modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-25 06:27:54
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
495 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-25 06:24:22
card
stringlengths
11
1.01M
Classroom-workshop/assignment2-francesco
Classroom-workshop
2022-06-02T15:27:06Z
6
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-02T15:27:00Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 311.40 +/- 10.16 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
Classroom-workshop/assignment1-francesco
Classroom-workshop
2022-06-02T15:25:05Z
12
0
transformers
[ "transformers", "pytorch", "tf", "speech_to_text", "automatic-speech-recognition", "speech", "audio", "hf-asr-leaderboard", "en", "dataset:librispeech_asr", "arxiv:2010.05171", "arxiv:1904.08779", "license:mit", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-02T15:24:33Z
--- language: en datasets: - librispeech_asr tags: - speech - audio - automatic-speech-recognition - hf-asr-leaderboard license: mit pipeline_tag: automatic-speech-recognition widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac model-index: - name: s2t-small-librispeech-asr results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (clean) type: librispeech_asr config: clean split: test args: language: en metrics: - name: Test WER type: wer value: 4.3 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (other) type: librispeech_asr config: other split: test args: language: en metrics: - name: Test WER type: wer value: 9.0 --- # S2T-SMALL-LIBRISPEECH-ASR `s2t-small-librispeech-asr` is a Speech to Text Transformer (S2T) model trained for automatic speech recognition (ASR). The S2T model was proposed in [this paper](https://arxiv.org/abs/2010.05171) and released in [this repository](https://github.com/pytorch/fairseq/tree/master/examples/speech_to_text) ## Model description S2T is an end-to-end sequence-to-sequence transformer model. It is trained with standard autoregressive cross-entropy loss and generates the transcripts autoregressively. ## Intended uses & limitations This model can be used for end-to-end speech recognition (ASR). See the [model hub](https://huggingface.co/models?filter=speech_to_text) to look for other S2T checkpoints. ### How to use As this a standard sequence to sequence transformer model, you can use the `generate` method to generate the transcripts by passing the speech features to the model. *Note: The `Speech2TextProcessor` object uses [torchaudio](https://github.com/pytorch/audio) to extract the filter bank features. Make sure to install the `torchaudio` package before running this example.* *Note: The feature extractor depends on [torchaudio](https://github.com/pytorch/audio) and the tokenizer depends on [sentencepiece](https://github.com/google/sentencepiece) so be sure to install those packages before running the examples.* You could either install those as extra speech dependancies with `pip install transformers"[speech, sentencepiece]"` or install the packages seperatly with `pip install torchaudio sentencepiece`. ```python import torch from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration from datasets import load_dataset model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr") processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr") ds = load_dataset( "patrickvonplaten/librispeech_asr_dummy", "clean", split="validation" ) input_features = processor( ds[0]["audio"]["array"], sampling_rate=16_000, return_tensors="pt" ).input_features # Batch size 1 generated_ids = model.generate(input_ids=input_features) transcription = processor.batch_decode(generated_ids) ``` #### Evaluation on LibriSpeech Test The following script shows how to evaluate this model on the [LibriSpeech](https://huggingface.co/datasets/librispeech_asr) *"clean"* and *"other"* test dataset. ```python from datasets import load_dataset, load_metric from transformers import Speech2TextForConditionalGeneration, Speech2TextProcessor librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") # change to "other" for other test dataset wer = load_metric("wer") model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr").to("cuda") processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr", do_upper_case=True) librispeech_eval = librispeech_eval.map(map_to_array) def map_to_pred(batch): features = processor(batch["audio"]["array"], sampling_rate=16000, padding=True, return_tensors="pt") input_features = features.input_features.to("cuda") attention_mask = features.attention_mask.to("cuda") gen_tokens = model.generate(input_ids=input_features, attention_mask=attention_mask) batch["transcription"] = processor.batch_decode(gen_tokens, skip_special_tokens=True) return batch result = librispeech_eval.map(map_to_pred, batched=True, batch_size=8, remove_columns=["speech"]) print("WER:", wer(predictions=result["transcription"], references=result["text"])) ``` *Result (WER)*: | "clean" | "other" | |:-------:|:-------:| | 4.3 | 9.0 | ## Training data The S2T-SMALL-LIBRISPEECH-ASR is trained on [LibriSpeech ASR Corpus](https://www.openslr.org/12), a dataset consisting of approximately 1000 hours of 16kHz read English speech. ## Training procedure ### Preprocessing The speech data is pre-processed by extracting Kaldi-compliant 80-channel log mel-filter bank features automatically from WAV/FLAC audio files via PyKaldi or torchaudio. Further utterance-level CMVN (cepstral mean and variance normalization) is applied to each example. The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 10,000. ### Training The model is trained with standard autoregressive cross-entropy loss and using [SpecAugment](https://arxiv.org/abs/1904.08779). The encoder receives speech features, and the decoder generates the transcripts autoregressively. ### BibTeX entry and citation info ```bibtex @inproceedings{wang2020fairseqs2t, title = {fairseq S2T: Fast Speech-to-Text Modeling with fairseq}, author = {Changhan Wang and Yun Tang and Xutai Ma and Anne Wu and Dmytro Okhonko and Juan Pino}, booktitle = {Proceedings of the 2020 Conference of the Asian Chapter of the Association for Computational Linguistics (AACL): System Demonstrations}, year = {2020}, } ```
Classroom-workshop/assignment1-maria
Classroom-workshop
2022-06-02T15:24:32Z
6
0
transformers
[ "transformers", "pytorch", "tf", "speech_to_text", "automatic-speech-recognition", "speech", "audio", "hf-asr-leaderboard", "en", "dataset:librispeech_asr", "arxiv:2010.05171", "arxiv:1904.08779", "license:mit", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-02T15:23:58Z
--- language: en datasets: - librispeech_asr tags: - speech - audio - automatic-speech-recognition - hf-asr-leaderboard license: mit pipeline_tag: automatic-speech-recognition widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac model-index: - name: s2t-small-librispeech-asr results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (clean) type: librispeech_asr config: clean split: test args: language: en metrics: - name: Test WER type: wer value: 4.3 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (other) type: librispeech_asr config: other split: test args: language: en metrics: - name: Test WER type: wer value: 9.0 --- # S2T-SMALL-LIBRISPEECH-ASR `s2t-small-librispeech-asr` is a Speech to Text Transformer (S2T) model trained for automatic speech recognition (ASR). The S2T model was proposed in [this paper](https://arxiv.org/abs/2010.05171) and released in [this repository](https://github.com/pytorch/fairseq/tree/master/examples/speech_to_text) ## Model description S2T is an end-to-end sequence-to-sequence transformer model. It is trained with standard autoregressive cross-entropy loss and generates the transcripts autoregressively. ## Intended uses & limitations This model can be used for end-to-end speech recognition (ASR). See the [model hub](https://huggingface.co/models?filter=speech_to_text) to look for other S2T checkpoints. ### How to use As this a standard sequence to sequence transformer model, you can use the `generate` method to generate the transcripts by passing the speech features to the model. *Note: The `Speech2TextProcessor` object uses [torchaudio](https://github.com/pytorch/audio) to extract the filter bank features. Make sure to install the `torchaudio` package before running this example.* *Note: The feature extractor depends on [torchaudio](https://github.com/pytorch/audio) and the tokenizer depends on [sentencepiece](https://github.com/google/sentencepiece) so be sure to install those packages before running the examples.* You could either install those as extra speech dependancies with `pip install transformers"[speech, sentencepiece]"` or install the packages seperatly with `pip install torchaudio sentencepiece`. ```python import torch from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration from datasets import load_dataset model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr") processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr") ds = load_dataset( "patrickvonplaten/librispeech_asr_dummy", "clean", split="validation" ) input_features = processor( ds[0]["audio"]["array"], sampling_rate=16_000, return_tensors="pt" ).input_features # Batch size 1 generated_ids = model.generate(input_ids=input_features) transcription = processor.batch_decode(generated_ids) ``` #### Evaluation on LibriSpeech Test The following script shows how to evaluate this model on the [LibriSpeech](https://huggingface.co/datasets/librispeech_asr) *"clean"* and *"other"* test dataset. ```python from datasets import load_dataset, load_metric from transformers import Speech2TextForConditionalGeneration, Speech2TextProcessor librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") # change to "other" for other test dataset wer = load_metric("wer") model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr").to("cuda") processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr", do_upper_case=True) librispeech_eval = librispeech_eval.map(map_to_array) def map_to_pred(batch): features = processor(batch["audio"]["array"], sampling_rate=16000, padding=True, return_tensors="pt") input_features = features.input_features.to("cuda") attention_mask = features.attention_mask.to("cuda") gen_tokens = model.generate(input_ids=input_features, attention_mask=attention_mask) batch["transcription"] = processor.batch_decode(gen_tokens, skip_special_tokens=True) return batch result = librispeech_eval.map(map_to_pred, batched=True, batch_size=8, remove_columns=["speech"]) print("WER:", wer(predictions=result["transcription"], references=result["text"])) ``` *Result (WER)*: | "clean" | "other" | |:-------:|:-------:| | 4.3 | 9.0 | ## Training data The S2T-SMALL-LIBRISPEECH-ASR is trained on [LibriSpeech ASR Corpus](https://www.openslr.org/12), a dataset consisting of approximately 1000 hours of 16kHz read English speech. ## Training procedure ### Preprocessing The speech data is pre-processed by extracting Kaldi-compliant 80-channel log mel-filter bank features automatically from WAV/FLAC audio files via PyKaldi or torchaudio. Further utterance-level CMVN (cepstral mean and variance normalization) is applied to each example. The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 10,000. ### Training The model is trained with standard autoregressive cross-entropy loss and using [SpecAugment](https://arxiv.org/abs/1904.08779). The encoder receives speech features, and the decoder generates the transcripts autoregressively. ### BibTeX entry and citation info ```bibtex @inproceedings{wang2020fairseqs2t, title = {fairseq S2T: Fast Speech-to-Text Modeling with fairseq}, author = {Changhan Wang and Yun Tang and Xutai Ma and Anne Wu and Dmytro Okhonko and Juan Pino}, booktitle = {Proceedings of the 2020 Conference of the Asian Chapter of the Association for Computational Linguistics (AACL): System Demonstrations}, year = {2020}, } ```
KFlash/bert-finetuned-squad
KFlash
2022-06-02T15:22:00Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-29T15:15:15Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Tokenizers 0.12.1
lmazzon70/blurr_IMDB_distilbert_classification
lmazzon70
2022-06-02T14:30:46Z
0
0
fastai
[ "fastai", "region:us" ]
null
2022-06-02T14:30:34Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
YeRyeongLee/electra-base-discriminator-finetuned-filtered-0602
YeRyeongLee
2022-06-02T14:29:58Z
4
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-02T11:16:49Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: electra-base-discriminator-finetuned-filtered-0602 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-base-discriminator-finetuned-filtered-0602 This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1685 - Accuracy: 0.9720 - F1: 0.9721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.12.1
lmazzon70/identify-my-cat
lmazzon70
2022-06-02T14:24:41Z
0
0
fastai
[ "fastai", "region:us" ]
null
2022-06-02T14:24:29Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
huggingtweets/vborghesani
huggingtweets
2022-06-02T14:00:46Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-02T13:54:30Z
--- language: en thumbnail: http://www.huggingtweets.com/vborghesani/1654178225151/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1279408626877304833/28JtkdiE_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Valentina Borghesani</div> <div style="text-align: center; font-size: 14px;">@vborghesani</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Valentina Borghesani. | Data | Valentina Borghesani | | --- | --- | | Tweets downloaded | 1024 | | Retweets | 140 | | Short tweets | 23 | | Tweets kept | 861 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/21epnhoj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @vborghesani's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1vf22msq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1vf22msq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/vborghesani') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/caballerogaudes
huggingtweets
2022-06-02T13:25:40Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-02T13:23:37Z
--- language: en thumbnail: http://www.huggingtweets.com/caballerogaudes/1654176335515/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1011998779061559297/5gOeFvds_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">CesarCaballeroGaudes</div> <div style="text-align: center; font-size: 14px;">@caballerogaudes</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from CesarCaballeroGaudes. | Data | CesarCaballeroGaudes | | --- | --- | | Tweets downloaded | 1724 | | Retweets | 808 | | Short tweets | 36 | | Tweets kept | 880 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2d76b6yf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @caballerogaudes's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/i6nt6oo6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/i6nt6oo6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/caballerogaudes') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/willsavino
huggingtweets
2022-06-02T13:06:29Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-02T13:06:04Z
--- language: en thumbnail: http://www.huggingtweets.com/willsavino/1654175184979/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1078115982768525317/wk6NTSE0_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Will Savino</div> <div style="text-align: center; font-size: 14px;">@willsavino</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Will Savino. | Data | Will Savino | | --- | --- | | Tweets downloaded | 3229 | | Retweets | 355 | | Short tweets | 244 | | Tweets kept | 2630 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2nhwww0u/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @willsavino's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3k5ueoap) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3k5ueoap/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/willsavino') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
yannis95/bert-finetuned-ner
yannis95
2022-06-02T12:35:12Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-02T06:57:21Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.926145730300033 - name: Recall type: recall value: 0.9454729047458769 - name: F1 type: f1 value: 0.935709526982012 - name: Accuracy type: accuracy value: 0.9851209748631307 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0665 - Precision: 0.9261 - Recall: 0.9455 - F1: 0.9357 - Accuracy: 0.9851 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0852 | 1.0 | 1756 | 0.0650 | 0.9197 | 0.9367 | 0.9281 | 0.9830 | | 0.0407 | 2.0 | 3512 | 0.0621 | 0.9225 | 0.9438 | 0.9330 | 0.9848 | | 0.0195 | 3.0 | 5268 | 0.0665 | 0.9261 | 0.9455 | 0.9357 | 0.9851 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
tclong/wav2vec2-base-vios-v1
tclong
2022-06-02T11:33:05Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-31T14:48:17Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-vios-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-vios-v1 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6352 - Wer: 0.5161 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 5.7944 | 3.98 | 1000 | 1.7427 | 1.0387 | | 0.7833 | 7.97 | 2000 | 0.4026 | 0.4364 | | 0.4352 | 11.95 | 3000 | 0.3967 | 0.4042 | | 0.4988 | 15.94 | 4000 | 0.5446 | 0.4632 | | 0.7822 | 19.92 | 5000 | 0.6563 | 0.5491 | | 0.8496 | 23.9 | 6000 | 0.5828 | 0.5045 | | 0.8072 | 27.89 | 7000 | 0.6318 | 0.5109 | | 0.8336 | 31.87 | 8000 | 0.6352 | 0.5161 | | 0.8311 | 35.86 | 9000 | 0.6352 | 0.5161 | | 0.839 | 39.84 | 10000 | 0.6352 | 0.5161 | | 0.8297 | 43.82 | 11000 | 0.6352 | 0.5161 | | 0.8288 | 47.81 | 12000 | 0.6352 | 0.5161 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
chrisvinsen/wav2vec2-final-1-lm-3
chrisvinsen
2022-06-02T11:11:11Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-02T02:20:52Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-19 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-19 WER 0.283 WER 0.126 with 4-Gram This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6305 - Wer: 0.4499 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 800 - num_epochs: 60 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4816 | 2.74 | 400 | 1.0717 | 0.8927 | | 0.751 | 5.48 | 800 | 0.7155 | 0.7533 | | 0.517 | 8.22 | 1200 | 0.7039 | 0.6675 | | 0.3988 | 10.96 | 1600 | 0.5935 | 0.6149 | | 0.3179 | 13.7 | 2000 | 0.6477 | 0.5999 | | 0.2755 | 16.44 | 2400 | 0.5549 | 0.5798 | | 0.2343 | 19.18 | 2800 | 0.6626 | 0.5798 | | 0.2103 | 21.92 | 3200 | 0.6488 | 0.5674 | | 0.1877 | 24.66 | 3600 | 0.5874 | 0.5339 | | 0.1719 | 27.4 | 4000 | 0.6354 | 0.5389 | | 0.1603 | 30.14 | 4400 | 0.6612 | 0.5210 | | 0.1401 | 32.88 | 4800 | 0.6676 | 0.5131 | | 0.1286 | 35.62 | 5200 | 0.6366 | 0.5075 | | 0.1159 | 38.36 | 5600 | 0.6064 | 0.4977 | | 0.1084 | 41.1 | 6000 | 0.6530 | 0.4835 | | 0.0974 | 43.84 | 6400 | 0.6118 | 0.4853 | | 0.0879 | 46.58 | 6800 | 0.6316 | 0.4770 | | 0.0815 | 49.32 | 7200 | 0.6125 | 0.4664 | | 0.0708 | 52.05 | 7600 | 0.6449 | 0.4683 | | 0.0651 | 54.79 | 8000 | 0.6068 | 0.4571 | | 0.0555 | 57.53 | 8400 | 0.6305 | 0.4499 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
elfray/q-FrozenLake-v1-4x4-noSlippery
elfray
2022-06-02T10:55:16Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-02T10:55:09Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="elfray/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
SynamicTechnologies/CYBERT
SynamicTechnologies
2022-06-02T09:51:10Z
5,032
8
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-02T08:22:55Z
## CYBERT BERT model dedicated to the domain of cyber security. The model has been trained on a corpus of high-quality cyber security and computer science text and is unlikely to work outside this domain. ##Model architecture The model architecture used is original Roberta and tokenizer to train the corpus is Byte Level. ##Hardware The model is trained on GPU NVIDIA-SMI 510.54
chrisvinsen/wav2vec2-19
chrisvinsen
2022-06-02T09:03:33Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-01T10:35:47Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-19 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-19 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6305 - Wer: 0.4499 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 800 - num_epochs: 60 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4816 | 2.74 | 400 | 1.0717 | 0.8927 | | 0.751 | 5.48 | 800 | 0.7155 | 0.7533 | | 0.517 | 8.22 | 1200 | 0.7039 | 0.6675 | | 0.3988 | 10.96 | 1600 | 0.5935 | 0.6149 | | 0.3179 | 13.7 | 2000 | 0.6477 | 0.5999 | | 0.2755 | 16.44 | 2400 | 0.5549 | 0.5798 | | 0.2343 | 19.18 | 2800 | 0.6626 | 0.5798 | | 0.2103 | 21.92 | 3200 | 0.6488 | 0.5674 | | 0.1877 | 24.66 | 3600 | 0.5874 | 0.5339 | | 0.1719 | 27.4 | 4000 | 0.6354 | 0.5389 | | 0.1603 | 30.14 | 4400 | 0.6612 | 0.5210 | | 0.1401 | 32.88 | 4800 | 0.6676 | 0.5131 | | 0.1286 | 35.62 | 5200 | 0.6366 | 0.5075 | | 0.1159 | 38.36 | 5600 | 0.6064 | 0.4977 | | 0.1084 | 41.1 | 6000 | 0.6530 | 0.4835 | | 0.0974 | 43.84 | 6400 | 0.6118 | 0.4853 | | 0.0879 | 46.58 | 6800 | 0.6316 | 0.4770 | | 0.0815 | 49.32 | 7200 | 0.6125 | 0.4664 | | 0.0708 | 52.05 | 7600 | 0.6449 | 0.4683 | | 0.0651 | 54.79 | 8000 | 0.6068 | 0.4571 | | 0.0555 | 57.53 | 8400 | 0.6305 | 0.4499 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
dsghrg/bert-finetuned-ner
dsghrg
2022-06-02T08:18:16Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-02T08:00:36Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.933895223929929 - name: Recall type: recall value: 0.9510265903736116 - name: F1 type: f1 value: 0.9423830567831235 - name: Accuracy type: accuracy value: 0.9863572143403779 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0646 - Precision: 0.9339 - Recall: 0.9510 - F1: 0.9424 - Accuracy: 0.9864 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0864 | 1.0 | 1756 | 0.0659 | 0.9161 | 0.9372 | 0.9265 | 0.9830 | | 0.0403 | 2.0 | 3512 | 0.0616 | 0.9271 | 0.9483 | 0.9376 | 0.9855 | | 0.0199 | 3.0 | 5268 | 0.0646 | 0.9339 | 0.9510 | 0.9424 | 0.9864 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/paxt0n4
huggingtweets
2022-06-02T07:30:57Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-02T07:30:25Z
--- language: en thumbnail: http://www.huggingtweets.com/paxt0n4/1654155052782/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1359906890340306950/s5cXHS11_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Paxton Fitzpatrick</div> <div style="text-align: center; font-size: 14px;">@paxt0n4</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Paxton Fitzpatrick. | Data | Paxton Fitzpatrick | | --- | --- | | Tweets downloaded | 2551 | | Retweets | 1177 | | Short tweets | 326 | | Tweets kept | 1048 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1x9k9uk2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @paxt0n4's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/34fd5zca) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/34fd5zca/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/paxt0n4') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
kabelomalapane/En-Tn
kabelomalapane
2022-06-02T07:03:01Z
67
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-06-01T11:35:03Z
--- license: apache-2.0 tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: En-Tn results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # En-Tn This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-tn](https://huggingface.co/Helsinki-NLP/opus-mt-en-tn) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6174 - Bleu: 32.2889 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ThePixOne/SeconBERTa1
ThePixOne
2022-06-02T05:51:30Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-06-02T05:46:38Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 20799 with parameters: ``` {'batch_size': 16} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 4159.8, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 514, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
ShoneRan/bert-emotion
ShoneRan
2022-06-02T05:15:37Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-02T04:55:32Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - precision - recall model-index: - name: bert-emotion results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: emotion metrics: - name: Precision type: precision value: 0.7262254187805659 - name: Recall type: recall value: 0.725549671319356 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-emotion This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.1670 - Precision: 0.7262 - Recall: 0.7255 - Fscore: 0.7253 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Fscore | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | 0.8561 | 1.0 | 815 | 0.7844 | 0.7575 | 0.6081 | 0.6253 | | 0.5337 | 2.0 | 1630 | 0.9080 | 0.7567 | 0.7236 | 0.7325 | | 0.2573 | 3.0 | 2445 | 1.1670 | 0.7262 | 0.7255 | 0.7253 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
thunninoi/wav2vec2-japanese-hiragana-vtuber
thunninoi
2022-06-02T04:31:41Z
6
2
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-27T10:41:57Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: checkpoints results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # checkpoints This model is a fine-tuned version of [vumichien/wav2vec2-large-xlsr-japanese-hiragana](https://huggingface.co/vumichien/wav2vec2-large-xlsr-japanese-hiragana) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4134 - Wer: 0.1884 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 3 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 6 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 75 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.4299 | 1.0 | 247 | 0.7608 | 0.4853 | | 0.8045 | 2.0 | 494 | 0.6603 | 0.4449 | | 0.6061 | 3.0 | 741 | 0.5527 | 0.4233 | | 0.4372 | 4.0 | 988 | 0.6262 | 0.4029 | | 0.3226 | 5.0 | 1235 | 0.4528 | 0.3462 | | 0.2581 | 6.0 | 1482 | 0.4961 | 0.3226 | | 0.2147 | 7.0 | 1729 | 0.4856 | 0.3075 | | 0.1736 | 8.0 | 1976 | 0.4372 | 0.3063 | | 0.1488 | 9.0 | 2223 | 0.3771 | 0.2761 | | 0.1286 | 10.0 | 2470 | 0.4373 | 0.2590 | | 0.1118 | 11.0 | 2717 | 0.3840 | 0.2594 | | 0.1037 | 12.0 | 2964 | 0.4241 | 0.2590 | | 0.0888 | 13.0 | 3211 | 0.4150 | 0.2410 | | 0.0923 | 14.0 | 3458 | 0.3811 | 0.2524 | | 0.0813 | 15.0 | 3705 | 0.4164 | 0.2459 | | 0.0671 | 16.0 | 3952 | 0.3498 | 0.2288 | | 0.0669 | 17.0 | 4199 | 0.3697 | 0.2247 | | 0.0586 | 18.0 | 4446 | 0.3550 | 0.2251 | | 0.0533 | 19.0 | 4693 | 0.4024 | 0.2231 | | 0.0542 | 20.0 | 4940 | 0.4130 | 0.2121 | | 0.0532 | 21.0 | 5187 | 0.3464 | 0.2231 | | 0.0451 | 22.0 | 5434 | 0.3346 | 0.1966 | | 0.0413 | 23.0 | 5681 | 0.4599 | 0.2088 | | 0.0401 | 24.0 | 5928 | 0.4031 | 0.2162 | | 0.0345 | 25.0 | 6175 | 0.3726 | 0.2084 | | 0.033 | 26.0 | 6422 | 0.4619 | 0.2076 | | 0.0366 | 27.0 | 6669 | 0.4071 | 0.2202 | | 0.0343 | 28.0 | 6916 | 0.4114 | 0.2088 | | 0.0319 | 29.0 | 7163 | 0.3605 | 0.2015 | | 0.0304 | 30.0 | 7410 | 0.4097 | 0.2015 | | 0.0253 | 31.0 | 7657 | 0.4152 | 0.1970 | | 0.0235 | 32.0 | 7904 | 0.3829 | 0.2043 | | 0.0255 | 33.0 | 8151 | 0.3976 | 0.2011 | | 0.0201 | 34.0 | 8398 | 0.4247 | 0.2088 | | 0.022 | 35.0 | 8645 | 0.3831 | 0.1945 | | 0.0175 | 36.0 | 8892 | 0.3838 | 0.2007 | | 0.0201 | 37.0 | 9139 | 0.4377 | 0.1986 | | 0.0176 | 38.0 | 9386 | 0.4546 | 0.2043 | | 0.021 | 39.0 | 9633 | 0.4341 | 0.2039 | | 0.0191 | 40.0 | 9880 | 0.4043 | 0.1937 | | 0.0159 | 41.0 | 10127 | 0.4098 | 0.2064 | | 0.0148 | 42.0 | 10374 | 0.4027 | 0.1905 | | 0.0129 | 43.0 | 10621 | 0.4104 | 0.1933 | | 0.0123 | 44.0 | 10868 | 0.3738 | 0.1925 | | 0.0159 | 45.0 | 11115 | 0.3946 | 0.1933 | | 0.0091 | 46.0 | 11362 | 0.3971 | 0.1880 | | 0.0082 | 47.0 | 11609 | 0.4042 | 0.1986 | | 0.0108 | 48.0 | 11856 | 0.4092 | 0.1884 | | 0.0123 | 49.0 | 12103 | 0.3674 | 0.1941 | | 0.01 | 50.0 | 12350 | 0.3750 | 0.1876 | | 0.0094 | 51.0 | 12597 | 0.3781 | 0.1831 | | 0.008 | 52.0 | 12844 | 0.4051 | 0.1852 | | 0.0079 | 53.0 | 13091 | 0.3981 | 0.1937 | | 0.0068 | 54.0 | 13338 | 0.4425 | 0.1929 | | 0.0061 | 55.0 | 13585 | 0.4183 | 0.1986 | | 0.0074 | 56.0 | 13832 | 0.3502 | 0.1880 | | 0.0071 | 57.0 | 14079 | 0.3908 | 0.1892 | | 0.0079 | 58.0 | 14326 | 0.3908 | 0.1913 | | 0.0042 | 59.0 | 14573 | 0.3801 | 0.1864 | | 0.0049 | 60.0 | 14820 | 0.4065 | 0.1839 | | 0.0063 | 61.0 | 15067 | 0.4170 | 0.1900 | | 0.0049 | 62.0 | 15314 | 0.3903 | 0.1856 | | 0.0031 | 63.0 | 15561 | 0.4042 | 0.1896 | | 0.0054 | 64.0 | 15808 | 0.3890 | 0.1839 | | 0.0061 | 65.0 | 16055 | 0.3831 | 0.1847 | | 0.0052 | 66.0 | 16302 | 0.3898 | 0.1847 | | 0.0032 | 67.0 | 16549 | 0.4230 | 0.1831 | | 0.0017 | 68.0 | 16796 | 0.4241 | 0.1823 | | 0.0022 | 69.0 | 17043 | 0.4360 | 0.1856 | | 0.0026 | 70.0 | 17290 | 0.4233 | 0.1815 | | 0.0028 | 71.0 | 17537 | 0.4225 | 0.1835 | | 0.0018 | 72.0 | 17784 | 0.4163 | 0.1856 | | 0.0034 | 73.0 | 18031 | 0.4120 | 0.1876 | | 0.0019 | 74.0 | 18278 | 0.4129 | 0.1876 | | 0.0023 | 75.0 | 18525 | 0.4134 | 0.1884 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
gullu72/bert-fine-tuned-rajat
gullu72
2022-06-02T04:22:58Z
4
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-02T03:50:40Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: bert-fine-tuned-rajat results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # bert-fine-tuned-rajat This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1791 - Validation Loss: 0.4963 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.5119 | 0.4245 | 0 | | 0.3015 | 0.4296 | 1 | | 0.1791 | 0.4963 | 2 | ### Framework versions - Transformers 4.19.2 - TensorFlow 2.8.2 - Datasets 2.2.2 - Tokenizers 0.12.1
NlpHUST/gpt2-vietnamese
NlpHUST
2022-06-02T04:02:44Z
3,159
22
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "vi", "vietnamese", "lm", "nlp", "dataset:oscar", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-23T08:04:12Z
--- language: vi tags: - vi - vietnamese - gpt2 - text-generation - lm - nlp datasets: - oscar widget: - text: "Việt Nam là quốc gia có" --- # GPT-2 Pretrained gpt model on Vietnamese language using a causal language modeling (CLM) objective. It was introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and first released at [this page](https://openai.com/blog/better-language-models/). # How to use the model ~~~~ import torch from transformers import GPT2Tokenizer, GPT2LMHeadModel tokenizer = GPT2Tokenizer.from_pretrained('NlpHUST/gpt2-vietnamese') model = GPT2LMHeadModel.from_pretrained('NlpHUST/gpt2-vietnamese') text = "Việt Nam là quốc gia có" input_ids = tokenizer.encode(text, return_tensors='pt') max_length = 100 sample_outputs = model.generate(input_ids,pad_token_id=tokenizer.eos_token_id, do_sample=True, max_length=max_length, min_length=max_length, top_k=40, num_beams=5, early_stopping=True, no_repeat_ngram_size=2, num_return_sequences=3) for i, sample_output in enumerate(sample_outputs): print(">> Generated text {}\n\n{}".format(i+1, tokenizer.decode(sample_output.tolist()))) print('\n---') ~~~~ ```bash >> Generated text 1 Việt Nam là quốc gia có nền kinh tế hàng đầu thế giới về sản xuất, chế biến và tiêu thụ các sản phẩm nông sản, thủy sản. Tuy nhiên, trong những năm gần đây, nông nghiệp Việt Nam đang phải đối mặt với nhiều khó khăn, thách thức, đặc biệt là những tác động tiêu cực của biến đổi khí hậu. Theo số liệu của Tổng cục Thống kê, tính đến cuối năm 2015, tổng diện tích gieo trồng, sản lượng lương thực, thực phẩm cả --- >> Generated text 2 Việt Nam là quốc gia có nền kinh tế thị trường định hướng xã hội chủ nghĩa, có vai trò rất quan trọng đối với sự phát triển bền vững của đất nước. Do đó, trong quá trình đổi mới và hội nhập quốc tế, Việt Nam đã và đang phải đối mặt với không ít khó khăn, thách thức, đòi hỏi phải có những chủ trương, chính sách đúng đắn, kịp thời, phù hợp với tình hình thực tế. Để thực hiện thắng lợi mục tiêu, nhiệm vụ --- >> Generated text 3 Việt Nam là quốc gia có nền kinh tế thị trường phát triển theo định hướng xã hội chủ nghĩa. Trong quá trình đổi mới và hội nhập quốc tế hiện nay, Việt Nam đang phải đối mặt với nhiều khó khăn, thách thức, đòi hỏi phải có những giải pháp đồng bộ, hiệu quả và phù hợp với tình hình thực tế của đất nước. Để thực hiện thắng lợi mục tiêu, nhiệm vụ mà Nghị quyết Đại hội XI của Đảng đề ra, Đảng và Nhà nước đã ban hành --- ``` # Model architecture A 12-layer, 768-hidden-size transformer-based language model. # Training The model was trained on Vietnamese Oscar dataset (32 GB) to optimize a traditional language modelling objective on v3-8 TPU for around 6 days. It reaches around 13.4 perplexity on a chosen validation set from Oscar. ### GPT-2 Finetuning The following example fine-tunes GPT-2 on WikiText-2. We're using the raw WikiText-2. The script [here](https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_clm.py) . ```bash python run_clm.py \ --model_name_or_path NlpHUST/gpt2-vietnamese \ --dataset_name wikitext \ --dataset_config_name wikitext-2-raw-v1 \ --per_device_train_batch_size 8 \ --per_device_eval_batch_size 8 \ --do_train \ --do_eval \ --output_dir /tmp/test-clm ``` ### Contact information For personal communication related to this project, please contact Nha Nguyen Van ([email protected]).
dkasti/xlm-roberta-base-finetuned-panx-all
dkasti
2022-06-02T02:24:54Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-02T02:10:13Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1769 - F1: 0.8533 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3049 | 1.0 | 835 | 0.1873 | 0.8139 | | 0.1576 | 2.0 | 1670 | 0.1722 | 0.8403 | | 0.1011 | 3.0 | 2505 | 0.1769 | 0.8533 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
JXL884/distilbert-base-uncased-finetuned-emotion
JXL884
2022-06-02T02:14:26Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-02T02:05:53Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
dkasti/xlm-roberta-base-finetuned-panx-en
dkasti
2022-06-02T02:07:48Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-02T02:05:51Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - name: F1 type: f1 value: 0.6885793871866295 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3996 - F1: 0.6886 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1301 | 1.0 | 50 | 0.5666 | 0.4857 | | 0.5143 | 2.0 | 100 | 0.4469 | 0.6449 | | 0.3723 | 3.0 | 150 | 0.3996 | 0.6886 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
dkasti/xlm-roberta-base-finetuned-panx-it
dkasti
2022-06-02T02:05:41Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-02T02:03:25Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8233360723089564 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2388 - F1: 0.8233 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8099 | 1.0 | 70 | 0.3035 | 0.7333 | | 0.2766 | 2.0 | 140 | 0.2661 | 0.7948 | | 0.1792 | 3.0 | 210 | 0.2388 | 0.8233 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
kktoto/tiny_kt_punctuator
kktoto
2022-06-02T02:04:30Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-02T01:44:00Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: tiny_kt_punctuator results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny_kt_punctuator This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1424 - Precision: 0.6287 - Recall: 0.5781 - F1: 0.6023 - Accuracy: 0.9476 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1621 | 1.0 | 5561 | 0.1508 | 0.6138 | 0.5359 | 0.5722 | 0.9450 | | 0.1519 | 2.0 | 11122 | 0.1439 | 0.6279 | 0.5665 | 0.5956 | 0.9471 | | 0.1496 | 3.0 | 16683 | 0.1424 | 0.6287 | 0.5781 | 0.6023 | 0.9476 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
dkasti/xlm-roberta-base-finetuned-panx-fr
dkasti
2022-06-02T02:03:12Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-02T01:59:16Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.839946200403497 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2789 - F1: 0.8399 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.587 | 1.0 | 191 | 0.3355 | 0.7929 | | 0.274 | 2.0 | 382 | 0.2977 | 0.8283 | | 0.1836 | 3.0 | 573 | 0.2789 | 0.8399 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
dkasti/xlm-roberta-base-finetuned-panx-de-fr
dkasti
2022-06-02T01:56:17Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-02T01:43:38Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1649 - F1: 0.8555 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2883 | 1.0 | 715 | 0.1818 | 0.8286 | | 0.1461 | 2.0 | 1430 | 0.1539 | 0.8511 | | 0.095 | 3.0 | 2145 | 0.1649 | 0.8555 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
dkasti/xlm-roberta-base-finetuned-panx-de
dkasti
2022-06-02T00:32:38Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-27T07:02:10Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8615769427548178 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1401 - F1: 0.8616 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2605 | 1.0 | 525 | 0.1708 | 0.8198 | | 0.1274 | 2.0 | 1050 | 0.1415 | 0.8449 | | 0.0819 | 3.0 | 1575 | 0.1401 | 0.8616 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
jiseong/mt5-small-finetuned-news-ab
jiseong
2022-06-02T00:10:15Z
4
0
transformers
[ "transformers", "tf", "tensorboard", "mt5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-01T08:24:29Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: jiseong/mt5-small-finetuned-news-ab results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # jiseong/mt5-small-finetuned-news-ab This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.0174 - Validation Loss: 1.7411 - Epoch: 3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.1124 | 2.0706 | 0 | | 2.4090 | 1.8742 | 1 | | 2.1379 | 1.7889 | 2 | | 2.0174 | 1.7411 | 3 | ### Framework versions - Transformers 4.19.2 - TensorFlow 2.8.2 - Datasets 2.2.2 - Tokenizers 0.12.1
YeRyeongLee/bert-large-uncased-finetuned-filtered-0602
YeRyeongLee
2022-06-01T22:57:54Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-01T16:28:40Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bert-large-uncased-finetuned-filtered-0602 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-finetuned-filtered-0602 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8409 - Accuracy: 0.1667 - F1: 0.0476 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 1.8331 | 1.0 | 3180 | 1.8054 | 0.1667 | 0.0476 | | 1.8158 | 2.0 | 6360 | 1.8196 | 0.1667 | 0.0476 | | 1.8088 | 3.0 | 9540 | 1.8059 | 0.1667 | 0.0476 | | 1.8072 | 4.0 | 12720 | 1.7996 | 0.1667 | 0.0476 | | 1.8182 | 5.0 | 15900 | 1.7962 | 0.1667 | 0.0476 | | 1.7993 | 6.0 | 19080 | 1.8622 | 0.1667 | 0.0476 | | 1.7963 | 7.0 | 22260 | 1.8378 | 0.1667 | 0.0476 | | 1.7956 | 8.0 | 25440 | 1.8419 | 0.1667 | 0.0476 | | 1.7913 | 9.0 | 28620 | 1.8406 | 0.1667 | 0.0476 | | 1.7948 | 10.0 | 31800 | 1.8409 | 0.1667 | 0.0476 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.12.1
meln1k/q-Taxi-v3-v1
meln1k
2022-06-01T22:47:23Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-01T22:47:15Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3-v1 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="meln1k/q-Taxi-v3-v1", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
VanessaSchenkel/unicamp-finetuned-en-to-pt-dataset-ted
VanessaSchenkel
2022-06-01T22:38:09Z
6
1
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "translation", "generated_from_trainer", "dataset:ted_iwlst2013", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
translation
2022-06-01T17:57:16Z
--- tags: - translation - generated_from_trainer datasets: - ted_iwlst2013 metrics: - bleu model-index: - name: unicamp-finetuned-en-to-pt-dataset-ted results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: ted_iwlst2013 type: ted_iwlst2013 args: en-pt metrics: - name: Bleu type: bleu value: 25.65030250145235 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # unicamp-finetuned-en-to-pt-dataset-ted This model is a fine-tuned version of [unicamp-dl/translation-pt-en-t5](https://huggingface.co/unicamp-dl/translation-pt-en-t5) on the ted_iwlst2013 dataset. It achieves the following results on the evaluation set: - Loss: 1.8861 - Bleu: 25.6503 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
chrisvinsen/xlsr-wav2vec2-final-1-lm-2
chrisvinsen
2022-06-01T22:29:23Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-27T07:02:01Z
Indonli dataset --> Train + Validation + Test WER : 0.216 WER with LM: 0.151
robinhad/ukrainian-qa
robinhad
2022-06-01T22:08:47Z
47
6
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "question-answering", "generated_from_trainer", "uk", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-06-01T19:28:07Z
--- license: mit language: uk tags: - generated_from_trainer model-index: - name: ukrainian-qa results: [] widget: - text: "Що відправлять для ЗСУ?" context: "Про це повідомив міністр оборони Арвідас Анушаускас. Уряд Литви не має наміру зупинятися у військово-технічній допомозі Україні. Збройні сили отримають антидрони, тепловізори та ударний безпілотник. «Незабаром Литва передасть Україні не лише обіцяні бронетехніку, вантажівки та позашляховики, але також нову партію антидронів та тепловізорів. І, звичайно, Байрактар, який придбають на зібрані литовцями гроші», - написав глава Міноборони." --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ukrainian-qa This model is a fine-tuned version of [ukr-models/xlm-roberta-base-uk](https://huggingface.co/ukr-models/xlm-roberta-base-uk) on the [UA-SQuAD](https://github.com/fido-ai/ua-datasets/tree/main/ua_datasets/src/question_answering) dataset. Link to training scripts - [https://github.com/robinhad/ukrainian-qa](https://github.com/robinhad/ukrainian-qa) It achieves the following results on the evaluation set: - Loss: 1.4778 ## Model description More information needed ## How to use ```python from transformers import pipeline, AutoTokenizer, AutoModelForQuestionAnswering model_name = "robinhad/ukrainian-qa" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForQuestionAnswering.from_pretrained(model_name) qa_model = pipeline("question-answering", model=model.to("cpu"), tokenizer=tokenizer) question = "Де ти живеш?" context = "Мене звати Сара і я живу у Лондоні" qa_model(question = question, context = context) ``` ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.4526 | 1.0 | 650 | 1.3631 | | 1.3317 | 2.0 | 1300 | 1.2229 | | 1.0693 | 3.0 | 1950 | 1.2184 | | 0.6851 | 4.0 | 2600 | 1.3171 | | 0.5594 | 5.0 | 3250 | 1.3893 | | 0.4954 | 6.0 | 3900 | 1.4778 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
kalmufti/PPO-LunarLander-v2
kalmufti
2022-06-01T21:03:19Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-10T16:37:17Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 275.34 +/- 14.56 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent Playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3, and huggingface_sb3) To use this model make sure you are running Python version 3.7.13. You can use [pyenv](https://github.com/pyenv/pyenv) to manage multiple versions of Python on your system. ### Install required packages: ```bash pip install stable-baselines3 pip install huggingface_sb3 pip install pickle5 pip install Box2D pip install pyglet ``` You can use this simple script as a base to evaluate and run the model: ```python import gym from stable_baselines3 import PPO from huggingface_sb3 import load_from_hub from stable_baselines3.common.evaluation import evaluate_policy # Download the model from the huggingface hub checkpoint = load_from_hub( repo_id="kalmufti/PPO-LunarLander-v2", filename="ppo-LunarLander-v2.zip", ) # Load the policy model = PPO.load(checkpoint) # Create an environment env = gym.make("LunarLander-v2") # Optional - evaluate the agent means mean_reward, std_reward = evaluate_policy( model, env, render=False, n_eval_episodes=5, deterministic=True, warn=False ) print(f"mean_reward={mean_reward:.2f} +/- {std_reward}") # Watch the agent playing the environment obs = env.reset() for i in range(1000): action, _state = model.predict(obs) obs, reward, done, info = env.step(action) env.render() if done: obs = env.reset() env.close() ```
FritzOS/TEdetection_distiBERT_NER_V2
FritzOS
2022-06-01T20:40:16Z
5
0
transformers
[ "transformers", "tf", "distilbert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-01T20:40:03Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: TEdetection_distiBERT_NER_V2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # TEdetection_distiBERT_NER_V2 This model is a fine-tuned version of [FritzOS/TEdetection_distiBERT_mLM_V2](https://huggingface.co/FritzOS/TEdetection_distiBERT_mLM_V2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0032 - Validation Loss: 0.0032 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 208018, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.0032 | 0.0032 | 0 | ### Framework versions - Transformers 4.19.2 - TensorFlow 2.8.2 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/disgustingact84-kickswish-managertactical
huggingtweets
2022-06-01T20:24:09Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-01T20:06:54Z
--- language: en thumbnail: http://www.huggingtweets.com/disgustingact84-kickswish-managertactical/1654115021712/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1530279378332041220/1ysZA-S8_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1258515252163022848/_O1bOXBQ_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1360389551336865797/6RERF_Gg_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ToxicAct 🇺🇸 ⚽️ & Justin Moran & Tactical Manager</div> <div style="text-align: center; font-size: 14px;">@disgustingact84-kickswish-managertactical</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ToxicAct 🇺🇸 ⚽️ & Justin Moran & Tactical Manager. | Data | ToxicAct 🇺🇸 ⚽️ | Justin Moran | Tactical Manager | | --- | --- | --- | --- | | Tweets downloaded | 3247 | 3237 | 3250 | | Retweets | 260 | 286 | 47 | | Short tweets | 333 | 81 | 302 | | Tweets kept | 2654 | 2870 | 2901 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3rtzdst3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @disgustingact84-kickswish-managertactical's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3lhxffhi) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3lhxffhi/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/disgustingact84-kickswish-managertactical') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
erickfm/t5-base-finetuned-bias
erickfm
2022-06-01T18:28:29Z
3
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "dataset:WNC", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-01T11:30:30Z
--- language: - en license: apache-2.0 datasets: - WNC metrics: - accuracy --- This model is a fine-tune checkpoint of [T5-base](https://huggingface.co/t5-base), fine-tuned on the [Wiki Neutrality Corpus (WNC)](https://github.com/rpryzant/neutralizing-bias), a labeled dataset composed of 180,000 biased and neutralized sentence pairs that are generated from Wikipedia edits tagged for “neutral point of view”. This model reaches an accuracy of 0.39 on a dev split of the WNC. For more details about T5, check out this [model card](https://huggingface.co/t5-base).
Abderrahim2/bert-finetuned-gender_classification
Abderrahim2
2022-06-01T14:39:29Z
3
3
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-01T00:12:03Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: bert-finetuned-gender_classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-gender_classification This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1484 - F1: 0.9645 - Roc Auc: 0.9732 - Accuracy: 0.964 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|:--------:| | 0.1679 | 1.0 | 1125 | 0.1781 | 0.928 | 0.946 | 0.927 | | 0.1238 | 2.0 | 2250 | 0.1252 | 0.9516 | 0.9640 | 0.95 | | 0.0863 | 3.0 | 3375 | 0.1283 | 0.9515 | 0.9637 | 0.95 | | 0.0476 | 4.0 | 4500 | 0.1419 | 0.9565 | 0.9672 | 0.956 | | 0.0286 | 5.0 | 5625 | 0.1428 | 0.9555 | 0.9667 | 0.954 | | 0.0091 | 6.0 | 6750 | 0.1515 | 0.9604 | 0.9700 | 0.959 | | 0.0157 | 7.0 | 7875 | 0.1535 | 0.9580 | 0.9682 | 0.957 | | 0.0048 | 8.0 | 9000 | 0.1484 | 0.9645 | 0.9732 | 0.964 | | 0.0045 | 9.0 | 10125 | 0.1769 | 0.9605 | 0.9703 | 0.96 | | 0.0037 | 10.0 | 11250 | 0.2007 | 0.9565 | 0.9672 | 0.956 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
bishmoy/q-Taxi-v3
bishmoy
2022-06-01T13:45:44Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-01T13:45:38Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="bishmoy/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
cjbarrie/masress-medcrit-camel
cjbarrie
2022-06-01T13:23:54Z
3
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "unk", "dataset:cjbarrie/autotrain-data-masress-medcrit-binary-5", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-01T12:56:34Z
--- tags: autotrain language: unk widget: - text: "الكل ينتقد الرئيس على إخفاقاته" datasets: - cjbarrie/autotrain-data-masress-medcrit-binary-5 co2_eq_emissions: 0.01017487638098474 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 937130980 - CO2 Emissions (in grams): 0.01017487638098474 ## Validation Metrics - Loss: 0.757265031337738 - Accuracy: 0.7551020408163265 - Macro F1: 0.7202470830473576 - Micro F1: 0.7551020408163265 - Weighted F1: 0.7594301962377263 - Macro Precision: 0.718716577540107 - Micro Precision: 0.7551020408163265 - Weighted Precision: 0.7711448215649895 - Macro Recall: 0.7285714285714286 - Micro Recall: 0.7551020408163265 - Weighted Recall: 0.7551020408163265 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/cjbarrie/autotrain-masress-medcrit-binary-5-937130980 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("cjbarrie/autotrain-masress-medcrit-binary-5-937130980", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("cjbarrie/autotrain-masress-medcrit-binary-5-937130980", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
facebook/levit-128
facebook
2022-06-01T13:21:29Z
53
0
transformers
[ "transformers", "pytorch", "levit", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2104.01136", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-01T11:27:59Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # LeViT LeViT-128 model pre-trained on ImageNet-1k at resolution 224x224. It was introduced in the paper [LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference ](https://arxiv.org/abs/2104.01136) by Graham et al. and first released in [this repository](https://github.com/facebookresearch/LeViT). Disclaimer: The team releasing LeViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Usage Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import LevitFeatureExtractor, LevitForImageClassificationWithTeacher from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = LevitFeatureExtractor.from_pretrained('facebook/levit-128') model = LevitForImageClassificationWithTeacher.from_pretrained('facebook/levit-128') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ```
facebook/levit-384
facebook
2022-06-01T13:20:59Z
67
0
transformers
[ "transformers", "pytorch", "levit", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2104.01136", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-01T11:27:30Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # LeViT LeViT-384 model pre-trained on ImageNet-1k at resolution 224x224. It was introduced in the paper [LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference ](https://arxiv.org/abs/2104.01136) by Graham et al. and first released in [this repository](https://github.com/facebookresearch/LeViT). Disclaimer: The team releasing LeViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Usage Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import LevitFeatureExtractor, LevitForImageClassificationWithTeacher from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = LevitFeatureExtractor.from_pretrained('facebook/levit-384') model = LevitForImageClassificationWithTeacher.from_pretrained('facebook/levit-384') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ```
pravesh/wav2vec2-large-xls-r-300m-Hindi-colab-v4
pravesh
2022-06-01T12:23:43Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-01T11:39:09Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-Hindi-colab-v4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-Hindi-colab-v4 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
ibm-research/roberta-large-vira-intents
ibm-research
2022-06-01T12:06:27Z
13
1
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "intent detection", "en", "dataset:ibm/vira-intents", "arxiv:2205.11966", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-31T08:40:27Z
--- language: - en tags: - intent detection license: "other" datasets: - ibm/vira-intents metrics: - accuracy widget: - text: "Should I be concerned about side effects of the vaccine if I'm breastfeeding?} & Is breastfeeding safe with the vaccine" example_title: "Breastfeeding" - text: "Does the vaccine prevent transmission?" example_title: "Transmission" - text: "Will the vaccine make me sterile or infertile? " example_title: "Infertility" --- ## Model Description This model is based on RoBERTa large (Liu, 2019), fine-tuned on a dataset of intent expressions available [here](https://research.ibm.com/haifa/dept/vst/debating_data.shtml) and also on 🤗 Transformer datasets hub [here](https://huggingface.co/datasets/ibm/vira-intents). The model was created as part of the work described in [Benchmark Data and Evaluation Framework for Intent Discovery Around COVID-19 Vaccine Hesitancy ](https://arxiv.org/abs/2205.11966). The model is released under the Community Data License Agreement - Sharing - Version 1.0 ([link](https://cdla.dev/sharing-1-0/)), If you use this model, please cite our paper. The official GitHub is [here](https://github.com/IBM/vira-intent-discovery). The script used for training the model is [trainer.py](https://github.com/IBM/vira-intent-discovery/blob/master/trainer.py). ## Training parameters 1. base_model = 'roberta-large' 1. learning_rate=5e-6 1. per_device_train_batch_size=16, 1. per_device_eval_batch_size=16, 1. num_train_epochs=15, 1. load_best_model_at_end=True, 1. save_total_limit=1, 1. save_strategy='epoch', 1. evaluation_strategy='epoch', 1. metric_for_best_model='accuracy', 1. seed=123 ## Data collator DataCollatorWithPadding
jayeshgar/q-FrozenLake-v1-4x4-noSlippery
jayeshgar
2022-06-01T11:40:35Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-01T11:40:28Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="jayeshgar/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
pravesh/wav2vec2-large-xls-r-300m-hindi-v2
pravesh
2022-06-01T10:49:32Z
0
0
null
[ "region:us" ]
null
2022-06-01T10:11:49Z
This is Hindi ASR model finetuned on facebook wav2vec2-large-xls-r-300m model.
aaatul/xlm-roberta-large-finetuned-ner
aaatul
2022-06-01T09:06:31Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:hi_ner_config", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-05T06:32:26Z
--- license: mit tags: - generated_from_trainer datasets: - hi_ner_config model-index: - name: xlm-roberta-large-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-large-finetuned-ner This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the hi_ner_config dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
mccaffary/finetuning-sentiment-model-3000-samples-DM
mccaffary
2022-06-01T09:01:21Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-31T22:26:12Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples-DM results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8666666666666667 - name: F1 type: f1 value: 0.8734177215189873 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples-DM This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3248 - Accuracy: 0.8667 - F1: 0.8734 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.8.0 - Datasets 2.2.2 - Tokenizers 0.12.1
adache/xlm-roberta-base-finetuned-panx-all
adache
2022-06-01T08:20:34Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-01T07:54:01Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1782 - F1: 0.8541 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2995 | 1.0 | 739 | 0.1891 | 0.8085 | | 0.1552 | 2.0 | 1478 | 0.1798 | 0.8425 | | 0.1008 | 3.0 | 2217 | 0.1782 | 0.8541 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
muhtasham/RoBERTa-tg
muhtasham
2022-06-01T07:52:30Z
6
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "generated_from_trainer", "tg", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-31T21:06:31Z
--- language: - tg widget: - text: "Пойтахти <mask> Душанбе" - text: "<mask> ба ин сайти шумо медароям." - text: "Номи ман Акрам <mask>" tags: - generated_from_trainer model-index: - name: RoBERTa-tg results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # RoBERTa-tg This model is a fine-tuned version of [Tajik-Corpus](https://huggingface.co/datasets/muhtasham/tajik-corpus) dataset which is based on Leipzig Corpora. ## Model description You can use model for masked text generation or fine-tune it to a downstream task. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 8 - seed: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Tokenizers 0.12.1
ceggian/sbart_pt_reddit_softmax_32
ceggian
2022-06-01T07:41:57Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bart", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-06-01T07:34:31Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 117759 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 11775, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: BartModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
RANG012/SENATOR
RANG012
2022-06-01T07:17:06Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-01T06:51:08Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: SENATOR results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.916 - name: F1 type: f1 value: 0.9166666666666666 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SENATOR This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2707 - Accuracy: 0.916 - F1: 0.9167 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
adache/xlm-roberta-base-finetuned-panx-fr
adache
2022-06-01T07:13:59Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-01T06:53:43Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8053736356003358 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3196 - F1: 0.8054 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.7741 | 1.0 | 96 | 0.3784 | 0.7542 | | 0.3235 | 2.0 | 192 | 0.3267 | 0.7947 | | 0.2164 | 3.0 | 288 | 0.3196 | 0.8054 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
adache/xlm-roberta-base-finetuned-panx-de-fr
adache
2022-06-01T06:47:31Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-01T06:21:05Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1644 - F1: 0.8617 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2891 | 1.0 | 715 | 0.1780 | 0.8288 | | 0.1471 | 2.0 | 1430 | 0.1627 | 0.8509 | | 0.0947 | 3.0 | 2145 | 0.1644 | 0.8617 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
t-bank-ai/response-quality-classifier-tiny
t-bank-ai
2022-06-01T06:34:56Z
17
3
transformers
[ "transformers", "pytorch", "bert", "text-classification", "conversational", "ru", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-31T08:32:08Z
--- license: mit widget: - text: "[CLS]привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]супер, вот только проснулся, у тебя как?" example_title: "Dialog example 1" - text: "[CLS]привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]норм" example_title: "Dialog example 2" - text: "[CLS]привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]норм, у тя как?" example_title: "Dialog example 3" language: - ru tags: - conversational --- This classification model is based on [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2). The model should be used to produce relevance and specificity of the last message in the context of a dialogue. The labels explanation: - `relevance`: is the last message in the dialogue relevant in the context of the full dialogue. - `specificity`: is the last message in the dialogue interesting and promotes the continuation of the dialogue. It is pretrained on a large corpus of dialog data in unsupervised manner: the model is trained to predict whether last response was in a real dialog, or it was pulled from some other dialog at random. Then it was finetuned on manually labelled examples (dataset will be posted soon). The model was trained with three messages in the context and one response. Each message was tokenized separately with ``` max_length = 32 ```. The performance of the model on validation split (dataset will be posted soon) (with the best thresholds for validation samples): | | threshold | f0.5 | ROC AUC | |:------------|------------:|-------:|----------:| | relevance | 0.51 | 0.82 | 0.74 | | specificity | 0.54 | 0.81 | 0.8 | How to use: ```python import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained('tinkoff-ai/response-quality-classifier-tiny') model = AutoModelForSequenceClassification.from_pretrained('tinkoff-ai/response-quality-classifier-tiny') inputs = tokenizer('[CLS]привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]норм, у тя как?', max_length=128, add_special_tokens=False, return_tensors='pt') with torch.inference_mode(): logits = model(**inputs).logits probas = torch.sigmoid(logits)[0].cpu().detach().numpy() relevance, specificity = probas ``` The [app](https://huggingface.co/spaces/tinkoff-ai/response-quality-classifiers) where you can easily interact with this model. The work was done during internship at Tinkoff by [egoriyaa](https://github.com/egoriyaa), mentored by [solemn-leader](https://huggingface.co/solemn-leader).
t-bank-ai/response-quality-classifier-base
t-bank-ai
2022-06-01T06:34:22Z
17
2
transformers
[ "transformers", "pytorch", "bert", "text-classification", "conversational", "ru", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-31T10:17:12Z
--- license: mit widget: - text: "[CLS]привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]супер, вот только проснулся, у тебя как?" example_title: "Dialog example 1" - text: "[CLS]привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]норм" example_title: "Dialog example 2" - text: "[CLS]привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]норм, у тя как?" example_title: "Dialog example 3" language: - ru tags: - conversational --- This classification model is based on [DeepPavlov/rubert-base-cased-sentence](https://huggingface.co/DeepPavlov/rubert-base-cased-sentence). The model should be used to produce relevance and specificity of the last message in the context of a dialogue. The labels explanation: - `relevance`: is the last message in the dialogue relevant in the context of the full dialogue. - `specificity`: is the last message in the dialogue interesting and promotes the continuation of the dialogue. It is pretrained on a large corpus of dialog data in unsupervised manner: the model is trained to predict whether last response was in a real dialog, or it was pulled from some other dialog at random. Then it was finetuned on manually labelled examples (dataset will be posted soon). The model was trained with three messages in the context and one response. Each message was tokenized separately with ``` max_length = 32 ```. The performance of the model on validation split (dataset will be posted soon) (with the best thresholds for validation samples): | | threshold | f0.5 | ROC AUC | |:------------|------------:|-------:|----------:| | relevance | 0.49 | 0.84 | 0.79 | | specificity | 0.53 | 0.83 | 0.83 | How to use: ```python import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained('tinkoff-ai/response-quality-classifier-base') model = AutoModelForSequenceClassification.from_pretrained('tinkoff-ai/response-quality-classifier-base') inputs = tokenizer('[CLS]привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]норм, у тя как?', max_length=128, add_special_tokens=False, return_tensors='pt') with torch.inference_mode(): logits = model(**inputs).logits probas = torch.sigmoid(logits)[0].cpu().detach().numpy() relevance, specificity = probas ``` The [app](https://huggingface.co/spaces/tinkoff-ai/response-quality-classifiers) where you can easily interact with this model. The work was done during internship at Tinkoff by [egoriyaa](https://github.com/egoriyaa), mentored by [solemn-leader](https://huggingface.co/solemn-leader).
jiseong/mt5-small-finetuned-news
jiseong
2022-06-01T06:22:12Z
3
0
transformers
[ "transformers", "tf", "tensorboard", "mt5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-01T00:47:52Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: jiseong/mt5-small-finetuned-news results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # jiseong/mt5-small-finetuned-news This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1208 - Validation Loss: 0.1012 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1829 | 0.1107 | 0 | | 0.1421 | 0.1135 | 1 | | 0.1208 | 0.1012 | 2 | ### Framework versions - Transformers 4.19.2 - TensorFlow 2.8.0 - Datasets 2.2.2 - Tokenizers 0.12.1
arize-ai/distilbert_reviews_with_language_drift
arize-ai
2022-06-01T06:15:35Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:ecommerce_reviews_with_language_drift", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-01T05:46:28Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - ecommerce_reviews_with_language_drift metrics: - accuracy - f1 model-index: - name: distilbert_reviews_with_language_drift results: - task: name: Text Classification type: text-classification dataset: name: ecommerce_reviews_with_language_drift type: ecommerce_reviews_with_language_drift args: default metrics: - name: Accuracy type: accuracy value: 0.818 - name: F1 type: f1 value: 0.8167126877417763 widget: - text: "Poor quality of fabric and ridiculously tight at chest. It's way too short." example_title: "Negative" - text: "One worked perfectly, but the other one has a slight leak and we end up with water underneath the filter." example_title: "Neutral" - text: "I liked the price most! Nothing to dislike here!" example_title: "Positive" --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_reviews_with_language_drift This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ecommerce_reviews_with_language_drift dataset. It achieves the following results on the evaluation set: - Loss: 0.4970 - Accuracy: 0.818 - F1: 0.8167 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.593 | 1.0 | 500 | 0.4723 | 0.799 | 0.7976 | | 0.3714 | 2.0 | 1000 | 0.4679 | 0.818 | 0.8177 | | 0.2652 | 3.0 | 1500 | 0.4970 | 0.818 | 0.8167 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
adache/xlm-roberta-base-finetuned-panx-de
adache
2022-06-01T05:55:12Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-27T06:39:06Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8627004891366169 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1363 - F1: 0.8627 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2539 | 1.0 | 525 | 0.1697 | 0.8179 | | 0.1317 | 2.0 | 1050 | 0.1327 | 0.8516 | | 0.0819 | 3.0 | 1575 | 0.1363 | 0.8627 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Oseias/ppo-LunarLander-v2_review
Oseias
2022-06-01T02:26:14Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-01T02:25:48Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 254.90 +/- 26.83 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
radev/distilbert-base-uncased-finetuned-emotion
radev
2022-06-01T02:20:13Z
14
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-16T21:47:07Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.8945 - name: F1 type: f1 value: 0.8871610121255439 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.3645 - Accuracy: 0.8945 - F1: 0.8872 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 125 | 0.5816 | 0.8015 | 0.7597 | | 0.7707 | 2.0 | 250 | 0.3645 | 0.8945 | 0.8872 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
chrisvinsen/wav2vec2-16
chrisvinsen
2022-06-01T02:12:10Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-31T11:32:11Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-16 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1016 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 3.6682 | 1.37 | 200 | 3.3138 | 1.0 | | 2.8751 | 2.74 | 400 | 2.9984 | 1.0 | | 2.8697 | 4.11 | 600 | 3.0827 | 1.0 | | 2.866 | 5.48 | 800 | 3.0697 | 1.0 | | 2.8655 | 6.85 | 1000 | 3.1083 | 1.0 | | 2.8629 | 8.22 | 1200 | 3.0888 | 1.0 | | 2.8651 | 9.59 | 1400 | 3.2852 | 1.0 | | 2.8601 | 10.96 | 1600 | 3.1155 | 1.0 | | 2.8617 | 12.33 | 1800 | 3.1958 | 1.0 | | 2.8595 | 13.7 | 2000 | 3.1070 | 1.0 | | 2.858 | 15.07 | 2200 | 3.1483 | 1.0 | | 2.8564 | 16.44 | 2400 | 3.0906 | 1.0 | | 2.8561 | 17.81 | 2600 | 3.1412 | 1.0 | | 2.8574 | 19.18 | 2800 | 3.0783 | 1.0 | | 2.8543 | 20.55 | 3000 | 3.0624 | 1.0 | | 2.8549 | 21.92 | 3200 | 3.0914 | 1.0 | | 2.8556 | 23.29 | 3400 | 3.0735 | 1.0 | | 2.8557 | 24.66 | 3600 | 3.1791 | 1.0 | | 2.8576 | 26.03 | 3800 | 3.0645 | 1.0 | | 2.8528 | 27.4 | 4000 | 3.1190 | 1.0 | | 2.8551 | 28.77 | 4200 | 3.1016 | 1.0 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
erickfm/t5-small-finetuned-bias
erickfm
2022-06-01T02:02:16Z
3
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "dataset:WNC", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-31T23:29:18Z
--- language: - en license: apache-2.0 datasets: - WNC metrics: - accuracy --- This model is a fine-tune checkpoint of [T5-small](https://huggingface.co/t5-small), fine-tuned on the [Wiki Neutrality Corpus (WNC)](https://github.com/rpryzant/neutralizing-bias), a labeled dataset composed of 180,000 biased and neutralized sentence pairs that are generated from Wikipedia edits tagged for “neutral point of view”. This model reaches an accuracy of 0.32 on a dev split of the WNC. For more details about T5, check out this [model card](https://huggingface.co/t5-small).
sanchit-gandhi/flax-wav2vec2-2-bart-large-cv9-feature-encoder
sanchit-gandhi
2022-06-01T00:43:26Z
3
0
transformers
[ "transformers", "jax", "speech-encoder-decoder", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-29T16:50:26Z
/home/sanchitgandhi/seq2seq-speech/README.md
skr3178/xlm-roberta-base-finetuned-panx-all
skr3178
2022-05-31T23:55:44Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-31T23:31:21Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1752 - F1: 0.8557 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3 | 1.0 | 835 | 0.1862 | 0.8114 | | 0.1552 | 2.0 | 1670 | 0.1758 | 0.8426 | | 0.1002 | 3.0 | 2505 | 0.1752 | 0.8557 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
skr3178/xlm-roberta-base-finetuned-panx-en
skr3178
2022-05-31T23:31:12Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-31T23:14:17Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - name: F1 type: f1 value: 0.692179700499168 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3921 - F1: 0.6922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1465 | 1.0 | 50 | 0.5838 | 0.4777 | | 0.5055 | 2.0 | 100 | 0.4477 | 0.6374 | | 0.3713 | 3.0 | 150 | 0.3921 | 0.6922 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
skr3178/xlm-roberta-base-finetuned-panx-it
skr3178
2022-05-31T23:14:06Z
6
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-31T22:57:02Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8247845711940912 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2421 - F1: 0.8248 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.809 | 1.0 | 70 | 0.3380 | 0.7183 | | 0.2939 | 2.0 | 140 | 0.2582 | 0.7977 | | 0.1813 | 3.0 | 210 | 0.2421 | 0.8248 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
skr3178/xlm-roberta-base-finetuned-panx-de-fr
skr3178
2022-05-31T22:37:32Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-31T22:14:05Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1644 - F1: 0.8617 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2891 | 1.0 | 715 | 0.1780 | 0.8288 | | 0.1471 | 2.0 | 1430 | 0.1627 | 0.8509 | | 0.0947 | 3.0 | 2145 | 0.1644 | 0.8617 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
jppaolim/v40_NeoSmall
jppaolim
2022-05-31T22:23:08Z
3
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-05-31T22:11:48Z
# My Story model Arthur goes to the beach. Arthur is in the ocean. He is enjoying the water. He cannot wait for the sun to rise. He goes to the beach. It is very hot outside. Arthur goes to the beach. Arthur is going to the beach. He is going to the beach. He is going to go swimming. He feels a breeze on his shirt. He feels very relaxed. Arthur goes to the beach. Arthur is walking on the beach. He notices a sign for the beach club. He asks for a cab. He gets a cab to go to the beach. Arthur and his friends go to the beach together. Arthur goes to the beach. Arthur was excited to go to the beach. He drove his car to the beach. When he got there, he was amazed at the waves. The waves had a huge sandcastle. Arthur went to the beach and enjoyed the beach. Arthur goes to the beach. Arthur is playing in the sand with his friends. He is having a great time, and they are all laughing. They all seem to be enjoying themselves. Arthur decides he has to leave. Arthur is sad that he will not be able to go to the beach. Arthur goes to the beach. Arthur wants to go to the beach. He decides to go to the beach. He sees a sign for the beach. He goes to the beach. Arthur is happy to go to the beach. Arthur goes to the beach. Arthur is at the beach. He is playing with his friends. They go swimming. Arthur is caught in a water. Arthur is taken to the beach. Arthur goes to the beach. Arthur is in the ocean. He is bored. He decides to go to the beach. He is bored for a few hours. Arthur leaves the beach. Arthur goes to the beach. Arthur is out swimming. He is going to the beach. He goes to the beach. He goes to the beach. He goes to the beach. Arthur goes to the beach. Arthur was at the beach with his friends. They went swimming and laid out on the sand. They found a beach they liked. They decided to go to the beach and play. They were so happy that they decided to go back to the beach. Arthur goes to the beach. Arthur is at the beach with his family. They are going to go to the beach. Arthur is very excited. He is going to go to the beach. Arthur is happy that he went to the beach. Arthur goes to the beach. Arthur was at the beach with his friends. They were having a great time. They all went to the beach. They had a great time. Arthur is very happy. Arthur goes to the beach. Arthur is bored. He decides to go to the beach. He goes to the beach. He goes to the beach. He is happy that he went to the beach. Arthur goes to the beach. Arthur is bored. He decides to go to the beach. He is very bored. He decides to go to the beach. Arthur is happy that he went to the beach. Arthur goes to the beach. Arthur is on his way to the beach. He is going to the beach. He is going to the beach. He is going to the beach. Arthur is going to the beach.
wrice/wav2vec2-large-robust-ft-timit
wrice
2022-05-31T22:17:20Z
22
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-31T16:21:54Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-robust-ft-timit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-robust-ft-timit This model is a fine-tuned version of [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2768 - Wer: 0.2321 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 6.6175 | 1.0 | 500 | 3.3025 | 1.0 | | 3.0746 | 2.01 | 1000 | 2.9598 | 1.0 | | 1.967 | 3.01 | 1500 | 0.6760 | 0.5607 | | 0.7545 | 4.02 | 2000 | 0.4500 | 0.4567 | | 0.5415 | 5.02 | 2500 | 0.3702 | 0.3882 | | 0.4445 | 6.02 | 3000 | 0.3421 | 0.3584 | | 0.3601 | 7.03 | 3500 | 0.2947 | 0.3096 | | 0.3098 | 8.03 | 4000 | 0.2740 | 0.2894 | | 0.2606 | 9.04 | 4500 | 0.2725 | 0.2787 | | 0.238 | 10.04 | 5000 | 0.2549 | 0.2617 | | 0.2142 | 11.04 | 5500 | 0.2485 | 0.2530 | | 0.1787 | 12.05 | 6000 | 0.2683 | 0.2514 | | 0.1652 | 13.05 | 6500 | 0.2559 | 0.2476 | | 0.1569 | 14.06 | 7000 | 0.2777 | 0.2470 | | 0.1443 | 15.06 | 7500 | 0.2661 | 0.2431 | | 0.1335 | 16.06 | 8000 | 0.2717 | 0.2422 | | 0.1291 | 17.07 | 8500 | 0.2672 | 0.2428 | | 0.1192 | 18.07 | 9000 | 0.2684 | 0.2395 | | 0.1144 | 19.08 | 9500 | 0.2770 | 0.2411 | | 0.1052 | 20.08 | 10000 | 0.2831 | 0.2379 | | 0.1004 | 21.08 | 10500 | 0.2847 | 0.2375 | | 0.1053 | 22.09 | 11000 | 0.2851 | 0.2360 | | 0.1005 | 23.09 | 11500 | 0.2807 | 0.2361 | | 0.0904 | 24.1 | 12000 | 0.2764 | 0.2346 | | 0.0876 | 25.1 | 12500 | 0.2774 | 0.2325 | | 0.0883 | 26.1 | 13000 | 0.2768 | 0.2313 | | 0.0848 | 27.11 | 13500 | 0.2840 | 0.2307 | | 0.0822 | 28.11 | 14000 | 0.2812 | 0.2316 | | 0.09 | 29.12 | 14500 | 0.2768 | 0.2321 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.8.2+cu111 - Datasets 1.17.0 - Tokenizers 0.11.6
Simon10/my-awesome-model-3
Simon10
2022-05-31T21:26:38Z
7
0
transformers
[ "transformers", "tf", "bert", "fill-mask", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-31T21:20:01Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: my-awesome-model-3 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # my-awesome-model-3 This model is a fine-tuned version of [dbmdz/bert-base-italian-cased](https://huggingface.co/dbmdz/bert-base-italian-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2061 - Validation Loss: 0.0632 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -811, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.2061 | 0.0632 | 0 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.1 - Datasets 2.2.2 - Tokenizers 0.11.0
Dizzykong/test-charles-dickens
Dizzykong
2022-05-31T21:22:30Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-31T21:10:52Z
--- license: mit tags: - generated_from_trainer model-index: - name: test-charles-dickens results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-charles-dickens This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Dizzykong/test-recipe
Dizzykong
2022-05-31T21:17:01Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-31T20:42:17Z
--- tags: - generated_from_trainer model-index: - name: test-recipe results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-recipe This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.001 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
sanchit-gandhi/flax-wav2vec2-2-bart-large-tedlium-feature-encoder
sanchit-gandhi
2022-05-31T21:06:15Z
7
0
transformers
[ "transformers", "jax", "speech-encoder-decoder", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-29T16:54:24Z
/home/sanchitgandhi/seq2seq-speech/README.md
malra/segformer-b5-segments-warehouse1
malra
2022-05-31T20:54:00Z
125
0
transformers
[ "transformers", "pytorch", "segformer", "vision", "image-segmentation", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-segmentation
2022-05-31T16:02:39Z
--- license: apache-2.0 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b5-segments-warehouse1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b5-segments-warehouse1 This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the jakka/warehouse_part1 dataset. It achieves the following results on the evaluation set: - Loss: 0.1610 - Mean Iou: 0.6952 - Mean Accuracy: 0.8014 - Overall Accuracy: 0.9648 - Per Category Iou: [0.0, 0.47153295365063086, 0.9293854681828234, 0.9766069961659746, 0.927007550222462, 0.9649404794739765, 0.9824606440795911, 0.8340592613982738, 0.9706739467997174, 0.653761891900003, 0.0, 0.8080046149867717, 0.75033588410538, 0.6921465280057791, 0.7522124809345331, 0.7548461579766955, 0.3057219434101416, 0.5087799410519325, 0.84829211455404, 0.7730356409704979] - Per Category Accuracy: [nan, 0.9722884260421271, 0.9720560851996344, 0.9881427437833682, 0.9650114633107388, 0.9828538231066912, 0.9897027752946145, 0.9071521422402136, 0.9848998109819413, 0.6895634832705517, 0.0, 0.8704126720181029, 0.8207667731629393, 0.7189631369929214, 0.8238982104266324, 0.8620090549531412, 0.3522998155172771, 0.5387075151368637, 0.9081104400345125, 0.8794092789466661] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 0.1656 | 1.0 | 787 | 0.1917 | 0.5943 | 0.6937 | 0.9348 | [0.0, 0.8760430595457738, 0.8113714411434076, 0.9533787339343942, 0.8499988352439646, 0.9330256290984922, 0.964368918196211, 0.6984009498117659, 0.9341093239597545, 0.288411561596369, 0.0, 0.6496866199024376, 0.4510074387900882, 0.5206343319728309, 0.6377305875444397, 0.5391733301507737, 0.1395685713288422, 0.390702947845805, 0.6999919374344916, 0.548023343373494] | [nan, 0.9502542152644661, 0.9516900451328754, 0.9788975544390225, 0.921821413759201, 0.9534230318615367, 0.9778020069070933, 0.8108538425970355, 0.970571911491369, 0.2993067645848501, 0.0, 0.7454496363566233, 0.5849840255591054, 0.5858306866277158, 0.7137540570947559, 0.6925710548100606, 0.16576498144808574, 0.4165357186026834, 0.8142326593390103, 0.6474578532983408] | | 0.0948 | 2.0 | 1574 | 0.2058 | 0.6310 | 0.7305 | 0.9442 | [0.0, 0.904077233776714, 0.8616556242304713, 0.9604692135700761, 0.8306854004041632, 0.9459690932012119, 0.9714777936344227, 0.7463801249809481, 0.9197830038961162, 0.4759644364074744, 0.0, 0.7133768631713745, 0.4878118726699168, 0.5403469048526253, 0.6267211124010835, 0.6280780328151242, 0.11116434156063161, 0.4757211293446132, 0.7386220435315599, 0.6814722192019137] | [nan, 0.9530795697109564, 0.9481439135801821, 0.9753750826203033, 0.9328161802391284, 0.9783733696392768, 0.9831560736299451, 0.8544532947139754, 0.9700176894451403, 0.5598936405938401, 0.0, 0.8212854589792271, 0.5434504792332269, 0.5765256977221256, 0.7602586827898242, 0.745275787709383, 0.12024542420662065, 0.5128732019823522, 0.8080522939565592, 0.8363729371469241] | | 0.0595 | 3.0 | 2361 | 0.1363 | 0.6578 | 0.7540 | 0.9494 | [0.0, 0.9109388123768081, 0.8466263269727539, 0.965583073696094, 0.8848508600101197, 0.9507919193853351, 0.9742807972055659, 0.7672266040033193, 0.9571650494933543, 0.5580972230045627, 0.0, 0.7572676505482382, 0.5338298840118263, 0.5743160573368553, 0.6964399439112182, 0.6369583059750492, 0.19255896751223853, 0.49017131449756574, 0.7563405327946686, 0.7018448645266491] | [nan, 0.9587813659877967, 0.9568298005631468, 0.9842947615263231, 0.9380059570384915, 0.9734457175747111, 0.9839202800499454, 0.863077218359317, 0.9757816512090675, 0.6272609287455287, 0.0, 0.8589569413670591, 0.5999361022364217, 0.6161844118746441, 0.7983763527021668, 0.793146442915981, 0.2242190576871256, 0.5288397085810358, 0.8216978654762351, 0.8232729860771318] | | 0.0863 | 4.0 | 3148 | 0.1706 | 0.6597 | 0.7678 | 0.9537 | [0.0, 0.5911845175607978, 0.8922572171811833, 0.9657396689703207, 0.8726664918778465, 0.948172990516989, 0.9741643734457509, 0.7832072821045744, 0.9578631876788363, 0.5869565217391305, 0.0, 0.7602876424039574, 0.5747447162194254, 0.6642950791717092, 0.6978602093118107, 0.7122118073263809, 0.21745086578505152, 0.5091171801864137, 0.763416879968237, 0.7220314268720861] | [nan, 0.9656626144746107, 0.9588916966191391, 0.9766109980050623, 0.9234167566678667, 0.9783156758536367, 0.9891284919047324, 0.8876447135391675, 0.9773653302095363, 0.6623721946123896, 0.0, 0.8391697702425289, 0.6185942492012779, 0.6961703584876796, 0.8060121894956657, 0.8277923697200732, 0.24677155234956366, 0.5498060503499884, 0.8475353565667555, 0.8369956852453183] | | 0.0849 | 5.0 | 3935 | 0.1529 | 0.6489 | 0.7616 | 0.9535 | [0.0, 0.34717493700692625, 0.9200786785121082, 0.9707860061715432, 0.9064316496153364, 0.9571373496125165, 0.9765647396031262, 0.7914886053951578, 0.9636858999629485, 0.5253852888123762, 0.0, 0.7668434757450091, 0.6228696113699357, 0.5646135260344276, 0.7194371537530142, 0.7276571750775304, 0.13134474327628362, 0.5398065590178835, 0.8087983436006237, 0.7371620697069805] | [nan, 0.9673995855258336, 0.9622823082917784, 0.9832096263122092, 0.9590923200613435, 0.9794833291868915, 0.9849481430590119, 0.8741570190973889, 0.9814726613968338, 0.5661042702035389, 0.0, 0.8519369313384734, 0.674888178913738, 0.5955861885708164, 0.7973710835377057, 0.8440933293815855, 0.139191177994735, 0.5807830511082053, 0.8902258318640507, 0.8387304835194164] | | 0.0652 | 6.0 | 4722 | 0.1776 | 0.6701 | 0.7802 | 0.9598 | [0.0, 0.442020662403383, 0.9221209597093164, 0.9723970198449976, 0.9094898951877407, 0.958969887541612, 0.9774286126326331, 0.8043337900190548, 0.9641322534475246, 0.524194500874002, 0.0, 0.7732021981650511, 0.6714277552419585, 0.6791383524722951, 0.7265590222386986, 0.7252668038047013, 0.25612624095650144, 0.512317443386938, 0.8223912256195354, 0.7602526763224181] | [nan, 0.9667776521571092, 0.968306375662177, 0.9871287057126554, 0.9515142073239339, 0.9800501491032743, 0.9870913605013194, 0.8911998464531551, 0.9789458602211063, 0.5619638504637396, 0.0, 0.8429926328466184, 0.750926517571885, 0.7091730161871252, 0.8058454540303847, 0.8431735260151052, 0.2957320232987169, 0.5489159698031933, 0.8944742469145065, 0.8592366887593968] | | 0.0516 | 7.0 | 5509 | 0.2204 | 0.6782 | 0.7854 | 0.9562 | [0.0, 0.5972965874238374, 0.9024890361234837, 0.9727685140940331, 0.915582953759141, 0.9598962357171329, 0.9798718588278901, 0.8112726586102719, 0.9047252363294271, 0.6408527982442389, 0.0, 0.7886848740988032, 0.676712646342877, 0.5672950158399087, 0.7336613818739761, 0.7298649456617311, 0.3028603088856569, 0.5060868673401364, 0.8269845785168136, 0.7471687598272396] | [nan, 0.9698273468544609, 0.9632905651879291, 0.9861640741314249, 0.9551792854314081, 0.9817079843391511, 0.9899518141518776, 0.8996100259110301, 0.9832172012468946, 0.6987812984710835, 0.0, 0.8565569379384828, 0.7460702875399361, 0.593452450290354, 0.8111955580377016, 0.848355084979611, 0.3625810998486827, 0.5422458600265925, 0.8997261507296395, 0.834927271918509] | | 0.1051 | 8.0 | 6296 | 0.1860 | 0.6731 | 0.7789 | 0.9575 | [0.0, 0.44805540920356957, 0.9045125103512419, 0.9742941726927242, 0.9171717803896707, 0.9608739687771942, 0.9806696534895757, 0.8165927346840907, 0.9677688538979997, 0.6195552331193943, 0.0, 0.795984684169727, 0.6862710467443778, 0.573071397774824, 0.7390593444665892, 0.746059006435751, 0.2037963564144674, 0.5303406505500898, 0.8387988518436741, 0.7590468131997875] | [nan, 0.9709112878685233, 0.966379770128131, 0.9872427322752713, 0.9529925896087971, 0.9834568092767589, 0.9900317817435064, 0.8913394344939497, 0.9851288999243455, 0.6704124592447216, 0.0, 0.871338387626268, 0.7448562300319489, 0.5994265432176736, 0.8121846392929121, 0.8435414473616973, 0.2212134402918558, 0.5609595288067426, 0.8906947518475448, 0.8579244695520661] | | 0.0619 | 9.0 | 7083 | 0.2919 | 0.6996 | 0.7903 | 0.9579 | [0.0, 0.934913158921961, 0.9053172937262943, 0.9749731654503406, 0.8705131863049136, 0.9625421596476281, 0.9801264786114002, 0.8223383305806123, 0.9066864104553713, 0.6468175775129386, 0.0, 0.7950479182280621, 0.7176821075997429, 0.5689160215594734, 0.7424713897302829, 0.7480081111150989, 0.3071719253739231, 0.5035704204000125, 0.8359422295252097, 0.7696666024282135] | [nan, 0.9682325320018036, 0.9702179964865137, 0.9871538608460199, 0.9606411126417358, 0.9816951395784177, 0.9890656141613147, 0.9035010425481796, 0.9836680314909386, 0.689949669209585, 0.0, 0.8547140781629688, 0.7850479233226837, 0.5903872774743949, 0.8138309496636962, 0.8520138583707216, 0.3614203096822337, 0.5292682658813446, 0.9065161120906329, 0.8882611983452693] | | 0.081 | 10.0 | 7870 | 0.2470 | 0.6804 | 0.7921 | 0.9583 | [0.0, 0.4404433924045006, 0.9318621565838054, 0.9751204660574527, 0.8701648407446415, 0.9625333515302946, 0.9811772580795882, 0.8257730976318673, 0.9694596723226286, 0.6262599628453287, 0.0, 0.8035308913444122, 0.7247258740455824, 0.5731919576321138, 0.7446832704519876, 0.7540709586972932, 0.2964031339031339, 0.5176075672651548, 0.8402309249924604, 0.7699341552529259] | [nan, 0.9683524762943433, 0.9703483634609842, 0.9874040565137937, 0.9560906426120769, 0.9828287794111833, 0.9897414692905638, 0.9071739528715878, 0.9809845681174846, 0.6616061536513564, 0.0, 0.8707555296507566, 0.8066453674121405, 0.5982298533423343, 0.8269010675926151, 0.8575633386818196, 0.3450448769769707, 0.5489928903442743, 0.9145158870090407, 0.8764289844757795] | | 0.0595 | 11.0 | 8657 | 0.1520 | 0.6754 | 0.7803 | 0.9583 | [0.0, 0.43998949915443775, 0.9316636729918347, 0.974311900634481, 0.90408659589869, 0.9621039259469353, 0.9814528086580536, 0.8173484866921386, 0.9299168519752622, 0.5981595278841879, 0.0, 0.79896542666047, 0.7130791649318979, 0.5767892232828117, 0.7434904893608313, 0.7476740572849074, 0.2818679619421856, 0.5013427236914975, 0.8417679322268942, 0.7636900967723242] | [nan, 0.9604694708457627, 0.9682111157218825, 0.9850226034689381, 0.9629913194164226, 0.9838887233262218, 0.9906282066977372, 0.8790295141463755, 0.9828138682520776, 0.6217973473457631, 0.0, 0.8472869246956067, 0.7660702875399361, 0.601589754313674, 0.8233235396482367, 0.8360910400932068, 0.3211657649814481, 0.5272243772183335, 0.8880687999399782, 0.8793425559361239] | | 0.0607 | 12.0 | 9444 | 0.1907 | 0.6792 | 0.7814 | 0.9611 | [0.0, 0.4394265102382861, 0.9325678358934418, 0.9751503005414947, 0.9213536629526586, 0.9630218995457999, 0.9808145244188059, 0.8160516650442948, 0.9402095421968347, 0.5678403556289702, 0.0, 0.7897903639847522, 0.717973174366617, 0.6351749265433101, 0.7451406149738536, 0.7539060338307724, 0.2810049109433409, 0.5169863186167534, 0.8447414560224139, 0.7628612943763745] | [nan, 0.964392093449931, 0.9699039597844642, 0.9860071181495944, 0.9689476561441872, 0.9817555601847723, 0.9915172012546744, 0.8703445207331861, 0.9829836512368835, 0.5919660662847014, 0.0, 0.8320126171608817, 0.7695846645367412, 0.6606869598697208, 0.8177192854656857, 0.8353858575122385, 0.31786995004456603, 0.541465665967056, 0.8991915819484563, 0.8640852275254659] | | 0.054 | 13.0 | 10231 | 0.1756 | 0.6845 | 0.7854 | 0.9633 | [0.0, 0.44063089620853896, 0.9319015227980866, 0.9747420439658205, 0.9230841377589553, 0.9626774348954341, 0.9806204202647846, 0.824089995398513, 0.9682449901582629, 0.6269069221957562, 0.0, 0.7878031759942226, 0.7230044147476434, 0.6870255399578931, 0.7273836360818303, 0.7465091396254238, 0.25750268946841265, 0.5202245077135331, 0.8455619310735664, 0.7623883906475817] | [nan, 0.9684613146338701, 0.9659761462687484, 0.985573907589379, 0.969242630837417, 0.9846717514218756, 0.9904148523034052, 0.8905935109009535, 0.9873657317056209, 0.6548320724256909, 0.0, 0.8321711888159841, 0.7743769968051119, 0.7167465941354711, 0.7672955669410517, 0.8485288256155018, 0.28777231930020936, 0.5469380130325374, 0.8955527628765427, 0.8564788043236511] | | 0.0908 | 14.0 | 11018 | 0.1677 | 0.6922 | 0.7956 | 0.9641 | [0.0, 0.4710389646938612, 0.9277225664822271, 0.9753445134184554, 0.9250469473155007, 0.9640090632546157, 0.9817333061419466, 0.8297056239192101, 0.970059681920668, 0.647379308685926, 0.0, 0.79693329490141, 0.7458423929012165, 0.6895638439061885, 0.7486849253355593, 0.7520096317485606, 0.30687537928818764, 0.49287677819238446, 0.848826224760963, 0.7700556938025832] | [nan, 0.9666066204807101, 0.9697912533607226, 0.9863864033340946, 0.9658514745108883, 0.9826761492096202, 0.9913739259863396, 0.9020659030037601, 0.9838249561044068, 0.6815485423063531, 0.0, 0.8412997732853904, 0.8109904153354632, 0.7185046709734403, 0.8232134618653327, 0.8490091673735526, 0.35638330949567815, 0.5181697306682197, 0.9016768578609746, 0.8671989680174369] | | 0.0584 | 15.0 | 11805 | 0.1610 | 0.6952 | 0.8014 | 0.9648 | [0.0, 0.47153295365063086, 0.9293854681828234, 0.9766069961659746, 0.927007550222462, 0.9649404794739765, 0.9824606440795911, 0.8340592613982738, 0.9706739467997174, 0.653761891900003, 0.0, 0.8080046149867717, 0.75033588410538, 0.6921465280057791, 0.7522124809345331, 0.7548461579766955, 0.3057219434101416, 0.5087799410519325, 0.84829211455404, 0.7730356409704979] | [nan, 0.9722884260421271, 0.9720560851996344, 0.9881427437833682, 0.9650114633107388, 0.9828538231066912, 0.9897027752946145, 0.9071521422402136, 0.9848998109819413, 0.6895634832705517, 0.0, 0.8704126720181029, 0.8207667731629393, 0.7189631369929214, 0.8238982104266324, 0.8620090549531412, 0.3522998155172771, 0.5387075151368637, 0.9081104400345125, 0.8794092789466661] | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1
ThePixOne/SeconBERTa
ThePixOne
2022-05-31T19:53:48Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-05-31T19:48:48Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 20799 with parameters: ``` {'batch_size': 16} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 4159.8, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 514, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
eugenecamus/resnet-50-base-beans-demo
eugenecamus
2022-05-31T17:47:56Z
25
0
transformers
[ "transformers", "pytorch", "tensorboard", "resnet", "image-classification", "vision", "generated_from_trainer", "dataset:beans", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-05-27T21:53:44Z
--- tags: - image-classification - vision - generated_from_trainer datasets: - beans metrics: - accuracy model-index: - name: resnet-50-base-beans-demo results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans args: default metrics: - name: Accuracy type: accuracy value: 0.9022556390977443 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # resnet-50-base-beans-demo This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.2188 - Accuracy: 0.9023 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5679 | 1.0 | 130 | 0.2188 | 0.9023 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu102 - Datasets 2.2.1 - Tokenizers 0.12.1
kabelomalapane/en_tn_ukuxhumana_model2
kabelomalapane
2022-05-31T16:59:22Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-05-30T12:46:13Z
--- license: apache-2.0 tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: en_tn_ukuxhumana_model2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # en_tn_ukuxhumana_model2 This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-tn](https://huggingface.co/Helsinki-NLP/opus-mt-en-tn) on the ukuxhumana dataset. - Train_data = 12080 - Dev_data = 3000 It achieves the following results on the evaluation set: After training: - Loss: 2.6466 - Bleu: 21.8204 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
usama98/arabic_poem_gen
usama98
2022-05-31T16:55:59Z
5
3
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "ar", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-25T09:40:56Z
--- language: - ar tags: - text-generation license: apache-2.0 datasets: - Arabic Poem Comprehensive Dataset (APCD) widget: - text: "عمرو بنِ قُمَيئَة: خَليلَيَّ لا تَستَعجِلا أَن" --- # GPTPoet: Pre-training GPT2 for Arabic Poetry Language Understanding <img src="https://huggingface.co/usama98/arabic_poem_gen/resolve/main/6C76C5D6-A4F2-4443-AB2A-278E87B8E33C.png" width="100" align="left"/> **GPTPoet** is an Arabic pretrained language model based on [OpenAi GPT2 architechture](https://github.com/openai/gpt-2). We use the same GPT2-Base config. More details are available in the Google Colab [https://colab.research.google.com/drive/1kByhyhvA0JUZRKL-XCG0ZEDyAg45w8AW?usp=sharing]. To save computation time the model used pretrained weights from another [model](https://huggingface.co/elgeish/gpt2-medium-arabic-poetry). This allowed us to fine-tune our model on our specific dataset, which to our knowledge was never used in NLP task before. This is a poem generator that creates poems based on the style of the targeted poet. The model was trained on different poets and their respective poems, and the model's input is the poet's name and a suggestion that the model will strive to develop something that imitates the style of that specific poet. # ## What's New! All models are available in the `HuggingFace` model page under the [usama98](https://huggingface.co/usama98/) name. Checkpoints are available in PyTorch. Our model adds a newly tried capability of NLP models where we don't just try to generate text but one that imitates a specific style. Our dataset contains poetry gathered from different poets, the data was feed to the model during training in with the aim of teaching the model how to structure arabic poetry. The additional step here was to add a poet name at the beginning of each training example. This training strategy allows the model to not only learn how to write poetry but how to the written poetry relates to that specific poet and their style. # Dataset The dataset consists of content scraped mainly from الموسوعة الشعرية and الديوان. After merging both, the total number of verses is 1,831,770 poetic verses. Each verse is labeled by its meter, the poet who wrote it, and the age which it was written in. There are 22 meters, 3701 poets and 11 ages: Pre-Islamic, Islamic, Umayyad, Mamluk, Abbasid, Ayyubid, Ottoman, Andalusian, era between Umayyad and Abbasid, Fatimid, and finally the modern age. We are only interested in the 16 classic meters which are attributed to Al-Farahidi, and they comprise the majority of the dataset with a total number around 1.7M verses. It is important to note that the verses diacritic states are not consistent. This means that a verse can carry full, semi diacritics, or it can carry nothing. - [APCD](https://hci-lab.github.io/LearningMetersPoems/#PCD) # Preprocessing It is recommended to apply our preprocessing tokenizer before training/testing on any dataset. # Contacts **Usama Zidan**: [Linkedin](https://huggingface.co/elgeish/gpt2-medium-arabic-poetry) | [Github](https://github.com/usama13o) | <[email protected]> | <[email protected]>
juancopi81/distilbert-finetuned-imdb
juancopi81
2022-05-31T16:47:14Z
4
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-27T14:23:07Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: juancopi81/distilbert-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # juancopi81/distilbert-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.8630 - Validation Loss: 2.5977 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -688, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.8630 | 2.5977 | 0 | ### Framework versions - Transformers 4.19.2 - TensorFlow 2.8.0 - Datasets 2.2.2 - Tokenizers 0.12.1
joaogante/test_img
joaogante
2022-05-31T15:44:12Z
7
1
transformers
[ "transformers", "pytorch", "jax", "vit", "image-feature-extraction", "vision", "dataset:imagenet-21k", "arxiv:2010.11929", "arxiv:2006.03677", "license:apache-2.0", "region:us" ]
image-feature-extraction
2022-05-31T15:40:15Z
--- license: apache-2.0 tags: - vision datasets: - imagenet-21k inference: false --- # Vision Transformer (base-sized model) Vision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224. It was introduced in the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Dosovitskiy et al. and first released in [this repository](https://github.com/google-research/vision_transformer). However, the weights were converted from the [timm repository](https://github.com/rwightman/pytorch-image-models) by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. Disclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. Note that this model does not provide any fine-tuned heads, as these were zero'd by Google researchers. However, the model does include the pre-trained pooler, which can be used for downstream tasks (such as image classification). By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=google/vit) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model in PyTorch: ```python from transformers import ViTFeatureExtractor, ViTModel from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k') model = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) last_hidden_states = outputs.last_hidden_state ``` Here is how to use this model in JAX/Flax: ```python from transformers import ViTFeatureExtractor, FlaxViTModel from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k') model = FlaxViTModel.from_pretrained('google/vit-base-patch16-224-in21k') inputs = feature_extractor(images=image, return_tensors="np") outputs = model(**inputs) last_hidden_states = outputs.last_hidden_state ``` ## Training data The ViT model was pretrained on [ImageNet-21k](http://www.image-net.org/), a dataset consisting of 14 million images and 21k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found [here](https://github.com/google-research/vision_transformer/blob/master/vit_jax/input_pipeline.py). Images are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5). ### Pretraining The model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224. ## Evaluation results For evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info ```bibtex @misc{wu2020visual, title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision}, author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda}, year={2020}, eprint={2006.03677}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```bibtex @inproceedings{deng2009imagenet, title={Imagenet: A large-scale hierarchical image database}, author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li}, booktitle={2009 IEEE conference on computer vision and pattern recognition}, pages={248--255}, year={2009}, organization={Ieee} } ```
malra/segformer-b0-finetuned-segments-sidewalk-4
malra
2022-05-31T15:42:53Z
4
0
transformers
[ "transformers", "pytorch", "segformer", "vision", "image-segmentation", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-segmentation
2022-05-31T15:22:56Z
--- license: apache-2.0 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-finetuned-segments-sidewalk-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-finetuned-segments-sidewalk-4 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset. It achieves the following results on the evaluation set: - Loss: 2.5207 - Mean Iou: 0.1023 - Mean Accuracy: 0.1567 - Overall Accuracy: 0.6612 - Per Category Iou: [0.0, 0.37997208823402434, 0.7030895600821837, 0.0, 0.0020740824048893942, 0.0006611109803275343, 0.0, 0.0009644717061794479, 0.0, 0.0, 0.44780560238339745, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4962679673706645, 0.0, 0.008267299447856608, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6719286019431624, 0.1932540547332544, 0.6762198255750292, 0.0, 0.0, 0.0003312368464636427, 0.0] - Per Category Accuracy: [nan, 0.7085417733756095, 0.8643251797889624, 0.0, 0.0020922282164545967, 0.0006691672739475508, nan, 0.0009725011389865425, 0.0, 0.0, 0.9224475476880146, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7984415122785299, 0.0, 0.008394275137866055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9294223049507054, 0.2306496542338313, 0.7045666997791757, 0.0, 0.0, 0.0003315891206418271, 0.0] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 2.8255 | 1.0 | 25 | 3.0220 | 0.0892 | 0.1429 | 0.6352 | [0.0, 0.3631053229188519, 0.6874502125236047, 0.0, 0.012635239862746197, 0.001133215250040838, 0.0, 0.00463024415429387, 2.6557099661207286e-05, 0.0, 0.3968535016422742, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4820466790242289, 0.0, 0.00693999220077067, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6134928158666486, 0.05160593984758798, 0.5016270369795023, 0.0, 0.0, 0.00023524914354608678, 0.0] | [nan, 0.6625398055826, 0.851744092156527, 0.0, 0.01307675614921835, 0.001170877257777663, nan, 0.004771009467501389, 2.6941417811356193e-05, 0.0, 0.9316713675735513, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7310221003907382, 0.0, 0.0070371168820434, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.948375993368795, 0.056265031783493576, 0.5061367774453964, 0.0, 0.0, 0.00023723449281691698, 0.0] | | 2.5443 | 2.0 | 50 | 2.5207 | 0.1023 | 0.1567 | 0.6612 | [0.0, 0.37997208823402434, 0.7030895600821837, 0.0, 0.0020740824048893942, 0.0006611109803275343, 0.0, 0.0009644717061794479, 0.0, 0.0, 0.44780560238339745, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4962679673706645, 0.0, 0.008267299447856608, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6719286019431624, 0.1932540547332544, 0.6762198255750292, 0.0, 0.0, 0.0003312368464636427, 0.0] | [nan, 0.7085417733756095, 0.8643251797889624, 0.0, 0.0020922282164545967, 0.0006691672739475508, nan, 0.0009725011389865425, 0.0, 0.0, 0.9224475476880146, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7984415122785299, 0.0, 0.008394275137866055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9294223049507054, 0.2306496542338313, 0.7045666997791757, 0.0, 0.0, 0.0003315891206418271, 0.0] | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1
arrandi/distilbert-base-uncased-finetuned-emotion
arrandi
2022-05-31T15:20:26Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-31T15:03:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.934 - name: F1 type: f1 value: 0.9341704717427723 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1652 - Accuracy: 0.934 - F1: 0.9342 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.2606 | 1.0 | 250 | 0.1780 | 0.9285 | 0.9284 | | 0.1486 | 2.0 | 500 | 0.1652 | 0.934 | 0.9342 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
wuxiaofei/finetuning-sentiment-model-3000-samples
wuxiaofei
2022-05-31T15:12:52Z
6
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-31T11:19:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.86 - name: F1 type: f1 value: 0.8636363636363636 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.6787 - Accuracy: 0.86 - F1: 0.8636 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1
jkhan447/sarcasm-detection-xlnet-base-cased
jkhan447
2022-05-31T14:17:58Z
5
1
transformers
[ "transformers", "pytorch", "tensorboard", "xlnet", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-31T08:50:25Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: sarcasm-detection-xlnet-base-cased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sarcasm-detection-xlnet-base-cased This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1470 - Accuracy: 0.7117 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
OneFly/xlm-roberta-base-finetuned-panx-de
OneFly
2022-05-31T14:01:40Z
6
1
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-31T08:27:40Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8620945214069894 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1372 - F1: 0.8621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2575 | 1.0 | 525 | 0.1621 | 0.8292 | | 0.1287 | 2.0 | 1050 | 0.1378 | 0.8526 | | 0.0831 | 3.0 | 1575 | 0.1372 | 0.8621 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
sarakolding/daT5-base
sarakolding
2022-05-31T13:18:37Z
5
1
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "da", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-19T08:03:45Z
--- language: - da --- This repository contains a language-specific mT5-base, where the vocabulary is condensed to include tokens used in Danish and English.
huggingtweets/botphilosophyq-philosophical_9-philosophy_life
huggingtweets
2022-05-31T12:56:27Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-31T12:54:56Z
--- language: en thumbnail: http://www.huggingtweets.com/botphilosophyq-philosophical_9-philosophy_life/1654001783159/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1503378148544720896/cqXtOCzo_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1454403230218080259/l2xRKFYN_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1465751420146225152/REt6VnPb_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Philosophy Quotes & Philosophy Quotes & philosophy for life</div> <div style="text-align: center; font-size: 14px;">@botphilosophyq-philosophical_9-philosophy_life</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Philosophy Quotes & Philosophy Quotes & philosophy for life. | Data | Philosophy Quotes | Philosophy Quotes | philosophy for life | | --- | --- | --- | --- | | Tweets downloaded | 1162 | 489 | 1175 | | Retweets | 377 | 59 | 2 | | Short tweets | 30 | 0 | 0 | | Tweets kept | 755 | 430 | 1173 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3cvz516e/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @botphilosophyq-philosophical_9-philosophy_life's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/13d841md) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/13d841md/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/botphilosophyq-philosophical_9-philosophy_life') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
batya66/bert-finetuned-ner
batya66
2022-05-31T12:02:04Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-31T11:45:17Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9287951211471898 - name: Recall type: recall value: 0.9483338943116796 - name: F1 type: f1 value: 0.9384628195520027 - name: Accuracy type: accuracy value: 0.985915700241361 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0622 - Precision: 0.9288 - Recall: 0.9483 - F1: 0.9385 - Accuracy: 0.9859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0876 | 1.0 | 1756 | 0.0657 | 0.9093 | 0.9349 | 0.9219 | 0.9826 | | 0.0412 | 2.0 | 3512 | 0.0555 | 0.9357 | 0.9500 | 0.9428 | 0.9867 | | 0.0205 | 3.0 | 5268 | 0.0622 | 0.9288 | 0.9483 | 0.9385 | 0.9859 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
FritzOS/train_NER_M_V1
FritzOS
2022-05-31T11:51:44Z
5
0
transformers
[ "transformers", "tf", "distilbert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-31T11:51:30Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: train_NER_M_V1 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # train_NER_M_V1 This model is a fine-tuned version of [FritzOS/train_basic_M_V3](https://huggingface.co/FritzOS/train_basic_M_V3) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0025 - Validation Loss: 0.0024 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 204258, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.0025 | 0.0024 | 0 | ### Framework versions - Transformers 4.19.2 - TensorFlow 2.8.0 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/magiceden
huggingtweets
2022-05-31T11:45:39Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-31T11:42:06Z
--- language: en thumbnail: http://www.huggingtweets.com/magiceden/1653997534626/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1529814669493682176/BqZU57Cf_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Magic Eden 🪄</div> <div style="text-align: center; font-size: 14px;">@magiceden</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Magic Eden 🪄. | Data | Magic Eden 🪄 | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 141 | | Short tweets | 908 | | Tweets kept | 2200 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/9t2x97k9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @magiceden's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/32j65yat) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/32j65yat/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/magiceden') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
kamalkraj/bert-base-uncased-squad-v2.0-finetuned
kamalkraj
2022-05-31T11:44:58Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-31T10:48:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: bert-base-uncased-squad-v2.0-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-squad-v2.0-finetuned This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad_v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00012 - train_batch_size: 48 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.10.0+cu113 - Datasets 1.17.0 - Tokenizers 0.12.1
huggingtweets/binance-dydx-magiceden
huggingtweets
2022-05-31T11:34:01Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-31T11:31:06Z
--- language: en thumbnail: http://www.huggingtweets.com/binance-dydx-magiceden/1653996837144/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1529814669493682176/BqZU57Cf_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1490589455786573824/M5_HK15F_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1364590285255290882/hjnIm9bV_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Magic Eden 🪄 & Binance & dYdX</div> <div style="text-align: center; font-size: 14px;">@binance-dydx-magiceden</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Magic Eden 🪄 & Binance & dYdX. | Data | Magic Eden 🪄 | Binance | dYdX | | --- | --- | --- | --- | | Tweets downloaded | 3249 | 3250 | 1679 | | Retweets | 141 | 194 | 463 | | Short tweets | 908 | 290 | 40 | | Tweets kept | 2200 | 2766 | 1176 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/28typldl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @binance-dydx-magiceden's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/196gmkng) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/196gmkng/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/binance-dydx-magiceden') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
chrisvinsen/wav2vec2-15
chrisvinsen
2022-05-31T11:13:41Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-31T08:01:18Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-15 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-15 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8623 - Wer: 0.8585 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 9.6808 | 1.37 | 200 | 3.7154 | 1.0 | | 3.0784 | 2.74 | 400 | 3.1542 | 1.0 | | 2.8919 | 4.11 | 600 | 2.9918 | 1.0 | | 2.8317 | 5.48 | 800 | 2.8971 | 1.0 | | 2.7958 | 6.85 | 1000 | 2.8409 | 1.0 | | 2.7699 | 8.22 | 1200 | 2.8278 | 1.0 | | 2.6365 | 9.59 | 1400 | 2.4657 | 1.0 | | 2.1096 | 10.96 | 1600 | 1.8358 | 0.9988 | | 1.6485 | 12.33 | 1800 | 1.4525 | 0.9847 | | 1.3967 | 13.7 | 2000 | 1.2467 | 0.9532 | | 1.2492 | 15.07 | 2200 | 1.1261 | 0.9376 | | 1.1543 | 16.44 | 2400 | 1.0654 | 0.9194 | | 1.0863 | 17.81 | 2600 | 1.0136 | 0.9161 | | 1.0275 | 19.18 | 2800 | 0.9601 | 0.8827 | | 0.9854 | 20.55 | 3000 | 0.9435 | 0.8878 | | 0.9528 | 21.92 | 3200 | 0.9170 | 0.8807 | | 0.926 | 23.29 | 3400 | 0.9121 | 0.8783 | | 0.9025 | 24.66 | 3600 | 0.8884 | 0.8646 | | 0.8909 | 26.03 | 3800 | 0.8836 | 0.8690 | | 0.8717 | 27.4 | 4000 | 0.8810 | 0.8646 | | 0.8661 | 28.77 | 4200 | 0.8623 | 0.8585 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
theojolliffe/bart-cnn-science-v3-e5
theojolliffe
2022-05-31T10:55:17Z
3
1
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-31T10:00:56Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-cnn-science-v3-e5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-cnn-science-v3-e5 This model is a fine-tuned version of [theojolliffe/bart-cnn-science](https://huggingface.co/theojolliffe/bart-cnn-science) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8090 - Rouge1: 54.0053 - Rouge2: 35.5018 - Rougel: 37.3204 - Rougelsum: 51.5456 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | No log | 1.0 | 398 | 0.9935 | 51.9669 | 31.8139 | 34.4748 | 49.5311 | 141.7407 | | 1.1747 | 2.0 | 796 | 0.8565 | 51.7344 | 31.7341 | 34.3917 | 49.2488 | 141.7222 | | 0.7125 | 3.0 | 1194 | 0.8252 | 52.829 | 33.2332 | 35.8865 | 50.1883 | 141.5556 | | 0.4991 | 4.0 | 1592 | 0.8222 | 53.582 | 33.4906 | 35.7232 | 50.589 | 142.0 | | 0.4991 | 5.0 | 1990 | 0.8090 | 54.0053 | 35.5018 | 37.3204 | 51.5456 | 142.0 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1