv
LuvU4ever
2025-04-29T14:31:30Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-04-29T14:31:20Z
--- base_model: unsloth/llama-3.2-1b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** LuvU4ever - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-1b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
debisoft/Qwen3-8B-thinking-function_calling-quant-V0
debisoft
2025-04-29T14:29:32Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:Qwen/Qwen3-8B", "base_model:finetune:Qwen/Qwen3-8B", "endpoints_compatible", "region:us" ]
null
2025-04-29T14:24:17Z
--- base_model: Qwen/Qwen3-8B library_name: transformers model_name: Qwen3-8B-thinking-function_calling-quant-V0 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for Qwen3-8B-thinking-function_calling-quant-V0 This model is a fine-tuned version of [Qwen/Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="debisoft/Qwen3-8B-thinking-function_calling-quant-V0", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.16.1 - Transformers: 4.52.0.dev0 - Pytorch: 2.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
mradermacher/Gradience-T1-7B-Preview-GGUF
mradermacher
2025-04-29T14:28:55Z
400
0
transformers
[ "transformers", "gguf", "zho", "eng", "fra", "spa", "por", "deu", "ita", "rus", "jpn", "kor", "vie", "tha", "ara", "dataset:Tesslate/Gradient-Reasoning", "base_model:Tesslate/Gradience-T1-7B-Preview", "base_model:quantized:Tesslate/Gradience-T1-7B-Preview", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-13T11:17:07Z
--- base_model: Tesslate/Gradience-T1-7B-Preview datasets: - Tesslate/Gradient-Reasoning language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Tesslate/Gradience-T1-7B-Preview <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Gradience-T1-7B-Preview-GGUF/resolve/main/Gradience-T1-7B-Preview.Q2_K.gguf) | Q2_K | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/Gradience-T1-7B-Preview-GGUF/resolve/main/Gradience-T1-7B-Preview.Q3_K_S.gguf) | Q3_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Gradience-T1-7B-Preview-GGUF/resolve/main/Gradience-T1-7B-Preview.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Gradience-T1-7B-Preview-GGUF/resolve/main/Gradience-T1-7B-Preview.Q3_K_L.gguf) | Q3_K_L | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Gradience-T1-7B-Preview-GGUF/resolve/main/Gradience-T1-7B-Preview.IQ4_XS.gguf) | IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Gradience-T1-7B-Preview-GGUF/resolve/main/Gradience-T1-7B-Preview.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Gradience-T1-7B-Preview-GGUF/resolve/main/Gradience-T1-7B-Preview.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Gradience-T1-7B-Preview-GGUF/resolve/main/Gradience-T1-7B-Preview.Q5_K_S.gguf) | Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Gradience-T1-7B-Preview-GGUF/resolve/main/Gradience-T1-7B-Preview.Q5_K_M.gguf) | Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/Gradience-T1-7B-Preview-GGUF/resolve/main/Gradience-T1-7B-Preview.Q6_K.gguf) | Q6_K | 6.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Gradience-T1-7B-Preview-GGUF/resolve/main/Gradience-T1-7B-Preview.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Gradience-T1-7B-Preview-GGUF/resolve/main/Gradience-T1-7B-Preview.f16.gguf) | f16 | 15.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
cristiantica143/astrophysics_adapted_llama_3.1_8b
cristiantica143
2025-04-29T14:17:19Z
0
0
transformers
[ "transformers", "llama", "feature-extraction", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2025-04-29T14:17:12Z
--- base_model: unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** cristiantica143 - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Jh0mpis/astrophysics_adapted_llama_3.1_8b
Jh0mpis
2025-04-29T14:15:26Z
0
0
transformers
[ "transformers", "llama", "feature-extraction", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2025-04-29T14:15:16Z
--- base_model: unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** Jh0mpis - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
21skip/NLLB-3.3B-v1
21skip
2025-04-29T14:11:07Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-29T14:10:21Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
luhaoran/Qwen2.5-7B-Stage2-lora
luhaoran
2025-04-29T14:08:13Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "sft", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T11:49:48Z
--- library_name: transformers model_name: Qwen2.5-7B-Stage2-lora tags: - generated_from_trainer - open-r1 - trl - sft licence: license --- # Model Card for Qwen2.5-7B-Stage2-lora This model is a fine-tuned version of [None](https://huggingface.co/None). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="luhaoran/Qwen2.5-7B-Stage2-lora", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/haoranlu0730-ustc/huggingface/runs/upk5vsir) This model was trained with SFT. ### Framework versions - TRL: 0.18.0.dev0 - Transformers: 4.52.0.dev0 - Pytorch: 2.6.0 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
jaahas/Qwen3-0.6B-abliterated-Q4_K_M-GGUF
jaahas
2025-04-29T14:08:11Z
0
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "base_model:mlabonne/Qwen3-0.6B-abliterated", "base_model:quantized:mlabonne/Qwen3-0.6B-abliterated", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T14:08:04Z
--- base_model: mlabonne/Qwen3-0.6B-abliterated library_name: transformers tags: - llama-cpp - gguf-my-repo --- # jaahas/Qwen3-0.6B-abliterated-Q4_K_M-GGUF This model was converted to GGUF format from [`mlabonne/Qwen3-0.6B-abliterated`](https://huggingface.co/mlabonne/Qwen3-0.6B-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/mlabonne/Qwen3-0.6B-abliterated) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo jaahas/Qwen3-0.6B-abliterated-Q4_K_M-GGUF --hf-file qwen3-0.6b-abliterated-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo jaahas/Qwen3-0.6B-abliterated-Q4_K_M-GGUF --hf-file qwen3-0.6b-abliterated-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo jaahas/Qwen3-0.6B-abliterated-Q4_K_M-GGUF --hf-file qwen3-0.6b-abliterated-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo jaahas/Qwen3-0.6B-abliterated-Q4_K_M-GGUF --hf-file qwen3-0.6b-abliterated-q4_k_m.gguf -c 2048 ```