modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-27 18:27:39
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
500 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-27 18:23:41
card
stringlengths
11
1.01M
nlptown/flaubert_small_cased_sentiment
nlptown
2022-05-17T07:43:58Z
250
2
transformers
[ "transformers", "pytorch", "tf", "flaubert", "text-classification", "fr", "dataset:amazon_reviews_multi", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-17T06:26:02Z
--- language: - fr datasets: - amazon_reviews_multi license: mit --- # flaubert_small_cased_sentiment This is a `flaubert_small_cased` model finetuned for sentiment analysis on product reviews in French. It predicts the sentiment of the review, from `very_negative` (1 star) to `very_positive` (5 stars). This model is intended for direct use as a sentiment analysis model for French product reviews, or for further finetuning on related sentiment analysis tasks. ## Training data The training data consists of the French portion of `amazon_reviews_multi`, supplemented with another 140,000 similar reviews. ## Accuracy The finetuned model was evaluated on the French test set of `amazon_reviews_multi`. - Accuracy (exact) is the exact match on the number of stars. - Accuracy (off-by-1) is the percentage of reviews where the number of stars the model predicts differs by a maximum of 1 from the number given by the human reviewer. | Language | Accuracy (exact) | Accuracy (off-by-1) | | -------- | ---------------------- | ------------------- | | French | 61.56% | 95.66% ## Contact [NLP Town](https://www.nlp.town) offers a suite of sentiment models for a wide range of languages, including an improved multilingual model through [RapidAPI](https://rapidapi.com/nlp-town-nlp-town-default/api/multilingual-sentiment-analysis2/). Feel free to contact us for questions, feedback and/or requests for similar models.
jeremyccollinsmpi/autotrain-inference_probability_2-840226804
jeremyccollinsmpi
2022-05-17T07:41:46Z
4
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain", "en", "dataset:jeremyccollinsmpi/autotrain-data-inference_probability_2", "co2_eq_emissions", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-09T06:54:39Z
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - jeremyccollinsmpi/autotrain-data-inference_probability_2 co2_eq_emissions: 0.02920886926438328 --- # Description The input structure is: summarize: [text]. hypothesis: [hypothesis] , and the output is 0 (hypothesis is not supported) or 1 (hypothesis is supported). This tests whether a hypothesis is true given the preceding text. Currently the model is trained on banking chatbot intent data, such as: summarize: How old do my kids need to be to use your service?. hypothesis: asking about an age limit Output: 1 # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 840226804 - CO2 Emissions (in grams): 0.02920886926438328 ## Validation Metrics - Loss: 0.09617297351360321 - Rouge1: 91.2874 - Rouge2: 0.0 - RougeL: 91.2874 - RougeLsum: 91.4174 - Gen Len: 2.4915 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/jeremyccollinsmpi/autotrain-inference_probability_2-840226804 ```
syp1229/xlm-roberta-base-finetuned-koidiom-epoch5
syp1229
2022-05-17T07:18:03Z
3
0
transformers
[ "transformers", "tf", "xlm-roberta", "fill-mask", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-17T07:05:07Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: syp1229/xlm-roberta-base-finetuned-koidiom-epoch5 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # syp1229/xlm-roberta-base-finetuned-koidiom-epoch5 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.0826 - Validation Loss: 1.9873 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.7703 | 2.0462 | 0 | | 2.2504 | 2.0178 | 1 | | 2.1653 | 1.9992 | 2 | | 2.1310 | 1.9829 | 3 | | 2.0826 | 1.9873 | 4 | ### Framework versions - Transformers 4.19.2 - TensorFlow 2.8.0 - Datasets 2.2.1 - Tokenizers 0.12.1
huggingtweets/cryptanime
huggingtweets
2022-05-17T06:54:30Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-17T06:52:15Z
--- language: en thumbnail: http://www.huggingtweets.com/cryptanime/1652770465803/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1525172827644743680/8mskmqwq_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">CryptanimeNFT | Minting Now</div> <div style="text-align: center; font-size: 14px;">@cryptanime</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from CryptanimeNFT | Minting Now. | Data | CryptanimeNFT | Minting Now | | --- | --- | | Tweets downloaded | 491 | | Retweets | 96 | | Short tweets | 15 | | Tweets kept | 380 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2066dfxu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cryptanime's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2byq9c2t) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2byq9c2t/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cryptanime') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
0xrushi/Space-Invaders-PPO
0xrushi
2022-05-17T04:50:25Z
1
0
stable-baselines3
[ "stable-baselines3", "ALE/SpaceInvaders-v5", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-17T04:49:31Z
--- library_name: stable-baselines3 tags: - ALE/SpaceInvaders-v5 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 146.00 +/- 78.54 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: ALE/SpaceInvaders-v5 type: ALE/SpaceInvaders-v5 --- # **PPO** Agent playing **ALE/SpaceInvaders-v5** This is a trained model of a **PPO** agent playing **ALE/SpaceInvaders-v5** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
nthanhha26/testmodel1
nthanhha26
2022-05-17T04:15:07Z
0
0
null
[ "region:us" ]
null
2022-05-17T03:47:25Z
HI, Nothing here, just an example model to test https://docs.google.com/document/d/1Tp39nmCQRlZAOZYcOoXV8NCcQDf31GqarPYT3mCv9CM/edit?usp=sharing
gitierrez/rl-LunarLander-v2
gitierrez
2022-05-17T04:03:14Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-17T04:02:39Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 217.04 +/- 33.19 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
Hijazzi/rare-puppers
Hijazzi
2022-05-17T02:56:22Z
51
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-05-17T02:56:08Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rare-puppers results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9701492786407471 --- # rare-puppers Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### corgi ![corgi](images/corgi.jpg) #### samoyed ![samoyed](images/samoyed.jpg) #### shiba inu ![shiba inu](images/shiba_inu.jpg)
mostafapasha/ribs-segmentation-model
mostafapasha
2022-05-17T01:19:44Z
0
0
keras
[ "keras", "tf-keras", "xray-ribs-segmentation", "arxiv:1911.07067", "region:us" ]
null
2022-05-14T06:11:05Z
--- tags: - xray-ribs-segmentation library_name: keras --- ## Model description The original idea from [ResUNET++](https://arxiv.org/pdf/1911.07067.pdf) Full credits go to [SynthesisHealthIntelligenceInc](https://synthesishealthinc.com/) Ribs segmentation is a crucial step for removing the ribs before a diagnosis of x-ray images ## Dataset [vindr-ribs](https://vindr.ai/datasets/ribcxr)
ColabPro/PPO-LunarLander-v2-v8
ColabPro
2022-05-16T23:32:28Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-16T23:31:56Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 230.68 +/- 19.19 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
ColabPro/PPO-LunarLander-v2-v7
ColabPro
2022-05-16T23:32:16Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-16T23:31:26Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 70.32 +/- 76.60 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
ColabPro/PPO-LunarLander-v2-v5
ColabPro
2022-05-16T23:02:41Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-16T23:01:53Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 151.84 +/- 64.37 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
Gergoe/mt5-small-finetuned-amazon-en-es
Gergoe
2022-05-16T22:42:55Z
9
1
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-05-01T19:48:09Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2891 - Rouge1: 15.35 - Rouge2: 6.4925 - Rougel: 14.8921 - Rougelsum: 14.6312 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 7.0622 | 1.0 | 1276 | 3.5617 | 13.2417 | 4.8928 | 12.8258 | 12.8078 | | 4.0768 | 2.0 | 2552 | 3.4329 | 14.5681 | 6.4922 | 14.0621 | 13.9709 | | 3.7736 | 3.0 | 3828 | 3.3393 | 15.1942 | 6.5262 | 14.7138 | 14.6049 | | 3.5951 | 4.0 | 5104 | 3.3122 | 14.8813 | 6.2962 | 14.507 | 14.3477 | | 3.477 | 5.0 | 6380 | 3.2991 | 15.0992 | 6.3888 | 14.8397 | 14.5606 | | 3.4084 | 6.0 | 7656 | 3.3035 | 15.1897 | 6.2292 | 14.6686 | 14.4488 | | 3.3661 | 7.0 | 8932 | 3.2959 | 15.3489 | 6.5702 | 14.9211 | 14.701 | | 3.3457 | 8.0 | 10208 | 3.2891 | 15.35 | 6.4925 | 14.8921 | 14.6312 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.7.0 - Datasets 2.2.1 - Tokenizers 0.12.1
bartpotrykus/lunar-lander-v2
bartpotrykus
2022-05-16T22:40:08Z
3
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-14T12:53:35Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 289.21 +/- 17.98 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
0xrushi/LunarLander-v2
0xrushi
2022-05-16T22:07:39Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-16T22:07:08Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 220.36 +/- 65.13 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
evolvingstuff/bert-base-cased-wikitext2
evolvingstuff
2022-05-16T22:05:33Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-16T21:26:06Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-cased-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-wikitext2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.8574 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.0916 | 1.0 | 2346 | 7.0492 | | 6.9039 | 2.0 | 4692 | 6.8751 | | 6.8845 | 3.0 | 7038 | 6.8929 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
ColabPro/PPO-LunarLander-v2-v1
ColabPro
2022-05-16T22:03:54Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-16T22:02:56Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: -4.65 +/- 21.40 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
espnet/english_male_ryanspeech_conformer_fastspeech2
espnet
2022-05-16T22:01:12Z
4
1
espnet
[ "espnet", "audio", "text-to-speech", "en", "dataset:ryanspeech", "license:cc-by-nc-4.0", "region:us" ]
text-to-speech
2022-05-10T18:20:09Z
--- tags: - espnet - audio - text-to-speech language: en datasets: - ryanspeech license: cc-by-nc-4.0 widget: - text: "This seems a very pleasant place, and I think I shall enjoy myself very much." --- ## RyanSpeech model (based on ESPnet2) ### `espnet/english_male_ryanspeech_conformer_fastspeech2` This model was trained by [Rohola Zandie](https://scholar.google.com/citations?user=xv0jIe0AAAAJ&hl=en) using ryanspeech recipe in [espnet](https://github.com/espnet/espnet/). For the best results you need to download the vocoder separately from [here](https://drive.google.com/file/d/10GYvB_mIKzXzSjD67tSnBhknZRoBjsNb/view?usp=sharing) and then use the following code: ``` from espnet2.bin.tts_inference import Text2Speech from scipy.io.wavfile import write model = Text2Speech.from_pretrained( model_file="espnet/english_male_ryanspeech_conformer_fastspeech2", vocoder_file="path_to_vocoder/train_nodev_parallel_wavegan.v1.long/checkpoint-1000000steps.pkl" ) output = model("This is a simple test.") write("x.wav", 22050, output['wav'].numpy()) ``` ## Download the dataset You can download RyanSpeech dataset from [here](https://www.kaggle.com/datasets/roholazandie/ryanspeech) or here. ## TTS config <details><summary>expand</summary> ``` config: conf/tuning/train_conformer_fastspeech2.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/tts_train_conformer_fastspeech2_raw_phn_tacotron_g2p_en_no_space ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 1000 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - loss - min - - train - loss - min keep_nbest_models: 5 grad_clip: 1.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 10 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null pretrain_path: [] pretrain_key: [] num_iters_per_epoch: 500 batch_size: 20 valid_batch_size: null batch_bins: 2400000 valid_batch_bins: null train_shape_file: - exp/tts_train_raw_phn_tacotron_g2p_en_no_space/decode_use_teacher_forcingtrue_train.loss.ave/stats/train/text_shape.phn - exp/tts_train_raw_phn_tacotron_g2p_en_no_space/decode_use_teacher_forcingtrue_train.loss.ave/stats/train/speech_shape valid_shape_file: - exp/tts_train_raw_phn_tacotron_g2p_en_no_space/decode_use_teacher_forcingtrue_train.loss.ave/stats/valid/text_shape.phn - exp/tts_train_raw_phn_tacotron_g2p_en_no_space/decode_use_teacher_forcingtrue_train.loss.ave/stats/valid/speech_shape batch_type: numel valid_batch_type: null fold_length: - 150 - 204800 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/tr_no_dev/text - text - text - - exp/tts_train_raw_phn_tacotron_g2p_en_no_space/decode_use_teacher_forcingtrue_train.loss.ave/tr_no_dev/durations - durations - text_int - - dump/raw/tr_no_dev/wav.scp - speech - sound - - exp/tts_train_raw_phn_tacotron_g2p_en_no_space/decode_use_teacher_forcingtrue_train.loss.ave/stats/train/collect_feats/pitch.scp - pitch - npy - - exp/tts_train_raw_phn_tacotron_g2p_en_no_space/decode_use_teacher_forcingtrue_train.loss.ave/stats/train/collect_feats/energy.scp - energy - npy valid_data_path_and_name_and_type: - - dump/raw/dev/text - text - text - - exp/tts_train_raw_phn_tacotron_g2p_en_no_space/decode_use_teacher_forcingtrue_train.loss.ave/dev/durations - durations - text_int - - dump/raw/dev/wav.scp - speech - sound - - exp/tts_train_raw_phn_tacotron_g2p_en_no_space/decode_use_teacher_forcingtrue_train.loss.ave/stats/valid/collect_feats/pitch.scp - pitch - npy - - exp/tts_train_raw_phn_tacotron_g2p_en_no_space/decode_use_teacher_forcingtrue_train.loss.ave/stats/valid/collect_feats/energy.scp - energy - npy allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 1.0 scheduler: noamlr scheduler_conf: model_size: 384 warmup_steps: 4000 token_list: - <blank> - <unk> - AH0 - T - N - S - R - D - L - K - IH1 - M - EH1 - Z - DH - UW1 - AE1 - IH0 - AY1 - AH1 - W - . - P - F - IY1 - V - ER0 - AA1 - B - AO1 - HH - EY1 - IY0 - ',' - Y - NG - OW1 - G - AW1 - TH - SH - UH1 - '?' - ER1 - JH - CH - OW0 - OW2 - EH2 - IH2 - EY2 - AA2 - AE2 - AY2 - '''' - OY1 - UW0 - '!' - AO2 - EH0 - ZH - AH2 - AE0 - UW2 - AA0 - AY0 - IY2 - AW2 - AO0 - EY0 - ER2 - UH2 - '...' - AW0 - UH0 - OY2 - <sos/eos> odim: null model_conf: {} use_preprocessor: true token_type: phn bpemodel: null non_linguistic_symbols: null cleaner: tacotron g2p: g2p_en_no_space feats_extract: fbank feats_extract_conf: fs: 22050 fmin: 80 fmax: 7600 n_mels: 80 hop_length: 256 n_fft: 1024 win_length: null normalize: global_mvn normalize_conf: stats_file: exp/tts_train_raw_phn_tacotron_g2p_en_no_space/decode_use_teacher_forcingtrue_train.loss.ave/stats/train/feats_stats.npz tts: fastspeech2 tts_conf: adim: 384 aheads: 2 elayers: 4 eunits: 1536 dlayers: 4 dunits: 1536 positionwise_layer_type: conv1d positionwise_conv_kernel_size: 3 duration_predictor_layers: 2 duration_predictor_chans: 256 duration_predictor_kernel_size: 3 postnet_layers: 5 postnet_filts: 5 postnet_chans: 256 use_masking: true encoder_normalize_before: true decoder_normalize_before: true reduction_factor: 1 encoder_type: conformer decoder_type: conformer conformer_pos_enc_layer_type: rel_pos conformer_self_attn_layer_type: rel_selfattn conformer_activation_type: swish use_macaron_style_in_conformer: true use_cnn_in_conformer: true conformer_enc_kernel_size: 7 conformer_dec_kernel_size: 31 init_type: xavier_uniform transformer_enc_dropout_rate: 0.2 transformer_enc_positional_dropout_rate: 0.2 transformer_enc_attn_dropout_rate: 0.2 transformer_dec_dropout_rate: 0.2 transformer_dec_positional_dropout_rate: 0.2 transformer_dec_attn_dropout_rate: 0.2 pitch_predictor_layers: 5 pitch_predictor_chans: 256 pitch_predictor_kernel_size: 5 pitch_predictor_dropout: 0.5 pitch_embed_kernel_size: 1 pitch_embed_dropout: 0.0 stop_gradient_from_pitch_predictor: true energy_predictor_layers: 2 energy_predictor_chans: 256 energy_predictor_kernel_size: 3 energy_predictor_dropout: 0.5 energy_embed_kernel_size: 1 energy_embed_dropout: 0.0 stop_gradient_from_energy_predictor: false pitch_extract: dio pitch_extract_conf: fs: 22050 n_fft: 1024 hop_length: 256 f0max: 400 f0min: 80 pitch_normalize: global_mvn pitch_normalize_conf: stats_file: exp/tts_train_raw_phn_tacotron_g2p_en_no_space/decode_use_teacher_forcingtrue_train.loss.ave/stats/train/pitch_stats.npz energy_extract: energy energy_extract_conf: fs: 22050 n_fft: 1024 hop_length: 256 win_length: null energy_normalize: global_mvn energy_normalize_conf: stats_file: exp/tts_train_raw_phn_tacotron_g2p_en_no_space/decode_use_teacher_forcingtrue_train.loss.ave/stats/train/energy_stats.npz required: - output_dir - token_list distributed: false ``` </details> ### Citing RyanSpeech ```BibTex @inproceedings{Zandie2021RyanSpeechAC, title={RyanSpeech: A Corpus for Conversational Text-to-Speech Synthesis}, author={Rohola Zandie and Mohammad H. Mahoor and Julia Madsen and Eshrat S. Emamian}, booktitle={Interspeech}, year={2021} } ```
espnet/english_male_ryanspeech_fastspeech2
espnet
2022-05-16T22:00:14Z
5
4
espnet
[ "espnet", "audio", "text-to-speech", "en", "dataset:ryanspeech", "license:cc-by-nc-4.0", "region:us" ]
text-to-speech
2022-05-10T18:13:25Z
--- tags: - espnet - audio - text-to-speech language: en datasets: - ryanspeech license: cc-by-nc-4.0 widget: - text: "This seems a very pleasant place, and I think I shall enjoy myself very much." --- ## RyanSpeech model (based on ESPnet2) ### `espnet/english_male_ryanspeech_fastspeech2` This model was trained by [Rohola Zandie](https://scholar.google.com/citations?user=xv0jIe0AAAAJ&hl=en) using ryanspeech recipe in [espnet](https://github.com/espnet/espnet/). For the best results you need to download the vocoder separately from [here](https://drive.google.com/file/d/10GYvB_mIKzXzSjD67tSnBhknZRoBjsNb/view?usp=sharing) and then use the following code: ``` from espnet2.bin.tts_inference import Text2Speech from scipy.io.wavfile import write model = Text2Speech.from_pretrained( model_file="espnet/english_male_ryanspeech_fastspeech2", vocoder_file="path_to_vocoder/train_nodev_parallel_wavegan.v1.long/checkpoint-1000000steps.pkl" ) output = model("This is a simple test.") write("x.wav", 22050, output['wav'].numpy()) ``` ## Download the dataset You can download RyanSpeech dataset from [here](https://www.kaggle.com/datasets/roholazandie/ryanspeech) or here. ## TTS config <details><summary>expand</summary> ``` config: conf/tuning/train_fastspeech.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/tts_train_fastspeech2_raw_phn_tacotron_g2p_en_no_space ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 1000 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - loss - min - - train - loss - min keep_nbest_models: 5 grad_clip: 1.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 6 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null pretrain_path: [] pretrain_key: [] num_iters_per_epoch: 500 batch_size: 20 valid_batch_size: null batch_bins: 800000 valid_batch_bins: null train_shape_file: - exp/tts_train_raw_phn_tacotron_g2p_en_no_space/decode_use_teacher_forcingtrue_train.loss.ave/stats/train/text_shape.phn - exp/tts_train_raw_phn_tacotron_g2p_en_no_space/decode_use_teacher_forcingtrue_train.loss.ave/stats/train/speech_shape valid_shape_file: - exp/tts_train_raw_phn_tacotron_g2p_en_no_space/decode_use_teacher_forcingtrue_train.loss.ave/stats/valid/text_shape.phn - exp/tts_train_raw_phn_tacotron_g2p_en_no_space/decode_use_teacher_forcingtrue_train.loss.ave/stats/valid/speech_shape batch_type: numel valid_batch_type: null fold_length: - 150 - 204800 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/tr_no_dev/text - text - text - - exp/tts_train_raw_phn_tacotron_g2p_en_no_space/decode_use_teacher_forcingtrue_train.loss.ave/tr_no_dev/durations - durations - text_int - - dump/raw/tr_no_dev/wav.scp - speech - sound valid_data_path_and_name_and_type: - - dump/raw/dev/text - text - text - - exp/tts_train_raw_phn_tacotron_g2p_en_no_space/decode_use_teacher_forcingtrue_train.loss.ave/dev/durations - durations - text_int - - dump/raw/dev/wav.scp - speech - sound allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 1.0 scheduler: noamlr scheduler_conf: model_size: 384 warmup_steps: 4000 token_list: - <blank> - <unk> - AH0 - T - N - S - R - D - L - K - IH1 - M - EH1 - Z - DH - UW1 - AE1 - IH0 - AY1 - AH1 - W - . - P - F - IY1 - V - ER0 - AA1 - B - AO1 - HH - EY1 - IY0 - ',' - Y - NG - OW1 - G - AW1 - TH - SH - UH1 - '?' - ER1 - JH - CH - OW0 - OW2 - EH2 - IH2 - EY2 - AA2 - AE2 - AY2 - '''' - OY1 - UW0 - '!' - AO2 - EH0 - ZH - AH2 - AE0 - UW2 - AA0 - AY0 - IY2 - AW2 - AO0 - EY0 - ER2 - UH2 - '...' - AW0 - UH0 - OY2 - <sos/eos> odim: null model_conf: {} use_preprocessor: true token_type: phn bpemodel: null non_linguistic_symbols: null cleaner: tacotron g2p: g2p_en_no_space feats_extract: fbank feats_extract_conf: fs: 22050 fmin: 80 fmax: 7600 n_mels: 80 hop_length: 256 n_fft: 1024 win_length: null normalize: global_mvn normalize_conf: stats_file: exp/tts_train_raw_phn_tacotron_g2p_en_no_space/decode_use_teacher_forcingtrue_train.loss.ave/stats/train/feats_stats.npz tts: fastspeech tts_conf: adim: 384 aheads: 2 elayers: 6 eunits: 1536 dlayers: 6 dunits: 1536 positionwise_layer_type: conv1d positionwise_conv_kernel_size: 3 duration_predictor_layers: 2 duration_predictor_chans: 384 duration_predictor_kernel_size: 3 postnet_layers: 5 postnet_filts: 5 postnet_chans: 256 use_masking: true use_scaled_pos_enc: true encoder_normalize_before: true decoder_normalize_before: true reduction_factor: 1 init_type: xavier_uniform init_enc_alpha: 1.0 init_dec_alpha: 1.0 transformer_enc_dropout_rate: 0.1 transformer_enc_positional_dropout_rate: 0.1 transformer_enc_attn_dropout_rate: 0.1 transformer_dec_dropout_rate: 0.1 transformer_dec_positional_dropout_rate: 0.1 transformer_dec_attn_dropout_rate: 0.1 pitch_extract: null pitch_extract_conf: {} pitch_normalize: null pitch_normalize_conf: {} energy_extract: null energy_extract_conf: {} energy_normalize: null energy_normalize_conf: {} required: - output_dir - token_list distributed: false ``` </details> ### Citing RyanSpeech ```BibTex @inproceedings{Zandie2021RyanSpeechAC, title={RyanSpeech: A Corpus for Conversational Text-to-Speech Synthesis}, author={Rohola Zandie and Mohammad H. Mahoor and Julia Madsen and Eshrat S. Emamian}, booktitle={Interspeech}, year={2021} } ```
espnet/english_male_ryanspeech_fastspeech
espnet
2022-05-16T21:58:59Z
3
1
espnet
[ "espnet", "audio", "text-to-speech", "en", "dataset:ryanspeech", "license:cc-by-nc-4.0", "region:us" ]
text-to-speech
2022-05-10T17:28:53Z
--- tags: - espnet - audio - text-to-speech language: en datasets: - ryanspeech license: cc-by-nc-4.0 widget: - text: "This seems a very pleasant place, and I think I shall enjoy myself very much." --- ## RyanSpeech model (based on ESPnet2) ### `espnet/english_male_ryanspeech_fastspeech` This model was trained by [Rohola Zandie](https://scholar.google.com/citations?user=xv0jIe0AAAAJ&hl=en) using ryanspeech recipe in [espnet](https://github.com/espnet/espnet/). For the best results you need to download the vocoder separately from [here](https://drive.google.com/file/d/10GYvB_mIKzXzSjD67tSnBhknZRoBjsNb/view?usp=sharing) and then use the following code: ``` from espnet2.bin.tts_inference import Text2Speech from scipy.io.wavfile import write model = Text2Speech.from_pretrained( model_file="espnet/english_male_ryanspeech_fastspeech", vocoder_file="path_to_vocoder/train_nodev_parallel_wavegan.v1.long/checkpoint-1000000steps.pkl" ) output = model("This is a simple test.") write("x.wav", 22050, output['wav'].numpy()) ``` ## Download the dataset You can download RyanSpeech dataset from [here](https://www.kaggle.com/datasets/roholazandie/ryanspeech) or here. ## TTS config <details><summary>expand</summary> ``` config: conf/tuning/train_fastspeech.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/tts_train_fastspeech_raw_phn_tacotron_g2p_en_no_space ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 1000 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - loss - min - - train - loss - min keep_nbest_models: 5 grad_clip: 1.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 6 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null pretrain_path: [] pretrain_key: [] num_iters_per_epoch: 500 batch_size: 20 valid_batch_size: null batch_bins: 800000 valid_batch_bins: null train_shape_file: - exp/tts_train_raw_phn_tacotron_g2p_en_no_space/decode_use_teacher_forcingtrue_train.loss.best/stats/train/text_shape.phn - exp/tts_train_raw_phn_tacotron_g2p_en_no_space/decode_use_teacher_forcingtrue_train.loss.best/stats/train/speech_shape valid_shape_file: - exp/tts_train_raw_phn_tacotron_g2p_en_no_space/decode_use_teacher_forcingtrue_train.loss.best/stats/valid/text_shape.phn - exp/tts_train_raw_phn_tacotron_g2p_en_no_space/decode_use_teacher_forcingtrue_train.loss.best/stats/valid/speech_shape batch_type: numel valid_batch_type: null fold_length: - 150 - 204800 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/tr_no_dev/text - text - text - - exp/tts_train_raw_phn_tacotron_g2p_en_no_space/decode_use_teacher_forcingtrue_train.loss.best//tr_no_dev/durations - durations - text_int - - dump/raw/tr_no_dev/wav.scp - speech - sound valid_data_path_and_name_and_type: - - dump/raw/dev/text - text - text - - exp/tts_train_raw_phn_tacotron_g2p_en_no_space/decode_use_teacher_forcingtrue_train.loss.best//dev/durations - durations - text_int - - dump/raw/dev/wav.scp - speech - sound allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 1.0 scheduler: noamlr scheduler_conf: model_size: 384 warmup_steps: 4000 token_list: - <blank> - <unk> - AH0 - T - N - S - R - D - L - K - IH1 - M - EH1 - Z - DH - UW1 - AE1 - IH0 - AY1 - AH1 - W - . - P - F - IY1 - V - ER0 - AA1 - B - AO1 - HH - EY1 - IY0 - ',' - Y - NG - OW1 - G - AW1 - TH - SH - UH1 - '?' - ER1 - JH - CH - OW0 - OW2 - EH2 - IH2 - EY2 - AA2 - AE2 - AY2 - '''' - OY1 - UW0 - '!' - AO2 - EH0 - ZH - AH2 - AE0 - UW2 - AA0 - AY0 - IY2 - AW2 - AO0 - EY0 - ER2 - UH2 - '...' - AW0 - UH0 - OY2 - <sos/eos> odim: null model_conf: {} use_preprocessor: true token_type: phn bpemodel: null non_linguistic_symbols: null cleaner: tacotron g2p: g2p_en_no_space feats_extract: fbank feats_extract_conf: fs: 22050 fmin: 80 fmax: 7600 n_mels: 80 hop_length: 256 n_fft: 1024 win_length: null normalize: global_mvn normalize_conf: stats_file: exp/tts_train_raw_phn_tacotron_g2p_en_no_space/decode_use_teacher_forcingtrue_train.loss.best/stats/train/feats_stats.npz tts: fastspeech tts_conf: adim: 384 aheads: 2 elayers: 6 eunits: 1536 dlayers: 6 dunits: 1536 positionwise_layer_type: conv1d positionwise_conv_kernel_size: 3 duration_predictor_layers: 2 duration_predictor_chans: 384 duration_predictor_kernel_size: 3 postnet_layers: 5 postnet_filts: 5 postnet_chans: 256 use_masking: true use_scaled_pos_enc: true encoder_normalize_before: true decoder_normalize_before: true reduction_factor: 1 init_type: xavier_uniform init_enc_alpha: 1.0 init_dec_alpha: 1.0 transformer_enc_dropout_rate: 0.1 transformer_enc_positional_dropout_rate: 0.1 transformer_enc_attn_dropout_rate: 0.1 transformer_dec_dropout_rate: 0.1 transformer_dec_positional_dropout_rate: 0.1 transformer_dec_attn_dropout_rate: 0.1 pitch_extract: null pitch_extract_conf: {} pitch_normalize: null pitch_normalize_conf: {} energy_extract: null energy_extract_conf: {} energy_normalize: null energy_normalize_conf: {} required: - output_dir - token_list distributed: false ``` </details> ### Citing RyanSpeech ```BibTex @inproceedings{Zandie2021RyanSpeechAC, title={RyanSpeech: A Corpus for Conversational Text-to-Speech Synthesis}, author={Rohola Zandie and Mohammad H. Mahoor and Julia Madsen and Eshrat S. Emamian}, booktitle={Interspeech}, year={2021} } ```
ATH0/ppo-LunarLander-v2
ATH0
2022-05-16T21:43:43Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-16T21:43:12Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 280.92 +/- 14.67 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
microsoft/swin-large-patch4-window7-224-in22k
microsoft
2022-05-16T19:59:30Z
450
2
transformers
[ "transformers", "pytorch", "tf", "swin", "image-classification", "vision", "dataset:imagenet-21k", "arxiv:2103.14030", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-21k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # Swin Transformer (large-sized model) Swin Transformer model pre-trained on ImageNet-21k (14 million images, 21,841 classes) at resolution 224x224. It was introduced in the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Liu et al. and first released in [this repository](https://github.com/microsoft/Swin-Transformer). Disclaimer: The team releasing Swin Transformer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Swin Transformer is a type of Vision Transformer. It builds hierarchical feature maps by merging image patches (shown in gray) in deeper layers and has linear computation complexity to input image size due to computation of self-attention only within each local window (shown in red). It can thus serve as a general-purpose backbone for both image classification and dense recognition tasks. In contrast, previous vision Transformers produce feature maps of a single low resolution and have quadratic computation complexity to input image size due to computation of self-attention globally. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/swin_transformer_architecture.png) [Source](https://paperswithcode.com/method/swin-transformer) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=swin) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoFeatureExtractor, SwinForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/swin-large-patch4-window7-224-in22k") model = SwinForImageClassification.from_pretrained("microsoft/swin-large-patch4-window7-224-in22k") inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/swin.html#). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2103-14030, author = {Ze Liu and Yutong Lin and Yue Cao and Han Hu and Yixuan Wei and Zheng Zhang and Stephen Lin and Baining Guo}, title = {Swin Transformer: Hierarchical Vision Transformer using Shifted Windows}, journal = {CoRR}, volume = {abs/2103.14030}, year = {2021}, url = {https://arxiv.org/abs/2103.14030}, eprinttype = {arXiv}, eprint = {2103.14030}, timestamp = {Thu, 08 Apr 2021 07:53:26 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2103-14030.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
Ukhushn/DistilHomeDepot-finetuned
Ukhushn
2022-05-16T19:16:36Z
4
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-09T06:37:59Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Ukhushn/DistilHomeDepot-finetuned results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Ukhushn/DistilHomeDepot-finetuned This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.6502 - Validation Loss: 2.2067 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1437, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.6502 | 2.2067 | 0 | ### Framework versions - Transformers 4.19.1 - TensorFlow 2.8.0 - Datasets 2.2.1 - Tokenizers 0.12.1
KhariotnovKK/Car_racing_v0
KhariotnovKK
2022-05-16T19:02:47Z
3
0
stable-baselines3
[ "stable-baselines3", "CarRacing-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-16T18:45:52Z
--- library_name: stable-baselines3 tags: - CarRacing-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 58.17 +/- 51.28 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CarRacing-v0 type: CarRacing-v0 --- # **PPO** Agent playing **CarRacing-v0** This is a trained model of a **PPO** agent playing **CarRacing-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
maazmikail/finetuning-sentiment-model-urdu-roberta
maazmikail
2022-05-16T19:01:35Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-16T12:46:28Z
--- license: mit tags: - generated_from_trainer model-index: - name: finetuning-sentiment-model-urdu-roberta results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-urdu-roberta This model is a fine-tuned version of [urduhack/roberta-urdu-small](https://huggingface.co/urduhack/roberta-urdu-small) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
Rocketknight1/temp-colab-upload-test2
Rocketknight1
2022-05-16T18:59:35Z
5
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-23T17:02:59Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Rocketknight1/temp-colab-upload-test2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Rocketknight1/temp-colab-upload-test2 This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6931 - Validation Loss: 0.6931 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 0.001, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.6931 | 0.6931 | 0 | | 0.6931 | 0.6931 | 1 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
eglesaks/xlm-roberta-base-finetuned-est
eglesaks
2022-05-16T18:49:53Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-05-16T18:30:25Z
--- license: mit tags: - generated_from_trainer model-index: - name: xlm-roberta-base-finetuned-est results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-est This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.6781 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 52 | 4.2576 | | No log | 2.0 | 104 | 3.8075 | | No log | 3.0 | 156 | 3.6781 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
microsoft/swin-large-patch4-window12-384-in22k
microsoft
2022-05-16T18:40:51Z
1,113
4
transformers
[ "transformers", "pytorch", "tf", "swin", "image-classification", "vision", "dataset:imagenet-21k", "arxiv:2103.14030", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-21k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # Swin Transformer (large-sized model) Swin Transformer model pre-trained on ImageNet-21k (14 million images, 21,841 classes) at resolution 384x384. It was introduced in the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Liu et al. and first released in [this repository](https://github.com/microsoft/Swin-Transformer). Disclaimer: The team releasing Swin Transformer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Swin Transformer is a type of Vision Transformer. It builds hierarchical feature maps by merging image patches (shown in gray) in deeper layers and has linear computation complexity to input image size due to computation of self-attention only within each local window (shown in red). It can thus serve as a general-purpose backbone for both image classification and dense recognition tasks. In contrast, previous vision Transformers produce feature maps of a single low resolution and have quadratic computation complexity to input image size due to computation of self-attention globally. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/swin_transformer_architecture.png) [Source](https://paperswithcode.com/method/swin-transformer) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=swin) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoFeatureExtractor, SwinForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/swin-large-patch4-window12-384-in22k") model = SwinForImageClassification.from_pretrained("microsoft/swin-large-patch4-window12-384-in22k") inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/swin.html#). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2103-14030, author = {Ze Liu and Yutong Lin and Yue Cao and Han Hu and Yixuan Wei and Zheng Zhang and Stephen Lin and Baining Guo}, title = {Swin Transformer: Hierarchical Vision Transformer using Shifted Windows}, journal = {CoRR}, volume = {abs/2103.14030}, year = {2021}, url = {https://arxiv.org/abs/2103.14030}, eprinttype = {arXiv}, eprint = {2103.14030}, timestamp = {Thu, 08 Apr 2021 07:53:26 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2103-14030.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
microsoft/swin-base-patch4-window12-384
microsoft
2022-05-16T18:32:57Z
28,937
4
transformers
[ "transformers", "pytorch", "tf", "swin", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2103.14030", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # Swin Transformer (base-sized model) Swin Transformer model trained on ImageNet-1k at resolution 384x384. It was introduced in the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Liu et al. and first released in [this repository](https://github.com/microsoft/Swin-Transformer). Disclaimer: The team releasing Swin Transformer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Swin Transformer is a type of Vision Transformer. It builds hierarchical feature maps by merging image patches (shown in gray) in deeper layers and has linear computation complexity to input image size due to computation of self-attention only within each local window (shown in red). It can thus serve as a general-purpose backbone for both image classification and dense recognition tasks. In contrast, previous vision Transformers produce feature maps of a single low resolution and have quadratic computation complexity to input image size due to computation of self-attention globally. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/swin_transformer_architecture.png) [Source](https://paperswithcode.com/method/swin-transformer) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=swin) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoFeatureExtractor, SwinForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/swin-base-patch4-window12-384") model = SwinForImageClassification.from_pretrained("microsoft/swin-base-patch4-window12-384") inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/swin.html#). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2103-14030, author = {Ze Liu and Yutong Lin and Yue Cao and Han Hu and Yixuan Wei and Zheng Zhang and Stephen Lin and Baining Guo}, title = {Swin Transformer: Hierarchical Vision Transformer using Shifted Windows}, journal = {CoRR}, volume = {abs/2103.14030}, year = {2021}, url = {https://arxiv.org/abs/2103.14030}, eprinttype = {arXiv}, eprint = {2103.14030}, timestamp = {Thu, 08 Apr 2021 07:53:26 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2103-14030.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
microsoft/swin-small-patch4-window7-224
microsoft
2022-05-16T18:11:23Z
5,828
0
transformers
[ "transformers", "pytorch", "tf", "swin", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2103.14030", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # Swin Transformer (small-sized model) Swin Transformer model trained on ImageNet-1k at resolution 224x224. It was introduced in the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Liu et al. and first released in [this repository](https://github.com/microsoft/Swin-Transformer). Disclaimer: The team releasing Swin Transformer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Swin Transformer is a type of Vision Transformer. It builds hierarchical feature maps by merging image patches (shown in gray) in deeper layers and has linear computation complexity to input image size due to computation of self-attention only within each local window (shown in red). It can thus serve as a general-purpose backbone for both image classification and dense recognition tasks. In contrast, previous vision Transformers produce feature maps of a single low resolution and have quadratic computation complexity to input image size due to computation of self-attention globally. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/swin_transformer_architecture.png) [Source](https://paperswithcode.com/method/swin-transformer) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=swin) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoFeatureExtractor, SwinForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/swin-small-patch4-window7-224") model = SwinForImageClassification.from_pretrained("microsoft/swin-small-patch4-window7-224") inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/swin.html#). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2103-14030, author = {Ze Liu and Yutong Lin and Yue Cao and Han Hu and Yixuan Wei and Zheng Zhang and Stephen Lin and Baining Guo}, title = {Swin Transformer: Hierarchical Vision Transformer using Shifted Windows}, journal = {CoRR}, volume = {abs/2103.14030}, year = {2021}, url = {https://arxiv.org/abs/2103.14030}, eprinttype = {arXiv}, eprint = {2103.14030}, timestamp = {Thu, 08 Apr 2021 07:53:26 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2103-14030.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
nazariinyzhnyk/PPO-lunar
nazariinyzhnyk
2022-05-16T17:40:07Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-16T17:21:06Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 267.24 +/- 13.68 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
vukpetar/ppo-CarRacing-v0-v3
vukpetar
2022-05-16T16:50:52Z
19
0
stable-baselines3
[ "stable-baselines3", "CarRacing-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-16T16:49:29Z
--- library_name: stable-baselines3 tags: - CarRacing-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 862.75 +/- 31.08 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CarRacing-v0 type: CarRacing-v0 --- # **PPO** Agent playing **CarRacing-v0** This is a trained model of a **PPO** agent playing **CarRacing-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
kingabzpro/Full-Force-MountainCar-v0
kingabzpro
2022-05-16T16:40:46Z
1
1
stable-baselines3
[ "stable-baselines3", "MountainCar-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-16T16:21:21Z
--- library_name: stable-baselines3 tags: - MountainCar-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: -200.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: MountainCar-v0 type: MountainCar-v0 --- # **PPO** Agent playing **MountainCar-v0** This is a trained model of a **PPO** agent playing **MountainCar-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) Using this model becomes easy when you have stable-baselines3 and huggingface_sb3 installed: ``` pip install stable-baselines3 pip install huggingface_sb3 ``` Then, you can use the model like this: ```python import gym from huggingface_sb3 import load_from_hub from stable_baselines3 import PPO from stable_baselines3.common.evaluation import evaluate_policy # Retrieve the model from the hub ## repo_id = id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name}) ## filename = name of the model zip file from the repository checkpoint = load_from_hub(repo_id="kingabzpro/Full-Force-MountainCar-v0", filename="Full-Force-MountainCar-v0.zip") model = PPO.load(checkpoint) # Evaluate the agent eval_env = gym.make('MountainCar-v0') mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True) print(f"mean_reward={mean_reward:.2f} +/- {std_reward}") # Watch the agent play obs = eval_env.reset() for i in range(1000): action, _state = model.predict(obs) obs, reward, done, info = eval_env.step(action) eval_env.render() if done: obs = eval_env.reset() eval_env.close() ```
ThoDum/DQN-LunarLander-v2
ThoDum
2022-05-16T16:27:13Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-16T16:26:33Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: -123.02 +/- 62.23 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **DQN** Agent playing **LunarLander-v2** This is a trained model of a **DQN** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
nouman10/robertabase-finetuned-claim-ltp-full-prompt_
nouman10
2022-05-16T16:23:35Z
3
0
transformers
[ "transformers", "tf", "roberta", "fill-mask", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-16T16:09:03Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: nouman10/robertabase-finetuned-claim-ltp-full-prompt_ results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nouman10/robertabase-finetuned-claim-ltp-full-prompt_ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0334 - Validation Loss: 0.0237 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -427, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1997 | 0.0443 | 0 | | 0.0334 | 0.0237 | 1 | ### Framework versions - Transformers 4.19.1 - TensorFlow 2.8.0 - Datasets 2.2.1 - Tokenizers 0.12.1
Rietta/CycleGAN_Sims
Rietta
2022-05-16T16:13:21Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2022-05-14T16:36:02Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training Metrics Model history needed ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
huggingartists/metallica
huggingartists
2022-05-16T16:10:22Z
6
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/metallica", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/metallica tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/b04166fa115f4e8aae2c30f301ae52ba.480x480x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Metallica</div> <a href="https://genius.com/artists/metallica"> <div style="text-align: center; font-size: 14px;">@metallica</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Metallica. Dataset is available [here](https://huggingface.co/datasets/huggingartists/metallica). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/metallica") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/30glu695/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Metallica's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2m1o5q6p) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2m1o5q6p/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/metallica') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/metallica") model = AutoModelWithLMHead.from_pretrained("huggingartists/metallica") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
kingabzpro/Moonman-Lunar-Landing-v2
kingabzpro
2022-05-16T16:07:26Z
7
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-11T09:44:34Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 266.93 +/- 24.72 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) Using this model becomes easy when you have stable-baselines3 and huggingface_sb3 installed: ``` pip install stable-baselines3 pip install huggingface_sb3 ``` Then, you can use the model like this: ```python import gym from huggingface_sb3 import load_from_hub from stable_baselines3 import PPO from stable_baselines3.common.evaluation import evaluate_policy # Retrieve the model from the hub ## repo_id = id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name}) ## filename = name of the model zip file from the repository checkpoint = load_from_hub(repo_id="kingabzpro/Moonman-Lunar-Landing-v2", filename="Moonman-Lunar-Landing-v2.zip") model = PPO.load(checkpoint) # Evaluate the agent eval_env = gym.make('LunarLander-v2') mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True) print(f"mean_reward={mean_reward:.2f} +/- {std_reward}") # Watch the agent play obs = eval_env.reset() for i in range(1000): action, _state = model.predict(obs) obs, reward, done, info = eval_env.step(action) eval_env.render() if done: obs = eval_env.reset() eval_env.close() ```
kushaljoseph/bert-to-distilbert-NER
kushaljoseph
2022-05-16T15:38:42Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-14T13:24:58Z
--- license: mit tags: - generated_from_trainer datasets: - conll2003 model-index: - name: bert-to-distilbert-NER results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-to-distilbert-NER This model is a fine-tuned version of [dslim/bert-base-NER](https://huggingface.co/dslim/bert-base-NER) on the conll2003 dataset. It achieves the following results on the evaluation set: - eval_loss: 5.9063 - eval_precision: 0.0120 - eval_recall: 0.0069 - eval_f1: 0.0088 - eval_accuracy: 0.7600 - eval_runtime: 8.6309 - eval_samples_per_second: 376.671 - eval_steps_per_second: 3.012 - epoch: 1.0 - step: 110 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00023888106906613202 - train_batch_size: 128 - eval_batch_size: 128 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
huawei-noah/AutoTinyBERT-KD-S4
huawei-noah
2022-05-16T15:14:43Z
2
0
transformers
[ "transformers", "pytorch", "license:other", "endpoints_compatible", "region:us" ]
null
2022-05-16T15:09:51Z
--- license: other --- Pre-trained language models (PLMs) have achieved great success in natural language processing. Most of PLMs follow the default setting of architecture hyper-parameters (e.g., the hidden dimension is a quarter of the intermediate dimension in feed-forward sub-networks) in BERT. In this paper, we adopt the one-shot Neural Architecture Search (NAS) to automatically search architecture hyper-parameters for efficient pre-trained language models (at least 6x faster than BERT-base). AutoTinyBERT provides a model zoo that can meet different latency requirements.
huawei-noah/AutoTinyBERT-KD-S1
huawei-noah
2022-05-16T15:09:32Z
5
0
transformers
[ "transformers", "pytorch", "license:other", "endpoints_compatible", "region:us" ]
null
2022-05-16T14:58:25Z
--- license: other --- Pre-trained language models (PLMs) have achieved great success in natural language processing. Most of PLMs follow the default setting of architecture hyper-parameters (e.g., the hidden dimension is a quarter of the intermediate dimension in feed-forward sub-networks) in BERT. In this paper, we adopt the one-shot Neural Architecture Search (NAS) to automatically search architecture hyper-parameters for efficient pre-trained language models (at least 6x faster than BERT-base). AutoTinyBERT provides a model zoo that can meet different latency requirements.
bartelds/wav2vec2-large-ft-cgn-3hrs
bartelds
2022-05-16T14:59:59Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "speech", "nl", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-16T14:38:39Z
--- language: nl tags: - speech --- # Wav2Vec2-Large-ft-CGN-3hrs An English Wav2Vec2 model fine-tuned on Dutch. This model is created by fine-tuning [`facebook/wav2vec2-large`](https://huggingface.co/facebook/wav2vec2-large) model on 3 hours of Dutch speech from [Het Corpus Gesproken Nederlands](https://taalmaterialen.ivdnt.org/download/tstc-corpus-gesproken-nederlands/).
huawei-noah/AutoTinyBERT-S2
huawei-noah
2022-05-16T14:52:36Z
1
0
transformers
[ "transformers", "pytorch", "license:other", "endpoints_compatible", "region:us" ]
null
2022-05-16T14:48:46Z
--- license: other --- Pre-trained language models (PLMs) have achieved great success in natural language processing. Most of PLMs follow the default setting of architecture hyper-parameters (e.g., the hidden dimension is a quarter of the intermediate dimension in feed-forward sub-networks) in BERT. In this paper, we adopt the one-shot Neural Architecture Search (NAS) to automatically search architecture hyper-parameters for efficient pre-trained language models (at least 6x faster than BERT-base). AutoTinyBERT provides a model zoo that can meet different latency requirements.
syp1229/bert-base-finetuned-koidiom-epoch5
syp1229
2022-05-16T14:50:54Z
3
0
transformers
[ "transformers", "tf", "bert", "fill-mask", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-16T14:43:06Z
--- tags: - generated_from_keras_callback model-index: - name: syp1229/bert-base-finetuned-koidiom-epoch5 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # syp1229/bert-base-finetuned-koidiom-epoch5 This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.8275 - Validation Loss: 1.7743 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.1236 | 1.8454 | 0 | | 1.9937 | 1.8425 | 1 | | 1.9016 | 1.7447 | 2 | | 1.8405 | 1.7540 | 3 | | 1.8275 | 1.7743 | 4 | ### Framework versions - Transformers 4.19.1 - TensorFlow 2.8.0 - Datasets 2.2.1 - Tokenizers 0.12.1
huawei-noah/AutoTinyBERT-S1
huawei-noah
2022-05-16T14:47:57Z
1
0
transformers
[ "transformers", "pytorch", "license:other", "endpoints_compatible", "region:us" ]
null
2022-05-16T14:39:19Z
--- license: other --- Pre-trained language models (PLMs) have achieved great success in natural language processing. Most of PLMs follow the default setting of architecture hyper-parameters (e.g., the hidden dimension is a quarter of the intermediate dimension in feed-forward sub-networks) in BERT. In this paper, we adopt the one-shot Neural Architecture Search (NAS) to automatically search architecture hyper-parameters for efficient pre-trained language models (at least 6x faster than BERT-base). AutoTinyBERT provides a model zoo that can meet different latency requirements.
lirondos/anglicisms-spanish-flair-cs
lirondos
2022-05-16T14:02:15Z
60
0
flair
[ "flair", "pytorch", "anglicisms", "loanwords", "borrowing", "codeswitching", "token-classification", "sequence-tagger-model", "arxiv:2203.16169", "es", "dataset:coalas", "license:cc-by-4.0", "region:us" ]
token-classification
2022-03-29T13:09:33Z
--- language: - es license: cc-by-4.0 tags: - anglicisms # Example: audio - loanwords # Example: automatic-speech-recognition - borrowing # Example: speech - codeswitching # Example to specify a library: allennlp - flair - token-classification - sequence-tagger-model - arxiv:2203.16169 datasets: - coalas # Example: common_voice. Use dataset id from https://hf.co/datasets widget: - text: "Las fake news sobre la celebrity se reprodujeron por los 'mass media' en prime time." - text: "En la 'red carpet' lució un look muy urban con chunky shoes de inspiración anime." - text: "Benching, estar en el banquillo de tu crush mientras otro juega de titular." - text: "Recetas de noviembre para el batch cooking." - text: "Buscamos data scientist con conocimientos de machine learning y blockchain." --- # anglicisms-spanish-flair-cs This is a pretrained model for detecting unassimilated English lexical borrowings (a.k.a. anglicisms) on Spanish newswire. This model labels words of foreign origin (fundamentally from English) used in Spanish language, words such as *fake news*, *machine learning*, *smartwatch*, *influencer* or *streaming*. The model is a BiLSTM-CRF model fed with [Transformer-based embeddings pretrained on codeswitched data](https://huggingface.co/sagorsarker/codeswitch-spaeng-lid-lince) along subword embeddings (BPE and character embeddings). The model was trained on the [COALAS](https://github.com/lirondos/coalas/) corpus for the task of detecting lexical borrowings. The model considers two labels: * ``ENG``: For English lexical borrowings (*smartphone*, *online*, *podcast*) * ``OTHER``: For lexical borrowings from any other language (*boutique*, *anime*, *umami*) The model uses BIO encoding to account for multitoken borrowings. **⚠ There is another [mBERT -based model](https://huggingface.co/lirondos/anglicisms-spanish-mbert) for this same task trained using the ``Transformers`` library**. That model however produced worse results than this Flair-based model (F1 = 83.55). ## Metrics (on the test set) Results obtained on the test set of the [COALAS](https://github.com/lirondos/coalas/) corpus. | LABEL | Precision | Recall | F1 | |:-------|-----:|-----:|---------:| | ALL | 90.14 | 81.79 | 85.76 | | ENG | 90.16 | 84.34 | 87.16 | | OTHER | 85.71 | 13.04 | 22.64 | ## Dataset This model was trained on [COALAS](https://github.com/lirondos/coalas/), a corpus of Spanish newswire annotated with unassimilated lexical borrowings. The corpus contains 370,000 tokens and includes various written media written in European Spanish. The test set was designed to be as difficult as possible: it covers sources and dates not seen in the training set, includes a high number of OOV words (92% of the borrowings in the test set are OOV) and is very borrowing-dense (20 borrowings per 1,000 tokens). |Set | Tokens | ENG | OTHER | Unique | |:-------|-----:|-----:|---------:|---------:| |Training |231,126 |1,493 | 28 |380 | |Development |82,578 |306 |49 |316| |Test |58,997 |1,239 |46 |987| |**Total** |372,701 |3,038 |123 |1,683 | ## More info More information about the dataset, model experimentation and error analysis can be found in the paper: *[Detecting Unassimilated Borrowings in Spanish: An Annotated Corpus and Approaches to Modeling](https://aclanthology.org/2022.acl-long.268/)*. ## How to use ``` from flair.data import Sentence from flair.models import SequenceTagger import pathlib import os if os.name == 'nt': # Minor patch needed if you are running from Windows temp = pathlib.PosixPath pathlib.PosixPath = pathlib.WindowsPath tagger = SequenceTagger.load("lirondos/anglicisms-spanish-flair-cs") text = "Las fake news sobre la celebrity se reprodujeron por los mass media en prime time." sentence = Sentence(text) # predict tags tagger.predict(sentence) # print sentence print(sentence) # print predicted borrowing spans print('The following borrowing were found:') for entity in sentence.get_spans(): print(entity) ``` ## Citation If you use this model, please cite the following reference: ``` @inproceedings{alvarez-mellado-lignos-2022-detecting, title = "Detecting Unassimilated Borrowings in {S}panish: {A}n Annotated Corpus and Approaches to Modeling", author = "{\'A}lvarez-Mellado, Elena and Lignos, Constantine", booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = may, year = "2022", address = "Dublin, Ireland", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.acl-long.268", pages = "3868--3888", abstract = "This work presents a new resource for borrowing identification and analyzes the performance and errors of several models on this task. We introduce a new annotated corpus of Spanish newswire rich in unassimilated lexical borrowings{---}words from one language that are introduced into another without orthographic adaptation{---}and use it to evaluate how several sequence labeling models (CRF, BiLSTM-CRF, and Transformer-based models) perform. The corpus contains 370,000 tokens and is larger, more borrowing-dense, OOV-rich, and topic-varied than previous corpora available for this task. Our results show that a BiLSTM-CRF model fed with subword embeddings along with either Transformer-based embeddings pretrained on codeswitched data or a combination of contextualized word embeddings outperforms results obtained by a multilingual BERT-based model.", } ```
Manaranjan/TEST2ppo-LunarLander-v2
Manaranjan
2022-05-16T13:24:37Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-16T12:49:17Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 196.09 +/- 31.85 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
scasutt/wav2vec2-large-xlsr-53_full_train_full_train
scasutt
2022-05-16T13:22:05Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-13T11:57:25Z
--- tags: - generated_from_trainer model-index: - name: wav2vec2-large-xlsr-53_full_train_full_train results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53_full_train_full_train This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8369 - Wer: 0.5052 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.533 | 1.35 | 1000 | 0.3547 | 0.3483 | | 0.4531 | 2.69 | 2000 | 0.8369 | 0.5052 | ### Framework versions - Transformers 4.19.0 - Pytorch 1.11.0+cu102 - Datasets 2.2.1 - Tokenizers 0.12.1
Yarn007/autotrain-Napkin-872827783
Yarn007
2022-05-16T13:01:19Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "unk", "dataset:Yarn007/autotrain-data-Napkin", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-16T12:59:13Z
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - Yarn007/autotrain-data-Napkin co2_eq_emissions: 0.020162211418903533 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 872827783 - CO2 Emissions (in grams): 0.020162211418903533 ## Validation Metrics - Loss: 0.25198695063591003 - Accuracy: 0.9325714285714286 - Macro F1: 0.9254931094274171 - Micro F1: 0.9325714285714286 - Weighted F1: 0.9323540959391766 - Macro Precision: 0.9286720054236212 - Micro Precision: 0.9325714285714286 - Weighted Precision: 0.9324375609546055 - Macro Recall: 0.9227549386201338 - Micro Recall: 0.9325714285714286 - Weighted Recall: 0.9325714285714286 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Yarn007/autotrain-Napkin-872827783 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Yarn007/autotrain-Napkin-872827783", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Yarn007/autotrain-Napkin-872827783", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
subhasisj/zh-kd-XLM-minilmv2-4
subhasisj
2022-05-16T12:40:04Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2022-05-14T19:07:20Z
Multilingual MiniLMv2 fine-tuned using Knowledge Distillation with a XLM Roberta Base Teacher Model on ZH Language
leumastai/CarRacing-v0-TestModel
leumastai
2022-05-16T12:02:04Z
1
0
stable-baselines3
[ "stable-baselines3", "CarRacing-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-16T11:59:10Z
--- library_name: stable-baselines3 tags: - CarRacing-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: -71.85 +/- 1.70 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CarRacing-v0 type: CarRacing-v0 --- # **PPO** Agent playing **CarRacing-v0** This is a trained model of a **PPO** agent playing **CarRacing-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
ml6team/mbart-large-cc25-cnn-dailymail-nl-finetune
ml6team
2022-05-16T11:41:05Z
44
12
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "bart", "summarization", "nl", "dataset:ml6team/cnn_dailymail_nl", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: - nl tags: - mbart - bart - summarization datasets: - ml6team/cnn_dailymail_nl pipeline_tag: summarization widget: - text: 'Het jongetje werd eind april met zwaar letsel naar het ziekenhuis gebracht in Maastricht. Drie weken later overleed het kindje als gevolg van het letsel. Onderzoek moet nog uitwijzen wat voor verwondingen de baby precies had en hoe hij gewond is geraakt. Daarnaast doet de politie onderzoek in de woning van de ouders. Het is nog niet duidelijk wanneer de onderzoeken zijn afgerond, meldt 1Limburg. De verdachten zitten in beperkingen en mogen alleen contact hebben met hun advocaat.' - text: 'Volgens De Vries gaat het om "de hoogste beloning die ooit is uitgeloofd in Nederland". De stichting heeft een website waar donateurs geld kunnen storten, schrijft NH Nieuws. Volgens De Vries is dit initiatief ook bedoeld voor andere zaken waar beloningen voor een gouden tip worden uitgereikt. "Het is dus niet eenmalig", aldus De Vries. Het is de eerste keer dat zoiets wordt opgezet, stelt hij: De 18-jarige Tanja Groen verdween spoorloos tijdens de ontgroeningsweek van de Universiteit Maastricht in augustus 1993. Ze werd voor het laatst gezien nadat ze was vertrokken van een feestje. De studente zou vandaag 46 jaar zijn geworden. Ook de ouders van Groen waren op de persconferentie aanwezig. "Het is vandaag de verjaardag van Tanja Groen, die haar ouders al 27 jaar niet meer hebben kunnen vieren, omdat zij eind augustus 1993 spoorloos is verdwenen", zei De Vries. "Haar ouders zitten in tergende onzekerheid. Ze geloven dat ze niet meer leeft. Maar die ene promille vreet aan ze. Ze hebben recht op duidelijkheid. Ze komen op leeftijd. Grootste angst is nooit te weten wat er met hun kind is gebeurd." De Vries wil dat het miljoen binnen een jaar is ingezameld. Als het bedrag na een jaar lager uitkomt, dan is dat de uit te loven beloning. Is het meer, dan zal de rest van het geld gebruikt worden in beloningen in andere zaken. Het initiatief wordt gesteund door de politie en justitie. De afgelopen jaren is er vaker uitgebreid naar sporen van Tanja Groen gezocht, maar die zoekacties hebben niets concreets opgeleverd. Vorige week werd opnieuw naar de vrouw gezocht, op de Strabrechtse Heide in Noord-Brabant. Ook die zoektocht leverde niets op.' --- # mbart-large-cc25-cnn-dailymail-nl ## Model description Finetuned version of [mbart](https://huggingface.co/facebook/mbart-large-cc25). We also wrote a **blog post** about this model [here](https://blog.ml6.eu/why-we-open-sourced-two-dutch-summarization-datasets-1047445abc97) ## Intended uses & limitations It's meant for summarizing Dutch news articles. #### How to use ```python import transformers undisputed_best_model = transformers.MBartForConditionalGeneration.from_pretrained( "ml6team/mbart-large-cc25-cnn-dailymail-nl-finetune" ) tokenizer = transformers.MBartTokenizer.from_pretrained("facebook/mbart-large-cc25") summarization_pipeline = transformers.pipeline( task="summarization", model=undisputed_best_model, tokenizer=tokenizer, ) summarization_pipeline.model.config.decoder_start_token_id = tokenizer.lang_code_to_id[ "nl_XX" ] article = "Kan je dit even samenvatten alsjeblief." # Dutch summarization_pipeline( article, do_sample=True, top_p=0.75, top_k=50, # num_beams=4, min_length=50, early_stopping=True, truncation=True, )[0]["summary_text"] ``` ## Training data Finetuned [mbart](https://huggingface.co/facebook/mbart-large-cc25) with [this dataset](https://huggingface.co/datasets/ml6team/cnn_dailymail_nl) and another smaller dataset that we can't open source because we scraped it from the internet. For more information check out our blog post [here](https://blog.ml6.eu/).
arxyzan/data2vec-wav2vec2-base
arxyzan
2022-05-16T09:00:23Z
9
0
transformers
[ "transformers", "pytorch", "wav2vec2", "feature-extraction", "arxiv:2202.03555", "endpoints_compatible", "region:us" ]
feature-extraction
2022-05-05T10:56:22Z
A Wav2Vec2 model trained using Data2Vec based on the paper [data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555).<br> This model is provided here for [this repo](https://github.com/AryanShekarlaban/data2vec-pytorch) but was NOT trained using that codebase but instead, copied from `facebook/data2vec-wav2vec2-base` for convenience and reproducibility. ### BibTeX entry and citation info ```bibtex @misc{https://doi.org/10.48550/arxiv.2202.03555, doi = {10.48550/ARXIV.2202.03555}, url = {https://arxiv.org/abs/2202.03555}, author = {Baevski, Alexei and Hsu, Wei-Ning and Xu, Qiantong and Babu, Arun and Gu, Jiatao and Auli, Michael}, keywords = {Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language}, publisher = {arXiv}, year = {2022}, copyright = {arXiv.org perpetual, non-exclusive license} } ```
SreyanG-NVIDIA/bert-base-cased-finetuned-squad
SreyanG-NVIDIA
2022-05-16T08:39:41Z
35
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-13T13:39:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-base-cased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.0848 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.0337 | 1.0 | 5546 | 1.0150 | | 0.7546 | 2.0 | 11092 | 1.0015 | | 0.5537 | 3.0 | 16638 | 1.0848 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
withU/kogpt2-emotion-chatbot
withU
2022-05-16T07:58:01Z
237
4
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-12T05:21:44Z
# KoGPT2-emotion-chatbot kogpt2 on hugging face Transformers for Psychological Counseling - [full project link](https://github.com/jiminAn/Capstone_2022) ## how to use ``` from transformers import GPT2LMHeadModel, PreTrainedTokenizerFast model = GPT2LMHeadModel.from_pretrained("withU/kogpt2-emotion-chatbot") tokenizer = PreTrainedTokenizerFast.from_pretrained("withU/kogpt2-emotion-chatbot") input_ids = tokenizer.encode("안녕", add_special_tokens=False, return_tensors="pt") output_sequences = model.generate(input_ids=input_ids, do_sample=True, max_length=80, num_return_sequences=4) for generated_sequence in output_sequences: generated_sequence = generated_sequence.tolist() print("GENERATED SEQUENCE : {0}".format(tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True))) ``` ## dataset finetuned on - [wellness dataset](https://aihub.or.kr/opendata/keti-data/recognition-laguage/KETI-02-006) - [emotion corpus of conversations](https://aihub.or.kr/opendata/keti-data/recognition-laguage/KETI-02-010) - [chatbot data](https://jeongukjae.github.io/tfds-korean/datasets/korean_chatbot_qa_data.html) ## references - [WelllnessConversation-LanguageModel](https://github.com/nawnoes/WellnessConversation-LanguageModel) - [KoGPT2: SKT-AI](https://github.com/SKT-AI/KoGPT2)
madatnlp/sk-kogptv2-kormath-causal
madatnlp
2022-05-16T07:56:43Z
8
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-05-13T11:28:16Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_keras_callback model-index: - name: madatnlp/sk-kogptv2-kormath-causal results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # madatnlp/sk-kogptv2-kormath-causal This model is a fine-tuned version of [skt/kogpt2-base-v2](https://huggingface.co/skt/kogpt2-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3184 - Validation Loss: 1.4046 - Epoch: 15 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 2.2999999e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.7142 | 1.8683 | 0 | | 1.6077 | 1.4417 | 1 | | 1.2458 | 1.3161 | 2 | | 1.0396 | 1.2704 | 3 | | 0.8848 | 1.2818 | 4 | | 0.7634 | 1.2579 | 5 | | 0.6699 | 1.2724 | 6 | | 0.5948 | 1.2718 | 7 | | 0.5306 | 1.3300 | 8 | | 0.4832 | 1.3377 | 9 | | 0.4401 | 1.3038 | 10 | | 0.4053 | 1.3622 | 11 | | 0.3782 | 1.3577 | 12 | | 0.3550 | 1.3696 | 13 | | 0.3347 | 1.3682 | 14 | | 0.3184 | 1.4046 | 15 | ### Framework versions - Transformers 4.19.1 - TensorFlow 2.8.0 - Datasets 2.2.1 - Tokenizers 0.12.1
kompactss/JeBERT_je_ko
kompactss
2022-05-16T06:11:10Z
4
0
transformers
[ "transformers", "pytorch", "encoder-decoder", "text2text-generation", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-01T15:03:18Z
--- license: afl-3.0 --- # 🍊 제주 방언 번역 모델 🍊 - 제주어 -> 표준어 - Made by. 구름 자연어처리 과정 3기 3조!! - github link : https://github.com/Goormnlpteam3/JeBERT ## 1. Seq2Seq Transformer Model - encoder : BertConfig - decoder : BertConfig - Tokenizer : WordPiece Tokenizer ## 2. Dataset - Jit Dataset - AI HUB(+아래아 문자) ## 3. Hyper Parameters - Epoch : 10 epochs(best at 8 epoch) - Random Seed : 42 - Learning Rate : 5e-5 - Warm up Ratio : 0.1 - Batch Size : 32 ## 4. BLEU Score - Jit + AI HUB(+아래아 문자) Dataset : 79.0 --- ### CREDIT - 주형준 : [email protected] - 강가람 : [email protected] - 고광연 : [email protected] - 김수연 : [email protected] - 이원경 : [email protected] - 조성은 : [email protected]
kompactss/JeBERT_ko_je_v2
kompactss
2022-05-16T06:10:50Z
5
0
transformers
[ "transformers", "pytorch", "encoder-decoder", "text2text-generation", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-02T17:30:31Z
--- license: afl-3.0 --- # 🍊 제주 방언 번역 모델 🍊 - 표준어 -> 제주어 - Made by. 구름 자연어처리 과정 3기 3조!! - github link : https://github.com/Goormnlpteam3/JeBERT ## 1. Seq2Seq Transformer Model - encoder : BertConfig - decoder : BertConfig - Tokenizer : WordPiece Tokenizer ## 2. Dataset - Jit Dataset - AI HUB(+아래아 문자)_v2 ## 3. Hyper Parameters - Epoch : 10 epochs(best at 7 epoch) - Random Seed : 42 - Learning Rate : 5e-5 - Warm up Ratio : 0.1 - Batch Size : 32 ## 4. BLEU Score - Jit + AI HUB(+아래아 문자) Dataset : 67.6 --- ### CREDIT - 주형준 : [email protected] - 강가람 : [email protected] - 고광연 : [email protected] - 김수연 : [email protected] - 이원경 : [email protected] - 조성은 : [email protected]
yogeshchandrasekharuni/bart-paraphrase-finetuned-xsum-v2
yogeshchandrasekharuni
2022-05-16T05:52:18Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-16T05:06:16Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-paraphrase-finetuned-xsum-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-paraphrase-finetuned-xsum-v2 This model is a fine-tuned version of [eugenesiow/bart-paraphrase](https://huggingface.co/eugenesiow/bart-paraphrase) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2329 - Rouge1: 100.0 - Rouge2: 100.0 - Rougel: 100.0 - Rougelsum: 100.0 - Gen Len: 9.2619 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 21 | 1.2954 | 66.7012 | 60.8612 | 66.5163 | 66.4352 | 13.2857 | | No log | 2.0 | 42 | 0.6866 | 86.8284 | 82.7835 | 86.7208 | 86.784 | 9.5238 | | No log | 3.0 | 63 | 0.4652 | 95.1892 | 93.5619 | 95.2567 | 95.1657 | 10.3095 | | No log | 4.0 | 84 | 0.4280 | 97.7463 | 97.1782 | 97.8708 | 97.718 | 9.5 | | No log | 5.0 | 105 | 0.3712 | 99.6435 | 99.5767 | 99.6435 | 99.6435 | 9.3571 | | No log | 6.0 | 126 | 0.4451 | 99.2695 | 98.9418 | 99.1883 | 99.3506 | 9.3095 | | No log | 7.0 | 147 | 0.3169 | 99.246 | 99.0232 | 99.246 | 99.4048 | 9.619 | | No log | 8.0 | 168 | 0.2942 | 100.0 | 100.0 | 100.0 | 100.0 | 9.4048 | | No log | 9.0 | 189 | 0.3105 | 100.0 | 100.0 | 100.0 | 100.0 | 9.1667 | | No log | 10.0 | 210 | 0.3035 | 100.0 | 100.0 | 100.0 | 100.0 | 9.2619 | | No log | 11.0 | 231 | 0.2983 | 100.0 | 100.0 | 100.0 | 100.0 | 10.5714 | | No log | 12.0 | 252 | 0.2497 | 100.0 | 100.0 | 100.0 | 100.0 | 9.4286 | | No log | 13.0 | 273 | 0.2911 | 100.0 | 100.0 | 100.0 | 100.0 | 9.1667 | | No log | 14.0 | 294 | 0.2619 | 100.0 | 100.0 | 100.0 | 100.0 | 9.2143 | | No log | 15.0 | 315 | 0.2510 | 100.0 | 100.0 | 100.0 | 100.0 | 9.2381 | | No log | 16.0 | 336 | 0.2647 | 100.0 | 100.0 | 100.0 | 100.0 | 9.9048 | | No log | 17.0 | 357 | 0.2438 | 100.0 | 100.0 | 100.0 | 100.0 | 9.2143 | | No log | 18.0 | 378 | 0.2324 | 100.0 | 100.0 | 100.0 | 100.0 | 9.3095 | | No log | 19.0 | 399 | 0.2296 | 100.0 | 100.0 | 100.0 | 100.0 | 9.3095 | | No log | 20.0 | 420 | 0.2329 | 100.0 | 100.0 | 100.0 | 100.0 | 9.2619 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
fancyerii/bert-finetuned-ner
fancyerii
2022-05-16T05:35:53Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-16T05:00:21Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9387755102040817 - name: Recall type: recall value: 0.9522046449007069 - name: F1 type: f1 value: 0.9454423928481912 - name: Accuracy type: accuracy value: 0.9869606169423677 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0592 - Precision: 0.9388 - Recall: 0.9522 - F1: 0.9454 - Accuracy: 0.9870 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0857 | 1.0 | 1756 | 0.0635 | 0.9121 | 0.9359 | 0.9238 | 0.9830 | | 0.0318 | 2.0 | 3512 | 0.0586 | 0.9245 | 0.9465 | 0.9354 | 0.9857 | | 0.0222 | 3.0 | 5268 | 0.0592 | 0.9388 | 0.9522 | 0.9454 | 0.9870 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.6
nttoanh/t5vi-finetuned-en-to-vi
nttoanh
2022-05-15T22:20:38Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:mt_eng_vietnamese", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-15T17:03:36Z
--- tags: - generated_from_trainer datasets: - mt_eng_vietnamese metrics: - bleu model-index: - name: t5vi-finetuned-en-to-vi results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: mt_eng_vietnamese type: mt_eng_vietnamese args: iwslt2015-en-vi metrics: - name: Bleu type: bleu value: 13.547 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5vi-finetuned-en-to-vi This model is a fine-tuned version of [imthanhlv/t5vi](https://huggingface.co/imthanhlv/t5vi) on the mt_eng_vietnamese dataset. It achieves the following results on the evaluation set: - Loss: 1.3827 - Bleu: 13.547 - Gen Len: 17.3719 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 20 - eval_batch_size: 20 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 1.8026 | 1.0 | 6666 | 1.5907 | 10.9756 | 17.3231 | | 1.6217 | 2.0 | 13332 | 1.4635 | 12.375 | 17.3444 | | 1.5087 | 3.0 | 19998 | 1.4131 | 13.1828 | 17.3924 | | 1.4446 | 4.0 | 26664 | 1.3915 | 13.5217 | 17.3617 | | 1.4076 | 5.0 | 33330 | 1.3827 | 13.547 | 17.3719 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
mateotyz/tf-xml-r-base-ape-swm
mateotyz
2022-05-15T21:19:18Z
5
0
transformers
[ "transformers", "tf", "tensorboard", "xlm-roberta", "fill-mask", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-15T18:47:41Z
--- tags: - generated_from_keras_callback model-index: - name: mateotyz/tf-xml-r-base-ape-swm results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mateotyz/tf-xml-r-base-ape-swm This model is a fine-tuned version of [jplu/tf-xlm-roberta-base](https://huggingface.co/jplu/tf-xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.1811 - Validation Loss: 1.0441 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -125, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.3563 | 1.0668 | 0 | | 1.1682 | 1.0687 | 1 | | 1.1811 | 1.0441 | 2 | ### Framework versions - Transformers 4.19.1 - TensorFlow 2.8.0 - Datasets 2.2.1 - Tokenizers 0.12.1
KhariotnovKK/luna_lender_v1
KhariotnovKK
2022-05-15T18:37:37Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-06T08:33:31Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 260.20 +/- 20.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
send-it/TEST5ppo-LunarLander-v2
send-it
2022-05-15T18:30:57Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-15T18:30:25Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 270.57 +/- 10.85 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
prashanth/mbart-large-cc25-ge-en-to-hi
prashanth
2022-05-15T17:11:05Z
19
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "generated_from_trainer", "dataset:hindi_english_machine_translation", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-14T23:04:55Z
--- tags: - generated_from_trainer datasets: - hindi_english_machine_translation metrics: - bleu model-index: - name: mbart-large-cc25-ge-en-to-hi results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: hindi_english_machine_translation type: hindi_english_machine_translation args: hi-en metrics: - name: Bleu type: bleu value: 4.5974 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-large-cc25-ge-en-to-hi This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on the hindi_english_machine_translation dataset. It achieves the following results on the evaluation set: - Loss: 1.3397 - Bleu: 4.5974 - Gen Len: 66.244 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:------:|:-------:| | 1.4602 | 1.0 | 135739 | 1.3397 | 4.5974 | 66.244 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu102 - Datasets 1.18.0 - Tokenizers 0.12.1
huggingtweets/dclblogger-loopifyyy
huggingtweets
2022-05-15T15:32:50Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-15T15:28:31Z
--- language: en thumbnail: http://www.huggingtweets.com/dclblogger-loopifyyy/1652628765621/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1472740175130230784/L7Xcs7wJ_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1480550067564163078/D90SnyUa_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Matty & Loopify 🧙‍♂️</div> <div style="text-align: center; font-size: 14px;">@dclblogger-loopifyyy</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Matty & Loopify 🧙‍♂️. | Data | Matty | Loopify 🧙‍♂️ | | --- | --- | --- | | Tweets downloaded | 3250 | 3250 | | Retweets | 62 | 117 | | Short tweets | 494 | 867 | | Tweets kept | 2694 | 2266 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1pq5pxck/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dclblogger-loopifyyy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/as5uacn5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/as5uacn5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dclblogger-loopifyyy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
kktoto/kt_punc
kktoto
2022-05-15T15:16:29Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:chn_senti_corp", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-15T13:47:21Z
--- tags: - generated_from_trainer datasets: - chn_senti_corp metrics: - precision - recall - f1 - accuracy model-index: - name: kt_punc results: - task: name: Token Classification type: token-classification dataset: name: chn_senti_corp type: chn_senti_corp args: default metrics: - name: Precision type: precision value: 0.7078651685393258 - name: Recall type: recall value: 0.7313662547821116 - name: F1 type: f1 value: 0.7194238380517767 - name: Accuracy type: accuracy value: 0.957316742326961 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kt_punc This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on the chn_senti_corp dataset. It achieves the following results on the evaluation set: - Loss: 0.1703 - Precision: 0.7079 - Recall: 0.7314 - F1: 0.7194 - Accuracy: 0.9573 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1661 | 1.0 | 600 | 0.1351 | 0.6566 | 0.6833 | 0.6697 | 0.9498 | | 0.1246 | 2.0 | 1200 | 0.1330 | 0.6854 | 0.6665 | 0.6758 | 0.9521 | | 0.1121 | 3.0 | 1800 | 0.1303 | 0.6885 | 0.6994 | 0.6939 | 0.9537 | | 0.1008 | 4.0 | 2400 | 0.1359 | 0.6836 | 0.7248 | 0.7036 | 0.9543 | | 0.0809 | 5.0 | 3000 | 0.1404 | 0.7035 | 0.7082 | 0.7059 | 0.9559 | | 0.0696 | 6.0 | 3600 | 0.1449 | 0.6986 | 0.7224 | 0.7103 | 0.9560 | | 0.0628 | 7.0 | 4200 | 0.1563 | 0.7063 | 0.7214 | 0.7138 | 0.9567 | | 0.0561 | 8.0 | 4800 | 0.1618 | 0.7024 | 0.7333 | 0.7175 | 0.9568 | | 0.0525 | 9.0 | 5400 | 0.1669 | 0.7083 | 0.7335 | 0.7207 | 0.9574 | | 0.0453 | 10.0 | 6000 | 0.1703 | 0.7079 | 0.7314 | 0.7194 | 0.9573 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
traxes/repos
traxes
2022-05-15T15:03:59Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-15T15:03:31Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: -130.18 +/- 34.56 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
umbertospazio/1500000_PPO-LunarLander-v2
umbertospazio
2022-05-15T15:03:24Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-15T15:02:54Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 283.46 +/- 17.55 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
Zohar/distilgpt2-finetuned-negative-restaurant-reviews-clean
Zohar
2022-05-15T14:12:08Z
11
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-15T11:47:04Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-negative-restaurant-reviews-clean results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-negative-restaurant-reviews-clean This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.5187 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.6841 | 1.0 | 3105 | 3.5793 | | 3.6184 | 2.0 | 6210 | 3.5313 | | 3.5943 | 3.0 | 9315 | 3.5187 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.11.0
KrusHan/PPO-LunarLander-v2
KrusHan
2022-05-15T13:18:42Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-15T13:18:09Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 260.52 +/- 27.65 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
robert1003/LunarLander-v2-ppo
robert1003
2022-05-15T13:15:46Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-15T05:03:44Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 280.07 +/- 14.87 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
huggingtweets/medvedevrussia
huggingtweets
2022-05-15T12:26:28Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-15T12:26:21Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/2348558617/x0vh6bui3sq97vt4jd2n_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Дмитрий Медведев</div> <div style="text-align: center; font-size: 14px;">@medvedevrussia</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Дмитрий Медведев. | Data | Дмитрий Медведев | | --- | --- | | Tweets downloaded | 1740 | | Retweets | 300 | | Short tweets | 48 | | Tweets kept | 1392 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2s7c3vz9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @medvedevrussia's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1e00s9pz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1e00s9pz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/medvedevrussia') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
FollishBoi/dqn-MountainCar-v0-try3
FollishBoi
2022-05-15T12:01:35Z
4
0
stable-baselines3
[ "stable-baselines3", "MountainCar-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-15T12:01:12Z
--- library_name: stable-baselines3 tags: - MountainCar-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: -104.00 +/- 2.68 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: MountainCar-v0 type: MountainCar-v0 --- # **DQN** Agent playing **MountainCar-v0** This is a trained model of a **DQN** agent playing **MountainCar-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
NikiTricky/ffhq-autoencoder-16dim
NikiTricky
2022-05-15T12:01:27Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2022-05-15T11:29:08Z
--- license: apache-2.0 --- # FFHQ Autoencoder An autoencoder train on the **F**lickr-**F**aces-**HQ** Dataset with 16 latent dimensions for 1000 epochs. **Note:** The images trained on were 128x128. It was meant for the [Latent Space Explorer](https://github.com/NikiTricky2/Latent-space-vizualizer)
anas-awadalla/splinter-base-finetuned-squad
anas-awadalla
2022-05-15T11:49:58Z
4
0
transformers
[ "transformers", "pytorch", "splinter", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-15T10:55:15Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: splinter-base-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # splinter-base-finetuned-squad This model is a fine-tuned version of [tau/splinter-base-qass](https://huggingface.co/tau/splinter-base-qass) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
mubikan/xlm-roberta-base-finetuned-panx-de
mubikan
2022-05-15T11:48:08Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-14T15:57:44Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8588964027959312 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1383 - F1: 0.8589 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2631 | 1.0 | 525 | 0.1596 | 0.8218 | | 0.1296 | 2.0 | 1050 | 0.1353 | 0.8479 | | 0.0821 | 3.0 | 1575 | 0.1383 | 0.8589 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
harikp20/hkp24
harikp20
2022-05-15T11:34:27Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-15T08:30:36Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: hkp24 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hkp24 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1619 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2249 | 1.0 | 5533 | 1.1675 | | 0.961 | 2.0 | 11066 | 1.1376 | | 0.7581 | 3.0 | 16599 | 1.1619 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
meln1k/ppo-BipedalWalker-v3
meln1k
2022-05-15T11:11:47Z
1
0
stable-baselines3
[ "stable-baselines3", "BipedalWalker-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-15T11:11:23Z
--- library_name: stable-baselines3 tags: - BipedalWalker-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 312.05 +/- 1.22 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: BipedalWalker-v3 type: BipedalWalker-v3 --- # **PPO** Agent playing **BipedalWalker-v3** This is a trained model of a **PPO** agent playing **BipedalWalker-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
anas-awadalla/splinter-large-finetuned-squad
anas-awadalla
2022-05-15T10:51:43Z
27
0
transformers
[ "transformers", "pytorch", "splinter", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-15T08:20:49Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: splinter-large-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # splinter-large-finetuned-squad This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
ZaynSu99/weibo_senti_cls
ZaynSu99
2022-05-15T10:46:21Z
0
0
null
[ "license:afl-3.0", "region:us" ]
null
2022-05-15T10:31:02Z
--- license: afl-3.0 --- this model is for Weibo comment sentiment analysis
FumaNet/TEST1PPO-CartPole-v1
FumaNet
2022-05-15T10:24:11Z
4
0
stable-baselines3
[ "stable-baselines3", "CartPole-v1", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-15T10:23:40Z
--- library_name: stable-baselines3 tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 397.00 +/- 103.22 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 --- # **PPO** Agent playing **CartPole-v1** This is a trained model of a **PPO** agent playing **CartPole-v1** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
atsanda/ppo-LunarLander-v2
atsanda
2022-05-15T09:28:07Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-15T09:27:35Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 241.67 +/- 9.99 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
esh/MountainCar-v0
esh
2022-05-15T09:23:41Z
0
0
stable-baselines3
[ "stable-baselines3", "MountainCar-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-15T09:10:58Z
--- library_name: stable-baselines3 tags: - MountainCar-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: -169.90 +/- 36.95 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: MountainCar-v0 type: MountainCar-v0 --- # **PPO** Agent playing **MountainCar-v0** This is a trained model of a **PPO** agent playing **MountainCar-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
Metformin/BART_medFineTune
Metformin
2022-05-15T09:11:06Z
3
0
transformers
[ "transformers", "tf", "bart", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-15T05:39:34Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Metformin/BART_medFineTune results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Metformin/BART_medFineTune This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7982 - Validation Loss: 0.9953 - Epoch: 29 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 1e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 7820, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 100, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.1563 | 1.3468 | 0 | | 1.4157 | 1.2090 | 1 | | 1.2579 | 1.1387 | 2 | | 1.1819 | 1.0888 | 3 | | 1.1438 | 1.0848 | 4 | | 1.0629 | 1.0512 | 5 | | 1.0163 | 1.0454 | 6 | | 0.9801 | 1.0248 | 7 | | 0.9530 | 1.0171 | 8 | | 0.9262 | 1.0108 | 9 | | 0.9124 | 1.0116 | 10 | | 0.8853 | 1.0043 | 11 | | 0.8658 | 1.0023 | 12 | | 0.8511 | 0.9987 | 13 | | 0.8394 | 0.9988 | 14 | | 0.8298 | 0.9994 | 15 | | 0.8175 | 0.9985 | 16 | | 0.8105 | 0.9936 | 17 | | 0.8033 | 0.9974 | 18 | | 0.8012 | 0.9948 | 19 | | 0.7997 | 0.9948 | 20 | | 0.7970 | 0.9957 | 21 | | 0.7956 | 0.9958 | 22 | | 0.8002 | 0.9954 | 23 | | 0.7951 | 0.9957 | 24 | | 0.7994 | 0.9948 | 25 | | 0.7964 | 0.9958 | 26 | | 0.7948 | 0.9957 | 27 | | 0.7979 | 0.9956 | 28 | | 0.7982 | 0.9953 | 29 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.6.3 - Datasets 2.0.0 - Tokenizers 0.12.1
esh/ppo-LunarLander-v2
esh
2022-05-15T09:01:54Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-09T16:40:01Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 266.69 +/- 23.44 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
anas-awadalla/roberta-large-houlsby-few-shot-k-512-finetuned-squad-seed-2
anas-awadalla
2022-05-15T07:40:11Z
0
0
null
[ "generated_from_trainer", "dataset:squad", "license:mit", "region:us" ]
null
2022-05-15T05:02:33Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-large-houlsby-few-shot-k-512-finetuned-squad-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-houlsby-few-shot-k-512-finetuned-squad-seed-2 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 12 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20.0 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
meln1k/ppo-CarRacing-v0
meln1k
2022-05-15T07:31:25Z
11
2
stable-baselines3
[ "stable-baselines3", "CarRacing-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-15T07:19:11Z
--- library_name: stable-baselines3 tags: - CarRacing-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 840.32 +/- 21.17 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CarRacing-v0 type: CarRacing-v0 --- # **PPO** Agent playing **CarRacing-v0** This is a trained model of a **PPO** agent playing **CarRacing-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
ruselkomp/xlm-roberta
ruselkomp
2022-05-15T07:26:51Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-14T22:18:34Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: xlm-roberta results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta This model is a fine-tuned version of [AlexKay/xlm-roberta-large-qa-multilingual-finedtuned-ru](https://huggingface.co/AlexKay/xlm-roberta-large-qa-multilingual-finedtuned-ru) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1842 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.0083 | 1.0 | 15104 | 0.9420 | | 0.8093 | 2.0 | 30208 | 0.9264 | | 0.5576 | 3.0 | 45312 | 1.1842 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2.dev0 - Tokenizers 0.12.1
anas-awadalla/roberta-large-houlsby-few-shot-k-256-finetuned-squad-seed-2
anas-awadalla
2022-05-15T07:13:31Z
0
0
null
[ "generated_from_trainer", "dataset:squad", "license:mit", "region:us" ]
null
2022-05-15T04:42:51Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-large-houlsby-few-shot-k-256-finetuned-squad-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-houlsby-few-shot-k-256-finetuned-squad-seed-2 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 12 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20.0 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
anas-awadalla/roberta-large-houlsby-few-shot-k-256-finetuned-squad-seed-0
anas-awadalla
2022-05-15T07:06:17Z
0
0
null
[ "generated_from_trainer", "dataset:squad", "license:mit", "region:us" ]
null
2022-05-15T04:38:07Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-large-houlsby-few-shot-k-256-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-houlsby-few-shot-k-256-finetuned-squad-seed-0 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 12 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20.0 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
anas-awadalla/roberta-large-houlsby-few-shot-k-128-finetuned-squad-seed-0
anas-awadalla
2022-05-15T06:45:01Z
0
0
null
[ "generated_from_trainer", "dataset:squad", "license:mit", "region:us" ]
null
2022-05-15T03:10:02Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-large-houlsby-few-shot-k-128-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-houlsby-few-shot-k-128-finetuned-squad-seed-0 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 12 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 400 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
questgen/all-mpnet-base-v2-feature-extraction-pipeline
questgen
2022-05-15T06:29:59Z
8
2
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "en", "arxiv:1904.06472", "arxiv:2102.07033", "arxiv:2104.08727", "arxiv:1704.05179", "arxiv:1810.09305", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
feature-extraction
2022-05-15T06:25:37Z
--- pipeline_tag: feature-extraction tags: - sentence-transformers - feature-extraction - sentence-similarity language: en license: apache-2.0 --- # all-mpnet-base-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch import torch.nn.functional as F #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-mpnet-base-v2') model = AutoModel.from_pretrained('sentence-transformers/all-mpnet-base-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) # Normalize embeddings sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/all-mpnet-base-v2) ------ ## Background The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained [`microsoft/mpnet-base`](https://huggingface.co/microsoft/mpnet-base) model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intented to be used as a sentence and short paragraph encoder. Given an input text, it ouptuts a vector which captures the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. By default, input text longer than 384 word pieces is truncated. ## Training procedure ### Pre-training We use the pretrained [`microsoft/mpnet-base`](https://huggingface.co/microsoft/mpnet-base) model. Please refer to the model card for more detailed information about the pre-training procedure. ### Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. #### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 100k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository: `train_script.py`. #### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. | Dataset | Paper | Number of training tuples | |--------------------------------------------------------|:----------------------------------------:|:--------------------------:| | [Reddit comments (2015-2018)](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 | | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Abstracts) | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | [PAQ](https://github.com/facebookresearch/PAQ) (Question, Answer) pairs | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Titles) | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 | | [S2ORC](https://github.com/allenai/s2orc) (Title, Abstract) | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs | - | 25,316,456 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title+Body, Answer) pairs | - | 21,396,559 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs | - | 21,396,559 | | [MS MARCO](https://microsoft.github.io/msmarco/) triplets | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 | | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 | | [COCO](https://cocodataset.org/#home) Image captions | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395| | [SPECTER](https://github.com/allenai/specter) citation triplets | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 | | [SearchQA](https://huggingface.co/datasets/search_qa) | [paper](https://arxiv.org/abs/1704.05179) | 582,261 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles) | | 304,525 | | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (bodies) | | 250,519 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles+bodies) | | 250,460 | | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 | | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 | | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 | | [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [TriviaQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | **Total** | | **1,170,060,424** |
danieleV9H/hubert-base-libri-clean-ft100h
danieleV9H
2022-05-15T05:47:23Z
11
0
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "automatic-speech-recognition", "generated_from_trainer", "dataset:librispeech_asr", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-14T19:09:33Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - librispeech_asr model-index: - name: hubert-base-libri-clean-ft100h results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hubert-base-libri-clean-ft100h This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 0.1324 - Wer: 0.1597 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.14 | 250 | 4.1508 | 1.0000 | | 4.4345 | 0.28 | 500 | 3.8766 | 1.0000 | | 4.4345 | 0.42 | 750 | 3.4376 | 1.0000 | | 2.8475 | 0.56 | 1000 | 2.7380 | 1.0 | | 2.8475 | 0.7 | 1250 | 0.8803 | 0.6766 | | 1.1877 | 0.84 | 1500 | 0.5671 | 0.5102 | | 1.1877 | 0.98 | 1750 | 0.4537 | 0.4388 | | 0.5802 | 1.12 | 2000 | 0.3566 | 0.3740 | | 0.5802 | 1.26 | 2250 | 0.2925 | 0.3209 | | 0.4301 | 1.4 | 2500 | 0.2613 | 0.2952 | | 0.4301 | 1.54 | 2750 | 0.2363 | 0.2715 | | 0.3591 | 1.68 | 3000 | 0.2155 | 0.2552 | | 0.3591 | 1.82 | 3250 | 0.2062 | 0.2418 | | 0.3015 | 1.96 | 3500 | 0.1951 | 0.2308 | | 0.3015 | 2.1 | 3750 | 0.1842 | 0.2207 | | 0.2698 | 2.24 | 4000 | 0.1900 | 0.2112 | | 0.2698 | 2.38 | 4250 | 0.1745 | 0.2048 | | 0.2561 | 2.52 | 4500 | 0.1718 | 0.2040 | | 0.2561 | 2.66 | 4750 | 0.1625 | 0.1939 | | 0.2348 | 2.8 | 5000 | 0.1568 | 0.1867 | | 0.2348 | 2.94 | 5250 | 0.1517 | 0.1855 | | 0.2278 | 3.08 | 5500 | 0.1501 | 0.1807 | | 0.2278 | 3.22 | 5750 | 0.1445 | 0.1772 | | 0.2166 | 3.36 | 6000 | 0.1422 | 0.1752 | | 0.2166 | 3.5 | 6250 | 0.1418 | 0.1741 | | 0.2017 | 3.64 | 6500 | 0.1404 | 0.1695 | | 0.2017 | 3.78 | 6750 | 0.1356 | 0.1674 | | 0.1922 | 3.92 | 7000 | 0.1350 | 0.1688 | | 0.1922 | 4.06 | 7250 | 0.1346 | 0.1638 | | 0.1979 | 4.2 | 7500 | 0.1359 | 0.1638 | | 0.1979 | 4.34 | 7750 | 0.1336 | 0.1612 | | 0.1836 | 4.48 | 8000 | 0.1324 | 0.1613 | | 0.1836 | 4.62 | 8250 | 0.1320 | 0.1606 | | 0.1891 | 4.76 | 8500 | 0.1325 | 0.1598 | | 0.1891 | 4.9 | 8750 | 0.1324 | 0.1597 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
ahmeddbahaa/mbart-large-50-finetuned-persian
ahmeddbahaa
2022-05-15T04:01:56Z
18
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "summarization", "persian", "MBart50", "Abstractive Summarization", "generated_from_trainer", "dataset:xlsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-05-14T13:40:15Z
--- tags: - summarization - persian - MBart50 - Abstractive Summarization - generated_from_trainer datasets: - xlsum model-index: - name: mbart-large-50-finetuned-persian results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-large-50-finetuned-persian This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 4.1932 - Rouge-1: 26.11 - Rouge-2: 8.11 - Rouge-l: 21.09 - Gen Len: 37.29 - Bertscore: 71.08 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:| | 5.5612 | 1.0 | 1476 | 4.5015 | 17.07 | 3.14 | 13.54 | 47.49 | 66.83 | | 4.3049 | 2.0 | 2952 | 4.1055 | 22.63 | 5.89 | 18.03 | 40.43 | 69.23 | | 3.8154 | 3.0 | 4428 | 3.9822 | 24.57 | 7.15 | 19.74 | 37.35 | 70.36 | | 3.3401 | 4.0 | 5904 | 4.0088 | 25.84 | 7.96 | 20.95 | 37.56 | 70.83 | | 2.8879 | 5.0 | 7380 | 4.1932 | 26.24 | 8.26 | 21.23 | 37.78 | 71.05 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
smc/electric
smc
2022-05-15T00:19:16Z
50
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-05-15T00:13:48Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: electric results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9166666865348816 --- # electric Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images
anas-awadalla/splinter-large-few-shot-k-1024-finetuned-squad-seed-4
anas-awadalla
2022-05-14T23:53:22Z
6
0
transformers
[ "transformers", "pytorch", "splinter", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-14T23:32:56Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: splinter-large-few-shot-k-1024-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # splinter-large-few-shot-k-1024-finetuned-squad-seed-4 This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
anas-awadalla/roberta-large-few-shot-k-1024-finetuned-squad-seed-4
anas-awadalla
2022-05-14T23:53:15Z
9
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-05-14T23:32:52Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-large-few-shot-k-1024-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-few-shot-k-1024-finetuned-squad-seed-4 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
anas-awadalla/splinter-large-few-shot-k-1024-finetuned-squad-seed-0
anas-awadalla
2022-05-14T23:09:42Z
4
0
transformers
[ "transformers", "pytorch", "splinter", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-14T22:49:18Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: splinter-large-few-shot-k-1024-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # splinter-large-few-shot-k-1024-finetuned-squad-seed-0 This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
anas-awadalla/splinter-large-few-shot-k-512-finetuned-squad-seed-2
anas-awadalla
2022-05-14T22:32:48Z
3
0
transformers
[ "transformers", "pytorch", "splinter", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-14T22:19:32Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: splinter-large-few-shot-k-512-finetuned-squad-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # splinter-large-few-shot-k-512-finetuned-squad-seed-2 This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6