modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-24 12:28:46
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
493 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-24 12:27:57
card
stringlengths
11
1.01M
huggingtweets/wokal_distance
huggingtweets
2021-08-28T16:30:35Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1334420408490057729/BoIR414f_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Wokal Distance</div> <div style="text-align: center; font-size: 14px;">@wokal_distance</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Wokal Distance. | Data | Wokal Distance | | --- | --- | | Tweets downloaded | 3242 | | Retweets | 1382 | | Short tweets | 145 | | Tweets kept | 1715 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1udsr72i/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @wokal_distance's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1pi9x5ai) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1pi9x5ai/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/wokal_distance') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Flampt/DialoGPT-medium-Sheldon
Flampt
2021-08-28T14:17:44Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- tags: - conversational --- # Sheldon Cooper from The Big Bang Theory Show DialoGPT Model
OsmyReal/Ayuda
OsmyReal
2021-08-28T06:12:44Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:04Z
git lfs install git clone https://huggingface.co/r3dhummingbird/DialoGPT-medium-joshua
velociraptor/hugging-doge
velociraptor
2021-08-28T06:01:46Z
71
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: hugging-doge results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9375 --- # hugging-doge Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### corgi ![corgi](images/corgi.jpg) #### golden retriever ![golden retriever](images/golden_retriever.jpg) #### husky ![husky](images/husky.jpg) #### poodle ![poodle](images/poodle.jpg) #### shiba inu ![shiba inu](images/shiba_inu.jpg)
cosmoquester/bart-ko-base
cosmoquester
2021-08-28T05:12:02Z
76
1
transformers
[ "transformers", "pytorch", "tf", "bart", "text2text-generation", "ko", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: ko --- # Pretrained BART in Korean This is pretrained BART model with multiple Korean Datasets. I used multiple datasets for generalizing the model for both colloquial and written texts. The training is supported by [TPU Research Cloud](https://sites.research.google/trc/) program. The script which is used to pre-train model is [here](https://github.com/cosmoquester/transformers-bart-pretrain). When you use the reference API, you must wrap the sentence with `[BOS]` and `[EOS]` like below example. ``` [BOS] 안녕하세요? 반가워요~~ [EOS] ``` You can also test mask filling performance using `[MASK]` token like this. ``` [BOS] [MASK] 먹었어? [EOS] ``` ## Benchmark <style> table { border-collapse: collapse; border-style: hidden; width: 100%; } td, th { border: 1px solid #4d5562; padding: 8px; } </style> <table> <tr> <th>Dataset</th> <td>KLUE NLI dev</th> <td>NSMC test</td> <td>QuestionPair test</td> <td colspan="2">KLUE TC dev</td> <td colspan="3">KLUE STS dev</td> <td colspan="3">KorSTS dev</td> <td colspan="2">HateSpeech dev</td> </tr> <tr> <th>Metric</th> <!-- KLUE NLI --> <td>Acc</th> <!-- NSMC --> <td>Acc</td> <!-- QuestionPair --> <td>Acc</td> <!-- KLUE TC --> <td>Acc</td> <td>F1</td> <!-- KLUE STS --> <td>F1</td> <td>Pearson</td> <td>Spearman</td> <!-- KorSTS --> <td>F1</td> <td>Pearson</td> <td>Spearman</td> <!-- HateSpeech --> <td>Bias Acc</td> <td>Hate Acc</td> </tr> <tr> <th>Score</th> <!-- KLUE NLI --> <td>0.7390</th> <!-- NSMC --> <td>0.8877</td> <!-- QuestionPair --> <td>0.9208</td> <!-- KLUE TC --> <td>0.8667</td> <td>0.8637</td> <!-- KLUE STS --> <td>0.7654</td> <td>0.8090</td> <td>0.8040</td> <!-- KorSTS --> <td>0.8067</td> <td>0.7909</td> <td>0.7784</td> <!-- HateSpeech --> <td>0.8280</td> <td>0.5669</td> </tr> </table> - The performance was measured using [the notebooks here](https://github.com/cosmoquester/transformers-bart-finetune) with colab. ## Used Datasets ### [모두의 말뭉치](https://corpus.korean.go.kr/) - 일상 대화 말뭉치 2020 - 구어 말뭉치 - 문어 말뭉치 - 신문 말뭉치 ### AIhub - [개방데이터 전문분야말뭉치](https://aihub.or.kr/aidata/30717) - [개방데이터 한국어대화요약](https://aihub.or.kr/aidata/30714) - [개방데이터 감성 대화 말뭉치](https://aihub.or.kr/aidata/7978) - [개방데이터 한국어 음성](https://aihub.or.kr/aidata/105) - [개방데이터 한국어 SNS](https://aihub.or.kr/aidata/30718) ### [세종 말뭉치](https://ithub.korean.go.kr/)
cosmoquester/bart-ko-small
cosmoquester
2021-08-28T05:09:54Z
48
0
transformers
[ "transformers", "pytorch", "tf", "bart", "text2text-generation", "ko", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: ko --- # Pretrained BART in Korean This is pretrained BART model with multiple Korean Datasets. I used multiple datasets for generalizing the model for both colloquial and written texts. The training is supported by [TPU Research Cloud](https://sites.research.google/trc/) program. The script which is used to pre-train model is [here](https://github.com/cosmoquester/transformers-bart-pretrain). When you use the reference API, you must wrap the sentence with `[BOS]` and `[EOS]` like below example. ``` [BOS] 안녕하세요? 반가워요~~ [EOS] ``` You can also test mask filling performance using `[MASK]` token like this. ``` [BOS] [MASK] 먹었어? [EOS] ``` ## Benchmark <style> table { border-collapse: collapse; border-style: hidden; width: 100%; } td, th { border: 1px solid #4d5562; padding: 8px; } </style> <table> <tr> <th>Dataset</th> <td>KLUE NLI dev</th> <td>NSMC test</td> <td>QuestionPair test</td> <td colspan="2">KLUE TC dev</td> <td colspan="3">KLUE STS dev</td> <td colspan="3">KorSTS dev</td> <td colspan="2">HateSpeech dev</td> </tr> <tr> <th>Metric</th> <!-- KLUE NLI --> <td>Acc</th> <!-- NSMC --> <td>Acc</td> <!-- QuestionPair --> <td>Acc</td> <!-- KLUE TC --> <td>Acc</td> <td>F1</td> <!-- KLUE STS --> <td>F1</td> <td>Pearson</td> <td>Spearman</td> <!-- KorSTS --> <td>F1</td> <td>Pearson</td> <td>Spearman</td> <!-- HateSpeech --> <td>Bias Acc</td> <td>Hate Acc</td> </tr> <tr> <th>Score</th> <!-- KLUE NLI --> <td>0.639</th> <!-- NSMC --> <td>0.8721</td> <!-- QuestionPair --> <td>0.905</td> <!-- KLUE TC --> <td>0.8551</td> <td>0.8515</td> <!-- KLUE STS --> <td>0.7406</td> <td>0.7593</td> <td>0.7551</td> <!-- KorSTS --> <td>0.7897</td> <td>0.7269</td> <td>0.7037</td> <!-- HateSpeech --> <td>0.8068</td> <td>0.5966</td> </tr> </table> - The performance was measured using [the notebooks here](https://github.com/cosmoquester/transformers-bart-finetune) with colab. ## Used Datasets ### [모두의 말뭉치](https://corpus.korean.go.kr/) - 일상 대화 말뭉치 2020 - 구어 말뭉치 - 문어 말뭉치 - 신문 말뭉치 ### AIhub - [개방데이터 전문분야말뭉치](https://aihub.or.kr/aidata/30717) - [개방데이터 한국어대화요약](https://aihub.or.kr/aidata/30714) - [개방데이터 감성 대화 말뭉치](https://aihub.or.kr/aidata/7978) - [개방데이터 한국어 음성](https://aihub.or.kr/aidata/105) - [개방데이터 한국어 SNS](https://aihub.or.kr/aidata/30718) ### [세종 말뭉치](https://ithub.korean.go.kr/)
SilentMyuth/sarcastic-model
SilentMyuth
2021-08-27T21:10:27Z
7
1
transformers
[ "transformers", "conversational", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- pipeline_tag: conversational --- This model is a fine-tuned version of Microsoft/DialoGPT-medium trained to created sarcastic responses from the dataset "Sarcasm on Reddit" located [here](https://www.kaggle.com/danofer/sarcasm).
nateraw/vit-base-beans-demo-v3
nateraw
2021-08-27T17:52:10Z
71
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "other-image-classification", "generated_from_trainer", "dataset:beans", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-classification - other-image-classification - generated_from_trainer datasets: - beans metrics: - accuracy model-index: - name: vit-base-beans-demo-v3 results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans args: default metrics: - name: Accuracy type: accuracy value: 0.9849624060150376 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans-demo-v3 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0645 - Accuracy: 0.9850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0397 | 1.54 | 100 | 0.0645 | 0.9850 | ### Framework versions - Transformers 4.10.0.dev0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
nateraw/vit-base-beans-demo
nateraw
2021-08-27T17:06:03Z
74
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "other-image-classification", "generated_from_trainer", "dataset:beans", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-classification - other-image-classification - generated_from_trainer datasets: - beans metrics: - accuracy model-index: - name: vit-base-beans-demo results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans args: default metrics: - name: Accuracy type: accuracy value: 0.9774436090225563 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans-demo This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0853 - Accuracy: 0.9774 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0545 | 1.54 | 100 | 0.1436 | 0.9624 | | 0.006 | 3.08 | 200 | 0.1058 | 0.9699 | | 0.0038 | 4.62 | 300 | 0.0853 | 0.9774 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
zald/distilbert-base-uncased-finetuned-ner
zald
2021-08-27T16:39:55Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model_index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metric: name: Accuracy type: accuracy value: 0.9835893688340985 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0607 - Precision: 0.9253 - Recall: 0.9350 - F1: 0.9301 - Accuracy: 0.9836 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.237 | 1.0 | 878 | 0.0701 | 0.9131 | 0.9228 | 0.9179 | 0.9809 | | 0.0509 | 2.0 | 1756 | 0.0617 | 0.9182 | 0.9333 | 0.9257 | 0.9826 | | 0.0299 | 3.0 | 2634 | 0.0607 | 0.9253 | 0.9350 | 0.9301 | 0.9836 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.11.0 - Tokenizers 0.10.3
HungVo/mt-dnn-ev-mrpc
HungVo
2021-08-27T08:55:31Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:04Z
Model saved for Paraphrased Detection in English-Vietnamese cross-lingual based on XLM-R in MT-DNN MT-DNN: github.com/namisan/mt-dnn
KP2500/KPBot
KP2500
2021-08-27T06:53:22Z
8
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- tags: - conversational --- # RickBot built for [Chai](https://chai.ml/) Make your own [here](https://colab.research.google.com/drive/1o5LxBspm-C28HQvXN-PRQavapDbm5WjG?usp=sharing)
hackertec/roberta-base-bne-finetuned-amazon_reviews_multi-taller
hackertec
2021-08-26T18:26:27Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: cc-by-4.0 tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy model_index: - name: roberta-base-bne-finetuned-amazon_reviews_multi-taller results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: es metric: name: Accuracy type: accuracy value: 0.91125 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-amazon_reviews_multi-taller This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.2463 - Accuracy: 0.9113 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2474 | 1.0 | 125 | 0.2463 | 0.9113 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
imdhamu/DialoGPT-small-harrypotter
imdhamu
2021-08-26T17:39:32Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - conversational #Harry Potter DialoGPT Model
uva-irlab/quretec
uva-irlab
2021-08-26T14:06:47Z
12
1
transformers
[ "transformers", "pytorch", "bert", "conversational-search", "en", "dataset:uva-irlab/canard_quretec", "arxiv:2005.11723", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: - en tags: - conversational-search # Example: audio metrics: - f1 datasets: - uva-irlab/canard_quretec model-index: - name: QuReTec results: - task: name: Conversational search # Example: Speech Recognition type: conversational # Example: automatic-speech-recognition dataset: name: CANARD # Example: Common Voice zh-CN type: canard # Example: common_voice metrics: - name: Micro F1 # Example: Test WER type: f1 # Example: wer value: 68.7 # Example: 20.90 - name: Micro Recall type: recall value: 66.1 - name: Micro Precision type: precision value: 71.5 --- # QuReTec: query resolution model QuReTeC is a query resolution model. It finds the relevant terms in a question history. It is based on **bert-large-uncased** with a max sequence length of 300. # Config details Training and evaluation was done using the following BertConfig: ```json BertConfig { "_name_or_path": "uva-irlab/quretec", "architectures": ["BertForMaskedLM"], "attention_probs_dropout_prob": 0.1, "finetuning_task": "ner", "gradient_checkpointing": false, "hidden_act": "gelu", "hidden_dropout_prob": 0.4, "hidden_size": 1024, "id2label": { "0": "[PAD]", "1": "O", "2": "REL", "3": "[CLS]", "4": "[SEP]" }, "initializer_range": 0.02, "intermediate_size": 4096, "label2id": { "O": 1, "REL": 2, "[CLS]": 3, "[PAD]": 0, "[SEP]": 4 }, "layer_norm_eps": 1e-12, "max_position_embeddings": 512, "model_type": "bert", "num_attention_heads": 16, "num_hidden_layers": 24, "pad_token_id": 0, "position_embedding_type": "absolute", "transformers_version": "4.6.1", "type_vocab_size": 2, "use_cache": true, "vocab_size": 30522 } ``` # Original authors QuReTeC model from the published SIGIR 2020 paper: Query Resolution for Conversational Search with Limited Supervision by N. Voskarides, D. Li, P. Ren, E. Kanoulas and M. de Rijke. [[pdf]](https://arxiv.org/abs/2005.11723). # Contributions Uploaded by G. Scheuer ([website](https://giguruscheuer.com))
huggingtweets/yourfavhwhw
huggingtweets
2021-08-26T13:26:11Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/yourfavhwhw/1629984367533/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1423284698046865415/vfSSZ3t9_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">🥴</div> <div style="text-align: center; font-size: 14px;">@yourfavhwhw</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 🥴. | Data | 🥴 | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 57 | | Short tweets | 525 | | Tweets kept | 2664 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/18wxe7tu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @yourfavhwhw's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/imwcf0iy) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/imwcf0iy/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/yourfavhwhw') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
leonardvorbeck/wav2vec2-large-robust-LS960
leonardvorbeck
2021-08-26T12:22:00Z
5
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "speech", "CTC", "Attention", "en", "dataset:libri_light", "dataset:common_voice", "dataset:switchboard", "dataset:fisher", "arxiv:2104.01027", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: en datasets: - libri_light - common_voice - switchboard - fisher tags: - speech - automatic-speech-recognition - CTC - Attention - wav2vec2 license: apache-2.0 --- # Wav2Vec2-Large-Robust - Finetuned on Librispeech (960 hours) ## Note : Model has not been initialized. If you want to use it without further finetuning, do a forward pass first to recalculate the normalized weights of the positional convolutional layer : ```ipython with torch.no_grad(): model(torch.randn((1,300_000))) ``` [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) The base model pretrained on 16kHz sampled speech audio. Speech datasets from multiple domains were used to pretrain the model: - [Libri-Light](https://github.com/facebookresearch/libri-light): open-source audio books from the LibriVox project; clean, read-out audio data - [CommonVoice](https://huggingface.co/datasets/common_voice): crowd-source collected audio data; read-out text snippets - [Switchboard](https://catalog.ldc.upenn.edu/LDC97S62): telephone speech corpus; noisy telephone data - [Fisher](https://catalog.ldc.upenn.edu/LDC2004T19): conversational telephone speech; noisy telephone data When using the model make sure that your speech input is also sampled at 16Khz. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information. [Paper Robust Wav2Vec2](https://arxiv.org/abs/2104.01027) Authors: Wei-Ning Hsu, Anuroop Sriram, Alexei Baevski, Tatiana Likhomanenko, Qiantong Xu, Vineel Pratap, Jacob Kahn, Ann Lee, Ronan Collobert, Gabriel Synnaeve, Michael Auli **Abstract** Self-supervised learning of speech representations has been a very active research area but most work is focused on a single domain such as read audio books for which there exist large quantities of labeled and unlabeled data. In this paper, we explore more general setups where the domain of the unlabeled data for pre-training data differs from the domain of the labeled data for fine-tuning, which in turn may differ from the test data domain. Our experiments show that using target domain data during pre-training leads to large performance improvements across a variety of setups. On a large-scale competitive setup, we show that pre-training on unlabeled in-domain data reduces the gap between models trained on in-domain and out-of-domain labeled data by 66%-73%. This has obvious practical implications since it is much easier to obtain unlabeled target domain data than labeled data. Moreover, we find that pre-training on multiple domains improves generalization performance on domains not seen during training. Code and models will be made available at this https URL. The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20. # Usage See [this notebook](https://colab.research.google.com/drive/1FjTsqbYKphl9kL-eILgUc-bl4zVThL8F?usp=sharing) for more information on how to fine-tune the model.
mervenoyan/PubMedBERT-QNLI
mervenoyan
2021-08-26T10:27:15Z
7
8
transformers
[ "transformers", "pytorch", "bert", "text-classification", "arxiv:2007.15779", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
# PubMedBERT Abstract + Full Text Fine-Tuned on QNLI Task Use case: You can use it to search through a document for a given question, to see if your question is answered in that document. LABEL0 is "not entailment" meaning your question is not answered by the context and LABEL1 is "entailment" meaning your question is answered. > Example input: [CLS] Your question [SEP] The context to be searched in [SEP] Link to the original model: https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext Credits to the paper: > @misc{pubmedbert, author = {Yu Gu and Robert Tinn and Hao Cheng and > Michael Lucas and Naoto Usuyama and Xiaodong Liu and Tristan Naumann > and Jianfeng Gao and Hoifung Poon}, title = {Domain-Specific > Language Model Pretraining for Biomedical Natural Language > Processing}, year = {2020}, eprint = {arXiv:2007.15779}, }
dragonSwing/viwav2vec2-base-100h
dragonSwing
2021-08-26T03:25:02Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "pretraining", "speech", "automatic-speech-recognition", "vi", "dataset:vlsp", "arxiv:2006.11477", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: vi datasets: - vlsp tags: - speech - automatic-speech-recognition license: apache-2.0 --- # Wav2Vec2-Base-Pretrain-Vietnamese The base model is pre-trained on 16kHz sampled speech audio from 100h Vietnamese unlabelled data in [VLSP dataset](https://drive.google.com/file/d/1vUSxdORDxk-ePUt-bUVDahpoXiqKchMx/view?usp=sharing). When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Vietnamese Automatic Speech Recognition. [Facebook's Wav2Vec2 blog](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) [Paper](https://arxiv.org/abs/2006.11477) # Usage See [this notebook](https://colab.research.google.com/drive/1FjTsqbYKphl9kL-eILgUc-bl4zVThL8F?usp=sharing) for more information on how to fine-tune the English pre-trained model.
huggingartists/veggietales
huggingartists
2021-08-26T03:09:19Z
5
1
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/veggietales", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/veggietales tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/d14c9e27b39f0e250784a2dce037a03d.720x720x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">VeggieTales</div> <a href="https://genius.com/artists/veggietales"> <div style="text-align: center; font-size: 14px;">@veggietales</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from VeggieTales. Dataset is available [here](https://huggingface.co/datasets/huggingartists/veggietales). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/veggietales") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1r6205vr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on VeggieTales's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/111uuafu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/111uuafu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/veggietales') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/veggietales") model = AutoModelWithLMHead.from_pretrained("huggingartists/veggietales") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/cocomelon
huggingartists
2021-08-26T02:48:10Z
4
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/cocomelon", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/cocomelon tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/a6115c556163f271124bacf8a07db45d.499x499x1.png&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Cocomelon</div> <a href="https://genius.com/artists/cocomelon"> <div style="text-align: center; font-size: 14px;">@cocomelon</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Cocomelon. Dataset is available [here](https://huggingface.co/datasets/huggingartists/cocomelon). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/cocomelon") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1avk18yc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Cocomelon's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3s0b2uix) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3s0b2uix/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/cocomelon') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/cocomelon") model = AutoModelWithLMHead.from_pretrained("huggingartists/cocomelon") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingtweets/beemoviescript
huggingtweets
2021-08-26T01:52:42Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/498860581072273408/q5v6iWVw_400x400.jpeg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bee Movie Script</div> <div style="text-align: center; font-size: 14px;">@beemoviescript</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Bee Movie Script. | Data | Bee Movie Script | | --- | --- | | Tweets downloaded | 1427 | | Retweets | 0 | | Short tweets | 169 | | Tweets kept | 1258 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/291me6fz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @beemoviescript's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3gtdvdf3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3gtdvdf3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/beemoviescript') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/rikergoogling
huggingtweets
2021-08-26T01:50:33Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/499021253953347585/COG26p9r_400x400.jpeg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Riker Googling</div> <div style="text-align: center; font-size: 14px;">@rikergoogling</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Riker Googling. | Data | Riker Googling | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 100 | | Short tweets | 342 | | Tweets kept | 2804 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2489wq37/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rikergoogling's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/136vtf4e) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/136vtf4e/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/rikergoogling') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
mrm8488/bioclinicalBERT-finetuned-covid-papers
mrm8488
2021-08-25T22:05:46Z
25
1
transformers
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - en widget: - text: "Masks are [MASK] for preventing" --- # BioclinicalBERT fine-tuned for MLM on COVID Papers
mrm8488/GPT-2-finetuned-covid-bio-medrxiv
mrm8488
2021-08-25T21:38:35Z
90
1
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: widget: - text: "Old people with COVID-19 tends to suffer" --- # GPT-2 + bio/medrxiv files from CORD19: 🦠 ✍ ⚕ **GPT-2** fine-tuned on **biorxiv_medrxiv** files from [CORD-19](https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge) dataset. ## Datasets details: | Dataset | # Files | | ---------------------- | ----- | | biorxiv_medrxiv | 885 | ## Model training: The model was trained on a Tesla P100 GPU and 25GB of RAM with the following command: ```bash export TRAIN_FILE=/path/to/dataset/train.txt python run_language_modeling.py \\n --model_type gpt2 \\n --model_name_or_path gpt2 \\n --do_train \\n --train_data_file $TRAIN_FILE \\n --num_train_epochs 4 \\n --output_dir model_output \\n --overwrite_output_dir \\n --save_steps 2000 \\n --per_gpu_train_batch_size 3 ``` ## Model in action / Example of usage: ✒ You can get the following script [here](https://github.com/huggingface/transformers/blob/master/examples/text-generation/run_generation.py) ```bash python run_generation.py \\n --model_type gpt2 \\n --model_name_or_path mrm8488/GPT-2-finetuned-CORD19 \\n --length 200 ``` ```txt 👵👴🦠 # Input: Old people with COVID-19 tends to suffer # Output: === GENERATED SEQUENCE 1 === Old people with COVID-19 tends to suffer more symptom onset time and death. It is well known that many people with COVID-19 have high homozygous ZIKV infection in the face of severe symptoms in both severe and severe cases. The origin of Wuhan Fever was investigated by Prof. Shen Jiang at the outbreak of Wuhan Fever [34]. As Huanan Province is the epicenter of this outbreak, Huanan, the epicenter of epidemic Wuhan Fever, is the most potential location for the direct transmission of infection (source: Zhongzhen et al., 2020). A negative risk ratio indicates more frequent underlying signs in the people in Huanan Province with COVID-19 patients. Further analysis of reported Huanan Fever onset data in the past two years indicated that the intensity of exposure is the key risk factor for developing MERS-CoV infection in this region, especially among children and elderly. To be continued to develop infected patients would be a very important area for ``` ![Model in action](https://media.giphy.com/media/TgUdO72Iwk9h7hhm7G/giphy.gif) > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
HeyLucasLeao/byt5-small-pt-product-reviews
HeyLucasLeao
2021-08-25T17:02:07Z
7
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "arxiv:2105.13626", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
Create README.md ## ByT5 Small Portuguese Product Reviews #### Model Description This is a finetuned version from ByT5 Small by Google for Sentimental Analysis from Product Reviews in Portuguese. ##### Paper: https://arxiv.org/abs/2105.13626 #### Training data It was trained from products reviews from a Americanas.com. You can found the data here: https://github.com/HeyLucasLeao/finetuning-byt5-model. #### Training Procedure It was finetuned using the Trainer Class available on the Hugging Face library. For evaluation it was used accuracy, precision, recall and f1 score. ##### Learning Rate: **1e-4** ##### Epochs: **1** ##### Colab for Finetuning: https://colab.research.google.com/drive/1EChTeQkGeXi_52lClBNazHVuSNKEHN2f ##### Colab for Metrics: https://colab.research.google.com/drive/1o4tcsP3lpr1TobtE3Txhp9fllxPWXxlw#scrollTo=PXAoog5vQaTn #### Score: ```python Training Set: 'accuracy': 0.8974239585927603, 'f1': 0.927229848590765, 'precision': 0.9580290812115055, 'recall': 0.8983492356469835 Test Set: 'accuracy': 0.8957881282882026, 'f1': 0.9261366030421776, 'precision': 0.9559431131213848, 'recall': 0.8981326359661668 Validation Set: 'accuracy': 0.8925383190163382, 'f1': 0.9239208204149773, 'precision': 0.9525448733710351, 'recall': 0.8969668904839083 ``` #### Goals My true intention was totally educational, thus making available a this version of the model as a example for future proposes. How to use ``` python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import torch if torch.cuda.is_available(): device = torch.device('cuda') else: device = torch.device('cpu') print(device) tokenizer = AutoTokenizer.from_pretrained("HeyLucasLeao/byt5-small-pt-product-reviews") model = AutoModelForSeq2SeqLM.from_pretrained("HeyLucasLeao/byt5-small-pt-product-reviews") model.to(device) def classificar_review(review): inputs = tokenizer([review], padding='max_length', truncation=True, max_length=512, return_tensors='pt') input_ids = inputs.input_ids.to(device) attention_mask = inputs.attention_mask.to(device) output = model.generate(input_ids, attention_mask=attention_mask) pred = np.argmax(output.cpu(), axis=1) dici = {0: 'Review Negativo', 1: 'Review Positivo'} return dici[pred.item()] classificar_review(review) ```
huggingtweets/urmomlolroasted
huggingtweets
2021-08-25T14:06:07Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/urmomlolroasted/1629900362212/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1365680527307595778/V2TENQA-_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">anna!!!!!</div> <div style="text-align: center; font-size: 14px;">@urmomlolroasted</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from anna!!!!!. | Data | anna!!!!! | | --- | --- | | Tweets downloaded | 3192 | | Retweets | 477 | | Short tweets | 700 | | Tweets kept | 2015 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1s1eoov7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @urmomlolroasted's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/36442rcs) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/36442rcs/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/urmomlolroasted') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
victoraavila/bert-base-uncased-finetuned-squad
victoraavila
2021-08-25T12:44:54Z
19
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model_index: - name: bert-base-uncased-finetuned-squad results: - task: name: Question Answering type: question-answering dataset: name: squad type: squad args: plain_text --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-squad This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the SQuAD1.1 dataset. It was trained through Transformers' example Colab notebook on Question Answering, available [here](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/question_answering.ipynb). It achieves the following results on the evaluation set: - Loss: 1.0780 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training. They are equal to the ones used to fine-tune [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) for QA: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.0706 | 1.0 | 5533 | 1.0250 | | 0.7899 | 2.0 | 11066 | 1.0356 | | 0.5991 | 3.0 | 16599 | 1.0780 | ### Validation results | EM | F1 | |:--------:|:-------:| | 80.3690 | 88.0110 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
nielsr/dino_vitb16
nielsr
2021-08-25T11:57:11Z
6
0
transformers
[ "transformers", "pytorch", "vit", "image-feature-extraction", "endpoints_compatible", "region:us" ]
image-feature-extraction
2022-03-02T23:29:05Z
I've converted the DINO checkpoints from the [official repo](https://github.com/facebookresearch/dino): You can use it as follows: ```python from transformers import ViTModel model = ViTModel.from_pretrained("nielsr/dino_vitb16", add_pooling_layer=False) ```
3koozy/gpt2-HxH
3koozy
2021-08-25T11:31:49Z
26
0
transformers
[ "transformers", "pytorch", "gpt2", "feature-extraction", "text-generation-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:04Z
this is a fine tuned GPT2 text generation model on a Hunter x Hunter TV anime series dataset.\ you can find a link to the used dataset here : https://www.kaggle.com/bkoozy/hunter-x-hunter-subtitles you can find a colab notebook for fine-tuning the gpt2 model here : https://github.com/3koozy/fine-tune-gpt2-HxH/
eugenesiow/pan
eugenesiow
2021-08-25T08:38:00Z
1,953
0
transformers
[ "transformers", "PAN", "super-image", "image-super-resolution", "dataset:eugenesiow/Div2k", "dataset:eugenesiow/Set5", "dataset:eugenesiow/Set14", "dataset:eugenesiow/BSD100", "dataset:eugenesiow/Urban100", "arxiv:2010.01073", "arxiv:2104.07566", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - super-image - image-super-resolution datasets: - eugenesiow/Div2k - eugenesiow/Set5 - eugenesiow/Set14 - eugenesiow/BSD100 - eugenesiow/Urban100 metrics: - pnsr - ssim --- # Pixel Attention Network (PAN) PAN model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper [Efficient Image Super-Resolution Using Pixel Attention](https://arxiv.org/abs/2010.01073) by Zhao et al. (2020) and first released in [this repository](https://github.com/zhaohengyuan1/PAN). The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling and model upscaling. ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4](images/pan_4_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4") ## Model description The PAN model proposes a a lightweight convolutional neural network for image super resolution. Pixel attention (PA) is similar to channel attention and spatial attention in formulation. PA however produces 3D attention maps instead of a 1D attention vector or a 2D map. This attention scheme introduces fewer additional parameters but generates better SR results. The model is very lightweight with the model being just 260k to 270k parameters (~1mb). ## Intended uses & limitations You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the [super_image](https://github.com/eugenesiow/super-image) library: ```bash pip install super-image ``` Here is how to use a pre-trained model to upscale your image: ```python from super_image import PanModel, ImageLoader from PIL import Image import requests url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg' image = Image.open(requests.get(url, stream=True).raw) model = PanModel.from_pretrained('eugenesiow/pan', scale=2) # scale 2, 3 and 4 models available inputs = ImageLoader.load_image(image) preds = model(inputs) ImageLoader.save_image(preds, './scaled_2x.png') # save the output 2x scaled image to `./scaled_2x.png` ImageLoader.save_compare(inputs, preds, './scaled_2x_compare.png') # save an output comparing the super-image with a bicubic scaling ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Upscale_Images_with_Pretrained_super_image_Models.ipynb "Open in Colab") ## Training data The models for 2x, 3x and 4x image super resolution were pretrained on [DIV2K](https://huggingface.co/datasets/eugenesiow/Div2k), a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). ## Training procedure ### Preprocessing We follow the pre-processing and training method of [Wang et al.](https://arxiv.org/abs/2104.07566). Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface [datasets](https://huggingface.co/datasets?filter=task_ids:other-other-image-super-resolution) library to download the data: ```bash pip install datasets ``` The following code gets the data and preprocesses/augments the data. ```python from datasets import load_dataset from super_image.data import EvalDataset, TrainDataset, augment_five_crop augmented_dataset = load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='train')\ .map(augment_five_crop, batched=True, desc="Augmenting Dataset") # download and augment the data with the five_crop method train_dataset = TrainDataset(augmented_dataset) # prepare the train dataset for loading PyTorch DataLoader eval_dataset = EvalDataset(load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='validation')) # prepare the eval dataset for the PyTorch DataLoader ``` ### Pretraining The model was trained on GPU. The training code is provided below: ```python from super_image import Trainer, TrainingArguments, PanModel, PanConfig training_args = TrainingArguments( output_dir='./results', # output directory num_train_epochs=1000, # total number of training epochs ) config = PanConfig( scale=4, # train a model to upscale 4x ) model = PanModel(config) trainer = Trainer( model=model, # the instantiated model to be trained args=training_args, # training arguments, defined above train_dataset=train_dataset, # training dataset eval_dataset=eval_dataset # evaluation dataset ) trainer.train() ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Train_super_image_Models.ipynb "Open in Colab") ## Evaluation results The evaluation metrics include [PSNR](https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Quality_estimation_with_PSNR) and [SSIM](https://en.wikipedia.org/wiki/Structural_similarity#Algorithm). Evaluation datasets include: - Set5 - [Bevilacqua et al. (2012)](https://huggingface.co/datasets/eugenesiow/Set5) - Set14 - [Zeyde et al. (2010)](https://huggingface.co/datasets/eugenesiow/Set14) - BSD100 - [Martin et al. (2001)](https://huggingface.co/datasets/eugenesiow/BSD100) - Urban100 - [Huang et al. (2015)](https://huggingface.co/datasets/eugenesiow/Urban100) The results columns below are represented below as `PSNR/SSIM`. They are compared against a Bicubic baseline. |Dataset |Scale |Bicubic |pan | |--- |--- |--- |--- | |Set5 |2x |33.64/0.9292 |**37.77/0.9599** | |Set5 |3x |30.39/0.8678 |**34.64/0.9376** | |Set5 |4x |28.42/0.8101 |**31.92/0.8915** | |Set14 |2x |30.22/0.8683 |**33.42/0.9162** | |Set14 |3x |27.53/0.7737 |**30.8/0.8544** | |Set14 |4x |25.99/0.7023 |**28.57/0.7802** | |BSD100 |2x |29.55/0.8425 |**33.6/0.9235** | |BSD100 |3x |27.20/0.7382 |**29.47/0.815** | |BSD100 |4x |25.96/0.6672 |**28.35/0.7595** | |Urban100 |2x |26.66/0.8408 |**31.31/0.9197** | |Urban100 |3x | |**28.61/0.8603** | |Urban100 |4x |23.14/0.6573 |**25.63/0.7692** | ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2](images/pan_2_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2") You can find a notebook to easily run evaluation on pretrained models below: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Evaluate_Pretrained_super_image_Models.ipynb "Open in Colab") ## BibTeX entry and citation info ```bibtex @misc{zhao2020efficient, title={Efficient Image Super-Resolution Using Pixel Attention}, author={Hengyuan Zhao and Xiangtao Kong and Jingwen He and Yu Qiao and Chao Dong}, year={2020}, eprint={2010.01073}, archivePrefix={arXiv}, primaryClass={eess.IV} } ```
OthmaneJ/distil-wav2vec2
OthmaneJ
2021-08-25T07:59:39Z
246
10
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "speech", "audio", "en", "dataset:librispeech_asr", "arxiv:2006.11477", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: en datasets: - librispeech_asr tags: - speech - audio - automatic-speech-recognition license: apache-2.0 --- # Distil-wav2vec2 This model is a distilled version of the wav2vec2 model (https://arxiv.org/pdf/2006.11477.pdf). This model is 45% times smaller and twice as fast as the original wav2vec2 base model. # Evaluation results This model achieves the following results (speed is mesured for a batch size of 64): |Model| Size| WER Librispeech-test-clean |WER Librispeech-test-other|Speed on cpu|speed on gpu| |----------| ------------- |-------------|-----------| ------|----| |Distil-wav2vec2| 197.9 Mb | 0.0983 | 0.2266|0.4006s| 0.0046s| |wav2vec2-base| 360 Mb | 0.0389 | 0.1047|0.4919s| 0.0082s| # Usage notebook (executes seamlessly on google colab) at https://github.com/OthmaneJ/distil-wav2vec2
Blaine-Mason/hackMIT-finetuned-sst2
Blaine-Mason
2021-08-25T00:31:45Z
27
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - glue metrics: - accuracy model_index: - name: hackMIT-finetuned-sst2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metric: name: Accuracy type: accuracy value: 0.8027522935779816 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hackMIT-finetuned-sst2 This model is a fine-tuned version of [Blaine-Mason/hackMIT-finetuned-sst2](https://huggingface.co/Blaine-Mason/hackMIT-finetuned-sst2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 1.1086 - Accuracy: 0.8028 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.033238621168611e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 30 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0674 | 1.0 | 4210 | 1.1086 | 0.8028 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
huggingtweets/detseretninu-dumbricardo-illuminusnumb
huggingtweets
2021-08-24T21:49:20Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/detseretninu-dumbricardo-illuminusnumb/1629841756956/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1412373998936027142/k2nY1nVc_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1426046688263692288/RzlZFjIP_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1312018147822759937/Z7XnZkhn_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">sad rico & follow me only if you're sad & ...</div> <div style="text-align: center; font-size: 14px;">@detseretninu-dumbricardo-illuminusnumb</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from sad rico & follow me only if you're sad & .... | Data | sad rico | follow me only if you're sad | ... | | --- | --- | --- | --- | | Tweets downloaded | 768 | 3233 | 677 | | Retweets | 0 | 167 | 1 | | Short tweets | 102 | 755 | 285 | | Tweets kept | 666 | 2311 | 391 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/l42hthlz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @detseretninu-dumbricardo-illuminusnumb's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/c1hyp8lf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/c1hyp8lf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/detseretninu-dumbricardo-illuminusnumb') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/itssixword
huggingtweets
2021-08-24T19:25:30Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/itssixword/1629833127428/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/628257137060229120/_3q_D4g2_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Six words story</div> <div style="text-align: center; font-size: 14px;">@itssixword</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Six words story. | Data | Six words story | | --- | --- | | Tweets downloaded | 282 | | Retweets | 0 | | Short tweets | 2 | | Tweets kept | 280 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2dbtmbzz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @itssixword's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2wydugsv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2wydugsv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/itssixword') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
IsabellaKarabasz/roberta-base-bne-finetuned-amazon_reviews_multi
IsabellaKarabasz
2021-08-24T14:16:29Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: cc-by-4.0 tags: - generated_from_trainer datasets: - amazon_reviews_multi model_index: - name: roberta-base-bne-finetuned-amazon_reviews_multi results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: es --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-amazon_reviews_multi This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
anthony/tokenizers-test
anthony
2021-08-24T08:17:27Z
0
1
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
This repository doesn't contain a model, but only a tokenizer that can be used with the `tokenizers` library. This tokenizer is just a copy of `bert-base-uncased`. ```python from tokenizers import Tokenizer tokenizer = Tokenizer.from_pretrained("anthony/tokenizers-test") ```
jacobduncan00/hackMIT-finetuned-sst2
jacobduncan00
2021-08-24T04:05:25Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - glue metrics: - accuracy model_index: - name: hackMIT-finetuned-sst2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metric: name: Accuracy type: accuracy value: 0.7970183486238532 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hackMIT-finetuned-sst2 This model is a fine-tuned version of [Blaine-Mason/hackMIT-finetuned-sst2](https://huggingface.co/Blaine-Mason/hackMIT-finetuned-sst2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 1.0046 - Accuracy: 0.7970 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.7339491016138283e-05 - train_batch_size: 64 - eval_batch_size: 16 - seed: 23 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0652 | 1.0 | 1053 | 0.9837 | 0.7970 | | 0.0586 | 2.0 | 2106 | 0.9927 | 0.7959 | | 0.0549 | 3.0 | 3159 | 1.0046 | 0.7970 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
huggingartists/joji
huggingartists
2021-08-23T21:47:22Z
4
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/joji", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/joji tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/d20ee1f900287060716f7594ccba7ea3.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Joji</div> <a href="https://genius.com/artists/joji"> <div style="text-align: center; font-size: 14px;">@joji</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Joji. Dataset is available [here](https://huggingface.co/datasets/huggingartists/joji). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/joji") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/ns61e8zi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Joji's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/jz3ft48t) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/jz3ft48t/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/joji') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/joji") model = AutoModelWithLMHead.from_pretrained("huggingartists/joji") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
nateraw/planes-trains-automobiles
nateraw
2021-08-23T21:42:21Z
404
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - huggingpics - image-classification - generated_from_trainer metrics: - accuracy model_index: - name: planes-trains-automobiles results: - task: name: Image Classification type: image-classification metric: name: Accuracy type: accuracy value: 0.9850746268656716 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # planes-trains-automobiles This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the huggingpics dataset. It achieves the following results on the evaluation set: - Loss: 0.0534 - Accuracy: 0.9851 ## Model description Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### automobiles ![automobiles](images/automobiles.jpg) #### planes ![planes](images/planes.jpg) #### trains ![trains](images/trains.jpg) ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0283 | 1.0 | 48 | 0.0434 | 0.9851 | | 0.0224 | 2.0 | 96 | 0.0548 | 0.9851 | | 0.0203 | 3.0 | 144 | 0.0445 | 0.9851 | | 0.0195 | 4.0 | 192 | 0.0534 | 0.9851 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
mrm8488/mT5-small-finetuned-tydiqa-for-xqa
mrm8488
2021-08-23T21:32:44Z
75
2
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "multilingual", "dataset:tydiqa", "arxiv:2010.11934", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: multilingual datasets: - tydiqa widget: - text: "question: What won HuggingFace? context: HuggingFace won the best Demo paper at EMNLP2020." --- # mT5-small fine-tuned on TyDiQA for multilingual QA 🗺📖❓ [Google's mT5-small](https://huggingface.co/google/mt5-small) fine-tuned on [TyDi QA](https://huggingface.co/nlp/viewer/?dataset=tydiqa&config=secondary_task) (secondary task) for **multingual Q&A** downstream task. ## Details of mT5 [Google's mT5](https://github.com/google-research/multilingual-t5) mT5 is pretrained on the [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) corpus, covering 101 languages: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bulgarian, Burmese, Catalan, Cebuano, Chichewa, Chinese, Corsican, Czech, Danish, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kurdish, Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Nepali, Norwegian, Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scottish Gaelic, Serbian, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Sotho, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Telugu, Thai, Turkish, Ukrainian, Urdu, Uzbek, Vietnamese, Welsh, West Frisian, Xhosa, Yiddish, Yoruba, Zulu. **Note**: mT5 was only pre-trained on mC4 excluding any supervised training. Therefore, this model has to be fine-tuned before it is useable on a downstream task. Pretraining Dataset: [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) Other Community Checkpoints: [here](https://huggingface.co/models?search=mt5) Paper: [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) Authors: *Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel* ## Details of the dataset 📚 **TyDi QA** is a question answering dataset covering 11 typologically diverse languages with 204K question-answer pairs. The languages of TyDi QA are diverse with regard to their typology -- the set of linguistic features that each language expresses -- such that we expect models performing well on this set to generalize across a large number of the languages in the world. It contains language phenomena that would not be found in English-only corpora. To provide a realistic information-seeking task and avoid priming effects, questions are written by people who want to know the answer, but don’t know the answer yet, (unlike SQuAD and its descendents) and the data is collected directly in each language without the use of translation (unlike MLQA and XQuAD). | Dataset | Task | Split | # samples | | -------- | ----- |------| --------- | | TyDi QA | GoldP | train| 49881 | | TyDi QA | GoldP | valid| 5077 | ## Results on validation dataset 📝 | Metric | # Value | | ------ | --------- | | **EM** | **41.65** | ## Model in Action 🚀 ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') tokenizer = AutoTokenizer.from_pretrained("mrm8488/mT5-small-finetuned-tydiqa-for-xqa") model = AutoModelForCausalLM.from_pretrained("mrm8488/mT5-small-finetuned-tydiqa-for-xqa").to(device) def get_response(question, context, max_length=32): input_text = 'question: %s context: %s' % (question, context) features = tokenizer([input_text], return_tensors='pt') output = model.generate(input_ids=features['input_ids'].to(device), attention_mask=features['attention_mask'].to(device), max_length=max_length) return tokenizer.decode(output[0], skip_special_tokens=True) # Some examples in different languages context = 'HuggingFace won the best Demo paper at EMNLP2020.' question = 'What won HuggingFace?' get_response(question, context) context = 'HuggingFace ganó la mejor demostración con su paper en la EMNLP2020.' question = 'Qué ganó HuggingFace?' get_response(question, context) context = 'HuggingFace выиграл лучшую демонстрационную работу на EMNLP2020.' question = 'Что победило в HuggingFace?' get_response(question, context) ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
chandank/bart-base-finetuned-xsum
chandank
2021-08-23T20:21:52Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - null metrics: - rouge model_index: - name: bart-base-finetuned-xsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation metric: name: Rouge1 type: rouge value: 27.887 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-finetuned-xsum This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5925 - Rouge1: 27.887 - Rouge2: 16.1414 - Rougel: 24.0525 - Rougelsum: 25.4029 - Gen Len: 19.9841 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:-------:|:---------:|:-------:| | 1.9826 | 1.0 | 879 | 1.5925 | 27.887 | 16.1414 | 24.0525 | 25.4029 | 19.9841 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
lewtun/roberta-base-bne-finetuned-amazon_reviews_multi
lewtun
2021-08-23T17:13:32Z
14
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: cc-by-4.0 tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy model_index: - name: roberta-base-bne-finetuned-amazon_reviews_multi results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: es metric: name: Accuracy type: accuracy value: 0.93075 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-amazon_reviews_multi This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.2306 - Accuracy: 0.9307 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1978 | 1.0 | 1250 | 0.1750 | 0.9325 | | 0.0951 | 2.0 | 2500 | 0.2306 | 0.9307 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
hfeng/bert_base_uncased_conll2003
hfeng
2021-08-23T14:14:40Z
6
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
# BERT base model (uncased) fine-tuned on CoNLL-2003 This model was trained following the PyTorch token-classification example from Hugging Face: https://github.com/huggingface/transformers/tree/master/examples/pytorch/token-classification. There were no tweaks to the model or dataset.
Narsil/deberta-large-mnli-zero-cls
Narsil
2021-08-23T13:27:24Z
943
14
transformers
[ "transformers", "pytorch", "deberta", "text-classification", "deberta-v1", "deberta-mnli", "zero-shot-classification", "en", "arxiv:2006.03654", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
zero-shot-classification
2022-03-02T23:29:04Z
--- language: en tags: - deberta-v1 - deberta-mnli tasks: mnli thumbnail: https://huggingface.co/front/thumbnails/microsoft.png license: mit pipeline_tag: zero-shot-classification --- ## DeBERTa: Decoding-enhanced BERT with Disentangled Attention [DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data. Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates. This is the DeBERTa large model fine-tuned with MNLI task. #### Fine-tuning on NLU tasks We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks. | Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m/mm | SST-2 | QNLI | CoLA | RTE | MRPC | QQP |STS-B | |---------------------------|-----------|-----------|-------------|-------|------|------|--------|-------|-------|------| | | F1/EM | F1/EM | Acc | Acc | Acc | MCC | Acc |Acc/F1 |Acc/F1 |P/S | | BERT-Large | 90.9/84.1 | 81.8/79.0 | 86.6/- | 93.2 | 92.3 | 60.6 | 70.4 | 88.0/- | 91.3/- |90.0/- | | RoBERTa-Large | 94.6/88.9 | 89.4/86.5 | 90.2/- | 96.4 | 93.9 | 68.0 | 86.6 | 90.9/- | 92.2/- |92.4/- | | XLNet-Large | 95.1/89.7 | 90.6/87.9 | 90.8/- | 97.0 | 94.9 | 69.0 | 85.9 | 90.8/- | 92.3/- |92.5/- | | [DeBERTa-Large](https://huggingface.co/microsoft/deberta-large)<sup>1</sup> | 95.5/90.1 | 90.7/88.0 | 91.3/91.1| 96.5|95.3| 69.5| 91.0| 92.6/94.6| 92.3/- |92.8/92.5 | | [DeBERTa-XLarge](https://huggingface.co/microsoft/deberta-xlarge)<sup>1</sup> | -/- | -/- | 91.5/91.2| 97.0 | - | - | 93.1 | 92.1/94.3 | - |92.9/92.7| | [DeBERTa-V2-XLarge](https://huggingface.co/microsoft/deberta-v2-xlarge)<sup>1</sup>|95.8/90.8| 91.4/88.9|91.7/91.6| **97.5**| 95.8|71.1|**93.9**|92.0/94.2|92.3/89.8|92.9/92.9| |**[DeBERTa-V2-XXLarge](https://huggingface.co/microsoft/deberta-v2-xxlarge)<sup>1,2</sup>**|**96.1/91.4**|**92.2/89.7**|**91.7/91.9**|97.2|**96.0**|**72.0**| 93.5| **93.1/94.9**|**92.7/90.3** |**93.2/93.1** | -------- #### Notes. - <sup>1</sup> Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on [DeBERTa-Large-MNLI](https://huggingface.co/microsoft/deberta-large-mnli), [DeBERTa-XLarge-MNLI](https://huggingface.co/microsoft/deberta-xlarge-mnli), [DeBERTa-V2-XLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xlarge-mnli), [DeBERTa-V2-XXLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli). The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks. - <sup>2</sup> To try the **XXLarge** model with **[HF transformers](https://huggingface.co/transformers/main_classes/trainer.html)**, you need to specify **--sharded_ddp** ```bash cd transformers/examples/text-classification/ export TASK_NAME=mrpc python -m torch.distributed.launch --nproc_per_node=8 run_glue.py --model_name_or_path microsoft/deberta-v2-xxlarge \\\n--task_name $TASK_NAME --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 \\\n--learning_rate 3e-6 --num_train_epochs 3 --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16 ``` ### Citation If you find DeBERTa useful for your work, please cite the following paper: ``` latex @inproceedings{ he2021deberta, title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION}, author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen}, booktitle={International Conference on Learning Representations}, year={2021}, url={https://openreview.net/forum?id=XPZIaotutsD} } ```
andi611/distilbert-base-uncased-ner-mit-restaurant
andi611
2021-08-23T08:11:51Z
13
1
transformers
[ "transformers", "pytorch", "distilbert", "token-classification", "generated_from_trainer", "en", "dataset:mit_restaurant", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - mit_restaurant metrics: - precision - recall - f1 - accuracy model_index: - name: distilbert-base-uncased-ner-mit-restaurant results: - task: name: Token Classification type: token-classification dataset: name: mit_restaurant type: mit_restaurant metric: name: Accuracy type: accuracy value: 0.9118988661540467 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-ner-mit-restaurant This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the mit_restaurant dataset. It achieves the following results on the evaluation set: - Loss: 0.3097 - Precision: 0.7874 - Recall: 0.8104 - F1: 0.7988 - Accuracy: 0.9119 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 431 | 0.4575 | 0.6220 | 0.6856 | 0.6523 | 0.8650 | | 1.1705 | 2.0 | 862 | 0.3183 | 0.7747 | 0.7953 | 0.7848 | 0.9071 | | 0.3254 | 3.0 | 1293 | 0.3163 | 0.7668 | 0.8021 | 0.7841 | 0.9058 | | 0.2287 | 4.0 | 1724 | 0.3097 | 0.7874 | 0.8104 | 0.7988 | 0.9119 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
fadhilarkan/qa-indo-math-k
fadhilarkan
2021-08-23T07:40:55Z
4
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- model-index: - name: qa-indo-math-k --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qa-indo-math-k This model was trained from scratch on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 0.8801 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 127 | 0.7652 | | No log | 2.0 | 254 | 0.7520 | | No log | 3.0 | 381 | 0.7681 | | 0.9618 | 4.0 | 508 | 0.7337 | | 0.9618 | 5.0 | 635 | 0.7560 | | 0.9618 | 6.0 | 762 | 0.7397 | | 0.9618 | 7.0 | 889 | 0.7298 | | 0.6652 | 8.0 | 1016 | 0.7891 | | 0.6652 | 9.0 | 1143 | 0.7874 | | 0.6652 | 10.0 | 1270 | 0.7759 | | 0.6652 | 11.0 | 1397 | 0.7505 | | 0.6174 | 12.0 | 1524 | 0.7838 | | 0.6174 | 13.0 | 1651 | 0.7878 | | 0.6174 | 14.0 | 1778 | 0.8028 | | 0.6174 | 15.0 | 1905 | 0.8154 | | 0.5733 | 16.0 | 2032 | 0.8131 | | 0.5733 | 17.0 | 2159 | 0.8278 | | 0.5733 | 18.0 | 2286 | 0.8308 | | 0.5733 | 19.0 | 2413 | 0.8433 | | 0.5378 | 20.0 | 2540 | 0.8303 | | 0.5378 | 21.0 | 2667 | 0.8352 | | 0.5378 | 22.0 | 2794 | 0.8369 | | 0.5378 | 23.0 | 2921 | 0.8518 | | 0.5095 | 24.0 | 3048 | 0.8749 | | 0.5095 | 25.0 | 3175 | 0.8533 | | 0.5095 | 26.0 | 3302 | 0.8547 | | 0.5095 | 27.0 | 3429 | 0.8844 | | 0.4856 | 28.0 | 3556 | 0.8752 | | 0.4856 | 29.0 | 3683 | 0.8804 | | 0.4856 | 30.0 | 3810 | 0.8801 | ### Framework versions - Transformers 4.6.1 - Pytorch 1.7.0 - Datasets 1.11.0 - Tokenizers 0.10.3
andi611/distilbert-base-uncased-squad2-with-ner-mit-restaurant-with-neg-with-repeat
andi611
2021-08-23T05:38:50Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "en", "dataset:squad_v2", "dataset:mit_restaurant", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- language: - en tags: - generated_from_trainer datasets: - squad_v2 - mit_restaurant model_index: - name: distilbert-base-uncased-squad2-with-ner-mit-restaurant-with-neg-with-repeat results: - task: name: Token Classification type: token-classification dataset: name: squad_v2 type: squad_v2 - task: name: Token Classification type: token-classification dataset: name: mit_restaurant type: mit_restaurant --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-squad2-with-ner-mit-restaurant-with-neg-with-repeat This model is a fine-tuned version of [twmkn9/distilbert-base-uncased-squad2](https://huggingface.co/twmkn9/distilbert-base-uncased-squad2) on the squad_v2 and the mit_restaurant datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
eugenesiow/mdsr-bam
eugenesiow
2021-08-23T01:37:09Z
142
0
transformers
[ "transformers", "MDSR", "super-image", "image-super-resolution", "dataset:eugenesiow/Div2k", "dataset:eugenesiow/Set5", "dataset:eugenesiow/Set14", "dataset:eugenesiow/BSD100", "dataset:eugenesiow/Urban100", "arxiv:1707.02921", "arxiv:2104.07566", "arxiv:1803.08664", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - super-image - image-super-resolution datasets: - eugenesiow/Div2k - eugenesiow/Set5 - eugenesiow/Set14 - eugenesiow/BSD100 - eugenesiow/Urban100 metrics: - pnsr - ssim --- # Multi-Scale Deep Super-Resolution System (MDSR) MDSR model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper [Enhanced Deep Residual Networks for Single Image Super-Resolution](https://arxiv.org/abs/1707.02921) by Lim et al. (2017) and first released in [this repository](https://github.com/sanghyun-son/EDSR-PyTorch). The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling and model upscaling. ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4](images/mdsr_4_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4") ## Model description The MDSR is a model that uses both deeper and wider architecture (32 ResBlocks and 256 channels) to improve performance. It uses both global and local skip connections, and up-scaling is done at the end of the network. It doesn't use batch normalization layers (input and output have similar distributions, normalizing intermediate features may not be desirable) instead it uses constant scaling layers to ensure stable training. An L1 loss function (absolute error) is used instead of L2 (MSE), the authors showed better performance empirically and it requires less computation. This model also applies the balanced attention (BAM) method invented by [Wang et al. (2021)](https://arxiv.org/abs/2104.07566) to further improve the results. ## Intended uses & limitations You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the [super_image](https://github.com/eugenesiow/super-image) library: ```bash pip install super-image ``` Here is how to use a pre-trained model to upscale your image: ```python from super_image import MdsrModel, ImageLoader from PIL import Image import requests url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg' image = Image.open(requests.get(url, stream=True).raw) model = MdsrModel.from_pretrained('eugenesiow/mdsr-bam', scale=2) # scale 2, 3 and 4 models available inputs = ImageLoader.load_image(image) preds = model(inputs) ImageLoader.save_image(preds, './scaled_2x.png') # save the output 2x scaled image to `./scaled_2x.png` ImageLoader.save_compare(inputs, preds, './scaled_2x_compare.png') # save an output comparing the super-image with a bicubic scaling ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Upscale_Images_with_Pretrained_super_image_Models.ipynb "Open in Colab") ## Training data The models for 2x, 3x and 4x image super resolution were pretrained on [DIV2K](https://huggingface.co/datasets/eugenesiow/Div2k), a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). ## Training procedure ### Preprocessing We follow the pre-processing and training method of [Wang et al.](https://arxiv.org/abs/2104.07566). Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface [datasets](https://huggingface.co/datasets?filter=task_ids:other-other-image-super-resolution) library to download the data: ```bash pip install datasets ``` The following code gets the data and preprocesses/augments the data. ```python from datasets import load_dataset from super_image.data import EvalDataset, TrainDataset, augment_five_crop augmented_dataset = load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='train')\ .map(augment_five_crop, batched=True, desc="Augmenting Dataset") # download and augment the data with the five_crop method train_dataset = TrainDataset(augmented_dataset) # prepare the train dataset for loading PyTorch DataLoader eval_dataset = EvalDataset(load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='validation')) # prepare the eval dataset for the PyTorch DataLoader ``` ### Pretraining The model was trained on GPU. The training code is provided below: ```python from super_image import Trainer, TrainingArguments, MdsrModel, MdsrConfig training_args = TrainingArguments( output_dir='./results', # output directory num_train_epochs=1000, # total number of training epochs ) config = MdsrConfig( scale=4, # train a model to upscale 4x bam=True, # apply balanced attention to the network ) model = MdsrModel(config) trainer = Trainer( model=model, # the instantiated model to be trained args=training_args, # training arguments, defined above train_dataset=train_dataset, # training dataset eval_dataset=eval_dataset # evaluation dataset ) trainer.train() ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Train_super_image_Models.ipynb "Open in Colab") ## Evaluation results The evaluation metrics include [PSNR](https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Quality_estimation_with_PSNR) and [SSIM](https://en.wikipedia.org/wiki/Structural_similarity#Algorithm). Evaluation datasets include: - Set5 - [Bevilacqua et al. (2012)](https://huggingface.co/datasets/eugenesiow/Set5) - Set14 - [Zeyde et al. (2010)](https://huggingface.co/datasets/eugenesiow/Set14) - BSD100 - [Martin et al. (2001)](https://huggingface.co/datasets/eugenesiow/BSD100) - Urban100 - [Huang et al. (2015)](https://huggingface.co/datasets/eugenesiow/Urban100) The results columns below are represented below as `PSNR/SSIM`. They are compared against a Bicubic baseline. |Dataset |Scale |Bicubic |mdsr-bam | |--- |--- |--- |--- | |Set5 |2x |33.64/0.9292 |**38/0.9607** | |Set5 |3x |30.39/0.8678 |**35.07/0.9402** | |Set5 |4x |28.42/0.8101 |**32.19/0.8949** | |Set14 |2x |30.22/0.8683 |**33.68/0.9182** | |Set14 |3x |27.53/0.7737 |**31.04/0.8582** | |Set14 |4x |25.99/0.7023 |**28.73/0.7847** | |BSD100 |2x |29.55/0.8425 |**33.77/0.9253** | |BSD100 |3x |27.20/0.7382 |**29.62/0.8188** | |BSD100 |4x |25.96/0.6672 |**28.5/0.7645** | |Urban100 |2x |26.66/0.8408 |**32.04/0.9272** | |Urban100 |3x | |**29.16/0.8717** | |Urban100 |4x |23.14/0.6573 |**26.02/0.7834** | ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2](images/mdsr_2_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2") You can find a notebook to easily run evaluation on pretrained models below: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Evaluate_Pretrained_super_image_Models.ipynb "Open in Colab") ## BibTeX entry and citation info ```bibtex @misc{wang2021bam, title={BAM: A Lightweight and Efficient Balanced Attention Mechanism for Single Image Super Resolution}, author={Fanyi Wang and Haotian Hu and Cheng Shen}, year={2021}, eprint={2104.07566}, archivePrefix={arXiv}, primaryClass={eess.IV} } ``` ```bibtex @article{ahn2018fast, title={Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network}, author={Ahn, Namhyuk and Kang, Byungkon and Sohn, Kyung-Ah}, journal={arXiv preprint arXiv:1803.08664}, year={2018} } ```
eugenesiow/carn
eugenesiow
2021-08-23T01:29:35Z
28
1
transformers
[ "transformers", "CARN", "super-image", "image-super-resolution", "dataset:eugenesiow/Div2k", "dataset:eugenesiow/Set5", "dataset:eugenesiow/Set14", "dataset:eugenesiow/BSD100", "dataset:eugenesiow/Urban100", "arxiv:1803.08664", "arxiv:2104.07566", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - super-image - image-super-resolution datasets: - eugenesiow/Div2k - eugenesiow/Set5 - eugenesiow/Set14 - eugenesiow/BSD100 - eugenesiow/Urban100 metrics: - pnsr - ssim --- # Cascading Residual Network (CARN) CARN model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper [Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network](https://arxiv.org/abs/1803.08664) by Ahn et al. (2018) and first released in [this repository](https://github.com/nmhkahn/CARN-pytorch). The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling and model upscaling. ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4](images/carn_4_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4") ## Model description The CARN model proposes an architecture that implements a cascading mechanism upon a residual network for accurate and lightweight image super-resolution. ## Intended uses & limitations You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the [super_image](https://github.com/eugenesiow/super-image) library: ```bash pip install super-image ``` Here is how to use a pre-trained model to upscale your image: ```python from super_image import CarnModel, ImageLoader from PIL import Image import requests url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg' image = Image.open(requests.get(url, stream=True).raw) model = CarnModel.from_pretrained('eugenesiow/carn', scale=2) # scale 2, 3 and 4 models available inputs = ImageLoader.load_image(image) preds = model(inputs) ImageLoader.save_image(preds, './scaled_2x.png') # save the output 2x scaled image to `./scaled_2x.png` ImageLoader.save_compare(inputs, preds, './scaled_2x_compare.png') # save an output comparing the super-image with a bicubic scaling ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Upscale_Images_with_Pretrained_super_image_Models.ipynb "Open in Colab") ## Training data The models for 2x, 3x and 4x image super resolution were pretrained on [DIV2K](https://huggingface.co/datasets/eugenesiow/Div2k), a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). ## Training procedure ### Preprocessing We follow the pre-processing and training method of [Wang et al.](https://arxiv.org/abs/2104.07566). Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface [datasets](https://huggingface.co/datasets?filter=task_ids:other-other-image-super-resolution) library to download the data: ```bash pip install datasets ``` The following code gets the data and preprocesses/augments the data. ```python from datasets import load_dataset from super_image.data import EvalDataset, TrainDataset, augment_five_crop augmented_dataset = load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='train')\ .map(augment_five_crop, batched=True, desc="Augmenting Dataset") # download and augment the data with the five_crop method train_dataset = TrainDataset(augmented_dataset) # prepare the train dataset for loading PyTorch DataLoader eval_dataset = EvalDataset(load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='validation')) # prepare the eval dataset for the PyTorch DataLoader ``` ### Pretraining The model was trained on GPU. The training code is provided below: ```python from super_image import Trainer, TrainingArguments, CarnModel, CarnConfig training_args = TrainingArguments( output_dir='./results', # output directory num_train_epochs=1000, # total number of training epochs ) config = CarnConfig( scale=4, # train a model to upscale 4x bam=True, # apply balanced attention to the network ) model = CarnModel(config) trainer = Trainer( model=model, # the instantiated model to be trained args=training_args, # training arguments, defined above train_dataset=train_dataset, # training dataset eval_dataset=eval_dataset # evaluation dataset ) trainer.train() ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Train_super_image_Models.ipynb "Open in Colab") ## Evaluation results The evaluation metrics include [PSNR](https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Quality_estimation_with_PSNR) and [SSIM](https://en.wikipedia.org/wiki/Structural_similarity#Algorithm). Evaluation datasets include: - Set5 - [Bevilacqua et al. (2012)](https://huggingface.co/datasets/eugenesiow/Set5) - Set14 - [Zeyde et al. (2010)](https://huggingface.co/datasets/eugenesiow/Set14) - BSD100 - [Martin et al. (2001)](https://huggingface.co/datasets/eugenesiow/BSD100) - Urban100 - [Huang et al. (2015)](https://huggingface.co/datasets/eugenesiow/Urban100) The results columns below are represented below as `PSNR/SSIM`. They are compared against a Bicubic baseline. |Dataset |Scale |Bicubic |carn | |--- |--- |--- |--- | |Set5 |2x |33.64/0.9292 |**37.89/0.9602** | |Set5 |3x |30.39/0.8678 |**34.88/0.9391** | |Set5 |4x |28.42/0.8101 |**32.05/0.8931** | |Set14 |2x |30.22/0.8683 |**33.53/0.9173** | |Set14 |3x |27.53/0.7737 |**30.93/0.8566** | |Set14 |4x |25.99/0.7023 |**28.67/0.7828** | |BSD100 |2x |29.55/0.8425 |**33.66/0.9242** | |BSD100 |3x |27.20/0.7382 |**29.56/0.8173** | |BSD100 |4x |25.96/0.6672 |**28.44/0.7625** | |Urban100 |2x |26.66/0.8408 |**31.62/0.9229** | |Urban100 |3x | |**28.95/0.867** | |Urban100 |4x |23.14/0.6573 |**25.85/0.7768** | ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2](images/carn_2_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2") You can find a notebook to easily run evaluation on pretrained models below: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Evaluate_Pretrained_super_image_Models.ipynb "Open in Colab") ## BibTeX entry and citation info ```bibtex @article{ahn2018fast, title={Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network}, author={Ahn, Namhyuk and Kang, Byungkon and Sohn, Kyung-Ah}, journal={arXiv preprint arXiv:1803.08664}, year={2018} } ```
huggingartists/bruce-springsteen
huggingartists
2021-08-22T22:20:09Z
5
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/bruce-springsteen", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/bruce-springsteen tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/6dfe4b89b895b331f09c6b136a0705e5.807x807x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bruce Springsteen</div> <a href="https://genius.com/artists/bruce-springsteen"> <div style="text-align: center; font-size: 14px;">@bruce-springsteen</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Bruce Springsteen. Dataset is available [here](https://huggingface.co/datasets/huggingartists/bruce-springsteen). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/bruce-springsteen") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/28yd4w57/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Bruce Springsteen's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/6qq7wbab) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/6qq7wbab/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/bruce-springsteen') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/bruce-springsteen") model = AutoModelWithLMHead.from_pretrained("huggingartists/bruce-springsteen") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
Kyoungmin/beauty-base-KLCP2
Kyoungmin
2021-08-22T19:24:49Z
4
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
**Second** BertForMaskedLM pretrained model in **KOREAN Beauty** domain. About 120,000 reviews were used. It was trained based on _beomi/kcbert-base_ . Check out _Kyoungmin/beauty-base-KLCP_ for smaller model !!
lewtun/roberta-base-bne-finetuned-amazon_reviews_multi-finetuned-amazon_reviews_multi
lewtun
2021-08-22T18:59:30Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy model_index: - name: roberta-base-bne-finetuned-amazon_reviews_multi-finetuned-amazon_reviews_multi results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: es metric: name: Accuracy type: accuracy value: 0.9285 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-amazon_reviews_multi-finetuned-amazon_reviews_multi This model was trained from scratch on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.3595 - Accuracy: 0.9285 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.103 | 1.0 | 1250 | 0.2864 | 0.928 | | 0.0407 | 2.0 | 2500 | 0.3595 | 0.9285 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
dvm1983/TinyBERT_General_4L_312D_de
dvm1983
2021-08-22T16:44:48Z
13
2
transformers
[ "transformers", "pytorch", "bert", "tinybert", "fill-mask", "de", "dataset:wiki", "arxiv:1909.10351", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - de tags: - tinybert - fill-mask datasets: - wiki --- Here is represented tinybert model for German language (de). The model was created by distilling of bert base cased model(https://huggingface.co/dbmdz/bert-base-german-cased) in the way described in https://arxiv.org/abs/1909.10351 (TinyBERT: Distilling BERT for Natural Language Understanding) Dataset: German Wikipedia Text Corpus - https://github.com/t-systems-on-site-services-gmbh/german-wikipedia-text-corpus Versions: torch==1.4.0 transformers==4.8.1 How to load model for LM(fill-mask) task: tokenizer = transformers.BertTokenizer.from_pretrained(model_dir + '/vocab.txt', do_lower_case=False) config = transformers.BertConfig.from_json_file(model_dir+'config.json') model = transformers.BertModel(config=config) model.pooler = nn.Sequential(nn.Linear(in_features=model.config.hidden_size, out_features=model.config.hidden_size, bias=True), nn.LayerNorm((model.config.hidden_size,), eps=1e-12, elementwise_affine=True), nn.Linear(in_features=model.config.hidden_size, out_features=len(tokenizer), bias=True)) model.resize_token_embeddings(len(tokenizer)) checkpoint = torch.load(model_dir+'/pytorch_model.bin', map_location=torch.device('cuda')) model.load_state_dict(checkpoint) In case of NER or Classification task we have to load model for LM task and change pooler: model.pooler = nn.Sequential(nn.Dropout(p=config.hidden_dropout_prob, inplace=False), nn.Linear(in_features=config.hidden_size, out_features=n_classes, bias=True))
EasthShin/Youth_Chatbot_Kogpt2-base
EasthShin
2021-08-22T16:28:22Z
107
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
## Youth_Chatbot_KoGPT2-base **Demo Web**: [Ainize Endpoint](https://main-youth-chatbot-ko-gpt2-base-east-h-shin.endpoint.ainize.ai/) <br> **Demo Web Code**: [Github](https://github.com/EastHShin/Youth_Chatbot_KoGPT2-base) <br> **Youth-Chatbot API**: [Ainize API](https://ainize.ai/EastHShin/Youth_Chatbot_KoGPT2-base_API?branch=main) <br> <br> ## Overview **Language model**: KoGPT2 <br> **Language**: Korean <br> **Training data**: [Aihub](https://aihub.or.kr/aidata/7978) ## Usage ``` from transformers import PreTrainedTokenizerFast, GPT2LMHeadModel U_TKN = '<usr>' S_TKN = '<sys>' MASK = '<unused0>' SENT = '<unused1>' tokenizer = PreTrainedTokenizerFast.from_pretrained("EasthShin/Youth_Chatbot_Kogpt2-base", bos_token='</s>', eos_token='</s>', unk_token='<unk>', pad_token='<pad>', mask_token=MASK) model = GPT2LMHeadModel.from_pretrained('EasthShin/Youth_Chatbot_Kogpt2-base') input_ids = tokenizer.encode(U_TKN + {your text} + sent + S_TKN) gen_ids = model.generate(torch.tensor([input_ids]), max_length=128, repetition_penalty= 2.0, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, bos_token_id=tokenizer.bos_token_id, use_cache=True) generated = tokenizer.decode(gen_ids[0, :].tolist()) print(generated) ```
EasthShin/Android_Ios_Classification
EasthShin
2021-08-22T16:18:37Z
9
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
## Bert-base-uncased for Android-Ios Question Classification **Code**: See [Ainize Workspace](https://ainize.ai/workspace/create?imageId=hnj95592adzr02xPTqss&git=https://github.com/EastHShin/Android-Ios-Classification-Workspace) <br> **Android-Ios-Classification DEMO**: [Ainize Endpoint](https://main-android-ios-classification-east-h-shin.endpoint.ainize.ai/) <br> **Demo web Code**: [Github](https://github.com/EastHShin/Android-Ios-Classification) <br> **Android-Ios-Classification API**: [Ainize API](https://ainize.ai/EastHShin/Android-Ios-Classification) <br> <br> ## Overview **Language model**: bert-base-cased <br> **Language**: English <br> **Training data**: Question classification Android-Ios dataset from [Kaggle](https://www.kaggle.com/xhlulu/question-classification-android-or-ios) ## Usage ``` from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model_path = "EasthShin/Android_Ios_Classification" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForSequenceClassification.from_pretrained(model_path) classifier = pipeline('text-classification', model=model_path, tokenizer=tokenizer) question = "I bought goodnote in Appstore" result = dict() result[0] = classifier(question)[0] ```
DeadBeast/emoBERTTamil
DeadBeast
2021-08-22T15:46:05Z
8
2
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:tamilmixsentiment", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tamilmixsentiment metrics: - accuracy model_index: - name: emoBERTTamil results: - task: name: Text Classification type: text-classification dataset: name: tamilmixsentiment type: tamilmixsentiment args: default metric: name: Accuracy type: accuracy value: 0.671 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emoBERTTamil This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the tamilmixsentiment dataset. It achieves the following results on the evaluation set: - Loss: 0.9666 - Accuracy: 0.671 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1128 | 1.0 | 250 | 1.0290 | 0.672 | | 1.0226 | 2.0 | 500 | 1.0172 | 0.686 | | 0.9137 | 3.0 | 750 | 0.9666 | 0.671 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
huggingtweets/pepexbt
huggingtweets
2021-08-22T13:00:37Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/pepexbt/1629637214827/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1428232830761455617/VC6_ALvV_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">pepe</div> <div style="text-align: center; font-size: 14px;">@pepexbt</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from pepe. | Data | pepe | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 56 | | Short tweets | 809 | | Tweets kept | 2384 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1jezukab/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @pepexbt's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3isjrvll) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3isjrvll/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/pepexbt') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
oumeima/finetuned-bert-mrpc
oumeima
2021-08-22T11:35:18Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model_index: - name: finetuned-bert-mrpc results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mrpc metric: name: F1 type: f1 value: 0.9003322259136212 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-bert-mrpc This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5280 - Accuracy: 0.8529 - F1: 0.9003 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5704 | 1.0 | 230 | 0.4204 | 0.7917 | 0.8542 | | 0.3391 | 2.0 | 460 | 0.4157 | 0.8456 | 0.8955 | | 0.1923 | 3.0 | 690 | 0.5280 | 0.8529 | 0.9003 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
dadada/opus-mt-zh-en-ep1-renri-zh-to-en
dadada
2021-08-22T06:54:09Z
14
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model_index: - name: opus-mt-zh-en-ep1-renri-zh-to-en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation metric: name: Bleu type: bleu value: 18.2579 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-zh-en-ep1-renri-zh-to-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-zh-en](https://huggingface.co/Helsinki-NLP/opus-mt-zh-en) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 2.2192 - Bleu: 18.2579 - Gen Len: 28.4817 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 2.2194 | 1.0 | 59472 | 2.2192 | 18.2579 | 28.4817 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
huggingtweets/williamblakebot
huggingtweets
2021-08-21T20:17:06Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/williamblakebot/1629577022887/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/975180581440053249/yaM9x-Lq_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">William Blake</div> <div style="text-align: center; font-size: 14px;">@williamblakebot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from William Blake. | Data | William Blake | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 0 | | Short tweets | 0 | | Tweets kept | 3250 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2lyz5wo1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @williamblakebot's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3hz2kxqg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3hz2kxqg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/williamblakebot') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/daddykratos1
huggingtweets
2021-08-21T20:04:36Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/daddykratos1/1629576272636/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1353401231729950721/EAfnSQDa_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tweets by Kratos🪓</div> <div style="text-align: center; font-size: 14px;">@daddykratos1</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Tweets by Kratos🪓. | Data | Tweets by Kratos🪓 | | --- | --- | | Tweets downloaded | 626 | | Retweets | 14 | | Short tweets | 52 | | Tweets kept | 560 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/12nz41n2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @daddykratos1's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/33zt2owy) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/33zt2owy/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/daddykratos1') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
shahukareem/wav2vec2-large-xlsr-53-dhivehi-v2
shahukareem
2021-08-21T18:31:59Z
8
3
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "dv", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: dv datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech license: apache-2.0 --- # Wav2Vec2-Large-XLSR-53-Dhivehi Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Dhivehi using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "dv", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("shahukareem/wav2vec2-large-xlsr-53-dhivehi-v2") model = Wav2Vec2ForCTC.from_pretrained("shahukareem/wav2vec2-large-xlsr-53-dhivehi-v2") # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Dhivehi test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "dv", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("shahukareem/wav2vec2-large-xlsr-53-dhivehi-v2") model = Wav2Vec2ForCTC.from_pretrained("shahukareem/wav2vec2-large-xlsr-53-dhivehi-v2") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\،\.\؟\!\'\"\–\’]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ```
fadhilarkan/t5-small-finetuned-xsum-2
fadhilarkan
2021-08-21T13:51:05Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad metrics: - rouge model_index: - name: t5-small-finetuned-xsum-2 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: squad type: squad args: plain_text metric: name: Rouge1 type: rouge value: 28.8137 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum-2 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.9536 - Rouge1: 28.8137 - Rouge2: 9.1265 - Rougel: 26.0238 - Rougelsum: 26.0217 - Gen Len: 13.854 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.2142 | 1.0 | 8760 | 1.9994 | 29.007 | 9.2583 | 26.2377 | 26.2356 | 13.4546 | | 2.1372 | 2.0 | 17520 | 1.9622 | 29.1077 | 9.445 | 26.3734 | 26.3687 | 13.6995 | | 2.0755 | 3.0 | 26280 | 1.9536 | 28.8137 | 9.1265 | 26.0238 | 26.0217 | 13.854 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
baffo32/genji-python-6B-split
baffo32
2021-08-21T13:33:22Z
5
0
transformers
[ "transformers", "gpt_neo", "text-generation", "pytorch", "causal-lm", "en", "arxiv:2104.09864", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - en tags: - pytorch - causal-lm license: apache-2.0 datasets: - the Pile --- # Genji-python 6B For example usage or to easily use the model you can check our colab notebook: [Notebook](https://colab.research.google.com/drive/1PnWpx02IEUkY8jhLKd_NewUGEXahAska?usp=sharing) ## Model Description Genji is a transformer model finetuned on EleutherAI's GPT-J 6B model. This particular model is trained on python only code approaching 4GB in size. Split model has the checkpoints splitted, which makes it use less system RAM while loading and makes it faster to load. This model needs more effort to set up as you need to install git-lfs and pull the repo. | Hyperparameter | Value | |-------------------|--------| | n_parameters | 6,053,381,344 | | n_layers | 28* | | d_model | 4,096 | | d_ff | 16,384 | | n_heads | 16 | | d_head | 256 | | n_ctx | 2,048 | | n_vocab | 50,400 (same tokenizer as GPT-2/3) | | position encoding | [Rotary position encodings (RoPE)](https://arxiv.org/abs/2104.09864) | | RoPE dimensions | [64](https://github.com/kingoflolz/mesh-transformer-jax/blob/f2aa66e0925de6593dcbb70e72399b97b4130482/mesh_transformer/layers.py#L223) | `*` each layer consists of one feedforward block and one self attention block The model consists of 28 layers with a model dimension of 4096, and a feedforward dimension of 16384. The model dimension is split into 16 heads, each with a dimension of 256. Rotary position encodings (RoPE) was applied to 64 dimensions of each head. The model is trained with a tokenization vocabulary of 50257, using the same set of BPEs as GPT-2/GPT-3. ## Training data GPT-J 6B was pretrained on the [Pile](pile.eleuther.ai), a large scale curated dataset created by EleutherAI for the purpose of training this model. After the pre-training, it's finetuned on the python code that was taken from the Pile. ## Training procedure Genji-python-6B is trained for 20k steps on around 655 million tokens with learning rate of 2e-06 ## Intended Use This model is trained for assistence on writing python code and having fun trying weird stuff with it. ### How to use This model is only usable with our fork because GPT-J is not merged to the main transformers repo yet. When it's merged, we will make this model easily loadable. For now, you need to use this fork: [Fork](https://github.com/finetuneanon/transformers) to install with pip: ```bash pip install git+https://github.com/finetuneanon/transformers@gpt-neo-localattention3-rp-b ``` **git-lfs** also needs to be installed, on ubuntu: ```bash apt install git-lfs ``` after it's installed, initialize git-lfs: ```bash git lfs install ``` then clone this repo: ```bash git clone https://huggingface.co/NovelAI/genji-python-6B-split ``` Now we can load the model. We recommend the usage of the model as FP16. That way, it fits in 16GB VRAM cards. How to use: ```python from transformers import ( AutoTokenizer, AutoModelForCausalLM, GPTNeoForCausalLM, ) model = AutoModelForCausalLM.from_pretrained("genji-python-6B-split/model").half().eval().cuda() tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-2.7B") text = '''def print_customer_name''' tokens = tokenizer(text, return_tensors="pt").input_ids generated_tokens = model.generate(tokens.long().cuda(), use_cache=True, do_sample=True, top_k=50, temperature=0.3, top_p=0.9, repetition_penalty=1.125, min_length=1, max_length=len(tokens[0]) + 400, pad_token_id=tokenizer.eos_token_id) last_tokens = generated_tokens[0][len(tokens[0]):] generated_text = tokenizer.decode(last_tokens) print("Generation:\n" + generated_text) ``` When ran, this code generates: ```python Prompt: def print_customer_name Generation: (self, customer): """Print the name of a customer.""" if not self.is_valid(): return print("Customer: {}".format(customer)) ``` For example usage, you can see our colab notebook as well: [Notebook](https://colab.research.google.com/drive/1PnWpx02IEUkY8jhLKd_NewUGEXahAska?usp=sharing) ## Eval results TBD ## Acknowledgements This project was possible because of the compute provided by the [TPU Research Cloud](https://sites.research.google/trc/) and [EleutherAI](https://eleuther.ai/) for pretraining of the GPT-J 6B. Thanks to everyone who contributed to this project: - [Aero](https://github.com/AeroScripts) - [Finetune](https://github.com/finetuneanon) - [Kurumuz](https://github.com/kurumuz)
huggingtweets/domonic_m
huggingtweets
2021-08-21T03:49:49Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/domonic_m/1629517784951/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1146161910448054273/b1HpVczo_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Domonic</div> <div style="text-align: center; font-size: 14px;">@domonic_m</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Domonic. | Data | Domonic | | --- | --- | | Tweets downloaded | 502 | | Retweets | 70 | | Short tweets | 69 | | Tweets kept | 363 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1q7f1cu6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @domonic_m's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/no8iew6j) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/no8iew6j/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/domonic_m') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ramybaly/ner_conll2003
ramybaly
2021-08-21T03:21:14Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model_index: - name: ner_conll2003 results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metric: name: Accuracy type: accuracy value: 0.9772880710440217 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ner_conll2003 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.1495 - Precision: 0.8985 - Recall: 0.9130 - F1: 0.9057 - Accuracy: 0.9773 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.423 | 1.0 | 877 | 0.0656 | 0.9158 | 0.9268 | 0.9213 | 0.9818 | | 0.0575 | 2.0 | 1754 | 0.0574 | 0.9285 | 0.9445 | 0.9364 | 0.9847 | | 0.0295 | 3.0 | 2631 | 0.0631 | 0.9414 | 0.9456 | 0.9435 | 0.9859 | | 0.0155 | 4.0 | 3508 | 0.0680 | 0.9395 | 0.9467 | 0.9431 | 0.9860 | | 0.0097 | 5.0 | 4385 | 0.0694 | 0.9385 | 0.9513 | 0.9449 | 0.9863 | | 0.0059 | 6.0 | 5262 | 0.0743 | 0.9363 | 0.9471 | 0.9416 | 0.9860 | | 0.0041 | 7.0 | 6139 | 0.0803 | 0.9371 | 0.9518 | 0.9444 | 0.9862 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.2
templates/automatic-speech-recognition
templates
2021-08-20T14:18:50Z
0
3
generic
[ "generic", "automatic-speech-recognition", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - automatic-speech-recognition library_name: generic --- # Automatic Speech Recognition repository template This is a template repository for Automatic Speech Recognition to support generic inference with Hugging Face Hub generic Inference API. There are two required steps: 1. Specify the requirements by defining a `requirements.txt` file. 2. Implement the `pipeline.py` `__init__` and `__call__` methods. These methods are called by the Inference API. The `__init__` method should load the model and preload all the elements needed for inference (model, processors, tokenizers, etc.). This is only called once. The `__call__` method performs the actual inference. Make sure to follow the same input/output specifications defined in the template for the pipeline to work. Example repos * https://huggingface.co/osanseviero/pyctcdecode_asr ## How to start First create a repo in https://hf.co/new. Then clone this template and push it to your repo. ``` git clone https://huggingface.co/templates/automatic-speech-recognition cd automatic-speech-recognition git remote set-url origin https://huggingface.co/$YOUR_USER/$YOUR_REPO_NAME git push --force ```
templates/feature-extraction
templates
2021-08-20T14:18:25Z
0
1
generic
[ "generic", "feature-extraction", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- tags: - feature-extraction library_name: generic --- # Feature Extraction repository template This is a template repository for feature extraction to support generic inference with Hugging Face Hub generic Inference API. There are two required steps 1. Specify the requirements by defining a `requirements.txt` file. 2. Implement the `pipeline.py` `__init__` and `__call__` methods. These methods are called by the Inference API. The `__init__` method should load the model and preload all the elements needed for inference (model, processors, tokenizers, etc.). This is only called once. The `__call__` method performs the actual inference. Make sure to follow the same input/output specifications defined in the template for the pipeline to work. Example repos * https://huggingface.co/osanseviero/fasttext_english ## How to start First create a repo in https://hf.co/new. Then clone this template and push it to your repo. ``` git clone https://huggingface.co/templates/feature-extraction cd feature-extraction git remote set-url origin https://huggingface.co/$YOUR_USER/$YOUR_REPO_NAME git push --force ```
imNitin001/firstRepo
imNitin001
2021-08-20T14:18:02Z
0
0
generic
[ "generic", "text-to-image", "region:us" ]
text-to-image
2022-11-19T08:23:09Z
--- tags: - text-to-image library_name: generic --- # Text To Image repository template This is a template repository for text to image to support generic inference with Hugging Face Hub generic Inference API. There are two required steps 1. Specify the requirements by defining a `requirements.txt` file. 2. Implement the `pipeline.py` `__init__` and `__call__` methods. These methods are called by the Inference API. The `__init__` method should load the model and preload all the elements needed for inference (model, processors, tokenizers, etc.). This is only called once. The `__call__` method performs the actual inference. Make sure to follow the same input/output specifications defined in the template for the pipeline to work. Example repos * https://huggingface.co/osanseviero/BigGAN-deep-128/blob/main/pipeline.py ## How to start First create a repo in https://hf.co/new. Then clone this template and push it to your repo. ``` git clone https://huggingface.co/templates/text-to-image cd text-to-image git remote set-url origin https://huggingface.co/$YOUR_USER/$YOUR_REPO_NAME git push --force ```
tonybingo/test
tonybingo
2021-08-20T14:18:02Z
0
0
generic
[ "generic", "text-to-image", "region:us" ]
text-to-image
2022-11-18T08:09:55Z
--- tags: - text-to-image library_name: generic --- # Text To Image repository template This is a template repository for text to image to support generic inference with Hugging Face Hub generic Inference API. There are two required steps 1. Specify the requirements by defining a `requirements.txt` file. 2. Implement the `pipeline.py` `__init__` and `__call__` methods. These methods are called by the Inference API. The `__init__` method should load the model and preload all the elements needed for inference (model, processors, tokenizers, etc.). This is only called once. The `__call__` method performs the actual inference. Make sure to follow the same input/output specifications defined in the template for the pipeline to work. Example repos * https://huggingface.co/osanseviero/BigGAN-deep-128/blob/main/pipeline.py ## How to start First create a repo in https://hf.co/new. Then clone this template and push it to your repo. ``` git clone https://huggingface.co/templates/text-to-image cd text-to-image git remote set-url origin https://huggingface.co/$YOUR_USER/$YOUR_REPO_NAME git push --force ```
Arkenbrien/text-to-image-Arkenbrien
Arkenbrien
2021-08-20T14:18:02Z
0
1
generic
[ "generic", "text-to-image", "region:us" ]
text-to-image
2022-08-24T14:06:40Z
--- tags: - text-to-image library_name: generic --- # Text To Image repository template This is a template repository for text to image to support generic inference with Hugging Face Hub generic Inference API. There are two required steps 1. Specify the requirements by defining a `requirements.txt` file. 2. Implement the `pipeline.py` `__init__` and `__call__` methods. These methods are called by the Inference API. The `__init__` method should load the model and preload all the elements needed for inference (model, processors, tokenizers, etc.). This is only called once. The `__call__` method performs the actual inference. Make sure to follow the same input/output specifications defined in the template for the pipeline to work. Example repos * https://huggingface.co/osanseviero/BigGAN-deep-128/blob/main/pipeline.py ## How to start First create a repo in https://hf.co/new. Then clone this template and push it to your repo. ``` git clone https://huggingface.co/templates/text-to-image cd text-to-image git remote set-url origin https://huggingface.co/$YOUR_USER/$YOUR_REPO_NAME git push --force ```
ericsali/painting
ericsali
2021-08-20T14:18:02Z
0
1
generic
[ "generic", "text-to-image", "region:us" ]
text-to-image
2023-04-18T03:45:13Z
--- tags: - text-to-image library_name: generic --- # Text To Image repository template This is a template repository for text to image to support generic inference with Hugging Face Hub generic Inference API. There are two required steps 1. Specify the requirements by defining a `requirements.txt` file. 2. Implement the `pipeline.py` `__init__` and `__call__` methods. These methods are called by the Inference API. The `__init__` method should load the model and preload all the elements needed for inference (model, processors, tokenizers, etc.). This is only called once. The `__call__` method performs the actual inference. Make sure to follow the same input/output specifications defined in the template for the pipeline to work. Example repos * https://huggingface.co/osanseviero/BigGAN-deep-128/blob/main/pipeline.py ## How to start First create a repo in https://hf.co/new. Then clone this template and push it to your repo. ``` git clone https://huggingface.co/templates/text-to-image cd text-to-image git remote set-url origin https://huggingface.co/$YOUR_USER/$YOUR_REPO_NAME git push --force ```
templates/token-classification
templates
2021-08-20T14:17:42Z
0
1
generic
[ "generic", "token-classification", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: - token-classification library_name: generic --- # Token Classification repository template This is a template repository for token classification to support generic inference with Hugging Face Hub generic Inference API. There are two required steps 1. Specify the requirements by defining a `requirements.txt` file. 2. Implement the `pipeline.py` `__init__` and `__call__` methods. These methods are called by the Inference API. The `__init__` method should load the model and preload all the elements needed for inference (model, processors, tokenizers, etc.). This is only called once. The `__call__` method performs the actual inference. Make sure to follow the same input/output specifications defined in the template for the pipeline to work. Example repos * https://huggingface.co/osanseviero/en_core_web_sm/blob/main/pipeline.py ## How to start First create a repo in https://hf.co/new. Then clone this template and push it to your repo. ``` git clone https://huggingface.co/templates/token-classification cd token-classification git remote set-url origin https://huggingface.co/$YOUR_USER/$YOUR_REPO_NAME git push --force ```
pin/senda
pin
2021-08-20T11:00:39Z
11
4
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "text-classification", "danish", "sentiment", "polarity", "da", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: da tags: - danish - bert - sentiment - polarity license: cc-by-4.0 widget: - text: "Sikke en dejlig dag det er i dag" --- # Danish BERT fine-tuned for Sentiment Analysis with `senda` This model detects polarity ('positive', 'neutral', 'negative') of Danish texts. It is trained and tested on Tweets annotated by [Alexandra Institute](https://github.com/alexandrainst). The model is trained with the [`senda`](https://github.com/ebanalyse/senda) package. Here is an example of how to load the model in PyTorch using the [🤗Transformers](https://github.com/huggingface/transformers) library: ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline tokenizer = AutoTokenizer.from_pretrained("pin/senda") model = AutoModelForSequenceClassification.from_pretrained("pin/senda") # create 'senda' sentiment analysis pipeline senda_pipeline = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer) text = "Sikke en dejlig dag det er i dag" # in English: 'what a lovely day' senda_pipeline(text) ``` ## Performance The `senda` model achieves an accuracy of 0.77 and a macro-averaged F1-score of 0.73 on a small test data set, that [Alexandra Institute](https://github.com/alexandrainst/danlp/blob/master/docs/docs/datasets.md#twitter-sentiment) provides. The model can most certainly be improved, and we encourage all NLP-enthusiasts to give it their best shot - you can use the [`senda`](https://github.com/ebanalyse/senda) package to do this. #### Contact Feel free to contact author Lars Kjeldgaard on [[email protected]](mailto:[email protected]). #### Shout-outs Props to [Malte Højmark-Berthelsen](mailto:[email protected]) for pretraining Danish BERT and helping out adding a TensorFlow backend for `senda`.
huggingtweets/scottadamssays
huggingtweets
2021-08-20T04:19:05Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/scottadamssays/1629433141180/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1259614511859765248/uxqTchXo_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Scott Adams</div> <div style="text-align: center; font-size: 14px;">@scottadamssays</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Scott Adams. | Data | Scott Adams | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 863 | | Short tweets | 177 | | Tweets kept | 2206 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/28q4l0oa/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @scottadamssays's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/va3cwft8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/va3cwft8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/scottadamssays') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/conceptualjames
huggingtweets
2021-08-20T04:09:07Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/conceptualjames/1629432543025/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1419411594572873733/bCBGq8T9_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">James Lindsay, manipulated media</div> <div style="text-align: center; font-size: 14px;">@conceptualjames</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from James Lindsay, manipulated media. | Data | James Lindsay, manipulated media | | --- | --- | | Tweets downloaded | 3226 | | Retweets | 1436 | | Short tweets | 520 | | Tweets kept | 1270 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1sj5ihe6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @conceptualjames's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1jnu1ceq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1jnu1ceq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/conceptualjames') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
fidukm34/biobert_v1.1_pubmed-finetuned-ner-finetuned-ner
fidukm34
2021-08-20T01:06:53Z
14
2
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "dataset:ncbi_disease", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - ncbi_disease metrics: - precision - recall - f1 - accuracy model_index: - name: biobert_v1.1_pubmed-finetuned-ner-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: ncbi_disease type: ncbi_disease args: ncbi_disease metric: name: Accuracy type: accuracy value: 0.9829142288061745 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobert_v1.1_pubmed-finetuned-ner-finetuned-ner This model is a fine-tuned version of [fidukm34/biobert_v1.1_pubmed-finetuned-ner](https://huggingface.co/fidukm34/biobert_v1.1_pubmed-finetuned-ner) on the ncbi_disease dataset. It achieves the following results on the evaluation set: - Loss: 0.0715 - Precision: 0.8464 - Recall: 0.8872 - F1: 0.8663 - Accuracy: 0.9829 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 340 | 0.0715 | 0.8464 | 0.8872 | 0.8663 | 0.9829 | ### Framework versions - Transformers 4.8.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
k0t1k/test
k0t1k
2021-08-19T17:31:25Z
8
0
transformers
[ "transformers", "pytorch", "bert", "pretraining", "russian", "fill-mask", "embeddings", "masked-lm", "tiny", "ru", "en", "license:mit", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: ["ru", "en"] tags: - russian - fill-mask - pretraining - embeddings - masked-lm - tiny license: mit widget: - text: "Миниатюрная модель для [MASK] разных задач." --- Копия модели https://huggingface.co/cointegrated/rubert-tiny. Чисто для теста!
supah-hakah/distilgpt2-finetuned-wikitext2
supah-hakah
2021-08-19T12:59:37Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null model_index: - name: distilgpt2-finetuned-wikitext2 results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6424 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7598 | 1.0 | 2334 | 3.6654 | | 3.6321 | 2.0 | 4668 | 3.6453 | | 3.6076 | 3.0 | 7002 | 3.6424 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
vishnun/distilgpt2-finetuned-distilgpt2-med_articles
vishnun
2021-08-19T10:23:17Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null model_index: - name: distilgpt2-finetuned-distilgpt2-med_articles results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-distilgpt2-med_articles This model is a fine-tuned version of [vishnun/distilgpt2-finetuned-distilgpt2-med_articles](https://huggingface.co/vishnun/distilgpt2-finetuned-distilgpt2-med_articles) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.3171 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 65 | 3.3417 | | No log | 2.0 | 130 | 3.3300 | | No log | 3.0 | 195 | 3.3231 | | No log | 4.0 | 260 | 3.3172 | | No log | 5.0 | 325 | 3.3171 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
huggingtweets/nftmansa
huggingtweets
2021-08-18T21:04:18Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/nftmansa/1629320654994/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1398377108007755781/nmudFxl3_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">NFT</div> <div style="text-align: center; font-size: 14px;">@nftmansa</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from NFT. | Data | NFT | | --- | --- | | Tweets downloaded | 3223 | | Retweets | 3037 | | Short tweets | 36 | | Tweets kept | 150 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/wwiy7t0n/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @nftmansa's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/b9rzi99p) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/b9rzi99p/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/nftmansa') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
akreal/tiny-random-xlnet
akreal
2021-08-18T15:08:21Z
2,120
0
transformers
[ "transformers", "pytorch", "tf", "xlnet", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
This is a copy of: https://huggingface.co/hf-internal-testing/tiny-random-xlnet Changes: use old format for `pytorch_model.bin`.
patrickvonplaten/bert2gpt2-cnn_dailymail-fp16
patrickvonplaten
2021-08-18T14:38:10Z
603
6
transformers
[ "transformers", "pytorch", "jax", "encoder_decoder", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
# Bert2GPT2 Summarization with 🤗 EncoderDecoder Framework This model is a Bert2Bert model fine-tuned on summarization. Bert2GPT2 is a `EncoderDecoderModel`, meaning that the encoder is a `bert-base-uncased` BERT model and the decoder is a `gpt2` GPT2 model. Leveraging the [EncoderDecoderFramework](https://huggingface.co/transformers/model_doc/encoderdecoder.html#encoder-decoder-models), the two pretrained models can simply be loaded into the framework via: ```python bert2gpt2 = EncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-uncased", "gpt2") ``` The decoder of an `EncoderDecoder` model needs cross-attention layers and usually makes use of causal masking for auto-regressiv generation. Thus, ``bert2gpt2`` is consequently fined-tuned on the `CNN/Daily Mail`dataset and the resulting model `bert2gpt2-cnn_dailymail-fp16` is uploaded here. ## Example The model is by no means a state-of-the-art model, but nevertheless produces reasonable summarization results. It was mainly fine-tuned as a proof-of-concept for the 🤗 EncoderDecoder Framework. The model can be used as follows: ```python from transformers import BertTokenizer, GPT2Tokenizer, EncoderDecoderModel model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2gpt2-cnn_dailymail-fp16") # reuse tokenizer from bert2bert encoder-decoder model bert_tokenizer = BertTokenizer.from_pretrained("patrickvonplaten/bert2bert-cnn_dailymail-fp16") article = """(CNN)Sigma Alpha Epsilon is under fire for a video showing party-bound fraternity members singing a racist chant. SAE's national chapter suspended the students, but University of Oklahoma President David B oren took it a step further, saying the university's affiliation with the fraternity is permanently done. The news is shocking, but it's not the first time SAE has faced controversy. SAE was founded March 9, 185 6, at the University of Alabama, five years before the American Civil War, according to the fraternity website. When the war began, the group had fewer than 400 members, of which "369 went to war for the Confede rate States and seven for the Union Army," the website says. The fraternity now boasts more than 200,000 living alumni, along with about 15,000 undergraduates populating 219 chapters and 20 "colonies" seeking fu ll membership at universities. SAE has had to work hard to change recently after a string of member deaths, many blamed on the hazing of new recruits, SAE national President Bradley Cohen wrote in a message on t he fraternity's website. The fraternity's website lists more than 130 chapters cited or suspended for "health and safety incidents" since 2010. At least 30 of the incidents involved hazing, and dozens more invol ved alcohol. However, the list is missing numerous incidents from recent months. Among them, according to various media outlets: Yale University banned the SAEs from campus activities last month after members al legedly tried to interfere with a sexual misconduct investigation connected to an initiation rite. Stanford University in December suspended SAE housing privileges after finding sorority members attending a frat ernity function were subjected to graphic sexual content. And Johns Hopkins University in November suspended the fraternity for underage drinking. "The media has labeled us as the 'nation's deadliest fraternity, ' " Cohen said. In 2011, for example, a student died while being coerced into excessive alcohol consumption, according to a lawsuit. SAE's previous insurer dumped the fraternity. "As a result, we are paying Lloy d's of London the highest insurance rates in the Greek-letter world," Cohen said. Universities have turned down SAE's attempts to open new chapters, and the fraternity had to close 12 in 18 months over hazing in cidents.""" input_ids = bert_tokenizer(article, return_tensors="pt").input_ids output_ids = model.generate(input_ids) # we need a gpt2 tokenizer for the output word embeddings gpt2_tokenizer = GPT2Tokenizer.from_pretrained("gpt2") print(gpt2_tokenizer.decode(output_ids[0], skip_special_tokens=True)) # should produce # SAE's national chapter suspended the students, but university president says it's permanent. # The fraternity has had to deal with a string of incidents since 2010. # SAE has more than 200,000 members, many of whom are students. # A student died while being coerced into drinking alcohol. ``` ## Training script: **IMPORTANT**: In order for this code to work, make sure you checkout to the branch [more_general_trainer_metric](https://github.com/huggingface/transformers/tree/more_general_trainer_metric), which slightly adapts the `Trainer` for `EncoderDecoderModels` according to this PR: https://github.com/huggingface/transformers/pull/5840. The following code shows the complete training script that was used to fine-tune `bert2gpt2-cnn_dailymail-fp16 ` for reproducability. The training last ~11h on a standard GPU. ```python #!/usr/bin/env python3 import nlp import logging from transformers import BertTokenizer, GPT2Tokenizer, EncoderDecoderModel, Trainer, TrainingArguments logging.basicConfig(level=logging.INFO) model = EncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-cased", "gpt2") # cache is currently not supported by EncoderDecoder framework model.decoder.config.use_cache = False bert_tokenizer = BertTokenizer.from_pretrained("bert-base-cased") # CLS token will work as BOS token bert_tokenizer.bos_token = bert_tokenizer.cls_token # SEP token will work as EOS token bert_tokenizer.eos_token = bert_tokenizer.sep_token # make sure GPT2 appends EOS in begin and end def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): outputs = [self.bos_token_id] + token_ids_0 + [self.eos_token_id] return outputs GPT2Tokenizer.build_inputs_with_special_tokens = build_inputs_with_special_tokens gpt2_tokenizer = GPT2Tokenizer.from_pretrained("gpt2") # set pad_token_id to unk_token_id -> be careful here as unk_token_id == eos_token_id == bos_token_id gpt2_tokenizer.pad_token = gpt2_tokenizer.unk_token # set decoding params model.config.decoder_start_token_id = gpt2_tokenizer.bos_token_id model.config.eos_token_id = gpt2_tokenizer.eos_token_id model.config.max_length = 142 model.config.min_length = 56 model.config.no_repeat_ngram_size = 3 model.early_stopping = True model.length_penalty = 2.0 model.num_beams = 4 # load train and validation data train_dataset = nlp.load_dataset("cnn_dailymail", "3.0.0", split="train") val_dataset = nlp.load_dataset("cnn_dailymail", "3.0.0", split="validation[:5%]") # load rouge for validation rouge = nlp.load_metric("rouge", experiment_id=1) encoder_length = 512 decoder_length = 128 batch_size = 16 # map data correctly def map_to_encoder_decoder_inputs(batch): # Tokenizer will automatically set [BOS] <text> [EOS] # use bert tokenizer here for encoder inputs = bert_tokenizer(batch["article"], padding="max_length", truncation=True, max_length=encoder_length) # force summarization <= 128 outputs = gpt2_tokenizer(batch["highlights"], padding="max_length", truncation=True, max_length=decoder_length) batch["input_ids"] = inputs.input_ids batch["attention_mask"] = inputs.attention_mask batch["decoder_input_ids"] = outputs.input_ids batch["labels"] = outputs.input_ids.copy() batch["decoder_attention_mask"] = outputs.attention_mask # complicated list comprehension here because pad_token_id alone is not good enough to know whether label should be excluded or not batch["labels"] = [ [-100 if mask == 0 else token for mask, token in mask_and_tokens] for mask_and_tokens in [zip(masks, labels) for masks, labels in zip(batch["decoder_attention_mask"], batch["labels"])] ] assert all([len(x) == encoder_length for x in inputs.input_ids]) assert all([len(x) == decoder_length for x in outputs.input_ids]) return batch def compute_metrics(pred): labels_ids = pred.label_ids pred_ids = pred.predictions # all unnecessary tokens are removed pred_str = gpt2_tokenizer.batch_decode(pred_ids, skip_special_tokens=True) labels_ids[labels_ids == -100] = gpt2_tokenizer.eos_token_id label_str = gpt2_tokenizer.batch_decode(labels_ids, skip_special_tokens=True) rouge_output = rouge.compute(predictions=pred_str, references=label_str, rouge_types=["rouge2"])["rouge2"].mid return { "rouge2_precision": round(rouge_output.precision, 4), "rouge2_recall": round(rouge_output.recall, 4), "rouge2_fmeasure": round(rouge_output.fmeasure, 4), } # make train dataset ready train_dataset = train_dataset.map( map_to_encoder_decoder_inputs, batched=True, batch_size=batch_size, remove_columns=["article", "highlights"], ) train_dataset.set_format( type="torch", columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"], ) # same for validation dataset val_dataset = val_dataset.map( map_to_encoder_decoder_inputs, batched=True, batch_size=batch_size, remove_columns=["article", "highlights"], ) val_dataset.set_format( type="torch", columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"], ) # set training arguments - these params are not really tuned, feel free to change training_args = TrainingArguments( output_dir="./", per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, predict_from_generate=True, evaluate_during_training=True, do_train=True, do_eval=True, logging_steps=1000, save_steps=1000, eval_steps=1000, overwrite_output_dir=True, warmup_steps=2000, save_total_limit=10, fp16=True, ) # instantiate trainer trainer = Trainer( model=model, args=training_args, compute_metrics=compute_metrics, train_dataset=train_dataset, eval_dataset=val_dataset, ) # start training trainer.train() ``` ## Evaluation The following script evaluates the model on the test set of CNN/Daily Mail. ```python #!/usr/bin/env python3 import nlp from transformers import BertTokenizer, GPT2Tokenizer, EncoderDecoderModel model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2gpt2-cnn_dailymail-fp16") model.to("cuda") bert_tokenizer = BertTokenizer.from_pretrained("bert-base-cased") # CLS token will work as BOS token bert_tokenizer.bos_token = bert_tokenizer.cls_token # SEP token will work as EOS token bert_tokenizer.eos_token = bert_tokenizer.sep_token # make sure GPT2 appends EOS in begin and end def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): outputs = [self.bos_token_id] + token_ids_0 + [self.eos_token_id] return outputs GPT2Tokenizer.build_inputs_with_special_tokens = build_inputs_with_special_tokens gpt2_tokenizer = GPT2Tokenizer.from_pretrained("gpt2") # set pad_token_id to unk_token_id -> be careful here as unk_token_id == eos_token_id == bos_token_id gpt2_tokenizer.pad_token = gpt2_tokenizer.unk_token # set decoding params model.config.decoder_start_token_id = gpt2_tokenizer.bos_token_id model.config.eos_token_id = gpt2_tokenizer.eos_token_id model.config.max_length = 142 model.config.min_length = 56 model.config.no_repeat_ngram_size = 3 model.early_stopping = True model.length_penalty = 2.0 model.num_beams = 4 test_dataset = nlp.load_dataset("cnn_dailymail", "3.0.0", split="test") batch_size = 64 # map data correctly def generate_summary(batch): # Tokenizer will automatically set [BOS] <text> [EOS] # cut off at BERT max length 512 inputs = bert_tokenizer(batch["article"], padding="max_length", truncation=True, max_length=512, return_tensors="pt") input_ids = inputs.input_ids.to("cuda") attention_mask = inputs.attention_mask.to("cuda") outputs = model.generate(input_ids, attention_mask=attention_mask) # all special tokens including will be removed output_str = gpt2_tokenizer.batch_decode(outputs, skip_special_tokens=True) batch["pred"] = output_str return batch results = test_dataset.map(generate_summary, batched=True, batch_size=batch_size, remove_columns=["article"]) # load rouge for validation rouge = nlp.load_metric("rouge") pred_str = results["pred"] label_str = results["highlights"] rouge_output = rouge.compute(predictions=pred_str, references=label_str, rouge_types=["rouge2"])["rouge2"].mid print(rouge_output) ``` The obtained results should be: | - | Rouge2 - mid -precision | Rouge2 - mid - recall | Rouge2 - mid - fmeasure | |----------|:-------------:|:------:|:------:| | **CNN/Daily Mail** | 14.42 | 16.99 | **15.16** |
msakthiganesh/TabQGen-Large
msakthiganesh
2021-08-18T14:37:35Z
3
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
> **TabQGen** model is released along with the dataset **Question Generation for Tables** in the paper - **Answer-Aware Question Generation from Tabular and Textual Data using T5**
ehdwns1516/klue-roberta-base_sae
ehdwns1516
2021-08-18T11:31:20Z
11
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
# klue-roberta-base-sae * This model trained with Korean dataset. * Input sentence what you want to grasp intent. * You can use English, but don't expect accuracy. klue-roberta-base-kornli DEMO: [Ainize DEMO](https://main-klue-roberta-base-kornli-ehdwns1516.endpoint.ainize.ai/) klue-roberta-base-kornli API: [Ainize API](https://ainize.web.app/redirect?git_repo=https://github.com/ehdwns1516/KLUE-RoBERTa-base_sae) ## Overview Language model: [klue/roberta-base](https://huggingface.co/klue/roberta-base) Language: Korean Training data: [kor_sae](https://huggingface.co/datasets/kor_sae) Eval data: [kor_sae](https://huggingface.co/datasets/kor_sae) Code: See [Ainize Workspace](https://ainize.ai/workspace/create?imageId=hnj95592adzr02xPTqss&git=https://github.com/ehdwns1516/KLUE-RoBERTa-base_sae_notebook) ## Usage ## In Transformers ``` from transformers import AutoTokenizer, pipeline tokenizer = AutoTokenizer.from_pretrained("ehdwns1516/klue-roberta-base-sae") classifier = pipeline( "text-classification", model="ehdwns1516/klue-roberta-base-kornli", return_all_scores=True, ) context = "sentence what you want to grasp intent" result = dict() result[0] = classifier(context)[0] ```
fadhilarkan/t5-small-finetuned-xsum
fadhilarkan
2021-08-18T10:37:43Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model_index: - name: t5-small-finetuned-xsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: squad type: squad args: plain_text --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
mrm8488/t5-small-spanish-finetuned-squadv1
mrm8488
2021-08-17T22:02:49Z
16
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "es", "dataset:squad_es", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: es datasets: - squad_es widget: - text: "pregunta: ¿Cuál es el mayor placer de la vida? contexto: El mayor placer de la vida es dormir" --- # T5 small (Spanish) fine-tuned on SQUAD (ES) for Q&A
huggingtweets/queenjennyxoxo
huggingtweets
2021-08-17T19:26:25Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/queenjennyxoxo/1629228381536/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1252793011815288833/J9iuR7rW_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Queen Jenny XoXo ♠️🐰</div> <div style="text-align: center; font-size: 14px;">@queenjennyxoxo</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Queen Jenny XoXo ♠️🐰. | Data | Queen Jenny XoXo ♠️🐰 | | --- | --- | | Tweets downloaded | 1452 | | Retweets | 34 | | Short tweets | 248 | | Tweets kept | 1170 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2rl5ylqw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @queenjennyxoxo's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/simhtmij) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/simhtmij/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/queenjennyxoxo') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
gagan3012/summarsiation
gagan3012
2021-08-17T17:17:30Z
4
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- Summarisation model summarsiation
birgermoell/ner-swedish-wikiann
birgermoell
2021-08-17T15:28:47Z
30
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "dataset:wikiann", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - token-classification datasets: - wikiann metrics: - precision - recall - f1 - accuracy model-index: - name: ner-swedish-wikiann results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann metrics: - name: Precision type: precision value: 0.8331921416757433 - name: Recall type: recall value: 0.84243586083126 - name: F1 type: f1 value: 0.8377885044416501 - name: Accuracy type: accuracy value: 0.91930707459758 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ner-swedish-wikiann This model is a fine-tuned version of [nordic-roberta-wiki](hhttps://huggingface.co/flax-community/nordic-roberta-wiki) trained for NER on the wikiann dataset. eval F1-Score: **83,78** test F1-Score: **83,76** ## Model Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("birgermoell/ner-swedish-wikiann") model = AutoModelForTokenClassification.from_pretrained("birgermoell/ner-swedish-wikiann") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Jag heter Per och jag jobbar på KTH" nlp(example) ``` <!-- ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.9086903597787154e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results It achieves the following results on the evaluation set: - Loss: 0.3156 - Precision: 0.8332 from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("birgermoell/ner-swedish-wikiann") model = AutoModelForTokenClassification.from_pretrained("birgermoell/ner-swedish-wikiann") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Jag heter Per och jag jobbar på KTH" nlp(example) - F1: 0.8378 - Accuracy: 0.9193 It achieves the following results on the test set: - Loss: 0.3023 - Precision: 0.8301 - Recall: 0.8452 - F1: 0.8376 - Accuracy: 0.92 ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.6.2 - Tokenizers 0.10.2 -->
huggingtweets/factoport-lifedote-lifelywords
huggingtweets
2021-08-17T13:47:21Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/factoport-lifedote-lifelywords/1629208035773/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1271838750209867776/AIzGDVfw_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1272055508279664640/jgeplEoJ_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1290232914135982080/1CpBaNOH_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">SweetyMe ❤️ & My World Baby 💖 & Magnificent Life 🦋</div> <div style="text-align: center; font-size: 14px;">@factoport-lifedote-lifelywords</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from SweetyMe ❤️ & My World Baby 💖 & Magnificent Life 🦋. | Data | SweetyMe ❤️ | My World Baby 💖 | Magnificent Life 🦋 | | --- | --- | --- | --- | | Tweets downloaded | 2607 | 1488 | 2419 | | Retweets | 0 | 1 | 1 | | Short tweets | 57 | 18 | 2 | | Tweets kept | 2550 | 1469 | 2416 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/24g662kp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @factoport-lifedote-lifelywords's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1qsyqlji) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1qsyqlji/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/factoport-lifedote-lifelywords') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/cuckoldresss-qobetty-ragamuffin197
huggingtweets
2021-08-17T12:17:54Z
4
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1399382014214737924/QsAw6oxP_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/755753205028577280/nwtLbTwy_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1254593296455872513/Qdyli1JK_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">BettyBoopQoS & Ragamuffin1970 & Cuckoldress Scarlet</div> <div style="text-align: center; font-size: 14px;">@cuckoldresss-qobetty-ragamuffin197</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from BettyBoopQoS & Ragamuffin1970 & Cuckoldress Scarlet. | Data | BettyBoopQoS | Ragamuffin1970 | Cuckoldress Scarlet | | --- | --- | --- | --- | | Tweets downloaded | 129 | 3247 | 1005 | | Retweets | 2 | 11 | 252 | | Short tweets | 10 | 584 | 70 | | Tweets kept | 117 | 2652 | 683 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/zfpi2vmm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cuckoldresss-qobetty-ragamuffin197's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/172rz2sh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/172rz2sh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cuckoldresss-qobetty-ragamuffin197') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/cuckolddna
huggingtweets
2021-08-17T11:19:37Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/cuckolddna/1629199173022/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1342468924496031745/GQXNyPSq_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Cuckold DNA</div> <div style="text-align: center; font-size: 14px;">@cuckolddna</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Cuckold DNA. | Data | Cuckold DNA | | --- | --- | | Tweets downloaded | 2868 | | Retweets | 1537 | | Short tweets | 107 | | Tweets kept | 1224 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/39n7komh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cuckolddna's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3tnket83) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3tnket83/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cuckolddna') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/bbcqos-fitslut63-kellyg_official
huggingtweets
2021-08-17T11:06:20Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/bbcqos-fitslut63-kellyg_official/1629198375751/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1358510866371661830/rxzOoe9A_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1073647682487410688/2yrbD4RY_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1334065878917390338/V6Eh8ZJn_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Miss Gbadamosi ♠ & ♠Jenny Summers♠ & ♠️MsWhite♠️</div> <div style="text-align: center; font-size: 14px;">@bbcqos-fitslut63-kellyg_official</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Miss Gbadamosi ♠ & ♠Jenny Summers♠ & ♠️MsWhite♠️. | Data | Miss Gbadamosi ♠ | ♠Jenny Summers♠ | ♠️MsWhite♠️ | | --- | --- | --- | --- | | Tweets downloaded | 480 | 882 | 3063 | | Retweets | 117 | 55 | 1391 | | Short tweets | 154 | 483 | 230 | | Tweets kept | 209 | 344 | 1442 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3rzzq99i/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bbcqos-fitslut63-kellyg_official's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/xd2e2hom) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/xd2e2hom/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bbcqos-fitslut63-kellyg_official') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/bbcqos
huggingtweets
2021-08-17T10:52:33Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/bbcqos/1629197549972/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1073647682487410688/2yrbD4RY_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">♠Jenny Summers♠</div> <div style="text-align: center; font-size: 14px;">@bbcqos</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ♠Jenny Summers♠. | Data | ♠Jenny Summers♠ | | --- | --- | | Tweets downloaded | 882 | | Retweets | 55 | | Short tweets | 483 | | Tweets kept | 344 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2uwts9v5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bbcqos's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1shy0ous) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1shy0ous/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bbcqos') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
osanseviero/dalle-mini-fork
osanseviero
2021-08-17T10:30:17Z
7
5
generic
[ "generic", "jax", "bart", "text-to-image", "en", "region:us" ]
text-to-image
2022-03-02T23:29:05Z
--- library_name: generic language: - en pipeline_tag: text-to-image --- ## Fork of DALL·E mini - Generate images from text For the original repo, head to https://huggingface.co/flax-community/dalle-mini
ricardo-filho/sbertimbau-base-quora-multitask
ricardo-filho
2021-08-17T10:20:30Z
5
1
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 3227 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 4333 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 10, "evaluation_steps": 0, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
cogito233/distilbert-base-uncased-finetuned-ner
cogito233
2021-08-17T10:12:35Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model_index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metric: name: Accuracy type: accuracy value: 0.9837323462595516 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0605 - Precision: 0.9251 - Recall: 0.9357 - F1: 0.9304 - Accuracy: 0.9837 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2402 | 1.0 | 878 | 0.0694 | 0.9168 | 0.9215 | 0.9191 | 0.9814 | | 0.051 | 2.0 | 1756 | 0.0595 | 0.9249 | 0.9330 | 0.9289 | 0.9833 | | 0.0302 | 3.0 | 2634 | 0.0605 | 0.9251 | 0.9357 | 0.9304 | 0.9837 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
huggingtweets/thecoolestcool
huggingtweets
2021-08-17T08:58:28Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/thecoolestcool/1629190704554/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/797984775046729728/e1AAptXc_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ross Simmonds</div> <div style="text-align: center; font-size: 14px;">@thecoolestcool</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ross Simmonds. | Data | Ross Simmonds | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 150 | | Short tweets | 485 | | Tweets kept | 2615 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3qv5owo5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @thecoolestcool's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/s2alparu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/s2alparu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/thecoolestcool') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)