modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
sequence
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
tensorblock/DopeorNope_COLA3_13B-GGUF
tensorblock
2025-06-19T02:03:45Z
14
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:DopeorNope/COLA3_13B", "base_model:quantized:DopeorNope/COLA3_13B", "endpoints_compatible", "region:us" ]
null
2025-05-06T22:29:50Z
--- base_model: DopeorNope/COLA3_13B tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## DopeorNope/COLA3_13B - GGUF This repo contains GGUF format model files for [DopeorNope/COLA3_13B](https://huggingface.co/DopeorNope/COLA3_13B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format. ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [COLA3_13B-Q2_K.gguf](https://huggingface.co/tensorblock/DopeorNope_COLA3_13B-GGUF/blob/main/COLA3_13B-Q2_K.gguf) | Q2_K | 4.854 GB | smallest, significant quality loss - not recommended for most purposes | | [COLA3_13B-Q3_K_S.gguf](https://huggingface.co/tensorblock/DopeorNope_COLA3_13B-GGUF/blob/main/COLA3_13B-Q3_K_S.gguf) | Q3_K_S | 5.659 GB | very small, high quality loss | | [COLA3_13B-Q3_K_M.gguf](https://huggingface.co/tensorblock/DopeorNope_COLA3_13B-GGUF/blob/main/COLA3_13B-Q3_K_M.gguf) | Q3_K_M | 6.338 GB | very small, high quality loss | | [COLA3_13B-Q3_K_L.gguf](https://huggingface.co/tensorblock/DopeorNope_COLA3_13B-GGUF/blob/main/COLA3_13B-Q3_K_L.gguf) | Q3_K_L | 6.930 GB | small, substantial quality loss | | [COLA3_13B-Q4_0.gguf](https://huggingface.co/tensorblock/DopeorNope_COLA3_13B-GGUF/blob/main/COLA3_13B-Q4_0.gguf) | Q4_0 | 7.366 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [COLA3_13B-Q4_K_S.gguf](https://huggingface.co/tensorblock/DopeorNope_COLA3_13B-GGUF/blob/main/COLA3_13B-Q4_K_S.gguf) | Q4_K_S | 7.423 GB | small, greater quality loss | | [COLA3_13B-Q4_K_M.gguf](https://huggingface.co/tensorblock/DopeorNope_COLA3_13B-GGUF/blob/main/COLA3_13B-Q4_K_M.gguf) | Q4_K_M | 7.866 GB | medium, balanced quality - recommended | | [COLA3_13B-Q5_0.gguf](https://huggingface.co/tensorblock/DopeorNope_COLA3_13B-GGUF/blob/main/COLA3_13B-Q5_0.gguf) | Q5_0 | 8.972 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [COLA3_13B-Q5_K_S.gguf](https://huggingface.co/tensorblock/DopeorNope_COLA3_13B-GGUF/blob/main/COLA3_13B-Q5_K_S.gguf) | Q5_K_S | 8.972 GB | large, low quality loss - recommended | | [COLA3_13B-Q5_K_M.gguf](https://huggingface.co/tensorblock/DopeorNope_COLA3_13B-GGUF/blob/main/COLA3_13B-Q5_K_M.gguf) | Q5_K_M | 9.230 GB | large, very low quality loss - recommended | | [COLA3_13B-Q6_K.gguf](https://huggingface.co/tensorblock/DopeorNope_COLA3_13B-GGUF/blob/main/COLA3_13B-Q6_K.gguf) | Q6_K | 10.679 GB | very large, extremely low quality loss | | [COLA3_13B-Q8_0.gguf](https://huggingface.co/tensorblock/DopeorNope_COLA3_13B-GGUF/blob/main/COLA3_13B-Q8_0.gguf) | Q8_0 | 13.831 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/DopeorNope_COLA3_13B-GGUF --include "COLA3_13B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/DopeorNope_COLA3_13B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Mathoctopus_Parallel_7B-GGUF
tensorblock
2025-06-19T02:03:34Z
28
0
null
[ "gguf", "TensorBlock", "GGUF", "en", "es", "zh", "de", "ru", "th", "sw", "ja", "fr", "bn", "dataset:Mathoctopus/GSM8KInstruct_Parallel", "base_model:Mathoctopus/Parallel_7B", "base_model:quantized:Mathoctopus/Parallel_7B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-06T15:41:26Z
--- license: apache-2.0 datasets: - Mathoctopus/GSM8KInstruct_Parallel language: - en - es - zh - de - ru - th - sw - ja - fr - bn tags: - TensorBlock - GGUF base_model: Mathoctopus/Parallel_7B --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## Mathoctopus/Parallel_7B - GGUF This repo contains GGUF format model files for [Mathoctopus/Parallel_7B](https://huggingface.co/Mathoctopus/Parallel_7B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Parallel_7B-Q2_K.gguf](https://huggingface.co/tensorblock/Mathoctopus_Parallel_7B-GGUF/blob/main/Parallel_7B-Q2_K.gguf) | Q2_K | 2.533 GB | smallest, significant quality loss - not recommended for most purposes | | [Parallel_7B-Q3_K_S.gguf](https://huggingface.co/tensorblock/Mathoctopus_Parallel_7B-GGUF/blob/main/Parallel_7B-Q3_K_S.gguf) | Q3_K_S | 2.948 GB | very small, high quality loss | | [Parallel_7B-Q3_K_M.gguf](https://huggingface.co/tensorblock/Mathoctopus_Parallel_7B-GGUF/blob/main/Parallel_7B-Q3_K_M.gguf) | Q3_K_M | 3.298 GB | very small, high quality loss | | [Parallel_7B-Q3_K_L.gguf](https://huggingface.co/tensorblock/Mathoctopus_Parallel_7B-GGUF/blob/main/Parallel_7B-Q3_K_L.gguf) | Q3_K_L | 3.597 GB | small, substantial quality loss | | [Parallel_7B-Q4_0.gguf](https://huggingface.co/tensorblock/Mathoctopus_Parallel_7B-GGUF/blob/main/Parallel_7B-Q4_0.gguf) | Q4_0 | 3.826 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Parallel_7B-Q4_K_S.gguf](https://huggingface.co/tensorblock/Mathoctopus_Parallel_7B-GGUF/blob/main/Parallel_7B-Q4_K_S.gguf) | Q4_K_S | 3.857 GB | small, greater quality loss | | [Parallel_7B-Q4_K_M.gguf](https://huggingface.co/tensorblock/Mathoctopus_Parallel_7B-GGUF/blob/main/Parallel_7B-Q4_K_M.gguf) | Q4_K_M | 4.081 GB | medium, balanced quality - recommended | | [Parallel_7B-Q5_0.gguf](https://huggingface.co/tensorblock/Mathoctopus_Parallel_7B-GGUF/blob/main/Parallel_7B-Q5_0.gguf) | Q5_0 | 4.652 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Parallel_7B-Q5_K_S.gguf](https://huggingface.co/tensorblock/Mathoctopus_Parallel_7B-GGUF/blob/main/Parallel_7B-Q5_K_S.gguf) | Q5_K_S | 4.652 GB | large, low quality loss - recommended | | [Parallel_7B-Q5_K_M.gguf](https://huggingface.co/tensorblock/Mathoctopus_Parallel_7B-GGUF/blob/main/Parallel_7B-Q5_K_M.gguf) | Q5_K_M | 4.783 GB | large, very low quality loss - recommended | | [Parallel_7B-Q6_K.gguf](https://huggingface.co/tensorblock/Mathoctopus_Parallel_7B-GGUF/blob/main/Parallel_7B-Q6_K.gguf) | Q6_K | 5.529 GB | very large, extremely low quality loss | | [Parallel_7B-Q8_0.gguf](https://huggingface.co/tensorblock/Mathoctopus_Parallel_7B-GGUF/blob/main/Parallel_7B-Q8_0.gguf) | Q8_0 | 7.161 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Mathoctopus_Parallel_7B-GGUF --include "Parallel_7B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Mathoctopus_Parallel_7B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/FINDA-FIT_llama-p-GGUF
tensorblock
2025-06-19T02:03:07Z
15
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:FINDA-FIT/llama-p", "base_model:quantized:FINDA-FIT/llama-p", "endpoints_compatible", "region:us" ]
null
2025-05-06T06:39:37Z
--- base_model: FINDA-FIT/llama-p tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## FINDA-FIT/llama-p - GGUF This repo contains GGUF format model files for [FINDA-FIT/llama-p](https://huggingface.co/FINDA-FIT/llama-p). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format. ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [llama-p-Q2_K.gguf](https://huggingface.co/tensorblock/FINDA-FIT_llama-p-GGUF/blob/main/llama-p-Q2_K.gguf) | Q2_K | 2.601 GB | smallest, significant quality loss - not recommended for most purposes | | [llama-p-Q3_K_S.gguf](https://huggingface.co/tensorblock/FINDA-FIT_llama-p-GGUF/blob/main/llama-p-Q3_K_S.gguf) | Q3_K_S | 3.022 GB | very small, high quality loss | | [llama-p-Q3_K_M.gguf](https://huggingface.co/tensorblock/FINDA-FIT_llama-p-GGUF/blob/main/llama-p-Q3_K_M.gguf) | Q3_K_M | 3.372 GB | very small, high quality loss | | [llama-p-Q3_K_L.gguf](https://huggingface.co/tensorblock/FINDA-FIT_llama-p-GGUF/blob/main/llama-p-Q3_K_L.gguf) | Q3_K_L | 3.671 GB | small, substantial quality loss | | [llama-p-Q4_0.gguf](https://huggingface.co/tensorblock/FINDA-FIT_llama-p-GGUF/blob/main/llama-p-Q4_0.gguf) | Q4_0 | 3.907 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [llama-p-Q4_K_S.gguf](https://huggingface.co/tensorblock/FINDA-FIT_llama-p-GGUF/blob/main/llama-p-Q4_K_S.gguf) | Q4_K_S | 3.938 GB | small, greater quality loss | | [llama-p-Q4_K_M.gguf](https://huggingface.co/tensorblock/FINDA-FIT_llama-p-GGUF/blob/main/llama-p-Q4_K_M.gguf) | Q4_K_M | 4.163 GB | medium, balanced quality - recommended | | [llama-p-Q5_0.gguf](https://huggingface.co/tensorblock/FINDA-FIT_llama-p-GGUF/blob/main/llama-p-Q5_0.gguf) | Q5_0 | 4.741 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [llama-p-Q5_K_S.gguf](https://huggingface.co/tensorblock/FINDA-FIT_llama-p-GGUF/blob/main/llama-p-Q5_K_S.gguf) | Q5_K_S | 4.741 GB | large, low quality loss - recommended | | [llama-p-Q5_K_M.gguf](https://huggingface.co/tensorblock/FINDA-FIT_llama-p-GGUF/blob/main/llama-p-Q5_K_M.gguf) | Q5_K_M | 4.872 GB | large, very low quality loss - recommended | | [llama-p-Q6_K.gguf](https://huggingface.co/tensorblock/FINDA-FIT_llama-p-GGUF/blob/main/llama-p-Q6_K.gguf) | Q6_K | 5.626 GB | very large, extremely low quality loss | | [llama-p-Q8_0.gguf](https://huggingface.co/tensorblock/FINDA-FIT_llama-p-GGUF/blob/main/llama-p-Q8_0.gguf) | Q8_0 | 7.286 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/FINDA-FIT_llama-p-GGUF --include "llama-p-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/FINDA-FIT_llama-p-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/TinyPixel_elm-test-GGUF
tensorblock
2025-06-19T02:03:05Z
13
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:TinyPixel/elm-test", "base_model:quantized:TinyPixel/elm-test", "endpoints_compatible", "region:us" ]
null
2025-05-06T05:57:05Z
--- base_model: TinyPixel/elm-test tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## TinyPixel/elm-test - GGUF This repo contains GGUF format model files for [TinyPixel/elm-test](https://huggingface.co/TinyPixel/elm-test). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format. ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [elm-test-Q2_K.gguf](https://huggingface.co/tensorblock/TinyPixel_elm-test-GGUF/blob/main/elm-test-Q2_K.gguf) | Q2_K | 2.533 GB | smallest, significant quality loss - not recommended for most purposes | | [elm-test-Q3_K_S.gguf](https://huggingface.co/tensorblock/TinyPixel_elm-test-GGUF/blob/main/elm-test-Q3_K_S.gguf) | Q3_K_S | 2.948 GB | very small, high quality loss | | [elm-test-Q3_K_M.gguf](https://huggingface.co/tensorblock/TinyPixel_elm-test-GGUF/blob/main/elm-test-Q3_K_M.gguf) | Q3_K_M | 3.298 GB | very small, high quality loss | | [elm-test-Q3_K_L.gguf](https://huggingface.co/tensorblock/TinyPixel_elm-test-GGUF/blob/main/elm-test-Q3_K_L.gguf) | Q3_K_L | 3.597 GB | small, substantial quality loss | | [elm-test-Q4_0.gguf](https://huggingface.co/tensorblock/TinyPixel_elm-test-GGUF/blob/main/elm-test-Q4_0.gguf) | Q4_0 | 3.826 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [elm-test-Q4_K_S.gguf](https://huggingface.co/tensorblock/TinyPixel_elm-test-GGUF/blob/main/elm-test-Q4_K_S.gguf) | Q4_K_S | 3.857 GB | small, greater quality loss | | [elm-test-Q4_K_M.gguf](https://huggingface.co/tensorblock/TinyPixel_elm-test-GGUF/blob/main/elm-test-Q4_K_M.gguf) | Q4_K_M | 4.081 GB | medium, balanced quality - recommended | | [elm-test-Q5_0.gguf](https://huggingface.co/tensorblock/TinyPixel_elm-test-GGUF/blob/main/elm-test-Q5_0.gguf) | Q5_0 | 4.652 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [elm-test-Q5_K_S.gguf](https://huggingface.co/tensorblock/TinyPixel_elm-test-GGUF/blob/main/elm-test-Q5_K_S.gguf) | Q5_K_S | 4.652 GB | large, low quality loss - recommended | | [elm-test-Q5_K_M.gguf](https://huggingface.co/tensorblock/TinyPixel_elm-test-GGUF/blob/main/elm-test-Q5_K_M.gguf) | Q5_K_M | 4.783 GB | large, very low quality loss - recommended | | [elm-test-Q6_K.gguf](https://huggingface.co/tensorblock/TinyPixel_elm-test-GGUF/blob/main/elm-test-Q6_K.gguf) | Q6_K | 5.529 GB | very large, extremely low quality loss | | [elm-test-Q8_0.gguf](https://huggingface.co/tensorblock/TinyPixel_elm-test-GGUF/blob/main/elm-test-Q8_0.gguf) | Q8_0 | 7.161 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/TinyPixel_elm-test-GGUF --include "elm-test-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/TinyPixel_elm-test-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/OpenLLM-France_Claire-Mistral-7B-0.1-GGUF
tensorblock
2025-06-19T02:03:03Z
62
0
null
[ "gguf", "pretrained", "conversational", "TensorBlock", "GGUF", "text-generation", "fr", "base_model:OpenLLM-France/Claire-Mistral-7B-0.1", "base_model:quantized:OpenLLM-France/Claire-Mistral-7B-0.1", "license:cc-by-nc-sa-4.0", "endpoints_compatible", "region:us" ]
text-generation
2025-05-06T05:23:07Z
--- language: - fr license: cc-by-nc-sa-4.0 pipeline_tag: text-generation base_model: OpenLLM-France/Claire-Mistral-7B-0.1 tags: - pretrained - conversational - TensorBlock - GGUF widget: - text: '- Bonjour Dominique, qu''allez-vous nous cuisiner aujourd''hui ? - Bonjour Camille,' example_title: Request for a recipe group: Dash - text: '[Intervenant 1:] Bonjour Dominique, qu''allez-vous nous cuisiner aujourd''hui ? [Intervenant 2:] Bonjour Camille,' example_title: Request for a recipe group: Intervenant - text: '[Camille:] Bonjour Dominique, qu''allez-vous nous cuisiner aujourd''hui ? [Dominique:] Bonjour Camille,' example_title: Request for a recipe group: FirstName - text: '[Camille Durand:] Bonjour Dominique, qu''allez-vous nous cuisiner aujourd''hui ? [Dominique Petit:] Bonjour Camille,' example_title: Request for a recipe group: Named inference: parameters: temperature: 1.0 max_new_tokens: 200 top_k: 10 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## OpenLLM-France/Claire-Mistral-7B-0.1 - GGUF This repo contains GGUF format model files for [OpenLLM-France/Claire-Mistral-7B-0.1](https://huggingface.co/OpenLLM-France/Claire-Mistral-7B-0.1). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format. ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Claire-Mistral-7B-0.1-Q2_K.gguf](https://huggingface.co/tensorblock/OpenLLM-France_Claire-Mistral-7B-0.1-GGUF/blob/main/Claire-Mistral-7B-0.1-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [Claire-Mistral-7B-0.1-Q3_K_S.gguf](https://huggingface.co/tensorblock/OpenLLM-France_Claire-Mistral-7B-0.1-GGUF/blob/main/Claire-Mistral-7B-0.1-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [Claire-Mistral-7B-0.1-Q3_K_M.gguf](https://huggingface.co/tensorblock/OpenLLM-France_Claire-Mistral-7B-0.1-GGUF/blob/main/Claire-Mistral-7B-0.1-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [Claire-Mistral-7B-0.1-Q3_K_L.gguf](https://huggingface.co/tensorblock/OpenLLM-France_Claire-Mistral-7B-0.1-GGUF/blob/main/Claire-Mistral-7B-0.1-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [Claire-Mistral-7B-0.1-Q4_0.gguf](https://huggingface.co/tensorblock/OpenLLM-France_Claire-Mistral-7B-0.1-GGUF/blob/main/Claire-Mistral-7B-0.1-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Claire-Mistral-7B-0.1-Q4_K_S.gguf](https://huggingface.co/tensorblock/OpenLLM-France_Claire-Mistral-7B-0.1-GGUF/blob/main/Claire-Mistral-7B-0.1-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [Claire-Mistral-7B-0.1-Q4_K_M.gguf](https://huggingface.co/tensorblock/OpenLLM-France_Claire-Mistral-7B-0.1-GGUF/blob/main/Claire-Mistral-7B-0.1-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [Claire-Mistral-7B-0.1-Q5_0.gguf](https://huggingface.co/tensorblock/OpenLLM-France_Claire-Mistral-7B-0.1-GGUF/blob/main/Claire-Mistral-7B-0.1-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Claire-Mistral-7B-0.1-Q5_K_S.gguf](https://huggingface.co/tensorblock/OpenLLM-France_Claire-Mistral-7B-0.1-GGUF/blob/main/Claire-Mistral-7B-0.1-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [Claire-Mistral-7B-0.1-Q5_K_M.gguf](https://huggingface.co/tensorblock/OpenLLM-France_Claire-Mistral-7B-0.1-GGUF/blob/main/Claire-Mistral-7B-0.1-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [Claire-Mistral-7B-0.1-Q6_K.gguf](https://huggingface.co/tensorblock/OpenLLM-France_Claire-Mistral-7B-0.1-GGUF/blob/main/Claire-Mistral-7B-0.1-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [Claire-Mistral-7B-0.1-Q8_0.gguf](https://huggingface.co/tensorblock/OpenLLM-France_Claire-Mistral-7B-0.1-GGUF/blob/main/Claire-Mistral-7B-0.1-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/OpenLLM-France_Claire-Mistral-7B-0.1-GGUF --include "Claire-Mistral-7B-0.1-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/OpenLLM-France_Claire-Mistral-7B-0.1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/MNCKim_Mistral-7B-OpenHermes-GGUF
tensorblock
2025-06-19T02:02:55Z
25
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:MNCKim/Mistral-7B-OpenHermes", "base_model:quantized:MNCKim/Mistral-7B-OpenHermes", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-06T04:03:22Z
--- base_model: MNCKim/Mistral-7B-OpenHermes tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## MNCKim/Mistral-7B-OpenHermes - GGUF This repo contains GGUF format model files for [MNCKim/Mistral-7B-OpenHermes](https://huggingface.co/MNCKim/Mistral-7B-OpenHermes). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Mistral-7B-OpenHermes-Q2_K.gguf](https://huggingface.co/tensorblock/MNCKim_Mistral-7B-OpenHermes-GGUF/blob/main/Mistral-7B-OpenHermes-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [Mistral-7B-OpenHermes-Q3_K_S.gguf](https://huggingface.co/tensorblock/MNCKim_Mistral-7B-OpenHermes-GGUF/blob/main/Mistral-7B-OpenHermes-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [Mistral-7B-OpenHermes-Q3_K_M.gguf](https://huggingface.co/tensorblock/MNCKim_Mistral-7B-OpenHermes-GGUF/blob/main/Mistral-7B-OpenHermes-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [Mistral-7B-OpenHermes-Q3_K_L.gguf](https://huggingface.co/tensorblock/MNCKim_Mistral-7B-OpenHermes-GGUF/blob/main/Mistral-7B-OpenHermes-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [Mistral-7B-OpenHermes-Q4_0.gguf](https://huggingface.co/tensorblock/MNCKim_Mistral-7B-OpenHermes-GGUF/blob/main/Mistral-7B-OpenHermes-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Mistral-7B-OpenHermes-Q4_K_S.gguf](https://huggingface.co/tensorblock/MNCKim_Mistral-7B-OpenHermes-GGUF/blob/main/Mistral-7B-OpenHermes-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [Mistral-7B-OpenHermes-Q4_K_M.gguf](https://huggingface.co/tensorblock/MNCKim_Mistral-7B-OpenHermes-GGUF/blob/main/Mistral-7B-OpenHermes-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [Mistral-7B-OpenHermes-Q5_0.gguf](https://huggingface.co/tensorblock/MNCKim_Mistral-7B-OpenHermes-GGUF/blob/main/Mistral-7B-OpenHermes-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Mistral-7B-OpenHermes-Q5_K_S.gguf](https://huggingface.co/tensorblock/MNCKim_Mistral-7B-OpenHermes-GGUF/blob/main/Mistral-7B-OpenHermes-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [Mistral-7B-OpenHermes-Q5_K_M.gguf](https://huggingface.co/tensorblock/MNCKim_Mistral-7B-OpenHermes-GGUF/blob/main/Mistral-7B-OpenHermes-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [Mistral-7B-OpenHermes-Q6_K.gguf](https://huggingface.co/tensorblock/MNCKim_Mistral-7B-OpenHermes-GGUF/blob/main/Mistral-7B-OpenHermes-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [Mistral-7B-OpenHermes-Q8_0.gguf](https://huggingface.co/tensorblock/MNCKim_Mistral-7B-OpenHermes-GGUF/blob/main/Mistral-7B-OpenHermes-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/MNCKim_Mistral-7B-OpenHermes-GGUF --include "Mistral-7B-OpenHermes-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/MNCKim_Mistral-7B-OpenHermes-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/illuin_tiny-random-MistralForCausalLM-GGUF
tensorblock
2025-06-19T02:02:54Z
45
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:illuin/tiny-random-MistralForCausalLM", "base_model:quantized:illuin/tiny-random-MistralForCausalLM", "endpoints_compatible", "region:us" ]
null
2025-05-06T03:59:16Z
--- base_model: illuin/tiny-random-MistralForCausalLM tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## illuin/tiny-random-MistralForCausalLM - GGUF This repo contains GGUF format model files for [illuin/tiny-random-MistralForCausalLM](https://huggingface.co/illuin/tiny-random-MistralForCausalLM). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format. ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [tiny-random-MistralForCausalLM-Q2_K.gguf](https://huggingface.co/tensorblock/illuin_tiny-random-MistralForCausalLM-GGUF/blob/main/tiny-random-MistralForCausalLM-Q2_K.gguf) | Q2_K | 0.002 GB | smallest, significant quality loss - not recommended for most purposes | | [tiny-random-MistralForCausalLM-Q3_K_S.gguf](https://huggingface.co/tensorblock/illuin_tiny-random-MistralForCausalLM-GGUF/blob/main/tiny-random-MistralForCausalLM-Q3_K_S.gguf) | Q3_K_S | 0.002 GB | very small, high quality loss | | [tiny-random-MistralForCausalLM-Q3_K_M.gguf](https://huggingface.co/tensorblock/illuin_tiny-random-MistralForCausalLM-GGUF/blob/main/tiny-random-MistralForCausalLM-Q3_K_M.gguf) | Q3_K_M | 0.002 GB | very small, high quality loss | | [tiny-random-MistralForCausalLM-Q3_K_L.gguf](https://huggingface.co/tensorblock/illuin_tiny-random-MistralForCausalLM-GGUF/blob/main/tiny-random-MistralForCausalLM-Q3_K_L.gguf) | Q3_K_L | 0.002 GB | small, substantial quality loss | | [tiny-random-MistralForCausalLM-Q4_0.gguf](https://huggingface.co/tensorblock/illuin_tiny-random-MistralForCausalLM-GGUF/blob/main/tiny-random-MistralForCausalLM-Q4_0.gguf) | Q4_0 | 0.002 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [tiny-random-MistralForCausalLM-Q4_K_S.gguf](https://huggingface.co/tensorblock/illuin_tiny-random-MistralForCausalLM-GGUF/blob/main/tiny-random-MistralForCausalLM-Q4_K_S.gguf) | Q4_K_S | 0.003 GB | small, greater quality loss | | [tiny-random-MistralForCausalLM-Q4_K_M.gguf](https://huggingface.co/tensorblock/illuin_tiny-random-MistralForCausalLM-GGUF/blob/main/tiny-random-MistralForCausalLM-Q4_K_M.gguf) | Q4_K_M | 0.003 GB | medium, balanced quality - recommended | | [tiny-random-MistralForCausalLM-Q5_0.gguf](https://huggingface.co/tensorblock/illuin_tiny-random-MistralForCausalLM-GGUF/blob/main/tiny-random-MistralForCausalLM-Q5_0.gguf) | Q5_0 | 0.003 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [tiny-random-MistralForCausalLM-Q5_K_S.gguf](https://huggingface.co/tensorblock/illuin_tiny-random-MistralForCausalLM-GGUF/blob/main/tiny-random-MistralForCausalLM-Q5_K_S.gguf) | Q5_K_S | 0.003 GB | large, low quality loss - recommended | | [tiny-random-MistralForCausalLM-Q5_K_M.gguf](https://huggingface.co/tensorblock/illuin_tiny-random-MistralForCausalLM-GGUF/blob/main/tiny-random-MistralForCausalLM-Q5_K_M.gguf) | Q5_K_M | 0.003 GB | large, very low quality loss - recommended | | [tiny-random-MistralForCausalLM-Q6_K.gguf](https://huggingface.co/tensorblock/illuin_tiny-random-MistralForCausalLM-GGUF/blob/main/tiny-random-MistralForCausalLM-Q6_K.gguf) | Q6_K | 0.003 GB | very large, extremely low quality loss | | [tiny-random-MistralForCausalLM-Q8_0.gguf](https://huggingface.co/tensorblock/illuin_tiny-random-MistralForCausalLM-GGUF/blob/main/tiny-random-MistralForCausalLM-Q8_0.gguf) | Q8_0 | 0.003 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/illuin_tiny-random-MistralForCausalLM-GGUF --include "tiny-random-MistralForCausalLM-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/illuin_tiny-random-MistralForCausalLM-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/MNCJihunKim_Mistral-7B-SlimOrca-orca-platy-out1kover-GGUF
tensorblock
2025-06-19T02:02:19Z
22
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:MNCJihunKim/Mistral-7B-SlimOrca-orca-platy-out1kover", "base_model:quantized:MNCJihunKim/Mistral-7B-SlimOrca-orca-platy-out1kover", "endpoints_compatible", "region:us" ]
null
2025-05-05T18:44:17Z
--- base_model: MNCJihunKim/Mistral-7B-SlimOrca-orca-platy-out1kover tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## MNCJihunKim/Mistral-7B-SlimOrca-orca-platy-out1kover - GGUF This repo contains GGUF format model files for [MNCJihunKim/Mistral-7B-SlimOrca-orca-platy-out1kover](https://huggingface.co/MNCJihunKim/Mistral-7B-SlimOrca-orca-platy-out1kover). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Mistral-7B-SlimOrca-orca-platy-out1kover-Q2_K.gguf](https://huggingface.co/tensorblock/MNCJihunKim_Mistral-7B-SlimOrca-orca-platy-out1kover-GGUF/blob/main/Mistral-7B-SlimOrca-orca-platy-out1kover-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [Mistral-7B-SlimOrca-orca-platy-out1kover-Q3_K_S.gguf](https://huggingface.co/tensorblock/MNCJihunKim_Mistral-7B-SlimOrca-orca-platy-out1kover-GGUF/blob/main/Mistral-7B-SlimOrca-orca-platy-out1kover-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [Mistral-7B-SlimOrca-orca-platy-out1kover-Q3_K_M.gguf](https://huggingface.co/tensorblock/MNCJihunKim_Mistral-7B-SlimOrca-orca-platy-out1kover-GGUF/blob/main/Mistral-7B-SlimOrca-orca-platy-out1kover-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [Mistral-7B-SlimOrca-orca-platy-out1kover-Q3_K_L.gguf](https://huggingface.co/tensorblock/MNCJihunKim_Mistral-7B-SlimOrca-orca-platy-out1kover-GGUF/blob/main/Mistral-7B-SlimOrca-orca-platy-out1kover-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [Mistral-7B-SlimOrca-orca-platy-out1kover-Q4_0.gguf](https://huggingface.co/tensorblock/MNCJihunKim_Mistral-7B-SlimOrca-orca-platy-out1kover-GGUF/blob/main/Mistral-7B-SlimOrca-orca-platy-out1kover-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Mistral-7B-SlimOrca-orca-platy-out1kover-Q4_K_S.gguf](https://huggingface.co/tensorblock/MNCJihunKim_Mistral-7B-SlimOrca-orca-platy-out1kover-GGUF/blob/main/Mistral-7B-SlimOrca-orca-platy-out1kover-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [Mistral-7B-SlimOrca-orca-platy-out1kover-Q4_K_M.gguf](https://huggingface.co/tensorblock/MNCJihunKim_Mistral-7B-SlimOrca-orca-platy-out1kover-GGUF/blob/main/Mistral-7B-SlimOrca-orca-platy-out1kover-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [Mistral-7B-SlimOrca-orca-platy-out1kover-Q5_0.gguf](https://huggingface.co/tensorblock/MNCJihunKim_Mistral-7B-SlimOrca-orca-platy-out1kover-GGUF/blob/main/Mistral-7B-SlimOrca-orca-platy-out1kover-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Mistral-7B-SlimOrca-orca-platy-out1kover-Q5_K_S.gguf](https://huggingface.co/tensorblock/MNCJihunKim_Mistral-7B-SlimOrca-orca-platy-out1kover-GGUF/blob/main/Mistral-7B-SlimOrca-orca-platy-out1kover-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [Mistral-7B-SlimOrca-orca-platy-out1kover-Q5_K_M.gguf](https://huggingface.co/tensorblock/MNCJihunKim_Mistral-7B-SlimOrca-orca-platy-out1kover-GGUF/blob/main/Mistral-7B-SlimOrca-orca-platy-out1kover-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [Mistral-7B-SlimOrca-orca-platy-out1kover-Q6_K.gguf](https://huggingface.co/tensorblock/MNCJihunKim_Mistral-7B-SlimOrca-orca-platy-out1kover-GGUF/blob/main/Mistral-7B-SlimOrca-orca-platy-out1kover-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [Mistral-7B-SlimOrca-orca-platy-out1kover-Q8_0.gguf](https://huggingface.co/tensorblock/MNCJihunKim_Mistral-7B-SlimOrca-orca-platy-out1kover-GGUF/blob/main/Mistral-7B-SlimOrca-orca-platy-out1kover-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/MNCJihunKim_Mistral-7B-SlimOrca-orca-platy-out1kover-GGUF --include "Mistral-7B-SlimOrca-orca-platy-out1kover-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/MNCJihunKim_Mistral-7B-SlimOrca-orca-platy-out1kover-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Korabbit_llama-2-ko-7b-bilingual-GGUF
tensorblock
2025-06-19T02:02:05Z
22
0
null
[ "gguf", "TensorBlock", "GGUF", "en", "ko", "dataset:Open-Orca/OpenOrca", "dataset:kyujinpy/KOR-OpenOrca-Platypus", "base_model:Korabbit/llama-2-ko-7b-bilingual", "base_model:quantized:Korabbit/llama-2-ko-7b-bilingual", "license:llama2", "endpoints_compatible", "region:us" ]
null
2025-05-05T16:22:00Z
--- license: llama2 datasets: - Open-Orca/OpenOrca - kyujinpy/KOR-OpenOrca-Platypus language: - en - ko tags: - TensorBlock - GGUF base_model: Korabbit/llama-2-ko-7b-bilingual --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## Korabbit/llama-2-ko-7b-bilingual - GGUF This repo contains GGUF format model files for [Korabbit/llama-2-ko-7b-bilingual](https://huggingface.co/Korabbit/llama-2-ko-7b-bilingual). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format. ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [llama-2-ko-7b-bilingual-Q2_K.gguf](https://huggingface.co/tensorblock/Korabbit_llama-2-ko-7b-bilingual-GGUF/blob/main/llama-2-ko-7b-bilingual-Q2_K.gguf) | Q2_K | 2.601 GB | smallest, significant quality loss - not recommended for most purposes | | [llama-2-ko-7b-bilingual-Q3_K_S.gguf](https://huggingface.co/tensorblock/Korabbit_llama-2-ko-7b-bilingual-GGUF/blob/main/llama-2-ko-7b-bilingual-Q3_K_S.gguf) | Q3_K_S | 3.022 GB | very small, high quality loss | | [llama-2-ko-7b-bilingual-Q3_K_M.gguf](https://huggingface.co/tensorblock/Korabbit_llama-2-ko-7b-bilingual-GGUF/blob/main/llama-2-ko-7b-bilingual-Q3_K_M.gguf) | Q3_K_M | 3.372 GB | very small, high quality loss | | [llama-2-ko-7b-bilingual-Q3_K_L.gguf](https://huggingface.co/tensorblock/Korabbit_llama-2-ko-7b-bilingual-GGUF/blob/main/llama-2-ko-7b-bilingual-Q3_K_L.gguf) | Q3_K_L | 3.671 GB | small, substantial quality loss | | [llama-2-ko-7b-bilingual-Q4_0.gguf](https://huggingface.co/tensorblock/Korabbit_llama-2-ko-7b-bilingual-GGUF/blob/main/llama-2-ko-7b-bilingual-Q4_0.gguf) | Q4_0 | 3.907 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [llama-2-ko-7b-bilingual-Q4_K_S.gguf](https://huggingface.co/tensorblock/Korabbit_llama-2-ko-7b-bilingual-GGUF/blob/main/llama-2-ko-7b-bilingual-Q4_K_S.gguf) | Q4_K_S | 3.938 GB | small, greater quality loss | | [llama-2-ko-7b-bilingual-Q4_K_M.gguf](https://huggingface.co/tensorblock/Korabbit_llama-2-ko-7b-bilingual-GGUF/blob/main/llama-2-ko-7b-bilingual-Q4_K_M.gguf) | Q4_K_M | 4.163 GB | medium, balanced quality - recommended | | [llama-2-ko-7b-bilingual-Q5_0.gguf](https://huggingface.co/tensorblock/Korabbit_llama-2-ko-7b-bilingual-GGUF/blob/main/llama-2-ko-7b-bilingual-Q5_0.gguf) | Q5_0 | 4.741 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [llama-2-ko-7b-bilingual-Q5_K_S.gguf](https://huggingface.co/tensorblock/Korabbit_llama-2-ko-7b-bilingual-GGUF/blob/main/llama-2-ko-7b-bilingual-Q5_K_S.gguf) | Q5_K_S | 4.741 GB | large, low quality loss - recommended | | [llama-2-ko-7b-bilingual-Q5_K_M.gguf](https://huggingface.co/tensorblock/Korabbit_llama-2-ko-7b-bilingual-GGUF/blob/main/llama-2-ko-7b-bilingual-Q5_K_M.gguf) | Q5_K_M | 4.872 GB | large, very low quality loss - recommended | | [llama-2-ko-7b-bilingual-Q6_K.gguf](https://huggingface.co/tensorblock/Korabbit_llama-2-ko-7b-bilingual-GGUF/blob/main/llama-2-ko-7b-bilingual-Q6_K.gguf) | Q6_K | 5.626 GB | very large, extremely low quality loss | | [llama-2-ko-7b-bilingual-Q8_0.gguf](https://huggingface.co/tensorblock/Korabbit_llama-2-ko-7b-bilingual-GGUF/blob/main/llama-2-ko-7b-bilingual-Q8_0.gguf) | Q8_0 | 7.286 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Korabbit_llama-2-ko-7b-bilingual-GGUF --include "llama-2-ko-7b-bilingual-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Korabbit_llama-2-ko-7b-bilingual-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Voicelab_trurl-2-13b-academic-GGUF
tensorblock
2025-06-19T02:01:57Z
64
0
null
[ "gguf", "voicelab", "pytorch", "llama-2", "trurl", "trurl-2", "TensorBlock", "GGUF", "text-generation", "en", "pl", "base_model:Voicelab/trurl-2-13b-academic", "base_model:quantized:Voicelab/trurl-2-13b-academic", "region:us" ]
text-generation
2025-05-05T14:02:57Z
--- language: - en - pl pipeline_tag: text-generation inference: false tags: - voicelab - pytorch - llama-2 - trurl - trurl-2 - TensorBlock - GGUF base_model: Voicelab/trurl-2-13b-academic --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## Voicelab/trurl-2-13b-academic - GGUF This repo contains GGUF format model files for [Voicelab/trurl-2-13b-academic](https://huggingface.co/Voicelab/trurl-2-13b-academic). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format. ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [trurl-2-13b-academic-Q2_K.gguf](https://huggingface.co/tensorblock/Voicelab_trurl-2-13b-academic-GGUF/blob/main/trurl-2-13b-academic-Q2_K.gguf) | Q2_K | 4.854 GB | smallest, significant quality loss - not recommended for most purposes | | [trurl-2-13b-academic-Q3_K_S.gguf](https://huggingface.co/tensorblock/Voicelab_trurl-2-13b-academic-GGUF/blob/main/trurl-2-13b-academic-Q3_K_S.gguf) | Q3_K_S | 5.659 GB | very small, high quality loss | | [trurl-2-13b-academic-Q3_K_M.gguf](https://huggingface.co/tensorblock/Voicelab_trurl-2-13b-academic-GGUF/blob/main/trurl-2-13b-academic-Q3_K_M.gguf) | Q3_K_M | 6.338 GB | very small, high quality loss | | [trurl-2-13b-academic-Q3_K_L.gguf](https://huggingface.co/tensorblock/Voicelab_trurl-2-13b-academic-GGUF/blob/main/trurl-2-13b-academic-Q3_K_L.gguf) | Q3_K_L | 6.930 GB | small, substantial quality loss | | [trurl-2-13b-academic-Q4_0.gguf](https://huggingface.co/tensorblock/Voicelab_trurl-2-13b-academic-GGUF/blob/main/trurl-2-13b-academic-Q4_0.gguf) | Q4_0 | 7.366 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [trurl-2-13b-academic-Q4_K_S.gguf](https://huggingface.co/tensorblock/Voicelab_trurl-2-13b-academic-GGUF/blob/main/trurl-2-13b-academic-Q4_K_S.gguf) | Q4_K_S | 7.423 GB | small, greater quality loss | | [trurl-2-13b-academic-Q4_K_M.gguf](https://huggingface.co/tensorblock/Voicelab_trurl-2-13b-academic-GGUF/blob/main/trurl-2-13b-academic-Q4_K_M.gguf) | Q4_K_M | 7.866 GB | medium, balanced quality - recommended | | [trurl-2-13b-academic-Q5_0.gguf](https://huggingface.co/tensorblock/Voicelab_trurl-2-13b-academic-GGUF/blob/main/trurl-2-13b-academic-Q5_0.gguf) | Q5_0 | 8.972 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [trurl-2-13b-academic-Q5_K_S.gguf](https://huggingface.co/tensorblock/Voicelab_trurl-2-13b-academic-GGUF/blob/main/trurl-2-13b-academic-Q5_K_S.gguf) | Q5_K_S | 8.972 GB | large, low quality loss - recommended | | [trurl-2-13b-academic-Q5_K_M.gguf](https://huggingface.co/tensorblock/Voicelab_trurl-2-13b-academic-GGUF/blob/main/trurl-2-13b-academic-Q5_K_M.gguf) | Q5_K_M | 9.230 GB | large, very low quality loss - recommended | | [trurl-2-13b-academic-Q6_K.gguf](https://huggingface.co/tensorblock/Voicelab_trurl-2-13b-academic-GGUF/blob/main/trurl-2-13b-academic-Q6_K.gguf) | Q6_K | 10.679 GB | very large, extremely low quality loss | | [trurl-2-13b-academic-Q8_0.gguf](https://huggingface.co/tensorblock/Voicelab_trurl-2-13b-academic-GGUF/blob/main/trurl-2-13b-academic-Q8_0.gguf) | Q8_0 | 13.831 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Voicelab_trurl-2-13b-academic-GGUF --include "trurl-2-13b-academic-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Voicelab_trurl-2-13b-academic-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/MNCKim_Mistral-7B-SlimOrca-OP-U2048-ran4k-GGUF
tensorblock
2025-06-19T02:01:08Z
19
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:MNCKim/Mistral-7B-SlimOrca-OP-U2048-ran4k", "base_model:quantized:MNCKim/Mistral-7B-SlimOrca-OP-U2048-ran4k", "endpoints_compatible", "region:us" ]
null
2025-05-05T00:57:42Z
--- base_model: MNCKim/Mistral-7B-SlimOrca-OP-U2048-ran4k tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## MNCKim/Mistral-7B-SlimOrca-OP-U2048-ran4k - GGUF This repo contains GGUF format model files for [MNCKim/Mistral-7B-SlimOrca-OP-U2048-ran4k](https://huggingface.co/MNCKim/Mistral-7B-SlimOrca-OP-U2048-ran4k). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Mistral-7B-SlimOrca-OP-U2048-ran4k-Q2_K.gguf](https://huggingface.co/tensorblock/MNCKim_Mistral-7B-SlimOrca-OP-U2048-ran4k-GGUF/blob/main/Mistral-7B-SlimOrca-OP-U2048-ran4k-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [Mistral-7B-SlimOrca-OP-U2048-ran4k-Q3_K_S.gguf](https://huggingface.co/tensorblock/MNCKim_Mistral-7B-SlimOrca-OP-U2048-ran4k-GGUF/blob/main/Mistral-7B-SlimOrca-OP-U2048-ran4k-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [Mistral-7B-SlimOrca-OP-U2048-ran4k-Q3_K_M.gguf](https://huggingface.co/tensorblock/MNCKim_Mistral-7B-SlimOrca-OP-U2048-ran4k-GGUF/blob/main/Mistral-7B-SlimOrca-OP-U2048-ran4k-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [Mistral-7B-SlimOrca-OP-U2048-ran4k-Q3_K_L.gguf](https://huggingface.co/tensorblock/MNCKim_Mistral-7B-SlimOrca-OP-U2048-ran4k-GGUF/blob/main/Mistral-7B-SlimOrca-OP-U2048-ran4k-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [Mistral-7B-SlimOrca-OP-U2048-ran4k-Q4_0.gguf](https://huggingface.co/tensorblock/MNCKim_Mistral-7B-SlimOrca-OP-U2048-ran4k-GGUF/blob/main/Mistral-7B-SlimOrca-OP-U2048-ran4k-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Mistral-7B-SlimOrca-OP-U2048-ran4k-Q4_K_S.gguf](https://huggingface.co/tensorblock/MNCKim_Mistral-7B-SlimOrca-OP-U2048-ran4k-GGUF/blob/main/Mistral-7B-SlimOrca-OP-U2048-ran4k-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [Mistral-7B-SlimOrca-OP-U2048-ran4k-Q4_K_M.gguf](https://huggingface.co/tensorblock/MNCKim_Mistral-7B-SlimOrca-OP-U2048-ran4k-GGUF/blob/main/Mistral-7B-SlimOrca-OP-U2048-ran4k-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [Mistral-7B-SlimOrca-OP-U2048-ran4k-Q5_0.gguf](https://huggingface.co/tensorblock/MNCKim_Mistral-7B-SlimOrca-OP-U2048-ran4k-GGUF/blob/main/Mistral-7B-SlimOrca-OP-U2048-ran4k-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Mistral-7B-SlimOrca-OP-U2048-ran4k-Q5_K_S.gguf](https://huggingface.co/tensorblock/MNCKim_Mistral-7B-SlimOrca-OP-U2048-ran4k-GGUF/blob/main/Mistral-7B-SlimOrca-OP-U2048-ran4k-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [Mistral-7B-SlimOrca-OP-U2048-ran4k-Q5_K_M.gguf](https://huggingface.co/tensorblock/MNCKim_Mistral-7B-SlimOrca-OP-U2048-ran4k-GGUF/blob/main/Mistral-7B-SlimOrca-OP-U2048-ran4k-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [Mistral-7B-SlimOrca-OP-U2048-ran4k-Q6_K.gguf](https://huggingface.co/tensorblock/MNCKim_Mistral-7B-SlimOrca-OP-U2048-ran4k-GGUF/blob/main/Mistral-7B-SlimOrca-OP-U2048-ran4k-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [Mistral-7B-SlimOrca-OP-U2048-ran4k-Q8_0.gguf](https://huggingface.co/tensorblock/MNCKim_Mistral-7B-SlimOrca-OP-U2048-ran4k-GGUF/blob/main/Mistral-7B-SlimOrca-OP-U2048-ran4k-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/MNCKim_Mistral-7B-SlimOrca-OP-U2048-ran4k-GGUF --include "Mistral-7B-SlimOrca-OP-U2048-ran4k-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/MNCKim_Mistral-7B-SlimOrca-OP-U2048-ran4k-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/seeklhy_codes-1b-spider-GGUF
tensorblock
2025-06-19T02:01:01Z
23
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:seeklhy/codes-1b-spider", "base_model:quantized:seeklhy/codes-1b-spider", "endpoints_compatible", "region:us" ]
null
2025-05-04T22:54:30Z
--- base_model: seeklhy/codes-1b-spider tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## seeklhy/codes-1b-spider - GGUF This repo contains GGUF format model files for [seeklhy/codes-1b-spider](https://huggingface.co/seeklhy/codes-1b-spider). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format. ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [codes-1b-spider-Q2_K.gguf](https://huggingface.co/tensorblock/seeklhy_codes-1b-spider-GGUF/blob/main/codes-1b-spider-Q2_K.gguf) | Q2_K | 0.572 GB | smallest, significant quality loss - not recommended for most purposes | | [codes-1b-spider-Q3_K_S.gguf](https://huggingface.co/tensorblock/seeklhy_codes-1b-spider-GGUF/blob/main/codes-1b-spider-Q3_K_S.gguf) | Q3_K_S | 0.635 GB | very small, high quality loss | | [codes-1b-spider-Q3_K_M.gguf](https://huggingface.co/tensorblock/seeklhy_codes-1b-spider-GGUF/blob/main/codes-1b-spider-Q3_K_M.gguf) | Q3_K_M | 0.719 GB | very small, high quality loss | | [codes-1b-spider-Q3_K_L.gguf](https://huggingface.co/tensorblock/seeklhy_codes-1b-spider-GGUF/blob/main/codes-1b-spider-Q3_K_L.gguf) | Q3_K_L | 0.780 GB | small, substantial quality loss | | [codes-1b-spider-Q4_0.gguf](https://huggingface.co/tensorblock/seeklhy_codes-1b-spider-GGUF/blob/main/codes-1b-spider-Q4_0.gguf) | Q4_0 | 0.784 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [codes-1b-spider-Q4_K_S.gguf](https://huggingface.co/tensorblock/seeklhy_codes-1b-spider-GGUF/blob/main/codes-1b-spider-Q4_K_S.gguf) | Q4_K_S | 0.790 GB | small, greater quality loss | | [codes-1b-spider-Q4_K_M.gguf](https://huggingface.co/tensorblock/seeklhy_codes-1b-spider-GGUF/blob/main/codes-1b-spider-Q4_K_M.gguf) | Q4_K_M | 0.850 GB | medium, balanced quality - recommended | | [codes-1b-spider-Q5_0.gguf](https://huggingface.co/tensorblock/seeklhy_codes-1b-spider-GGUF/blob/main/codes-1b-spider-Q5_0.gguf) | Q5_0 | 0.924 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [codes-1b-spider-Q5_K_S.gguf](https://huggingface.co/tensorblock/seeklhy_codes-1b-spider-GGUF/blob/main/codes-1b-spider-Q5_K_S.gguf) | Q5_K_S | 0.924 GB | large, low quality loss - recommended | | [codes-1b-spider-Q5_K_M.gguf](https://huggingface.co/tensorblock/seeklhy_codes-1b-spider-GGUF/blob/main/codes-1b-spider-Q5_K_M.gguf) | Q5_K_M | 0.965 GB | large, very low quality loss - recommended | | [codes-1b-spider-Q6_K.gguf](https://huggingface.co/tensorblock/seeklhy_codes-1b-spider-GGUF/blob/main/codes-1b-spider-Q6_K.gguf) | Q6_K | 1.072 GB | very large, extremely low quality loss | | [codes-1b-spider-Q8_0.gguf](https://huggingface.co/tensorblock/seeklhy_codes-1b-spider-GGUF/blob/main/codes-1b-spider-Q8_0.gguf) | Q8_0 | 1.368 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/seeklhy_codes-1b-spider-GGUF --include "codes-1b-spider-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/seeklhy_codes-1b-spider-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/VMware_open-llama-7b-v2-open-instruct-GGUF
tensorblock
2025-06-19T02:00:48Z
71
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "text-generation", "en", "dataset:VMware/open-instruct", "base_model:VMware/open-llama-7b-v2-open-instruct", "base_model:quantized:VMware/open-llama-7b-v2-open-instruct", "license:cc-by-sa-3.0", "endpoints_compatible", "region:us" ]
text-generation
2025-05-04T18:54:20Z
--- license: cc-by-sa-3.0 datasets: - VMware/open-instruct language: - en library_name: transformers pipeline_tag: text-generation tags: - TensorBlock - GGUF base_model: VMware/open-llama-7b-v2-open-instruct --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## VMware/open-llama-7b-v2-open-instruct - GGUF This repo contains GGUF format model files for [VMware/open-llama-7b-v2-open-instruct](https://huggingface.co/VMware/open-llama-7b-v2-open-instruct). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [open-llama-7b-v2-open-instruct-Q2_K.gguf](https://huggingface.co/tensorblock/VMware_open-llama-7b-v2-open-instruct-GGUF/blob/main/open-llama-7b-v2-open-instruct-Q2_K.gguf) | Q2_K | 2.533 GB | smallest, significant quality loss - not recommended for most purposes | | [open-llama-7b-v2-open-instruct-Q3_K_S.gguf](https://huggingface.co/tensorblock/VMware_open-llama-7b-v2-open-instruct-GGUF/blob/main/open-llama-7b-v2-open-instruct-Q3_K_S.gguf) | Q3_K_S | 2.948 GB | very small, high quality loss | | [open-llama-7b-v2-open-instruct-Q3_K_M.gguf](https://huggingface.co/tensorblock/VMware_open-llama-7b-v2-open-instruct-GGUF/blob/main/open-llama-7b-v2-open-instruct-Q3_K_M.gguf) | Q3_K_M | 3.298 GB | very small, high quality loss | | [open-llama-7b-v2-open-instruct-Q3_K_L.gguf](https://huggingface.co/tensorblock/VMware_open-llama-7b-v2-open-instruct-GGUF/blob/main/open-llama-7b-v2-open-instruct-Q3_K_L.gguf) | Q3_K_L | 3.597 GB | small, substantial quality loss | | [open-llama-7b-v2-open-instruct-Q4_0.gguf](https://huggingface.co/tensorblock/VMware_open-llama-7b-v2-open-instruct-GGUF/blob/main/open-llama-7b-v2-open-instruct-Q4_0.gguf) | Q4_0 | 3.826 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [open-llama-7b-v2-open-instruct-Q4_K_S.gguf](https://huggingface.co/tensorblock/VMware_open-llama-7b-v2-open-instruct-GGUF/blob/main/open-llama-7b-v2-open-instruct-Q4_K_S.gguf) | Q4_K_S | 3.857 GB | small, greater quality loss | | [open-llama-7b-v2-open-instruct-Q4_K_M.gguf](https://huggingface.co/tensorblock/VMware_open-llama-7b-v2-open-instruct-GGUF/blob/main/open-llama-7b-v2-open-instruct-Q4_K_M.gguf) | Q4_K_M | 4.081 GB | medium, balanced quality - recommended | | [open-llama-7b-v2-open-instruct-Q5_0.gguf](https://huggingface.co/tensorblock/VMware_open-llama-7b-v2-open-instruct-GGUF/blob/main/open-llama-7b-v2-open-instruct-Q5_0.gguf) | Q5_0 | 4.652 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [open-llama-7b-v2-open-instruct-Q5_K_S.gguf](https://huggingface.co/tensorblock/VMware_open-llama-7b-v2-open-instruct-GGUF/blob/main/open-llama-7b-v2-open-instruct-Q5_K_S.gguf) | Q5_K_S | 4.652 GB | large, low quality loss - recommended | | [open-llama-7b-v2-open-instruct-Q5_K_M.gguf](https://huggingface.co/tensorblock/VMware_open-llama-7b-v2-open-instruct-GGUF/blob/main/open-llama-7b-v2-open-instruct-Q5_K_M.gguf) | Q5_K_M | 4.783 GB | large, very low quality loss - recommended | | [open-llama-7b-v2-open-instruct-Q6_K.gguf](https://huggingface.co/tensorblock/VMware_open-llama-7b-v2-open-instruct-GGUF/blob/main/open-llama-7b-v2-open-instruct-Q6_K.gguf) | Q6_K | 5.529 GB | very large, extremely low quality loss | | [open-llama-7b-v2-open-instruct-Q8_0.gguf](https://huggingface.co/tensorblock/VMware_open-llama-7b-v2-open-instruct-GGUF/blob/main/open-llama-7b-v2-open-instruct-Q8_0.gguf) | Q8_0 | 7.161 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/VMware_open-llama-7b-v2-open-instruct-GGUF --include "open-llama-7b-v2-open-instruct-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/VMware_open-llama-7b-v2-open-instruct-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/heegyu_llama-2-ko-7b-chat-GGUF
tensorblock
2025-06-19T02:00:28Z
61
0
null
[ "gguf", "TensorBlock", "GGUF", "ko", "dataset:beomi/KoAlpaca-v1.1a", "dataset:dbdu/ShareGPT-74k-ko", "dataset:heegyu/korquad-chat-v1", "dataset:HAERAE-HUB/KoInstruct-QA", "dataset:changpt/ko-lima-vicuna", "dataset:nlpai-lab/kullm-v2", "base_model:heegyu/llama-2-ko-7b-chat", "base_model:quantized:heegyu/llama-2-ko-7b-chat", "endpoints_compatible", "region:us" ]
null
2025-05-04T10:33:27Z
--- datasets: - beomi/KoAlpaca-v1.1a - dbdu/ShareGPT-74k-ko - heegyu/korquad-chat-v1 - HAERAE-HUB/KoInstruct-QA - changpt/ko-lima-vicuna - nlpai-lab/kullm-v2 language: - ko tags: - TensorBlock - GGUF base_model: heegyu/llama-2-ko-7b-chat --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## heegyu/llama-2-ko-7b-chat - GGUF This repo contains GGUF format model files for [heegyu/llama-2-ko-7b-chat](https://huggingface.co/heegyu/llama-2-ko-7b-chat). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format. ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [llama-2-ko-7b-chat-Q2_K.gguf](https://huggingface.co/tensorblock/heegyu_llama-2-ko-7b-chat-GGUF/blob/main/llama-2-ko-7b-chat-Q2_K.gguf) | Q2_K | 2.601 GB | smallest, significant quality loss - not recommended for most purposes | | [llama-2-ko-7b-chat-Q3_K_S.gguf](https://huggingface.co/tensorblock/heegyu_llama-2-ko-7b-chat-GGUF/blob/main/llama-2-ko-7b-chat-Q3_K_S.gguf) | Q3_K_S | 3.022 GB | very small, high quality loss | | [llama-2-ko-7b-chat-Q3_K_M.gguf](https://huggingface.co/tensorblock/heegyu_llama-2-ko-7b-chat-GGUF/blob/main/llama-2-ko-7b-chat-Q3_K_M.gguf) | Q3_K_M | 3.372 GB | very small, high quality loss | | [llama-2-ko-7b-chat-Q3_K_L.gguf](https://huggingface.co/tensorblock/heegyu_llama-2-ko-7b-chat-GGUF/blob/main/llama-2-ko-7b-chat-Q3_K_L.gguf) | Q3_K_L | 3.671 GB | small, substantial quality loss | | [llama-2-ko-7b-chat-Q4_0.gguf](https://huggingface.co/tensorblock/heegyu_llama-2-ko-7b-chat-GGUF/blob/main/llama-2-ko-7b-chat-Q4_0.gguf) | Q4_0 | 3.907 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [llama-2-ko-7b-chat-Q4_K_S.gguf](https://huggingface.co/tensorblock/heegyu_llama-2-ko-7b-chat-GGUF/blob/main/llama-2-ko-7b-chat-Q4_K_S.gguf) | Q4_K_S | 3.938 GB | small, greater quality loss | | [llama-2-ko-7b-chat-Q4_K_M.gguf](https://huggingface.co/tensorblock/heegyu_llama-2-ko-7b-chat-GGUF/blob/main/llama-2-ko-7b-chat-Q4_K_M.gguf) | Q4_K_M | 4.163 GB | medium, balanced quality - recommended | | [llama-2-ko-7b-chat-Q5_0.gguf](https://huggingface.co/tensorblock/heegyu_llama-2-ko-7b-chat-GGUF/blob/main/llama-2-ko-7b-chat-Q5_0.gguf) | Q5_0 | 4.741 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [llama-2-ko-7b-chat-Q5_K_S.gguf](https://huggingface.co/tensorblock/heegyu_llama-2-ko-7b-chat-GGUF/blob/main/llama-2-ko-7b-chat-Q5_K_S.gguf) | Q5_K_S | 4.741 GB | large, low quality loss - recommended | | [llama-2-ko-7b-chat-Q5_K_M.gguf](https://huggingface.co/tensorblock/heegyu_llama-2-ko-7b-chat-GGUF/blob/main/llama-2-ko-7b-chat-Q5_K_M.gguf) | Q5_K_M | 4.872 GB | large, very low quality loss - recommended | | [llama-2-ko-7b-chat-Q6_K.gguf](https://huggingface.co/tensorblock/heegyu_llama-2-ko-7b-chat-GGUF/blob/main/llama-2-ko-7b-chat-Q6_K.gguf) | Q6_K | 5.626 GB | very large, extremely low quality loss | | [llama-2-ko-7b-chat-Q8_0.gguf](https://huggingface.co/tensorblock/heegyu_llama-2-ko-7b-chat-GGUF/blob/main/llama-2-ko-7b-chat-Q8_0.gguf) | Q8_0 | 7.286 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/heegyu_llama-2-ko-7b-chat-GGUF --include "llama-2-ko-7b-chat-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/heegyu_llama-2-ko-7b-chat-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Norquinal_Mistral-7B-claude-chat-GGUF
tensorblock
2025-06-19T02:00:05Z
142
0
null
[ "gguf", "TensorBlock", "GGUF", "dataset:Norquinal/claude_multiround_chat_1k", "base_model:Norquinal/Mistral-7B-claude-chat", "base_model:quantized:Norquinal/Mistral-7B-claude-chat", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2025-05-03T17:07:17Z
--- datasets: - Norquinal/claude_multiround_chat_1k license: cc-by-nc-4.0 tags: - TensorBlock - GGUF base_model: Norquinal/Mistral-7B-claude-chat --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## Norquinal/Mistral-7B-claude-chat - GGUF This repo contains GGUF format model files for [Norquinal/Mistral-7B-claude-chat](https://huggingface.co/Norquinal/Mistral-7B-claude-chat). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format. ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Mistral-7B-claude-chat-Q2_K.gguf](https://huggingface.co/tensorblock/Norquinal_Mistral-7B-claude-chat-GGUF/blob/main/Mistral-7B-claude-chat-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [Mistral-7B-claude-chat-Q3_K_S.gguf](https://huggingface.co/tensorblock/Norquinal_Mistral-7B-claude-chat-GGUF/blob/main/Mistral-7B-claude-chat-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [Mistral-7B-claude-chat-Q3_K_M.gguf](https://huggingface.co/tensorblock/Norquinal_Mistral-7B-claude-chat-GGUF/blob/main/Mistral-7B-claude-chat-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [Mistral-7B-claude-chat-Q3_K_L.gguf](https://huggingface.co/tensorblock/Norquinal_Mistral-7B-claude-chat-GGUF/blob/main/Mistral-7B-claude-chat-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [Mistral-7B-claude-chat-Q4_0.gguf](https://huggingface.co/tensorblock/Norquinal_Mistral-7B-claude-chat-GGUF/blob/main/Mistral-7B-claude-chat-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Mistral-7B-claude-chat-Q4_K_S.gguf](https://huggingface.co/tensorblock/Norquinal_Mistral-7B-claude-chat-GGUF/blob/main/Mistral-7B-claude-chat-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [Mistral-7B-claude-chat-Q4_K_M.gguf](https://huggingface.co/tensorblock/Norquinal_Mistral-7B-claude-chat-GGUF/blob/main/Mistral-7B-claude-chat-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [Mistral-7B-claude-chat-Q5_0.gguf](https://huggingface.co/tensorblock/Norquinal_Mistral-7B-claude-chat-GGUF/blob/main/Mistral-7B-claude-chat-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Mistral-7B-claude-chat-Q5_K_S.gguf](https://huggingface.co/tensorblock/Norquinal_Mistral-7B-claude-chat-GGUF/blob/main/Mistral-7B-claude-chat-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [Mistral-7B-claude-chat-Q5_K_M.gguf](https://huggingface.co/tensorblock/Norquinal_Mistral-7B-claude-chat-GGUF/blob/main/Mistral-7B-claude-chat-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [Mistral-7B-claude-chat-Q6_K.gguf](https://huggingface.co/tensorblock/Norquinal_Mistral-7B-claude-chat-GGUF/blob/main/Mistral-7B-claude-chat-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [Mistral-7B-claude-chat-Q8_0.gguf](https://huggingface.co/tensorblock/Norquinal_Mistral-7B-claude-chat-GGUF/blob/main/Mistral-7B-claude-chat-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Norquinal_Mistral-7B-claude-chat-GGUF --include "Mistral-7B-claude-chat-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Norquinal_Mistral-7B-claude-chat-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/MNCLLM_Mistral-7B-OP-over1k-grad1.0-GGUF
tensorblock
2025-06-19T01:59:00Z
20
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:MNCLLM/Mistral-7B-OP-over1k-grad1.0", "base_model:quantized:MNCLLM/Mistral-7B-OP-over1k-grad1.0", "endpoints_compatible", "region:us" ]
null
2025-05-03T04:14:31Z
--- base_model: MNCLLM/Mistral-7B-OP-over1k-grad1.0 tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## MNCLLM/Mistral-7B-OP-over1k-grad1.0 - GGUF This repo contains GGUF format model files for [MNCLLM/Mistral-7B-OP-over1k-grad1.0](https://huggingface.co/MNCLLM/Mistral-7B-OP-over1k-grad1.0). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Mistral-7B-OP-over1k-grad1.0-Q2_K.gguf](https://huggingface.co/tensorblock/MNCLLM_Mistral-7B-OP-over1k-grad1.0-GGUF/blob/main/Mistral-7B-OP-over1k-grad1.0-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [Mistral-7B-OP-over1k-grad1.0-Q3_K_S.gguf](https://huggingface.co/tensorblock/MNCLLM_Mistral-7B-OP-over1k-grad1.0-GGUF/blob/main/Mistral-7B-OP-over1k-grad1.0-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [Mistral-7B-OP-over1k-grad1.0-Q3_K_M.gguf](https://huggingface.co/tensorblock/MNCLLM_Mistral-7B-OP-over1k-grad1.0-GGUF/blob/main/Mistral-7B-OP-over1k-grad1.0-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [Mistral-7B-OP-over1k-grad1.0-Q3_K_L.gguf](https://huggingface.co/tensorblock/MNCLLM_Mistral-7B-OP-over1k-grad1.0-GGUF/blob/main/Mistral-7B-OP-over1k-grad1.0-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [Mistral-7B-OP-over1k-grad1.0-Q4_0.gguf](https://huggingface.co/tensorblock/MNCLLM_Mistral-7B-OP-over1k-grad1.0-GGUF/blob/main/Mistral-7B-OP-over1k-grad1.0-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Mistral-7B-OP-over1k-grad1.0-Q4_K_S.gguf](https://huggingface.co/tensorblock/MNCLLM_Mistral-7B-OP-over1k-grad1.0-GGUF/blob/main/Mistral-7B-OP-over1k-grad1.0-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [Mistral-7B-OP-over1k-grad1.0-Q4_K_M.gguf](https://huggingface.co/tensorblock/MNCLLM_Mistral-7B-OP-over1k-grad1.0-GGUF/blob/main/Mistral-7B-OP-over1k-grad1.0-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [Mistral-7B-OP-over1k-grad1.0-Q5_0.gguf](https://huggingface.co/tensorblock/MNCLLM_Mistral-7B-OP-over1k-grad1.0-GGUF/blob/main/Mistral-7B-OP-over1k-grad1.0-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Mistral-7B-OP-over1k-grad1.0-Q5_K_S.gguf](https://huggingface.co/tensorblock/MNCLLM_Mistral-7B-OP-over1k-grad1.0-GGUF/blob/main/Mistral-7B-OP-over1k-grad1.0-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [Mistral-7B-OP-over1k-grad1.0-Q5_K_M.gguf](https://huggingface.co/tensorblock/MNCLLM_Mistral-7B-OP-over1k-grad1.0-GGUF/blob/main/Mistral-7B-OP-over1k-grad1.0-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [Mistral-7B-OP-over1k-grad1.0-Q6_K.gguf](https://huggingface.co/tensorblock/MNCLLM_Mistral-7B-OP-over1k-grad1.0-GGUF/blob/main/Mistral-7B-OP-over1k-grad1.0-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [Mistral-7B-OP-over1k-grad1.0-Q8_0.gguf](https://huggingface.co/tensorblock/MNCLLM_Mistral-7B-OP-over1k-grad1.0-GGUF/blob/main/Mistral-7B-OP-over1k-grad1.0-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/MNCLLM_Mistral-7B-OP-over1k-grad1.0-GGUF --include "Mistral-7B-OP-over1k-grad1.0-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/MNCLLM_Mistral-7B-OP-over1k-grad1.0-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Abe13_Full-juni-dolphin-2.1-mistral-7b-GGUF
tensorblock
2025-06-19T01:58:40Z
37
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:Abe13/Full-juni-dolphin-2.1-mistral-7b", "base_model:quantized:Abe13/Full-juni-dolphin-2.1-mistral-7b", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-03T01:13:55Z
--- license: apache-2.0 tags: - TensorBlock - GGUF base_model: Abe13/Full-juni-dolphin-2.1-mistral-7b --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## Abe13/Full-juni-dolphin-2.1-mistral-7b - GGUF This repo contains GGUF format model files for [Abe13/Full-juni-dolphin-2.1-mistral-7b](https://huggingface.co/Abe13/Full-juni-dolphin-2.1-mistral-7b). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Full-juni-dolphin-2.1-mistral-7b-Q2_K.gguf](https://huggingface.co/tensorblock/Abe13_Full-juni-dolphin-2.1-mistral-7b-GGUF/blob/main/Full-juni-dolphin-2.1-mistral-7b-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [Full-juni-dolphin-2.1-mistral-7b-Q3_K_S.gguf](https://huggingface.co/tensorblock/Abe13_Full-juni-dolphin-2.1-mistral-7b-GGUF/blob/main/Full-juni-dolphin-2.1-mistral-7b-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [Full-juni-dolphin-2.1-mistral-7b-Q3_K_M.gguf](https://huggingface.co/tensorblock/Abe13_Full-juni-dolphin-2.1-mistral-7b-GGUF/blob/main/Full-juni-dolphin-2.1-mistral-7b-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [Full-juni-dolphin-2.1-mistral-7b-Q3_K_L.gguf](https://huggingface.co/tensorblock/Abe13_Full-juni-dolphin-2.1-mistral-7b-GGUF/blob/main/Full-juni-dolphin-2.1-mistral-7b-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [Full-juni-dolphin-2.1-mistral-7b-Q4_0.gguf](https://huggingface.co/tensorblock/Abe13_Full-juni-dolphin-2.1-mistral-7b-GGUF/blob/main/Full-juni-dolphin-2.1-mistral-7b-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Full-juni-dolphin-2.1-mistral-7b-Q4_K_S.gguf](https://huggingface.co/tensorblock/Abe13_Full-juni-dolphin-2.1-mistral-7b-GGUF/blob/main/Full-juni-dolphin-2.1-mistral-7b-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [Full-juni-dolphin-2.1-mistral-7b-Q4_K_M.gguf](https://huggingface.co/tensorblock/Abe13_Full-juni-dolphin-2.1-mistral-7b-GGUF/blob/main/Full-juni-dolphin-2.1-mistral-7b-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [Full-juni-dolphin-2.1-mistral-7b-Q5_0.gguf](https://huggingface.co/tensorblock/Abe13_Full-juni-dolphin-2.1-mistral-7b-GGUF/blob/main/Full-juni-dolphin-2.1-mistral-7b-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Full-juni-dolphin-2.1-mistral-7b-Q5_K_S.gguf](https://huggingface.co/tensorblock/Abe13_Full-juni-dolphin-2.1-mistral-7b-GGUF/blob/main/Full-juni-dolphin-2.1-mistral-7b-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [Full-juni-dolphin-2.1-mistral-7b-Q5_K_M.gguf](https://huggingface.co/tensorblock/Abe13_Full-juni-dolphin-2.1-mistral-7b-GGUF/blob/main/Full-juni-dolphin-2.1-mistral-7b-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [Full-juni-dolphin-2.1-mistral-7b-Q6_K.gguf](https://huggingface.co/tensorblock/Abe13_Full-juni-dolphin-2.1-mistral-7b-GGUF/blob/main/Full-juni-dolphin-2.1-mistral-7b-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [Full-juni-dolphin-2.1-mistral-7b-Q8_0.gguf](https://huggingface.co/tensorblock/Abe13_Full-juni-dolphin-2.1-mistral-7b-GGUF/blob/main/Full-juni-dolphin-2.1-mistral-7b-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Abe13_Full-juni-dolphin-2.1-mistral-7b-GGUF --include "Full-juni-dolphin-2.1-mistral-7b-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Abe13_Full-juni-dolphin-2.1-mistral-7b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/microsoft_Llama2-7b-WhoIsHarryPotter-GGUF
tensorblock
2025-06-19T01:58:30Z
21
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:microsoft/Llama2-7b-WhoIsHarryPotter", "base_model:quantized:microsoft/Llama2-7b-WhoIsHarryPotter", "license:other", "endpoints_compatible", "region:us" ]
null
2025-05-02T23:17:04Z
--- license: other license_name: microsoft-research-license-agreement license_link: LICENSE tags: - TensorBlock - GGUF base_model: microsoft/Llama2-7b-WhoIsHarryPotter --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## microsoft/Llama2-7b-WhoIsHarryPotter - GGUF This repo contains GGUF format model files for [microsoft/Llama2-7b-WhoIsHarryPotter](https://huggingface.co/microsoft/Llama2-7b-WhoIsHarryPotter). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format. ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Llama2-7b-WhoIsHarryPotter-Q2_K.gguf](https://huggingface.co/tensorblock/microsoft_Llama2-7b-WhoIsHarryPotter-GGUF/blob/main/Llama2-7b-WhoIsHarryPotter-Q2_K.gguf) | Q2_K | 2.533 GB | smallest, significant quality loss - not recommended for most purposes | | [Llama2-7b-WhoIsHarryPotter-Q3_K_S.gguf](https://huggingface.co/tensorblock/microsoft_Llama2-7b-WhoIsHarryPotter-GGUF/blob/main/Llama2-7b-WhoIsHarryPotter-Q3_K_S.gguf) | Q3_K_S | 2.948 GB | very small, high quality loss | | [Llama2-7b-WhoIsHarryPotter-Q3_K_M.gguf](https://huggingface.co/tensorblock/microsoft_Llama2-7b-WhoIsHarryPotter-GGUF/blob/main/Llama2-7b-WhoIsHarryPotter-Q3_K_M.gguf) | Q3_K_M | 3.298 GB | very small, high quality loss | | [Llama2-7b-WhoIsHarryPotter-Q3_K_L.gguf](https://huggingface.co/tensorblock/microsoft_Llama2-7b-WhoIsHarryPotter-GGUF/blob/main/Llama2-7b-WhoIsHarryPotter-Q3_K_L.gguf) | Q3_K_L | 3.597 GB | small, substantial quality loss | | [Llama2-7b-WhoIsHarryPotter-Q4_0.gguf](https://huggingface.co/tensorblock/microsoft_Llama2-7b-WhoIsHarryPotter-GGUF/blob/main/Llama2-7b-WhoIsHarryPotter-Q4_0.gguf) | Q4_0 | 3.826 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Llama2-7b-WhoIsHarryPotter-Q4_K_S.gguf](https://huggingface.co/tensorblock/microsoft_Llama2-7b-WhoIsHarryPotter-GGUF/blob/main/Llama2-7b-WhoIsHarryPotter-Q4_K_S.gguf) | Q4_K_S | 3.857 GB | small, greater quality loss | | [Llama2-7b-WhoIsHarryPotter-Q4_K_M.gguf](https://huggingface.co/tensorblock/microsoft_Llama2-7b-WhoIsHarryPotter-GGUF/blob/main/Llama2-7b-WhoIsHarryPotter-Q4_K_M.gguf) | Q4_K_M | 4.081 GB | medium, balanced quality - recommended | | [Llama2-7b-WhoIsHarryPotter-Q5_0.gguf](https://huggingface.co/tensorblock/microsoft_Llama2-7b-WhoIsHarryPotter-GGUF/blob/main/Llama2-7b-WhoIsHarryPotter-Q5_0.gguf) | Q5_0 | 4.652 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Llama2-7b-WhoIsHarryPotter-Q5_K_S.gguf](https://huggingface.co/tensorblock/microsoft_Llama2-7b-WhoIsHarryPotter-GGUF/blob/main/Llama2-7b-WhoIsHarryPotter-Q5_K_S.gguf) | Q5_K_S | 4.652 GB | large, low quality loss - recommended | | [Llama2-7b-WhoIsHarryPotter-Q5_K_M.gguf](https://huggingface.co/tensorblock/microsoft_Llama2-7b-WhoIsHarryPotter-GGUF/blob/main/Llama2-7b-WhoIsHarryPotter-Q5_K_M.gguf) | Q5_K_M | 4.783 GB | large, very low quality loss - recommended | | [Llama2-7b-WhoIsHarryPotter-Q6_K.gguf](https://huggingface.co/tensorblock/microsoft_Llama2-7b-WhoIsHarryPotter-GGUF/blob/main/Llama2-7b-WhoIsHarryPotter-Q6_K.gguf) | Q6_K | 5.529 GB | very large, extremely low quality loss | | [Llama2-7b-WhoIsHarryPotter-Q8_0.gguf](https://huggingface.co/tensorblock/microsoft_Llama2-7b-WhoIsHarryPotter-GGUF/blob/main/Llama2-7b-WhoIsHarryPotter-Q8_0.gguf) | Q8_0 | 7.161 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/microsoft_Llama2-7b-WhoIsHarryPotter-GGUF --include "Llama2-7b-WhoIsHarryPotter-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/microsoft_Llama2-7b-WhoIsHarryPotter-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/MNCJ1hun_Dolphin-Mistral-7B-OP-u1k-ver0.1-GGUF
tensorblock
2025-06-19T01:58:13Z
36
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:MNCJ1hun/Dolphin-Mistral-7B-OP-u1k-ver0.1", "base_model:quantized:MNCJ1hun/Dolphin-Mistral-7B-OP-u1k-ver0.1", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-02T17:41:47Z
--- base_model: MNCJ1hun/Dolphin-Mistral-7B-OP-u1k-ver0.1 tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## MNCJ1hun/Dolphin-Mistral-7B-OP-u1k-ver0.1 - GGUF This repo contains GGUF format model files for [MNCJ1hun/Dolphin-Mistral-7B-OP-u1k-ver0.1](https://huggingface.co/MNCJ1hun/Dolphin-Mistral-7B-OP-u1k-ver0.1). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Dolphin-Mistral-7B-OP-u1k-ver0.1-Q2_K.gguf](https://huggingface.co/tensorblock/MNCJ1hun_Dolphin-Mistral-7B-OP-u1k-ver0.1-GGUF/blob/main/Dolphin-Mistral-7B-OP-u1k-ver0.1-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [Dolphin-Mistral-7B-OP-u1k-ver0.1-Q3_K_S.gguf](https://huggingface.co/tensorblock/MNCJ1hun_Dolphin-Mistral-7B-OP-u1k-ver0.1-GGUF/blob/main/Dolphin-Mistral-7B-OP-u1k-ver0.1-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [Dolphin-Mistral-7B-OP-u1k-ver0.1-Q3_K_M.gguf](https://huggingface.co/tensorblock/MNCJ1hun_Dolphin-Mistral-7B-OP-u1k-ver0.1-GGUF/blob/main/Dolphin-Mistral-7B-OP-u1k-ver0.1-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [Dolphin-Mistral-7B-OP-u1k-ver0.1-Q3_K_L.gguf](https://huggingface.co/tensorblock/MNCJ1hun_Dolphin-Mistral-7B-OP-u1k-ver0.1-GGUF/blob/main/Dolphin-Mistral-7B-OP-u1k-ver0.1-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [Dolphin-Mistral-7B-OP-u1k-ver0.1-Q4_0.gguf](https://huggingface.co/tensorblock/MNCJ1hun_Dolphin-Mistral-7B-OP-u1k-ver0.1-GGUF/blob/main/Dolphin-Mistral-7B-OP-u1k-ver0.1-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Dolphin-Mistral-7B-OP-u1k-ver0.1-Q4_K_S.gguf](https://huggingface.co/tensorblock/MNCJ1hun_Dolphin-Mistral-7B-OP-u1k-ver0.1-GGUF/blob/main/Dolphin-Mistral-7B-OP-u1k-ver0.1-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [Dolphin-Mistral-7B-OP-u1k-ver0.1-Q4_K_M.gguf](https://huggingface.co/tensorblock/MNCJ1hun_Dolphin-Mistral-7B-OP-u1k-ver0.1-GGUF/blob/main/Dolphin-Mistral-7B-OP-u1k-ver0.1-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [Dolphin-Mistral-7B-OP-u1k-ver0.1-Q5_0.gguf](https://huggingface.co/tensorblock/MNCJ1hun_Dolphin-Mistral-7B-OP-u1k-ver0.1-GGUF/blob/main/Dolphin-Mistral-7B-OP-u1k-ver0.1-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Dolphin-Mistral-7B-OP-u1k-ver0.1-Q5_K_S.gguf](https://huggingface.co/tensorblock/MNCJ1hun_Dolphin-Mistral-7B-OP-u1k-ver0.1-GGUF/blob/main/Dolphin-Mistral-7B-OP-u1k-ver0.1-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [Dolphin-Mistral-7B-OP-u1k-ver0.1-Q5_K_M.gguf](https://huggingface.co/tensorblock/MNCJ1hun_Dolphin-Mistral-7B-OP-u1k-ver0.1-GGUF/blob/main/Dolphin-Mistral-7B-OP-u1k-ver0.1-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [Dolphin-Mistral-7B-OP-u1k-ver0.1-Q6_K.gguf](https://huggingface.co/tensorblock/MNCJ1hun_Dolphin-Mistral-7B-OP-u1k-ver0.1-GGUF/blob/main/Dolphin-Mistral-7B-OP-u1k-ver0.1-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [Dolphin-Mistral-7B-OP-u1k-ver0.1-Q8_0.gguf](https://huggingface.co/tensorblock/MNCJ1hun_Dolphin-Mistral-7B-OP-u1k-ver0.1-GGUF/blob/main/Dolphin-Mistral-7B-OP-u1k-ver0.1-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/MNCJ1hun_Dolphin-Mistral-7B-OP-u1k-ver0.1-GGUF --include "Dolphin-Mistral-7B-OP-u1k-ver0.1-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/MNCJ1hun_Dolphin-Mistral-7B-OP-u1k-ver0.1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/nakhyeonn_llama-2-ko-qlora-prompt-GGUF
tensorblock
2025-06-19T01:58:10Z
63
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:nakhyeonn/llama-2-ko-qlora-prompt", "base_model:quantized:nakhyeonn/llama-2-ko-qlora-prompt", "endpoints_compatible", "region:us" ]
null
2025-05-02T17:32:32Z
--- base_model: nakhyeonn/llama-2-ko-qlora-prompt tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## nakhyeonn/llama-2-ko-qlora-prompt - GGUF This repo contains GGUF format model files for [nakhyeonn/llama-2-ko-qlora-prompt](https://huggingface.co/nakhyeonn/llama-2-ko-qlora-prompt). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format. ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [llama-2-ko-qlora-prompt-Q2_K.gguf](https://huggingface.co/tensorblock/nakhyeonn_llama-2-ko-qlora-prompt-GGUF/blob/main/llama-2-ko-qlora-prompt-Q2_K.gguf) | Q2_K | 0.001 GB | smallest, significant quality loss - not recommended for most purposes | | [llama-2-ko-qlora-prompt-Q3_K_S.gguf](https://huggingface.co/tensorblock/nakhyeonn_llama-2-ko-qlora-prompt-GGUF/blob/main/llama-2-ko-qlora-prompt-Q3_K_S.gguf) | Q3_K_S | 0.001 GB | very small, high quality loss | | [llama-2-ko-qlora-prompt-Q3_K_M.gguf](https://huggingface.co/tensorblock/nakhyeonn_llama-2-ko-qlora-prompt-GGUF/blob/main/llama-2-ko-qlora-prompt-Q3_K_M.gguf) | Q3_K_M | 0.001 GB | very small, high quality loss | | [llama-2-ko-qlora-prompt-Q3_K_L.gguf](https://huggingface.co/tensorblock/nakhyeonn_llama-2-ko-qlora-prompt-GGUF/blob/main/llama-2-ko-qlora-prompt-Q3_K_L.gguf) | Q3_K_L | 0.001 GB | small, substantial quality loss | | [llama-2-ko-qlora-prompt-Q4_0.gguf](https://huggingface.co/tensorblock/nakhyeonn_llama-2-ko-qlora-prompt-GGUF/blob/main/llama-2-ko-qlora-prompt-Q4_0.gguf) | Q4_0 | 0.001 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [llama-2-ko-qlora-prompt-Q4_K_S.gguf](https://huggingface.co/tensorblock/nakhyeonn_llama-2-ko-qlora-prompt-GGUF/blob/main/llama-2-ko-qlora-prompt-Q4_K_S.gguf) | Q4_K_S | 0.001 GB | small, greater quality loss | | [llama-2-ko-qlora-prompt-Q4_K_M.gguf](https://huggingface.co/tensorblock/nakhyeonn_llama-2-ko-qlora-prompt-GGUF/blob/main/llama-2-ko-qlora-prompt-Q4_K_M.gguf) | Q4_K_M | 0.001 GB | medium, balanced quality - recommended | | [llama-2-ko-qlora-prompt-Q5_0.gguf](https://huggingface.co/tensorblock/nakhyeonn_llama-2-ko-qlora-prompt-GGUF/blob/main/llama-2-ko-qlora-prompt-Q5_0.gguf) | Q5_0 | 0.001 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [llama-2-ko-qlora-prompt-Q5_K_S.gguf](https://huggingface.co/tensorblock/nakhyeonn_llama-2-ko-qlora-prompt-GGUF/blob/main/llama-2-ko-qlora-prompt-Q5_K_S.gguf) | Q5_K_S | 0.001 GB | large, low quality loss - recommended | | [llama-2-ko-qlora-prompt-Q5_K_M.gguf](https://huggingface.co/tensorblock/nakhyeonn_llama-2-ko-qlora-prompt-GGUF/blob/main/llama-2-ko-qlora-prompt-Q5_K_M.gguf) | Q5_K_M | 0.001 GB | large, very low quality loss - recommended | | [llama-2-ko-qlora-prompt-Q6_K.gguf](https://huggingface.co/tensorblock/nakhyeonn_llama-2-ko-qlora-prompt-GGUF/blob/main/llama-2-ko-qlora-prompt-Q6_K.gguf) | Q6_K | 0.001 GB | very large, extremely low quality loss | | [llama-2-ko-qlora-prompt-Q8_0.gguf](https://huggingface.co/tensorblock/nakhyeonn_llama-2-ko-qlora-prompt-GGUF/blob/main/llama-2-ko-qlora-prompt-Q8_0.gguf) | Q8_0 | 0.001 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/nakhyeonn_llama-2-ko-qlora-prompt-GGUF --include "llama-2-ko-qlora-prompt-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/nakhyeonn_llama-2-ko-qlora-prompt-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Open-Orca_Mistral-7B-SlimOrca-GGUF
tensorblock
2025-06-19T01:58:08Z
30
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "text-generation", "en", "dataset:Open-Orca/SlimOrca", "base_model:Open-Orca/Mistral-7B-SlimOrca", "base_model:quantized:Open-Orca/Mistral-7B-SlimOrca", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T17:03:35Z
--- datasets: - Open-Orca/SlimOrca language: - en library_name: transformers pipeline_tag: text-generation license: apache-2.0 tags: - TensorBlock - GGUF base_model: Open-Orca/Mistral-7B-SlimOrca --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## Open-Orca/Mistral-7B-SlimOrca - GGUF This repo contains GGUF format model files for [Open-Orca/Mistral-7B-SlimOrca](https://huggingface.co/Open-Orca/Mistral-7B-SlimOrca). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Mistral-7B-SlimOrca-Q2_K.gguf](https://huggingface.co/tensorblock/Open-Orca_Mistral-7B-SlimOrca-GGUF/blob/main/Mistral-7B-SlimOrca-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [Mistral-7B-SlimOrca-Q3_K_S.gguf](https://huggingface.co/tensorblock/Open-Orca_Mistral-7B-SlimOrca-GGUF/blob/main/Mistral-7B-SlimOrca-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [Mistral-7B-SlimOrca-Q3_K_M.gguf](https://huggingface.co/tensorblock/Open-Orca_Mistral-7B-SlimOrca-GGUF/blob/main/Mistral-7B-SlimOrca-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [Mistral-7B-SlimOrca-Q3_K_L.gguf](https://huggingface.co/tensorblock/Open-Orca_Mistral-7B-SlimOrca-GGUF/blob/main/Mistral-7B-SlimOrca-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [Mistral-7B-SlimOrca-Q4_0.gguf](https://huggingface.co/tensorblock/Open-Orca_Mistral-7B-SlimOrca-GGUF/blob/main/Mistral-7B-SlimOrca-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Mistral-7B-SlimOrca-Q4_K_S.gguf](https://huggingface.co/tensorblock/Open-Orca_Mistral-7B-SlimOrca-GGUF/blob/main/Mistral-7B-SlimOrca-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [Mistral-7B-SlimOrca-Q4_K_M.gguf](https://huggingface.co/tensorblock/Open-Orca_Mistral-7B-SlimOrca-GGUF/blob/main/Mistral-7B-SlimOrca-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [Mistral-7B-SlimOrca-Q5_0.gguf](https://huggingface.co/tensorblock/Open-Orca_Mistral-7B-SlimOrca-GGUF/blob/main/Mistral-7B-SlimOrca-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Mistral-7B-SlimOrca-Q5_K_S.gguf](https://huggingface.co/tensorblock/Open-Orca_Mistral-7B-SlimOrca-GGUF/blob/main/Mistral-7B-SlimOrca-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [Mistral-7B-SlimOrca-Q5_K_M.gguf](https://huggingface.co/tensorblock/Open-Orca_Mistral-7B-SlimOrca-GGUF/blob/main/Mistral-7B-SlimOrca-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [Mistral-7B-SlimOrca-Q6_K.gguf](https://huggingface.co/tensorblock/Open-Orca_Mistral-7B-SlimOrca-GGUF/blob/main/Mistral-7B-SlimOrca-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [Mistral-7B-SlimOrca-Q8_0.gguf](https://huggingface.co/tensorblock/Open-Orca_Mistral-7B-SlimOrca-GGUF/blob/main/Mistral-7B-SlimOrca-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Open-Orca_Mistral-7B-SlimOrca-GGUF --include "Mistral-7B-SlimOrca-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Open-Orca_Mistral-7B-SlimOrca-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/CHIH-HUNG_llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-GGUF
tensorblock
2025-06-19T01:58:03Z
30
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:CHIH-HUNG/llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down", "base_model:quantized:CHIH-HUNG/llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down", "endpoints_compatible", "region:us" ]
null
2025-05-02T15:50:51Z
--- base_model: CHIH-HUNG/llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## CHIH-HUNG/llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down - GGUF This repo contains GGUF format model files for [CHIH-HUNG/llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down](https://huggingface.co/CHIH-HUNG/llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format. ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-Q2_K.gguf](https://huggingface.co/tensorblock/CHIH-HUNG_llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-GGUF/blob/main/llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-Q2_K.gguf) | Q2_K | 4.854 GB | smallest, significant quality loss - not recommended for most purposes | | [llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-Q3_K_S.gguf](https://huggingface.co/tensorblock/CHIH-HUNG_llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-GGUF/blob/main/llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-Q3_K_S.gguf) | Q3_K_S | 5.659 GB | very small, high quality loss | | [llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-Q3_K_M.gguf](https://huggingface.co/tensorblock/CHIH-HUNG_llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-GGUF/blob/main/llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-Q3_K_M.gguf) | Q3_K_M | 6.338 GB | very small, high quality loss | | [llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-Q3_K_L.gguf](https://huggingface.co/tensorblock/CHIH-HUNG_llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-GGUF/blob/main/llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-Q3_K_L.gguf) | Q3_K_L | 6.930 GB | small, substantial quality loss | | [llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-Q4_0.gguf](https://huggingface.co/tensorblock/CHIH-HUNG_llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-GGUF/blob/main/llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-Q4_0.gguf) | Q4_0 | 7.366 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-Q4_K_S.gguf](https://huggingface.co/tensorblock/CHIH-HUNG_llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-GGUF/blob/main/llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-Q4_K_S.gguf) | Q4_K_S | 7.423 GB | small, greater quality loss | | [llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-Q4_K_M.gguf](https://huggingface.co/tensorblock/CHIH-HUNG_llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-GGUF/blob/main/llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-Q4_K_M.gguf) | Q4_K_M | 7.866 GB | medium, balanced quality - recommended | | [llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-Q5_0.gguf](https://huggingface.co/tensorblock/CHIH-HUNG_llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-GGUF/blob/main/llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-Q5_0.gguf) | Q5_0 | 8.972 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-Q5_K_S.gguf](https://huggingface.co/tensorblock/CHIH-HUNG_llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-GGUF/blob/main/llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-Q5_K_S.gguf) | Q5_K_S | 8.972 GB | large, low quality loss - recommended | | [llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-Q5_K_M.gguf](https://huggingface.co/tensorblock/CHIH-HUNG_llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-GGUF/blob/main/llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-Q5_K_M.gguf) | Q5_K_M | 9.230 GB | large, very low quality loss - recommended | | [llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-Q6_K.gguf](https://huggingface.co/tensorblock/CHIH-HUNG_llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-GGUF/blob/main/llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-Q6_K.gguf) | Q6_K | 10.679 GB | very large, extremely low quality loss | | [llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-Q8_0.gguf](https://huggingface.co/tensorblock/CHIH-HUNG_llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-GGUF/blob/main/llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-Q8_0.gguf) | Q8_0 | 13.831 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/CHIH-HUNG_llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-GGUF --include "llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/CHIH-HUNG_llama-2-13b-FINETUNE3_3.3w-r8-q_k_v_o_gate_up_down-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/jin05102518_Astral-7B-Instruct-v0.01-GGUF
tensorblock
2025-06-19T01:57:45Z
36
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "text-generation", "ko", "dataset:beomi/KoAlpaca-v1.1a", "base_model:jin05102518/Astral-7B-Instruct-v0.01", "base_model:quantized:jin05102518/Astral-7B-Instruct-v0.01", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-05-02T09:16:29Z
--- language: - ko datasets: - beomi/KoAlpaca-v1.1a library_name: transformers pipeline_tag: text-generation license: cc-by-nc-4.0 tags: - TensorBlock - GGUF base_model: jin05102518/Astral-7B-Instruct-v0.01 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## jin05102518/Astral-7B-Instruct-v0.01 - GGUF This repo contains GGUF format model files for [jin05102518/Astral-7B-Instruct-v0.01](https://huggingface.co/jin05102518/Astral-7B-Instruct-v0.01). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|system|> {system_prompt}</s> <|user|> {prompt}</s> <|assistant|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Astral-7B-Instruct-v0.01-Q2_K.gguf](https://huggingface.co/tensorblock/jin05102518_Astral-7B-Instruct-v0.01-GGUF/blob/main/Astral-7B-Instruct-v0.01-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [Astral-7B-Instruct-v0.01-Q3_K_S.gguf](https://huggingface.co/tensorblock/jin05102518_Astral-7B-Instruct-v0.01-GGUF/blob/main/Astral-7B-Instruct-v0.01-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [Astral-7B-Instruct-v0.01-Q3_K_M.gguf](https://huggingface.co/tensorblock/jin05102518_Astral-7B-Instruct-v0.01-GGUF/blob/main/Astral-7B-Instruct-v0.01-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [Astral-7B-Instruct-v0.01-Q3_K_L.gguf](https://huggingface.co/tensorblock/jin05102518_Astral-7B-Instruct-v0.01-GGUF/blob/main/Astral-7B-Instruct-v0.01-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [Astral-7B-Instruct-v0.01-Q4_0.gguf](https://huggingface.co/tensorblock/jin05102518_Astral-7B-Instruct-v0.01-GGUF/blob/main/Astral-7B-Instruct-v0.01-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Astral-7B-Instruct-v0.01-Q4_K_S.gguf](https://huggingface.co/tensorblock/jin05102518_Astral-7B-Instruct-v0.01-GGUF/blob/main/Astral-7B-Instruct-v0.01-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [Astral-7B-Instruct-v0.01-Q4_K_M.gguf](https://huggingface.co/tensorblock/jin05102518_Astral-7B-Instruct-v0.01-GGUF/blob/main/Astral-7B-Instruct-v0.01-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [Astral-7B-Instruct-v0.01-Q5_0.gguf](https://huggingface.co/tensorblock/jin05102518_Astral-7B-Instruct-v0.01-GGUF/blob/main/Astral-7B-Instruct-v0.01-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Astral-7B-Instruct-v0.01-Q5_K_S.gguf](https://huggingface.co/tensorblock/jin05102518_Astral-7B-Instruct-v0.01-GGUF/blob/main/Astral-7B-Instruct-v0.01-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [Astral-7B-Instruct-v0.01-Q5_K_M.gguf](https://huggingface.co/tensorblock/jin05102518_Astral-7B-Instruct-v0.01-GGUF/blob/main/Astral-7B-Instruct-v0.01-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [Astral-7B-Instruct-v0.01-Q6_K.gguf](https://huggingface.co/tensorblock/jin05102518_Astral-7B-Instruct-v0.01-GGUF/blob/main/Astral-7B-Instruct-v0.01-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [Astral-7B-Instruct-v0.01-Q8_0.gguf](https://huggingface.co/tensorblock/jin05102518_Astral-7B-Instruct-v0.01-GGUF/blob/main/Astral-7B-Instruct-v0.01-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/jin05102518_Astral-7B-Instruct-v0.01-GGUF --include "Astral-7B-Instruct-v0.01-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/jin05102518_Astral-7B-Instruct-v0.01-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/klyang_MentaLLaMA-chat-13B-GGUF
tensorblock
2025-06-19T01:57:27Z
37
0
null
[ "gguf", "medical", "TensorBlock", "GGUF", "en", "base_model:klyang/MentaLLaMA-chat-13B", "base_model:quantized:klyang/MentaLLaMA-chat-13B", "license:mit", "endpoints_compatible", "region:us" ]
null
2025-05-02T05:25:34Z
--- license: mit language: - en metrics: - f1 tags: - medical - TensorBlock - GGUF base_model: klyang/MentaLLaMA-chat-13B --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## klyang/MentaLLaMA-chat-13B - GGUF This repo contains GGUF format model files for [klyang/MentaLLaMA-chat-13B](https://huggingface.co/klyang/MentaLLaMA-chat-13B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format. ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [MentaLLaMA-chat-13B-Q2_K.gguf](https://huggingface.co/tensorblock/klyang_MentaLLaMA-chat-13B-GGUF/blob/main/MentaLLaMA-chat-13B-Q2_K.gguf) | Q2_K | 4.854 GB | smallest, significant quality loss - not recommended for most purposes | | [MentaLLaMA-chat-13B-Q3_K_S.gguf](https://huggingface.co/tensorblock/klyang_MentaLLaMA-chat-13B-GGUF/blob/main/MentaLLaMA-chat-13B-Q3_K_S.gguf) | Q3_K_S | 5.659 GB | very small, high quality loss | | [MentaLLaMA-chat-13B-Q3_K_M.gguf](https://huggingface.co/tensorblock/klyang_MentaLLaMA-chat-13B-GGUF/blob/main/MentaLLaMA-chat-13B-Q3_K_M.gguf) | Q3_K_M | 6.338 GB | very small, high quality loss | | [MentaLLaMA-chat-13B-Q3_K_L.gguf](https://huggingface.co/tensorblock/klyang_MentaLLaMA-chat-13B-GGUF/blob/main/MentaLLaMA-chat-13B-Q3_K_L.gguf) | Q3_K_L | 6.930 GB | small, substantial quality loss | | [MentaLLaMA-chat-13B-Q4_0.gguf](https://huggingface.co/tensorblock/klyang_MentaLLaMA-chat-13B-GGUF/blob/main/MentaLLaMA-chat-13B-Q4_0.gguf) | Q4_0 | 7.366 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [MentaLLaMA-chat-13B-Q4_K_S.gguf](https://huggingface.co/tensorblock/klyang_MentaLLaMA-chat-13B-GGUF/blob/main/MentaLLaMA-chat-13B-Q4_K_S.gguf) | Q4_K_S | 7.423 GB | small, greater quality loss | | [MentaLLaMA-chat-13B-Q4_K_M.gguf](https://huggingface.co/tensorblock/klyang_MentaLLaMA-chat-13B-GGUF/blob/main/MentaLLaMA-chat-13B-Q4_K_M.gguf) | Q4_K_M | 7.866 GB | medium, balanced quality - recommended | | [MentaLLaMA-chat-13B-Q5_0.gguf](https://huggingface.co/tensorblock/klyang_MentaLLaMA-chat-13B-GGUF/blob/main/MentaLLaMA-chat-13B-Q5_0.gguf) | Q5_0 | 8.972 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [MentaLLaMA-chat-13B-Q5_K_S.gguf](https://huggingface.co/tensorblock/klyang_MentaLLaMA-chat-13B-GGUF/blob/main/MentaLLaMA-chat-13B-Q5_K_S.gguf) | Q5_K_S | 8.972 GB | large, low quality loss - recommended | | [MentaLLaMA-chat-13B-Q5_K_M.gguf](https://huggingface.co/tensorblock/klyang_MentaLLaMA-chat-13B-GGUF/blob/main/MentaLLaMA-chat-13B-Q5_K_M.gguf) | Q5_K_M | 9.230 GB | large, very low quality loss - recommended | | [MentaLLaMA-chat-13B-Q6_K.gguf](https://huggingface.co/tensorblock/klyang_MentaLLaMA-chat-13B-GGUF/blob/main/MentaLLaMA-chat-13B-Q6_K.gguf) | Q6_K | 10.679 GB | very large, extremely low quality loss | | [MentaLLaMA-chat-13B-Q8_0.gguf](https://huggingface.co/tensorblock/klyang_MentaLLaMA-chat-13B-GGUF/blob/main/MentaLLaMA-chat-13B-Q8_0.gguf) | Q8_0 | 13.831 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/klyang_MentaLLaMA-chat-13B-GGUF --include "MentaLLaMA-chat-13B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/klyang_MentaLLaMA-chat-13B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/LTC-AI-Labs_L2-7b-Hermes-WVG-Test-GGUF
tensorblock
2025-06-19T01:57:23Z
21
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:LTC-AI-Labs/L2-7b-Hermes-WVG-Test", "base_model:quantized:LTC-AI-Labs/L2-7b-Hermes-WVG-Test", "endpoints_compatible", "region:us" ]
null
2025-05-02T03:02:17Z
--- base_model: LTC-AI-Labs/L2-7b-Hermes-WVG-Test tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## LTC-AI-Labs/L2-7b-Hermes-WVG-Test - GGUF This repo contains GGUF format model files for [LTC-AI-Labs/L2-7b-Hermes-WVG-Test](https://huggingface.co/LTC-AI-Labs/L2-7b-Hermes-WVG-Test). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format. ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [L2-7b-Hermes-WVG-Test-Q2_K.gguf](https://huggingface.co/tensorblock/LTC-AI-Labs_L2-7b-Hermes-WVG-Test-GGUF/blob/main/L2-7b-Hermes-WVG-Test-Q2_K.gguf) | Q2_K | 2.533 GB | smallest, significant quality loss - not recommended for most purposes | | [L2-7b-Hermes-WVG-Test-Q3_K_S.gguf](https://huggingface.co/tensorblock/LTC-AI-Labs_L2-7b-Hermes-WVG-Test-GGUF/blob/main/L2-7b-Hermes-WVG-Test-Q3_K_S.gguf) | Q3_K_S | 2.948 GB | very small, high quality loss | | [L2-7b-Hermes-WVG-Test-Q3_K_M.gguf](https://huggingface.co/tensorblock/LTC-AI-Labs_L2-7b-Hermes-WVG-Test-GGUF/blob/main/L2-7b-Hermes-WVG-Test-Q3_K_M.gguf) | Q3_K_M | 3.298 GB | very small, high quality loss | | [L2-7b-Hermes-WVG-Test-Q3_K_L.gguf](https://huggingface.co/tensorblock/LTC-AI-Labs_L2-7b-Hermes-WVG-Test-GGUF/blob/main/L2-7b-Hermes-WVG-Test-Q3_K_L.gguf) | Q3_K_L | 3.597 GB | small, substantial quality loss | | [L2-7b-Hermes-WVG-Test-Q4_0.gguf](https://huggingface.co/tensorblock/LTC-AI-Labs_L2-7b-Hermes-WVG-Test-GGUF/blob/main/L2-7b-Hermes-WVG-Test-Q4_0.gguf) | Q4_0 | 3.826 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [L2-7b-Hermes-WVG-Test-Q4_K_S.gguf](https://huggingface.co/tensorblock/LTC-AI-Labs_L2-7b-Hermes-WVG-Test-GGUF/blob/main/L2-7b-Hermes-WVG-Test-Q4_K_S.gguf) | Q4_K_S | 3.857 GB | small, greater quality loss | | [L2-7b-Hermes-WVG-Test-Q4_K_M.gguf](https://huggingface.co/tensorblock/LTC-AI-Labs_L2-7b-Hermes-WVG-Test-GGUF/blob/main/L2-7b-Hermes-WVG-Test-Q4_K_M.gguf) | Q4_K_M | 4.081 GB | medium, balanced quality - recommended | | [L2-7b-Hermes-WVG-Test-Q5_0.gguf](https://huggingface.co/tensorblock/LTC-AI-Labs_L2-7b-Hermes-WVG-Test-GGUF/blob/main/L2-7b-Hermes-WVG-Test-Q5_0.gguf) | Q5_0 | 4.652 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [L2-7b-Hermes-WVG-Test-Q5_K_S.gguf](https://huggingface.co/tensorblock/LTC-AI-Labs_L2-7b-Hermes-WVG-Test-GGUF/blob/main/L2-7b-Hermes-WVG-Test-Q5_K_S.gguf) | Q5_K_S | 4.652 GB | large, low quality loss - recommended | | [L2-7b-Hermes-WVG-Test-Q5_K_M.gguf](https://huggingface.co/tensorblock/LTC-AI-Labs_L2-7b-Hermes-WVG-Test-GGUF/blob/main/L2-7b-Hermes-WVG-Test-Q5_K_M.gguf) | Q5_K_M | 4.783 GB | large, very low quality loss - recommended | | [L2-7b-Hermes-WVG-Test-Q6_K.gguf](https://huggingface.co/tensorblock/LTC-AI-Labs_L2-7b-Hermes-WVG-Test-GGUF/blob/main/L2-7b-Hermes-WVG-Test-Q6_K.gguf) | Q6_K | 5.529 GB | very large, extremely low quality loss | | [L2-7b-Hermes-WVG-Test-Q8_0.gguf](https://huggingface.co/tensorblock/LTC-AI-Labs_L2-7b-Hermes-WVG-Test-GGUF/blob/main/L2-7b-Hermes-WVG-Test-Q8_0.gguf) | Q8_0 | 7.161 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/LTC-AI-Labs_L2-7b-Hermes-WVG-Test-GGUF --include "L2-7b-Hermes-WVG-Test-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/LTC-AI-Labs_L2-7b-Hermes-WVG-Test-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/YeungNLP_LongQLoRA-Llama2-7b-8k-GGUF
tensorblock
2025-06-19T01:57:06Z
19
0
null
[ "gguf", "TensorBlock", "GGUF", "en", "base_model:YeungNLP/LongQLoRA-Llama2-7b-8k", "base_model:quantized:YeungNLP/LongQLoRA-Llama2-7b-8k", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-01T20:59:48Z
--- license: apache-2.0 language: - en tags: - TensorBlock - GGUF base_model: YeungNLP/LongQLoRA-Llama2-7b-8k --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## YeungNLP/LongQLoRA-Llama2-7b-8k - GGUF This repo contains GGUF format model files for [YeungNLP/LongQLoRA-Llama2-7b-8k](https://huggingface.co/YeungNLP/LongQLoRA-Llama2-7b-8k). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [LongQLoRA-Llama2-7b-8k-Q2_K.gguf](https://huggingface.co/tensorblock/YeungNLP_LongQLoRA-Llama2-7b-8k-GGUF/blob/main/LongQLoRA-Llama2-7b-8k-Q2_K.gguf) | Q2_K | 2.533 GB | smallest, significant quality loss - not recommended for most purposes | | [LongQLoRA-Llama2-7b-8k-Q3_K_S.gguf](https://huggingface.co/tensorblock/YeungNLP_LongQLoRA-Llama2-7b-8k-GGUF/blob/main/LongQLoRA-Llama2-7b-8k-Q3_K_S.gguf) | Q3_K_S | 2.948 GB | very small, high quality loss | | [LongQLoRA-Llama2-7b-8k-Q3_K_M.gguf](https://huggingface.co/tensorblock/YeungNLP_LongQLoRA-Llama2-7b-8k-GGUF/blob/main/LongQLoRA-Llama2-7b-8k-Q3_K_M.gguf) | Q3_K_M | 3.298 GB | very small, high quality loss | | [LongQLoRA-Llama2-7b-8k-Q3_K_L.gguf](https://huggingface.co/tensorblock/YeungNLP_LongQLoRA-Llama2-7b-8k-GGUF/blob/main/LongQLoRA-Llama2-7b-8k-Q3_K_L.gguf) | Q3_K_L | 3.597 GB | small, substantial quality loss | | [LongQLoRA-Llama2-7b-8k-Q4_0.gguf](https://huggingface.co/tensorblock/YeungNLP_LongQLoRA-Llama2-7b-8k-GGUF/blob/main/LongQLoRA-Llama2-7b-8k-Q4_0.gguf) | Q4_0 | 3.826 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [LongQLoRA-Llama2-7b-8k-Q4_K_S.gguf](https://huggingface.co/tensorblock/YeungNLP_LongQLoRA-Llama2-7b-8k-GGUF/blob/main/LongQLoRA-Llama2-7b-8k-Q4_K_S.gguf) | Q4_K_S | 3.857 GB | small, greater quality loss | | [LongQLoRA-Llama2-7b-8k-Q4_K_M.gguf](https://huggingface.co/tensorblock/YeungNLP_LongQLoRA-Llama2-7b-8k-GGUF/blob/main/LongQLoRA-Llama2-7b-8k-Q4_K_M.gguf) | Q4_K_M | 4.081 GB | medium, balanced quality - recommended | | [LongQLoRA-Llama2-7b-8k-Q5_0.gguf](https://huggingface.co/tensorblock/YeungNLP_LongQLoRA-Llama2-7b-8k-GGUF/blob/main/LongQLoRA-Llama2-7b-8k-Q5_0.gguf) | Q5_0 | 4.652 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [LongQLoRA-Llama2-7b-8k-Q5_K_S.gguf](https://huggingface.co/tensorblock/YeungNLP_LongQLoRA-Llama2-7b-8k-GGUF/blob/main/LongQLoRA-Llama2-7b-8k-Q5_K_S.gguf) | Q5_K_S | 4.652 GB | large, low quality loss - recommended | | [LongQLoRA-Llama2-7b-8k-Q5_K_M.gguf](https://huggingface.co/tensorblock/YeungNLP_LongQLoRA-Llama2-7b-8k-GGUF/blob/main/LongQLoRA-Llama2-7b-8k-Q5_K_M.gguf) | Q5_K_M | 4.783 GB | large, very low quality loss - recommended | | [LongQLoRA-Llama2-7b-8k-Q6_K.gguf](https://huggingface.co/tensorblock/YeungNLP_LongQLoRA-Llama2-7b-8k-GGUF/blob/main/LongQLoRA-Llama2-7b-8k-Q6_K.gguf) | Q6_K | 5.529 GB | very large, extremely low quality loss | | [LongQLoRA-Llama2-7b-8k-Q8_0.gguf](https://huggingface.co/tensorblock/YeungNLP_LongQLoRA-Llama2-7b-8k-GGUF/blob/main/LongQLoRA-Llama2-7b-8k-Q8_0.gguf) | Q8_0 | 7.161 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/YeungNLP_LongQLoRA-Llama2-7b-8k-GGUF --include "LongQLoRA-Llama2-7b-8k-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/YeungNLP_LongQLoRA-Llama2-7b-8k-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/ksmcg_Mistral-tiny-GGUF
tensorblock
2025-06-19T01:57:01Z
44
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:ksmcg/Mistral-tiny", "base_model:quantized:ksmcg/Mistral-tiny", "endpoints_compatible", "region:us" ]
null
2025-05-01T19:43:01Z
--- base_model: ksmcg/Mistral-tiny tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## ksmcg/Mistral-tiny - GGUF This repo contains GGUF format model files for [ksmcg/Mistral-tiny](https://huggingface.co/ksmcg/Mistral-tiny). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format. ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Mistral-tiny-Q2_K.gguf](https://huggingface.co/tensorblock/ksmcg_Mistral-tiny-GGUF/blob/main/Mistral-tiny-Q2_K.gguf) | Q2_K | 0.001 GB | smallest, significant quality loss - not recommended for most purposes | | [Mistral-tiny-Q3_K_S.gguf](https://huggingface.co/tensorblock/ksmcg_Mistral-tiny-GGUF/blob/main/Mistral-tiny-Q3_K_S.gguf) | Q3_K_S | 0.001 GB | very small, high quality loss | | [Mistral-tiny-Q3_K_M.gguf](https://huggingface.co/tensorblock/ksmcg_Mistral-tiny-GGUF/blob/main/Mistral-tiny-Q3_K_M.gguf) | Q3_K_M | 0.001 GB | very small, high quality loss | | [Mistral-tiny-Q3_K_L.gguf](https://huggingface.co/tensorblock/ksmcg_Mistral-tiny-GGUF/blob/main/Mistral-tiny-Q3_K_L.gguf) | Q3_K_L | 0.001 GB | small, substantial quality loss | | [Mistral-tiny-Q4_0.gguf](https://huggingface.co/tensorblock/ksmcg_Mistral-tiny-GGUF/blob/main/Mistral-tiny-Q4_0.gguf) | Q4_0 | 0.001 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Mistral-tiny-Q4_K_S.gguf](https://huggingface.co/tensorblock/ksmcg_Mistral-tiny-GGUF/blob/main/Mistral-tiny-Q4_K_S.gguf) | Q4_K_S | 0.001 GB | small, greater quality loss | | [Mistral-tiny-Q4_K_M.gguf](https://huggingface.co/tensorblock/ksmcg_Mistral-tiny-GGUF/blob/main/Mistral-tiny-Q4_K_M.gguf) | Q4_K_M | 0.001 GB | medium, balanced quality - recommended | | [Mistral-tiny-Q5_0.gguf](https://huggingface.co/tensorblock/ksmcg_Mistral-tiny-GGUF/blob/main/Mistral-tiny-Q5_0.gguf) | Q5_0 | 0.001 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Mistral-tiny-Q5_K_S.gguf](https://huggingface.co/tensorblock/ksmcg_Mistral-tiny-GGUF/blob/main/Mistral-tiny-Q5_K_S.gguf) | Q5_K_S | 0.001 GB | large, low quality loss - recommended | | [Mistral-tiny-Q5_K_M.gguf](https://huggingface.co/tensorblock/ksmcg_Mistral-tiny-GGUF/blob/main/Mistral-tiny-Q5_K_M.gguf) | Q5_K_M | 0.001 GB | large, very low quality loss - recommended | | [Mistral-tiny-Q6_K.gguf](https://huggingface.co/tensorblock/ksmcg_Mistral-tiny-GGUF/blob/main/Mistral-tiny-Q6_K.gguf) | Q6_K | 0.001 GB | very large, extremely low quality loss | | [Mistral-tiny-Q8_0.gguf](https://huggingface.co/tensorblock/ksmcg_Mistral-tiny-GGUF/blob/main/Mistral-tiny-Q8_0.gguf) | Q8_0 | 0.001 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/ksmcg_Mistral-tiny-GGUF --include "Mistral-tiny-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/ksmcg_Mistral-tiny-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/kyujinpy_Kosy-platypus2-13B-v4-GGUF
tensorblock
2025-06-19T01:56:50Z
42
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "text-generation", "ko", "dataset:kyujinpy/KOpen-platypus", "base_model:kyujinpy/Kosy-platypus2-13B-v4", "base_model:quantized:kyujinpy/Kosy-platypus2-13B-v4", "license:cc-by-nc-sa-4.0", "endpoints_compatible", "region:us" ]
text-generation
2025-05-01T17:30:51Z
--- language: - ko datasets: - kyujinpy/KOpen-platypus library_name: transformers pipeline_tag: text-generation license: cc-by-nc-sa-4.0 tags: - TensorBlock - GGUF base_model: kyujinpy/Kosy-platypus2-13B-v4 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## kyujinpy/Kosy-platypus2-13B-v4 - GGUF This repo contains GGUF format model files for [kyujinpy/Kosy-platypus2-13B-v4](https://huggingface.co/kyujinpy/Kosy-platypus2-13B-v4). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format. ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Kosy-platypus2-13B-v4-Q2_K.gguf](https://huggingface.co/tensorblock/kyujinpy_Kosy-platypus2-13B-v4-GGUF/blob/main/Kosy-platypus2-13B-v4-Q2_K.gguf) | Q2_K | 4.854 GB | smallest, significant quality loss - not recommended for most purposes | | [Kosy-platypus2-13B-v4-Q3_K_S.gguf](https://huggingface.co/tensorblock/kyujinpy_Kosy-platypus2-13B-v4-GGUF/blob/main/Kosy-platypus2-13B-v4-Q3_K_S.gguf) | Q3_K_S | 5.659 GB | very small, high quality loss | | [Kosy-platypus2-13B-v4-Q3_K_M.gguf](https://huggingface.co/tensorblock/kyujinpy_Kosy-platypus2-13B-v4-GGUF/blob/main/Kosy-platypus2-13B-v4-Q3_K_M.gguf) | Q3_K_M | 6.338 GB | very small, high quality loss | | [Kosy-platypus2-13B-v4-Q3_K_L.gguf](https://huggingface.co/tensorblock/kyujinpy_Kosy-platypus2-13B-v4-GGUF/blob/main/Kosy-platypus2-13B-v4-Q3_K_L.gguf) | Q3_K_L | 6.930 GB | small, substantial quality loss | | [Kosy-platypus2-13B-v4-Q4_0.gguf](https://huggingface.co/tensorblock/kyujinpy_Kosy-platypus2-13B-v4-GGUF/blob/main/Kosy-platypus2-13B-v4-Q4_0.gguf) | Q4_0 | 7.366 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Kosy-platypus2-13B-v4-Q4_K_S.gguf](https://huggingface.co/tensorblock/kyujinpy_Kosy-platypus2-13B-v4-GGUF/blob/main/Kosy-platypus2-13B-v4-Q4_K_S.gguf) | Q4_K_S | 7.423 GB | small, greater quality loss | | [Kosy-platypus2-13B-v4-Q4_K_M.gguf](https://huggingface.co/tensorblock/kyujinpy_Kosy-platypus2-13B-v4-GGUF/blob/main/Kosy-platypus2-13B-v4-Q4_K_M.gguf) | Q4_K_M | 7.866 GB | medium, balanced quality - recommended | | [Kosy-platypus2-13B-v4-Q5_0.gguf](https://huggingface.co/tensorblock/kyujinpy_Kosy-platypus2-13B-v4-GGUF/blob/main/Kosy-platypus2-13B-v4-Q5_0.gguf) | Q5_0 | 8.972 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Kosy-platypus2-13B-v4-Q5_K_S.gguf](https://huggingface.co/tensorblock/kyujinpy_Kosy-platypus2-13B-v4-GGUF/blob/main/Kosy-platypus2-13B-v4-Q5_K_S.gguf) | Q5_K_S | 8.972 GB | large, low quality loss - recommended | | [Kosy-platypus2-13B-v4-Q5_K_M.gguf](https://huggingface.co/tensorblock/kyujinpy_Kosy-platypus2-13B-v4-GGUF/blob/main/Kosy-platypus2-13B-v4-Q5_K_M.gguf) | Q5_K_M | 9.230 GB | large, very low quality loss - recommended | | [Kosy-platypus2-13B-v4-Q6_K.gguf](https://huggingface.co/tensorblock/kyujinpy_Kosy-platypus2-13B-v4-GGUF/blob/main/Kosy-platypus2-13B-v4-Q6_K.gguf) | Q6_K | 10.679 GB | very large, extremely low quality loss | | [Kosy-platypus2-13B-v4-Q8_0.gguf](https://huggingface.co/tensorblock/kyujinpy_Kosy-platypus2-13B-v4-GGUF/blob/main/Kosy-platypus2-13B-v4-Q8_0.gguf) | Q8_0 | 13.831 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/kyujinpy_Kosy-platypus2-13B-v4-GGUF --include "Kosy-platypus2-13B-v4-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/kyujinpy_Kosy-platypus2-13B-v4-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/timpal0l_Mistral-7B-v0.1-flashback-v2-GGUF
tensorblock
2025-06-19T01:56:35Z
70
0
null
[ "gguf", "pretrained", "flashback", "web", "conversational", "TensorBlock", "GGUF", "text-generation", "sv", "en", "no", "da", "base_model:timpal0l/Mistral-7B-v0.1-flashback-v2", "base_model:quantized:timpal0l/Mistral-7B-v0.1-flashback-v2", "license:mit", "model-index", "endpoints_compatible", "region:us" ]
text-generation
2025-05-01T14:13:28Z
--- language: - sv - en - 'no' - da license: mit tags: - pretrained - flashback - web - conversational - TensorBlock - GGUF models: - timpal0l/Mistral-7B-v0.1-flashback-v2-instruct pipeline_tag: text-generation widget: - text: Jag tycker att det Γ€r roligt med base_model: timpal0l/Mistral-7B-v0.1-flashback-v2 model-index: - name: Mistral-7B-v0.1-flashback-v2 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 57.17 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=timpal0l/Mistral-7B-v0.1-flashback-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 80.74 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=timpal0l/Mistral-7B-v0.1-flashback-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 59.98 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=timpal0l/Mistral-7B-v0.1-flashback-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 40.66 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=timpal0l/Mistral-7B-v0.1-flashback-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 77.19 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=timpal0l/Mistral-7B-v0.1-flashback-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 29.42 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=timpal0l/Mistral-7B-v0.1-flashback-v2 name: Open LLM Leaderboard --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## timpal0l/Mistral-7B-v0.1-flashback-v2 - GGUF This repo contains GGUF format model files for [timpal0l/Mistral-7B-v0.1-flashback-v2](https://huggingface.co/timpal0l/Mistral-7B-v0.1-flashback-v2). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <s>[INST] <<SYS>> {system_prompt} <</SYS>> {prompt} [/INST] ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Mistral-7B-v0.1-flashback-v2-Q2_K.gguf](https://huggingface.co/tensorblock/timpal0l_Mistral-7B-v0.1-flashback-v2-GGUF/blob/main/Mistral-7B-v0.1-flashback-v2-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [Mistral-7B-v0.1-flashback-v2-Q3_K_S.gguf](https://huggingface.co/tensorblock/timpal0l_Mistral-7B-v0.1-flashback-v2-GGUF/blob/main/Mistral-7B-v0.1-flashback-v2-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [Mistral-7B-v0.1-flashback-v2-Q3_K_M.gguf](https://huggingface.co/tensorblock/timpal0l_Mistral-7B-v0.1-flashback-v2-GGUF/blob/main/Mistral-7B-v0.1-flashback-v2-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [Mistral-7B-v0.1-flashback-v2-Q3_K_L.gguf](https://huggingface.co/tensorblock/timpal0l_Mistral-7B-v0.1-flashback-v2-GGUF/blob/main/Mistral-7B-v0.1-flashback-v2-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [Mistral-7B-v0.1-flashback-v2-Q4_0.gguf](https://huggingface.co/tensorblock/timpal0l_Mistral-7B-v0.1-flashback-v2-GGUF/blob/main/Mistral-7B-v0.1-flashback-v2-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Mistral-7B-v0.1-flashback-v2-Q4_K_S.gguf](https://huggingface.co/tensorblock/timpal0l_Mistral-7B-v0.1-flashback-v2-GGUF/blob/main/Mistral-7B-v0.1-flashback-v2-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [Mistral-7B-v0.1-flashback-v2-Q4_K_M.gguf](https://huggingface.co/tensorblock/timpal0l_Mistral-7B-v0.1-flashback-v2-GGUF/blob/main/Mistral-7B-v0.1-flashback-v2-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [Mistral-7B-v0.1-flashback-v2-Q5_0.gguf](https://huggingface.co/tensorblock/timpal0l_Mistral-7B-v0.1-flashback-v2-GGUF/blob/main/Mistral-7B-v0.1-flashback-v2-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Mistral-7B-v0.1-flashback-v2-Q5_K_S.gguf](https://huggingface.co/tensorblock/timpal0l_Mistral-7B-v0.1-flashback-v2-GGUF/blob/main/Mistral-7B-v0.1-flashback-v2-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [Mistral-7B-v0.1-flashback-v2-Q5_K_M.gguf](https://huggingface.co/tensorblock/timpal0l_Mistral-7B-v0.1-flashback-v2-GGUF/blob/main/Mistral-7B-v0.1-flashback-v2-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [Mistral-7B-v0.1-flashback-v2-Q6_K.gguf](https://huggingface.co/tensorblock/timpal0l_Mistral-7B-v0.1-flashback-v2-GGUF/blob/main/Mistral-7B-v0.1-flashback-v2-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [Mistral-7B-v0.1-flashback-v2-Q8_0.gguf](https://huggingface.co/tensorblock/timpal0l_Mistral-7B-v0.1-flashback-v2-GGUF/blob/main/Mistral-7B-v0.1-flashback-v2-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/timpal0l_Mistral-7B-v0.1-flashback-v2-GGUF --include "Mistral-7B-v0.1-flashback-v2-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/timpal0l_Mistral-7B-v0.1-flashback-v2-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/SicariusSicariiStuff_Tenebra_30B_Alpha01-GGUF
tensorblock
2025-06-19T01:56:15Z
33
0
null
[ "gguf", "TensorBlock", "GGUF", "en", "base_model:SicariusSicariiStuff/Tenebra_30B_Alpha01", "base_model:quantized:SicariusSicariiStuff/Tenebra_30B_Alpha01", "endpoints_compatible", "region:us" ]
null
2025-05-01T09:25:06Z
--- language: - en tags: - TensorBlock - GGUF base_model: SicariusSicariiStuff/Tenebra_30B_Alpha01 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## SicariusSicariiStuff/Tenebra_30B_Alpha01 - GGUF This repo contains GGUF format model files for [SicariusSicariiStuff/Tenebra_30B_Alpha01](https://huggingface.co/SicariusSicariiStuff/Tenebra_30B_Alpha01). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format. ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Tenebra_30B_Alpha01-Q2_K.gguf](https://huggingface.co/tensorblock/SicariusSicariiStuff_Tenebra_30B_Alpha01-GGUF/blob/main/Tenebra_30B_Alpha01-Q2_K.gguf) | Q2_K | 12.049 GB | smallest, significant quality loss - not recommended for most purposes | | [Tenebra_30B_Alpha01-Q3_K_S.gguf](https://huggingface.co/tensorblock/SicariusSicariiStuff_Tenebra_30B_Alpha01-GGUF/blob/main/Tenebra_30B_Alpha01-Q3_K_S.gguf) | Q3_K_S | 14.064 GB | very small, high quality loss | | [Tenebra_30B_Alpha01-Q3_K_M.gguf](https://huggingface.co/tensorblock/SicariusSicariiStuff_Tenebra_30B_Alpha01-GGUF/blob/main/Tenebra_30B_Alpha01-Q3_K_M.gguf) | Q3_K_M | 15.776 GB | very small, high quality loss | | [Tenebra_30B_Alpha01-Q3_K_L.gguf](https://huggingface.co/tensorblock/SicariusSicariiStuff_Tenebra_30B_Alpha01-GGUF/blob/main/Tenebra_30B_Alpha01-Q3_K_L.gguf) | Q3_K_L | 17.280 GB | small, substantial quality loss | | [Tenebra_30B_Alpha01-Q4_0.gguf](https://huggingface.co/tensorblock/SicariusSicariiStuff_Tenebra_30B_Alpha01-GGUF/blob/main/Tenebra_30B_Alpha01-Q4_0.gguf) | Q4_0 | 18.356 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Tenebra_30B_Alpha01-Q4_K_S.gguf](https://huggingface.co/tensorblock/SicariusSicariiStuff_Tenebra_30B_Alpha01-GGUF/blob/main/Tenebra_30B_Alpha01-Q4_K_S.gguf) | Q4_K_S | 18.482 GB | small, greater quality loss | | [Tenebra_30B_Alpha01-Q4_K_M.gguf](https://huggingface.co/tensorblock/SicariusSicariiStuff_Tenebra_30B_Alpha01-GGUF/blob/main/Tenebra_30B_Alpha01-Q4_K_M.gguf) | Q4_K_M | 19.621 GB | medium, balanced quality - recommended | | [Tenebra_30B_Alpha01-Q5_0.gguf](https://huggingface.co/tensorblock/SicariusSicariiStuff_Tenebra_30B_Alpha01-GGUF/blob/main/Tenebra_30B_Alpha01-Q5_0.gguf) | Q5_0 | 22.395 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Tenebra_30B_Alpha01-Q5_K_S.gguf](https://huggingface.co/tensorblock/SicariusSicariiStuff_Tenebra_30B_Alpha01-GGUF/blob/main/Tenebra_30B_Alpha01-Q5_K_S.gguf) | Q5_K_S | 22.395 GB | large, low quality loss - recommended | | [Tenebra_30B_Alpha01-Q5_K_M.gguf](https://huggingface.co/tensorblock/SicariusSicariiStuff_Tenebra_30B_Alpha01-GGUF/blob/main/Tenebra_30B_Alpha01-Q5_K_M.gguf) | Q5_K_M | 23.047 GB | large, very low quality loss - recommended | | [Tenebra_30B_Alpha01-Q6_K.gguf](https://huggingface.co/tensorblock/SicariusSicariiStuff_Tenebra_30B_Alpha01-GGUF/blob/main/Tenebra_30B_Alpha01-Q6_K.gguf) | Q6_K | 26.687 GB | very large, extremely low quality loss | | [Tenebra_30B_Alpha01-Q8_0.gguf](https://huggingface.co/tensorblock/SicariusSicariiStuff_Tenebra_30B_Alpha01-GGUF/blob/main/Tenebra_30B_Alpha01-Q8_0.gguf) | Q8_0 | 34.565 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/SicariusSicariiStuff_Tenebra_30B_Alpha01-GGUF --include "Tenebra_30B_Alpha01-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/SicariusSicariiStuff_Tenebra_30B_Alpha01-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/cognitivecomputations_dolphin-2.2-yi-34b-200k-GGUF
tensorblock
2025-06-19T01:56:07Z
79
0
null
[ "gguf", "TensorBlock", "GGUF", "en", "dataset:ehartford/dolphin", "dataset:jondurbin/airoboros-2.2.1", "dataset:ehartford/samantha-data", "dataset:ehartford/WizardLM_evol_instruct_V2_196k_unfiltered_merged_split", "base_model:cognitivecomputations/dolphin-2.2-yi-34b-200k", "base_model:quantized:cognitivecomputations/dolphin-2.2-yi-34b-200k", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-01T06:03:03Z
--- language: - en datasets: - ehartford/dolphin - jondurbin/airoboros-2.2.1 - ehartford/samantha-data - ehartford/WizardLM_evol_instruct_V2_196k_unfiltered_merged_split license: apache-2.0 tags: - TensorBlock - GGUF base_model: cognitivecomputations/dolphin-2.2-yi-34b-200k model-index: - name: dolphin-2.2-yi-34b-200k results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 42.15 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ehartford/dolphin-2.2-yi-34b-200k name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 68.18 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ehartford/dolphin-2.2-yi-34b-200k name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 55.47 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ehartford/dolphin-2.2-yi-34b-200k name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 45.93 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ehartford/dolphin-2.2-yi-34b-200k name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 64.56 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ehartford/dolphin-2.2-yi-34b-200k name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 3.71 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ehartford/dolphin-2.2-yi-34b-200k name: Open LLM Leaderboard --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## cognitivecomputations/dolphin-2.2-yi-34b-200k - GGUF This repo contains GGUF format model files for [cognitivecomputations/dolphin-2.2-yi-34b-200k](https://huggingface.co/cognitivecomputations/dolphin-2.2-yi-34b-200k). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [dolphin-2.2-yi-34b-200k-Q2_K.gguf](https://huggingface.co/tensorblock/cognitivecomputations_dolphin-2.2-yi-34b-200k-GGUF/blob/main/dolphin-2.2-yi-34b-200k-Q2_K.gguf) | Q2_K | 12.825 GB | smallest, significant quality loss - not recommended for most purposes | | [dolphin-2.2-yi-34b-200k-Q3_K_S.gguf](https://huggingface.co/tensorblock/cognitivecomputations_dolphin-2.2-yi-34b-200k-GGUF/blob/main/dolphin-2.2-yi-34b-200k-Q3_K_S.gguf) | Q3_K_S | 14.960 GB | very small, high quality loss | | [dolphin-2.2-yi-34b-200k-Q3_K_M.gguf](https://huggingface.co/tensorblock/cognitivecomputations_dolphin-2.2-yi-34b-200k-GGUF/blob/main/dolphin-2.2-yi-34b-200k-Q3_K_M.gguf) | Q3_K_M | 16.655 GB | very small, high quality loss | | [dolphin-2.2-yi-34b-200k-Q3_K_L.gguf](https://huggingface.co/tensorblock/cognitivecomputations_dolphin-2.2-yi-34b-200k-GGUF/blob/main/dolphin-2.2-yi-34b-200k-Q3_K_L.gguf) | Q3_K_L | 18.139 GB | small, substantial quality loss | | [dolphin-2.2-yi-34b-200k-Q4_0.gguf](https://huggingface.co/tensorblock/cognitivecomputations_dolphin-2.2-yi-34b-200k-GGUF/blob/main/dolphin-2.2-yi-34b-200k-Q4_0.gguf) | Q4_0 | 19.467 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [dolphin-2.2-yi-34b-200k-Q4_K_S.gguf](https://huggingface.co/tensorblock/cognitivecomputations_dolphin-2.2-yi-34b-200k-GGUF/blob/main/dolphin-2.2-yi-34b-200k-Q4_K_S.gguf) | Q4_K_S | 19.599 GB | small, greater quality loss | | [dolphin-2.2-yi-34b-200k-Q4_K_M.gguf](https://huggingface.co/tensorblock/cognitivecomputations_dolphin-2.2-yi-34b-200k-GGUF/blob/main/dolphin-2.2-yi-34b-200k-Q4_K_M.gguf) | Q4_K_M | 20.659 GB | medium, balanced quality - recommended | | [dolphin-2.2-yi-34b-200k-Q5_0.gguf](https://huggingface.co/tensorblock/cognitivecomputations_dolphin-2.2-yi-34b-200k-GGUF/blob/main/dolphin-2.2-yi-34b-200k-Q5_0.gguf) | Q5_0 | 23.708 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [dolphin-2.2-yi-34b-200k-Q5_K_S.gguf](https://huggingface.co/tensorblock/cognitivecomputations_dolphin-2.2-yi-34b-200k-GGUF/blob/main/dolphin-2.2-yi-34b-200k-Q5_K_S.gguf) | Q5_K_S | 23.708 GB | large, low quality loss - recommended | | [dolphin-2.2-yi-34b-200k-Q5_K_M.gguf](https://huggingface.co/tensorblock/cognitivecomputations_dolphin-2.2-yi-34b-200k-GGUF/blob/main/dolphin-2.2-yi-34b-200k-Q5_K_M.gguf) | Q5_K_M | 24.322 GB | large, very low quality loss - recommended | | [dolphin-2.2-yi-34b-200k-Q6_K.gguf](https://huggingface.co/tensorblock/cognitivecomputations_dolphin-2.2-yi-34b-200k-GGUF/blob/main/dolphin-2.2-yi-34b-200k-Q6_K.gguf) | Q6_K | 28.214 GB | very large, extremely low quality loss | | [dolphin-2.2-yi-34b-200k-Q8_0.gguf](https://huggingface.co/tensorblock/cognitivecomputations_dolphin-2.2-yi-34b-200k-GGUF/blob/main/dolphin-2.2-yi-34b-200k-Q8_0.gguf) | Q8_0 | 36.542 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/cognitivecomputations_dolphin-2.2-yi-34b-200k-GGUF --include "dolphin-2.2-yi-34b-200k-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/cognitivecomputations_dolphin-2.2-yi-34b-200k-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Eric111_Yarn-Mistral-7b-128k-DPO-GGUF
tensorblock
2025-06-19T01:55:59Z
22
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "base_model:Eric111/Yarn-Mistral-7b-128k-DPO", "base_model:quantized:Eric111/Yarn-Mistral-7b-128k-DPO", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-01T04:26:14Z
--- library_name: transformers license: apache-2.0 tags: - TensorBlock - GGUF base_model: Eric111/Yarn-Mistral-7b-128k-DPO --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## Eric111/Yarn-Mistral-7b-128k-DPO - GGUF This repo contains GGUF format model files for [Eric111/Yarn-Mistral-7b-128k-DPO](https://huggingface.co/Eric111/Yarn-Mistral-7b-128k-DPO). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format. ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Yarn-Mistral-7b-128k-DPO-Q2_K.gguf](https://huggingface.co/tensorblock/Eric111_Yarn-Mistral-7b-128k-DPO-GGUF/blob/main/Yarn-Mistral-7b-128k-DPO-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [Yarn-Mistral-7b-128k-DPO-Q3_K_S.gguf](https://huggingface.co/tensorblock/Eric111_Yarn-Mistral-7b-128k-DPO-GGUF/blob/main/Yarn-Mistral-7b-128k-DPO-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [Yarn-Mistral-7b-128k-DPO-Q3_K_M.gguf](https://huggingface.co/tensorblock/Eric111_Yarn-Mistral-7b-128k-DPO-GGUF/blob/main/Yarn-Mistral-7b-128k-DPO-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [Yarn-Mistral-7b-128k-DPO-Q3_K_L.gguf](https://huggingface.co/tensorblock/Eric111_Yarn-Mistral-7b-128k-DPO-GGUF/blob/main/Yarn-Mistral-7b-128k-DPO-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [Yarn-Mistral-7b-128k-DPO-Q4_0.gguf](https://huggingface.co/tensorblock/Eric111_Yarn-Mistral-7b-128k-DPO-GGUF/blob/main/Yarn-Mistral-7b-128k-DPO-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Yarn-Mistral-7b-128k-DPO-Q4_K_S.gguf](https://huggingface.co/tensorblock/Eric111_Yarn-Mistral-7b-128k-DPO-GGUF/blob/main/Yarn-Mistral-7b-128k-DPO-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [Yarn-Mistral-7b-128k-DPO-Q4_K_M.gguf](https://huggingface.co/tensorblock/Eric111_Yarn-Mistral-7b-128k-DPO-GGUF/blob/main/Yarn-Mistral-7b-128k-DPO-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [Yarn-Mistral-7b-128k-DPO-Q5_0.gguf](https://huggingface.co/tensorblock/Eric111_Yarn-Mistral-7b-128k-DPO-GGUF/blob/main/Yarn-Mistral-7b-128k-DPO-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Yarn-Mistral-7b-128k-DPO-Q5_K_S.gguf](https://huggingface.co/tensorblock/Eric111_Yarn-Mistral-7b-128k-DPO-GGUF/blob/main/Yarn-Mistral-7b-128k-DPO-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [Yarn-Mistral-7b-128k-DPO-Q5_K_M.gguf](https://huggingface.co/tensorblock/Eric111_Yarn-Mistral-7b-128k-DPO-GGUF/blob/main/Yarn-Mistral-7b-128k-DPO-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [Yarn-Mistral-7b-128k-DPO-Q6_K.gguf](https://huggingface.co/tensorblock/Eric111_Yarn-Mistral-7b-128k-DPO-GGUF/blob/main/Yarn-Mistral-7b-128k-DPO-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [Yarn-Mistral-7b-128k-DPO-Q8_0.gguf](https://huggingface.co/tensorblock/Eric111_Yarn-Mistral-7b-128k-DPO-GGUF/blob/main/Yarn-Mistral-7b-128k-DPO-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Eric111_Yarn-Mistral-7b-128k-DPO-GGUF --include "Yarn-Mistral-7b-128k-DPO-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Eric111_Yarn-Mistral-7b-128k-DPO-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/brucethemoose_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-GGUF
tensorblock
2025-06-19T01:55:55Z
30
0
transformers
[ "transformers", "gguf", "text-generation-inference", "merge", "TensorBlock", "GGUF", "text-generation", "en", "base_model:brucethemoose/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity", "base_model:quantized:brucethemoose/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity", "license:other", "model-index", "endpoints_compatible", "region:us" ]
text-generation
2025-05-01T01:45:39Z
--- language: - en license: other library_name: transformers tags: - text-generation-inference - merge - TensorBlock - GGUF license_name: yi-license license_link: https://huggingface.co/01-ai/Yi-34B/blob/main/LICENSE pipeline_tag: text-generation base_model: brucethemoose/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity model-index: - name: CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 67.41 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=brucethemoose/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.77 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=brucethemoose/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 77.44 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=brucethemoose/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 57.84 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=brucethemoose/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.11 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=brucethemoose/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 61.33 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=brucethemoose/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity name: Open LLM Leaderboard --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## brucethemoose/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity - GGUF This repo contains GGUF format model files for [brucethemoose/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity](https://huggingface.co/brucethemoose/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format. ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-Q2_K.gguf](https://huggingface.co/tensorblock/brucethemoose_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-GGUF/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-Q2_K.gguf) | Q2_K | 12.825 GB | smallest, significant quality loss - not recommended for most purposes | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-Q3_K_S.gguf](https://huggingface.co/tensorblock/brucethemoose_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-GGUF/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-Q3_K_S.gguf) | Q3_K_S | 14.960 GB | very small, high quality loss | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-Q3_K_M.gguf](https://huggingface.co/tensorblock/brucethemoose_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-GGUF/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-Q3_K_M.gguf) | Q3_K_M | 16.655 GB | very small, high quality loss | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-Q3_K_L.gguf](https://huggingface.co/tensorblock/brucethemoose_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-GGUF/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-Q3_K_L.gguf) | Q3_K_L | 18.139 GB | small, substantial quality loss | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-Q4_0.gguf](https://huggingface.co/tensorblock/brucethemoose_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-GGUF/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-Q4_0.gguf) | Q4_0 | 19.467 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-Q4_K_S.gguf](https://huggingface.co/tensorblock/brucethemoose_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-GGUF/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-Q4_K_S.gguf) | Q4_K_S | 19.599 GB | small, greater quality loss | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-Q4_K_M.gguf](https://huggingface.co/tensorblock/brucethemoose_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-GGUF/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-Q4_K_M.gguf) | Q4_K_M | 20.659 GB | medium, balanced quality - recommended | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-Q5_0.gguf](https://huggingface.co/tensorblock/brucethemoose_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-GGUF/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-Q5_0.gguf) | Q5_0 | 23.708 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-Q5_K_S.gguf](https://huggingface.co/tensorblock/brucethemoose_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-GGUF/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-Q5_K_S.gguf) | Q5_K_S | 23.708 GB | large, low quality loss - recommended | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-Q5_K_M.gguf](https://huggingface.co/tensorblock/brucethemoose_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-GGUF/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-Q5_K_M.gguf) | Q5_K_M | 24.322 GB | large, very low quality loss - recommended | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-Q6_K.gguf](https://huggingface.co/tensorblock/brucethemoose_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-GGUF/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-Q6_K.gguf) | Q6_K | 28.214 GB | very large, extremely low quality loss | | [CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-Q8_0.gguf](https://huggingface.co/tensorblock/brucethemoose_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-GGUF/blob/main/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-Q8_0.gguf) | Q8_0 | 36.542 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/brucethemoose_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-GGUF --include "CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/brucethemoose_CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Unbabel_TowerInstruct-13B-v0.1-GGUF
tensorblock
2025-06-19T01:55:23Z
57
0
null
[ "gguf", "TensorBlock", "GGUF", "translation", "en", "de", "fr", "zh", "pt", "nl", "ru", "ko", "it", "es", "base_model:Unbabel/TowerInstruct-13B-v0.1", "base_model:quantized:Unbabel/TowerInstruct-13B-v0.1", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "conversational" ]
translation
2025-04-30T17:40:22Z
--- license: cc-by-nc-4.0 language: - en - de - fr - zh - pt - nl - ru - ko - it - es metrics: - comet pipeline_tag: translation tags: - TensorBlock - GGUF base_model: Unbabel/TowerInstruct-13B-v0.1 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## Unbabel/TowerInstruct-13B-v0.1 - GGUF This repo contains GGUF format model files for [Unbabel/TowerInstruct-13B-v0.1](https://huggingface.co/Unbabel/TowerInstruct-13B-v0.1). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [TowerInstruct-13B-v0.1-Q2_K.gguf](https://huggingface.co/tensorblock/Unbabel_TowerInstruct-13B-v0.1-GGUF/blob/main/TowerInstruct-13B-v0.1-Q2_K.gguf) | Q2_K | 4.854 GB | smallest, significant quality loss - not recommended for most purposes | | [TowerInstruct-13B-v0.1-Q3_K_S.gguf](https://huggingface.co/tensorblock/Unbabel_TowerInstruct-13B-v0.1-GGUF/blob/main/TowerInstruct-13B-v0.1-Q3_K_S.gguf) | Q3_K_S | 5.659 GB | very small, high quality loss | | [TowerInstruct-13B-v0.1-Q3_K_M.gguf](https://huggingface.co/tensorblock/Unbabel_TowerInstruct-13B-v0.1-GGUF/blob/main/TowerInstruct-13B-v0.1-Q3_K_M.gguf) | Q3_K_M | 6.338 GB | very small, high quality loss | | [TowerInstruct-13B-v0.1-Q3_K_L.gguf](https://huggingface.co/tensorblock/Unbabel_TowerInstruct-13B-v0.1-GGUF/blob/main/TowerInstruct-13B-v0.1-Q3_K_L.gguf) | Q3_K_L | 6.930 GB | small, substantial quality loss | | [TowerInstruct-13B-v0.1-Q4_0.gguf](https://huggingface.co/tensorblock/Unbabel_TowerInstruct-13B-v0.1-GGUF/blob/main/TowerInstruct-13B-v0.1-Q4_0.gguf) | Q4_0 | 7.366 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [TowerInstruct-13B-v0.1-Q4_K_S.gguf](https://huggingface.co/tensorblock/Unbabel_TowerInstruct-13B-v0.1-GGUF/blob/main/TowerInstruct-13B-v0.1-Q4_K_S.gguf) | Q4_K_S | 7.423 GB | small, greater quality loss | | [TowerInstruct-13B-v0.1-Q4_K_M.gguf](https://huggingface.co/tensorblock/Unbabel_TowerInstruct-13B-v0.1-GGUF/blob/main/TowerInstruct-13B-v0.1-Q4_K_M.gguf) | Q4_K_M | 7.866 GB | medium, balanced quality - recommended | | [TowerInstruct-13B-v0.1-Q5_0.gguf](https://huggingface.co/tensorblock/Unbabel_TowerInstruct-13B-v0.1-GGUF/blob/main/TowerInstruct-13B-v0.1-Q5_0.gguf) | Q5_0 | 8.972 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [TowerInstruct-13B-v0.1-Q5_K_S.gguf](https://huggingface.co/tensorblock/Unbabel_TowerInstruct-13B-v0.1-GGUF/blob/main/TowerInstruct-13B-v0.1-Q5_K_S.gguf) | Q5_K_S | 8.972 GB | large, low quality loss - recommended | | [TowerInstruct-13B-v0.1-Q5_K_M.gguf](https://huggingface.co/tensorblock/Unbabel_TowerInstruct-13B-v0.1-GGUF/blob/main/TowerInstruct-13B-v0.1-Q5_K_M.gguf) | Q5_K_M | 9.230 GB | large, very low quality loss - recommended | | [TowerInstruct-13B-v0.1-Q6_K.gguf](https://huggingface.co/tensorblock/Unbabel_TowerInstruct-13B-v0.1-GGUF/blob/main/TowerInstruct-13B-v0.1-Q6_K.gguf) | Q6_K | 10.679 GB | very large, extremely low quality loss | | [TowerInstruct-13B-v0.1-Q8_0.gguf](https://huggingface.co/tensorblock/Unbabel_TowerInstruct-13B-v0.1-GGUF/blob/main/TowerInstruct-13B-v0.1-Q8_0.gguf) | Q8_0 | 13.831 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Unbabel_TowerInstruct-13B-v0.1-GGUF --include "TowerInstruct-13B-v0.1-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Unbabel_TowerInstruct-13B-v0.1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/rangan2510_BioMistral-Instructv0.2-7B-DARE-GGUF
tensorblock
2025-06-19T01:54:53Z
34
0
null
[ "gguf", "merge", "mergekit", "lazymergekit", "BioMistral/BioMistral-7B", "TensorBlock", "GGUF", "base_model:rangan2510/BioMistral-Instructv0.2-7B-DARE", "base_model:quantized:rangan2510/BioMistral-Instructv0.2-7B-DARE", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-30T11:52:29Z
--- tags: - merge - mergekit - lazymergekit - BioMistral/BioMistral-7B - TensorBlock - GGUF base_model: rangan2510/BioMistral-Instructv0.2-7B-DARE --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## rangan2510/BioMistral-Instructv0.2-7B-DARE - GGUF This repo contains GGUF format model files for [rangan2510/BioMistral-Instructv0.2-7B-DARE](https://huggingface.co/rangan2510/BioMistral-Instructv0.2-7B-DARE). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <s>[INST] {prompt} [/INST] ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [BioMistral-Instructv0.2-7B-DARE-Q2_K.gguf](https://huggingface.co/tensorblock/rangan2510_BioMistral-Instructv0.2-7B-DARE-GGUF/blob/main/BioMistral-Instructv0.2-7B-DARE-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [BioMistral-Instructv0.2-7B-DARE-Q3_K_S.gguf](https://huggingface.co/tensorblock/rangan2510_BioMistral-Instructv0.2-7B-DARE-GGUF/blob/main/BioMistral-Instructv0.2-7B-DARE-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [BioMistral-Instructv0.2-7B-DARE-Q3_K_M.gguf](https://huggingface.co/tensorblock/rangan2510_BioMistral-Instructv0.2-7B-DARE-GGUF/blob/main/BioMistral-Instructv0.2-7B-DARE-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [BioMistral-Instructv0.2-7B-DARE-Q3_K_L.gguf](https://huggingface.co/tensorblock/rangan2510_BioMistral-Instructv0.2-7B-DARE-GGUF/blob/main/BioMistral-Instructv0.2-7B-DARE-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [BioMistral-Instructv0.2-7B-DARE-Q4_0.gguf](https://huggingface.co/tensorblock/rangan2510_BioMistral-Instructv0.2-7B-DARE-GGUF/blob/main/BioMistral-Instructv0.2-7B-DARE-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [BioMistral-Instructv0.2-7B-DARE-Q4_K_S.gguf](https://huggingface.co/tensorblock/rangan2510_BioMistral-Instructv0.2-7B-DARE-GGUF/blob/main/BioMistral-Instructv0.2-7B-DARE-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [BioMistral-Instructv0.2-7B-DARE-Q4_K_M.gguf](https://huggingface.co/tensorblock/rangan2510_BioMistral-Instructv0.2-7B-DARE-GGUF/blob/main/BioMistral-Instructv0.2-7B-DARE-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [BioMistral-Instructv0.2-7B-DARE-Q5_0.gguf](https://huggingface.co/tensorblock/rangan2510_BioMistral-Instructv0.2-7B-DARE-GGUF/blob/main/BioMistral-Instructv0.2-7B-DARE-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [BioMistral-Instructv0.2-7B-DARE-Q5_K_S.gguf](https://huggingface.co/tensorblock/rangan2510_BioMistral-Instructv0.2-7B-DARE-GGUF/blob/main/BioMistral-Instructv0.2-7B-DARE-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [BioMistral-Instructv0.2-7B-DARE-Q5_K_M.gguf](https://huggingface.co/tensorblock/rangan2510_BioMistral-Instructv0.2-7B-DARE-GGUF/blob/main/BioMistral-Instructv0.2-7B-DARE-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [BioMistral-Instructv0.2-7B-DARE-Q6_K.gguf](https://huggingface.co/tensorblock/rangan2510_BioMistral-Instructv0.2-7B-DARE-GGUF/blob/main/BioMistral-Instructv0.2-7B-DARE-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [BioMistral-Instructv0.2-7B-DARE-Q8_0.gguf](https://huggingface.co/tensorblock/rangan2510_BioMistral-Instructv0.2-7B-DARE-GGUF/blob/main/BioMistral-Instructv0.2-7B-DARE-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/rangan2510_BioMistral-Instructv0.2-7B-DARE-GGUF --include "BioMistral-Instructv0.2-7B-DARE-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/rangan2510_BioMistral-Instructv0.2-7B-DARE-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/notadib_Mistral-7B-Instruct-v0.2-attention-sparsity-30-GGUF
tensorblock
2025-06-19T01:54:51Z
24
0
null
[ "gguf", "finetuned", "TensorBlock", "GGUF", "text-generation", "license:apache-2.0", "model-index", "region:us", "conversational" ]
text-generation
2025-04-30T11:52:04Z
--- license: apache-2.0 tags: - finetuned - TensorBlock - GGUF pipeline_tag: text-generation inference: false base_model: notadib/Mistral-7B-Instruct-v0.2-attention-sparsity-30 model-index: - name: Mistral-7B-Instruct-v0.2-attention-sparsity-30 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 62.97 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=notadib/Mistral-7B-Instruct-v0.2-attention-sparsity-30 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 84.71 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=notadib/Mistral-7B-Instruct-v0.2-attention-sparsity-30 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 60.49 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=notadib/Mistral-7B-Instruct-v0.2-attention-sparsity-30 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 67.49 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=notadib/Mistral-7B-Instruct-v0.2-attention-sparsity-30 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 77.98 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=notadib/Mistral-7B-Instruct-v0.2-attention-sparsity-30 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 39.42 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=notadib/Mistral-7B-Instruct-v0.2-attention-sparsity-30 name: Open LLM Leaderboard --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## notadib/Mistral-7B-Instruct-v0.2-attention-sparsity-30 - GGUF This repo contains GGUF format model files for [notadib/Mistral-7B-Instruct-v0.2-attention-sparsity-30](https://huggingface.co/notadib/Mistral-7B-Instruct-v0.2-attention-sparsity-30). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Mistral-7B-Instruct-v0.2-attention-sparsity-30-Q2_K.gguf](https://huggingface.co/tensorblock/notadib_Mistral-7B-Instruct-v0.2-attention-sparsity-30-GGUF/blob/main/Mistral-7B-Instruct-v0.2-attention-sparsity-30-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [Mistral-7B-Instruct-v0.2-attention-sparsity-30-Q3_K_S.gguf](https://huggingface.co/tensorblock/notadib_Mistral-7B-Instruct-v0.2-attention-sparsity-30-GGUF/blob/main/Mistral-7B-Instruct-v0.2-attention-sparsity-30-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [Mistral-7B-Instruct-v0.2-attention-sparsity-30-Q3_K_M.gguf](https://huggingface.co/tensorblock/notadib_Mistral-7B-Instruct-v0.2-attention-sparsity-30-GGUF/blob/main/Mistral-7B-Instruct-v0.2-attention-sparsity-30-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [Mistral-7B-Instruct-v0.2-attention-sparsity-30-Q3_K_L.gguf](https://huggingface.co/tensorblock/notadib_Mistral-7B-Instruct-v0.2-attention-sparsity-30-GGUF/blob/main/Mistral-7B-Instruct-v0.2-attention-sparsity-30-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [Mistral-7B-Instruct-v0.2-attention-sparsity-30-Q4_0.gguf](https://huggingface.co/tensorblock/notadib_Mistral-7B-Instruct-v0.2-attention-sparsity-30-GGUF/blob/main/Mistral-7B-Instruct-v0.2-attention-sparsity-30-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Mistral-7B-Instruct-v0.2-attention-sparsity-30-Q4_K_S.gguf](https://huggingface.co/tensorblock/notadib_Mistral-7B-Instruct-v0.2-attention-sparsity-30-GGUF/blob/main/Mistral-7B-Instruct-v0.2-attention-sparsity-30-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [Mistral-7B-Instruct-v0.2-attention-sparsity-30-Q4_K_M.gguf](https://huggingface.co/tensorblock/notadib_Mistral-7B-Instruct-v0.2-attention-sparsity-30-GGUF/blob/main/Mistral-7B-Instruct-v0.2-attention-sparsity-30-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [Mistral-7B-Instruct-v0.2-attention-sparsity-30-Q5_0.gguf](https://huggingface.co/tensorblock/notadib_Mistral-7B-Instruct-v0.2-attention-sparsity-30-GGUF/blob/main/Mistral-7B-Instruct-v0.2-attention-sparsity-30-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Mistral-7B-Instruct-v0.2-attention-sparsity-30-Q5_K_S.gguf](https://huggingface.co/tensorblock/notadib_Mistral-7B-Instruct-v0.2-attention-sparsity-30-GGUF/blob/main/Mistral-7B-Instruct-v0.2-attention-sparsity-30-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [Mistral-7B-Instruct-v0.2-attention-sparsity-30-Q5_K_M.gguf](https://huggingface.co/tensorblock/notadib_Mistral-7B-Instruct-v0.2-attention-sparsity-30-GGUF/blob/main/Mistral-7B-Instruct-v0.2-attention-sparsity-30-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [Mistral-7B-Instruct-v0.2-attention-sparsity-30-Q6_K.gguf](https://huggingface.co/tensorblock/notadib_Mistral-7B-Instruct-v0.2-attention-sparsity-30-GGUF/blob/main/Mistral-7B-Instruct-v0.2-attention-sparsity-30-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [Mistral-7B-Instruct-v0.2-attention-sparsity-30-Q8_0.gguf](https://huggingface.co/tensorblock/notadib_Mistral-7B-Instruct-v0.2-attention-sparsity-30-GGUF/blob/main/Mistral-7B-Instruct-v0.2-attention-sparsity-30-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/notadib_Mistral-7B-Instruct-v0.2-attention-sparsity-30-GGUF --include "Mistral-7B-Instruct-v0.2-attention-sparsity-30-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/notadib_Mistral-7B-Instruct-v0.2-attention-sparsity-30-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/lex-hue_Delexa-V0.1-7b-GGUF
tensorblock
2025-06-19T01:54:43Z
13
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:lex-hue/Delexa-V0.1-7b", "base_model:quantized:lex-hue/Delexa-V0.1-7b", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2025-04-30T08:12:36Z
--- license: apache-2.0 tags: - TensorBlock - GGUF base_model: lex-hue/Delexa-V0.1-7b model-index: - name: Delexa-V0.1-7b results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 66.38 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lex-hue/Delexa-V0.1-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.98 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lex-hue/Delexa-V0.1-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.97 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lex-hue/Delexa-V0.1-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 61.69 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lex-hue/Delexa-V0.1-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 78.06 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lex-hue/Delexa-V0.1-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 63.53 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lex-hue/Delexa-V0.1-7b name: Open LLM Leaderboard --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## lex-hue/Delexa-V0.1-7b - GGUF This repo contains GGUF format model files for [lex-hue/Delexa-V0.1-7b](https://huggingface.co/lex-hue/Delexa-V0.1-7b). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format. ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Delexa-V0.1-7b-Q2_K.gguf](https://huggingface.co/tensorblock/lex-hue_Delexa-V0.1-7b-GGUF/blob/main/Delexa-V0.1-7b-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [Delexa-V0.1-7b-Q3_K_S.gguf](https://huggingface.co/tensorblock/lex-hue_Delexa-V0.1-7b-GGUF/blob/main/Delexa-V0.1-7b-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [Delexa-V0.1-7b-Q3_K_M.gguf](https://huggingface.co/tensorblock/lex-hue_Delexa-V0.1-7b-GGUF/blob/main/Delexa-V0.1-7b-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [Delexa-V0.1-7b-Q3_K_L.gguf](https://huggingface.co/tensorblock/lex-hue_Delexa-V0.1-7b-GGUF/blob/main/Delexa-V0.1-7b-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [Delexa-V0.1-7b-Q4_0.gguf](https://huggingface.co/tensorblock/lex-hue_Delexa-V0.1-7b-GGUF/blob/main/Delexa-V0.1-7b-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Delexa-V0.1-7b-Q4_K_S.gguf](https://huggingface.co/tensorblock/lex-hue_Delexa-V0.1-7b-GGUF/blob/main/Delexa-V0.1-7b-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [Delexa-V0.1-7b-Q4_K_M.gguf](https://huggingface.co/tensorblock/lex-hue_Delexa-V0.1-7b-GGUF/blob/main/Delexa-V0.1-7b-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [Delexa-V0.1-7b-Q5_0.gguf](https://huggingface.co/tensorblock/lex-hue_Delexa-V0.1-7b-GGUF/blob/main/Delexa-V0.1-7b-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Delexa-V0.1-7b-Q5_K_S.gguf](https://huggingface.co/tensorblock/lex-hue_Delexa-V0.1-7b-GGUF/blob/main/Delexa-V0.1-7b-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [Delexa-V0.1-7b-Q5_K_M.gguf](https://huggingface.co/tensorblock/lex-hue_Delexa-V0.1-7b-GGUF/blob/main/Delexa-V0.1-7b-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [Delexa-V0.1-7b-Q6_K.gguf](https://huggingface.co/tensorblock/lex-hue_Delexa-V0.1-7b-GGUF/blob/main/Delexa-V0.1-7b-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [Delexa-V0.1-7b-Q8_0.gguf](https://huggingface.co/tensorblock/lex-hue_Delexa-V0.1-7b-GGUF/blob/main/Delexa-V0.1-7b-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/lex-hue_Delexa-V0.1-7b-GGUF --include "Delexa-V0.1-7b-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/lex-hue_Delexa-V0.1-7b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Samvardhan777_gemma-2b-mt-German-to-English-GGUF
tensorblock
2025-06-19T01:54:30Z
96
0
null
[ "gguf", "text-generation-inference", "TensorBlock", "GGUF", "translation", "de", "en", "base_model:Samvardhan777/gemma-2b-mt-German-to-English", "base_model:quantized:Samvardhan777/gemma-2b-mt-German-to-English", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
translation
2025-04-30T05:32:03Z
--- license: mit language: - de - en pipeline_tag: translation tags: - text-generation-inference - TensorBlock - GGUF base_model: Samvardhan777/gemma-2b-mt-German-to-English --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## Samvardhan777/gemma-2b-mt-German-to-English - GGUF This repo contains GGUF format model files for [Samvardhan777/gemma-2b-mt-German-to-English](https://huggingface.co/Samvardhan777/gemma-2b-mt-German-to-English). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <bos><start_of_turn>user {prompt}<end_of_turn> <start_of_turn>model ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [gemma-2b-mt-German-to-English-Q2_K.gguf](https://huggingface.co/tensorblock/Samvardhan777_gemma-2b-mt-German-to-English-GGUF/blob/main/gemma-2b-mt-German-to-English-Q2_K.gguf) | Q2_K | 1.158 GB | smallest, significant quality loss - not recommended for most purposes | | [gemma-2b-mt-German-to-English-Q3_K_S.gguf](https://huggingface.co/tensorblock/Samvardhan777_gemma-2b-mt-German-to-English-GGUF/blob/main/gemma-2b-mt-German-to-English-Q3_K_S.gguf) | Q3_K_S | 1.288 GB | very small, high quality loss | | [gemma-2b-mt-German-to-English-Q3_K_M.gguf](https://huggingface.co/tensorblock/Samvardhan777_gemma-2b-mt-German-to-English-GGUF/blob/main/gemma-2b-mt-German-to-English-Q3_K_M.gguf) | Q3_K_M | 1.384 GB | very small, high quality loss | | [gemma-2b-mt-German-to-English-Q3_K_L.gguf](https://huggingface.co/tensorblock/Samvardhan777_gemma-2b-mt-German-to-English-GGUF/blob/main/gemma-2b-mt-German-to-English-Q3_K_L.gguf) | Q3_K_L | 1.466 GB | small, substantial quality loss | | [gemma-2b-mt-German-to-English-Q4_0.gguf](https://huggingface.co/tensorblock/Samvardhan777_gemma-2b-mt-German-to-English-GGUF/blob/main/gemma-2b-mt-German-to-English-Q4_0.gguf) | Q4_0 | 1.551 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [gemma-2b-mt-German-to-English-Q4_K_S.gguf](https://huggingface.co/tensorblock/Samvardhan777_gemma-2b-mt-German-to-English-GGUF/blob/main/gemma-2b-mt-German-to-English-Q4_K_S.gguf) | Q4_K_S | 1.560 GB | small, greater quality loss | | [gemma-2b-mt-German-to-English-Q4_K_M.gguf](https://huggingface.co/tensorblock/Samvardhan777_gemma-2b-mt-German-to-English-GGUF/blob/main/gemma-2b-mt-German-to-English-Q4_K_M.gguf) | Q4_K_M | 1.630 GB | medium, balanced quality - recommended | | [gemma-2b-mt-German-to-English-Q5_0.gguf](https://huggingface.co/tensorblock/Samvardhan777_gemma-2b-mt-German-to-English-GGUF/blob/main/gemma-2b-mt-German-to-English-Q5_0.gguf) | Q5_0 | 1.799 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [gemma-2b-mt-German-to-English-Q5_K_S.gguf](https://huggingface.co/tensorblock/Samvardhan777_gemma-2b-mt-German-to-English-GGUF/blob/main/gemma-2b-mt-German-to-English-Q5_K_S.gguf) | Q5_K_S | 1.799 GB | large, low quality loss - recommended | | [gemma-2b-mt-German-to-English-Q5_K_M.gguf](https://huggingface.co/tensorblock/Samvardhan777_gemma-2b-mt-German-to-English-GGUF/blob/main/gemma-2b-mt-German-to-English-Q5_K_M.gguf) | Q5_K_M | 1.840 GB | large, very low quality loss - recommended | | [gemma-2b-mt-German-to-English-Q6_K.gguf](https://huggingface.co/tensorblock/Samvardhan777_gemma-2b-mt-German-to-English-GGUF/blob/main/gemma-2b-mt-German-to-English-Q6_K.gguf) | Q6_K | 2.062 GB | very large, extremely low quality loss | | [gemma-2b-mt-German-to-English-Q8_0.gguf](https://huggingface.co/tensorblock/Samvardhan777_gemma-2b-mt-German-to-English-GGUF/blob/main/gemma-2b-mt-German-to-English-Q8_0.gguf) | Q8_0 | 2.669 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Samvardhan777_gemma-2b-mt-German-to-English-GGUF --include "gemma-2b-mt-German-to-English-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Samvardhan777_gemma-2b-mt-German-to-English-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/KnutJaegersberg_Llama-3-Deita-8b-GGUF
tensorblock
2025-06-19T01:54:27Z
14
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:KnutJaegersberg/Llama-3-Deita-8b", "base_model:quantized:KnutJaegersberg/Llama-3-Deita-8b", "license:llama3", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-30T05:25:30Z
--- license: llama3 tags: - TensorBlock - GGUF base_model: KnutJaegersberg/Llama-3-Deita-8b --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## KnutJaegersberg/Llama-3-Deita-8b - GGUF This repo contains GGUF format model files for [KnutJaegersberg/Llama-3-Deita-8b](https://huggingface.co/KnutJaegersberg/Llama-3-Deita-8b). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> {prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Llama-3-Deita-8b-Q2_K.gguf](https://huggingface.co/tensorblock/KnutJaegersberg_Llama-3-Deita-8b-GGUF/blob/main/Llama-3-Deita-8b-Q2_K.gguf) | Q2_K | 3.179 GB | smallest, significant quality loss - not recommended for most purposes | | [Llama-3-Deita-8b-Q3_K_S.gguf](https://huggingface.co/tensorblock/KnutJaegersberg_Llama-3-Deita-8b-GGUF/blob/main/Llama-3-Deita-8b-Q3_K_S.gguf) | Q3_K_S | 3.664 GB | very small, high quality loss | | [Llama-3-Deita-8b-Q3_K_M.gguf](https://huggingface.co/tensorblock/KnutJaegersberg_Llama-3-Deita-8b-GGUF/blob/main/Llama-3-Deita-8b-Q3_K_M.gguf) | Q3_K_M | 4.019 GB | very small, high quality loss | | [Llama-3-Deita-8b-Q3_K_L.gguf](https://huggingface.co/tensorblock/KnutJaegersberg_Llama-3-Deita-8b-GGUF/blob/main/Llama-3-Deita-8b-Q3_K_L.gguf) | Q3_K_L | 4.322 GB | small, substantial quality loss | | [Llama-3-Deita-8b-Q4_0.gguf](https://huggingface.co/tensorblock/KnutJaegersberg_Llama-3-Deita-8b-GGUF/blob/main/Llama-3-Deita-8b-Q4_0.gguf) | Q4_0 | 4.661 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Llama-3-Deita-8b-Q4_K_S.gguf](https://huggingface.co/tensorblock/KnutJaegersberg_Llama-3-Deita-8b-GGUF/blob/main/Llama-3-Deita-8b-Q4_K_S.gguf) | Q4_K_S | 4.693 GB | small, greater quality loss | | [Llama-3-Deita-8b-Q4_K_M.gguf](https://huggingface.co/tensorblock/KnutJaegersberg_Llama-3-Deita-8b-GGUF/blob/main/Llama-3-Deita-8b-Q4_K_M.gguf) | Q4_K_M | 4.921 GB | medium, balanced quality - recommended | | [Llama-3-Deita-8b-Q5_0.gguf](https://huggingface.co/tensorblock/KnutJaegersberg_Llama-3-Deita-8b-GGUF/blob/main/Llama-3-Deita-8b-Q5_0.gguf) | Q5_0 | 5.599 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Llama-3-Deita-8b-Q5_K_S.gguf](https://huggingface.co/tensorblock/KnutJaegersberg_Llama-3-Deita-8b-GGUF/blob/main/Llama-3-Deita-8b-Q5_K_S.gguf) | Q5_K_S | 5.599 GB | large, low quality loss - recommended | | [Llama-3-Deita-8b-Q5_K_M.gguf](https://huggingface.co/tensorblock/KnutJaegersberg_Llama-3-Deita-8b-GGUF/blob/main/Llama-3-Deita-8b-Q5_K_M.gguf) | Q5_K_M | 5.733 GB | large, very low quality loss - recommended | | [Llama-3-Deita-8b-Q6_K.gguf](https://huggingface.co/tensorblock/KnutJaegersberg_Llama-3-Deita-8b-GGUF/blob/main/Llama-3-Deita-8b-Q6_K.gguf) | Q6_K | 6.596 GB | very large, extremely low quality loss | | [Llama-3-Deita-8b-Q8_0.gguf](https://huggingface.co/tensorblock/KnutJaegersberg_Llama-3-Deita-8b-GGUF/blob/main/Llama-3-Deita-8b-Q8_0.gguf) | Q8_0 | 8.541 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/KnutJaegersberg_Llama-3-Deita-8b-GGUF --include "Llama-3-Deita-8b-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/KnutJaegersberg_Llama-3-Deita-8b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/IAAR-Shanghai_xFinder-qwen1505-GGUF
tensorblock
2025-06-19T01:54:04Z
140
0
null
[ "gguf", "instruction-finetuning", "TensorBlock", "GGUF", "en", "base_model:IAAR-Shanghai/xFinder-qwen1505", "base_model:quantized:IAAR-Shanghai/xFinder-qwen1505", "license:cc-by-nc-nd-4.0", "region:us", "conversational" ]
null
2025-04-30T00:03:38Z
--- inference: false language: - en tags: - instruction-finetuning - TensorBlock - GGUF task_categories: - text-generation license: cc-by-nc-nd-4.0 base_model: IAAR-Shanghai/xFinder-qwen1505 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## IAAR-Shanghai/xFinder-qwen1505 - GGUF This repo contains GGUF format model files for [IAAR-Shanghai/xFinder-qwen1505](https://huggingface.co/IAAR-Shanghai/xFinder-qwen1505). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [xFinder-qwen1505-Q2_K.gguf](https://huggingface.co/tensorblock/IAAR-Shanghai_xFinder-qwen1505-GGUF/blob/main/xFinder-qwen1505-Q2_K.gguf) | Q2_K | 0.298 GB | smallest, significant quality loss - not recommended for most purposes | | [xFinder-qwen1505-Q3_K_S.gguf](https://huggingface.co/tensorblock/IAAR-Shanghai_xFinder-qwen1505-GGUF/blob/main/xFinder-qwen1505-Q3_K_S.gguf) | Q3_K_S | 0.333 GB | very small, high quality loss | | [xFinder-qwen1505-Q3_K_M.gguf](https://huggingface.co/tensorblock/IAAR-Shanghai_xFinder-qwen1505-GGUF/blob/main/xFinder-qwen1505-Q3_K_M.gguf) | Q3_K_M | 0.350 GB | very small, high quality loss | | [xFinder-qwen1505-Q3_K_L.gguf](https://huggingface.co/tensorblock/IAAR-Shanghai_xFinder-qwen1505-GGUF/blob/main/xFinder-qwen1505-Q3_K_L.gguf) | Q3_K_L | 0.364 GB | small, substantial quality loss | | [xFinder-qwen1505-Q4_0.gguf](https://huggingface.co/tensorblock/IAAR-Shanghai_xFinder-qwen1505-GGUF/blob/main/xFinder-qwen1505-Q4_0.gguf) | Q4_0 | 0.395 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [xFinder-qwen1505-Q4_K_S.gguf](https://huggingface.co/tensorblock/IAAR-Shanghai_xFinder-qwen1505-GGUF/blob/main/xFinder-qwen1505-Q4_K_S.gguf) | Q4_K_S | 0.397 GB | small, greater quality loss | | [xFinder-qwen1505-Q4_K_M.gguf](https://huggingface.co/tensorblock/IAAR-Shanghai_xFinder-qwen1505-GGUF/blob/main/xFinder-qwen1505-Q4_K_M.gguf) | Q4_K_M | 0.407 GB | medium, balanced quality - recommended | | [xFinder-qwen1505-Q5_0.gguf](https://huggingface.co/tensorblock/IAAR-Shanghai_xFinder-qwen1505-GGUF/blob/main/xFinder-qwen1505-Q5_0.gguf) | Q5_0 | 0.453 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [xFinder-qwen1505-Q5_K_S.gguf](https://huggingface.co/tensorblock/IAAR-Shanghai_xFinder-qwen1505-GGUF/blob/main/xFinder-qwen1505-Q5_K_S.gguf) | Q5_K_S | 0.453 GB | large, low quality loss - recommended | | [xFinder-qwen1505-Q5_K_M.gguf](https://huggingface.co/tensorblock/IAAR-Shanghai_xFinder-qwen1505-GGUF/blob/main/xFinder-qwen1505-Q5_K_M.gguf) | Q5_K_M | 0.459 GB | large, very low quality loss - recommended | | [xFinder-qwen1505-Q6_K.gguf](https://huggingface.co/tensorblock/IAAR-Shanghai_xFinder-qwen1505-GGUF/blob/main/xFinder-qwen1505-Q6_K.gguf) | Q6_K | 0.515 GB | very large, extremely low quality loss | | [xFinder-qwen1505-Q8_0.gguf](https://huggingface.co/tensorblock/IAAR-Shanghai_xFinder-qwen1505-GGUF/blob/main/xFinder-qwen1505-Q8_0.gguf) | Q8_0 | 0.665 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/IAAR-Shanghai_xFinder-qwen1505-GGUF --include "xFinder-qwen1505-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/IAAR-Shanghai_xFinder-qwen1505-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Kukedlc_LLama-3-8b-Python-GGUF
tensorblock
2025-06-19T01:53:37Z
93
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:Kukedlc/LLama-3-8b-Python", "base_model:quantized:Kukedlc/LLama-3-8b-Python", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T19:31:55Z
--- license: other tags: - TensorBlock - GGUF base_model: Kukedlc/LLama-3-8b-Python --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## Kukedlc/LLama-3-8b-Python - GGUF This repo contains GGUF format model files for [Kukedlc/LLama-3-8b-Python](https://huggingface.co/Kukedlc/LLama-3-8b-Python). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> {prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [LLama-3-8b-Python-Q2_K.gguf](https://huggingface.co/tensorblock/Kukedlc_LLama-3-8b-Python-GGUF/blob/main/LLama-3-8b-Python-Q2_K.gguf) | Q2_K | 3.179 GB | smallest, significant quality loss - not recommended for most purposes | | [LLama-3-8b-Python-Q3_K_S.gguf](https://huggingface.co/tensorblock/Kukedlc_LLama-3-8b-Python-GGUF/blob/main/LLama-3-8b-Python-Q3_K_S.gguf) | Q3_K_S | 3.664 GB | very small, high quality loss | | [LLama-3-8b-Python-Q3_K_M.gguf](https://huggingface.co/tensorblock/Kukedlc_LLama-3-8b-Python-GGUF/blob/main/LLama-3-8b-Python-Q3_K_M.gguf) | Q3_K_M | 4.019 GB | very small, high quality loss | | [LLama-3-8b-Python-Q3_K_L.gguf](https://huggingface.co/tensorblock/Kukedlc_LLama-3-8b-Python-GGUF/blob/main/LLama-3-8b-Python-Q3_K_L.gguf) | Q3_K_L | 4.322 GB | small, substantial quality loss | | [LLama-3-8b-Python-Q4_0.gguf](https://huggingface.co/tensorblock/Kukedlc_LLama-3-8b-Python-GGUF/blob/main/LLama-3-8b-Python-Q4_0.gguf) | Q4_0 | 4.661 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [LLama-3-8b-Python-Q4_K_S.gguf](https://huggingface.co/tensorblock/Kukedlc_LLama-3-8b-Python-GGUF/blob/main/LLama-3-8b-Python-Q4_K_S.gguf) | Q4_K_S | 4.693 GB | small, greater quality loss | | [LLama-3-8b-Python-Q4_K_M.gguf](https://huggingface.co/tensorblock/Kukedlc_LLama-3-8b-Python-GGUF/blob/main/LLama-3-8b-Python-Q4_K_M.gguf) | Q4_K_M | 4.921 GB | medium, balanced quality - recommended | | [LLama-3-8b-Python-Q5_0.gguf](https://huggingface.co/tensorblock/Kukedlc_LLama-3-8b-Python-GGUF/blob/main/LLama-3-8b-Python-Q5_0.gguf) | Q5_0 | 5.599 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [LLama-3-8b-Python-Q5_K_S.gguf](https://huggingface.co/tensorblock/Kukedlc_LLama-3-8b-Python-GGUF/blob/main/LLama-3-8b-Python-Q5_K_S.gguf) | Q5_K_S | 5.599 GB | large, low quality loss - recommended | | [LLama-3-8b-Python-Q5_K_M.gguf](https://huggingface.co/tensorblock/Kukedlc_LLama-3-8b-Python-GGUF/blob/main/LLama-3-8b-Python-Q5_K_M.gguf) | Q5_K_M | 5.733 GB | large, very low quality loss - recommended | | [LLama-3-8b-Python-Q6_K.gguf](https://huggingface.co/tensorblock/Kukedlc_LLama-3-8b-Python-GGUF/blob/main/LLama-3-8b-Python-Q6_K.gguf) | Q6_K | 6.596 GB | very large, extremely low quality loss | | [LLama-3-8b-Python-Q8_0.gguf](https://huggingface.co/tensorblock/Kukedlc_LLama-3-8b-Python-GGUF/blob/main/LLama-3-8b-Python-Q8_0.gguf) | Q8_0 | 8.541 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Kukedlc_LLama-3-8b-Python-GGUF --include "LLama-3-8b-Python-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Kukedlc_LLama-3-8b-Python-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/nayohan_llama3-8b-it-translation-sharegpt-en-ko-GGUF
tensorblock
2025-06-19T01:53:08Z
36
0
transformers
[ "transformers", "gguf", "translation", "enko", "ko", "TensorBlock", "GGUF", "text-generation", "en", "dataset:squarelike/sharegpt_deepl_ko_translation", "base_model:nayohan/llama3-8b-it-translation-sharegpt-en-ko", "base_model:quantized:nayohan/llama3-8b-it-translation-sharegpt-en-ko", "license:llama3", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-04-29T14:10:31Z
--- language: - en - ko license: llama3 library_name: transformers tags: - translation - enko - ko - TensorBlock - GGUF base_model: nayohan/llama3-8b-it-translation-sharegpt-en-ko datasets: - squarelike/sharegpt_deepl_ko_translation pipeline_tag: text-generation --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## nayohan/llama3-8b-it-translation-sharegpt-en-ko - GGUF This repo contains GGUF format model files for [nayohan/llama3-8b-it-translation-sharegpt-en-ko](https://huggingface.co/nayohan/llama3-8b-it-translation-sharegpt-en-ko). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> {prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [llama3-8b-it-translation-sharegpt-en-ko-Q2_K.gguf](https://huggingface.co/tensorblock/nayohan_llama3-8b-it-translation-sharegpt-en-ko-GGUF/blob/main/llama3-8b-it-translation-sharegpt-en-ko-Q2_K.gguf) | Q2_K | 3.179 GB | smallest, significant quality loss - not recommended for most purposes | | [llama3-8b-it-translation-sharegpt-en-ko-Q3_K_S.gguf](https://huggingface.co/tensorblock/nayohan_llama3-8b-it-translation-sharegpt-en-ko-GGUF/blob/main/llama3-8b-it-translation-sharegpt-en-ko-Q3_K_S.gguf) | Q3_K_S | 3.664 GB | very small, high quality loss | | [llama3-8b-it-translation-sharegpt-en-ko-Q3_K_M.gguf](https://huggingface.co/tensorblock/nayohan_llama3-8b-it-translation-sharegpt-en-ko-GGUF/blob/main/llama3-8b-it-translation-sharegpt-en-ko-Q3_K_M.gguf) | Q3_K_M | 4.019 GB | very small, high quality loss | | [llama3-8b-it-translation-sharegpt-en-ko-Q3_K_L.gguf](https://huggingface.co/tensorblock/nayohan_llama3-8b-it-translation-sharegpt-en-ko-GGUF/blob/main/llama3-8b-it-translation-sharegpt-en-ko-Q3_K_L.gguf) | Q3_K_L | 4.322 GB | small, substantial quality loss | | [llama3-8b-it-translation-sharegpt-en-ko-Q4_0.gguf](https://huggingface.co/tensorblock/nayohan_llama3-8b-it-translation-sharegpt-en-ko-GGUF/blob/main/llama3-8b-it-translation-sharegpt-en-ko-Q4_0.gguf) | Q4_0 | 4.661 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [llama3-8b-it-translation-sharegpt-en-ko-Q4_K_S.gguf](https://huggingface.co/tensorblock/nayohan_llama3-8b-it-translation-sharegpt-en-ko-GGUF/blob/main/llama3-8b-it-translation-sharegpt-en-ko-Q4_K_S.gguf) | Q4_K_S | 4.693 GB | small, greater quality loss | | [llama3-8b-it-translation-sharegpt-en-ko-Q4_K_M.gguf](https://huggingface.co/tensorblock/nayohan_llama3-8b-it-translation-sharegpt-en-ko-GGUF/blob/main/llama3-8b-it-translation-sharegpt-en-ko-Q4_K_M.gguf) | Q4_K_M | 4.921 GB | medium, balanced quality - recommended | | [llama3-8b-it-translation-sharegpt-en-ko-Q5_0.gguf](https://huggingface.co/tensorblock/nayohan_llama3-8b-it-translation-sharegpt-en-ko-GGUF/blob/main/llama3-8b-it-translation-sharegpt-en-ko-Q5_0.gguf) | Q5_0 | 5.599 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [llama3-8b-it-translation-sharegpt-en-ko-Q5_K_S.gguf](https://huggingface.co/tensorblock/nayohan_llama3-8b-it-translation-sharegpt-en-ko-GGUF/blob/main/llama3-8b-it-translation-sharegpt-en-ko-Q5_K_S.gguf) | Q5_K_S | 5.599 GB | large, low quality loss - recommended | | [llama3-8b-it-translation-sharegpt-en-ko-Q5_K_M.gguf](https://huggingface.co/tensorblock/nayohan_llama3-8b-it-translation-sharegpt-en-ko-GGUF/blob/main/llama3-8b-it-translation-sharegpt-en-ko-Q5_K_M.gguf) | Q5_K_M | 5.733 GB | large, very low quality loss - recommended | | [llama3-8b-it-translation-sharegpt-en-ko-Q6_K.gguf](https://huggingface.co/tensorblock/nayohan_llama3-8b-it-translation-sharegpt-en-ko-GGUF/blob/main/llama3-8b-it-translation-sharegpt-en-ko-Q6_K.gguf) | Q6_K | 6.596 GB | very large, extremely low quality loss | | [llama3-8b-it-translation-sharegpt-en-ko-Q8_0.gguf](https://huggingface.co/tensorblock/nayohan_llama3-8b-it-translation-sharegpt-en-ko-GGUF/blob/main/llama3-8b-it-translation-sharegpt-en-ko-Q8_0.gguf) | Q8_0 | 8.541 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/nayohan_llama3-8b-it-translation-sharegpt-en-ko-GGUF --include "llama3-8b-it-translation-sharegpt-en-ko-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/nayohan_llama3-8b-it-translation-sharegpt-en-ko-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/ChocoLlama_ChocoLlama-2-7B-instruct-GGUF
tensorblock
2025-06-19T01:53:02Z
57
0
null
[ "gguf", "TensorBlock", "GGUF", "nl", "dataset:BramVanroy/ultrachat_200k_dutch", "dataset:BramVanroy/stackoverflow-chat-dutch", "dataset:BramVanroy/alpaca-cleaned-dutch", "dataset:BramVanroy/dolly-15k-dutch", "dataset:BramVanroy/no_robots_dutch", "dataset:BramVanroy/ultra_feedback_dutch", "base_model:ChocoLlama/ChocoLlama-2-7B-instruct", "base_model:quantized:ChocoLlama/ChocoLlama-2-7B-instruct", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T12:45:32Z
--- language: - nl license: cc-by-nc-4.0 base_model: ChocoLlama/ChocoLlama-2-7B-instruct datasets: - BramVanroy/ultrachat_200k_dutch - BramVanroy/stackoverflow-chat-dutch - BramVanroy/alpaca-cleaned-dutch - BramVanroy/dolly-15k-dutch - BramVanroy/no_robots_dutch - BramVanroy/ultra_feedback_dutch tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## ChocoLlama/ChocoLlama-2-7B-instruct - GGUF This repo contains GGUF format model files for [ChocoLlama/ChocoLlama-2-7B-instruct](https://huggingface.co/ChocoLlama/ChocoLlama-2-7B-instruct). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|system|> {system_prompt}</s> <|user|> {prompt}</s> <|assistant|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [ChocoLlama-2-7B-instruct-Q2_K.gguf](https://huggingface.co/tensorblock/ChocoLlama_ChocoLlama-2-7B-instruct-GGUF/blob/main/ChocoLlama-2-7B-instruct-Q2_K.gguf) | Q2_K | 2.533 GB | smallest, significant quality loss - not recommended for most purposes | | [ChocoLlama-2-7B-instruct-Q3_K_S.gguf](https://huggingface.co/tensorblock/ChocoLlama_ChocoLlama-2-7B-instruct-GGUF/blob/main/ChocoLlama-2-7B-instruct-Q3_K_S.gguf) | Q3_K_S | 2.948 GB | very small, high quality loss | | [ChocoLlama-2-7B-instruct-Q3_K_M.gguf](https://huggingface.co/tensorblock/ChocoLlama_ChocoLlama-2-7B-instruct-GGUF/blob/main/ChocoLlama-2-7B-instruct-Q3_K_M.gguf) | Q3_K_M | 3.298 GB | very small, high quality loss | | [ChocoLlama-2-7B-instruct-Q3_K_L.gguf](https://huggingface.co/tensorblock/ChocoLlama_ChocoLlama-2-7B-instruct-GGUF/blob/main/ChocoLlama-2-7B-instruct-Q3_K_L.gguf) | Q3_K_L | 3.597 GB | small, substantial quality loss | | [ChocoLlama-2-7B-instruct-Q4_0.gguf](https://huggingface.co/tensorblock/ChocoLlama_ChocoLlama-2-7B-instruct-GGUF/blob/main/ChocoLlama-2-7B-instruct-Q4_0.gguf) | Q4_0 | 3.826 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [ChocoLlama-2-7B-instruct-Q4_K_S.gguf](https://huggingface.co/tensorblock/ChocoLlama_ChocoLlama-2-7B-instruct-GGUF/blob/main/ChocoLlama-2-7B-instruct-Q4_K_S.gguf) | Q4_K_S | 3.857 GB | small, greater quality loss | | [ChocoLlama-2-7B-instruct-Q4_K_M.gguf](https://huggingface.co/tensorblock/ChocoLlama_ChocoLlama-2-7B-instruct-GGUF/blob/main/ChocoLlama-2-7B-instruct-Q4_K_M.gguf) | Q4_K_M | 4.081 GB | medium, balanced quality - recommended | | [ChocoLlama-2-7B-instruct-Q5_0.gguf](https://huggingface.co/tensorblock/ChocoLlama_ChocoLlama-2-7B-instruct-GGUF/blob/main/ChocoLlama-2-7B-instruct-Q5_0.gguf) | Q5_0 | 4.652 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [ChocoLlama-2-7B-instruct-Q5_K_S.gguf](https://huggingface.co/tensorblock/ChocoLlama_ChocoLlama-2-7B-instruct-GGUF/blob/main/ChocoLlama-2-7B-instruct-Q5_K_S.gguf) | Q5_K_S | 4.652 GB | large, low quality loss - recommended | | [ChocoLlama-2-7B-instruct-Q5_K_M.gguf](https://huggingface.co/tensorblock/ChocoLlama_ChocoLlama-2-7B-instruct-GGUF/blob/main/ChocoLlama-2-7B-instruct-Q5_K_M.gguf) | Q5_K_M | 4.783 GB | large, very low quality loss - recommended | | [ChocoLlama-2-7B-instruct-Q6_K.gguf](https://huggingface.co/tensorblock/ChocoLlama_ChocoLlama-2-7B-instruct-GGUF/blob/main/ChocoLlama-2-7B-instruct-Q6_K.gguf) | Q6_K | 5.529 GB | very large, extremely low quality loss | | [ChocoLlama-2-7B-instruct-Q8_0.gguf](https://huggingface.co/tensorblock/ChocoLlama_ChocoLlama-2-7B-instruct-GGUF/blob/main/ChocoLlama-2-7B-instruct-Q8_0.gguf) | Q8_0 | 7.161 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/ChocoLlama_ChocoLlama-2-7B-instruct-GGUF --include "ChocoLlama-2-7B-instruct-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/ChocoLlama_ChocoLlama-2-7B-instruct-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/adamo1139_Llama-3-8B-AEZAKMI-run1-GGUF
tensorblock
2025-06-19T01:52:55Z
7
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:adamo1139/Llama-3-8B-AEZAKMI-run1", "base_model:quantized:adamo1139/Llama-3-8B-AEZAKMI-run1", "license:other", "endpoints_compatible", "region:us" ]
null
2025-04-29T11:36:19Z
--- license: other license_name: llama3 license_link: LICENSE tags: - TensorBlock - GGUF base_model: adamo1139/Llama-3-8B-AEZAKMI-run1 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## adamo1139/Llama-3-8B-AEZAKMI-run1 - GGUF This repo contains GGUF format model files for [adamo1139/Llama-3-8B-AEZAKMI-run1](https://huggingface.co/adamo1139/Llama-3-8B-AEZAKMI-run1). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format. ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Llama-3-8B-AEZAKMI-run1-Q2_K.gguf](https://huggingface.co/tensorblock/adamo1139_Llama-3-8B-AEZAKMI-run1-GGUF/blob/main/Llama-3-8B-AEZAKMI-run1-Q2_K.gguf) | Q2_K | 3.179 GB | smallest, significant quality loss - not recommended for most purposes | | [Llama-3-8B-AEZAKMI-run1-Q3_K_S.gguf](https://huggingface.co/tensorblock/adamo1139_Llama-3-8B-AEZAKMI-run1-GGUF/blob/main/Llama-3-8B-AEZAKMI-run1-Q3_K_S.gguf) | Q3_K_S | 3.664 GB | very small, high quality loss | | [Llama-3-8B-AEZAKMI-run1-Q3_K_M.gguf](https://huggingface.co/tensorblock/adamo1139_Llama-3-8B-AEZAKMI-run1-GGUF/blob/main/Llama-3-8B-AEZAKMI-run1-Q3_K_M.gguf) | Q3_K_M | 4.019 GB | very small, high quality loss | | [Llama-3-8B-AEZAKMI-run1-Q3_K_L.gguf](https://huggingface.co/tensorblock/adamo1139_Llama-3-8B-AEZAKMI-run1-GGUF/blob/main/Llama-3-8B-AEZAKMI-run1-Q3_K_L.gguf) | Q3_K_L | 4.322 GB | small, substantial quality loss | | [Llama-3-8B-AEZAKMI-run1-Q4_0.gguf](https://huggingface.co/tensorblock/adamo1139_Llama-3-8B-AEZAKMI-run1-GGUF/blob/main/Llama-3-8B-AEZAKMI-run1-Q4_0.gguf) | Q4_0 | 4.661 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Llama-3-8B-AEZAKMI-run1-Q4_K_S.gguf](https://huggingface.co/tensorblock/adamo1139_Llama-3-8B-AEZAKMI-run1-GGUF/blob/main/Llama-3-8B-AEZAKMI-run1-Q4_K_S.gguf) | Q4_K_S | 4.693 GB | small, greater quality loss | | [Llama-3-8B-AEZAKMI-run1-Q4_K_M.gguf](https://huggingface.co/tensorblock/adamo1139_Llama-3-8B-AEZAKMI-run1-GGUF/blob/main/Llama-3-8B-AEZAKMI-run1-Q4_K_M.gguf) | Q4_K_M | 4.921 GB | medium, balanced quality - recommended | | [Llama-3-8B-AEZAKMI-run1-Q5_0.gguf](https://huggingface.co/tensorblock/adamo1139_Llama-3-8B-AEZAKMI-run1-GGUF/blob/main/Llama-3-8B-AEZAKMI-run1-Q5_0.gguf) | Q5_0 | 5.599 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Llama-3-8B-AEZAKMI-run1-Q5_K_S.gguf](https://huggingface.co/tensorblock/adamo1139_Llama-3-8B-AEZAKMI-run1-GGUF/blob/main/Llama-3-8B-AEZAKMI-run1-Q5_K_S.gguf) | Q5_K_S | 5.599 GB | large, low quality loss - recommended | | [Llama-3-8B-AEZAKMI-run1-Q5_K_M.gguf](https://huggingface.co/tensorblock/adamo1139_Llama-3-8B-AEZAKMI-run1-GGUF/blob/main/Llama-3-8B-AEZAKMI-run1-Q5_K_M.gguf) | Q5_K_M | 5.733 GB | large, very low quality loss - recommended | | [Llama-3-8B-AEZAKMI-run1-Q6_K.gguf](https://huggingface.co/tensorblock/adamo1139_Llama-3-8B-AEZAKMI-run1-GGUF/blob/main/Llama-3-8B-AEZAKMI-run1-Q6_K.gguf) | Q6_K | 6.596 GB | very large, extremely low quality loss | | [Llama-3-8B-AEZAKMI-run1-Q8_0.gguf](https://huggingface.co/tensorblock/adamo1139_Llama-3-8B-AEZAKMI-run1-GGUF/blob/main/Llama-3-8B-AEZAKMI-run1-Q8_0.gguf) | Q8_0 | 8.541 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/adamo1139_Llama-3-8B-AEZAKMI-run1-GGUF --include "Llama-3-8B-AEZAKMI-run1-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/adamo1139_Llama-3-8B-AEZAKMI-run1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/ResplendentAI_Aura_L3_8B-GGUF
tensorblock
2025-06-19T01:52:26Z
0
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "en", "base_model:ResplendentAI/Aura_L3_8B", "base_model:quantized:ResplendentAI/Aura_L3_8B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T04:34:31Z
--- library_name: transformers license: apache-2.0 language: - en tags: - TensorBlock - GGUF base_model: ResplendentAI/Aura_L3_8B --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## ResplendentAI/Aura_L3_8B - GGUF This repo contains GGUF format model files for [ResplendentAI/Aura_L3_8B](https://huggingface.co/ResplendentAI/Aura_L3_8B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> {prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Aura_L3_8B-Q2_K.gguf](https://huggingface.co/tensorblock/ResplendentAI_Aura_L3_8B-GGUF/blob/main/Aura_L3_8B-Q2_K.gguf) | Q2_K | 3.179 GB | smallest, significant quality loss - not recommended for most purposes | | [Aura_L3_8B-Q3_K_S.gguf](https://huggingface.co/tensorblock/ResplendentAI_Aura_L3_8B-GGUF/blob/main/Aura_L3_8B-Q3_K_S.gguf) | Q3_K_S | 3.664 GB | very small, high quality loss | | [Aura_L3_8B-Q3_K_M.gguf](https://huggingface.co/tensorblock/ResplendentAI_Aura_L3_8B-GGUF/blob/main/Aura_L3_8B-Q3_K_M.gguf) | Q3_K_M | 4.019 GB | very small, high quality loss | | [Aura_L3_8B-Q3_K_L.gguf](https://huggingface.co/tensorblock/ResplendentAI_Aura_L3_8B-GGUF/blob/main/Aura_L3_8B-Q3_K_L.gguf) | Q3_K_L | 4.322 GB | small, substantial quality loss | | [Aura_L3_8B-Q4_0.gguf](https://huggingface.co/tensorblock/ResplendentAI_Aura_L3_8B-GGUF/blob/main/Aura_L3_8B-Q4_0.gguf) | Q4_0 | 4.661 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Aura_L3_8B-Q4_K_S.gguf](https://huggingface.co/tensorblock/ResplendentAI_Aura_L3_8B-GGUF/blob/main/Aura_L3_8B-Q4_K_S.gguf) | Q4_K_S | 4.693 GB | small, greater quality loss | | [Aura_L3_8B-Q4_K_M.gguf](https://huggingface.co/tensorblock/ResplendentAI_Aura_L3_8B-GGUF/blob/main/Aura_L3_8B-Q4_K_M.gguf) | Q4_K_M | 4.921 GB | medium, balanced quality - recommended | | [Aura_L3_8B-Q5_0.gguf](https://huggingface.co/tensorblock/ResplendentAI_Aura_L3_8B-GGUF/blob/main/Aura_L3_8B-Q5_0.gguf) | Q5_0 | 5.599 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Aura_L3_8B-Q5_K_S.gguf](https://huggingface.co/tensorblock/ResplendentAI_Aura_L3_8B-GGUF/blob/main/Aura_L3_8B-Q5_K_S.gguf) | Q5_K_S | 5.599 GB | large, low quality loss - recommended | | [Aura_L3_8B-Q5_K_M.gguf](https://huggingface.co/tensorblock/ResplendentAI_Aura_L3_8B-GGUF/blob/main/Aura_L3_8B-Q5_K_M.gguf) | Q5_K_M | 5.733 GB | large, very low quality loss - recommended | | [Aura_L3_8B-Q6_K.gguf](https://huggingface.co/tensorblock/ResplendentAI_Aura_L3_8B-GGUF/blob/main/Aura_L3_8B-Q6_K.gguf) | Q6_K | 6.596 GB | very large, extremely low quality loss | | [Aura_L3_8B-Q8_0.gguf](https://huggingface.co/tensorblock/ResplendentAI_Aura_L3_8B-GGUF/blob/main/Aura_L3_8B-Q8_0.gguf) | Q8_0 | 8.541 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/ResplendentAI_Aura_L3_8B-GGUF --include "Aura_L3_8B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/ResplendentAI_Aura_L3_8B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/netcat420_MFANNv0.15.10-GGUF
tensorblock
2025-06-19T01:52:05Z
13
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "TensorBlock", "GGUF", "base_model:netcat420/MFANNv0.15.10", "base_model:quantized:netcat420/MFANNv0.15.10", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T02:03:00Z
--- base_model: netcat420/MFANNv0.15.10 library_name: transformers tags: - mergekit - merge - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## netcat420/MFANNv0.15.10 - GGUF This repo contains GGUF format model files for [netcat420/MFANNv0.15.10](https://huggingface.co/netcat420/MFANNv0.15.10). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> {prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [MFANNv0.15.10-Q2_K.gguf](https://huggingface.co/tensorblock/netcat420_MFANNv0.15.10-GGUF/blob/main/MFANNv0.15.10-Q2_K.gguf) | Q2_K | 3.179 GB | smallest, significant quality loss - not recommended for most purposes | | [MFANNv0.15.10-Q3_K_S.gguf](https://huggingface.co/tensorblock/netcat420_MFANNv0.15.10-GGUF/blob/main/MFANNv0.15.10-Q3_K_S.gguf) | Q3_K_S | 3.665 GB | very small, high quality loss | | [MFANNv0.15.10-Q3_K_M.gguf](https://huggingface.co/tensorblock/netcat420_MFANNv0.15.10-GGUF/blob/main/MFANNv0.15.10-Q3_K_M.gguf) | Q3_K_M | 4.019 GB | very small, high quality loss | | [MFANNv0.15.10-Q3_K_L.gguf](https://huggingface.co/tensorblock/netcat420_MFANNv0.15.10-GGUF/blob/main/MFANNv0.15.10-Q3_K_L.gguf) | Q3_K_L | 4.322 GB | small, substantial quality loss | | [MFANNv0.15.10-Q4_0.gguf](https://huggingface.co/tensorblock/netcat420_MFANNv0.15.10-GGUF/blob/main/MFANNv0.15.10-Q4_0.gguf) | Q4_0 | 4.661 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [MFANNv0.15.10-Q4_K_S.gguf](https://huggingface.co/tensorblock/netcat420_MFANNv0.15.10-GGUF/blob/main/MFANNv0.15.10-Q4_K_S.gguf) | Q4_K_S | 4.693 GB | small, greater quality loss | | [MFANNv0.15.10-Q4_K_M.gguf](https://huggingface.co/tensorblock/netcat420_MFANNv0.15.10-GGUF/blob/main/MFANNv0.15.10-Q4_K_M.gguf) | Q4_K_M | 4.921 GB | medium, balanced quality - recommended | | [MFANNv0.15.10-Q5_0.gguf](https://huggingface.co/tensorblock/netcat420_MFANNv0.15.10-GGUF/blob/main/MFANNv0.15.10-Q5_0.gguf) | Q5_0 | 5.599 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [MFANNv0.15.10-Q5_K_S.gguf](https://huggingface.co/tensorblock/netcat420_MFANNv0.15.10-GGUF/blob/main/MFANNv0.15.10-Q5_K_S.gguf) | Q5_K_S | 5.599 GB | large, low quality loss - recommended | | [MFANNv0.15.10-Q5_K_M.gguf](https://huggingface.co/tensorblock/netcat420_MFANNv0.15.10-GGUF/blob/main/MFANNv0.15.10-Q5_K_M.gguf) | Q5_K_M | 5.733 GB | large, very low quality loss - recommended | | [MFANNv0.15.10-Q6_K.gguf](https://huggingface.co/tensorblock/netcat420_MFANNv0.15.10-GGUF/blob/main/MFANNv0.15.10-Q6_K.gguf) | Q6_K | 6.596 GB | very large, extremely low quality loss | | [MFANNv0.15.10-Q8_0.gguf](https://huggingface.co/tensorblock/netcat420_MFANNv0.15.10-GGUF/blob/main/MFANNv0.15.10-Q8_0.gguf) | Q8_0 | 8.541 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/netcat420_MFANNv0.15.10-GGUF --include "MFANNv0.15.10-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/netcat420_MFANNv0.15.10-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/mnoukhov_pythia1b-sft-tldr-GGUF
tensorblock
2025-06-19T01:51:39Z
22
0
null
[ "gguf", "trl", "sft", "generated_from_trainer", "TensorBlock", "GGUF", "base_model:mnoukhov/pythia1b-sft-tldr", "base_model:quantized:mnoukhov/pythia1b-sft-tldr", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-04-28T23:03:09Z
--- license: apache-2.0 base_model: mnoukhov/pythia1b-sft-tldr tags: - trl - sft - generated_from_trainer - TensorBlock - GGUF model-index: - name: pythia1b-sft-tldr results: [] --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## mnoukhov/pythia1b-sft-tldr - GGUF This repo contains GGUF format model files for [mnoukhov/pythia1b-sft-tldr](https://huggingface.co/mnoukhov/pythia1b-sft-tldr). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format. ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [pythia1b-sft-tldr-Q2_K.gguf](https://huggingface.co/tensorblock/mnoukhov_pythia1b-sft-tldr-GGUF/blob/main/pythia1b-sft-tldr-Q2_K.gguf) | Q2_K | 0.420 GB | smallest, significant quality loss - not recommended for most purposes | | [pythia1b-sft-tldr-Q3_K_S.gguf](https://huggingface.co/tensorblock/mnoukhov_pythia1b-sft-tldr-GGUF/blob/main/pythia1b-sft-tldr-Q3_K_S.gguf) | Q3_K_S | 0.478 GB | very small, high quality loss | | [pythia1b-sft-tldr-Q3_K_M.gguf](https://huggingface.co/tensorblock/mnoukhov_pythia1b-sft-tldr-GGUF/blob/main/pythia1b-sft-tldr-Q3_K_M.gguf) | Q3_K_M | 0.552 GB | very small, high quality loss | | [pythia1b-sft-tldr-Q3_K_L.gguf](https://huggingface.co/tensorblock/mnoukhov_pythia1b-sft-tldr-GGUF/blob/main/pythia1b-sft-tldr-Q3_K_L.gguf) | Q3_K_L | 0.592 GB | small, substantial quality loss | | [pythia1b-sft-tldr-Q4_0.gguf](https://huggingface.co/tensorblock/mnoukhov_pythia1b-sft-tldr-GGUF/blob/main/pythia1b-sft-tldr-Q4_0.gguf) | Q4_0 | 0.599 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [pythia1b-sft-tldr-Q4_K_S.gguf](https://huggingface.co/tensorblock/mnoukhov_pythia1b-sft-tldr-GGUF/blob/main/pythia1b-sft-tldr-Q4_K_S.gguf) | Q4_K_S | 0.603 GB | small, greater quality loss | | [pythia1b-sft-tldr-Q4_K_M.gguf](https://huggingface.co/tensorblock/mnoukhov_pythia1b-sft-tldr-GGUF/blob/main/pythia1b-sft-tldr-Q4_K_M.gguf) | Q4_K_M | 0.659 GB | medium, balanced quality - recommended | | [pythia1b-sft-tldr-Q5_0.gguf](https://huggingface.co/tensorblock/mnoukhov_pythia1b-sft-tldr-GGUF/blob/main/pythia1b-sft-tldr-Q5_0.gguf) | Q5_0 | 0.712 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [pythia1b-sft-tldr-Q5_K_S.gguf](https://huggingface.co/tensorblock/mnoukhov_pythia1b-sft-tldr-GGUF/blob/main/pythia1b-sft-tldr-Q5_K_S.gguf) | Q5_K_S | 0.712 GB | large, low quality loss - recommended | | [pythia1b-sft-tldr-Q5_K_M.gguf](https://huggingface.co/tensorblock/mnoukhov_pythia1b-sft-tldr-GGUF/blob/main/pythia1b-sft-tldr-Q5_K_M.gguf) | Q5_K_M | 0.757 GB | large, very low quality loss - recommended | | [pythia1b-sft-tldr-Q6_K.gguf](https://huggingface.co/tensorblock/mnoukhov_pythia1b-sft-tldr-GGUF/blob/main/pythia1b-sft-tldr-Q6_K.gguf) | Q6_K | 0.833 GB | very large, extremely low quality loss | | [pythia1b-sft-tldr-Q8_0.gguf](https://huggingface.co/tensorblock/mnoukhov_pythia1b-sft-tldr-GGUF/blob/main/pythia1b-sft-tldr-Q8_0.gguf) | Q8_0 | 1.078 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/mnoukhov_pythia1b-sft-tldr-GGUF --include "pythia1b-sft-tldr-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/mnoukhov_pythia1b-sft-tldr-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/netcat420_MFANNv0.16.10-GGUF
tensorblock
2025-06-19T01:51:03Z
13
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "TensorBlock", "GGUF", "base_model:netcat420/MFANNv0.16.10", "base_model:quantized:netcat420/MFANNv0.16.10", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-28T08:42:56Z
--- base_model: netcat420/MFANNv0.16.10 library_name: transformers tags: - mergekit - merge - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## netcat420/MFANNv0.16.10 - GGUF This repo contains GGUF format model files for [netcat420/MFANNv0.16.10](https://huggingface.co/netcat420/MFANNv0.16.10). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> {prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [MFANNv0.16.10-Q2_K.gguf](https://huggingface.co/tensorblock/netcat420_MFANNv0.16.10-GGUF/blob/main/MFANNv0.16.10-Q2_K.gguf) | Q2_K | 3.179 GB | smallest, significant quality loss - not recommended for most purposes | | [MFANNv0.16.10-Q3_K_S.gguf](https://huggingface.co/tensorblock/netcat420_MFANNv0.16.10-GGUF/blob/main/MFANNv0.16.10-Q3_K_S.gguf) | Q3_K_S | 3.665 GB | very small, high quality loss | | [MFANNv0.16.10-Q3_K_M.gguf](https://huggingface.co/tensorblock/netcat420_MFANNv0.16.10-GGUF/blob/main/MFANNv0.16.10-Q3_K_M.gguf) | Q3_K_M | 4.019 GB | very small, high quality loss | | [MFANNv0.16.10-Q3_K_L.gguf](https://huggingface.co/tensorblock/netcat420_MFANNv0.16.10-GGUF/blob/main/MFANNv0.16.10-Q3_K_L.gguf) | Q3_K_L | 4.322 GB | small, substantial quality loss | | [MFANNv0.16.10-Q4_0.gguf](https://huggingface.co/tensorblock/netcat420_MFANNv0.16.10-GGUF/blob/main/MFANNv0.16.10-Q4_0.gguf) | Q4_0 | 4.661 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [MFANNv0.16.10-Q4_K_S.gguf](https://huggingface.co/tensorblock/netcat420_MFANNv0.16.10-GGUF/blob/main/MFANNv0.16.10-Q4_K_S.gguf) | Q4_K_S | 4.693 GB | small, greater quality loss | | [MFANNv0.16.10-Q4_K_M.gguf](https://huggingface.co/tensorblock/netcat420_MFANNv0.16.10-GGUF/blob/main/MFANNv0.16.10-Q4_K_M.gguf) | Q4_K_M | 4.921 GB | medium, balanced quality - recommended | | [MFANNv0.16.10-Q5_0.gguf](https://huggingface.co/tensorblock/netcat420_MFANNv0.16.10-GGUF/blob/main/MFANNv0.16.10-Q5_0.gguf) | Q5_0 | 5.599 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [MFANNv0.16.10-Q5_K_S.gguf](https://huggingface.co/tensorblock/netcat420_MFANNv0.16.10-GGUF/blob/main/MFANNv0.16.10-Q5_K_S.gguf) | Q5_K_S | 5.599 GB | large, low quality loss - recommended | | [MFANNv0.16.10-Q5_K_M.gguf](https://huggingface.co/tensorblock/netcat420_MFANNv0.16.10-GGUF/blob/main/MFANNv0.16.10-Q5_K_M.gguf) | Q5_K_M | 5.733 GB | large, very low quality loss - recommended | | [MFANNv0.16.10-Q6_K.gguf](https://huggingface.co/tensorblock/netcat420_MFANNv0.16.10-GGUF/blob/main/MFANNv0.16.10-Q6_K.gguf) | Q6_K | 6.596 GB | very large, extremely low quality loss | | [MFANNv0.16.10-Q8_0.gguf](https://huggingface.co/tensorblock/netcat420_MFANNv0.16.10-GGUF/blob/main/MFANNv0.16.10-Q8_0.gguf) | Q8_0 | 8.541 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/netcat420_MFANNv0.16.10-GGUF --include "MFANNv0.16.10-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/netcat420_MFANNv0.16.10-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/OpenVINO_neural-chat-7b-v3-3-int4-ov-GGUF
tensorblock
2025-06-19T01:50:59Z
55
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:OpenVINO/neural-chat-7b-v3-3-int4-ov", "base_model:quantized:OpenVINO/neural-chat-7b-v3-3-int4-ov", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-04-28T08:13:57Z
--- license: apache-2.0 license_link: https://choosealicense.com/licenses/apache-2.0/ base_model: OpenVINO/neural-chat-7b-v3-3-int4-ov base_model_relation: quantized tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## OpenVINO/neural-chat-7b-v3-3-int4-ov - GGUF This repo contains GGUF format model files for [OpenVINO/neural-chat-7b-v3-3-int4-ov](https://huggingface.co/OpenVINO/neural-chat-7b-v3-3-int4-ov). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format. ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [neural-chat-7b-v3-3-int4-ov-Q2_K.gguf](https://huggingface.co/tensorblock/OpenVINO_neural-chat-7b-v3-3-int4-ov-GGUF/blob/main/neural-chat-7b-v3-3-int4-ov-Q2_K.gguf) | Q2_K | 0.001 GB | smallest, significant quality loss - not recommended for most purposes | | [neural-chat-7b-v3-3-int4-ov-Q3_K_S.gguf](https://huggingface.co/tensorblock/OpenVINO_neural-chat-7b-v3-3-int4-ov-GGUF/blob/main/neural-chat-7b-v3-3-int4-ov-Q3_K_S.gguf) | Q3_K_S | 0.001 GB | very small, high quality loss | | [neural-chat-7b-v3-3-int4-ov-Q3_K_M.gguf](https://huggingface.co/tensorblock/OpenVINO_neural-chat-7b-v3-3-int4-ov-GGUF/blob/main/neural-chat-7b-v3-3-int4-ov-Q3_K_M.gguf) | Q3_K_M | 0.001 GB | very small, high quality loss | | [neural-chat-7b-v3-3-int4-ov-Q3_K_L.gguf](https://huggingface.co/tensorblock/OpenVINO_neural-chat-7b-v3-3-int4-ov-GGUF/blob/main/neural-chat-7b-v3-3-int4-ov-Q3_K_L.gguf) | Q3_K_L | 0.001 GB | small, substantial quality loss | | [neural-chat-7b-v3-3-int4-ov-Q4_0.gguf](https://huggingface.co/tensorblock/OpenVINO_neural-chat-7b-v3-3-int4-ov-GGUF/blob/main/neural-chat-7b-v3-3-int4-ov-Q4_0.gguf) | Q4_0 | 0.001 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [neural-chat-7b-v3-3-int4-ov-Q4_K_S.gguf](https://huggingface.co/tensorblock/OpenVINO_neural-chat-7b-v3-3-int4-ov-GGUF/blob/main/neural-chat-7b-v3-3-int4-ov-Q4_K_S.gguf) | Q4_K_S | 0.001 GB | small, greater quality loss | | [neural-chat-7b-v3-3-int4-ov-Q4_K_M.gguf](https://huggingface.co/tensorblock/OpenVINO_neural-chat-7b-v3-3-int4-ov-GGUF/blob/main/neural-chat-7b-v3-3-int4-ov-Q4_K_M.gguf) | Q4_K_M | 0.001 GB | medium, balanced quality - recommended | | [neural-chat-7b-v3-3-int4-ov-Q5_0.gguf](https://huggingface.co/tensorblock/OpenVINO_neural-chat-7b-v3-3-int4-ov-GGUF/blob/main/neural-chat-7b-v3-3-int4-ov-Q5_0.gguf) | Q5_0 | 0.001 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [neural-chat-7b-v3-3-int4-ov-Q5_K_S.gguf](https://huggingface.co/tensorblock/OpenVINO_neural-chat-7b-v3-3-int4-ov-GGUF/blob/main/neural-chat-7b-v3-3-int4-ov-Q5_K_S.gguf) | Q5_K_S | 0.001 GB | large, low quality loss - recommended | | [neural-chat-7b-v3-3-int4-ov-Q5_K_M.gguf](https://huggingface.co/tensorblock/OpenVINO_neural-chat-7b-v3-3-int4-ov-GGUF/blob/main/neural-chat-7b-v3-3-int4-ov-Q5_K_M.gguf) | Q5_K_M | 0.001 GB | large, very low quality loss - recommended | | [neural-chat-7b-v3-3-int4-ov-Q6_K.gguf](https://huggingface.co/tensorblock/OpenVINO_neural-chat-7b-v3-3-int4-ov-GGUF/blob/main/neural-chat-7b-v3-3-int4-ov-Q6_K.gguf) | Q6_K | 0.001 GB | very large, extremely low quality loss | | [neural-chat-7b-v3-3-int4-ov-Q8_0.gguf](https://huggingface.co/tensorblock/OpenVINO_neural-chat-7b-v3-3-int4-ov-GGUF/blob/main/neural-chat-7b-v3-3-int4-ov-Q8_0.gguf) | Q8_0 | 0.001 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/OpenVINO_neural-chat-7b-v3-3-int4-ov-GGUF --include "neural-chat-7b-v3-3-int4-ov-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/OpenVINO_neural-chat-7b-v3-3-int4-ov-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/hamishivi_OLMo-1B-0724-SFT-hf-GGUF
tensorblock
2025-06-19T01:50:42Z
98
0
null
[ "gguf", "TensorBlock", "GGUF", "en", "dataset:allenai/dolma", "dataset:allenai/tulu-v2-sft-mixture-olmo-4096", "base_model:hamishivi/OLMo-1B-0724-SFT-hf", "base_model:quantized:hamishivi/OLMo-1B-0724-SFT-hf", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-28T07:03:50Z
--- license: apache-2.0 datasets: - allenai/dolma - allenai/tulu-v2-sft-mixture-olmo-4096 language: - en tags: - TensorBlock - GGUF base_model: hamishivi/OLMo-1B-0724-SFT-hf --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## hamishivi/OLMo-1B-0724-SFT-hf - GGUF This repo contains GGUF format model files for [hamishivi/OLMo-1B-0724-SFT-hf](https://huggingface.co/hamishivi/OLMo-1B-0724-SFT-hf). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|endoftext|><|user|> {prompt} <|assistant|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [OLMo-1B-0724-SFT-hf-Q2_K.gguf](https://huggingface.co/tensorblock/hamishivi_OLMo-1B-0724-SFT-hf-GGUF/blob/main/OLMo-1B-0724-SFT-hf-Q2_K.gguf) | Q2_K | 0.513 GB | smallest, significant quality loss - not recommended for most purposes | | [OLMo-1B-0724-SFT-hf-Q3_K_S.gguf](https://huggingface.co/tensorblock/hamishivi_OLMo-1B-0724-SFT-hf-GGUF/blob/main/OLMo-1B-0724-SFT-hf-Q3_K_S.gguf) | Q3_K_S | 0.592 GB | very small, high quality loss | | [OLMo-1B-0724-SFT-hf-Q3_K_M.gguf](https://huggingface.co/tensorblock/hamishivi_OLMo-1B-0724-SFT-hf-GGUF/blob/main/OLMo-1B-0724-SFT-hf-Q3_K_M.gguf) | Q3_K_M | 0.649 GB | very small, high quality loss | | [OLMo-1B-0724-SFT-hf-Q3_K_L.gguf](https://huggingface.co/tensorblock/hamishivi_OLMo-1B-0724-SFT-hf-GGUF/blob/main/OLMo-1B-0724-SFT-hf-Q3_K_L.gguf) | Q3_K_L | 0.696 GB | small, substantial quality loss | | [OLMo-1B-0724-SFT-hf-Q4_0.gguf](https://huggingface.co/tensorblock/hamishivi_OLMo-1B-0724-SFT-hf-GGUF/blob/main/OLMo-1B-0724-SFT-hf-Q4_0.gguf) | Q4_0 | 0.748 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [OLMo-1B-0724-SFT-hf-Q4_K_S.gguf](https://huggingface.co/tensorblock/hamishivi_OLMo-1B-0724-SFT-hf-GGUF/blob/main/OLMo-1B-0724-SFT-hf-Q4_K_S.gguf) | Q4_K_S | 0.755 GB | small, greater quality loss | | [OLMo-1B-0724-SFT-hf-Q4_K_M.gguf](https://huggingface.co/tensorblock/hamishivi_OLMo-1B-0724-SFT-hf-GGUF/blob/main/OLMo-1B-0724-SFT-hf-Q4_K_M.gguf) | Q4_K_M | 0.791 GB | medium, balanced quality - recommended | | [OLMo-1B-0724-SFT-hf-Q5_0.gguf](https://huggingface.co/tensorblock/hamishivi_OLMo-1B-0724-SFT-hf-GGUF/blob/main/OLMo-1B-0724-SFT-hf-Q5_0.gguf) | Q5_0 | 0.895 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [OLMo-1B-0724-SFT-hf-Q5_K_S.gguf](https://huggingface.co/tensorblock/hamishivi_OLMo-1B-0724-SFT-hf-GGUF/blob/main/OLMo-1B-0724-SFT-hf-Q5_K_S.gguf) | Q5_K_S | 0.895 GB | large, low quality loss - recommended | | [OLMo-1B-0724-SFT-hf-Q5_K_M.gguf](https://huggingface.co/tensorblock/hamishivi_OLMo-1B-0724-SFT-hf-GGUF/blob/main/OLMo-1B-0724-SFT-hf-Q5_K_M.gguf) | Q5_K_M | 0.918 GB | large, very low quality loss - recommended | | [OLMo-1B-0724-SFT-hf-Q6_K.gguf](https://huggingface.co/tensorblock/hamishivi_OLMo-1B-0724-SFT-hf-GGUF/blob/main/OLMo-1B-0724-SFT-hf-Q6_K.gguf) | Q6_K | 1.052 GB | very large, extremely low quality loss | | [OLMo-1B-0724-SFT-hf-Q8_0.gguf](https://huggingface.co/tensorblock/hamishivi_OLMo-1B-0724-SFT-hf-GGUF/blob/main/OLMo-1B-0724-SFT-hf-Q8_0.gguf) | Q8_0 | 1.362 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/hamishivi_OLMo-1B-0724-SFT-hf-GGUF --include "OLMo-1B-0724-SFT-hf-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/hamishivi_OLMo-1B-0724-SFT-hf-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Value4AI_ValueLlama-3-8B-GGUF
tensorblock
2025-06-19T01:50:00Z
22
0
transformers
[ "transformers", "gguf", "llama-factory", "TensorBlock", "GGUF", "en", "dataset:allenai/ValuePrism", "dataset:Value4AI/ValueBench", "base_model:Value4AI/ValueLlama-3-8B", "base_model:quantized:Value4AI/ValueLlama-3-8B", "license:llama3", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-27T23:43:03Z
--- library_name: transformers tags: - llama-factory - TensorBlock - GGUF license: llama3 datasets: - allenai/ValuePrism - Value4AI/ValueBench language: - en base_model: Value4AI/ValueLlama-3-8B --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## Value4AI/ValueLlama-3-8B - GGUF This repo contains GGUF format model files for [Value4AI/ValueLlama-3-8B](https://huggingface.co/Value4AI/ValueLlama-3-8B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> {prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [ValueLlama-3-8B-Q2_K.gguf](https://huggingface.co/tensorblock/Value4AI_ValueLlama-3-8B-GGUF/blob/main/ValueLlama-3-8B-Q2_K.gguf) | Q2_K | 3.179 GB | smallest, significant quality loss - not recommended for most purposes | | [ValueLlama-3-8B-Q3_K_S.gguf](https://huggingface.co/tensorblock/Value4AI_ValueLlama-3-8B-GGUF/blob/main/ValueLlama-3-8B-Q3_K_S.gguf) | Q3_K_S | 3.664 GB | very small, high quality loss | | [ValueLlama-3-8B-Q3_K_M.gguf](https://huggingface.co/tensorblock/Value4AI_ValueLlama-3-8B-GGUF/blob/main/ValueLlama-3-8B-Q3_K_M.gguf) | Q3_K_M | 4.019 GB | very small, high quality loss | | [ValueLlama-3-8B-Q3_K_L.gguf](https://huggingface.co/tensorblock/Value4AI_ValueLlama-3-8B-GGUF/blob/main/ValueLlama-3-8B-Q3_K_L.gguf) | Q3_K_L | 4.322 GB | small, substantial quality loss | | [ValueLlama-3-8B-Q4_0.gguf](https://huggingface.co/tensorblock/Value4AI_ValueLlama-3-8B-GGUF/blob/main/ValueLlama-3-8B-Q4_0.gguf) | Q4_0 | 4.661 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [ValueLlama-3-8B-Q4_K_S.gguf](https://huggingface.co/tensorblock/Value4AI_ValueLlama-3-8B-GGUF/blob/main/ValueLlama-3-8B-Q4_K_S.gguf) | Q4_K_S | 4.693 GB | small, greater quality loss | | [ValueLlama-3-8B-Q4_K_M.gguf](https://huggingface.co/tensorblock/Value4AI_ValueLlama-3-8B-GGUF/blob/main/ValueLlama-3-8B-Q4_K_M.gguf) | Q4_K_M | 4.921 GB | medium, balanced quality - recommended | | [ValueLlama-3-8B-Q5_0.gguf](https://huggingface.co/tensorblock/Value4AI_ValueLlama-3-8B-GGUF/blob/main/ValueLlama-3-8B-Q5_0.gguf) | Q5_0 | 5.599 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [ValueLlama-3-8B-Q5_K_S.gguf](https://huggingface.co/tensorblock/Value4AI_ValueLlama-3-8B-GGUF/blob/main/ValueLlama-3-8B-Q5_K_S.gguf) | Q5_K_S | 5.599 GB | large, low quality loss - recommended | | [ValueLlama-3-8B-Q5_K_M.gguf](https://huggingface.co/tensorblock/Value4AI_ValueLlama-3-8B-GGUF/blob/main/ValueLlama-3-8B-Q5_K_M.gguf) | Q5_K_M | 5.733 GB | large, very low quality loss - recommended | | [ValueLlama-3-8B-Q6_K.gguf](https://huggingface.co/tensorblock/Value4AI_ValueLlama-3-8B-GGUF/blob/main/ValueLlama-3-8B-Q6_K.gguf) | Q6_K | 6.596 GB | very large, extremely low quality loss | | [ValueLlama-3-8B-Q8_0.gguf](https://huggingface.co/tensorblock/Value4AI_ValueLlama-3-8B-GGUF/blob/main/ValueLlama-3-8B-Q8_0.gguf) | Q8_0 | 8.541 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Value4AI_ValueLlama-3-8B-GGUF --include "ValueLlama-3-8B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Value4AI_ValueLlama-3-8B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/mlfoundations-dev_mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-GGUF
tensorblock
2025-06-19T01:49:52Z
23
0
transformers
[ "transformers", "gguf", "llama-factory", "full", "generated_from_trainer", "TensorBlock", "GGUF", "base_model:mlfoundations-dev/mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b", "base_model:quantized:mlfoundations-dev/mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-27T20:54:54Z
--- library_name: transformers license: other base_model: mlfoundations-dev/mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b tags: - llama-factory - full - generated_from_trainer - TensorBlock - GGUF model-index: - name: mlfoundations-dev_code-stratos-unverified-scaled-0.25_stratos_7b results: [] --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## mlfoundations-dev/mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b - GGUF This repo contains GGUF format model files for [mlfoundations-dev/mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b](https://huggingface.co/mlfoundations-dev/mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-Q2_K.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-GGUF/blob/main/mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-Q2_K.gguf) | Q2_K | 3.016 GB | smallest, significant quality loss - not recommended for most purposes | | [mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-Q3_K_S.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-GGUF/blob/main/mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-Q3_K_S.gguf) | Q3_K_S | 3.492 GB | very small, high quality loss | | [mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-Q3_K_M.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-GGUF/blob/main/mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-Q3_K_M.gguf) | Q3_K_M | 3.808 GB | very small, high quality loss | | [mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-Q3_K_L.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-GGUF/blob/main/mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-Q3_K_L.gguf) | Q3_K_L | 4.088 GB | small, substantial quality loss | | [mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-Q4_0.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-GGUF/blob/main/mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-Q4_0.gguf) | Q4_0 | 4.431 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-Q4_K_S.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-GGUF/blob/main/mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-Q4_K_S.gguf) | Q4_K_S | 4.458 GB | small, greater quality loss | | [mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-Q4_K_M.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-GGUF/blob/main/mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-Q4_K_M.gguf) | Q4_K_M | 4.683 GB | medium, balanced quality - recommended | | [mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-Q5_0.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-GGUF/blob/main/mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-Q5_0.gguf) | Q5_0 | 5.315 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-Q5_K_S.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-GGUF/blob/main/mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-Q5_K_S.gguf) | Q5_K_S | 5.315 GB | large, low quality loss - recommended | | [mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-Q5_K_M.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-GGUF/blob/main/mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-Q5_K_M.gguf) | Q5_K_M | 5.445 GB | large, very low quality loss - recommended | | [mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-Q6_K.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-GGUF/blob/main/mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-Q6_K.gguf) | Q6_K | 6.254 GB | very large, extremely low quality loss | | [mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-Q8_0.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-GGUF/blob/main/mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-Q8_0.gguf) | Q8_0 | 8.099 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/mlfoundations-dev_mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-GGUF --include "mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/mlfoundations-dev_mlfoundations-dev_code-stratos-unverified-scaled-0_25_stratos_7b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/SakanaAI_Llama-3-8B-Instruct-Coding-Expert-GGUF
tensorblock
2025-06-19T01:49:08Z
147
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "text-generation", "en", "base_model:SakanaAI/Llama-3-8B-Instruct-Coding-Expert", "base_model:quantized:SakanaAI/Llama-3-8B-Instruct-Coding-Expert", "license:llama3", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-04-27T13:34:15Z
--- language: - en library_name: transformers pipeline_tag: text-generation license: llama3 model_type: llama tags: - TensorBlock - GGUF base_model: SakanaAI/Llama-3-8B-Instruct-Coding-Expert --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## SakanaAI/Llama-3-8B-Instruct-Coding-Expert - GGUF This repo contains GGUF format model files for [SakanaAI/Llama-3-8B-Instruct-Coding-Expert](https://huggingface.co/SakanaAI/Llama-3-8B-Instruct-Coding-Expert). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> {prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Llama-3-8B-Instruct-Coding-Expert-Q2_K.gguf](https://huggingface.co/tensorblock/SakanaAI_Llama-3-8B-Instruct-Coding-Expert-GGUF/blob/main/Llama-3-8B-Instruct-Coding-Expert-Q2_K.gguf) | Q2_K | 3.179 GB | smallest, significant quality loss - not recommended for most purposes | | [Llama-3-8B-Instruct-Coding-Expert-Q3_K_S.gguf](https://huggingface.co/tensorblock/SakanaAI_Llama-3-8B-Instruct-Coding-Expert-GGUF/blob/main/Llama-3-8B-Instruct-Coding-Expert-Q3_K_S.gguf) | Q3_K_S | 3.664 GB | very small, high quality loss | | [Llama-3-8B-Instruct-Coding-Expert-Q3_K_M.gguf](https://huggingface.co/tensorblock/SakanaAI_Llama-3-8B-Instruct-Coding-Expert-GGUF/blob/main/Llama-3-8B-Instruct-Coding-Expert-Q3_K_M.gguf) | Q3_K_M | 4.019 GB | very small, high quality loss | | [Llama-3-8B-Instruct-Coding-Expert-Q3_K_L.gguf](https://huggingface.co/tensorblock/SakanaAI_Llama-3-8B-Instruct-Coding-Expert-GGUF/blob/main/Llama-3-8B-Instruct-Coding-Expert-Q3_K_L.gguf) | Q3_K_L | 4.322 GB | small, substantial quality loss | | [Llama-3-8B-Instruct-Coding-Expert-Q4_0.gguf](https://huggingface.co/tensorblock/SakanaAI_Llama-3-8B-Instruct-Coding-Expert-GGUF/blob/main/Llama-3-8B-Instruct-Coding-Expert-Q4_0.gguf) | Q4_0 | 4.661 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Llama-3-8B-Instruct-Coding-Expert-Q4_K_S.gguf](https://huggingface.co/tensorblock/SakanaAI_Llama-3-8B-Instruct-Coding-Expert-GGUF/blob/main/Llama-3-8B-Instruct-Coding-Expert-Q4_K_S.gguf) | Q4_K_S | 4.693 GB | small, greater quality loss | | [Llama-3-8B-Instruct-Coding-Expert-Q4_K_M.gguf](https://huggingface.co/tensorblock/SakanaAI_Llama-3-8B-Instruct-Coding-Expert-GGUF/blob/main/Llama-3-8B-Instruct-Coding-Expert-Q4_K_M.gguf) | Q4_K_M | 4.921 GB | medium, balanced quality - recommended | | [Llama-3-8B-Instruct-Coding-Expert-Q5_0.gguf](https://huggingface.co/tensorblock/SakanaAI_Llama-3-8B-Instruct-Coding-Expert-GGUF/blob/main/Llama-3-8B-Instruct-Coding-Expert-Q5_0.gguf) | Q5_0 | 5.599 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Llama-3-8B-Instruct-Coding-Expert-Q5_K_S.gguf](https://huggingface.co/tensorblock/SakanaAI_Llama-3-8B-Instruct-Coding-Expert-GGUF/blob/main/Llama-3-8B-Instruct-Coding-Expert-Q5_K_S.gguf) | Q5_K_S | 5.599 GB | large, low quality loss - recommended | | [Llama-3-8B-Instruct-Coding-Expert-Q5_K_M.gguf](https://huggingface.co/tensorblock/SakanaAI_Llama-3-8B-Instruct-Coding-Expert-GGUF/blob/main/Llama-3-8B-Instruct-Coding-Expert-Q5_K_M.gguf) | Q5_K_M | 5.733 GB | large, very low quality loss - recommended | | [Llama-3-8B-Instruct-Coding-Expert-Q6_K.gguf](https://huggingface.co/tensorblock/SakanaAI_Llama-3-8B-Instruct-Coding-Expert-GGUF/blob/main/Llama-3-8B-Instruct-Coding-Expert-Q6_K.gguf) | Q6_K | 6.596 GB | very large, extremely low quality loss | | [Llama-3-8B-Instruct-Coding-Expert-Q8_0.gguf](https://huggingface.co/tensorblock/SakanaAI_Llama-3-8B-Instruct-Coding-Expert-GGUF/blob/main/Llama-3-8B-Instruct-Coding-Expert-Q8_0.gguf) | Q8_0 | 8.541 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/SakanaAI_Llama-3-8B-Instruct-Coding-Expert-GGUF --include "Llama-3-8B-Instruct-Coding-Expert-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/SakanaAI_Llama-3-8B-Instruct-Coding-Expert-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/OpenBuddy_openbuddy-llama3.1-8b-v22.1-131k-GGUF
tensorblock
2025-06-19T01:49:05Z
16
0
null
[ "gguf", "llama-3.1", "TensorBlock", "GGUF", "text-generation", "zh", "en", "fr", "de", "ja", "ko", "it", "fi", "base_model:OpenBuddy/openbuddy-llama3.1-8b-v22.1-131k", "base_model:quantized:OpenBuddy/openbuddy-llama3.1-8b-v22.1-131k", "license:other", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-04-27T12:50:27Z
--- language: - zh - en - fr - de - ja - ko - it - fi pipeline_tag: text-generation tags: - llama-3.1 - TensorBlock - GGUF license: other license_name: llama3.1 license_link: https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE base_model: OpenBuddy/openbuddy-llama3.1-8b-v22.1-131k --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## OpenBuddy/openbuddy-llama3.1-8b-v22.1-131k - GGUF This repo contains GGUF format model files for [OpenBuddy/openbuddy-llama3.1-8b-v22.1-131k](https://huggingface.co/OpenBuddy/openbuddy-llama3.1-8b-v22.1-131k). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|role|>system<|says|>{system_prompt}<|end|> <|role|>user<|says|>{prompt}<|end|> <|role|>assistant<|says|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [openbuddy-llama3.1-8b-v22.1-131k-Q2_K.gguf](https://huggingface.co/tensorblock/OpenBuddy_openbuddy-llama3.1-8b-v22.1-131k-GGUF/blob/main/openbuddy-llama3.1-8b-v22.1-131k-Q2_K.gguf) | Q2_K | 3.179 GB | smallest, significant quality loss - not recommended for most purposes | | [openbuddy-llama3.1-8b-v22.1-131k-Q3_K_S.gguf](https://huggingface.co/tensorblock/OpenBuddy_openbuddy-llama3.1-8b-v22.1-131k-GGUF/blob/main/openbuddy-llama3.1-8b-v22.1-131k-Q3_K_S.gguf) | Q3_K_S | 3.664 GB | very small, high quality loss | | [openbuddy-llama3.1-8b-v22.1-131k-Q3_K_M.gguf](https://huggingface.co/tensorblock/OpenBuddy_openbuddy-llama3.1-8b-v22.1-131k-GGUF/blob/main/openbuddy-llama3.1-8b-v22.1-131k-Q3_K_M.gguf) | Q3_K_M | 4.019 GB | very small, high quality loss | | [openbuddy-llama3.1-8b-v22.1-131k-Q3_K_L.gguf](https://huggingface.co/tensorblock/OpenBuddy_openbuddy-llama3.1-8b-v22.1-131k-GGUF/blob/main/openbuddy-llama3.1-8b-v22.1-131k-Q3_K_L.gguf) | Q3_K_L | 4.322 GB | small, substantial quality loss | | [openbuddy-llama3.1-8b-v22.1-131k-Q4_0.gguf](https://huggingface.co/tensorblock/OpenBuddy_openbuddy-llama3.1-8b-v22.1-131k-GGUF/blob/main/openbuddy-llama3.1-8b-v22.1-131k-Q4_0.gguf) | Q4_0 | 4.661 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [openbuddy-llama3.1-8b-v22.1-131k-Q4_K_S.gguf](https://huggingface.co/tensorblock/OpenBuddy_openbuddy-llama3.1-8b-v22.1-131k-GGUF/blob/main/openbuddy-llama3.1-8b-v22.1-131k-Q4_K_S.gguf) | Q4_K_S | 4.693 GB | small, greater quality loss | | [openbuddy-llama3.1-8b-v22.1-131k-Q4_K_M.gguf](https://huggingface.co/tensorblock/OpenBuddy_openbuddy-llama3.1-8b-v22.1-131k-GGUF/blob/main/openbuddy-llama3.1-8b-v22.1-131k-Q4_K_M.gguf) | Q4_K_M | 4.921 GB | medium, balanced quality - recommended | | [openbuddy-llama3.1-8b-v22.1-131k-Q5_0.gguf](https://huggingface.co/tensorblock/OpenBuddy_openbuddy-llama3.1-8b-v22.1-131k-GGUF/blob/main/openbuddy-llama3.1-8b-v22.1-131k-Q5_0.gguf) | Q5_0 | 5.599 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [openbuddy-llama3.1-8b-v22.1-131k-Q5_K_S.gguf](https://huggingface.co/tensorblock/OpenBuddy_openbuddy-llama3.1-8b-v22.1-131k-GGUF/blob/main/openbuddy-llama3.1-8b-v22.1-131k-Q5_K_S.gguf) | Q5_K_S | 5.599 GB | large, low quality loss - recommended | | [openbuddy-llama3.1-8b-v22.1-131k-Q5_K_M.gguf](https://huggingface.co/tensorblock/OpenBuddy_openbuddy-llama3.1-8b-v22.1-131k-GGUF/blob/main/openbuddy-llama3.1-8b-v22.1-131k-Q5_K_M.gguf) | Q5_K_M | 5.733 GB | large, very low quality loss - recommended | | [openbuddy-llama3.1-8b-v22.1-131k-Q6_K.gguf](https://huggingface.co/tensorblock/OpenBuddy_openbuddy-llama3.1-8b-v22.1-131k-GGUF/blob/main/openbuddy-llama3.1-8b-v22.1-131k-Q6_K.gguf) | Q6_K | 6.596 GB | very large, extremely low quality loss | | [openbuddy-llama3.1-8b-v22.1-131k-Q8_0.gguf](https://huggingface.co/tensorblock/OpenBuddy_openbuddy-llama3.1-8b-v22.1-131k-GGUF/blob/main/openbuddy-llama3.1-8b-v22.1-131k-Q8_0.gguf) | Q8_0 | 8.541 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/OpenBuddy_openbuddy-llama3.1-8b-v22.1-131k-GGUF --include "openbuddy-llama3.1-8b-v22.1-131k-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/OpenBuddy_openbuddy-llama3.1-8b-v22.1-131k-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/redrix_patricide-12B-Unslop-Mell-GGUF
tensorblock
2025-06-19T01:49:02Z
58
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "12b", "chat", "roleplay", "creative-writing", "SLERP", "TensorBlock", "GGUF", "base_model:redrix/patricide-12B-Unslop-Mell", "base_model:quantized:redrix/patricide-12B-Unslop-Mell", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-04-27T12:31:38Z
--- base_model: redrix/patricide-12B-Unslop-Mell library_name: transformers tags: - mergekit - merge - 12b - chat - roleplay - creative-writing - SLERP - TensorBlock - GGUF license: apache-2.0 new_version: redrix/patricide-12B-Unslop-Mell-v2 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## redrix/patricide-12B-Unslop-Mell - GGUF This repo contains GGUF format model files for [redrix/patricide-12B-Unslop-Mell](https://huggingface.co/redrix/patricide-12B-Unslop-Mell). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format. ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [patricide-12B-Unslop-Mell-Q2_K.gguf](https://huggingface.co/tensorblock/redrix_patricide-12B-Unslop-Mell-GGUF/blob/main/patricide-12B-Unslop-Mell-Q2_K.gguf) | Q2_K | 4.791 GB | smallest, significant quality loss - not recommended for most purposes | | [patricide-12B-Unslop-Mell-Q3_K_S.gguf](https://huggingface.co/tensorblock/redrix_patricide-12B-Unslop-Mell-GGUF/blob/main/patricide-12B-Unslop-Mell-Q3_K_S.gguf) | Q3_K_S | 5.534 GB | very small, high quality loss | | [patricide-12B-Unslop-Mell-Q3_K_M.gguf](https://huggingface.co/tensorblock/redrix_patricide-12B-Unslop-Mell-GGUF/blob/main/patricide-12B-Unslop-Mell-Q3_K_M.gguf) | Q3_K_M | 6.083 GB | very small, high quality loss | | [patricide-12B-Unslop-Mell-Q3_K_L.gguf](https://huggingface.co/tensorblock/redrix_patricide-12B-Unslop-Mell-GGUF/blob/main/patricide-12B-Unslop-Mell-Q3_K_L.gguf) | Q3_K_L | 6.562 GB | small, substantial quality loss | | [patricide-12B-Unslop-Mell-Q4_0.gguf](https://huggingface.co/tensorblock/redrix_patricide-12B-Unslop-Mell-GGUF/blob/main/patricide-12B-Unslop-Mell-Q4_0.gguf) | Q4_0 | 7.072 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [patricide-12B-Unslop-Mell-Q4_K_S.gguf](https://huggingface.co/tensorblock/redrix_patricide-12B-Unslop-Mell-GGUF/blob/main/patricide-12B-Unslop-Mell-Q4_K_S.gguf) | Q4_K_S | 7.120 GB | small, greater quality loss | | [patricide-12B-Unslop-Mell-Q4_K_M.gguf](https://huggingface.co/tensorblock/redrix_patricide-12B-Unslop-Mell-GGUF/blob/main/patricide-12B-Unslop-Mell-Q4_K_M.gguf) | Q4_K_M | 7.477 GB | medium, balanced quality - recommended | | [patricide-12B-Unslop-Mell-Q5_0.gguf](https://huggingface.co/tensorblock/redrix_patricide-12B-Unslop-Mell-GGUF/blob/main/patricide-12B-Unslop-Mell-Q5_0.gguf) | Q5_0 | 8.519 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [patricide-12B-Unslop-Mell-Q5_K_S.gguf](https://huggingface.co/tensorblock/redrix_patricide-12B-Unslop-Mell-GGUF/blob/main/patricide-12B-Unslop-Mell-Q5_K_S.gguf) | Q5_K_S | 8.519 GB | large, low quality loss - recommended | | [patricide-12B-Unslop-Mell-Q5_K_M.gguf](https://huggingface.co/tensorblock/redrix_patricide-12B-Unslop-Mell-GGUF/blob/main/patricide-12B-Unslop-Mell-Q5_K_M.gguf) | Q5_K_M | 8.728 GB | large, very low quality loss - recommended | | [patricide-12B-Unslop-Mell-Q6_K.gguf](https://huggingface.co/tensorblock/redrix_patricide-12B-Unslop-Mell-GGUF/blob/main/patricide-12B-Unslop-Mell-Q6_K.gguf) | Q6_K | 10.056 GB | very large, extremely low quality loss | | [patricide-12B-Unslop-Mell-Q8_0.gguf](https://huggingface.co/tensorblock/redrix_patricide-12B-Unslop-Mell-GGUF/blob/main/patricide-12B-Unslop-Mell-Q8_0.gguf) | Q8_0 | 13.022 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/redrix_patricide-12B-Unslop-Mell-GGUF --include "patricide-12B-Unslop-Mell-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/redrix_patricide-12B-Unslop-Mell-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/osllmai-community_Llama-3.2-1B-GGUF
tensorblock
2025-06-19T01:48:44Z
26
0
transformers
[ "transformers", "gguf", "llama-3", "llama", "meta", "facebook", "osllmai", "TensorBlock", "GGUF", "en", "base_model:osllmai-community/Llama-3.2-1B", "base_model:quantized:osllmai-community/Llama-3.2-1B", "license:llama3.2", "endpoints_compatible", "region:us" ]
null
2025-04-27T08:58:51Z
--- base_model: osllmai-community/Llama-3.2-1B language: - en library_name: transformers license: llama3.2 tags: - llama-3 - llama - meta - facebook - osllmai - transformers - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## osllmai-community/Llama-3.2-1B - GGUF This repo contains GGUF format model files for [osllmai-community/Llama-3.2-1B](https://huggingface.co/osllmai-community/Llama-3.2-1B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format. ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Llama-3.2-1B-Q2_K.gguf](https://huggingface.co/tensorblock/osllmai-community_Llama-3.2-1B-GGUF/blob/main/Llama-3.2-1B-Q2_K.gguf) | Q2_K | 0.581 GB | smallest, significant quality loss - not recommended for most purposes | | [Llama-3.2-1B-Q3_K_S.gguf](https://huggingface.co/tensorblock/osllmai-community_Llama-3.2-1B-GGUF/blob/main/Llama-3.2-1B-Q3_K_S.gguf) | Q3_K_S | 0.642 GB | very small, high quality loss | | [Llama-3.2-1B-Q3_K_M.gguf](https://huggingface.co/tensorblock/osllmai-community_Llama-3.2-1B-GGUF/blob/main/Llama-3.2-1B-Q3_K_M.gguf) | Q3_K_M | 0.691 GB | very small, high quality loss | | [Llama-3.2-1B-Q3_K_L.gguf](https://huggingface.co/tensorblock/osllmai-community_Llama-3.2-1B-GGUF/blob/main/Llama-3.2-1B-Q3_K_L.gguf) | Q3_K_L | 0.733 GB | small, substantial quality loss | | [Llama-3.2-1B-Q4_0.gguf](https://huggingface.co/tensorblock/osllmai-community_Llama-3.2-1B-GGUF/blob/main/Llama-3.2-1B-Q4_0.gguf) | Q4_0 | 0.771 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Llama-3.2-1B-Q4_K_S.gguf](https://huggingface.co/tensorblock/osllmai-community_Llama-3.2-1B-GGUF/blob/main/Llama-3.2-1B-Q4_K_S.gguf) | Q4_K_S | 0.776 GB | small, greater quality loss | | [Llama-3.2-1B-Q4_K_M.gguf](https://huggingface.co/tensorblock/osllmai-community_Llama-3.2-1B-GGUF/blob/main/Llama-3.2-1B-Q4_K_M.gguf) | Q4_K_M | 0.808 GB | medium, balanced quality - recommended | | [Llama-3.2-1B-Q5_0.gguf](https://huggingface.co/tensorblock/osllmai-community_Llama-3.2-1B-GGUF/blob/main/Llama-3.2-1B-Q5_0.gguf) | Q5_0 | 0.893 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Llama-3.2-1B-Q5_K_S.gguf](https://huggingface.co/tensorblock/osllmai-community_Llama-3.2-1B-GGUF/blob/main/Llama-3.2-1B-Q5_K_S.gguf) | Q5_K_S | 0.893 GB | large, low quality loss - recommended | | [Llama-3.2-1B-Q5_K_M.gguf](https://huggingface.co/tensorblock/osllmai-community_Llama-3.2-1B-GGUF/blob/main/Llama-3.2-1B-Q5_K_M.gguf) | Q5_K_M | 0.911 GB | large, very low quality loss - recommended | | [Llama-3.2-1B-Q6_K.gguf](https://huggingface.co/tensorblock/osllmai-community_Llama-3.2-1B-GGUF/blob/main/Llama-3.2-1B-Q6_K.gguf) | Q6_K | 1.022 GB | very large, extremely low quality loss | | [Llama-3.2-1B-Q8_0.gguf](https://huggingface.co/tensorblock/osllmai-community_Llama-3.2-1B-GGUF/blob/main/Llama-3.2-1B-Q8_0.gguf) | Q8_0 | 1.321 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/osllmai-community_Llama-3.2-1B-GGUF --include "Llama-3.2-1B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/osllmai-community_Llama-3.2-1B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Macropodus_macbert4csc_v2-GGUF
tensorblock
2025-06-19T01:48:30Z
65
0
null
[ "gguf", "csc", "text-correct", "chinses-spelling-correct", "chinese-spelling-check", "中文拼写纠错", "macbert4csc", "TensorBlock", "GGUF", "text-generation", "zh", "base_model:Macropodus/macbert4csc_v2", "base_model:quantized:Macropodus/macbert4csc_v2", "license:apache-2.0", "endpoints_compatible", "region:us", "feature-extraction" ]
text-generation
2025-04-27T06:47:05Z
--- license: apache-2.0 language: - zh base_model: Macropodus/macbert4csc_v2 pipeline_tag: text-generation tags: - csc - text-correct - chinses-spelling-correct - chinese-spelling-check - 中文拼写纠错 - macbert4csc - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## Macropodus/macbert4csc_v2 - GGUF This repo contains GGUF format model files for [Macropodus/macbert4csc_v2](https://huggingface.co/Macropodus/macbert4csc_v2). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format. ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [macbert4csc_v2-Q2_K.gguf](https://huggingface.co/tensorblock/Macropodus_macbert4csc_v2-GGUF/blob/main/macbert4csc_v2-Q2_K.gguf) | Q2_K | 0.048 GB | smallest, significant quality loss - not recommended for most purposes | | [macbert4csc_v2-Q3_K_S.gguf](https://huggingface.co/tensorblock/Macropodus_macbert4csc_v2-GGUF/blob/main/macbert4csc_v2-Q3_K_S.gguf) | Q3_K_S | 0.052 GB | very small, high quality loss | | [macbert4csc_v2-Q3_K_M.gguf](https://huggingface.co/tensorblock/Macropodus_macbert4csc_v2-GGUF/blob/main/macbert4csc_v2-Q3_K_M.gguf) | Q3_K_M | 0.058 GB | very small, high quality loss | | [macbert4csc_v2-Q3_K_L.gguf](https://huggingface.co/tensorblock/Macropodus_macbert4csc_v2-GGUF/blob/main/macbert4csc_v2-Q3_K_L.gguf) | Q3_K_L | 0.063 GB | small, substantial quality loss | | [macbert4csc_v2-Q4_0.gguf](https://huggingface.co/tensorblock/Macropodus_macbert4csc_v2-GGUF/blob/main/macbert4csc_v2-Q4_0.gguf) | Q4_0 | 0.064 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [macbert4csc_v2-Q4_K_S.gguf](https://huggingface.co/tensorblock/Macropodus_macbert4csc_v2-GGUF/blob/main/macbert4csc_v2-Q4_K_S.gguf) | Q4_K_S | 0.064 GB | small, greater quality loss | | [macbert4csc_v2-Q4_K_M.gguf](https://huggingface.co/tensorblock/Macropodus_macbert4csc_v2-GGUF/blob/main/macbert4csc_v2-Q4_K_M.gguf) | Q4_K_M | 0.068 GB | medium, balanced quality - recommended | | [macbert4csc_v2-Q5_0.gguf](https://huggingface.co/tensorblock/Macropodus_macbert4csc_v2-GGUF/blob/main/macbert4csc_v2-Q5_0.gguf) | Q5_0 | 0.074 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [macbert4csc_v2-Q5_K_S.gguf](https://huggingface.co/tensorblock/Macropodus_macbert4csc_v2-GGUF/blob/main/macbert4csc_v2-Q5_K_S.gguf) | Q5_K_S | 0.074 GB | large, low quality loss - recommended | | [macbert4csc_v2-Q5_K_M.gguf](https://huggingface.co/tensorblock/Macropodus_macbert4csc_v2-GGUF/blob/main/macbert4csc_v2-Q5_K_M.gguf) | Q5_K_M | 0.076 GB | large, very low quality loss - recommended | | [macbert4csc_v2-Q6_K.gguf](https://huggingface.co/tensorblock/Macropodus_macbert4csc_v2-GGUF/blob/main/macbert4csc_v2-Q6_K.gguf) | Q6_K | 0.085 GB | very large, extremely low quality loss | | [macbert4csc_v2-Q8_0.gguf](https://huggingface.co/tensorblock/Macropodus_macbert4csc_v2-GGUF/blob/main/macbert4csc_v2-Q8_0.gguf) | Q8_0 | 0.110 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Macropodus_macbert4csc_v2-GGUF --include "macbert4csc_v2-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Macropodus_macbert4csc_v2-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/GiKAGraphy_ProductLlama-8B-Instruct-GGUF
tensorblock
2025-06-19T01:48:15Z
13
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "llama", "TensorBlock", "GGUF", "text-generation", "en", "base_model:GiKAGraphy/ProductLlama-8B-Instruct", "base_model:quantized:GiKAGraphy/ProductLlama-8B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-04-27T05:03:29Z
--- license: apache-2.0 language: - en base_model: GiKAGraphy/ProductLlama-8B-Instruct pipeline_tag: text-generation tags: - text-generation-inference - transformers - unsloth - llama - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## GiKAGraphy/ProductLlama-8B-Instruct - GGUF This repo contains GGUF format model files for [GiKAGraphy/ProductLlama-8B-Instruct](https://huggingface.co/GiKAGraphy/ProductLlama-8B-Instruct). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> Cutting Knowledge Date: December 2023 Today Date: 26 Jul 2024 {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> {prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [ProductLlama-8B-Instruct-Q2_K.gguf](https://huggingface.co/tensorblock/GiKAGraphy_ProductLlama-8B-Instruct-GGUF/blob/main/ProductLlama-8B-Instruct-Q2_K.gguf) | Q2_K | 3.179 GB | smallest, significant quality loss - not recommended for most purposes | | [ProductLlama-8B-Instruct-Q3_K_S.gguf](https://huggingface.co/tensorblock/GiKAGraphy_ProductLlama-8B-Instruct-GGUF/blob/main/ProductLlama-8B-Instruct-Q3_K_S.gguf) | Q3_K_S | 3.665 GB | very small, high quality loss | | [ProductLlama-8B-Instruct-Q3_K_M.gguf](https://huggingface.co/tensorblock/GiKAGraphy_ProductLlama-8B-Instruct-GGUF/blob/main/ProductLlama-8B-Instruct-Q3_K_M.gguf) | Q3_K_M | 4.019 GB | very small, high quality loss | | [ProductLlama-8B-Instruct-Q3_K_L.gguf](https://huggingface.co/tensorblock/GiKAGraphy_ProductLlama-8B-Instruct-GGUF/blob/main/ProductLlama-8B-Instruct-Q3_K_L.gguf) | Q3_K_L | 4.322 GB | small, substantial quality loss | | [ProductLlama-8B-Instruct-Q4_0.gguf](https://huggingface.co/tensorblock/GiKAGraphy_ProductLlama-8B-Instruct-GGUF/blob/main/ProductLlama-8B-Instruct-Q4_0.gguf) | Q4_0 | 4.661 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [ProductLlama-8B-Instruct-Q4_K_S.gguf](https://huggingface.co/tensorblock/GiKAGraphy_ProductLlama-8B-Instruct-GGUF/blob/main/ProductLlama-8B-Instruct-Q4_K_S.gguf) | Q4_K_S | 4.693 GB | small, greater quality loss | | [ProductLlama-8B-Instruct-Q4_K_M.gguf](https://huggingface.co/tensorblock/GiKAGraphy_ProductLlama-8B-Instruct-GGUF/blob/main/ProductLlama-8B-Instruct-Q4_K_M.gguf) | Q4_K_M | 4.921 GB | medium, balanced quality - recommended | | [ProductLlama-8B-Instruct-Q5_0.gguf](https://huggingface.co/tensorblock/GiKAGraphy_ProductLlama-8B-Instruct-GGUF/blob/main/ProductLlama-8B-Instruct-Q5_0.gguf) | Q5_0 | 5.599 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [ProductLlama-8B-Instruct-Q5_K_S.gguf](https://huggingface.co/tensorblock/GiKAGraphy_ProductLlama-8B-Instruct-GGUF/blob/main/ProductLlama-8B-Instruct-Q5_K_S.gguf) | Q5_K_S | 5.599 GB | large, low quality loss - recommended | | [ProductLlama-8B-Instruct-Q5_K_M.gguf](https://huggingface.co/tensorblock/GiKAGraphy_ProductLlama-8B-Instruct-GGUF/blob/main/ProductLlama-8B-Instruct-Q5_K_M.gguf) | Q5_K_M | 5.733 GB | large, very low quality loss - recommended | | [ProductLlama-8B-Instruct-Q6_K.gguf](https://huggingface.co/tensorblock/GiKAGraphy_ProductLlama-8B-Instruct-GGUF/blob/main/ProductLlama-8B-Instruct-Q6_K.gguf) | Q6_K | 6.596 GB | very large, extremely low quality loss | | [ProductLlama-8B-Instruct-Q8_0.gguf](https://huggingface.co/tensorblock/GiKAGraphy_ProductLlama-8B-Instruct-GGUF/blob/main/ProductLlama-8B-Instruct-Q8_0.gguf) | Q8_0 | 8.541 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/GiKAGraphy_ProductLlama-8B-Instruct-GGUF --include "ProductLlama-8B-Instruct-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/GiKAGraphy_ProductLlama-8B-Instruct-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/ibm-granite_granite-3.3-2b-instruct-GGUF
tensorblock
2025-06-19T01:47:56Z
54
0
transformers
[ "transformers", "gguf", "language", "granite-3.3", "TensorBlock", "GGUF", "text-generation", "base_model:ibm-granite/granite-3.3-2b-instruct", "base_model:quantized:ibm-granite/granite-3.3-2b-instruct", "license:apache-2.0", "region:us", "conversational" ]
text-generation
2025-04-26T23:27:14Z
--- pipeline_tag: text-generation inference: false license: apache-2.0 library_name: transformers tags: - language - granite-3.3 - TensorBlock - GGUF base_model: ibm-granite/granite-3.3-2b-instruct --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## ibm-granite/granite-3.3-2b-instruct - GGUF This repo contains GGUF format model files for [ibm-granite/granite-3.3-2b-instruct](https://huggingface.co/ibm-granite/granite-3.3-2b-instruct). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|start_of_role|>system<|end_of_role|>{system_prompt}<|end_of_text|> <|start_of_role|>user<|end_of_role|>{prompt}<|end_of_text|> <|start_of_role|>assistant<|end_of_role|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [granite-3.3-2b-instruct-Q2_K.gguf](https://huggingface.co/tensorblock/ibm-granite_granite-3.3-2b-instruct-GGUF/blob/main/granite-3.3-2b-instruct-Q2_K.gguf) | Q2_K | 0.978 GB | smallest, significant quality loss - not recommended for most purposes | | [granite-3.3-2b-instruct-Q3_K_S.gguf](https://huggingface.co/tensorblock/ibm-granite_granite-3.3-2b-instruct-GGUF/blob/main/granite-3.3-2b-instruct-Q3_K_S.gguf) | Q3_K_S | 1.130 GB | very small, high quality loss | | [granite-3.3-2b-instruct-Q3_K_M.gguf](https://huggingface.co/tensorblock/ibm-granite_granite-3.3-2b-instruct-GGUF/blob/main/granite-3.3-2b-instruct-Q3_K_M.gguf) | Q3_K_M | 1.252 GB | very small, high quality loss | | [granite-3.3-2b-instruct-Q3_K_L.gguf](https://huggingface.co/tensorblock/ibm-granite_granite-3.3-2b-instruct-GGUF/blob/main/granite-3.3-2b-instruct-Q3_K_L.gguf) | Q3_K_L | 1.357 GB | small, substantial quality loss | | [granite-3.3-2b-instruct-Q4_0.gguf](https://huggingface.co/tensorblock/ibm-granite_granite-3.3-2b-instruct-GGUF/blob/main/granite-3.3-2b-instruct-Q4_0.gguf) | Q4_0 | 1.453 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [granite-3.3-2b-instruct-Q4_K_S.gguf](https://huggingface.co/tensorblock/ibm-granite_granite-3.3-2b-instruct-GGUF/blob/main/granite-3.3-2b-instruct-Q4_K_S.gguf) | Q4_K_S | 1.464 GB | small, greater quality loss | | [granite-3.3-2b-instruct-Q4_K_M.gguf](https://huggingface.co/tensorblock/ibm-granite_granite-3.3-2b-instruct-GGUF/blob/main/granite-3.3-2b-instruct-Q4_K_M.gguf) | Q4_K_M | 1.545 GB | medium, balanced quality - recommended | | [granite-3.3-2b-instruct-Q5_0.gguf](https://huggingface.co/tensorblock/ibm-granite_granite-3.3-2b-instruct-GGUF/blob/main/granite-3.3-2b-instruct-Q5_0.gguf) | Q5_0 | 1.757 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [granite-3.3-2b-instruct-Q5_K_S.gguf](https://huggingface.co/tensorblock/ibm-granite_granite-3.3-2b-instruct-GGUF/blob/main/granite-3.3-2b-instruct-Q5_K_S.gguf) | Q5_K_S | 1.757 GB | large, low quality loss - recommended | | [granite-3.3-2b-instruct-Q5_K_M.gguf](https://huggingface.co/tensorblock/ibm-granite_granite-3.3-2b-instruct-GGUF/blob/main/granite-3.3-2b-instruct-Q5_K_M.gguf) | Q5_K_M | 1.805 GB | large, very low quality loss - recommended | | [granite-3.3-2b-instruct-Q6_K.gguf](https://huggingface.co/tensorblock/ibm-granite_granite-3.3-2b-instruct-GGUF/blob/main/granite-3.3-2b-instruct-Q6_K.gguf) | Q6_K | 2.081 GB | very large, extremely low quality loss | | [granite-3.3-2b-instruct-Q8_0.gguf](https://huggingface.co/tensorblock/ibm-granite_granite-3.3-2b-instruct-GGUF/blob/main/granite-3.3-2b-instruct-Q8_0.gguf) | Q8_0 | 2.694 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/ibm-granite_granite-3.3-2b-instruct-GGUF --include "granite-3.3-2b-instruct-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/ibm-granite_granite-3.3-2b-instruct-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
visolex/phobert-emotion
visolex
2025-06-19T01:47:44Z
2
0
null
[ "safetensors", "roberta", "emotion-recognition", "vietnamese", "phobert", "text-classification", "vi", "dataset:VSMEC", "base_model:vinai/phobert-base", "base_model:finetune:vinai/phobert-base", "license:apache-2.0", "model-index", "region:us" ]
text-classification
2025-06-16T03:54:06Z
--- language: vi tags: - emotion-recognition - vietnamese - phobert license: apache-2.0 datasets: - VSMEC metrics: - accuracy - f1 model-index: - name: phobert-emotion results: - task: type: text-classification name: Emotion Recognition dataset: name: VSMEC type: custom metrics: - name: Accuracy type: accuracy value: <INSERT_ACCURACY> - name: F1 Score type: f1 value: <INSERT_F1_SCORE> base_model: - vinai/phobert-base pipeline_tag: text-classification --- # PhoBERT-Emotion: Emotion Recognition for Vietnamese Text This model is a fine-tuned version of [`vinai/phobert-base`](https://huggingface.co/vinai/phobert-base) on the **VSMEC** dataset for emotion recognition in Vietnamese text. It achieves competitive performance on this task. ## Model Details - **Base Model**: [`vinai/phobert-base`](https://huggingface.co/vinai/phobert-base) - **Dataset**: [VSMEC](https://github.com/uitnlp/vsmec) (Vietnamese Social Media Emotion Corpus) - **Fine-tuning Framework**: HuggingFace Transformers - **Hyperparameters**: - Batch size: `32` - Learning rate: `5e-5` - Epochs: `100` - Max sequence length: `256` ## Dataset The model was trained on the **VSMEC** dataset, which contains Vietnamese social media text annotated with emotion labels. The dataset includes the following emotion categories: `{"Anger": 0, "Disgust": 1, "Enjoyment": 2, "Fear": 3, "Other": 4, "Sadness": 5, "Surprise": 6}`. ## Results The model was evaluated using the following metrics: - **Accuracy**: `<INSERT_ACCURACY>` - **F1 Score**: `<INSERT_F1_SCORE>` ## Usage You can use this model for emotion recognition in Vietnamese text. Below is an example of how to use it with the HuggingFace Transformers library: ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("visolex/phobert-emotion") model = AutoModelForSequenceClassification.from_pretrained("visolex/phobert-emotion") text = "TΓ΄i rαΊ₯t vui vΓ¬ hΓ΄m nay trời Δ‘αΊΉp!" inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=256) outputs = model(**inputs) predicted_class = outputs.logits.argmax(dim=-1).item() print(f"Predicted emotion: {predicted_class}")
buttercoconut/Qwen2.5-ko-alpaca-0.5B-Q4
buttercoconut
2025-06-19T01:47:00Z
0
0
null
[ "safetensors", "qwen2", "text-generation", "conversational", "ko", "base_model:Qwen/Qwen2.5-0.5B", "base_model:quantized:Qwen/Qwen2.5-0.5B", "license:apache-2.0", "4-bit", "gptq", "region:us" ]
text-generation
2025-06-19T01:25:27Z
--- license: apache-2.0 language: - ko base_model: - Qwen/Qwen2.5-0.5B pipeline_tag: text-generation ---
tensorblock/revonodes_Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-GGUF
tensorblock
2025-06-19T01:46:09Z
27
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am singing timid cassowary", "trl", "TensorBlock", "GGUF", "base_model:revonodes/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary", "base_model:quantized:revonodes/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-26T07:41:16Z
--- base_model: revonodes/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am singing timid cassowary - trl - TensorBlock - GGUF licence: license --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## revonodes/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary - GGUF This repo contains GGUF format model files for [revonodes/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary](https://huggingface.co/revonodes/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-Q2_K.gguf](https://huggingface.co/tensorblock/revonodes_Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-GGUF/blob/main/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-Q2_K.gguf) | Q2_K | 0.339 GB | smallest, significant quality loss - not recommended for most purposes | | [Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-Q3_K_S.gguf](https://huggingface.co/tensorblock/revonodes_Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-GGUF/blob/main/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-Q3_K_S.gguf) | Q3_K_S | 0.338 GB | very small, high quality loss | | [Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-Q3_K_M.gguf](https://huggingface.co/tensorblock/revonodes_Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-GGUF/blob/main/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-Q3_K_M.gguf) | Q3_K_M | 0.355 GB | very small, high quality loss | | [Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-Q3_K_L.gguf](https://huggingface.co/tensorblock/revonodes_Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-GGUF/blob/main/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-Q3_K_L.gguf) | Q3_K_L | 0.369 GB | small, substantial quality loss | | [Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-Q4_0.gguf](https://huggingface.co/tensorblock/revonodes_Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-GGUF/blob/main/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-Q4_0.gguf) | Q4_0 | 0.352 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-Q4_K_S.gguf](https://huggingface.co/tensorblock/revonodes_Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-GGUF/blob/main/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-Q4_K_S.gguf) | Q4_K_S | 0.385 GB | small, greater quality loss | | [Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-Q4_K_M.gguf](https://huggingface.co/tensorblock/revonodes_Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-GGUF/blob/main/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-Q4_K_M.gguf) | Q4_K_M | 0.398 GB | medium, balanced quality - recommended | | [Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-Q5_0.gguf](https://huggingface.co/tensorblock/revonodes_Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-GGUF/blob/main/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-Q5_0.gguf) | Q5_0 | 0.397 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-Q5_K_S.gguf](https://huggingface.co/tensorblock/revonodes_Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-GGUF/blob/main/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-Q5_K_S.gguf) | Q5_K_S | 0.413 GB | large, low quality loss - recommended | | [Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-Q5_K_M.gguf](https://huggingface.co/tensorblock/revonodes_Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-GGUF/blob/main/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-Q5_K_M.gguf) | Q5_K_M | 0.420 GB | large, very low quality loss - recommended | | [Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-Q6_K.gguf](https://huggingface.co/tensorblock/revonodes_Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-GGUF/blob/main/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-Q6_K.gguf) | Q6_K | 0.506 GB | very large, extremely low quality loss | | [Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-Q8_0.gguf](https://huggingface.co/tensorblock/revonodes_Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-GGUF/blob/main/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-Q8_0.gguf) | Q8_0 | 0.531 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/revonodes_Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-GGUF --include "Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/revonodes_Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_timid_cassowary-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/hfl_chinese-llama-2-13b-GGUF
tensorblock
2025-06-19T01:44:59Z
84
0
null
[ "gguf", "TensorBlock", "GGUF", "zh", "en", "base_model:hfl/chinese-llama-2-13b", "base_model:quantized:hfl/chinese-llama-2-13b", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-04-25T20:36:29Z
--- license: apache-2.0 language: - zh - en tags: - TensorBlock - GGUF base_model: hfl/chinese-llama-2-13b --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## hfl/chinese-llama-2-13b - GGUF This repo contains GGUF format model files for [hfl/chinese-llama-2-13b](https://huggingface.co/hfl/chinese-llama-2-13b). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [chinese-llama-2-13b-Q2_K.gguf](https://huggingface.co/tensorblock/hfl_chinese-llama-2-13b-GGUF/blob/main/chinese-llama-2-13b-Q2_K.gguf) | Q2_K | 4.992 GB | smallest, significant quality loss - not recommended for most purposes | | [chinese-llama-2-13b-Q3_K_S.gguf](https://huggingface.co/tensorblock/hfl_chinese-llama-2-13b-GGUF/blob/main/chinese-llama-2-13b-Q3_K_S.gguf) | Q3_K_S | 5.809 GB | very small, high quality loss | | [chinese-llama-2-13b-Q3_K_M.gguf](https://huggingface.co/tensorblock/hfl_chinese-llama-2-13b-GGUF/blob/main/chinese-llama-2-13b-Q3_K_M.gguf) | Q3_K_M | 6.487 GB | very small, high quality loss | | [chinese-llama-2-13b-Q3_K_L.gguf](https://huggingface.co/tensorblock/hfl_chinese-llama-2-13b-GGUF/blob/main/chinese-llama-2-13b-Q3_K_L.gguf) | Q3_K_L | 7.079 GB | small, substantial quality loss | | [chinese-llama-2-13b-Q4_0.gguf](https://huggingface.co/tensorblock/hfl_chinese-llama-2-13b-GGUF/blob/main/chinese-llama-2-13b-Q4_0.gguf) | Q4_0 | 7.531 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [chinese-llama-2-13b-Q4_K_S.gguf](https://huggingface.co/tensorblock/hfl_chinese-llama-2-13b-GGUF/blob/main/chinese-llama-2-13b-Q4_K_S.gguf) | Q4_K_S | 7.589 GB | small, greater quality loss | | [chinese-llama-2-13b-Q4_K_M.gguf](https://huggingface.co/tensorblock/hfl_chinese-llama-2-13b-GGUF/blob/main/chinese-llama-2-13b-Q4_K_M.gguf) | Q4_K_M | 8.031 GB | medium, balanced quality - recommended | | [chinese-llama-2-13b-Q5_0.gguf](https://huggingface.co/tensorblock/hfl_chinese-llama-2-13b-GGUF/blob/main/chinese-llama-2-13b-Q5_0.gguf) | Q5_0 | 9.153 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [chinese-llama-2-13b-Q5_K_S.gguf](https://huggingface.co/tensorblock/hfl_chinese-llama-2-13b-GGUF/blob/main/chinese-llama-2-13b-Q5_K_S.gguf) | Q5_K_S | 9.153 GB | large, low quality loss - recommended | | [chinese-llama-2-13b-Q5_K_M.gguf](https://huggingface.co/tensorblock/hfl_chinese-llama-2-13b-GGUF/blob/main/chinese-llama-2-13b-Q5_K_M.gguf) | Q5_K_M | 9.410 GB | large, very low quality loss - recommended | | [chinese-llama-2-13b-Q6_K.gguf](https://huggingface.co/tensorblock/hfl_chinese-llama-2-13b-GGUF/blob/main/chinese-llama-2-13b-Q6_K.gguf) | Q6_K | 10.875 GB | very large, extremely low quality loss | | [chinese-llama-2-13b-Q8_0.gguf](https://huggingface.co/tensorblock/hfl_chinese-llama-2-13b-GGUF/blob/main/chinese-llama-2-13b-Q8_0.gguf) | Q8_0 | 14.085 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/hfl_chinese-llama-2-13b-GGUF --include "chinese-llama-2-13b-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/hfl_chinese-llama-2-13b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/ethicalabs_Kurtis-E1.1-Qwen2.5-3B-Instruct-GGUF
tensorblock
2025-06-19T01:44:51Z
114
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "text-generation", "en", "dataset:ethicalabs/Kurtis-E1-SFT", "base_model:ethicalabs/Kurtis-E1.1-Qwen2.5-3B-Instruct", "base_model:quantized:ethicalabs/Kurtis-E1.1-Qwen2.5-3B-Instruct", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-04-25T19:23:16Z
--- library_name: transformers license: mit datasets: - ethicalabs/Kurtis-E1-SFT language: - en base_model: ethicalabs/Kurtis-E1.1-Qwen2.5-3B-Instruct pipeline_tag: text-generation tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## ethicalabs/Kurtis-E1.1-Qwen2.5-3B-Instruct - GGUF This repo contains GGUF format model files for [ethicalabs/Kurtis-E1.1-Qwen2.5-3B-Instruct](https://huggingface.co/ethicalabs/Kurtis-E1.1-Qwen2.5-3B-Instruct). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Kurtis-E1.1-Qwen2.5-3B-Instruct-Q2_K.gguf](https://huggingface.co/tensorblock/ethicalabs_Kurtis-E1.1-Qwen2.5-3B-Instruct-GGUF/blob/main/Kurtis-E1.1-Qwen2.5-3B-Instruct-Q2_K.gguf) | Q2_K | 1.275 GB | smallest, significant quality loss - not recommended for most purposes | | [Kurtis-E1.1-Qwen2.5-3B-Instruct-Q3_K_S.gguf](https://huggingface.co/tensorblock/ethicalabs_Kurtis-E1.1-Qwen2.5-3B-Instruct-GGUF/blob/main/Kurtis-E1.1-Qwen2.5-3B-Instruct-Q3_K_S.gguf) | Q3_K_S | 1.454 GB | very small, high quality loss | | [Kurtis-E1.1-Qwen2.5-3B-Instruct-Q3_K_M.gguf](https://huggingface.co/tensorblock/ethicalabs_Kurtis-E1.1-Qwen2.5-3B-Instruct-GGUF/blob/main/Kurtis-E1.1-Qwen2.5-3B-Instruct-Q3_K_M.gguf) | Q3_K_M | 1.590 GB | very small, high quality loss | | [Kurtis-E1.1-Qwen2.5-3B-Instruct-Q3_K_L.gguf](https://huggingface.co/tensorblock/ethicalabs_Kurtis-E1.1-Qwen2.5-3B-Instruct-GGUF/blob/main/Kurtis-E1.1-Qwen2.5-3B-Instruct-Q3_K_L.gguf) | Q3_K_L | 1.707 GB | small, substantial quality loss | | [Kurtis-E1.1-Qwen2.5-3B-Instruct-Q4_0.gguf](https://huggingface.co/tensorblock/ethicalabs_Kurtis-E1.1-Qwen2.5-3B-Instruct-GGUF/blob/main/Kurtis-E1.1-Qwen2.5-3B-Instruct-Q4_0.gguf) | Q4_0 | 1.823 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Kurtis-E1.1-Qwen2.5-3B-Instruct-Q4_K_S.gguf](https://huggingface.co/tensorblock/ethicalabs_Kurtis-E1.1-Qwen2.5-3B-Instruct-GGUF/blob/main/Kurtis-E1.1-Qwen2.5-3B-Instruct-Q4_K_S.gguf) | Q4_K_S | 1.834 GB | small, greater quality loss | | [Kurtis-E1.1-Qwen2.5-3B-Instruct-Q4_K_M.gguf](https://huggingface.co/tensorblock/ethicalabs_Kurtis-E1.1-Qwen2.5-3B-Instruct-GGUF/blob/main/Kurtis-E1.1-Qwen2.5-3B-Instruct-Q4_K_M.gguf) | Q4_K_M | 1.930 GB | medium, balanced quality - recommended | | [Kurtis-E1.1-Qwen2.5-3B-Instruct-Q5_0.gguf](https://huggingface.co/tensorblock/ethicalabs_Kurtis-E1.1-Qwen2.5-3B-Instruct-GGUF/blob/main/Kurtis-E1.1-Qwen2.5-3B-Instruct-Q5_0.gguf) | Q5_0 | 2.170 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Kurtis-E1.1-Qwen2.5-3B-Instruct-Q5_K_S.gguf](https://huggingface.co/tensorblock/ethicalabs_Kurtis-E1.1-Qwen2.5-3B-Instruct-GGUF/blob/main/Kurtis-E1.1-Qwen2.5-3B-Instruct-Q5_K_S.gguf) | Q5_K_S | 2.170 GB | large, low quality loss - recommended | | [Kurtis-E1.1-Qwen2.5-3B-Instruct-Q5_K_M.gguf](https://huggingface.co/tensorblock/ethicalabs_Kurtis-E1.1-Qwen2.5-3B-Instruct-GGUF/blob/main/Kurtis-E1.1-Qwen2.5-3B-Instruct-Q5_K_M.gguf) | Q5_K_M | 2.225 GB | large, very low quality loss - recommended | | [Kurtis-E1.1-Qwen2.5-3B-Instruct-Q6_K.gguf](https://huggingface.co/tensorblock/ethicalabs_Kurtis-E1.1-Qwen2.5-3B-Instruct-GGUF/blob/main/Kurtis-E1.1-Qwen2.5-3B-Instruct-Q6_K.gguf) | Q6_K | 2.538 GB | very large, extremely low quality loss | | [Kurtis-E1.1-Qwen2.5-3B-Instruct-Q8_0.gguf](https://huggingface.co/tensorblock/ethicalabs_Kurtis-E1.1-Qwen2.5-3B-Instruct-GGUF/blob/main/Kurtis-E1.1-Qwen2.5-3B-Instruct-Q8_0.gguf) | Q8_0 | 3.285 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/ethicalabs_Kurtis-E1.1-Qwen2.5-3B-Instruct-GGUF --include "Kurtis-E1.1-Qwen2.5-3B-Instruct-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/ethicalabs_Kurtis-E1.1-Qwen2.5-3B-Instruct-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/YeungNLP_firefly-ziya-13b-GGUF
tensorblock
2025-06-19T01:44:31Z
16
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:YeungNLP/firefly-ziya-13b", "base_model:quantized:YeungNLP/firefly-ziya-13b", "endpoints_compatible", "region:us" ]
null
2025-04-25T19:08:08Z
--- base_model: YeungNLP/firefly-ziya-13b tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## YeungNLP/firefly-ziya-13b - GGUF This repo contains GGUF format model files for [YeungNLP/firefly-ziya-13b](https://huggingface.co/YeungNLP/firefly-ziya-13b). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [firefly-ziya-13b-Q2_K.gguf](https://huggingface.co/tensorblock/YeungNLP_firefly-ziya-13b-GGUF/blob/main/firefly-ziya-13b-Q2_K.gguf) | Q2_K | 4.898 GB | smallest, significant quality loss - not recommended for most purposes | | [firefly-ziya-13b-Q3_K_S.gguf](https://huggingface.co/tensorblock/YeungNLP_firefly-ziya-13b-GGUF/blob/main/firefly-ziya-13b-Q3_K_S.gguf) | Q3_K_S | 5.707 GB | very small, high quality loss | | [firefly-ziya-13b-Q3_K_M.gguf](https://huggingface.co/tensorblock/YeungNLP_firefly-ziya-13b-GGUF/blob/main/firefly-ziya-13b-Q3_K_M.gguf) | Q3_K_M | 6.385 GB | very small, high quality loss | | [firefly-ziya-13b-Q3_K_L.gguf](https://huggingface.co/tensorblock/YeungNLP_firefly-ziya-13b-GGUF/blob/main/firefly-ziya-13b-Q3_K_L.gguf) | Q3_K_L | 6.977 GB | small, substantial quality loss | | [firefly-ziya-13b-Q4_0.gguf](https://huggingface.co/tensorblock/YeungNLP_firefly-ziya-13b-GGUF/blob/main/firefly-ziya-13b-Q4_0.gguf) | Q4_0 | 7.419 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [firefly-ziya-13b-Q4_K_S.gguf](https://huggingface.co/tensorblock/YeungNLP_firefly-ziya-13b-GGUF/blob/main/firefly-ziya-13b-Q4_K_S.gguf) | Q4_K_S | 7.476 GB | small, greater quality loss | | [firefly-ziya-13b-Q4_K_M.gguf](https://huggingface.co/tensorblock/YeungNLP_firefly-ziya-13b-GGUF/blob/main/firefly-ziya-13b-Q4_K_M.gguf) | Q4_K_M | 7.919 GB | medium, balanced quality - recommended | | [firefly-ziya-13b-Q5_0.gguf](https://huggingface.co/tensorblock/YeungNLP_firefly-ziya-13b-GGUF/blob/main/firefly-ziya-13b-Q5_0.gguf) | Q5_0 | 9.030 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [firefly-ziya-13b-Q5_K_S.gguf](https://huggingface.co/tensorblock/YeungNLP_firefly-ziya-13b-GGUF/blob/main/firefly-ziya-13b-Q5_K_S.gguf) | Q5_K_S | 9.030 GB | large, low quality loss - recommended | | [firefly-ziya-13b-Q5_K_M.gguf](https://huggingface.co/tensorblock/YeungNLP_firefly-ziya-13b-GGUF/blob/main/firefly-ziya-13b-Q5_K_M.gguf) | Q5_K_M | 9.287 GB | large, very low quality loss - recommended | | [firefly-ziya-13b-Q6_K.gguf](https://huggingface.co/tensorblock/YeungNLP_firefly-ziya-13b-GGUF/blob/main/firefly-ziya-13b-Q6_K.gguf) | Q6_K | 10.742 GB | very large, extremely low quality loss | | [firefly-ziya-13b-Q8_0.gguf](https://huggingface.co/tensorblock/YeungNLP_firefly-ziya-13b-GGUF/blob/main/firefly-ziya-13b-Q8_0.gguf) | Q8_0 | 13.912 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/YeungNLP_firefly-ziya-13b-GGUF --include "firefly-ziya-13b-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/YeungNLP_firefly-ziya-13b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Xenova_llama2.c-stories42M-GGUF
tensorblock
2025-06-19T01:43:36Z
94
0
transformers.js
[ "transformers.js", "gguf", "transformers", "TensorBlock", "GGUF", "base_model:Xenova/llama2.c-stories42M", "base_model:quantized:Xenova/llama2.c-stories42M", "endpoints_compatible", "region:us" ]
null
2025-04-25T17:04:36Z
--- library_name: transformers.js tags: - transformers - TensorBlock - GGUF base_model: Xenova/llama2.c-stories42M --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## Xenova/llama2.c-stories42M - GGUF This repo contains GGUF format model files for [Xenova/llama2.c-stories42M](https://huggingface.co/Xenova/llama2.c-stories42M). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format. ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [llama2.c-stories42M-Q2_K.gguf](https://huggingface.co/tensorblock/Xenova_llama2.c-stories42M-GGUF/blob/main/llama2.c-stories42M-Q2_K.gguf) | Q2_K | 0.030 GB | smallest, significant quality loss - not recommended for most purposes | | [llama2.c-stories42M-Q3_K_S.gguf](https://huggingface.co/tensorblock/Xenova_llama2.c-stories42M-GGUF/blob/main/llama2.c-stories42M-Q3_K_S.gguf) | Q3_K_S | 0.033 GB | very small, high quality loss | | [llama2.c-stories42M-Q3_K_M.gguf](https://huggingface.co/tensorblock/Xenova_llama2.c-stories42M-GGUF/blob/main/llama2.c-stories42M-Q3_K_M.gguf) | Q3_K_M | 0.034 GB | very small, high quality loss | | [llama2.c-stories42M-Q3_K_L.gguf](https://huggingface.co/tensorblock/Xenova_llama2.c-stories42M-GGUF/blob/main/llama2.c-stories42M-Q3_K_L.gguf) | Q3_K_L | 0.035 GB | small, substantial quality loss | | [llama2.c-stories42M-Q4_0.gguf](https://huggingface.co/tensorblock/Xenova_llama2.c-stories42M-GGUF/blob/main/llama2.c-stories42M-Q4_0.gguf) | Q4_0 | 0.038 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [llama2.c-stories42M-Q4_K_S.gguf](https://huggingface.co/tensorblock/Xenova_llama2.c-stories42M-GGUF/blob/main/llama2.c-stories42M-Q4_K_S.gguf) | Q4_K_S | 0.039 GB | small, greater quality loss | | [llama2.c-stories42M-Q4_K_M.gguf](https://huggingface.co/tensorblock/Xenova_llama2.c-stories42M-GGUF/blob/main/llama2.c-stories42M-Q4_K_M.gguf) | Q4_K_M | 0.040 GB | medium, balanced quality - recommended | | [llama2.c-stories42M-Q5_0.gguf](https://huggingface.co/tensorblock/Xenova_llama2.c-stories42M-GGUF/blob/main/llama2.c-stories42M-Q5_0.gguf) | Q5_0 | 0.043 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [llama2.c-stories42M-Q5_K_S.gguf](https://huggingface.co/tensorblock/Xenova_llama2.c-stories42M-GGUF/blob/main/llama2.c-stories42M-Q5_K_S.gguf) | Q5_K_S | 0.043 GB | large, low quality loss - recommended | | [llama2.c-stories42M-Q5_K_M.gguf](https://huggingface.co/tensorblock/Xenova_llama2.c-stories42M-GGUF/blob/main/llama2.c-stories42M-Q5_K_M.gguf) | Q5_K_M | 0.044 GB | large, very low quality loss - recommended | | [llama2.c-stories42M-Q6_K.gguf](https://huggingface.co/tensorblock/Xenova_llama2.c-stories42M-GGUF/blob/main/llama2.c-stories42M-Q6_K.gguf) | Q6_K | 0.050 GB | very large, extremely low quality loss | | [llama2.c-stories42M-Q8_0.gguf](https://huggingface.co/tensorblock/Xenova_llama2.c-stories42M-GGUF/blob/main/llama2.c-stories42M-Q8_0.gguf) | Q8_0 | 0.062 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Xenova_llama2.c-stories42M-GGUF --include "llama2.c-stories42M-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Xenova_llama2.c-stories42M-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/TheBloke_Vicuna-33B-1-3-SuperHOT-8K-fp16-GGUF
tensorblock
2025-06-19T01:43:33Z
59
1
null
[ "gguf", "TensorBlock", "GGUF", "base_model:TheBloke/Vicuna-33B-1-3-SuperHOT-8K-fp16", "base_model:quantized:TheBloke/Vicuna-33B-1-3-SuperHOT-8K-fp16", "license:other", "region:us" ]
null
2025-04-25T13:24:59Z
--- inference: false license: other tags: - TensorBlock - GGUF base_model: TheBloke/Vicuna-33B-1-3-SuperHOT-8K-fp16 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## TheBloke/Vicuna-33B-1-3-SuperHOT-8K-fp16 - GGUF This repo contains GGUF format model files for [TheBloke/Vicuna-33B-1-3-SuperHOT-8K-fp16](https://huggingface.co/TheBloke/Vicuna-33B-1-3-SuperHOT-8K-fp16). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format. ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Vicuna-33B-1-3-SuperHOT-8K-fp16-Q2_K.gguf](https://huggingface.co/tensorblock/TheBloke_Vicuna-33B-1-3-SuperHOT-8K-fp16-GGUF/blob/main/Vicuna-33B-1-3-SuperHOT-8K-fp16-Q2_K.gguf) | Q2_K | 12.049 GB | smallest, significant quality loss - not recommended for most purposes | | [Vicuna-33B-1-3-SuperHOT-8K-fp16-Q3_K_S.gguf](https://huggingface.co/tensorblock/TheBloke_Vicuna-33B-1-3-SuperHOT-8K-fp16-GGUF/blob/main/Vicuna-33B-1-3-SuperHOT-8K-fp16-Q3_K_S.gguf) | Q3_K_S | 14.064 GB | very small, high quality loss | | [Vicuna-33B-1-3-SuperHOT-8K-fp16-Q3_K_M.gguf](https://huggingface.co/tensorblock/TheBloke_Vicuna-33B-1-3-SuperHOT-8K-fp16-GGUF/blob/main/Vicuna-33B-1-3-SuperHOT-8K-fp16-Q3_K_M.gguf) | Q3_K_M | 15.776 GB | very small, high quality loss | | [Vicuna-33B-1-3-SuperHOT-8K-fp16-Q3_K_L.gguf](https://huggingface.co/tensorblock/TheBloke_Vicuna-33B-1-3-SuperHOT-8K-fp16-GGUF/blob/main/Vicuna-33B-1-3-SuperHOT-8K-fp16-Q3_K_L.gguf) | Q3_K_L | 17.280 GB | small, substantial quality loss | | [Vicuna-33B-1-3-SuperHOT-8K-fp16-Q4_0.gguf](https://huggingface.co/tensorblock/TheBloke_Vicuna-33B-1-3-SuperHOT-8K-fp16-GGUF/blob/main/Vicuna-33B-1-3-SuperHOT-8K-fp16-Q4_0.gguf) | Q4_0 | 18.356 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Vicuna-33B-1-3-SuperHOT-8K-fp16-Q4_K_S.gguf](https://huggingface.co/tensorblock/TheBloke_Vicuna-33B-1-3-SuperHOT-8K-fp16-GGUF/blob/main/Vicuna-33B-1-3-SuperHOT-8K-fp16-Q4_K_S.gguf) | Q4_K_S | 18.482 GB | small, greater quality loss | | [Vicuna-33B-1-3-SuperHOT-8K-fp16-Q4_K_M.gguf](https://huggingface.co/tensorblock/TheBloke_Vicuna-33B-1-3-SuperHOT-8K-fp16-GGUF/blob/main/Vicuna-33B-1-3-SuperHOT-8K-fp16-Q4_K_M.gguf) | Q4_K_M | 19.621 GB | medium, balanced quality - recommended | | [Vicuna-33B-1-3-SuperHOT-8K-fp16-Q5_0.gguf](https://huggingface.co/tensorblock/TheBloke_Vicuna-33B-1-3-SuperHOT-8K-fp16-GGUF/blob/main/Vicuna-33B-1-3-SuperHOT-8K-fp16-Q5_0.gguf) | Q5_0 | 22.395 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Vicuna-33B-1-3-SuperHOT-8K-fp16-Q5_K_S.gguf](https://huggingface.co/tensorblock/TheBloke_Vicuna-33B-1-3-SuperHOT-8K-fp16-GGUF/blob/main/Vicuna-33B-1-3-SuperHOT-8K-fp16-Q5_K_S.gguf) | Q5_K_S | 22.395 GB | large, low quality loss - recommended | | [Vicuna-33B-1-3-SuperHOT-8K-fp16-Q5_K_M.gguf](https://huggingface.co/tensorblock/TheBloke_Vicuna-33B-1-3-SuperHOT-8K-fp16-GGUF/blob/main/Vicuna-33B-1-3-SuperHOT-8K-fp16-Q5_K_M.gguf) | Q5_K_M | 23.047 GB | large, very low quality loss - recommended | | [Vicuna-33B-1-3-SuperHOT-8K-fp16-Q6_K.gguf](https://huggingface.co/tensorblock/TheBloke_Vicuna-33B-1-3-SuperHOT-8K-fp16-GGUF/blob/main/Vicuna-33B-1-3-SuperHOT-8K-fp16-Q6_K.gguf) | Q6_K | 26.687 GB | very large, extremely low quality loss | | [Vicuna-33B-1-3-SuperHOT-8K-fp16-Q8_0.gguf](https://huggingface.co/tensorblock/TheBloke_Vicuna-33B-1-3-SuperHOT-8K-fp16-GGUF/blob/main/Vicuna-33B-1-3-SuperHOT-8K-fp16-Q8_0.gguf) | Q8_0 | 34.565 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/TheBloke_Vicuna-33B-1-3-SuperHOT-8K-fp16-GGUF --include "Vicuna-33B-1-3-SuperHOT-8K-fp16-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/TheBloke_Vicuna-33B-1-3-SuperHOT-8K-fp16-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/WDKT_Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-GGUF
tensorblock
2025-06-19T01:43:26Z
40
0
null
[ "gguf", "TensorBlock", "GGUF", "text-generation", "zh", "en", "base_model:WDKT/Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B", "base_model:quantized:WDKT/Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B", "license:llama3", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-04-25T12:55:36Z
--- license: llama3 language: - zh - en pipeline_tag: text-generation tags: - TensorBlock - GGUF base_model: WDKT/Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## WDKT/Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B - GGUF This repo contains GGUF format model files for [WDKT/Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B](https://huggingface.co/WDKT/Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> {prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-Q2_K.gguf](https://huggingface.co/tensorblock/WDKT_Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-GGUF/blob/main/Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-Q2_K.gguf) | Q2_K | 26.375 GB | smallest, significant quality loss - not recommended for most purposes | | [Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-Q3_K_S.gguf](https://huggingface.co/tensorblock/WDKT_Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-GGUF/blob/main/Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-Q3_K_S.gguf) | Q3_K_S | 30.912 GB | very small, high quality loss | | [Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-Q3_K_M.gguf](https://huggingface.co/tensorblock/WDKT_Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-GGUF/blob/main/Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-Q3_K_M.gguf) | Q3_K_M | 34.267 GB | very small, high quality loss | | [Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-Q3_K_L.gguf](https://huggingface.co/tensorblock/WDKT_Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-GGUF/blob/main/Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-Q3_K_L.gguf) | Q3_K_L | 37.141 GB | small, substantial quality loss | | [Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-Q4_0.gguf](https://huggingface.co/tensorblock/WDKT_Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-GGUF/blob/main/Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-Q4_0.gguf) | Q4_0 | 39.970 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-Q4_K_S.gguf](https://huggingface.co/tensorblock/WDKT_Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-GGUF/blob/main/Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-Q4_K_S.gguf) | Q4_K_S | 40.347 GB | small, greater quality loss | | [Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-Q4_K_M.gguf](https://huggingface.co/tensorblock/WDKT_Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-GGUF/blob/main/Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-Q4_K_M.gguf) | Q4_K_M | 42.520 GB | medium, balanced quality - recommended | | [Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-Q5_0.gguf](https://huggingface.co/tensorblock/WDKT_Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-GGUF/blob/main/Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-Q5_0.gguf) | Q5_0 | 48.657 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-Q5_K_S.gguf](https://huggingface.co/tensorblock/WDKT_Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-GGUF/blob/main/Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-Q5_K_S.gguf) | Q5_K_S | 48.657 GB | large, low quality loss - recommended | | [Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-Q5_K_M.gguf](https://huggingface.co/tensorblock/WDKT_Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-GGUF/blob/main/Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-Q5_K_M.gguf) | Q5_K_M | 49.950 GB | large, very low quality loss - recommended | | [Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-Q6_K](https://huggingface.co/tensorblock/WDKT_Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-GGUF/blob/main/Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-Q6_K) | Q6_K | 57.888 GB | very large, extremely low quality loss | | [Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-Q8_0](https://huggingface.co/tensorblock/WDKT_Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-GGUF/blob/main/Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-Q8_0) | Q8_0 | 74.975 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/WDKT_Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-GGUF --include "Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/WDKT_Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
visolex/bartpho-emotion
visolex
2025-06-19T01:43:05Z
1
0
null
[ "safetensors", "mbart", "emotion-recognition", "vietnamese", "bartpho", "text-classification", "vi", "dataset:VSMEC", "base_model:vinai/bartpho-syllable", "base_model:finetune:vinai/bartpho-syllable", "license:apache-2.0", "model-index", "region:us" ]
text-classification
2025-06-16T15:07:38Z
--- language: vi tags: - emotion-recognition - vietnamese - bartpho license: apache-2.0 datasets: - VSMEC metrics: - accuracy - f1 model-index: - name: bartpho-emotion results: - task: type: text-classification name: Emotion Recognition dataset: name: VSMEC type: custom metrics: - name: Accuracy type: accuracy value: <INSERT_ACCURACY> - name: F1 Score type: f1 value: <INSERT_F1_SCORE> base_model: - vinai/bartpho-syllable pipeline_tag: text-classification --- # bartpho-emotion: Emotion Recognition for Vietnamese Text This model is a fine-tuned version of [`vinai/bartpho-syllable`](https://huggingface.co/vinai/bartpho-syllable) on the **VSMEC** dataset for emotion recognition in Vietnamese text. It achieves state-of-the-art performance on this task. ## Model Details - **Base Model**: [`vinai/bartpho-syllable`](https://huggingface.co/vinai/bartpho-syllable) - **Dataset**: [VSMEC](https://github.com/uitnlp/vsmec) (Vietnamese Social Media Emotion Corpus) - **Fine-tuning Framework**: HuggingFace Transformers - **Hyperparameters**: - Batch size: `32` - Learning rate: `5e-5` - Epochs: `100` - Max sequence length: `256` ## Dataset The model was trained on the **VSMEC** dataset, which contains Vietnamese social media text annotated with emotion labels. The dataset includes the following emotion categories: `{"Anger": 0, "Disgust": 1, "Enjoyment": 2, "Fear": 3, "Other": 4, "Sadness": 5, "Surprise": 6}`. ## Results The model was evaluated using the following metrics: - **Accuracy**: `<INSERT_ACCURACY>` - **F1 Score**: `<INSERT_F1_SCORE>` ## Usage You can use this model for emotion recognition in Vietnamese text. Below is an example of how to use it with the HuggingFace Transformers library: ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("visolex/bartpho-emotion") model = AutoModelForSequenceClassification.from_pretrained("visolex/bartpho-emotion") text = "TΓ΄i rαΊ₯t vui vΓ¬ hΓ΄m nay trời Δ‘αΊΉp!" inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=256) outputs = model(**inputs) predicted_class = outputs.logits.argmax(dim=-1).item() print(f"Predicted emotion: {predicted_class}")
tensorblock/DeepMount00_Lexora-Lite-3B_v2-GGUF
tensorblock
2025-06-19T01:42:31Z
59
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "dataset:DeepMount00/Sonnet-3.5-ITA-INSTRUCTION", "dataset:DeepMount00/Sonnet-3.5-ITA-DPO", "base_model:DeepMount00/Lexora-Lite-3B_v2", "base_model:quantized:DeepMount00/Lexora-Lite-3B_v2", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-23T23:09:03Z
--- library_name: transformers datasets: - DeepMount00/Sonnet-3.5-ITA-INSTRUCTION - DeepMount00/Sonnet-3.5-ITA-DPO tags: - TensorBlock - GGUF base_model: DeepMount00/Lexora-Lite-3B_v2 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## DeepMount00/Lexora-Lite-3B_v2 - GGUF This repo contains GGUF format model files for [DeepMount00/Lexora-Lite-3B_v2](https://huggingface.co/DeepMount00/Lexora-Lite-3B_v2). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Lexora-Lite-3B_v2-Q2_K.gguf](https://huggingface.co/tensorblock/DeepMount00_Lexora-Lite-3B_v2-GGUF/blob/main/Lexora-Lite-3B_v2-Q2_K.gguf) | Q2_K | 1.275 GB | smallest, significant quality loss - not recommended for most purposes | | [Lexora-Lite-3B_v2-Q3_K_S.gguf](https://huggingface.co/tensorblock/DeepMount00_Lexora-Lite-3B_v2-GGUF/blob/main/Lexora-Lite-3B_v2-Q3_K_S.gguf) | Q3_K_S | 1.454 GB | very small, high quality loss | | [Lexora-Lite-3B_v2-Q3_K_M.gguf](https://huggingface.co/tensorblock/DeepMount00_Lexora-Lite-3B_v2-GGUF/blob/main/Lexora-Lite-3B_v2-Q3_K_M.gguf) | Q3_K_M | 1.590 GB | very small, high quality loss | | [Lexora-Lite-3B_v2-Q3_K_L.gguf](https://huggingface.co/tensorblock/DeepMount00_Lexora-Lite-3B_v2-GGUF/blob/main/Lexora-Lite-3B_v2-Q3_K_L.gguf) | Q3_K_L | 1.707 GB | small, substantial quality loss | | [Lexora-Lite-3B_v2-Q4_0.gguf](https://huggingface.co/tensorblock/DeepMount00_Lexora-Lite-3B_v2-GGUF/blob/main/Lexora-Lite-3B_v2-Q4_0.gguf) | Q4_0 | 1.823 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Lexora-Lite-3B_v2-Q4_K_S.gguf](https://huggingface.co/tensorblock/DeepMount00_Lexora-Lite-3B_v2-GGUF/blob/main/Lexora-Lite-3B_v2-Q4_K_S.gguf) | Q4_K_S | 1.834 GB | small, greater quality loss | | [Lexora-Lite-3B_v2-Q4_K_M.gguf](https://huggingface.co/tensorblock/DeepMount00_Lexora-Lite-3B_v2-GGUF/blob/main/Lexora-Lite-3B_v2-Q4_K_M.gguf) | Q4_K_M | 1.930 GB | medium, balanced quality - recommended | | [Lexora-Lite-3B_v2-Q5_0.gguf](https://huggingface.co/tensorblock/DeepMount00_Lexora-Lite-3B_v2-GGUF/blob/main/Lexora-Lite-3B_v2-Q5_0.gguf) | Q5_0 | 2.170 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Lexora-Lite-3B_v2-Q5_K_S.gguf](https://huggingface.co/tensorblock/DeepMount00_Lexora-Lite-3B_v2-GGUF/blob/main/Lexora-Lite-3B_v2-Q5_K_S.gguf) | Q5_K_S | 2.170 GB | large, low quality loss - recommended | | [Lexora-Lite-3B_v2-Q5_K_M.gguf](https://huggingface.co/tensorblock/DeepMount00_Lexora-Lite-3B_v2-GGUF/blob/main/Lexora-Lite-3B_v2-Q5_K_M.gguf) | Q5_K_M | 2.225 GB | large, very low quality loss - recommended | | [Lexora-Lite-3B_v2-Q6_K.gguf](https://huggingface.co/tensorblock/DeepMount00_Lexora-Lite-3B_v2-GGUF/blob/main/Lexora-Lite-3B_v2-Q6_K.gguf) | Q6_K | 2.538 GB | very large, extremely low quality loss | | [Lexora-Lite-3B_v2-Q8_0.gguf](https://huggingface.co/tensorblock/DeepMount00_Lexora-Lite-3B_v2-GGUF/blob/main/Lexora-Lite-3B_v2-Q8_0.gguf) | Q8_0 | 3.285 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/DeepMount00_Lexora-Lite-3B_v2-GGUF --include "Lexora-Lite-3B_v2-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/DeepMount00_Lexora-Lite-3B_v2-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/MNCJihunKim_Mistral-7B-SlimOrca-OP-8k-GGUF
tensorblock
2025-06-19T01:42:05Z
3
0
null
[ "gguf", "TensorBlock", "GGUF", "base_model:MNCJihunKim/Mistral-7B-SlimOrca-OP-8k", "base_model:quantized:MNCJihunKim/Mistral-7B-SlimOrca-OP-8k", "endpoints_compatible", "region:us" ]
null
2025-04-23T13:35:05Z
--- base_model: MNCJihunKim/Mistral-7B-SlimOrca-OP-8k tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## MNCJihunKim/Mistral-7B-SlimOrca-OP-8k - GGUF This repo contains GGUF format model files for [MNCJihunKim/Mistral-7B-SlimOrca-OP-8k](https://huggingface.co/MNCJihunKim/Mistral-7B-SlimOrca-OP-8k). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Mistral-7B-SlimOrca-OP-8k-Q2_K.gguf](https://huggingface.co/tensorblock/MNCJihunKim_Mistral-7B-SlimOrca-OP-8k-GGUF/blob/main/Mistral-7B-SlimOrca-OP-8k-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [Mistral-7B-SlimOrca-OP-8k-Q3_K_S.gguf](https://huggingface.co/tensorblock/MNCJihunKim_Mistral-7B-SlimOrca-OP-8k-GGUF/blob/main/Mistral-7B-SlimOrca-OP-8k-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [Mistral-7B-SlimOrca-OP-8k-Q3_K_M.gguf](https://huggingface.co/tensorblock/MNCJihunKim_Mistral-7B-SlimOrca-OP-8k-GGUF/blob/main/Mistral-7B-SlimOrca-OP-8k-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [Mistral-7B-SlimOrca-OP-8k-Q3_K_L.gguf](https://huggingface.co/tensorblock/MNCJihunKim_Mistral-7B-SlimOrca-OP-8k-GGUF/blob/main/Mistral-7B-SlimOrca-OP-8k-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [Mistral-7B-SlimOrca-OP-8k-Q4_0.gguf](https://huggingface.co/tensorblock/MNCJihunKim_Mistral-7B-SlimOrca-OP-8k-GGUF/blob/main/Mistral-7B-SlimOrca-OP-8k-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Mistral-7B-SlimOrca-OP-8k-Q4_K_S.gguf](https://huggingface.co/tensorblock/MNCJihunKim_Mistral-7B-SlimOrca-OP-8k-GGUF/blob/main/Mistral-7B-SlimOrca-OP-8k-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [Mistral-7B-SlimOrca-OP-8k-Q4_K_M.gguf](https://huggingface.co/tensorblock/MNCJihunKim_Mistral-7B-SlimOrca-OP-8k-GGUF/blob/main/Mistral-7B-SlimOrca-OP-8k-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [Mistral-7B-SlimOrca-OP-8k-Q5_0.gguf](https://huggingface.co/tensorblock/MNCJihunKim_Mistral-7B-SlimOrca-OP-8k-GGUF/blob/main/Mistral-7B-SlimOrca-OP-8k-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Mistral-7B-SlimOrca-OP-8k-Q5_K_S.gguf](https://huggingface.co/tensorblock/MNCJihunKim_Mistral-7B-SlimOrca-OP-8k-GGUF/blob/main/Mistral-7B-SlimOrca-OP-8k-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [Mistral-7B-SlimOrca-OP-8k-Q5_K_M.gguf](https://huggingface.co/tensorblock/MNCJihunKim_Mistral-7B-SlimOrca-OP-8k-GGUF/blob/main/Mistral-7B-SlimOrca-OP-8k-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [Mistral-7B-SlimOrca-OP-8k-Q6_K.gguf](https://huggingface.co/tensorblock/MNCJihunKim_Mistral-7B-SlimOrca-OP-8k-GGUF/blob/main/Mistral-7B-SlimOrca-OP-8k-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [Mistral-7B-SlimOrca-OP-8k-Q8_0.gguf](https://huggingface.co/tensorblock/MNCJihunKim_Mistral-7B-SlimOrca-OP-8k-GGUF/blob/main/Mistral-7B-SlimOrca-OP-8k-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/MNCJihunKim_Mistral-7B-SlimOrca-OP-8k-GGUF --include "Mistral-7B-SlimOrca-OP-8k-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/MNCJihunKim_Mistral-7B-SlimOrca-OP-8k-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/mshen2_qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-GGUF
tensorblock
2025-06-19T01:41:56Z
29
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "base_model:mshen2/qwen2.5-7b-v4-short-wrapNW-nextWord-em-up", "base_model:quantized:mshen2/qwen2.5-7b-v4-short-wrapNW-nextWord-em-up", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-23T09:01:00Z
--- library_name: transformers tags: - TensorBlock - GGUF base_model: mshen2/qwen2.5-7b-v4-short-wrapNW-nextWord-em-up --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## mshen2/qwen2.5-7b-v4-short-wrapNW-nextWord-em-up - GGUF This repo contains GGUF format model files for [mshen2/qwen2.5-7b-v4-short-wrapNW-nextWord-em-up](https://huggingface.co/mshen2/qwen2.5-7b-v4-short-wrapNW-nextWord-em-up). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-Q2_K.gguf](https://huggingface.co/tensorblock/mshen2_qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-GGUF/blob/main/qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-Q2_K.gguf) | Q2_K | 3.016 GB | smallest, significant quality loss - not recommended for most purposes | | [qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-Q3_K_S.gguf](https://huggingface.co/tensorblock/mshen2_qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-GGUF/blob/main/qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-Q3_K_S.gguf) | Q3_K_S | 3.492 GB | very small, high quality loss | | [qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-Q3_K_M.gguf](https://huggingface.co/tensorblock/mshen2_qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-GGUF/blob/main/qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-Q3_K_M.gguf) | Q3_K_M | 3.808 GB | very small, high quality loss | | [qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-Q3_K_L.gguf](https://huggingface.co/tensorblock/mshen2_qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-GGUF/blob/main/qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-Q3_K_L.gguf) | Q3_K_L | 4.088 GB | small, substantial quality loss | | [qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-Q4_0.gguf](https://huggingface.co/tensorblock/mshen2_qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-GGUF/blob/main/qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-Q4_0.gguf) | Q4_0 | 4.431 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-Q4_K_S.gguf](https://huggingface.co/tensorblock/mshen2_qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-GGUF/blob/main/qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-Q4_K_S.gguf) | Q4_K_S | 4.458 GB | small, greater quality loss | | [qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-Q4_K_M.gguf](https://huggingface.co/tensorblock/mshen2_qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-GGUF/blob/main/qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-Q4_K_M.gguf) | Q4_K_M | 4.683 GB | medium, balanced quality - recommended | | [qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-Q5_0.gguf](https://huggingface.co/tensorblock/mshen2_qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-GGUF/blob/main/qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-Q5_0.gguf) | Q5_0 | 5.315 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-Q5_K_S.gguf](https://huggingface.co/tensorblock/mshen2_qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-GGUF/blob/main/qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-Q5_K_S.gguf) | Q5_K_S | 5.315 GB | large, low quality loss - recommended | | [qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-Q5_K_M.gguf](https://huggingface.co/tensorblock/mshen2_qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-GGUF/blob/main/qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-Q5_K_M.gguf) | Q5_K_M | 5.445 GB | large, very low quality loss - recommended | | [qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-Q6_K.gguf](https://huggingface.co/tensorblock/mshen2_qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-GGUF/blob/main/qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-Q6_K.gguf) | Q6_K | 6.254 GB | very large, extremely low quality loss | | [qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-Q8_0.gguf](https://huggingface.co/tensorblock/mshen2_qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-GGUF/blob/main/qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-Q8_0.gguf) | Q8_0 | 8.099 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/mshen2_qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-GGUF --include "qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/mshen2_qwen2.5-7b-v4-short-wrapNW-nextWord-em-up-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/PracticeLLM_Custom-KoLLM-13B-v5-GGUF
tensorblock
2025-06-19T01:41:44Z
40
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "text-generation", "ko", "dataset:kyujinpy/KOR-gugugu-platypus-set", "base_model:PracticeLLM/Custom-KoLLM-13B-v5", "base_model:quantized:PracticeLLM/Custom-KoLLM-13B-v5", "license:cc-by-nc-sa-4.0", "endpoints_compatible", "region:us" ]
text-generation
2025-04-23T04:58:08Z
--- language: - ko datasets: - kyujinpy/KOR-gugugu-platypus-set library_name: transformers pipeline_tag: text-generation license: cc-by-nc-sa-4.0 tags: - TensorBlock - GGUF base_model: PracticeLLM/Custom-KoLLM-13B-v5 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## PracticeLLM/Custom-KoLLM-13B-v5 - GGUF This repo contains GGUF format model files for [PracticeLLM/Custom-KoLLM-13B-v5](https://huggingface.co/PracticeLLM/Custom-KoLLM-13B-v5). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format. ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Custom-KoLLM-13B-v5-Q2_K.gguf](https://huggingface.co/tensorblock/PracticeLLM_Custom-KoLLM-13B-v5-GGUF/blob/main/Custom-KoLLM-13B-v5-Q2_K.gguf) | Q2_K | 4.939 GB | smallest, significant quality loss - not recommended for most purposes | | [Custom-KoLLM-13B-v5-Q3_K_S.gguf](https://huggingface.co/tensorblock/PracticeLLM_Custom-KoLLM-13B-v5-GGUF/blob/main/Custom-KoLLM-13B-v5-Q3_K_S.gguf) | Q3_K_S | 5.751 GB | very small, high quality loss | | [Custom-KoLLM-13B-v5-Q3_K_M.gguf](https://huggingface.co/tensorblock/PracticeLLM_Custom-KoLLM-13B-v5-GGUF/blob/main/Custom-KoLLM-13B-v5-Q3_K_M.gguf) | Q3_K_M | 6.430 GB | very small, high quality loss | | [Custom-KoLLM-13B-v5-Q3_K_L.gguf](https://huggingface.co/tensorblock/PracticeLLM_Custom-KoLLM-13B-v5-GGUF/blob/main/Custom-KoLLM-13B-v5-Q3_K_L.gguf) | Q3_K_L | 7.022 GB | small, substantial quality loss | | [Custom-KoLLM-13B-v5-Q4_0.gguf](https://huggingface.co/tensorblock/PracticeLLM_Custom-KoLLM-13B-v5-GGUF/blob/main/Custom-KoLLM-13B-v5-Q4_0.gguf) | Q4_0 | 7.468 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Custom-KoLLM-13B-v5-Q4_K_S.gguf](https://huggingface.co/tensorblock/PracticeLLM_Custom-KoLLM-13B-v5-GGUF/blob/main/Custom-KoLLM-13B-v5-Q4_K_S.gguf) | Q4_K_S | 7.525 GB | small, greater quality loss | | [Custom-KoLLM-13B-v5-Q4_K_M.gguf](https://huggingface.co/tensorblock/PracticeLLM_Custom-KoLLM-13B-v5-GGUF/blob/main/Custom-KoLLM-13B-v5-Q4_K_M.gguf) | Q4_K_M | 7.968 GB | medium, balanced quality - recommended | | [Custom-KoLLM-13B-v5-Q5_0.gguf](https://huggingface.co/tensorblock/PracticeLLM_Custom-KoLLM-13B-v5-GGUF/blob/main/Custom-KoLLM-13B-v5-Q5_0.gguf) | Q5_0 | 9.083 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Custom-KoLLM-13B-v5-Q5_K_S.gguf](https://huggingface.co/tensorblock/PracticeLLM_Custom-KoLLM-13B-v5-GGUF/blob/main/Custom-KoLLM-13B-v5-Q5_K_S.gguf) | Q5_K_S | 9.083 GB | large, low quality loss - recommended | | [Custom-KoLLM-13B-v5-Q5_K_M.gguf](https://huggingface.co/tensorblock/PracticeLLM_Custom-KoLLM-13B-v5-GGUF/blob/main/Custom-KoLLM-13B-v5-Q5_K_M.gguf) | Q5_K_M | 9.341 GB | large, very low quality loss - recommended | | [Custom-KoLLM-13B-v5-Q6_K.gguf](https://huggingface.co/tensorblock/PracticeLLM_Custom-KoLLM-13B-v5-GGUF/blob/main/Custom-KoLLM-13B-v5-Q6_K.gguf) | Q6_K | 10.800 GB | very large, extremely low quality loss | | [Custom-KoLLM-13B-v5-Q8_0.gguf](https://huggingface.co/tensorblock/PracticeLLM_Custom-KoLLM-13B-v5-GGUF/blob/main/Custom-KoLLM-13B-v5-Q8_0.gguf) | Q8_0 | 13.988 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/PracticeLLM_Custom-KoLLM-13B-v5-GGUF --include "Custom-KoLLM-13B-v5-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/PracticeLLM_Custom-KoLLM-13B-v5-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/ALIN-LLM_finetune-llama-3.2-1b-mbpp-GGUF
tensorblock
2025-06-19T01:41:39Z
19
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "base_model:ALIN-LLM/finetune-llama-3.2-1b-mbpp", "base_model:quantized:ALIN-LLM/finetune-llama-3.2-1b-mbpp", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-23T04:43:52Z
--- library_name: transformers tags: - TensorBlock - GGUF base_model: ALIN-LLM/finetune-llama-3.2-1b-mbpp --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## ALIN-LLM/finetune-llama-3.2-1b-mbpp - GGUF This repo contains GGUF format model files for [ALIN-LLM/finetune-llama-3.2-1b-mbpp](https://huggingface.co/ALIN-LLM/finetune-llama-3.2-1b-mbpp). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|system|> {system_prompt} <|user|> {prompt} <|assistant|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [finetune-llama-3.2-1b-mbpp-Q2_K.gguf](https://huggingface.co/tensorblock/ALIN-LLM_finetune-llama-3.2-1b-mbpp-GGUF/blob/main/finetune-llama-3.2-1b-mbpp-Q2_K.gguf) | Q2_K | 0.581 GB | smallest, significant quality loss - not recommended for most purposes | | [finetune-llama-3.2-1b-mbpp-Q3_K_S.gguf](https://huggingface.co/tensorblock/ALIN-LLM_finetune-llama-3.2-1b-mbpp-GGUF/blob/main/finetune-llama-3.2-1b-mbpp-Q3_K_S.gguf) | Q3_K_S | 0.642 GB | very small, high quality loss | | [finetune-llama-3.2-1b-mbpp-Q3_K_M.gguf](https://huggingface.co/tensorblock/ALIN-LLM_finetune-llama-3.2-1b-mbpp-GGUF/blob/main/finetune-llama-3.2-1b-mbpp-Q3_K_M.gguf) | Q3_K_M | 0.691 GB | very small, high quality loss | | [finetune-llama-3.2-1b-mbpp-Q3_K_L.gguf](https://huggingface.co/tensorblock/ALIN-LLM_finetune-llama-3.2-1b-mbpp-GGUF/blob/main/finetune-llama-3.2-1b-mbpp-Q3_K_L.gguf) | Q3_K_L | 0.733 GB | small, substantial quality loss | | [finetune-llama-3.2-1b-mbpp-Q4_0.gguf](https://huggingface.co/tensorblock/ALIN-LLM_finetune-llama-3.2-1b-mbpp-GGUF/blob/main/finetune-llama-3.2-1b-mbpp-Q4_0.gguf) | Q4_0 | 0.771 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [finetune-llama-3.2-1b-mbpp-Q4_K_S.gguf](https://huggingface.co/tensorblock/ALIN-LLM_finetune-llama-3.2-1b-mbpp-GGUF/blob/main/finetune-llama-3.2-1b-mbpp-Q4_K_S.gguf) | Q4_K_S | 0.776 GB | small, greater quality loss | | [finetune-llama-3.2-1b-mbpp-Q4_K_M.gguf](https://huggingface.co/tensorblock/ALIN-LLM_finetune-llama-3.2-1b-mbpp-GGUF/blob/main/finetune-llama-3.2-1b-mbpp-Q4_K_M.gguf) | Q4_K_M | 0.808 GB | medium, balanced quality - recommended | | [finetune-llama-3.2-1b-mbpp-Q5_0.gguf](https://huggingface.co/tensorblock/ALIN-LLM_finetune-llama-3.2-1b-mbpp-GGUF/blob/main/finetune-llama-3.2-1b-mbpp-Q5_0.gguf) | Q5_0 | 0.893 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [finetune-llama-3.2-1b-mbpp-Q5_K_S.gguf](https://huggingface.co/tensorblock/ALIN-LLM_finetune-llama-3.2-1b-mbpp-GGUF/blob/main/finetune-llama-3.2-1b-mbpp-Q5_K_S.gguf) | Q5_K_S | 0.893 GB | large, low quality loss - recommended | | [finetune-llama-3.2-1b-mbpp-Q5_K_M.gguf](https://huggingface.co/tensorblock/ALIN-LLM_finetune-llama-3.2-1b-mbpp-GGUF/blob/main/finetune-llama-3.2-1b-mbpp-Q5_K_M.gguf) | Q5_K_M | 0.911 GB | large, very low quality loss - recommended | | [finetune-llama-3.2-1b-mbpp-Q6_K.gguf](https://huggingface.co/tensorblock/ALIN-LLM_finetune-llama-3.2-1b-mbpp-GGUF/blob/main/finetune-llama-3.2-1b-mbpp-Q6_K.gguf) | Q6_K | 1.022 GB | very large, extremely low quality loss | | [finetune-llama-3.2-1b-mbpp-Q8_0.gguf](https://huggingface.co/tensorblock/ALIN-LLM_finetune-llama-3.2-1b-mbpp-GGUF/blob/main/finetune-llama-3.2-1b-mbpp-Q8_0.gguf) | Q8_0 | 1.321 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/ALIN-LLM_finetune-llama-3.2-1b-mbpp-GGUF --include "finetune-llama-3.2-1b-mbpp-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/ALIN-LLM_finetune-llama-3.2-1b-mbpp-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Danielbrdz_Barcenas-Mistral-7b-GGUF
tensorblock
2025-06-19T01:41:35Z
5
0
null
[ "gguf", "TensorBlock", "GGUF", "en", "es", "dataset:Danielbrdz/Barcenas-lmsys-Dataset", "base_model:Danielbrdz/Barcenas-Mistral-7b", "base_model:quantized:Danielbrdz/Barcenas-Mistral-7b", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-04-23T03:16:33Z
--- license: apache-2.0 datasets: - Danielbrdz/Barcenas-lmsys-Dataset language: - en - es tags: - TensorBlock - GGUF base_model: Danielbrdz/Barcenas-Mistral-7b --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## Danielbrdz/Barcenas-Mistral-7b - GGUF This repo contains GGUF format model files for [Danielbrdz/Barcenas-Mistral-7b](https://huggingface.co/Danielbrdz/Barcenas-Mistral-7b). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format. ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Barcenas-Mistral-7b-Q2_K.gguf](https://huggingface.co/tensorblock/Danielbrdz_Barcenas-Mistral-7b-GGUF/blob/main/Barcenas-Mistral-7b-Q2_K.gguf) | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes | | [Barcenas-Mistral-7b-Q3_K_S.gguf](https://huggingface.co/tensorblock/Danielbrdz_Barcenas-Mistral-7b-GGUF/blob/main/Barcenas-Mistral-7b-Q3_K_S.gguf) | Q3_K_S | 3.165 GB | very small, high quality loss | | [Barcenas-Mistral-7b-Q3_K_M.gguf](https://huggingface.co/tensorblock/Danielbrdz_Barcenas-Mistral-7b-GGUF/blob/main/Barcenas-Mistral-7b-Q3_K_M.gguf) | Q3_K_M | 3.519 GB | very small, high quality loss | | [Barcenas-Mistral-7b-Q3_K_L.gguf](https://huggingface.co/tensorblock/Danielbrdz_Barcenas-Mistral-7b-GGUF/blob/main/Barcenas-Mistral-7b-Q3_K_L.gguf) | Q3_K_L | 3.822 GB | small, substantial quality loss | | [Barcenas-Mistral-7b-Q4_0.gguf](https://huggingface.co/tensorblock/Danielbrdz_Barcenas-Mistral-7b-GGUF/blob/main/Barcenas-Mistral-7b-Q4_0.gguf) | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Barcenas-Mistral-7b-Q4_K_S.gguf](https://huggingface.co/tensorblock/Danielbrdz_Barcenas-Mistral-7b-GGUF/blob/main/Barcenas-Mistral-7b-Q4_K_S.gguf) | Q4_K_S | 4.140 GB | small, greater quality loss | | [Barcenas-Mistral-7b-Q4_K_M.gguf](https://huggingface.co/tensorblock/Danielbrdz_Barcenas-Mistral-7b-GGUF/blob/main/Barcenas-Mistral-7b-Q4_K_M.gguf) | Q4_K_M | 4.368 GB | medium, balanced quality - recommended | | [Barcenas-Mistral-7b-Q5_0.gguf](https://huggingface.co/tensorblock/Danielbrdz_Barcenas-Mistral-7b-GGUF/blob/main/Barcenas-Mistral-7b-Q5_0.gguf) | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Barcenas-Mistral-7b-Q5_K_S.gguf](https://huggingface.co/tensorblock/Danielbrdz_Barcenas-Mistral-7b-GGUF/blob/main/Barcenas-Mistral-7b-Q5_K_S.gguf) | Q5_K_S | 4.998 GB | large, low quality loss - recommended | | [Barcenas-Mistral-7b-Q5_K_M.gguf](https://huggingface.co/tensorblock/Danielbrdz_Barcenas-Mistral-7b-GGUF/blob/main/Barcenas-Mistral-7b-Q5_K_M.gguf) | Q5_K_M | 5.131 GB | large, very low quality loss - recommended | | [Barcenas-Mistral-7b-Q6_K.gguf](https://huggingface.co/tensorblock/Danielbrdz_Barcenas-Mistral-7b-GGUF/blob/main/Barcenas-Mistral-7b-Q6_K.gguf) | Q6_K | 5.942 GB | very large, extremely low quality loss | | [Barcenas-Mistral-7b-Q8_0.gguf](https://huggingface.co/tensorblock/Danielbrdz_Barcenas-Mistral-7b-GGUF/blob/main/Barcenas-Mistral-7b-Q8_0.gguf) | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Danielbrdz_Barcenas-Mistral-7b-GGUF --include "Barcenas-Mistral-7b-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Danielbrdz_Barcenas-Mistral-7b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/mlxha_DeepSeek-R1-Distill-Llama-8B-notemplate-GGUF
tensorblock
2025-06-19T01:41:33Z
1,233
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "base_model:mlxha/DeepSeek-R1-Distill-Llama-8B-notemplate", "base_model:quantized:mlxha/DeepSeek-R1-Distill-Llama-8B-notemplate", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-23T03:15:12Z
--- library_name: transformers tags: - TensorBlock - GGUF base_model: mlxha/DeepSeek-R1-Distill-Llama-8B-notemplate --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## mlxha/DeepSeek-R1-Distill-Llama-8B-notemplate - GGUF This repo contains GGUF format model files for [mlxha/DeepSeek-R1-Distill-Llama-8B-notemplate](https://huggingface.co/mlxha/DeepSeek-R1-Distill-Llama-8B-notemplate). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|begin▁of▁sentence|>{system_prompt} {prompt} ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [DeepSeek-R1-Distill-Llama-8B-notemplate-Q2_K.gguf](https://huggingface.co/tensorblock/mlxha_DeepSeek-R1-Distill-Llama-8B-notemplate-GGUF/blob/main/DeepSeek-R1-Distill-Llama-8B-notemplate-Q2_K.gguf) | Q2_K | 3.179 GB | smallest, significant quality loss - not recommended for most purposes | | [DeepSeek-R1-Distill-Llama-8B-notemplate-Q3_K_S.gguf](https://huggingface.co/tensorblock/mlxha_DeepSeek-R1-Distill-Llama-8B-notemplate-GGUF/blob/main/DeepSeek-R1-Distill-Llama-8B-notemplate-Q3_K_S.gguf) | Q3_K_S | 3.664 GB | very small, high quality loss | | [DeepSeek-R1-Distill-Llama-8B-notemplate-Q3_K_M.gguf](https://huggingface.co/tensorblock/mlxha_DeepSeek-R1-Distill-Llama-8B-notemplate-GGUF/blob/main/DeepSeek-R1-Distill-Llama-8B-notemplate-Q3_K_M.gguf) | Q3_K_M | 4.019 GB | very small, high quality loss | | [DeepSeek-R1-Distill-Llama-8B-notemplate-Q3_K_L.gguf](https://huggingface.co/tensorblock/mlxha_DeepSeek-R1-Distill-Llama-8B-notemplate-GGUF/blob/main/DeepSeek-R1-Distill-Llama-8B-notemplate-Q3_K_L.gguf) | Q3_K_L | 4.322 GB | small, substantial quality loss | | [DeepSeek-R1-Distill-Llama-8B-notemplate-Q4_0.gguf](https://huggingface.co/tensorblock/mlxha_DeepSeek-R1-Distill-Llama-8B-notemplate-GGUF/blob/main/DeepSeek-R1-Distill-Llama-8B-notemplate-Q4_0.gguf) | Q4_0 | 4.661 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [DeepSeek-R1-Distill-Llama-8B-notemplate-Q4_K_S.gguf](https://huggingface.co/tensorblock/mlxha_DeepSeek-R1-Distill-Llama-8B-notemplate-GGUF/blob/main/DeepSeek-R1-Distill-Llama-8B-notemplate-Q4_K_S.gguf) | Q4_K_S | 4.693 GB | small, greater quality loss | | [DeepSeek-R1-Distill-Llama-8B-notemplate-Q4_K_M.gguf](https://huggingface.co/tensorblock/mlxha_DeepSeek-R1-Distill-Llama-8B-notemplate-GGUF/blob/main/DeepSeek-R1-Distill-Llama-8B-notemplate-Q4_K_M.gguf) | Q4_K_M | 4.921 GB | medium, balanced quality - recommended | | [DeepSeek-R1-Distill-Llama-8B-notemplate-Q5_0.gguf](https://huggingface.co/tensorblock/mlxha_DeepSeek-R1-Distill-Llama-8B-notemplate-GGUF/blob/main/DeepSeek-R1-Distill-Llama-8B-notemplate-Q5_0.gguf) | Q5_0 | 5.599 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [DeepSeek-R1-Distill-Llama-8B-notemplate-Q5_K_S.gguf](https://huggingface.co/tensorblock/mlxha_DeepSeek-R1-Distill-Llama-8B-notemplate-GGUF/blob/main/DeepSeek-R1-Distill-Llama-8B-notemplate-Q5_K_S.gguf) | Q5_K_S | 5.599 GB | large, low quality loss - recommended | | [DeepSeek-R1-Distill-Llama-8B-notemplate-Q5_K_M.gguf](https://huggingface.co/tensorblock/mlxha_DeepSeek-R1-Distill-Llama-8B-notemplate-GGUF/blob/main/DeepSeek-R1-Distill-Llama-8B-notemplate-Q5_K_M.gguf) | Q5_K_M | 5.733 GB | large, very low quality loss - recommended | | [DeepSeek-R1-Distill-Llama-8B-notemplate-Q6_K.gguf](https://huggingface.co/tensorblock/mlxha_DeepSeek-R1-Distill-Llama-8B-notemplate-GGUF/blob/main/DeepSeek-R1-Distill-Llama-8B-notemplate-Q6_K.gguf) | Q6_K | 6.596 GB | very large, extremely low quality loss | | [DeepSeek-R1-Distill-Llama-8B-notemplate-Q8_0.gguf](https://huggingface.co/tensorblock/mlxha_DeepSeek-R1-Distill-Llama-8B-notemplate-GGUF/blob/main/DeepSeek-R1-Distill-Llama-8B-notemplate-Q8_0.gguf) | Q8_0 | 8.541 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/mlxha_DeepSeek-R1-Distill-Llama-8B-notemplate-GGUF --include "DeepSeek-R1-Distill-Llama-8B-notemplate-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/mlxha_DeepSeek-R1-Distill-Llama-8B-notemplate-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/trendmicro-ailab_Llama-Primus-Reasoning-GGUF
tensorblock
2025-06-19T01:41:25Z
218
0
transformers
[ "transformers", "gguf", "cybersecurity", "pretraining", "TensorBlock", "GGUF", "text-generation", "en", "dataset:trendmicro-ailab/Primus-Reasoning", "dataset:trendmicro-ailab/Primus-Seed", "dataset:trendmicro-ailab/Primus-FineWeb", "dataset:trendmicro-ailab/Primus-Instruct", "base_model:trendmicro-ailab/Llama-Primus-Reasoning", "base_model:quantized:trendmicro-ailab/Llama-Primus-Reasoning", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-04-23T01:10:39Z
--- license: mit datasets: - trendmicro-ailab/Primus-Reasoning - trendmicro-ailab/Primus-Seed - trendmicro-ailab/Primus-FineWeb - trendmicro-ailab/Primus-Instruct language: - en base_model: trendmicro-ailab/Llama-Primus-Reasoning pipeline_tag: text-generation library_name: transformers tags: - cybersecurity - pretraining - TensorBlock - GGUF extra_gated_fields: Affiliation: text Country: country I want to use this model for: type: select options: - Research - Commercial - label: Other value: other Job title: type: select options: - Student - Research graduate - AI researcher - AI developer/engineer - Cybersecurity researcher - Reporter - Other geo: ip_location --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## trendmicro-ailab/Llama-Primus-Reasoning - GGUF This repo contains GGUF format model files for [trendmicro-ailab/Llama-Primus-Reasoning](https://huggingface.co/trendmicro-ailab/Llama-Primus-Reasoning). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> {prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Llama-Primus-Reasoning-Q2_K.gguf](https://huggingface.co/tensorblock/trendmicro-ailab_Llama-Primus-Reasoning-GGUF/blob/main/Llama-Primus-Reasoning-Q2_K.gguf) | Q2_K | 3.179 GB | smallest, significant quality loss - not recommended for most purposes | | [Llama-Primus-Reasoning-Q3_K_S.gguf](https://huggingface.co/tensorblock/trendmicro-ailab_Llama-Primus-Reasoning-GGUF/blob/main/Llama-Primus-Reasoning-Q3_K_S.gguf) | Q3_K_S | 3.665 GB | very small, high quality loss | | [Llama-Primus-Reasoning-Q3_K_M.gguf](https://huggingface.co/tensorblock/trendmicro-ailab_Llama-Primus-Reasoning-GGUF/blob/main/Llama-Primus-Reasoning-Q3_K_M.gguf) | Q3_K_M | 4.019 GB | very small, high quality loss | | [Llama-Primus-Reasoning-Q3_K_L.gguf](https://huggingface.co/tensorblock/trendmicro-ailab_Llama-Primus-Reasoning-GGUF/blob/main/Llama-Primus-Reasoning-Q3_K_L.gguf) | Q3_K_L | 4.322 GB | small, substantial quality loss | | [Llama-Primus-Reasoning-Q4_0.gguf](https://huggingface.co/tensorblock/trendmicro-ailab_Llama-Primus-Reasoning-GGUF/blob/main/Llama-Primus-Reasoning-Q4_0.gguf) | Q4_0 | 4.661 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Llama-Primus-Reasoning-Q4_K_S.gguf](https://huggingface.co/tensorblock/trendmicro-ailab_Llama-Primus-Reasoning-GGUF/blob/main/Llama-Primus-Reasoning-Q4_K_S.gguf) | Q4_K_S | 4.693 GB | small, greater quality loss | | [Llama-Primus-Reasoning-Q4_K_M.gguf](https://huggingface.co/tensorblock/trendmicro-ailab_Llama-Primus-Reasoning-GGUF/blob/main/Llama-Primus-Reasoning-Q4_K_M.gguf) | Q4_K_M | 4.921 GB | medium, balanced quality - recommended | | [Llama-Primus-Reasoning-Q5_0.gguf](https://huggingface.co/tensorblock/trendmicro-ailab_Llama-Primus-Reasoning-GGUF/blob/main/Llama-Primus-Reasoning-Q5_0.gguf) | Q5_0 | 5.599 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Llama-Primus-Reasoning-Q5_K_S.gguf](https://huggingface.co/tensorblock/trendmicro-ailab_Llama-Primus-Reasoning-GGUF/blob/main/Llama-Primus-Reasoning-Q5_K_S.gguf) | Q5_K_S | 5.599 GB | large, low quality loss - recommended | | [Llama-Primus-Reasoning-Q5_K_M.gguf](https://huggingface.co/tensorblock/trendmicro-ailab_Llama-Primus-Reasoning-GGUF/blob/main/Llama-Primus-Reasoning-Q5_K_M.gguf) | Q5_K_M | 5.733 GB | large, very low quality loss - recommended | | [Llama-Primus-Reasoning-Q6_K.gguf](https://huggingface.co/tensorblock/trendmicro-ailab_Llama-Primus-Reasoning-GGUF/blob/main/Llama-Primus-Reasoning-Q6_K.gguf) | Q6_K | 6.596 GB | very large, extremely low quality loss | | [Llama-Primus-Reasoning-Q8_0.gguf](https://huggingface.co/tensorblock/trendmicro-ailab_Llama-Primus-Reasoning-GGUF/blob/main/Llama-Primus-Reasoning-Q8_0.gguf) | Q8_0 | 8.541 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/trendmicro-ailab_Llama-Primus-Reasoning-GGUF --include "Llama-Primus-Reasoning-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/trendmicro-ailab_Llama-Primus-Reasoning-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
DS4H-ICTU/linguo_mt_fub_en
DS4H-ICTU
2025-06-19T01:40:45Z
0
0
transformers
[ "transformers", "safetensors", "marian", "text2text-generation", "translation", "generated_from_trainer", "base_model:Helsinki-NLP/opus-mt-en-ROMANCE", "base_model:finetune:Helsinki-NLP/opus-mt-en-ROMANCE", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2025-06-19T01:40:07Z
--- library_name: transformers license: apache-2.0 base_model: Helsinki-NLP/opus-mt-en-ROMANCE tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: linguo_mt_fub_en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # linguo_mt_fub_en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ROMANCE](https://huggingface.co/Helsinki-NLP/opus-mt-en-ROMANCE) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6569 - Bleu: 11.2552 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.8906 | 1.0 | 1534 | 0.7769 | 7.7862 | | 0.7049 | 2.0 | 3068 | 0.6852 | 9.9392 | | 0.6793 | 3.0 | 4602 | 0.6569 | 11.2552 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1
tensorblock/s1k-GGUF
tensorblock
2025-06-19T01:40:14Z
148
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "base_model:TianshengHuang/s1k", "base_model:quantized:TianshengHuang/s1k", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-23T15:14:48Z
--- library_name: transformers tags: - TensorBlock - GGUF base_model: TianshengHuang/s1k --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## TianshengHuang/s1k - GGUF This repo contains GGUF format model files for [TianshengHuang/s1k](https://huggingface.co/TianshengHuang/s1k). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4882](https://github.com/ggml-org/llama.cpp/commit/be7c3034108473beda214fd1d7c98fd6a7a3bdf5). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [s1k-Q2_K.gguf](https://huggingface.co/tensorblock/s1k-GGUF/blob/main/s1k-Q2_K.gguf) | Q2_K | 12.313 GB | smallest, significant quality loss - not recommended for most purposes | | [s1k-Q3_K_S.gguf](https://huggingface.co/tensorblock/s1k-GGUF/blob/main/s1k-Q3_K_S.gguf) | Q3_K_S | 14.392 GB | very small, high quality loss | | [s1k-Q3_K_M.gguf](https://huggingface.co/tensorblock/s1k-GGUF/blob/main/s1k-Q3_K_M.gguf) | Q3_K_M | 15.935 GB | very small, high quality loss | | [s1k-Q3_K_L.gguf](https://huggingface.co/tensorblock/s1k-GGUF/blob/main/s1k-Q3_K_L.gguf) | Q3_K_L | 17.247 GB | small, substantial quality loss | | [s1k-Q4_0.gguf](https://huggingface.co/tensorblock/s1k-GGUF/blob/main/s1k-Q4_0.gguf) | Q4_0 | 18.640 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [s1k-Q4_K_S.gguf](https://huggingface.co/tensorblock/s1k-GGUF/blob/main/s1k-Q4_K_S.gguf) | Q4_K_S | 18.784 GB | small, greater quality loss | | [s1k-Q4_K_M.gguf](https://huggingface.co/tensorblock/s1k-GGUF/blob/main/s1k-Q4_K_M.gguf) | Q4_K_M | 19.851 GB | medium, balanced quality - recommended | | [s1k-Q5_0.gguf](https://huggingface.co/tensorblock/s1k-GGUF/blob/main/s1k-Q5_0.gguf) | Q5_0 | 22.638 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [s1k-Q5_K_S.gguf](https://huggingface.co/tensorblock/s1k-GGUF/blob/main/s1k-Q5_K_S.gguf) | Q5_K_S | 22.638 GB | large, low quality loss - recommended | | [s1k-Q5_K_M.gguf](https://huggingface.co/tensorblock/s1k-GGUF/blob/main/s1k-Q5_K_M.gguf) | Q5_K_M | 23.262 GB | large, very low quality loss - recommended | | [s1k-Q6_K.gguf](https://huggingface.co/tensorblock/s1k-GGUF/blob/main/s1k-Q6_K.gguf) | Q6_K | 26.886 GB | very large, extremely low quality loss | | [s1k-Q8_0.gguf](https://huggingface.co/tensorblock/s1k-GGUF/blob/main/s1k-Q8_0.gguf) | Q8_0 | 34.821 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/s1k-GGUF --include "s1k-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/s1k-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/context_tuned_patient_matching_Llama-3.2-1B-Instruct-GGUF
tensorblock
2025-06-19T01:39:39Z
5
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "TensorBlock", "GGUF", "base_model:NAM00/context_tuned_patient_matching_Llama-3.2-1B-Instruct", "base_model:quantized:NAM00/context_tuned_patient_matching_Llama-3.2-1B-Instruct", "license:llama3.2", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-23T08:29:59Z
--- library_name: transformers license: llama3.2 base_model: NAM00/context_tuned_patient_matching_Llama-3.2-1B-Instruct tags: - generated_from_trainer - TensorBlock - GGUF model-index: - name: context_tuned_patient_matching_Llama-3.2-1B-Instruct results: [] --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## NAM00/context_tuned_patient_matching_Llama-3.2-1B-Instruct - GGUF This repo contains GGUF format model files for [NAM00/context_tuned_patient_matching_Llama-3.2-1B-Instruct](https://huggingface.co/NAM00/context_tuned_patient_matching_Llama-3.2-1B-Instruct). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4882](https://github.com/ggml-org/llama.cpp/commit/be7c3034108473beda214fd1d7c98fd6a7a3bdf5). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> Cutting Knowledge Date: December 2023 Today Date: 23 Mar 2025 {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> {prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [context_tuned_patient_matching_Llama-3.2-1B-Instruct-Q2_K.gguf](https://huggingface.co/tensorblock/context_tuned_patient_matching_Llama-3.2-1B-Instruct-GGUF/blob/main/context_tuned_patient_matching_Llama-3.2-1B-Instruct-Q2_K.gguf) | Q2_K | 0.581 GB | smallest, significant quality loss - not recommended for most purposes | | [context_tuned_patient_matching_Llama-3.2-1B-Instruct-Q3_K_S.gguf](https://huggingface.co/tensorblock/context_tuned_patient_matching_Llama-3.2-1B-Instruct-GGUF/blob/main/context_tuned_patient_matching_Llama-3.2-1B-Instruct-Q3_K_S.gguf) | Q3_K_S | 0.642 GB | very small, high quality loss | | [context_tuned_patient_matching_Llama-3.2-1B-Instruct-Q3_K_M.gguf](https://huggingface.co/tensorblock/context_tuned_patient_matching_Llama-3.2-1B-Instruct-GGUF/blob/main/context_tuned_patient_matching_Llama-3.2-1B-Instruct-Q3_K_M.gguf) | Q3_K_M | 0.691 GB | very small, high quality loss | | [context_tuned_patient_matching_Llama-3.2-1B-Instruct-Q3_K_L.gguf](https://huggingface.co/tensorblock/context_tuned_patient_matching_Llama-3.2-1B-Instruct-GGUF/blob/main/context_tuned_patient_matching_Llama-3.2-1B-Instruct-Q3_K_L.gguf) | Q3_K_L | 0.733 GB | small, substantial quality loss | | [context_tuned_patient_matching_Llama-3.2-1B-Instruct-Q4_0.gguf](https://huggingface.co/tensorblock/context_tuned_patient_matching_Llama-3.2-1B-Instruct-GGUF/blob/main/context_tuned_patient_matching_Llama-3.2-1B-Instruct-Q4_0.gguf) | Q4_0 | 0.771 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [context_tuned_patient_matching_Llama-3.2-1B-Instruct-Q4_K_S.gguf](https://huggingface.co/tensorblock/context_tuned_patient_matching_Llama-3.2-1B-Instruct-GGUF/blob/main/context_tuned_patient_matching_Llama-3.2-1B-Instruct-Q4_K_S.gguf) | Q4_K_S | 0.776 GB | small, greater quality loss | | [context_tuned_patient_matching_Llama-3.2-1B-Instruct-Q4_K_M.gguf](https://huggingface.co/tensorblock/context_tuned_patient_matching_Llama-3.2-1B-Instruct-GGUF/blob/main/context_tuned_patient_matching_Llama-3.2-1B-Instruct-Q4_K_M.gguf) | Q4_K_M | 0.808 GB | medium, balanced quality - recommended | | [context_tuned_patient_matching_Llama-3.2-1B-Instruct-Q5_0.gguf](https://huggingface.co/tensorblock/context_tuned_patient_matching_Llama-3.2-1B-Instruct-GGUF/blob/main/context_tuned_patient_matching_Llama-3.2-1B-Instruct-Q5_0.gguf) | Q5_0 | 0.893 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [context_tuned_patient_matching_Llama-3.2-1B-Instruct-Q5_K_S.gguf](https://huggingface.co/tensorblock/context_tuned_patient_matching_Llama-3.2-1B-Instruct-GGUF/blob/main/context_tuned_patient_matching_Llama-3.2-1B-Instruct-Q5_K_S.gguf) | Q5_K_S | 0.893 GB | large, low quality loss - recommended | | [context_tuned_patient_matching_Llama-3.2-1B-Instruct-Q5_K_M.gguf](https://huggingface.co/tensorblock/context_tuned_patient_matching_Llama-3.2-1B-Instruct-GGUF/blob/main/context_tuned_patient_matching_Llama-3.2-1B-Instruct-Q5_K_M.gguf) | Q5_K_M | 0.912 GB | large, very low quality loss - recommended | | [context_tuned_patient_matching_Llama-3.2-1B-Instruct-Q6_K.gguf](https://huggingface.co/tensorblock/context_tuned_patient_matching_Llama-3.2-1B-Instruct-GGUF/blob/main/context_tuned_patient_matching_Llama-3.2-1B-Instruct-Q6_K.gguf) | Q6_K | 1.022 GB | very large, extremely low quality loss | | [context_tuned_patient_matching_Llama-3.2-1B-Instruct-Q8_0.gguf](https://huggingface.co/tensorblock/context_tuned_patient_matching_Llama-3.2-1B-Instruct-GGUF/blob/main/context_tuned_patient_matching_Llama-3.2-1B-Instruct-Q8_0.gguf) | Q8_0 | 1.321 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/context_tuned_patient_matching_Llama-3.2-1B-Instruct-GGUF --include "context_tuned_patient_matching_Llama-3.2-1B-Instruct-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/context_tuned_patient_matching_Llama-3.2-1B-Instruct-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/gemma-2-2b-neogenesis-ita-GGUF
tensorblock
2025-06-19T01:39:12Z
250
1
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "text-generation", "it", "en", "dataset:efederici/capybara-claude-15k-ita", "dataset:anakin87/fine-instructions-ita-70k", "dataset:mii-llm/argilla-math-preferences-it", "dataset:ruggsea/wsdm2024-cot-dataset", "dataset:anakin87/evol-dpo-ita-reranked", "dataset:anakin87/gemma-vs-gemma-preferences", "dataset:mlabonne/orpo-dpo-mix-40k", "base_model:anakin87/gemma-2-2b-neogenesis-ita", "base_model:quantized:anakin87/gemma-2-2b-neogenesis-ita", "license:gemma", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-03-23T04:38:37Z
--- license: gemma language: - it - en base_model: anakin87/gemma-2-2b-neogenesis-ita pipeline_tag: text-generation library_name: transformers datasets: - efederici/capybara-claude-15k-ita - anakin87/fine-instructions-ita-70k - mii-llm/argilla-math-preferences-it - ruggsea/wsdm2024-cot-dataset - anakin87/evol-dpo-ita-reranked - anakin87/gemma-vs-gemma-preferences - mlabonne/orpo-dpo-mix-40k tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## anakin87/gemma-2-2b-neogenesis-ita - GGUF This repo contains GGUF format model files for [anakin87/gemma-2-2b-neogenesis-ita](https://huggingface.co/anakin87/gemma-2-2b-neogenesis-ita). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4882](https://github.com/ggml-org/llama.cpp/commit/be7c3034108473beda214fd1d7c98fd6a7a3bdf5). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <bos><start_of_turn>user {prompt}<end_of_turn> <start_of_turn>model ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [gemma-2-2b-neogenesis-ita-Q2_K.gguf](https://huggingface.co/tensorblock/gemma-2-2b-neogenesis-ita-GGUF/blob/main/gemma-2-2b-neogenesis-ita-Q2_K.gguf) | Q2_K | 1.230 GB | smallest, significant quality loss - not recommended for most purposes | | [gemma-2-2b-neogenesis-ita-Q3_K_S.gguf](https://huggingface.co/tensorblock/gemma-2-2b-neogenesis-ita-GGUF/blob/main/gemma-2-2b-neogenesis-ita-Q3_K_S.gguf) | Q3_K_S | 1.361 GB | very small, high quality loss | | [gemma-2-2b-neogenesis-ita-Q3_K_M.gguf](https://huggingface.co/tensorblock/gemma-2-2b-neogenesis-ita-GGUF/blob/main/gemma-2-2b-neogenesis-ita-Q3_K_M.gguf) | Q3_K_M | 1.462 GB | very small, high quality loss | | [gemma-2-2b-neogenesis-ita-Q3_K_L.gguf](https://huggingface.co/tensorblock/gemma-2-2b-neogenesis-ita-GGUF/blob/main/gemma-2-2b-neogenesis-ita-Q3_K_L.gguf) | Q3_K_L | 1.550 GB | small, substantial quality loss | | [gemma-2-2b-neogenesis-ita-Q4_0.gguf](https://huggingface.co/tensorblock/gemma-2-2b-neogenesis-ita-GGUF/blob/main/gemma-2-2b-neogenesis-ita-Q4_0.gguf) | Q4_0 | 1.630 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [gemma-2-2b-neogenesis-ita-Q4_K_S.gguf](https://huggingface.co/tensorblock/gemma-2-2b-neogenesis-ita-GGUF/blob/main/gemma-2-2b-neogenesis-ita-Q4_K_S.gguf) | Q4_K_S | 1.639 GB | small, greater quality loss | | [gemma-2-2b-neogenesis-ita-Q4_K_M.gguf](https://huggingface.co/tensorblock/gemma-2-2b-neogenesis-ita-GGUF/blob/main/gemma-2-2b-neogenesis-ita-Q4_K_M.gguf) | Q4_K_M | 1.709 GB | medium, balanced quality - recommended | | [gemma-2-2b-neogenesis-ita-Q5_0.gguf](https://huggingface.co/tensorblock/gemma-2-2b-neogenesis-ita-GGUF/blob/main/gemma-2-2b-neogenesis-ita-Q5_0.gguf) | Q5_0 | 1.883 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [gemma-2-2b-neogenesis-ita-Q5_K_S.gguf](https://huggingface.co/tensorblock/gemma-2-2b-neogenesis-ita-GGUF/blob/main/gemma-2-2b-neogenesis-ita-Q5_K_S.gguf) | Q5_K_S | 1.883 GB | large, low quality loss - recommended | | [gemma-2-2b-neogenesis-ita-Q5_K_M.gguf](https://huggingface.co/tensorblock/gemma-2-2b-neogenesis-ita-GGUF/blob/main/gemma-2-2b-neogenesis-ita-Q5_K_M.gguf) | Q5_K_M | 1.923 GB | large, very low quality loss - recommended | | [gemma-2-2b-neogenesis-ita-Q6_K.gguf](https://huggingface.co/tensorblock/gemma-2-2b-neogenesis-ita-GGUF/blob/main/gemma-2-2b-neogenesis-ita-Q6_K.gguf) | Q6_K | 2.151 GB | very large, extremely low quality loss | | [gemma-2-2b-neogenesis-ita-Q8_0.gguf](https://huggingface.co/tensorblock/gemma-2-2b-neogenesis-ita-GGUF/blob/main/gemma-2-2b-neogenesis-ita-Q8_0.gguf) | Q8_0 | 2.784 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/gemma-2-2b-neogenesis-ita-GGUF --include "gemma-2-2b-neogenesis-ita-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/gemma-2-2b-neogenesis-ita-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/ckpt47k-GGUF
tensorblock
2025-06-19T01:38:20Z
1
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "base_model:hendrydong/ckpt47k", "base_model:quantized:hendrydong/ckpt47k", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-22T14:37:55Z
--- library_name: transformers tags: - TensorBlock - GGUF base_model: hendrydong/ckpt47k --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## hendrydong/ckpt47k - GGUF This repo contains GGUF format model files for [hendrydong/ckpt47k](https://huggingface.co/hendrydong/ckpt47k). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4882](https://github.com/ggml-org/llama.cpp/commit/be7c3034108473beda214fd1d7c98fd6a7a3bdf5). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [ckpt47k-Q2_K.gguf](https://huggingface.co/tensorblock/ckpt47k-GGUF/blob/main/ckpt47k-Q2_K.gguf) | Q2_K | 3.014 GB | smallest, significant quality loss - not recommended for most purposes | | [ckpt47k-Q3_K_S.gguf](https://huggingface.co/tensorblock/ckpt47k-GGUF/blob/main/ckpt47k-Q3_K_S.gguf) | Q3_K_S | 3.491 GB | very small, high quality loss | | [ckpt47k-Q3_K_M.gguf](https://huggingface.co/tensorblock/ckpt47k-GGUF/blob/main/ckpt47k-Q3_K_M.gguf) | Q3_K_M | 3.807 GB | very small, high quality loss | | [ckpt47k-Q3_K_L.gguf](https://huggingface.co/tensorblock/ckpt47k-GGUF/blob/main/ckpt47k-Q3_K_L.gguf) | Q3_K_L | 4.087 GB | small, substantial quality loss | | [ckpt47k-Q4_0.gguf](https://huggingface.co/tensorblock/ckpt47k-GGUF/blob/main/ckpt47k-Q4_0.gguf) | Q4_0 | 4.429 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [ckpt47k-Q4_K_S.gguf](https://huggingface.co/tensorblock/ckpt47k-GGUF/blob/main/ckpt47k-Q4_K_S.gguf) | Q4_K_S | 4.456 GB | small, greater quality loss | | [ckpt47k-Q4_K_M.gguf](https://huggingface.co/tensorblock/ckpt47k-GGUF/blob/main/ckpt47k-Q4_K_M.gguf) | Q4_K_M | 4.681 GB | medium, balanced quality - recommended | | [ckpt47k-Q5_0.gguf](https://huggingface.co/tensorblock/ckpt47k-GGUF/blob/main/ckpt47k-Q5_0.gguf) | Q5_0 | 5.313 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [ckpt47k-Q5_K_S.gguf](https://huggingface.co/tensorblock/ckpt47k-GGUF/blob/main/ckpt47k-Q5_K_S.gguf) | Q5_K_S | 5.313 GB | large, low quality loss - recommended | | [ckpt47k-Q5_K_M.gguf](https://huggingface.co/tensorblock/ckpt47k-GGUF/blob/main/ckpt47k-Q5_K_M.gguf) | Q5_K_M | 5.443 GB | large, very low quality loss - recommended | | [ckpt47k-Q6_K.gguf](https://huggingface.co/tensorblock/ckpt47k-GGUF/blob/main/ckpt47k-Q6_K.gguf) | Q6_K | 6.252 GB | very large, extremely low quality loss | | [ckpt47k-Q8_0.gguf](https://huggingface.co/tensorblock/ckpt47k-GGUF/blob/main/ckpt47k-Q8_0.gguf) | Q8_0 | 8.095 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/ckpt47k-GGUF --include "ckpt47k-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/ckpt47k-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-GGUF
tensorblock
2025-06-19T01:37:46Z
9
0
transformers
[ "transformers", "gguf", "llama-factory", "full", "generated_from_trainer", "TensorBlock", "GGUF", "base_model:mlfoundations-dev/mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b", "base_model:quantized:mlfoundations-dev/mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-22T07:20:34Z
--- library_name: transformers license: other base_model: mlfoundations-dev/mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b tags: - llama-factory - full - generated_from_trainer - TensorBlock - GGUF model-index: - name: mlfoundations-dev_code-stratos-verified-scaled-0.25_stratos_7b results: [] --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## mlfoundations-dev/mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b - GGUF This repo contains GGUF format model files for [mlfoundations-dev/mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b](https://huggingface.co/mlfoundations-dev/mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4882](https://github.com/ggml-org/llama.cpp/commit/be7c3034108473beda214fd1d7c98fd6a7a3bdf5). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-Q2_K.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-GGUF/blob/main/mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-Q2_K.gguf) | Q2_K | 3.016 GB | smallest, significant quality loss - not recommended for most purposes | | [mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-Q3_K_S.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-GGUF/blob/main/mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-Q3_K_S.gguf) | Q3_K_S | 3.492 GB | very small, high quality loss | | [mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-Q3_K_M.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-GGUF/blob/main/mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-Q3_K_M.gguf) | Q3_K_M | 3.808 GB | very small, high quality loss | | [mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-Q3_K_L.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-GGUF/blob/main/mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-Q3_K_L.gguf) | Q3_K_L | 4.088 GB | small, substantial quality loss | | [mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-Q4_0.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-GGUF/blob/main/mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-Q4_0.gguf) | Q4_0 | 4.431 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-Q4_K_S.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-GGUF/blob/main/mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-Q4_K_S.gguf) | Q4_K_S | 4.458 GB | small, greater quality loss | | [mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-Q4_K_M.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-GGUF/blob/main/mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-Q4_K_M.gguf) | Q4_K_M | 4.683 GB | medium, balanced quality - recommended | | [mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-Q5_0.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-GGUF/blob/main/mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-Q5_0.gguf) | Q5_0 | 5.315 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-Q5_K_S.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-GGUF/blob/main/mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-Q5_K_S.gguf) | Q5_K_S | 5.315 GB | large, low quality loss - recommended | | [mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-Q5_K_M.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-GGUF/blob/main/mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-Q5_K_M.gguf) | Q5_K_M | 5.445 GB | large, very low quality loss - recommended | | [mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-Q6_K.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-GGUF/blob/main/mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-Q6_K.gguf) | Q6_K | 6.254 GB | very large, extremely low quality loss | | [mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-Q8_0.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-GGUF/blob/main/mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-Q8_0.gguf) | Q8_0 | 8.099 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-GGUF --include "mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/mlfoundations-dev_code-stratos-verified-scaled-0_25_stratos_7b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/OpenR1-Qwen-7B-Turkish-GGUF
tensorblock
2025-06-19T01:37:41Z
79
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "trl", "sft", "thinking", "reasoning", "deepseek", "qwen", "TensorBlock", "GGUF", "tr", "dataset:WiroAI/dolphin-r1-turkish", "base_model:WiroAI/OpenR1-Qwen-7B-Turkish", "base_model:quantized:WiroAI/OpenR1-Qwen-7B-Turkish", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-22T06:06:35Z
--- datasets: WiroAI/dolphin-r1-turkish library_name: transformers model_name: OpenR1-Qwen-7B-Turkish tags: - generated_from_trainer - trl - sft - thinking - reasoning - deepseek - qwen - TensorBlock - GGUF licence: license license: apache-2.0 language: - tr base_model: WiroAI/OpenR1-Qwen-7B-Turkish --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## WiroAI/OpenR1-Qwen-7B-Turkish - GGUF This repo contains GGUF format model files for [WiroAI/OpenR1-Qwen-7B-Turkish](https://huggingface.co/WiroAI/OpenR1-Qwen-7B-Turkish). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4882](https://github.com/ggml-org/llama.cpp/commit/be7c3034108473beda214fd1d7c98fd6a7a3bdf5). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [OpenR1-Qwen-7B-Turkish-Q2_K.gguf](https://huggingface.co/tensorblock/OpenR1-Qwen-7B-Turkish-GGUF/blob/main/OpenR1-Qwen-7B-Turkish-Q2_K.gguf) | Q2_K | 3.016 GB | smallest, significant quality loss - not recommended for most purposes | | [OpenR1-Qwen-7B-Turkish-Q3_K_S.gguf](https://huggingface.co/tensorblock/OpenR1-Qwen-7B-Turkish-GGUF/blob/main/OpenR1-Qwen-7B-Turkish-Q3_K_S.gguf) | Q3_K_S | 3.492 GB | very small, high quality loss | | [OpenR1-Qwen-7B-Turkish-Q3_K_M.gguf](https://huggingface.co/tensorblock/OpenR1-Qwen-7B-Turkish-GGUF/blob/main/OpenR1-Qwen-7B-Turkish-Q3_K_M.gguf) | Q3_K_M | 3.808 GB | very small, high quality loss | | [OpenR1-Qwen-7B-Turkish-Q3_K_L.gguf](https://huggingface.co/tensorblock/OpenR1-Qwen-7B-Turkish-GGUF/blob/main/OpenR1-Qwen-7B-Turkish-Q3_K_L.gguf) | Q3_K_L | 4.088 GB | small, substantial quality loss | | [OpenR1-Qwen-7B-Turkish-Q4_0.gguf](https://huggingface.co/tensorblock/OpenR1-Qwen-7B-Turkish-GGUF/blob/main/OpenR1-Qwen-7B-Turkish-Q4_0.gguf) | Q4_0 | 4.431 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [OpenR1-Qwen-7B-Turkish-Q4_K_S.gguf](https://huggingface.co/tensorblock/OpenR1-Qwen-7B-Turkish-GGUF/blob/main/OpenR1-Qwen-7B-Turkish-Q4_K_S.gguf) | Q4_K_S | 4.458 GB | small, greater quality loss | | [OpenR1-Qwen-7B-Turkish-Q4_K_M.gguf](https://huggingface.co/tensorblock/OpenR1-Qwen-7B-Turkish-GGUF/blob/main/OpenR1-Qwen-7B-Turkish-Q4_K_M.gguf) | Q4_K_M | 4.683 GB | medium, balanced quality - recommended | | [OpenR1-Qwen-7B-Turkish-Q5_0.gguf](https://huggingface.co/tensorblock/OpenR1-Qwen-7B-Turkish-GGUF/blob/main/OpenR1-Qwen-7B-Turkish-Q5_0.gguf) | Q5_0 | 5.315 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [OpenR1-Qwen-7B-Turkish-Q5_K_S.gguf](https://huggingface.co/tensorblock/OpenR1-Qwen-7B-Turkish-GGUF/blob/main/OpenR1-Qwen-7B-Turkish-Q5_K_S.gguf) | Q5_K_S | 5.315 GB | large, low quality loss - recommended | | [OpenR1-Qwen-7B-Turkish-Q5_K_M.gguf](https://huggingface.co/tensorblock/OpenR1-Qwen-7B-Turkish-GGUF/blob/main/OpenR1-Qwen-7B-Turkish-Q5_K_M.gguf) | Q5_K_M | 5.445 GB | large, very low quality loss - recommended | | [OpenR1-Qwen-7B-Turkish-Q6_K.gguf](https://huggingface.co/tensorblock/OpenR1-Qwen-7B-Turkish-GGUF/blob/main/OpenR1-Qwen-7B-Turkish-Q6_K.gguf) | Q6_K | 6.254 GB | very large, extremely low quality loss | | [OpenR1-Qwen-7B-Turkish-Q8_0.gguf](https://huggingface.co/tensorblock/OpenR1-Qwen-7B-Turkish-GGUF/blob/main/OpenR1-Qwen-7B-Turkish-Q8_0.gguf) | Q8_0 | 8.099 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/OpenR1-Qwen-7B-Turkish-GGUF --include "OpenR1-Qwen-7B-Turkish-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/OpenR1-Qwen-7B-Turkish-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/granite-guardian-3.2-3b-a800m-GGUF
tensorblock
2025-06-19T01:37:19Z
24
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "text-generation", "base_model:ibm-granite/granite-guardian-3.2-3b-a800m", "base_model:quantized:ibm-granite/granite-guardian-3.2-3b-a800m", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-03-22T02:31:37Z
--- license: apache-2.0 pipeline_tag: text-generation library_name: transformers tags: - TensorBlock - GGUF base_model: ibm-granite/granite-guardian-3.2-3b-a800m --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## ibm-granite/granite-guardian-3.2-3b-a800m - GGUF This repo contains GGUF format model files for [ibm-granite/granite-guardian-3.2-3b-a800m](https://huggingface.co/ibm-granite/granite-guardian-3.2-3b-a800m). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4882](https://github.com/ggml-org/llama.cpp/commit/be7c3034108473beda214fd1d7c98fd6a7a3bdf5). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|start_of_role|>user<|end_of_role|>You are a safety agent trying to help determine whether the last user message in the conversation is harmful according to the safety risk definition below. <start_of_conversation> User Message: {prompt} <end_of_conversation> Our safety risk definition is defined below: <start_of_risk_definition> - The last 'User' message is considered universally harmful. <end_of_risk_definition> Is the last user message harmful based on the risk definition? Your answer must be either 'Yes' or 'No'.<|end_of_text|> <|start_of_role|>assistant<|end_of_role|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [granite-guardian-3.2-3b-a800m-Q2_K.gguf](https://huggingface.co/tensorblock/granite-guardian-3.2-3b-a800m-GGUF/blob/main/granite-guardian-3.2-3b-a800m-Q2_K.gguf) | Q2_K | 1.241 GB | smallest, significant quality loss - not recommended for most purposes | | [granite-guardian-3.2-3b-a800m-Q3_K_S.gguf](https://huggingface.co/tensorblock/granite-guardian-3.2-3b-a800m-GGUF/blob/main/granite-guardian-3.2-3b-a800m-Q3_K_S.gguf) | Q3_K_S | 1.456 GB | very small, high quality loss | | [granite-guardian-3.2-3b-a800m-Q3_K_M.gguf](https://huggingface.co/tensorblock/granite-guardian-3.2-3b-a800m-GGUF/blob/main/granite-guardian-3.2-3b-a800m-Q3_K_M.gguf) | Q3_K_M | 1.611 GB | very small, high quality loss | | [granite-guardian-3.2-3b-a800m-Q3_K_L.gguf](https://huggingface.co/tensorblock/granite-guardian-3.2-3b-a800m-GGUF/blob/main/granite-guardian-3.2-3b-a800m-Q3_K_L.gguf) | Q3_K_L | 1.742 GB | small, substantial quality loss | | [granite-guardian-3.2-3b-a800m-Q4_0.gguf](https://huggingface.co/tensorblock/granite-guardian-3.2-3b-a800m-GGUF/blob/main/granite-guardian-3.2-3b-a800m-Q4_0.gguf) | Q4_0 | 1.884 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [granite-guardian-3.2-3b-a800m-Q4_K_S.gguf](https://huggingface.co/tensorblock/granite-guardian-3.2-3b-a800m-GGUF/blob/main/granite-guardian-3.2-3b-a800m-Q4_K_S.gguf) | Q4_K_S | 1.900 GB | small, greater quality loss | | [granite-guardian-3.2-3b-a800m-Q4_K_M.gguf](https://huggingface.co/tensorblock/granite-guardian-3.2-3b-a800m-GGUF/blob/main/granite-guardian-3.2-3b-a800m-Q4_K_M.gguf) | Q4_K_M | 2.017 GB | medium, balanced quality - recommended | | [granite-guardian-3.2-3b-a800m-Q5_0.gguf](https://huggingface.co/tensorblock/granite-guardian-3.2-3b-a800m-GGUF/blob/main/granite-guardian-3.2-3b-a800m-Q5_0.gguf) | Q5_0 | 2.287 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [granite-guardian-3.2-3b-a800m-Q5_K_S.gguf](https://huggingface.co/tensorblock/granite-guardian-3.2-3b-a800m-GGUF/blob/main/granite-guardian-3.2-3b-a800m-Q5_K_S.gguf) | Q5_K_S | 2.287 GB | large, low quality loss - recommended | | [granite-guardian-3.2-3b-a800m-Q5_K_M.gguf](https://huggingface.co/tensorblock/granite-guardian-3.2-3b-a800m-GGUF/blob/main/granite-guardian-3.2-3b-a800m-Q5_K_M.gguf) | Q5_K_M | 2.355 GB | large, very low quality loss - recommended | | [granite-guardian-3.2-3b-a800m-Q6_K.gguf](https://huggingface.co/tensorblock/granite-guardian-3.2-3b-a800m-GGUF/blob/main/granite-guardian-3.2-3b-a800m-Q6_K.gguf) | Q6_K | 2.714 GB | very large, extremely low quality loss | | [granite-guardian-3.2-3b-a800m-Q8_0.gguf](https://huggingface.co/tensorblock/granite-guardian-3.2-3b-a800m-GGUF/blob/main/granite-guardian-3.2-3b-a800m-Q8_0.gguf) | Q8_0 | 3.513 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/granite-guardian-3.2-3b-a800m-GGUF --include "granite-guardian-3.2-3b-a800m-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/granite-guardian-3.2-3b-a800m-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/s1.1-14B-GGUF
tensorblock
2025-06-19T01:36:32Z
6
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "trl", "sft", "TensorBlock", "GGUF", "base_model:simplescaling/s1.1-14B", "base_model:quantized:simplescaling/s1.1-14B", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-21T14:26:51Z
--- base_model: simplescaling/s1.1-14B library_name: transformers model_name: Qwen2.5-14B-Instruct-20250308_204224 tags: - generated_from_trainer - trl - sft - TensorBlock - GGUF licence: license --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## simplescaling/s1.1-14B - GGUF This repo contains GGUF format model files for [simplescaling/s1.1-14B](https://huggingface.co/simplescaling/s1.1-14B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4882](https://github.com/ggml-org/llama.cpp/commit/be7c3034108473beda214fd1d7c98fd6a7a3bdf5). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [s1.1-14B-Q2_K.gguf](https://huggingface.co/tensorblock/s1.1-14B-GGUF/blob/main/s1.1-14B-Q2_K.gguf) | Q2_K | 5.770 GB | smallest, significant quality loss - not recommended for most purposes | | [s1.1-14B-Q3_K_S.gguf](https://huggingface.co/tensorblock/s1.1-14B-GGUF/blob/main/s1.1-14B-Q3_K_S.gguf) | Q3_K_S | 6.660 GB | very small, high quality loss | | [s1.1-14B-Q3_K_M.gguf](https://huggingface.co/tensorblock/s1.1-14B-GGUF/blob/main/s1.1-14B-Q3_K_M.gguf) | Q3_K_M | 7.339 GB | very small, high quality loss | | [s1.1-14B-Q3_K_L.gguf](https://huggingface.co/tensorblock/s1.1-14B-GGUF/blob/main/s1.1-14B-Q3_K_L.gguf) | Q3_K_L | 7.925 GB | small, substantial quality loss | | [s1.1-14B-Q4_0.gguf](https://huggingface.co/tensorblock/s1.1-14B-GGUF/blob/main/s1.1-14B-Q4_0.gguf) | Q4_0 | 8.518 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [s1.1-14B-Q4_K_S.gguf](https://huggingface.co/tensorblock/s1.1-14B-GGUF/blob/main/s1.1-14B-Q4_K_S.gguf) | Q4_K_S | 8.573 GB | small, greater quality loss | | [s1.1-14B-Q4_K_M.gguf](https://huggingface.co/tensorblock/s1.1-14B-GGUF/blob/main/s1.1-14B-Q4_K_M.gguf) | Q4_K_M | 8.988 GB | medium, balanced quality - recommended | | [s1.1-14B-Q5_0.gguf](https://huggingface.co/tensorblock/s1.1-14B-GGUF/blob/main/s1.1-14B-Q5_0.gguf) | Q5_0 | 10.267 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [s1.1-14B-Q5_K_S.gguf](https://huggingface.co/tensorblock/s1.1-14B-GGUF/blob/main/s1.1-14B-Q5_K_S.gguf) | Q5_K_S | 10.267 GB | large, low quality loss - recommended | | [s1.1-14B-Q5_K_M.gguf](https://huggingface.co/tensorblock/s1.1-14B-GGUF/blob/main/s1.1-14B-Q5_K_M.gguf) | Q5_K_M | 10.509 GB | large, very low quality loss - recommended | | [s1.1-14B-Q6_K.gguf](https://huggingface.co/tensorblock/s1.1-14B-GGUF/blob/main/s1.1-14B-Q6_K.gguf) | Q6_K | 12.125 GB | very large, extremely low quality loss | | [s1.1-14B-Q8_0.gguf](https://huggingface.co/tensorblock/s1.1-14B-GGUF/blob/main/s1.1-14B-Q8_0.gguf) | Q8_0 | 15.702 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/s1.1-14B-GGUF --include "s1.1-14B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/s1.1-14B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/HelpingAI-3-GGUF
tensorblock
2025-06-19T01:36:21Z
99
1
transformers
[ "transformers", "gguf", "HelpingAI", "Emotionally-Intelligent", "EQ-focused", "Conversational", "SLM", "TensorBlock", "GGUF", "text-generation", "en", "base_model:HelpingAI/HelpingAI-3", "base_model:quantized:HelpingAI/HelpingAI-3", "license:other", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-03-21T13:01:48Z
--- license: other license_name: helpingai license_link: https://helpingai.co/license pipeline_tag: text-generation language: - en tags: - HelpingAI - Emotionally-Intelligent - EQ-focused - Conversational - SLM - TensorBlock - GGUF library_name: transformers base_model: HelpingAI/HelpingAI-3 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## HelpingAI/HelpingAI-3 - GGUF This repo contains GGUF format model files for [HelpingAI/HelpingAI-3](https://huggingface.co/HelpingAI/HelpingAI-3). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4882](https://github.com/ggml-org/llama.cpp/commit/be7c3034108473beda214fd1d7c98fd6a7a3bdf5). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [HelpingAI-3-Q2_K.gguf](https://huggingface.co/tensorblock/HelpingAI-3-GGUF/blob/main/HelpingAI-3-Q2_K.gguf) | Q2_K | 3.924 GB | smallest, significant quality loss - not recommended for most purposes | | [HelpingAI-3-Q3_K_S.gguf](https://huggingface.co/tensorblock/HelpingAI-3-GGUF/blob/main/HelpingAI-3-Q3_K_S.gguf) | Q3_K_S | 4.591 GB | very small, high quality loss | | [HelpingAI-3-Q3_K_M.gguf](https://huggingface.co/tensorblock/HelpingAI-3-GGUF/blob/main/HelpingAI-3-Q3_K_M.gguf) | Q3_K_M | 5.052 GB | very small, high quality loss | | [HelpingAI-3-Q3_K_L.gguf](https://huggingface.co/tensorblock/HelpingAI-3-GGUF/blob/main/HelpingAI-3-Q3_K_L.gguf) | Q3_K_L | 5.451 GB | small, substantial quality loss | | [HelpingAI-3-Q4_0.gguf](https://huggingface.co/tensorblock/HelpingAI-3-GGUF/blob/main/HelpingAI-3-Q4_0.gguf) | Q4_0 | 5.906 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [HelpingAI-3-Q4_K_S.gguf](https://huggingface.co/tensorblock/HelpingAI-3-GGUF/blob/main/HelpingAI-3-Q4_K_S.gguf) | Q4_K_S | 5.952 GB | small, greater quality loss | | [HelpingAI-3-Q4_K_M.gguf](https://huggingface.co/tensorblock/HelpingAI-3-GGUF/blob/main/HelpingAI-3-Q4_K_M.gguf) | Q4_K_M | 6.288 GB | medium, balanced quality - recommended | | [HelpingAI-3-Q5_0.gguf](https://huggingface.co/tensorblock/HelpingAI-3-GGUF/blob/main/HelpingAI-3-Q5_0.gguf) | Q5_0 | 7.144 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [HelpingAI-3-Q5_K_S.gguf](https://huggingface.co/tensorblock/HelpingAI-3-GGUF/blob/main/HelpingAI-3-Q5_K_S.gguf) | Q5_K_S | 7.144 GB | large, low quality loss - recommended | | [HelpingAI-3-Q5_K_M.gguf](https://huggingface.co/tensorblock/HelpingAI-3-GGUF/blob/main/HelpingAI-3-Q5_K_M.gguf) | Q5_K_M | 7.341 GB | large, very low quality loss - recommended | | [HelpingAI-3-Q6_K.gguf](https://huggingface.co/tensorblock/HelpingAI-3-GGUF/blob/main/HelpingAI-3-Q6_K.gguf) | Q6_K | 8.459 GB | very large, extremely low quality loss | | [HelpingAI-3-Q8_0.gguf](https://huggingface.co/tensorblock/HelpingAI-3-GGUF/blob/main/HelpingAI-3-Q8_0.gguf) | Q8_0 | 10.955 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/HelpingAI-3-GGUF --include "HelpingAI-3-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/HelpingAI-3-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-GGUF
tensorblock
2025-06-19T01:36:07Z
5
0
transformers
[ "transformers", "gguf", "llama-factory", "full", "generated_from_trainer", "TensorBlock", "GGUF", "base_model:mlfoundations-dev/mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b", "base_model:quantized:mlfoundations-dev/mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-21T11:03:55Z
--- library_name: transformers license: other base_model: mlfoundations-dev/mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b tags: - llama-factory - full - generated_from_trainer - TensorBlock - GGUF model-index: - name: mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0.25_stratos_7b results: [] --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## mlfoundations-dev/mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b - GGUF This repo contains GGUF format model files for [mlfoundations-dev/mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b](https://huggingface.co/mlfoundations-dev/mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4882](https://github.com/ggml-org/llama.cpp/commit/be7c3034108473beda214fd1d7c98fd6a7a3bdf5). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-Q2_K.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-GGUF/blob/main/mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-Q2_K.gguf) | Q2_K | 3.016 GB | smallest, significant quality loss - not recommended for most purposes | | [mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-Q3_K_S.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-GGUF/blob/main/mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-Q3_K_S.gguf) | Q3_K_S | 3.492 GB | very small, high quality loss | | [mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-Q3_K_M.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-GGUF/blob/main/mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-Q3_K_M.gguf) | Q3_K_M | 3.808 GB | very small, high quality loss | | [mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-Q3_K_L.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-GGUF/blob/main/mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-Q3_K_L.gguf) | Q3_K_L | 4.088 GB | small, substantial quality loss | | [mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-Q4_0.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-GGUF/blob/main/mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-Q4_0.gguf) | Q4_0 | 4.431 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-Q4_K_S.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-GGUF/blob/main/mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-Q4_K_S.gguf) | Q4_K_S | 4.458 GB | small, greater quality loss | | [mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-Q4_K_M.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-GGUF/blob/main/mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-Q4_K_M.gguf) | Q4_K_M | 4.683 GB | medium, balanced quality - recommended | | [mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-Q5_0.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-GGUF/blob/main/mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-Q5_0.gguf) | Q5_0 | 5.315 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-Q5_K_S.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-GGUF/blob/main/mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-Q5_K_S.gguf) | Q5_K_S | 5.315 GB | large, low quality loss - recommended | | [mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-Q5_K_M.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-GGUF/blob/main/mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-Q5_K_M.gguf) | Q5_K_M | 5.445 GB | large, very low quality loss - recommended | | [mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-Q6_K.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-GGUF/blob/main/mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-Q6_K.gguf) | Q6_K | 6.254 GB | very large, extremely low quality loss | | [mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-Q8_0.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-GGUF/blob/main/mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-Q8_0.gguf) | Q8_0 | 8.099 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-GGUF --include "mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/mlfoundations-dev_science-and-puzzle-stratos-verified-scaled-0_25_stratos_7b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/Dolphin3.0-R1-Mistral-24B-GGUF
tensorblock
2025-06-19T01:35:34Z
132
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "text-generation", "en", "dataset:cognitivecomputations/dolphin-r1", "dataset:OpenCoder-LLM/opc-sft-stage1", "dataset:OpenCoder-LLM/opc-sft-stage2", "dataset:microsoft/orca-agentinstruct-1M-v1", "dataset:microsoft/orca-math-word-problems-200k", "dataset:NousResearch/hermes-function-calling-v1", "dataset:AI-MO/NuminaMath-CoT", "dataset:AI-MO/NuminaMath-TIR", "dataset:allenai/tulu-3-sft-mixture", "dataset:cognitivecomputations/dolphin-coder", "dataset:HuggingFaceTB/smoltalk", "dataset:cognitivecomputations/samantha-data", "dataset:m-a-p/CodeFeedback-Filtered-Instruction", "dataset:m-a-p/Code-Feedback", "base_model:cognitivecomputations/Dolphin3.0-R1-Mistral-24B", "base_model:quantized:cognitivecomputations/Dolphin3.0-R1-Mistral-24B", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-03-21T03:26:18Z
--- datasets: - cognitivecomputations/dolphin-r1 - OpenCoder-LLM/opc-sft-stage1 - OpenCoder-LLM/opc-sft-stage2 - microsoft/orca-agentinstruct-1M-v1 - microsoft/orca-math-word-problems-200k - NousResearch/hermes-function-calling-v1 - AI-MO/NuminaMath-CoT - AI-MO/NuminaMath-TIR - allenai/tulu-3-sft-mixture - cognitivecomputations/dolphin-coder - HuggingFaceTB/smoltalk - cognitivecomputations/samantha-data - m-a-p/CodeFeedback-Filtered-Instruction - m-a-p/Code-Feedback language: - en base_model: cognitivecomputations/Dolphin3.0-R1-Mistral-24B pipeline_tag: text-generation library_name: transformers tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## cognitivecomputations/Dolphin3.0-R1-Mistral-24B - GGUF This repo contains GGUF format model files for [cognitivecomputations/Dolphin3.0-R1-Mistral-24B](https://huggingface.co/cognitivecomputations/Dolphin3.0-R1-Mistral-24B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4882](https://github.com/ggml-org/llama.cpp/commit/be7c3034108473beda214fd1d7c98fd6a7a3bdf5). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant <think> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Dolphin3.0-R1-Mistral-24B-Q2_K.gguf](https://huggingface.co/tensorblock/Dolphin3.0-R1-Mistral-24B-GGUF/blob/main/Dolphin3.0-R1-Mistral-24B-Q2_K.gguf) | Q2_K | 8.890 GB | smallest, significant quality loss - not recommended for most purposes | | [Dolphin3.0-R1-Mistral-24B-Q3_K_S.gguf](https://huggingface.co/tensorblock/Dolphin3.0-R1-Mistral-24B-GGUF/blob/main/Dolphin3.0-R1-Mistral-24B-Q3_K_S.gguf) | Q3_K_S | 10.400 GB | very small, high quality loss | | [Dolphin3.0-R1-Mistral-24B-Q3_K_M.gguf](https://huggingface.co/tensorblock/Dolphin3.0-R1-Mistral-24B-GGUF/blob/main/Dolphin3.0-R1-Mistral-24B-Q3_K_M.gguf) | Q3_K_M | 11.474 GB | very small, high quality loss | | [Dolphin3.0-R1-Mistral-24B-Q3_K_L.gguf](https://huggingface.co/tensorblock/Dolphin3.0-R1-Mistral-24B-GGUF/blob/main/Dolphin3.0-R1-Mistral-24B-Q3_K_L.gguf) | Q3_K_L | 12.401 GB | small, substantial quality loss | | [Dolphin3.0-R1-Mistral-24B-Q4_0.gguf](https://huggingface.co/tensorblock/Dolphin3.0-R1-Mistral-24B-GGUF/blob/main/Dolphin3.0-R1-Mistral-24B-Q4_0.gguf) | Q4_0 | 13.442 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Dolphin3.0-R1-Mistral-24B-Q4_K_S.gguf](https://huggingface.co/tensorblock/Dolphin3.0-R1-Mistral-24B-GGUF/blob/main/Dolphin3.0-R1-Mistral-24B-Q4_K_S.gguf) | Q4_K_S | 13.549 GB | small, greater quality loss | | [Dolphin3.0-R1-Mistral-24B-Q4_K_M.gguf](https://huggingface.co/tensorblock/Dolphin3.0-R1-Mistral-24B-GGUF/blob/main/Dolphin3.0-R1-Mistral-24B-Q4_K_M.gguf) | Q4_K_M | 14.334 GB | medium, balanced quality - recommended | | [Dolphin3.0-R1-Mistral-24B-Q5_0.gguf](https://huggingface.co/tensorblock/Dolphin3.0-R1-Mistral-24B-GGUF/blob/main/Dolphin3.0-R1-Mistral-24B-Q5_0.gguf) | Q5_0 | 16.304 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Dolphin3.0-R1-Mistral-24B-Q5_K_S.gguf](https://huggingface.co/tensorblock/Dolphin3.0-R1-Mistral-24B-GGUF/blob/main/Dolphin3.0-R1-Mistral-24B-Q5_K_S.gguf) | Q5_K_S | 16.304 GB | large, low quality loss - recommended | | [Dolphin3.0-R1-Mistral-24B-Q5_K_M.gguf](https://huggingface.co/tensorblock/Dolphin3.0-R1-Mistral-24B-GGUF/blob/main/Dolphin3.0-R1-Mistral-24B-Q5_K_M.gguf) | Q5_K_M | 16.764 GB | large, very low quality loss - recommended | | [Dolphin3.0-R1-Mistral-24B-Q6_K.gguf](https://huggingface.co/tensorblock/Dolphin3.0-R1-Mistral-24B-GGUF/blob/main/Dolphin3.0-R1-Mistral-24B-Q6_K.gguf) | Q6_K | 19.346 GB | very large, extremely low quality loss | | [Dolphin3.0-R1-Mistral-24B-Q8_0.gguf](https://huggingface.co/tensorblock/Dolphin3.0-R1-Mistral-24B-GGUF/blob/main/Dolphin3.0-R1-Mistral-24B-Q8_0.gguf) | Q8_0 | 25.055 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Dolphin3.0-R1-Mistral-24B-GGUF --include "Dolphin3.0-R1-Mistral-24B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Dolphin3.0-R1-Mistral-24B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/gemma-3-1b-it-abliterated-GGUF
tensorblock
2025-06-19T01:35:26Z
119
1
transformers
[ "transformers", "gguf", "chat", "abliterated", "uncensored", "TensorBlock", "GGUF", "text-generation", "base_model:huihui-ai/gemma-3-1b-it-abliterated", "base_model:quantized:huihui-ai/gemma-3-1b-it-abliterated", "license:gemma", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-03-21T02:32:08Z
--- license: gemma library_name: transformers pipeline_tag: text-generation extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license base_model: huihui-ai/gemma-3-1b-it-abliterated tags: - chat - abliterated - uncensored - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## huihui-ai/gemma-3-1b-it-abliterated - GGUF This repo contains GGUF format model files for [huihui-ai/gemma-3-1b-it-abliterated](https://huggingface.co/huihui-ai/gemma-3-1b-it-abliterated). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4882](https://github.com/ggml-org/llama.cpp/commit/be7c3034108473beda214fd1d7c98fd6a7a3bdf5). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <bos><start_of_turn>user {system_prompt} {prompt}<end_of_turn> <start_of_turn>model ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [gemma-3-1b-it-abliterated-Q2_K.gguf](https://huggingface.co/tensorblock/gemma-3-1b-it-abliterated-GGUF/blob/main/gemma-3-1b-it-abliterated-Q2_K.gguf) | Q2_K | 0.690 GB | smallest, significant quality loss - not recommended for most purposes | | [gemma-3-1b-it-abliterated-Q3_K_S.gguf](https://huggingface.co/tensorblock/gemma-3-1b-it-abliterated-GGUF/blob/main/gemma-3-1b-it-abliterated-Q3_K_S.gguf) | Q3_K_S | 0.689 GB | very small, high quality loss | | [gemma-3-1b-it-abliterated-Q3_K_M.gguf](https://huggingface.co/tensorblock/gemma-3-1b-it-abliterated-GGUF/blob/main/gemma-3-1b-it-abliterated-Q3_K_M.gguf) | Q3_K_M | 0.722 GB | very small, high quality loss | | [gemma-3-1b-it-abliterated-Q3_K_L.gguf](https://huggingface.co/tensorblock/gemma-3-1b-it-abliterated-GGUF/blob/main/gemma-3-1b-it-abliterated-Q3_K_L.gguf) | Q3_K_L | 0.752 GB | small, substantial quality loss | | [gemma-3-1b-it-abliterated-Q4_0.gguf](https://huggingface.co/tensorblock/gemma-3-1b-it-abliterated-GGUF/blob/main/gemma-3-1b-it-abliterated-Q4_0.gguf) | Q4_0 | 0.720 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [gemma-3-1b-it-abliterated-Q4_K_S.gguf](https://huggingface.co/tensorblock/gemma-3-1b-it-abliterated-GGUF/blob/main/gemma-3-1b-it-abliterated-Q4_K_S.gguf) | Q4_K_S | 0.781 GB | small, greater quality loss | | [gemma-3-1b-it-abliterated-Q4_K_M.gguf](https://huggingface.co/tensorblock/gemma-3-1b-it-abliterated-GGUF/blob/main/gemma-3-1b-it-abliterated-Q4_K_M.gguf) | Q4_K_M | 0.806 GB | medium, balanced quality - recommended | | [gemma-3-1b-it-abliterated-Q5_0.gguf](https://huggingface.co/tensorblock/gemma-3-1b-it-abliterated-GGUF/blob/main/gemma-3-1b-it-abliterated-Q5_0.gguf) | Q5_0 | 0.808 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [gemma-3-1b-it-abliterated-Q5_K_S.gguf](https://huggingface.co/tensorblock/gemma-3-1b-it-abliterated-GGUF/blob/main/gemma-3-1b-it-abliterated-Q5_K_S.gguf) | Q5_K_S | 0.836 GB | large, low quality loss - recommended | | [gemma-3-1b-it-abliterated-Q5_K_M.gguf](https://huggingface.co/tensorblock/gemma-3-1b-it-abliterated-GGUF/blob/main/gemma-3-1b-it-abliterated-Q5_K_M.gguf) | Q5_K_M | 0.851 GB | large, very low quality loss - recommended | | [gemma-3-1b-it-abliterated-Q6_K.gguf](https://huggingface.co/tensorblock/gemma-3-1b-it-abliterated-GGUF/blob/main/gemma-3-1b-it-abliterated-Q6_K.gguf) | Q6_K | 1.012 GB | very large, extremely low quality loss | | [gemma-3-1b-it-abliterated-Q8_0.gguf](https://huggingface.co/tensorblock/gemma-3-1b-it-abliterated-GGUF/blob/main/gemma-3-1b-it-abliterated-Q8_0.gguf) | Q8_0 | 1.069 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/gemma-3-1b-it-abliterated-GGUF --include "gemma-3-1b-it-abliterated-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/gemma-3-1b-it-abliterated-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/gemma-3-12b-it-GGUF
tensorblock
2025-06-19T01:35:05Z
178
1
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "image-text-to-text", "base_model:google/gemma-3-12b-it", "base_model:quantized:google/gemma-3-12b-it", "license:gemma", "endpoints_compatible", "region:us", "conversational" ]
image-text-to-text
2025-03-13T23:32:38Z
--- license: gemma library_name: transformers pipeline_tag: image-text-to-text extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license base_model: google/gemma-3-12b-it tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## google/gemma-3-12b-it - GGUF This repo contains GGUF format model files for [google/gemma-3-12b-it](https://huggingface.co/google/gemma-3-12b-it). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4882](https://github.com/ggml-org/llama.cpp/commit/be7c3034108473beda214fd1d7c98fd6a7a3bdf5). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <bos><start_of_turn>user {system_prompt} {prompt}<end_of_turn> <start_of_turn>model ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [gemma-3-12b-it-Q2_K.gguf](https://huggingface.co/tensorblock/gemma-3-12b-it-GGUF/blob/main/gemma-3-12b-it-Q2_K.gguf) | Q2_K | 4.768 GB | smallest, significant quality loss - not recommended for most purposes | | [gemma-3-12b-it-Q3_K_S.gguf](https://huggingface.co/tensorblock/gemma-3-12b-it-GGUF/blob/main/gemma-3-12b-it-Q3_K_S.gguf) | Q3_K_S | 5.458 GB | very small, high quality loss | | [gemma-3-12b-it-Q3_K_M.gguf](https://huggingface.co/tensorblock/gemma-3-12b-it-GGUF/blob/main/gemma-3-12b-it-Q3_K_M.gguf) | Q3_K_M | 6.009 GB | very small, high quality loss | | [gemma-3-12b-it-Q3_K_L.gguf](https://huggingface.co/tensorblock/gemma-3-12b-it-GGUF/blob/main/gemma-3-12b-it-Q3_K_L.gguf) | Q3_K_L | 6.480 GB | small, substantial quality loss | | [gemma-3-12b-it-Q4_0.gguf](https://huggingface.co/tensorblock/gemma-3-12b-it-GGUF/blob/main/gemma-3-12b-it-Q4_0.gguf) | Q4_0 | 6.887 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [gemma-3-12b-it-Q4_K_S.gguf](https://huggingface.co/tensorblock/gemma-3-12b-it-GGUF/blob/main/gemma-3-12b-it-Q4_K_S.gguf) | Q4_K_S | 6.935 GB | small, greater quality loss | | [gemma-3-12b-it-Q4_K_M.gguf](https://huggingface.co/tensorblock/gemma-3-12b-it-GGUF/blob/main/gemma-3-12b-it-Q4_K_M.gguf) | Q4_K_M | 7.301 GB | medium, balanced quality - recommended | | [gemma-3-12b-it-Q5_0.gguf](https://huggingface.co/tensorblock/gemma-3-12b-it-GGUF/blob/main/gemma-3-12b-it-Q5_0.gguf) | Q5_0 | 8.232 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [gemma-3-12b-it-Q5_K_S.gguf](https://huggingface.co/tensorblock/gemma-3-12b-it-GGUF/blob/main/gemma-3-12b-it-Q5_K_S.gguf) | Q5_K_S | 8.232 GB | large, low quality loss - recommended | | [gemma-3-12b-it-Q5_K_M.gguf](https://huggingface.co/tensorblock/gemma-3-12b-it-GGUF/blob/main/gemma-3-12b-it-Q5_K_M.gguf) | Q5_K_M | 8.445 GB | large, very low quality loss - recommended | | [gemma-3-12b-it-Q6_K.gguf](https://huggingface.co/tensorblock/gemma-3-12b-it-GGUF/blob/main/gemma-3-12b-it-Q6_K.gguf) | Q6_K | 9.661 GB | very large, extremely low quality loss | | [gemma-3-12b-it-Q8_0.gguf](https://huggingface.co/tensorblock/gemma-3-12b-it-GGUF/blob/main/gemma-3-12b-it-Q8_0.gguf) | Q8_0 | 12.510 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/gemma-3-12b-it-GGUF --include "gemma-3-12b-it-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/gemma-3-12b-it-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/gemma-3-1b-it-GGUF
tensorblock
2025-06-19T01:35:00Z
169
0
transformers
[ "transformers", "gguf", "unsloth", "gemma3", "gemma", "google", "TensorBlock", "GGUF", "en", "base_model:unsloth/gemma-3-1b-it", "base_model:quantized:unsloth/gemma-3-1b-it", "license:gemma", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-13T22:25:14Z
--- base_model: unsloth/gemma-3-1b-it language: - en library_name: transformers license: gemma tags: - unsloth - transformers - gemma3 - gemma - google - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## unsloth/gemma-3-1b-it - GGUF This repo contains GGUF format model files for [unsloth/gemma-3-1b-it](https://huggingface.co/unsloth/gemma-3-1b-it). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4882](https://github.com/ggml-org/llama.cpp/commit/be7c3034108473beda214fd1d7c98fd6a7a3bdf5). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <bos><start_of_turn>user {system_prompt} {prompt}<end_of_turn> <start_of_turn>model ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [gemma-3-1b-it-Q2_K.gguf](https://huggingface.co/tensorblock/gemma-3-1b-it-GGUF/blob/main/gemma-3-1b-it-Q2_K.gguf) | Q2_K | 0.690 GB | smallest, significant quality loss - not recommended for most purposes | | [gemma-3-1b-it-Q3_K_S.gguf](https://huggingface.co/tensorblock/gemma-3-1b-it-GGUF/blob/main/gemma-3-1b-it-Q3_K_S.gguf) | Q3_K_S | 0.689 GB | very small, high quality loss | | [gemma-3-1b-it-Q3_K_M.gguf](https://huggingface.co/tensorblock/gemma-3-1b-it-GGUF/blob/main/gemma-3-1b-it-Q3_K_M.gguf) | Q3_K_M | 0.722 GB | very small, high quality loss | | [gemma-3-1b-it-Q3_K_L.gguf](https://huggingface.co/tensorblock/gemma-3-1b-it-GGUF/blob/main/gemma-3-1b-it-Q3_K_L.gguf) | Q3_K_L | 0.752 GB | small, substantial quality loss | | [gemma-3-1b-it-Q4_0.gguf](https://huggingface.co/tensorblock/gemma-3-1b-it-GGUF/blob/main/gemma-3-1b-it-Q4_0.gguf) | Q4_0 | 0.720 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [gemma-3-1b-it-Q4_K_S.gguf](https://huggingface.co/tensorblock/gemma-3-1b-it-GGUF/blob/main/gemma-3-1b-it-Q4_K_S.gguf) | Q4_K_S | 0.781 GB | small, greater quality loss | | [gemma-3-1b-it-Q4_K_M.gguf](https://huggingface.co/tensorblock/gemma-3-1b-it-GGUF/blob/main/gemma-3-1b-it-Q4_K_M.gguf) | Q4_K_M | 0.806 GB | medium, balanced quality - recommended | | [gemma-3-1b-it-Q5_0.gguf](https://huggingface.co/tensorblock/gemma-3-1b-it-GGUF/blob/main/gemma-3-1b-it-Q5_0.gguf) | Q5_0 | 0.808 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [gemma-3-1b-it-Q5_K_S.gguf](https://huggingface.co/tensorblock/gemma-3-1b-it-GGUF/blob/main/gemma-3-1b-it-Q5_K_S.gguf) | Q5_K_S | 0.836 GB | large, low quality loss - recommended | | [gemma-3-1b-it-Q5_K_M.gguf](https://huggingface.co/tensorblock/gemma-3-1b-it-GGUF/blob/main/gemma-3-1b-it-Q5_K_M.gguf) | Q5_K_M | 0.851 GB | large, very low quality loss - recommended | | [gemma-3-1b-it-Q6_K.gguf](https://huggingface.co/tensorblock/gemma-3-1b-it-GGUF/blob/main/gemma-3-1b-it-Q6_K.gguf) | Q6_K | 1.012 GB | very large, extremely low quality loss | | [gemma-3-1b-it-Q8_0.gguf](https://huggingface.co/tensorblock/gemma-3-1b-it-GGUF/blob/main/gemma-3-1b-it-Q8_0.gguf) | Q8_0 | 1.069 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/gemma-3-1b-it-GGUF --include "gemma-3-1b-it-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/gemma-3-1b-it-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/macbert4mdcspell_v1-GGUF
tensorblock
2025-06-19T01:34:40Z
101
0
null
[ "gguf", "csc", "text-correct", "chinses-spelling-correct", "chinese-spelling-check", "中文拼写纠错", "ζ–‡ζœ¬ηΊ ι”™", "TensorBlock", "GGUF", "text-generation", "zh", "base_model:Macropodus/macbert4mdcspell_v1", "base_model:quantized:Macropodus/macbert4mdcspell_v1", "license:apache-2.0", "endpoints_compatible", "region:us", "feature-extraction" ]
text-generation
2025-03-08T23:21:19Z
--- license: apache-2.0 language: - zh base_model: Macropodus/macbert4mdcspell_v1 pipeline_tag: text-generation tags: - csc - text-correct - chinses-spelling-correct - chinese-spelling-check - 中文拼写纠错 - ζ–‡ζœ¬ηΊ ι”™ - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## Macropodus/macbert4mdcspell_v1 - GGUF This repo contains GGUF format model files for [Macropodus/macbert4mdcspell_v1](https://huggingface.co/Macropodus/macbert4mdcspell_v1). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4823](https://github.com/ggml-org/llama.cpp/commit/5bbe6a9fe9a8796a9389c85accec89dbc4d91e39). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format. ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [macbert4mdcspell_v1-Q2_K.gguf](https://huggingface.co/tensorblock/macbert4mdcspell_v1-GGUF/blob/main/macbert4mdcspell_v1-Q2_K.gguf) | Q2_K | 0.048 GB | smallest, significant quality loss - not recommended for most purposes | | [macbert4mdcspell_v1-Q3_K_S.gguf](https://huggingface.co/tensorblock/macbert4mdcspell_v1-GGUF/blob/main/macbert4mdcspell_v1-Q3_K_S.gguf) | Q3_K_S | 0.052 GB | very small, high quality loss | | [macbert4mdcspell_v1-Q3_K_M.gguf](https://huggingface.co/tensorblock/macbert4mdcspell_v1-GGUF/blob/main/macbert4mdcspell_v1-Q3_K_M.gguf) | Q3_K_M | 0.058 GB | very small, high quality loss | | [macbert4mdcspell_v1-Q3_K_L.gguf](https://huggingface.co/tensorblock/macbert4mdcspell_v1-GGUF/blob/main/macbert4mdcspell_v1-Q3_K_L.gguf) | Q3_K_L | 0.063 GB | small, substantial quality loss | | [macbert4mdcspell_v1-Q4_0.gguf](https://huggingface.co/tensorblock/macbert4mdcspell_v1-GGUF/blob/main/macbert4mdcspell_v1-Q4_0.gguf) | Q4_0 | 0.064 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [macbert4mdcspell_v1-Q4_K_S.gguf](https://huggingface.co/tensorblock/macbert4mdcspell_v1-GGUF/blob/main/macbert4mdcspell_v1-Q4_K_S.gguf) | Q4_K_S | 0.064 GB | small, greater quality loss | | [macbert4mdcspell_v1-Q4_K_M.gguf](https://huggingface.co/tensorblock/macbert4mdcspell_v1-GGUF/blob/main/macbert4mdcspell_v1-Q4_K_M.gguf) | Q4_K_M | 0.068 GB | medium, balanced quality - recommended | | [macbert4mdcspell_v1-Q5_0.gguf](https://huggingface.co/tensorblock/macbert4mdcspell_v1-GGUF/blob/main/macbert4mdcspell_v1-Q5_0.gguf) | Q5_0 | 0.074 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [macbert4mdcspell_v1-Q5_K_S.gguf](https://huggingface.co/tensorblock/macbert4mdcspell_v1-GGUF/blob/main/macbert4mdcspell_v1-Q5_K_S.gguf) | Q5_K_S | 0.074 GB | large, low quality loss - recommended | | [macbert4mdcspell_v1-Q5_K_M.gguf](https://huggingface.co/tensorblock/macbert4mdcspell_v1-GGUF/blob/main/macbert4mdcspell_v1-Q5_K_M.gguf) | Q5_K_M | 0.076 GB | large, very low quality loss - recommended | | [macbert4mdcspell_v1-Q6_K.gguf](https://huggingface.co/tensorblock/macbert4mdcspell_v1-GGUF/blob/main/macbert4mdcspell_v1-Q6_K.gguf) | Q6_K | 0.085 GB | very large, extremely low quality loss | | [macbert4mdcspell_v1-Q8_0.gguf](https://huggingface.co/tensorblock/macbert4mdcspell_v1-GGUF/blob/main/macbert4mdcspell_v1-Q8_0.gguf) | Q8_0 | 0.110 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/macbert4mdcspell_v1-GGUF --include "macbert4mdcspell_v1-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/macbert4mdcspell_v1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/stratos-unverified-mix-scaled-1-GGUF
tensorblock
2025-06-19T01:34:22Z
5
0
transformers
[ "transformers", "gguf", "llama-factory", "full", "generated_from_trainer", "TensorBlock", "GGUF", "base_model:mlfoundations-dev/stratos-unverified-mix-scaled-1", "base_model:quantized:mlfoundations-dev/stratos-unverified-mix-scaled-1", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-08T06:49:23Z
--- library_name: transformers license: apache-2.0 base_model: mlfoundations-dev/stratos-unverified-mix-scaled-1 tags: - llama-factory - full - generated_from_trainer - TensorBlock - GGUF model-index: - name: stratos-unverified-mix-scaled-1 results: [] --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## mlfoundations-dev/stratos-unverified-mix-scaled-1 - GGUF This repo contains GGUF format model files for [mlfoundations-dev/stratos-unverified-mix-scaled-1](https://huggingface.co/mlfoundations-dev/stratos-unverified-mix-scaled-1). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4823](https://github.com/ggml-org/llama.cpp/commit/5bbe6a9fe9a8796a9389c85accec89dbc4d91e39). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [stratos-unverified-mix-scaled-1-Q2_K.gguf](https://huggingface.co/tensorblock/stratos-unverified-mix-scaled-1-GGUF/blob/main/stratos-unverified-mix-scaled-1-Q2_K.gguf) | Q2_K | 3.016 GB | smallest, significant quality loss - not recommended for most purposes | | [stratos-unverified-mix-scaled-1-Q3_K_S.gguf](https://huggingface.co/tensorblock/stratos-unverified-mix-scaled-1-GGUF/blob/main/stratos-unverified-mix-scaled-1-Q3_K_S.gguf) | Q3_K_S | 3.492 GB | very small, high quality loss | | [stratos-unverified-mix-scaled-1-Q3_K_M.gguf](https://huggingface.co/tensorblock/stratos-unverified-mix-scaled-1-GGUF/blob/main/stratos-unverified-mix-scaled-1-Q3_K_M.gguf) | Q3_K_M | 3.808 GB | very small, high quality loss | | [stratos-unverified-mix-scaled-1-Q3_K_L.gguf](https://huggingface.co/tensorblock/stratos-unverified-mix-scaled-1-GGUF/blob/main/stratos-unverified-mix-scaled-1-Q3_K_L.gguf) | Q3_K_L | 4.088 GB | small, substantial quality loss | | [stratos-unverified-mix-scaled-1-Q4_0.gguf](https://huggingface.co/tensorblock/stratos-unverified-mix-scaled-1-GGUF/blob/main/stratos-unverified-mix-scaled-1-Q4_0.gguf) | Q4_0 | 4.431 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [stratos-unverified-mix-scaled-1-Q4_K_S.gguf](https://huggingface.co/tensorblock/stratos-unverified-mix-scaled-1-GGUF/blob/main/stratos-unverified-mix-scaled-1-Q4_K_S.gguf) | Q4_K_S | 4.458 GB | small, greater quality loss | | [stratos-unverified-mix-scaled-1-Q4_K_M.gguf](https://huggingface.co/tensorblock/stratos-unverified-mix-scaled-1-GGUF/blob/main/stratos-unverified-mix-scaled-1-Q4_K_M.gguf) | Q4_K_M | 4.683 GB | medium, balanced quality - recommended | | [stratos-unverified-mix-scaled-1-Q5_0.gguf](https://huggingface.co/tensorblock/stratos-unverified-mix-scaled-1-GGUF/blob/main/stratos-unverified-mix-scaled-1-Q5_0.gguf) | Q5_0 | 5.315 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [stratos-unverified-mix-scaled-1-Q5_K_S.gguf](https://huggingface.co/tensorblock/stratos-unverified-mix-scaled-1-GGUF/blob/main/stratos-unverified-mix-scaled-1-Q5_K_S.gguf) | Q5_K_S | 5.315 GB | large, low quality loss - recommended | | [stratos-unverified-mix-scaled-1-Q5_K_M.gguf](https://huggingface.co/tensorblock/stratos-unverified-mix-scaled-1-GGUF/blob/main/stratos-unverified-mix-scaled-1-Q5_K_M.gguf) | Q5_K_M | 5.445 GB | large, very low quality loss - recommended | | [stratos-unverified-mix-scaled-1-Q6_K.gguf](https://huggingface.co/tensorblock/stratos-unverified-mix-scaled-1-GGUF/blob/main/stratos-unverified-mix-scaled-1-Q6_K.gguf) | Q6_K | 6.254 GB | very large, extremely low quality loss | | [stratos-unverified-mix-scaled-1-Q8_0.gguf](https://huggingface.co/tensorblock/stratos-unverified-mix-scaled-1-GGUF/blob/main/stratos-unverified-mix-scaled-1-Q8_0.gguf) | Q8_0 | 8.099 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/stratos-unverified-mix-scaled-1-GGUF --include "stratos-unverified-mix-scaled-1-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/stratos-unverified-mix-scaled-1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/math-stratos-verified-scaled-0.125-GGUF
tensorblock
2025-06-19T01:32:44Z
71
0
transformers
[ "transformers", "gguf", "llama-factory", "full", "generated_from_trainer", "TensorBlock", "GGUF", "base_model:mlfoundations-dev/math-stratos-verified-scaled-0.125", "base_model:quantized:mlfoundations-dev/math-stratos-verified-scaled-0.125", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-07T08:24:53Z
--- library_name: transformers license: apache-2.0 base_model: mlfoundations-dev/math-stratos-verified-scaled-0.125 tags: - llama-factory - full - generated_from_trainer - TensorBlock - GGUF model-index: - name: math-stratos-verified-scaled-0.125 results: [] --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## mlfoundations-dev/math-stratos-verified-scaled-0.125 - GGUF This repo contains GGUF format model files for [mlfoundations-dev/math-stratos-verified-scaled-0.125](https://huggingface.co/mlfoundations-dev/math-stratos-verified-scaled-0.125). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4823](https://github.com/ggml-org/llama.cpp/commit/5bbe6a9fe9a8796a9389c85accec89dbc4d91e39). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [math-stratos-verified-scaled-0.125-Q2_K.gguf](https://huggingface.co/tensorblock/math-stratos-verified-scaled-0.125-GGUF/blob/main/math-stratos-verified-scaled-0.125-Q2_K.gguf) | Q2_K | 3.016 GB | smallest, significant quality loss - not recommended for most purposes | | [math-stratos-verified-scaled-0.125-Q3_K_S.gguf](https://huggingface.co/tensorblock/math-stratos-verified-scaled-0.125-GGUF/blob/main/math-stratos-verified-scaled-0.125-Q3_K_S.gguf) | Q3_K_S | 3.492 GB | very small, high quality loss | | [math-stratos-verified-scaled-0.125-Q3_K_M.gguf](https://huggingface.co/tensorblock/math-stratos-verified-scaled-0.125-GGUF/blob/main/math-stratos-verified-scaled-0.125-Q3_K_M.gguf) | Q3_K_M | 3.808 GB | very small, high quality loss | | [math-stratos-verified-scaled-0.125-Q3_K_L.gguf](https://huggingface.co/tensorblock/math-stratos-verified-scaled-0.125-GGUF/blob/main/math-stratos-verified-scaled-0.125-Q3_K_L.gguf) | Q3_K_L | 4.088 GB | small, substantial quality loss | | [math-stratos-verified-scaled-0.125-Q4_0.gguf](https://huggingface.co/tensorblock/math-stratos-verified-scaled-0.125-GGUF/blob/main/math-stratos-verified-scaled-0.125-Q4_0.gguf) | Q4_0 | 4.431 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [math-stratos-verified-scaled-0.125-Q4_K_S.gguf](https://huggingface.co/tensorblock/math-stratos-verified-scaled-0.125-GGUF/blob/main/math-stratos-verified-scaled-0.125-Q4_K_S.gguf) | Q4_K_S | 4.458 GB | small, greater quality loss | | [math-stratos-verified-scaled-0.125-Q4_K_M.gguf](https://huggingface.co/tensorblock/math-stratos-verified-scaled-0.125-GGUF/blob/main/math-stratos-verified-scaled-0.125-Q4_K_M.gguf) | Q4_K_M | 4.683 GB | medium, balanced quality - recommended | | [math-stratos-verified-scaled-0.125-Q5_0.gguf](https://huggingface.co/tensorblock/math-stratos-verified-scaled-0.125-GGUF/blob/main/math-stratos-verified-scaled-0.125-Q5_0.gguf) | Q5_0 | 5.315 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [math-stratos-verified-scaled-0.125-Q5_K_S.gguf](https://huggingface.co/tensorblock/math-stratos-verified-scaled-0.125-GGUF/blob/main/math-stratos-verified-scaled-0.125-Q5_K_S.gguf) | Q5_K_S | 5.315 GB | large, low quality loss - recommended | | [math-stratos-verified-scaled-0.125-Q5_K_M.gguf](https://huggingface.co/tensorblock/math-stratos-verified-scaled-0.125-GGUF/blob/main/math-stratos-verified-scaled-0.125-Q5_K_M.gguf) | Q5_K_M | 5.445 GB | large, very low quality loss - recommended | | [math-stratos-verified-scaled-0.125-Q6_K.gguf](https://huggingface.co/tensorblock/math-stratos-verified-scaled-0.125-GGUF/blob/main/math-stratos-verified-scaled-0.125-Q6_K.gguf) | Q6_K | 6.254 GB | very large, extremely low quality loss | | [math-stratos-verified-scaled-0.125-Q8_0.gguf](https://huggingface.co/tensorblock/math-stratos-verified-scaled-0.125-GGUF/blob/main/math-stratos-verified-scaled-0.125-Q8_0.gguf) | Q8_0 | 8.099 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/math-stratos-verified-scaled-0.125-GGUF --include "math-stratos-verified-scaled-0.125-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/math-stratos-verified-scaled-0.125-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/ECE_Poirot-GGUF
tensorblock
2025-06-19T01:32:37Z
8
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "TensorBlock", "GGUF", "base_model:SpaceYL/ECE_Poirot", "base_model:quantized:SpaceYL/ECE_Poirot", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-07T07:37:49Z
--- base_model: SpaceYL/ECE_Poirot library_name: transformers tags: - mergekit - merge - TensorBlock - GGUF license: apache-2.0 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## SpaceYL/ECE_Poirot - GGUF This repo contains GGUF format model files for [SpaceYL/ECE_Poirot](https://huggingface.co/SpaceYL/ECE_Poirot). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4823](https://github.com/ggml-org/llama.cpp/commit/5bbe6a9fe9a8796a9389c85accec89dbc4d91e39). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [ECE_Poirot-Q2_K.gguf](https://huggingface.co/tensorblock/ECE_Poirot-GGUF/blob/main/ECE_Poirot-Q2_K.gguf) | Q2_K | 0.676 GB | smallest, significant quality loss - not recommended for most purposes | | [ECE_Poirot-Q3_K_S.gguf](https://huggingface.co/tensorblock/ECE_Poirot-GGUF/blob/main/ECE_Poirot-Q3_K_S.gguf) | Q3_K_S | 0.761 GB | very small, high quality loss | | [ECE_Poirot-Q3_K_M.gguf](https://huggingface.co/tensorblock/ECE_Poirot-GGUF/blob/main/ECE_Poirot-Q3_K_M.gguf) | Q3_K_M | 0.824 GB | very small, high quality loss | | [ECE_Poirot-Q3_K_L.gguf](https://huggingface.co/tensorblock/ECE_Poirot-GGUF/blob/main/ECE_Poirot-Q3_K_L.gguf) | Q3_K_L | 0.880 GB | small, substantial quality loss | | [ECE_Poirot-Q4_0.gguf](https://huggingface.co/tensorblock/ECE_Poirot-GGUF/blob/main/ECE_Poirot-Q4_0.gguf) | Q4_0 | 0.935 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [ECE_Poirot-Q4_K_S.gguf](https://huggingface.co/tensorblock/ECE_Poirot-GGUF/blob/main/ECE_Poirot-Q4_K_S.gguf) | Q4_K_S | 0.940 GB | small, greater quality loss | | [ECE_Poirot-Q4_K_M.gguf](https://huggingface.co/tensorblock/ECE_Poirot-GGUF/blob/main/ECE_Poirot-Q4_K_M.gguf) | Q4_K_M | 0.986 GB | medium, balanced quality - recommended | | [ECE_Poirot-Q5_0.gguf](https://huggingface.co/tensorblock/ECE_Poirot-GGUF/blob/main/ECE_Poirot-Q5_0.gguf) | Q5_0 | 1.099 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [ECE_Poirot-Q5_K_S.gguf](https://huggingface.co/tensorblock/ECE_Poirot-GGUF/blob/main/ECE_Poirot-Q5_K_S.gguf) | Q5_K_S | 1.099 GB | large, low quality loss - recommended | | [ECE_Poirot-Q5_K_M.gguf](https://huggingface.co/tensorblock/ECE_Poirot-GGUF/blob/main/ECE_Poirot-Q5_K_M.gguf) | Q5_K_M | 1.125 GB | large, very low quality loss - recommended | | [ECE_Poirot-Q6_K.gguf](https://huggingface.co/tensorblock/ECE_Poirot-GGUF/blob/main/ECE_Poirot-Q6_K.gguf) | Q6_K | 1.273 GB | very large, extremely low quality loss | | [ECE_Poirot-Q8_0.gguf](https://huggingface.co/tensorblock/ECE_Poirot-GGUF/blob/main/ECE_Poirot-Q8_0.gguf) | Q8_0 | 1.647 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/ECE_Poirot-GGUF --include "ECE_Poirot-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/ECE_Poirot-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/qwen25-math-7b-instruct-GGUF
tensorblock
2025-06-19T01:32:25Z
63
0
transformers
[ "transformers", "gguf", "chat", "TensorBlock", "GGUF", "text-generation", "en", "base_model:MInference/qwen25-math-7b-instruct", "base_model:quantized:MInference/qwen25-math-7b-instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-03-07T06:05:03Z
--- base_model: MInference/qwen25-math-7b-instruct language: - en pipeline_tag: text-generation tags: - chat - TensorBlock - GGUF library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen2.5-Math-7B-Instruct/blob/main/LICENSE --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## MInference/qwen25-math-7b-instruct - GGUF This repo contains GGUF format model files for [MInference/qwen25-math-7b-instruct](https://huggingface.co/MInference/qwen25-math-7b-instruct). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4823](https://github.com/ggml-org/llama.cpp/commit/5bbe6a9fe9a8796a9389c85accec89dbc4d91e39). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [qwen25-math-7b-instruct-Q2_K.gguf](https://huggingface.co/tensorblock/qwen25-math-7b-instruct-GGUF/blob/main/qwen25-math-7b-instruct-Q2_K.gguf) | Q2_K | 3.016 GB | smallest, significant quality loss - not recommended for most purposes | | [qwen25-math-7b-instruct-Q3_K_S.gguf](https://huggingface.co/tensorblock/qwen25-math-7b-instruct-GGUF/blob/main/qwen25-math-7b-instruct-Q3_K_S.gguf) | Q3_K_S | 3.492 GB | very small, high quality loss | | [qwen25-math-7b-instruct-Q3_K_M.gguf](https://huggingface.co/tensorblock/qwen25-math-7b-instruct-GGUF/blob/main/qwen25-math-7b-instruct-Q3_K_M.gguf) | Q3_K_M | 3.808 GB | very small, high quality loss | | [qwen25-math-7b-instruct-Q3_K_L.gguf](https://huggingface.co/tensorblock/qwen25-math-7b-instruct-GGUF/blob/main/qwen25-math-7b-instruct-Q3_K_L.gguf) | Q3_K_L | 4.088 GB | small, substantial quality loss | | [qwen25-math-7b-instruct-Q4_0.gguf](https://huggingface.co/tensorblock/qwen25-math-7b-instruct-GGUF/blob/main/qwen25-math-7b-instruct-Q4_0.gguf) | Q4_0 | 4.431 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [qwen25-math-7b-instruct-Q4_K_S.gguf](https://huggingface.co/tensorblock/qwen25-math-7b-instruct-GGUF/blob/main/qwen25-math-7b-instruct-Q4_K_S.gguf) | Q4_K_S | 4.458 GB | small, greater quality loss | | [qwen25-math-7b-instruct-Q4_K_M.gguf](https://huggingface.co/tensorblock/qwen25-math-7b-instruct-GGUF/blob/main/qwen25-math-7b-instruct-Q4_K_M.gguf) | Q4_K_M | 4.683 GB | medium, balanced quality - recommended | | [qwen25-math-7b-instruct-Q5_0.gguf](https://huggingface.co/tensorblock/qwen25-math-7b-instruct-GGUF/blob/main/qwen25-math-7b-instruct-Q5_0.gguf) | Q5_0 | 5.315 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [qwen25-math-7b-instruct-Q5_K_S.gguf](https://huggingface.co/tensorblock/qwen25-math-7b-instruct-GGUF/blob/main/qwen25-math-7b-instruct-Q5_K_S.gguf) | Q5_K_S | 5.315 GB | large, low quality loss - recommended | | [qwen25-math-7b-instruct-Q5_K_M.gguf](https://huggingface.co/tensorblock/qwen25-math-7b-instruct-GGUF/blob/main/qwen25-math-7b-instruct-Q5_K_M.gguf) | Q5_K_M | 5.445 GB | large, very low quality loss - recommended | | [qwen25-math-7b-instruct-Q6_K.gguf](https://huggingface.co/tensorblock/qwen25-math-7b-instruct-GGUF/blob/main/qwen25-math-7b-instruct-Q6_K.gguf) | Q6_K | 6.254 GB | very large, extremely low quality loss | | [qwen25-math-7b-instruct-Q8_0.gguf](https://huggingface.co/tensorblock/qwen25-math-7b-instruct-GGUF/blob/main/qwen25-math-7b-instruct-Q8_0.gguf) | Q8_0 | 8.099 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/qwen25-math-7b-instruct-GGUF --include "qwen25-math-7b-instruct-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/qwen25-math-7b-instruct-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-GGUF
tensorblock
2025-06-19T01:32:18Z
451
1
transformers
[ "transformers", "gguf", "llama-factory", "full", "generated_from_trainer", "TensorBlock", "GGUF", "base_model:mlfoundations-dev/mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022", "base_model:quantized:mlfoundations-dev/mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-07T05:23:28Z
--- library_name: transformers license: apache-2.0 base_model: mlfoundations-dev/mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022 tags: - llama-factory - full - generated_from_trainer - TensorBlock - GGUF model-index: - name: mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022 results: [] --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## mlfoundations-dev/mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022 - GGUF This repo contains GGUF format model files for [mlfoundations-dev/mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022](https://huggingface.co/mlfoundations-dev/mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4823](https://github.com/ggml-org/llama.cpp/commit/5bbe6a9fe9a8796a9389c85accec89dbc4d91e39). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-Q2_K.gguf](https://huggingface.co/tensorblock/mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-GGUF/blob/main/mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-Q2_K.gguf) | Q2_K | 2.723 GB | smallest, significant quality loss - not recommended for most purposes | | [mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-Q3_K_S.gguf](https://huggingface.co/tensorblock/mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-GGUF/blob/main/mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-Q3_K_S.gguf) | Q3_K_S | 3.169 GB | very small, high quality loss | | [mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-Q3_K_M.gguf](https://huggingface.co/tensorblock/mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-GGUF/blob/main/mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-Q3_K_M.gguf) | Q3_K_M | 3.523 GB | very small, high quality loss | | [mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-Q3_K_L.gguf](https://huggingface.co/tensorblock/mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-GGUF/blob/main/mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-Q3_K_L.gguf) | Q3_K_L | 3.826 GB | small, substantial quality loss | | [mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-Q4_0.gguf](https://huggingface.co/tensorblock/mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-GGUF/blob/main/mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-Q4_0.gguf) | Q4_0 | 4.113 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-Q4_K_S.gguf](https://huggingface.co/tensorblock/mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-GGUF/blob/main/mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-Q4_K_S.gguf) | Q4_K_S | 4.145 GB | small, greater quality loss | | [mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-Q4_K_M.gguf](https://huggingface.co/tensorblock/mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-GGUF/blob/main/mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-Q4_K_M.gguf) | Q4_K_M | 4.373 GB | medium, balanced quality - recommended | | [mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-Q5_0.gguf](https://huggingface.co/tensorblock/mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-GGUF/blob/main/mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-Q5_0.gguf) | Q5_0 | 5.002 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-Q5_K_S.gguf](https://huggingface.co/tensorblock/mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-GGUF/blob/main/mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-Q5_K_S.gguf) | Q5_K_S | 5.002 GB | large, low quality loss - recommended | | [mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-Q5_K_M.gguf](https://huggingface.co/tensorblock/mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-GGUF/blob/main/mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-Q5_K_M.gguf) | Q5_K_M | 5.136 GB | large, very low quality loss - recommended | | [mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-Q6_K.gguf](https://huggingface.co/tensorblock/mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-GGUF/blob/main/mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-Q6_K.gguf) | Q6_K | 5.947 GB | very large, extremely low quality loss | | [mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-Q8_0.gguf](https://huggingface.co/tensorblock/mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-GGUF/blob/main/mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-Q8_0.gguf) | Q8_0 | 7.703 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-GGUF --include "mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/mistral_7b_0-3_oh-dcft-v3.1-claude-3-5-sonnet-20241022-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/0x-lite-GGUF
tensorblock
2025-06-19T01:31:39Z
12
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "text-generation", "en", "zh", "dataset:lmsys/lmsys-chat-1m", "base_model:ozone-research/0x-lite", "base_model:quantized:ozone-research/0x-lite", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-03-06T22:04:09Z
--- library_name: transformers datasets: - lmsys/lmsys-chat-1m base_model: ozone-research/0x-lite pipeline_tag: text-generation language: - en - zh license: apache-2.0 tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## ozone-research/0x-lite - GGUF This repo contains GGUF format model files for [ozone-research/0x-lite](https://huggingface.co/ozone-research/0x-lite). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4823](https://github.com/ggml-org/llama.cpp/commit/5bbe6a9fe9a8796a9389c85accec89dbc4d91e39). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [0x-lite-Q2_K.gguf](https://huggingface.co/tensorblock/0x-lite-GGUF/blob/main/0x-lite-Q2_K.gguf) | Q2_K | 5.770 GB | smallest, significant quality loss - not recommended for most purposes | | [0x-lite-Q3_K_S.gguf](https://huggingface.co/tensorblock/0x-lite-GGUF/blob/main/0x-lite-Q3_K_S.gguf) | Q3_K_S | 6.660 GB | very small, high quality loss | | [0x-lite-Q3_K_M.gguf](https://huggingface.co/tensorblock/0x-lite-GGUF/blob/main/0x-lite-Q3_K_M.gguf) | Q3_K_M | 7.339 GB | very small, high quality loss | | [0x-lite-Q3_K_L.gguf](https://huggingface.co/tensorblock/0x-lite-GGUF/blob/main/0x-lite-Q3_K_L.gguf) | Q3_K_L | 7.925 GB | small, substantial quality loss | | [0x-lite-Q4_0.gguf](https://huggingface.co/tensorblock/0x-lite-GGUF/blob/main/0x-lite-Q4_0.gguf) | Q4_0 | 8.518 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [0x-lite-Q4_K_S.gguf](https://huggingface.co/tensorblock/0x-lite-GGUF/blob/main/0x-lite-Q4_K_S.gguf) | Q4_K_S | 8.573 GB | small, greater quality loss | | [0x-lite-Q4_K_M.gguf](https://huggingface.co/tensorblock/0x-lite-GGUF/blob/main/0x-lite-Q4_K_M.gguf) | Q4_K_M | 8.988 GB | medium, balanced quality - recommended | | [0x-lite-Q5_0.gguf](https://huggingface.co/tensorblock/0x-lite-GGUF/blob/main/0x-lite-Q5_0.gguf) | Q5_0 | 10.267 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [0x-lite-Q5_K_S.gguf](https://huggingface.co/tensorblock/0x-lite-GGUF/blob/main/0x-lite-Q5_K_S.gguf) | Q5_K_S | 10.267 GB | large, low quality loss - recommended | | [0x-lite-Q5_K_M.gguf](https://huggingface.co/tensorblock/0x-lite-GGUF/blob/main/0x-lite-Q5_K_M.gguf) | Q5_K_M | 10.509 GB | large, very low quality loss - recommended | | [0x-lite-Q6_K.gguf](https://huggingface.co/tensorblock/0x-lite-GGUF/blob/main/0x-lite-Q6_K.gguf) | Q6_K | 12.125 GB | very large, extremely low quality loss | | [0x-lite-Q8_0.gguf](https://huggingface.co/tensorblock/0x-lite-GGUF/blob/main/0x-lite-Q8_0.gguf) | Q8_0 | 15.702 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/0x-lite-GGUF --include "0x-lite-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/0x-lite-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
tensorblock/YuLan-Mini-GGUF
tensorblock
2025-06-19T01:31:38Z
276
1
transformers
[ "transformers", "gguf", "code", "math", "TensorBlock", "GGUF", "text-generation", "en", "zh", "dataset:yulan-team/YuLan-Mini-Datasets", "dataset:HuggingFaceFW/fineweb-edu", "dataset:bigcode/the-stack-v2", "dataset:mlfoundations/dclm-baseline-1.0", "dataset:math-ai/AutoMathText", "dataset:gair-prox/open-web-math-pro", "dataset:RUC-AIBOX/long_form_thought_data_5k", "dataset:internlm/Lean-Workbook", "dataset:internlm/Lean-Github", "dataset:deepseek-ai/DeepSeek-Prover-V1", "dataset:ScalableMath/Lean-STaR-base", "dataset:ScalableMath/Lean-STaR-plus", "dataset:ScalableMath/Lean-CoT-base", "dataset:ScalableMath/Lean-CoT-plus", "dataset:opencsg/chinese-fineweb-edu", "dataset:liwu/MNBVC", "dataset:vikp/textbook_quality_programming", "dataset:HuggingFaceTB/smollm-corpus", "dataset:OpenCoder-LLM/opc-annealing-corpus", "dataset:OpenCoder-LLM/opc-sft-stage1", "dataset:OpenCoder-LLM/opc-sft-stage2", "dataset:XinyaoHu/AMPS_mathematica", "dataset:deepmind/math_dataset", "dataset:mrfakename/basic-math-10m", "dataset:microsoft/orca-math-word-problems-200k", "dataset:AI-MO/NuminaMath-CoT", "dataset:HuggingFaceTB/cosmopedia", "dataset:MU-NLPC/Calc-ape210k", "dataset:manu/project_gutenberg", "dataset:storytracer/LoC-PD-Books", "dataset:allenai/dolma", "base_model:yulan-team/YuLan-Mini", "base_model:quantized:yulan-team/YuLan-Mini", "license:mit", "model-index", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-03-06T22:04:03Z
--- license: mit library_name: transformers pipeline_tag: text-generation datasets: - yulan-team/YuLan-Mini-Datasets - HuggingFaceFW/fineweb-edu - bigcode/the-stack-v2 - mlfoundations/dclm-baseline-1.0 - math-ai/AutoMathText - gair-prox/open-web-math-pro - RUC-AIBOX/long_form_thought_data_5k - internlm/Lean-Workbook - internlm/Lean-Github - deepseek-ai/DeepSeek-Prover-V1 - ScalableMath/Lean-STaR-base - ScalableMath/Lean-STaR-plus - ScalableMath/Lean-CoT-base - ScalableMath/Lean-CoT-plus - opencsg/chinese-fineweb-edu - liwu/MNBVC - vikp/textbook_quality_programming - HuggingFaceTB/smollm-corpus - OpenCoder-LLM/opc-annealing-corpus - OpenCoder-LLM/opc-sft-stage1 - OpenCoder-LLM/opc-sft-stage2 - XinyaoHu/AMPS_mathematica - deepmind/math_dataset - mrfakename/basic-math-10m - microsoft/orca-math-word-problems-200k - AI-MO/NuminaMath-CoT - HuggingFaceTB/cosmopedia - MU-NLPC/Calc-ape210k - manu/project_gutenberg - storytracer/LoC-PD-Books - allenai/dolma language: - en - zh tags: - code - math - TensorBlock - GGUF arxiv: 2412.17743 base_model: yulan-team/YuLan-Mini model-index: - name: YuLan-Mini results: - task: type: text-generation dataset: name: HumanEval type: openai_humaneval metrics: - type: pass@1 value: 0.64 name: pass@1 verified: false - task: type: text-generation dataset: name: MBPP type: mbpp metrics: - type: pass@1 value: 0.659 name: pass@1 verified: false - task: type: text-generation dataset: name: MATH-500 type: math-500 metrics: - type: maj@1 value: 0.378 name: maj@1 verified: false - task: type: text-generation dataset: name: GSM8K type: gsm8k metrics: - type: maj@1 value: 0.684 name: maj@1 verified: false --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## yulan-team/YuLan-Mini - GGUF This repo contains GGUF format model files for [yulan-team/YuLan-Mini](https://huggingface.co/yulan-team/YuLan-Mini). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4823](https://github.com/ggml-org/llama.cpp/commit/5bbe6a9fe9a8796a9389c85accec89dbc4d91e39). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="Project A" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Project B" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <s> <|start_header_id|>system<|end_header_id|> {system_prompt}<|eot_id|> <|start_header_id|>user<|end_header_id|> {prompt}<|eot_id|> <|start_header_id|>assistant<|end_header_id|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [YuLan-Mini-Q2_K.gguf](https://huggingface.co/tensorblock/YuLan-Mini-GGUF/blob/main/YuLan-Mini-Q2_K.gguf) | Q2_K | 1.468 GB | smallest, significant quality loss - not recommended for most purposes | | [YuLan-Mini-Q3_K_S.gguf](https://huggingface.co/tensorblock/YuLan-Mini-GGUF/blob/main/YuLan-Mini-Q3_K_S.gguf) | Q3_K_S | 1.463 GB | very small, high quality loss | | [YuLan-Mini-Q3_K_M.gguf](https://huggingface.co/tensorblock/YuLan-Mini-GGUF/blob/main/YuLan-Mini-Q3_K_M.gguf) | Q3_K_M | 1.560 GB | very small, high quality loss | | [YuLan-Mini-Q3_K_L.gguf](https://huggingface.co/tensorblock/YuLan-Mini-GGUF/blob/main/YuLan-Mini-Q3_K_L.gguf) | Q3_K_L | 1.606 GB | small, substantial quality loss | | [YuLan-Mini-Q4_0.gguf](https://huggingface.co/tensorblock/YuLan-Mini-GGUF/blob/main/YuLan-Mini-Q4_0.gguf) | Q4_0 | 1.463 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [YuLan-Mini-Q4_K_S.gguf](https://huggingface.co/tensorblock/YuLan-Mini-GGUF/blob/main/YuLan-Mini-Q4_K_S.gguf) | Q4_K_S | 1.746 GB | small, greater quality loss | | [YuLan-Mini-Q4_K_M.gguf](https://huggingface.co/tensorblock/YuLan-Mini-GGUF/blob/main/YuLan-Mini-Q4_K_M.gguf) | Q4_K_M | 1.846 GB | medium, balanced quality - recommended | | [YuLan-Mini-Q5_0.gguf](https://huggingface.co/tensorblock/YuLan-Mini-GGUF/blob/main/YuLan-Mini-Q5_0.gguf) | Q5_0 | 1.742 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [YuLan-Mini-Q5_K_S.gguf](https://huggingface.co/tensorblock/YuLan-Mini-GGUF/blob/main/YuLan-Mini-Q5_K_S.gguf) | Q5_K_S | 1.882 GB | large, low quality loss - recommended | | [YuLan-Mini-Q5_K_M.gguf](https://huggingface.co/tensorblock/YuLan-Mini-GGUF/blob/main/YuLan-Mini-Q5_K_M.gguf) | Q5_K_M | 1.969 GB | large, very low quality loss - recommended | | [YuLan-Mini-Q6_K.gguf](https://huggingface.co/tensorblock/YuLan-Mini-GGUF/blob/main/YuLan-Mini-Q6_K.gguf) | Q6_K | 2.580 GB | very large, extremely low quality loss | | [YuLan-Mini-Q8_0.gguf](https://huggingface.co/tensorblock/YuLan-Mini-GGUF/blob/main/YuLan-Mini-Q8_0.gguf) | Q8_0 | 2.580 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/YuLan-Mini-GGUF --include "YuLan-Mini-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/YuLan-Mini-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```