modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-29 06:27:49
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
502 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-29 06:23:06
card
stringlengths
11
1.01M
fathyshalab/all-roberta-large-v1-home-7-16-5
fathyshalab
2022-12-01T18:07:32Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T18:43:44Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-home-7-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-home-7-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3789 - Accuracy: 0.3356 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7614 | 1.0 | 1 | 2.6146 | 0.1889 | | 2.2082 | 2.0 | 2 | 2.5232 | 0.2667 | | 1.8344 | 3.0 | 3 | 2.4516 | 0.2933 | | 1.4601 | 4.0 | 4 | 2.4033 | 0.3267 | | 1.2748 | 5.0 | 5 | 2.3789 | 0.3356 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
GV05/sd-class-butterflies-64
GV05
2022-12-01T17:47:26Z
34
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-12-01T17:45:14Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(GV05/sd-class-butterflies-64) image = pipeline().images[0] image ```
exiomius/sd-class-butterflies-64
exiomius
2022-12-01T17:42:15Z
33
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-12-01T17:41:20Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('exiomius/sd-class-butterflies-64') image = pipeline().images[0] image ```
fathyshalab/all-roberta-large-v1-home-6-16-5
fathyshalab
2022-12-01T17:37:54Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T18:41:46Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-home-6-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-home-6-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3789 - Accuracy: 0.3356 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7614 | 1.0 | 1 | 2.6146 | 0.1889 | | 2.2082 | 2.0 | 2 | 2.5232 | 0.2667 | | 1.8344 | 3.0 | 3 | 2.4516 | 0.2933 | | 1.4601 | 4.0 | 4 | 2.4033 | 0.3267 | | 1.2748 | 5.0 | 5 | 2.3789 | 0.3356 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
bowwwave/sd-class-butterflies-64
bowwwave
2022-12-01T17:36:34Z
31
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-12-01T17:36:23Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('bowwwave/sd-class-butterflies-64') image = pipeline().images[0] image ```
manirai91/enlm-roberta-81-imdb
manirai91
2022-12-01T17:29:49Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:imdb", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-01T14:34:35Z
--- tags: - generated_from_trainer datasets: - imdb model-index: - name: enlm-roberta-81-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # enlm-roberta-81-imdb This model is a fine-tuned version of [manirai91/enlm-r](https://huggingface.co/manirai91/enlm-r) on the imdb dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0 - Datasets 2.7.0 - Tokenizers 0.13.2
fathyshalab/all-roberta-large-v1-home-5-16-5
fathyshalab
2022-12-01T17:10:56Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T18:39:47Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-home-5-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-home-5-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3789 - Accuracy: 0.3356 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7614 | 1.0 | 1 | 2.6146 | 0.1889 | | 2.2082 | 2.0 | 2 | 2.5232 | 0.2667 | | 1.8344 | 3.0 | 3 | 2.4516 | 0.2933 | | 1.4601 | 4.0 | 4 | 2.4033 | 0.3267 | | 1.2748 | 5.0 | 5 | 2.3789 | 0.3356 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
huodongjia/distilbert-base-uncased-finetuned-emotion
huodongjia
2022-12-01T15:54:25Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T03:44:43Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.924 - name: F1 type: f1 value: 0.924047154518693 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2198 - Accuracy: 0.924 - F1: 0.9240 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7978 | 1.0 | 250 | 0.3085 | 0.903 | 0.9006 | | 0.2475 | 2.0 | 500 | 0.2198 | 0.924 | 0.9240 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.10.2 - Datasets 2.6.1 - Tokenizers 0.11.0
DLL888/deberta-v3-base-squad
DLL888
2022-12-01T15:16:02Z
61
0
transformers
[ "transformers", "tf", "tensorboard", "deberta-v2", "question-answering", "generated_from_keras_callback", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-11-30T21:35:59Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: DLL888/deberta-v3-base-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # DLL888/deberta-v3-base-squad This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the [SQuAD](https://huggingface.co/datasets/squad) dataset. It achieves the following results on the evaluation set: - Exact Match: 88.08893093661305 - F1: 93.75543944888847 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training Machine Trained in Google Colab Pro with the following specs: - A100-SXM4-40GB - NVIDIA-SMI 460.32.03 - Driver Version: 460.32.03 - CUDA Version: 11.2 Training took about 26 minutes for two epochs. ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 10538, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 500, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 1.0540 | 0.7261 | 0.6885 | 0.7617 | 0.7841 | 0.7530 | 0 | | 0.6248 | 0.8212 | 0.7777 | 0.7594 | 0.7873 | 0.7569 | 1 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.7.1 - Tokenizers 0.13.2
YeaHi/diffusion
YeaHi
2022-12-01T15:11:02Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2022-12-01T15:11:02Z
--- license: bigscience-openrail-m ---
arrafmousa/xlnet-base-cased-finetuned-squad
arrafmousa
2022-12-01T15:02:55Z
88
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlnet", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-12-01T13:27:48Z
--- license: mit tags: - generated_from_trainer model-index: - name: xlnet-base-cased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlnet-base-cased-finetuned-squad This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1093 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 203 | 0.2186 | | No log | 2.0 | 406 | 0.1985 | | 0.4204 | 3.0 | 609 | 0.1093 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
glins7/cashgo-role_classification
glins7
2022-12-01T14:27:08Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-12-01T14:27:01Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 433 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 433, "warmup_steps": 44, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
manirai91/enlm-roberta-81-conll2003
manirai91
2022-12-01T14:14:34Z
133
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:conll2003", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-01T12:49:06Z
--- tags: - generated_from_trainer datasets: - conll2003 model-index: - name: enlm-roberta-81-conll2003 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # enlm-roberta-81-conll2003 This model is a fine-tuned version of [manirai91/enlm-r](https://huggingface.co/manirai91/enlm-r) on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0 - Datasets 2.7.0 - Tokenizers 0.13.2
MGanesh29/distilbert-base-uncased-finetuned-cola-v5
MGanesh29
2022-12-01T13:40:01Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-01T10:54:11Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: distilbert-base-uncased-finetuned-cola-v5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola-v5 This model is a fine-tuned version of [MGanesh29/distilbert-base-uncased-finetuned-cola-v5](https://huggingface.co/MGanesh29/distilbert-base-uncased-finetuned-cola-v5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2563 - Accuracy: 0.9310 - Precision: 0.9310 - Recall: 0.9310 - F1: 0.9310 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 6.25 | 50 | 0.2638 | 0.9310 | 0.9310 | 0.9310 | 0.9310 | | No log | 12.5 | 100 | 0.2607 | 0.9310 | 0.9310 | 0.9310 | 0.9310 | | No log | 18.75 | 150 | 0.2643 | 0.9310 | 0.9310 | 0.9310 | 0.9310 | | No log | 25.0 | 200 | 0.2563 | 0.9310 | 0.9310 | 0.9310 | 0.9310 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
fathyshalab/all-roberta-large-v1-home-3-16-5
fathyshalab
2022-12-01T13:32:50Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T18:35:51Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-home-3-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-home-3-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3789 - Accuracy: 0.3356 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7614 | 1.0 | 1 | 2.6146 | 0.1889 | | 2.2082 | 2.0 | 2 | 2.5232 | 0.2667 | | 1.8344 | 3.0 | 3 | 2.4516 | 0.2933 | | 1.4601 | 4.0 | 4 | 2.4033 | 0.3267 | | 1.2748 | 5.0 | 5 | 2.3789 | 0.3356 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
scikit-learn/tabular-playground
scikit-learn
2022-12-01T13:27:42Z
0
2
sklearn
[ "sklearn", "skops", "tabular-classification", "region:us" ]
tabular-classification
2022-08-12T16:08:16Z
--- library_name: sklearn tags: - sklearn - skops - tabular-classification widget: structuredData: attribute_0: - material_7 - material_7 - material_7 attribute_1: - material_8 - material_8 - material_6 attribute_2: - 5 - 5 - 6 attribute_3: - 8 - 8 - 9 loading: - 154.02 - 108.73 - 99.84 measurement_0: - 14 - 4 - 6 measurement_1: - 6 - 7 - 7 measurement_10: - 16.637 - 16.207 - 17.17 measurement_11: - 20.719 - 20.058 - 20.858 measurement_12: - 12.824 - 11.898 - 10.968 measurement_13: - 16.067 - 13.871 - 16.448 measurement_14: - 15.181 - 14.266 - 15.6 measurement_15: - 18.546 - 15.734 - 14.637 measurement_16: - 19.402 - 16.886 - 13.86 measurement_17: - 643.086 - 642.533 - 673.545 measurement_2: - 6 - 9 - 6 measurement_3: - 19.532 - 18.128 - NaN measurement_4: - 11.017 - 11.866 - 10.064 measurement_5: - 15.639 - 17.891 - 16.287 measurement_6: - 16.709 - 20.302 - 17.445 measurement_7: - 10.057 - NaN - 12.117 measurement_8: - 20.201 - 18.148 - 20.659 measurement_9: - 11.106 - 10.221 - 11.999 product_code: - C - C - E --- # Model description This is a DecisionTreeClassifier model built for Kaggle Tabular Playground Series August 2022, trained on supersoaker production failures dataset. ## Intended uses & limitations This model is not ready to be used in production. ## Training Procedure ### Hyperparameters The model is trained with below hyperparameters. <details> <summary> Click to expand </summary> | Hyperparameter | Value | |-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | memory | | | steps | [('transformation', ColumnTransformer(transformers=[('loading_missing_value_imputer', SimpleImputer(), ['loading']), ('numerical_missing_value_imputer', SimpleImputer(),['loading', 'measurement_3', 'measurement_4','measurement_5', 'measurement_6','measurement_7', 'measurement_8','measurement_9', 'measurement_10','measurement_11', 'measurement_12','measurement_13', 'measurement_14','measurement_15', 'measurement_16','measurement_17']),('attribute_0_encoder', OneHotEncoder(),['attribute_0']),('attribute_1_encoder', OneHotEncoder(),['attribute_1']),('product_code_encoder', OneHotEncoder(),['product_code'])])), ('model', DecisionTreeClassifier(max_depth=4))] | | verbose | False | | transformation | ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(), ['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3', 'measurement_4','measurement_5', 'measurement_6','measurement_7', 'measurement_8','measurement_9', 'measurement_10','measurement_11', 'measurement_12','measurement_13', 'measurement_14','measurement_15', 'measurement_16','measurement_17']),('attribute_0_encoder', OneHotEncoder(),['attribute_0']),('attribute_1_encoder', OneHotEncoder(), 'attribute_1']),('product_code_encoder', OneHotEncoder(),['product_code'])]) | | model | DecisionTreeClassifier(max_depth=4) | | transformation__n_jobs | | | transformation__remainder | drop | | transformation__sparse_threshold | 0.3 | | transformation__transformer_weights | | | transformation__transformers | [('loading_missing_value_imputer', SimpleImputer(), ['loading']), ('numerical_missing_value_imputer', SimpleImputer(), ['loading', 'measurement_3', 'measurement_4', 'measurement_5', 'measurement_6', 'measurement_7', 'measurement_8', 'measurement_9', 'measurement_10', 'measurement_11', 'measurement_12', 'measurement_13', 'measurement_14', 'measurement_15', 'measurement_16', 'measurement_17']), ('attribute_0_encoder', OneHotEncoder(), ['attribute_0']), ('attribute_1_encoder', OneHotEncoder(), ['attribute_1']), ('product_code_encoder', OneHotEncoder(),['product_code'])] | | transformation__verbose | False | | transformation__verbose_feature_names_out | True | | transformation__loading_missing_value_imputer | SimpleImputer() | | transformation__numerical_missing_value_imputer | SimpleImputer() | | transformation__attribute_0_encoder | OneHotEncoder() | | transformation__attribute_1_encoder | OneHotEncoder() | | transformation__product_code_encoder | OneHotEncoder() | | transformation__loading_missing_value_imputer__add_indicator | False | | transformation__loading_missing_value_imputer__copy | True | | transformation__loading_missing_value_imputer__fill_value | | | transformation__loading_missing_value_imputer__missing_values | nan | | transformation__loading_missing_value_imputer__strategy | mean | | transformation__loading_missing_value_imputer__verbose | 0 | | transformation__numerical_missing_value_imputer__add_indicator | False | | transformation__numerical_missing_value_imputer__copy | True | | transformation__numerical_missing_value_imputer__fill_value | | | transformation__numerical_missing_value_imputer__missing_values | nan | | transformation__numerical_missing_value_imputer__strategy | mean | | transformation__numerical_missing_value_imputer__verbose | 0 | | transformation__attribute_0_encoder__categories | auto | | transformation__attribute_0_encoder__drop | | | transformation__attribute_0_encoder__dtype | <class 'numpy.float64'> | | transformation__attribute_0_encoder__handle_unknown | error | | transformation__attribute_0_encoder__sparse | True | | transformation__attribute_1_encoder__categories | auto | | transformation__attribute_1_encoder__drop | | | transformation__attribute_1_encoder__dtype | <class 'numpy.float64'> | | transformation__attribute_1_encoder__handle_unknown | error | | transformation__attribute_1_encoder__sparse | True | | transformation__product_code_encoder__categories | auto | | transformation__product_code_encoder__drop | | | transformation__product_code_encoder__dtype | <class 'numpy.float64'> | | transformation__product_code_encoder__handle_unknown | error | | transformation__product_code_encoder__sparse | True | | model__ccp_alpha | 0.0 | | model__class_weight | | | model__criterion | gini | | model__max_depth | 4 | | model__max_features | | | model__max_leaf_nodes | | | model__min_impurity_decrease | 0.0 | | model__min_samples_leaf | 1 | | model__min_samples_split | 2 | | model__min_weight_fraction_leaf | 0.0 | | model__random_state | | | model__splitter | best | </details> ### Model Plot The model plot is below. <style>#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f {color: black;background-color: white;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f pre{padding: 0;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-toggleable {background-color: white;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-estimator:hover {background-color: #d4ebff;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-item {z-index: 1;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-parallel-item:only-child::after {width: 0;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-text-repr-fallback {display: none;}</style><div id="sk-b8914d13-cacb-404b-89fd-48f0ed8d671f" class="sk-top-container" width="100%"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;transformation&#x27;,ColumnTransformer(transformers=[(&#x27;loading_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;]),(&#x27;numerical_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;, &#x27;measurement_3&#x27;,&#x27;measurement_4&#x27;,&#x27;measurement_5&#x27;,&#x27;measurement_6&#x27;,&#x27;measurement_7&#x27;,&#x27;measurement_8&#x27;,&#x27;measurement_9&#x27;,&#x27;measurement_10&#x27;,&#x27;measurement_11&#x27;,&#x27;measurement_12&#x27;,&#x27;measurement_13&#x27;,&#x27;measurement_14&#x27;,&#x27;measurement_15&#x27;,&#x27;measurement_16&#x27;,&#x27;measurement_17&#x27;]),(&#x27;attribute_0_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_0&#x27;]),(&#x27;attribute_1_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_1&#x27;]),(&#x27;product_code_encoder&#x27;,OneHotEncoder(),[&#x27;product_code&#x27;])])),(&#x27;model&#x27;, DecisionTreeClassifier(max_depth=4))])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden width="100%"><div class="sk-item sk-dashed-wrapped" width="100%"><div class="sk-label-container" width="100%"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="fe201304-214c-493b-8896-11cea0894f6e" type="checkbox" ><label for="fe201304-214c-493b-8896-11cea0894f6e" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;transformation&#x27;,ColumnTransformer(transformers=[(&#x27;loading_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;]),(&#x27;numerical_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;, &#x27;measurement_3&#x27;,&#x27;measurement_4&#x27;,&#x27;measurement_5&#x27;,&#x27;measurement_6&#x27;,&#x27;measurement_7&#x27;,&#x27;measurement_8&#x27;,&#x27;measurement_9&#x27;,&#x27;measurement_10&#x27;,&#x27;measurement_11&#x27;,&#x27;measurement_12&#x27;,&#x27;measurement_13&#x27;,&#x27;measurement_14&#x27;,&#x27;measurement_15&#x27;,&#x27;measurement_16&#x27;,&#x27;measurement_17&#x27;]),(&#x27;attribute_0_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_0&#x27;]),(&#x27;attribute_1_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_1&#x27;]),(&#x27;product_code_encoder&#x27;,OneHotEncoder(),[&#x27;product_code&#x27;])])),(&#x27;model&#x27;, DecisionTreeClassifier(max_depth=4))])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container" width="100%"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="19136b49-925c-40a2-b4d1-37039bb014a9" type="checkbox" ><label for="19136b49-925c-40a2-b4d1-37039bb014a9" class="sk-toggleable__label sk-toggleable__label-arrow">transformation: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(transformers=[(&#x27;loading_missing_value_imputer&#x27;,SimpleImputer(), [&#x27;loading&#x27;]),(&#x27;numerical_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;, &#x27;measurement_3&#x27;, &#x27;measurement_4&#x27;,&#x27;measurement_5&#x27;, &#x27;measurement_6&#x27;,&#x27;measurement_7&#x27;, &#x27;measurement_8&#x27;,&#x27;measurement_9&#x27;, &#x27;measurement_10&#x27;,&#x27;measurement_11&#x27;, &#x27;measurement_12&#x27;,&#x27;measurement_13&#x27;, &#x27;measurement_14&#x27;,&#x27;measurement_15&#x27;, &#x27;measurement_16&#x27;,&#x27;measurement_17&#x27;]),(&#x27;attribute_0_encoder&#x27;, OneHotEncoder(),[&#x27;attribute_0&#x27;]),(&#x27;attribute_1_encoder&#x27;, OneHotEncoder(),[&#x27;attribute_1&#x27;]),(&#x27;product_code_encoder&#x27;, OneHotEncoder(),[&#x27;product_code&#x27;])])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container" width="100%"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="c8ec7f92-b10a-41e7-b673-1239572ea00e" type="checkbox" ><label for="c8ec7f92-b10a-41e7-b673-1239572ea00e" class="sk-toggleable__label sk-toggleable__label-arrow">loading_missing_value_imputer</label><div class="sk-toggleable__content"><pre>[&#x27;loading&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="70fec50e-9c49-4818-a58f-ef8de932035c" type="checkbox" ><label for="70fec50e-9c49-4818-a58f-ef8de932035c" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container" width="100%"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="ac8a6641-4222-4b12-b691-928201d9af73" type="checkbox" ><label for="ac8a6641-4222-4b12-b691-928201d9af73" class="sk-toggleable__label sk-toggleable__label-arrow">numerical_missing_value_imputer</label><div class="sk-toggleable__content"><pre>[&#x27;loading&#x27;, &#x27;measurement_3&#x27;, &#x27;measurement_4&#x27;, &#x27;measurement_5&#x27;, &#x27;measurement_6&#x27;, &#x27;measurement_7&#x27;, &#x27;measurement_8&#x27;, &#x27;measurement_9&#x27;, &#x27;measurement_10&#x27;, &#x27;measurement_11&#x27;, &#x27;measurement_12&#x27;, &#x27;measurement_13&#x27;, &#x27;measurement_14&#x27;, &#x27;measurement_15&#x27;, &#x27;measurement_16&#x27;, &#x27;measurement_17&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="a14b63c1-fecb-445e-9a74-8229a531f0ea" type="checkbox" ><label for="a14b63c1-fecb-445e-9a74-8229a531f0ea" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container" width="100%"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="80227cfc-e001-4c0d-b495-e4e0631a49d5" type="checkbox" ><label for="80227cfc-e001-4c0d-b495-e4e0631a49d5" class="sk-toggleable__label sk-toggleable__label-arrow">attribute_0_encoder</label><div class="sk-toggleable__content"><pre>[&#x27;attribute_0&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="c52efc0c-08b7-467a-a0a1-f07cb6cecebc" type="checkbox" ><label for="c52efc0c-08b7-467a-a0a1-f07cb6cecebc" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container" width="100%"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="6da0ab07-3d41-459c-a8a6-a56960b775f2" type="checkbox" ><label for="6da0ab07-3d41-459c-a8a6-a56960b775f2" class="sk-toggleable__label sk-toggleable__label-arrow">attribute_1_encoder</label><div class="sk-toggleable__content"><pre>[&#x27;attribute_1&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="b515fbe5-466a-4eb7-84d9-35227a1e862a" type="checkbox" ><label for="b515fbe5-466a-4eb7-84d9-35227a1e862a" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container" width="100%"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="72c4b8e6-3110-486f-8b33-a7db1f5e822f" type="checkbox" ><label for="72c4b8e6-3110-486f-8b33-a7db1f5e822f" class="sk-toggleable__label sk-toggleable__label-arrow">product_code_encoder</label><div class="sk-toggleable__content"><pre>[&#x27;product_code&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="f3bfb5a1-317d-4ff4-8dd0-804ef1d7fd61" type="checkbox" ><label for="f3bfb5a1-317d-4ff4-8dd0-804ef1d7fd61" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="dbcb65f9-3068-4263-9c1c-2e6413804681" type="checkbox" ><label for="dbcb65f9-3068-4263-9c1c-2e6413804681" class="sk-toggleable__label sk-toggleable__label-arrow">DecisionTreeClassifier</label><div class="sk-toggleable__content"><pre>DecisionTreeClassifier(max_depth=4)</pre></div></div></div></div></div></div></div> Evaluation Results You can find the details about evaluation process and the evaluation results. | Metric | Value | |----------|---------| | accuracy | 0.7888 | | f1 score | 0.7888 | # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python import pickle with open(decision-tree-playground-kaggle/model.pkl, 'rb') as file: clf = pickle.load(file) ``` </details> # Model Card Authors This model card is written by following authors: huggingface # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` [More Information Needed] ``` Tree Plot ![Tree Plot](tree.png) Confusion Matrix ![Confusion Matrix](confusion_matrix.png)
fathyshalab/all-roberta-large-v1-home-1-16-5
fathyshalab
2022-12-01T12:37:26Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T18:31:52Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-home-1-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-home-1-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3789 - Accuracy: 0.3356 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7614 | 1.0 | 1 | 2.6146 | 0.1889 | | 2.2082 | 2.0 | 2 | 2.5232 | 0.2667 | | 1.8344 | 3.0 | 3 | 2.4516 | 0.2933 | | 1.4601 | 4.0 | 4 | 2.4033 | 0.3267 | | 1.2748 | 5.0 | 5 | 2.3789 | 0.3356 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
jakub014/bert-base-german-cased-finetuned-concreteness
jakub014
2022-12-01T12:21:38Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T15:37:55Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-german-cased-finetuned-concreteness results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-german-cased-finetuned-concreteness This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6007 - Accuracy: 0.7422 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 57 | 0.6007 | 0.7422 | | No log | 2.0 | 114 | 0.6007 | 0.7422 | | No log | 3.0 | 171 | 0.6007 | 0.7422 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
tryolabs/bert-large-uncased-wwm-squadv2-optimized-f16
tryolabs
2022-12-01T12:20:21Z
0
3
null
[ "onnx", "question-answering", "en", "dataset:squad_v2", "license:mit", "region:us" ]
question-answering
2022-11-11T20:45:29Z
--- language: en thumbnail: license: mit inference: false tags: - question-answering datasets: - squad_v2 metrics: - squad_v2 --- ## bert-large-uncased-wwm-squadv2-optimized-f16 This is an optimized model using [madlag/bert-large-uncased-wwm-squadv2-x2.63-f82.6-d16-hybrid-v1](https://huggingface.co/madlag/bert-large-uncased-wwm-squadv2-x2.63-f82.6-d16-hybrid-v1) as the base model which was created using the [nn_pruning](https://github.com/huggingface/nn_pruning) python library. This is a pruned model of [madlag/bert-large-uncased-whole-word-masking-finetuned-squadv2](https://huggingface.co/madlag/bert-large-uncased-whole-word-masking-finetuned-squadv2) Feel free to read our blog about how we optimized this model [(link)](https://tryolabs.com/blog/2022/11/24/transformer-based-model-for-faster-inference) Our final optimized model weighs **579 MB**, has an inference speed of **18.184 ms** on a Tesla T4 and has a performance of **82.68%** best F1. Below there is a comparison for each base model: | Model | Weight | Throughput on Tesla T4 | Best F1 | | -------- | ----- | --------- | --------- | | [madlag/bert-large-uncased-whole-word-masking-finetuned-squadv2](https://huggingface.co/madlag/bert-large-uncased-whole-word-masking-finetuned-squadv2) | 1275 MB | 140.529 ms | 86.08% | | [madlag/bert-large-uncased-wwm-squadv2-x2.63-f82.6-d16-hybrid-v1](https://huggingface.co/madlag/bert-large-uncased-wwm-squadv2-x2.63-f82.6-d16-hybrid-v1) | 1085 MB | 90.801 ms | 82.67% | | Our optimized model | 579 MB | 18.184 ms | 82.68% | You can test the inference of those models on [tryolabs/transformers-optimization space](https://huggingface.co/spaces/tryolabs/transformers-optimization) ## Example Usage ```python import torch from huggingface_hub import hf_hub_download from onnxruntime import InferenceSession from transformers import AutoModelForQuestionAnswering, AutoTokenizer MAX_SEQUENCE_LENGTH = 512 # Download the model model= hf_hub_download( repo_id="tryolabs/bert-large-uncased-wwm-squadv2-optimized-f16", filename="model.onnx" ) # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained("tryolabs/bert-large-uncased-wwm-squadv2-optimized-f16") question = "Who worked a little bit harder?" context = "The first little pig was very lazy. He didn't want to work at all and he built his house out of straw. The second little pig worked a little bit harder but he was somewhat lazy too and he built his house out of sticks. Then, they sang and danced and played together the rest of the day." # Generate an input inputs = dict( tokenizer( question, context, return_tensors="np", max_length=MAX_SEQUENCE_LENGTH ) ) # Create session sess = InferenceSession( model, providers=["CPUExecutionProvider"] ) # Run predictions output = sess.run(None, input_feed=inputs) answer_start_scores, answer_end_scores = torch.tensor(output[0]), torch.tensor( output[1] ) # Post process predictions input_ids = inputs["input_ids"].tolist()[0] answer_start = torch.argmax(answer_start_scores) answer_end = torch.argmax(answer_end_scores) + 1 answer = tokenizer.convert_tokens_to_string( tokenizer.convert_ids_to_tokens(input_ids[answer_start:answer_end]) ) # Output prediction print("Answer", answer) ```
josetapia/hygpt2-clm
josetapia
2022-12-01T12:16:52Z
119
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-12-01T08:22:34Z
--- license: mit tags: - generated_from_trainer model-index: - name: hygpt2-clm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hygpt2-clm This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 4000 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2 - Datasets 1.18.4 - Tokenizers 0.11.6
fathyshalab/all-roberta-large-v1-kitchen_and_dining-9-16-5
fathyshalab
2022-12-01T12:11:49Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T18:30:01Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-kitchen_and_dining-9-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-kitchen_and_dining-9-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3560 - Accuracy: 0.2692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7421 | 1.0 | 1 | 2.5878 | 0.2012 | | 2.1065 | 2.0 | 2 | 2.4975 | 0.2012 | | 1.5994 | 3.0 | 3 | 2.4274 | 0.2249 | | 1.1739 | 4.0 | 4 | 2.3808 | 0.2456 | | 1.083 | 5.0 | 5 | 2.3560 | 0.2692 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
arrafmousa/SimQA-roberta-base
arrafmousa
2022-12-01T11:59:06Z
61
0
transformers
[ "transformers", "tf", "roberta", "question-answering", "generated_from_keras_callback", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-12-01T11:44:39Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: SimQA-roberta-base results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # SimQA-roberta-base This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1454 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 597, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 0.7101 | 0 | | 0.1836 | 1 | | 0.1454 | 2 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.7.1 - Tokenizers 0.13.2
hizak/sd-class-butterflies-64
hizak
2022-12-01T11:52:54Z
33
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-12-01T11:52:01Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(hizak/sd-class-butterflies-64) image = pipeline().images[0] image ```
kzipa/ddpm-butterflies-128-retrain
kzipa
2022-12-01T11:48:36Z
1
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-12-01T10:50:04Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128-retrain ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/kzipa/ddpm-butterflies-128-retrain/tensorboard?#scalars)
fathyshalab/all-roberta-large-v1-kitchen_and_dining-7-16-5
fathyshalab
2022-12-01T11:20:14Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T18:26:22Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-kitchen_and_dining-7-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-kitchen_and_dining-7-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3560 - Accuracy: 0.2692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7421 | 1.0 | 1 | 2.5878 | 0.2012 | | 2.1065 | 2.0 | 2 | 2.4975 | 0.2012 | | 1.5994 | 3.0 | 3 | 2.4274 | 0.2249 | | 1.1739 | 4.0 | 4 | 2.3808 | 0.2456 | | 1.083 | 5.0 | 5 | 2.3560 | 0.2692 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
rls-telefonica/word_sense_mchoice_w_d_c
rls-telefonica
2022-12-01T11:13:31Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "multiple-choice", "generated_from_trainer", "endpoints_compatible", "region:us" ]
multiple-choice
2022-12-01T10:46:55Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: word_sense_mchoice_w_d_c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # word_sense_mchoice_w_d_c This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8885 - Accuracy: 0.8210 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6904 | 1.0 | 531 | 0.5099 | 0.7913 | | 0.2393 | 2.0 | 1062 | 0.6351 | 0.8202 | | 0.0842 | 3.0 | 1593 | 0.8885 | 0.8210 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
danielsaggau/scotus_f1
danielsaggau
2022-12-01T11:02:48Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "longformer", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-12-01T11:02:39Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 970 with parameters: ``` {'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 970, "warmup_steps": 97, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 4096, 'do_lower_case': False}) with Transformer model: LongformerModel (1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
fathyshalab/all-roberta-large-v1-kitchen_and_dining-6-16-5
fathyshalab
2022-12-01T10:54:30Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T18:24:31Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-kitchen_and_dining-6-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-kitchen_and_dining-6-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3560 - Accuracy: 0.2692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7421 | 1.0 | 1 | 2.5878 | 0.2012 | | 2.1065 | 2.0 | 2 | 2.4975 | 0.2012 | | 1.5994 | 3.0 | 3 | 2.4274 | 0.2249 | | 1.1739 | 4.0 | 4 | 2.3808 | 0.2456 | | 1.083 | 5.0 | 5 | 2.3560 | 0.2692 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
manirai91/enlm-roberta-imdb-final
manirai91
2022-12-01T10:04:39Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:imdb", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-01T08:09:14Z
--- tags: - generated_from_trainer datasets: - imdb model-index: - name: enlm-roberta-imdb-final results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # enlm-roberta-imdb-final This model is a fine-tuned version of [manirai91/enlm-roberta-final](https://huggingface.co/manirai91/enlm-roberta-final) on the imdb dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0 - Datasets 2.7.0 - Tokenizers 0.13.2
MGanesh29/distilbert-base-uncased-finetuned-cola-v3
MGanesh29
2022-12-01T09:17:29Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-01T09:00:47Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola-v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola-v3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9655 - Matthews Correlation: 0.7369 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | No log | 1.0 | 8 | 1.9112 | 0.1486 | | No log | 2.0 | 16 | 1.8626 | 0.1273 | | No log | 3.0 | 24 | 1.7793 | 0.1947 | | No log | 4.0 | 32 | 1.6722 | 0.1681 | | No log | 5.0 | 40 | 1.5578 | 0.3876 | | No log | 6.0 | 48 | 1.4463 | 0.5551 | | No log | 7.0 | 56 | 1.3280 | 0.5498 | | No log | 8.0 | 64 | 1.2302 | 0.5936 | | No log | 9.0 | 72 | 1.1408 | 0.6998 | | No log | 10.0 | 80 | 1.0765 | 0.6601 | | No log | 11.0 | 88 | 1.0145 | 0.6988 | | No log | 12.0 | 96 | 0.9655 | 0.7369 | | No log | 13.0 | 104 | 0.9389 | 0.6992 | | No log | 14.0 | 112 | 0.9258 | 0.6992 | | No log | 15.0 | 120 | 0.9209 | 0.6992 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
hr-elrond/autotrain-consumer-nature-speech_finbert-2147169289
hr-elrond
2022-12-01T08:59:48Z
100
2
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "unk", "dataset:hr-elrond/autotrain-data-consumer-nature-speech_finbert", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-11-18T15:00:49Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - hr-elrond/autotrain-data-consumer-nature-speech_finbert co2_eq_emissions: emissions: 0.004371975254312265 --- # Model Trained Using AutoTrain We trained FinBERT to identify whether firms´ talk contains consumer concepts of human nature (e.g., "I believe consumers generally act rational.", "Consumers must take over responsibility for the choices they make.", "It seems consumers behave quite altruistic.") from statements that do not (e.g., "We expect buyers to double their purchases next year.", "We see a 5% growth in numbers compared to the previous year."). The training data consisted of 236 positive documents (containing concepts of consumer nature) and 1034 negative documents (not contain concepts of consumer nature) extracted from earnings call transcripts of S&P-500 companies (2015-2020). # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 2147169289 - CO2 Emissions (in grams): 0.0044 ## Validation Metrics - Loss: 0.256 - Accuracy: 0.913 - Precision: 0.736 - Recall: 0.830 - AUC: 0.956 - F1: 0.780 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/hr-elrond/autotrain-consumer-nature-speech_finbert-2147169289 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("hr-elrond/autotrain-consumer-nature-speech_finbert-2147169289", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("hr-elrond/autotrain-consumer-nature-speech_finbert-2147169289", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
cledoux42/JUGGALO
cledoux42
2022-12-01T08:39:21Z
53
2
diffusers
[ "diffusers", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-11-30T11:14:43Z
Hugging Face's logo Hugging Face Search models, datasets, users... Models Datasets Spaces Docs Solutions Pricing --- language: - en license: other tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - photorealistic - photoreal - diffusers inference: true --- Make people look like they have Juggalo Face Makeup ### 🧨 Diffusers This model can be used just like any other Stable Diffusion model. For more information, please have a look at the [Stable Diffusion Pipeline](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion). ```python from diffusers import StableDiffusionPipeline import torch model_id = "cledoux42/JUGGALO" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "A JUGGALO" image = pipe(prompt).images[0] image.save("./result.jpg") ``` # License This model is licesed under a CreativeML OpenRAIL-M license.
fathyshalab/all-roberta-large-v1-kitchen_and_dining-4-16-5
fathyshalab
2022-12-01T08:38:47Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T18:20:50Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-kitchen_and_dining-4-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-kitchen_and_dining-4-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3560 - Accuracy: 0.2692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7421 | 1.0 | 1 | 2.5878 | 0.2012 | | 2.1065 | 2.0 | 2 | 2.4975 | 0.2012 | | 1.5994 | 3.0 | 3 | 2.4274 | 0.2249 | | 1.1739 | 4.0 | 4 | 2.3808 | 0.2456 | | 1.083 | 5.0 | 5 | 2.3560 | 0.2692 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
fathyshalab/all-roberta-large-v1-kitchen_and_dining-3-16-5
fathyshalab
2022-12-01T08:14:12Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T18:19:00Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-kitchen_and_dining-3-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-kitchen_and_dining-3-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3560 - Accuracy: 0.2692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7421 | 1.0 | 1 | 2.5878 | 0.2012 | | 2.1065 | 2.0 | 2 | 2.4975 | 0.2012 | | 1.5994 | 3.0 | 3 | 2.4274 | 0.2249 | | 1.1739 | 4.0 | 4 | 2.3808 | 0.2456 | | 1.083 | 5.0 | 5 | 2.3560 | 0.2692 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
fathyshalab/all-roberta-large-v1-kitchen_and_dining-2-16-5
fathyshalab
2022-12-01T07:50:00Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T18:17:10Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-kitchen_and_dining-2-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-kitchen_and_dining-2-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3560 - Accuracy: 0.2692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7421 | 1.0 | 1 | 2.5878 | 0.2012 | | 2.1065 | 2.0 | 2 | 2.4975 | 0.2012 | | 1.5994 | 3.0 | 3 | 2.4274 | 0.2249 | | 1.1739 | 4.0 | 4 | 2.3808 | 0.2456 | | 1.083 | 5.0 | 5 | 2.3560 | 0.2692 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
srnsrn120/whisper-small-hi
srnsrn120
2022-12-01T07:24:42Z
77
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "hi", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-01T05:57:41Z
--- language: - hi license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Hi - srnsrn120 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 40.772877338525355 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Hi - srnsrn120 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3428 - Wer: 40.7729 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 400 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2442 | 0.98 | 400 | 0.3428 | 40.7729 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
minhhoque/segformer-b0-scene-parse-150
minhhoque
2022-12-01T06:31:02Z
45
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "generated_from_trainer", "dataset:scene_parse_150", "license:other", "endpoints_compatible", "region:us" ]
null
2022-12-01T05:42:03Z
--- license: other tags: - generated_from_trainer datasets: - scene_parse_150 model-index: - name: segformer-b0-scene-parse-150 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-scene-parse-150 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the scene_parse_150 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
arinze/address-match-abp-v4
arinze
2022-12-01T06:02:39Z
40
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-12-01T06:02:29Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # arinze/address-match-abp-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 64 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('arinze/address-match-abp-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=arinze/address-match-abp-v2) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 3125 with parameters: ``` {'batch_size': 32} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 4, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 157, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 64, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 384, 'out_features': 64, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
lyan62/ar_norm_input_lrsmall
lyan62
2022-12-01T05:30:59Z
1
0
transformers
[ "transformers", "pytorch", "pixel", "masked-auto-encoding", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2022-11-28T17:26:14Z
--- tags: - masked-auto-encoding - generated_from_trainer model-index: - name: ar_norm_input_lrsmall results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ar_norm_input_lrsmall This model is a fine-tuned version of [](https://huggingface.co/) on the wikipedia + bookcorpus dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00015 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 256 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 500000 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.0 - Datasets 2.0.0 - Tokenizers 0.13.2
dicquiloan/q-FrozenLake-v1-4x4-noSlippery
dicquiloan
2022-12-01T05:11:21Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-11-25T23:37:21Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="dicquiloan/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
gavin124/gpt2-finetuned-cnn-summarization-v2
gavin124
2022-12-01T04:55:57Z
1,197
7
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "summarization", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2022-12-01T01:26:00Z
--- license: mit tags: - summarization - generated_from_trainer model-index: - name: gpt2-finetuned-cnn-summarization-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-finetuned-cnn-summarization-v2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1684 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.1919 | 1.0 | 5742 | 2.1597 | | 2.0192 | 2.0 | 11484 | 2.1627 | | 1.9587 | 3.0 | 17226 | 2.1684 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
fathyshalab/all-roberta-large-v1-credit_cards-8-16-5
fathyshalab
2022-12-01T03:58:24Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T18:12:11Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-credit_cards-8-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-credit_cards-8-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3376 - Accuracy: 0.3186 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.75 | 1.0 | 1 | 2.5769 | 0.2389 | | 2.178 | 2.0 | 2 | 2.4879 | 0.2389 | | 1.769 | 3.0 | 3 | 2.4180 | 0.2566 | | 1.4703 | 4.0 | 4 | 2.3657 | 0.3097 | | 1.2711 | 5.0 | 5 | 2.3376 | 0.3186 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
Roman1998/tesorflowTest
Roman1998
2022-12-01T03:48:43Z
62
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-01T03:47:33Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: tesorflowTest results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # tesorflowTest This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1220 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 0.2863 | 0 | | 0.1671 | 1 | | 0.1220 | 2 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.7.1 - Tokenizers 0.13.2
Roman1998/my-awesome-model2
Roman1998
2022-12-01T03:38:28Z
62
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-01T03:38:10Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: my-awesome-model2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # my-awesome-model2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4987 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 0.4987 | 0 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.7.1 - Tokenizers 0.13.2
huggingtweets/prezoh
huggingtweets
2022-12-01T03:28:19Z
117
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/prezoh/1669865295720/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1590487732387733505/JiMBIJrZ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">prezoh</div> <div style="text-align: center; font-size: 14px;">@prezoh</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from prezoh. | Data | prezoh | | --- | --- | | Tweets downloaded | 3158 | | Retweets | 30 | | Short tweets | 905 | | Tweets kept | 2223 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/278h7rp5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @prezoh's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3e7ukxmi) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3e7ukxmi/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/prezoh') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
cardiffnlp/xlm-roberta-base-sentiment-multilingual
cardiffnlp
2022-12-01T03:24:46Z
1,121
3
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "dataset:cardiffnlp/tweet_sentiment_multilingual", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-01T03:18:21Z
--- datasets: - cardiffnlp/tweet_sentiment_multilingual metrics: - f1 - accuracy model-index: - name: cardiffnlp/xlm-roberta-base-sentiment-multilingual results: - task: type: text-classification name: Text Classification dataset: name: cardiffnlp/tweet_sentiment_multilingual type: all split: test metrics: - name: Micro F1 (cardiffnlp/tweet_sentiment_multilingual/all) type: micro_f1_cardiffnlp/tweet_sentiment_multilingual/all value: 0.665948275862069 - name: Macro F1 (cardiffnlp/tweet_sentiment_multilingual/all) type: micro_f1_cardiffnlp/tweet_sentiment_multilingual/all value: 0.6628627126803655 - name: Accuracy (cardiffnlp/tweet_sentiment_multilingual/all) type: accuracy_cardiffnlp/tweet_sentiment_multilingual/all value: 0.665948275862069 pipeline_tag: text-classification widget: - text: Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}} example_title: "topic_classification 1" - text: Yes, including Medicare and social security saving👍 example_title: "sentiment 1" - text: All two of them taste like ass. example_title: "offensive 1" - text: If you wanna look like a badass, have drama on social media example_title: "irony 1" - text: Whoever just unfollowed me you a bitch example_title: "hate 1" - text: I love swimming for the same reason I love meditating...the feeling of weightlessness. example_title: "emotion 1" - text: Beautiful sunset last night from the pontoon @TupperLakeNY example_title: "emoji 1" --- # cardiffnlp/xlm-roberta-base-sentiment-multilingual This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the [`cardiffnlp/tweet_sentiment_multilingual (all)`](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual) via [`tweetnlp`](https://github.com/cardiffnlp/tweetnlp). Training split is `train` and parameters have been tuned on the validation split `validation`. Following metrics are achieved on the test split `test` ([link](https://huggingface.co/cardiffnlp/xlm-roberta-base-sentiment-multilingual/raw/main/metric.json)). - F1 (micro): 0.665948275862069 - F1 (macro): 0.6628627126803655 - Accuracy: 0.665948275862069 ### Usage Install tweetnlp via pip. ```shell pip install tweetnlp ``` Load the model in python. ```python import tweetnlp model = tweetnlp.Classifier("cardiffnlp/xlm-roberta-base-sentiment-multilingual", max_length=128) model.predict('Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}}') ``` ### Reference ``` @inproceedings{dimosthenis-etal-2022-twitter, title = "{T}witter {T}opic {C}lassification", author = "Antypas, Dimosthenis and Ushio, Asahi and Camacho-Collados, Jose and Neves, Leonardo and Silva, Vitor and Barbieri, Francesco", booktitle = "Proceedings of the 29th International Conference on Computational Linguistics", month = oct, year = "2022", address = "Gyeongju, Republic of Korea", publisher = "International Committee on Computational Linguistics" } ```
fathyshalab/all-roberta-large-v1-credit_cards-6-16-5
fathyshalab
2022-12-01T03:11:16Z
115
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T18:09:03Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-credit_cards-6-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-credit_cards-6-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3376 - Accuracy: 0.3186 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.75 | 1.0 | 1 | 2.5769 | 0.2389 | | 2.178 | 2.0 | 2 | 2.4879 | 0.2389 | | 1.769 | 3.0 | 3 | 2.4180 | 0.2566 | | 1.4703 | 4.0 | 4 | 2.3657 | 0.3097 | | 1.2711 | 5.0 | 5 | 2.3376 | 0.3186 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
itisphilippe/StackOverflowNER
itisphilippe
2022-12-01T02:53:38Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-11-30T07:01:36Z
--- license: mit --- Models and other data for https://github.com/jeniyat/StackOverflowNER. Use `git lfs fetch --all` to download all files. Please note that folders are stored decompressed due to HuggingFace file size limitations. The individual files in ./data_ctc/ are compressed using `gzip`, and can be decompressed using `gunzip -d *.gz`. Intermediate model checkpoints have not been uploaded due to bandwidth limitations. **BibTeX entry and citation info** ```bibtex @inproceedings{Tabassum20acl, title = {Code and Named Entity Recognition in StackOverflow}, author = "Tabassum, Jeniya and Maddela, Mounica and Xu, Wei and Ritter, Alan", booktitle = {The Annual Meeting of the Association for Computational Linguistics (ACL)}, year = {2020} } ```
fathyshalab/all-roberta-large-v1-credit_cards-5-16-5
fathyshalab
2022-12-01T02:47:27Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T18:07:32Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-credit_cards-5-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-credit_cards-5-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3376 - Accuracy: 0.3186 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.75 | 1.0 | 1 | 2.5769 | 0.2389 | | 2.178 | 2.0 | 2 | 2.4879 | 0.2389 | | 1.769 | 3.0 | 3 | 2.4180 | 0.2566 | | 1.4703 | 4.0 | 4 | 2.3657 | 0.3097 | | 1.2711 | 5.0 | 5 | 2.3376 | 0.3186 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
fathyshalab/all-roberta-large-v1-credit_cards-3-16-5
fathyshalab
2022-12-01T01:59:23Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T18:04:30Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-credit_cards-3-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-credit_cards-3-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3376 - Accuracy: 0.3186 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.75 | 1.0 | 1 | 2.5769 | 0.2389 | | 2.178 | 2.0 | 2 | 2.4879 | 0.2389 | | 1.769 | 3.0 | 3 | 2.4180 | 0.2566 | | 1.4703 | 4.0 | 4 | 2.3657 | 0.3097 | | 1.2711 | 5.0 | 5 | 2.3376 | 0.3186 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
fanpu/model_output_original_subreddit-wallstreetbets_1
fanpu
2022-12-01T01:53:09Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-30T17:43:06Z
--- license: mit tags: - generated_from_trainer model-index: - name: model_output_original_subreddit-wallstreetbets_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model_output_original_subreddit-wallstreetbets_1 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.5436 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.8943 | 0.25 | 1000 | 3.8122 | | 3.799 | 0.5 | 2000 | 3.7199 | | 3.7425 | 0.75 | 3000 | 3.6688 | | 3.6938 | 1.0 | 4000 | 3.6269 | | 3.543 | 1.25 | 5000 | 3.5972 | | 3.5417 | 1.5 | 6000 | 3.5657 | | 3.5122 | 1.75 | 7000 | 3.5477 | | 3.4857 | 1.99 | 8000 | 3.5436 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
wyu1/FiD-WebQ
wyu1
2022-12-01T01:39:25Z
32
0
transformers
[ "transformers", "pytorch", "t5", "license:cc-by-4.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2022-12-01T01:31:39Z
--- license: cc-by-4.0 --- # FiD model trained on WebQ -- This is the model checkpoint of FiD [2], based on the T5 large (with 770M parameters) and trained on the WebQ dataset [1]. -- Hyperparameters: 8 x 40GB A100 GPUs; batch size 8; AdamW; LR 3e-5; 30000 steps References: [1] Semantic parsing on freebase from question-answer pairs. EMNLP 2013. [2] Leveraging Passage Retrieval with Generative Models for Open Domain Question Answering. EACL 2021. ## Model performance We evaluate it on the WebQ dataset, the EM score is 50.2 on the test set. <a href="https://huggingface.co/exbert/?model=bert-base-uncased"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
DiogoSabec/BOT
DiogoSabec
2022-12-01T01:33:17Z
119
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-12-01T00:40:43Z
--- tags: - conversational ---
fathyshalab/all-roberta-large-v1-credit_cards-1-16-5
fathyshalab
2022-12-01T01:12:19Z
105
1
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T23:09:14Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-credit_cards-1-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-credit_cards-1-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3376 - Accuracy: 0.3186 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.75 | 1.0 | 1 | 2.5769 | 0.2389 | | 2.178 | 2.0 | 2 | 2.4879 | 0.2389 | | 1.769 | 3.0 | 3 | 2.4180 | 0.2566 | | 1.4703 | 4.0 | 4 | 2.3657 | 0.3097 | | 1.2711 | 5.0 | 5 | 2.3376 | 0.3186 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
wmFrank/sample-factory-2-megaverse
wmFrank
2022-12-01T00:50:17Z
1
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-01T00:49:58Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: TowerBuilding type: TowerBuilding metrics: - type: mean_reward value: nan +/- nan name: mean_reward verified: false --- A(n) **APPO** model trained on the **TowerBuilding** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
wmFrank/sample-factory-2-megaverse2
wmFrank
2022-12-01T00:41:46Z
5
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-01T00:36:23Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: TowerBuilding type: TowerBuilding metrics: - type: mean_reward value: nan +/- nan name: mean_reward verified: false --- A(n) **APPO** model trained on the **TowerBuilding** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
MadMarx37/mt5-small-finetuned-amazon-en-es
MadMarx37
2022-12-01T00:28:25Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-11-30T23:15:02Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0294 - Rouge1: 16.4909 - Rouge2: 7.9422 - Rougel: 16.3139 - Rougelsum: 16.3615 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 6.5928 | 1.0 | 1209 | 3.3005 | 14.6517 | 6.5194 | 14.3474 | 14.2801 | | 3.9024 | 2.0 | 2418 | 3.1399 | 16.744 | 8.6706 | 16.0952 | 16.1512 | | 3.5806 | 3.0 | 3627 | 3.0869 | 18.0041 | 9.2385 | 17.718 | 17.6889 | | 3.4201 | 4.0 | 4836 | 3.0590 | 17.5844 | 8.972 | 17.1709 | 17.2169 | | 3.3202 | 5.0 | 6045 | 3.0598 | 17.5762 | 8.6036 | 17.3677 | 17.3708 | | 3.2436 | 6.0 | 7254 | 3.0409 | 16.7641 | 8.19 | 16.6109 | 16.5899 | | 3.2079 | 7.0 | 8463 | 3.0332 | 16.6917 | 8.1747 | 16.4958 | 16.527 | | 3.1801 | 8.0 | 9672 | 3.0294 | 16.4909 | 7.9422 | 16.3139 | 16.3615 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
fathyshalab/all-roberta-large-v1-banking-8-16-5
fathyshalab
2022-12-01T00:21:13Z
109
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T18:30:16Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-banking-8-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-banking-8-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2920 - Accuracy: 0.3982 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7211 | 1.0 | 1 | 2.5748 | 0.2301 | | 2.2722 | 2.0 | 2 | 2.4566 | 0.3009 | | 1.9185 | 3.0 | 3 | 2.3596 | 0.3805 | | 1.667 | 4.0 | 4 | 2.2920 | 0.3982 | | 1.4704 | 5.0 | 5 | 2.2565 | 0.3982 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
garrett-vangilder/bert-emotion
garrett-vangilder
2022-12-01T00:19:59Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T23:56:56Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - precision - recall model-index: - name: bert-emotion results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval config: emotion split: train args: emotion metrics: - name: Precision type: precision value: 0.7311211804904578 - name: Recall type: recall value: 0.7298750848074663 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-emotion This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.1658 - Precision: 0.7311 - Recall: 0.7299 - Fscore: 0.7299 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Fscore | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | 0.8562 | 1.0 | 815 | 0.7859 | 0.7527 | 0.6006 | 0.6173 | | 0.5352 | 2.0 | 1630 | 0.9248 | 0.7545 | 0.7188 | 0.7293 | | 0.2543 | 3.0 | 2445 | 1.1658 | 0.7311 | 0.7299 | 0.7299 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
wyu1/GenRead-3B-WebQ
wyu1
2022-12-01T00:16:33Z
3
0
transformers
[ "transformers", "pytorch", "t5", "license:cc-by-4.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2022-11-30T22:39:42Z
--- license: cc-by-4.0 --- # GenRead: FiD model trained on WebQ -- This is the model checkpoint of GenRead [2], based on the T5-3B and trained on the WebQ dataset [1]. -- Hyperparameters: 8 x 80GB A100 GPUs; batch size 16; AdamW; LR 5e-5; best dev at 11500 steps. References: [1] Semantic parsing on freebase from question-answer pairs. EMNLP 2013. [2] Generate rather than Retrieve: Large Language Models are Strong Context Generators. arXiv 2022 ## Model performance We evaluate it on the WebQ dataset, the EM score is 54.36. <a href="https://huggingface.co/exbert/?model=bert-base-uncased"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a> --- license: cc-by-4.0 --- --- license: cc-by-4.0 ---
Taqwa/whisper-small-hi
Taqwa
2022-12-01T00:05:15Z
75
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "hi", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-26T20:53:48Z
--- language: - hi license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Hi - Sanchit Gandhi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 35.74028612545501 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Hi - Sanchit Gandhi This model is a fine-tuned version of [Taqwa/whisper-small-hiTaqwa](https://huggingface.co/Taqwa/whisper-small-hiTaqwa) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3353 - Wer: 35.7403 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0762 | 0.31 | 125 | 0.2818 | 33.3573 | | 0.0653 | 0.61 | 250 | 0.2930 | 33.9584 | | 0.062 | 0.92 | 375 | 0.3060 | 34.7456 | | 0.0518 | 1.22 | 500 | 0.3353 | 35.7403 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
fathyshalab/all-roberta-large-v1-banking-7-16-5
fathyshalab
2022-11-30T23:54:11Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T18:07:25Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-banking-7-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-banking-7-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2920 - Accuracy: 0.3982 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7211 | 1.0 | 1 | 2.5748 | 0.2301 | | 2.2722 | 2.0 | 2 | 2.4566 | 0.3009 | | 1.9185 | 3.0 | 3 | 2.3596 | 0.3805 | | 1.667 | 4.0 | 4 | 2.2920 | 0.3982 | | 1.4704 | 5.0 | 5 | 2.2565 | 0.3982 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
fathyshalab/all-roberta-large-v1-banking-5-16-5
fathyshalab
2022-11-30T22:58:35Z
107
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T17:20:58Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-banking-5-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-banking-5-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2920 - Accuracy: 0.3982 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7211 | 1.0 | 1 | 2.5748 | 0.2301 | | 2.2722 | 2.0 | 2 | 2.4566 | 0.3009 | | 1.9185 | 3.0 | 3 | 2.3596 | 0.3805 | | 1.667 | 4.0 | 4 | 2.2920 | 0.3982 | | 1.4704 | 5.0 | 5 | 2.2565 | 0.3982 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
CarperAI/randomwalks
CarperAI
2022-11-30T22:22:26Z
164
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-28T17:23:14Z
--- license: mit --- This is a pretrained model used in [PPO toy example](https://github.com/CarperAI/trlx/tree/main/examples/randomwalks) from [CarperAI/trlX](https://github.com/CarperAI/trlx/tree/main/examples/randomwalks)
fathyshalab/all-roberta-large-v1-banking-3-16-5
fathyshalab
2022-11-30T22:03:41Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T16:33:41Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-banking-3-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-banking-3-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2920 - Accuracy: 0.3982 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7211 | 1.0 | 1 | 2.5748 | 0.2301 | | 2.2722 | 2.0 | 2 | 2.4566 | 0.3009 | | 1.9185 | 3.0 | 3 | 2.3596 | 0.3805 | | 1.667 | 4.0 | 4 | 2.2920 | 0.3982 | | 1.4704 | 5.0 | 5 | 2.2565 | 0.3982 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
huggingtweets/kelseyhightower-mipsytipsy-rakyll
huggingtweets
2022-11-30T21:55:04Z
117
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-30T21:53:35Z
--- language: en thumbnail: http://www.huggingtweets.com/kelseyhightower-mipsytipsy-rakyll/1669845299643/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1204077305271705606/j5XjhPAt_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1576759705933819904/iDotz1Gw_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1492548437996310529/waX1aEU-_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Kelsey Hightower & Charity Majors & Jaana Dogan ヤナ ドガン</div> <div style="text-align: center; font-size: 14px;">@kelseyhightower-mipsytipsy-rakyll</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Kelsey Hightower & Charity Majors & Jaana Dogan ヤナ ドガン. | Data | Kelsey Hightower | Charity Majors | Jaana Dogan ヤナ ドガン | | --- | --- | --- | --- | | Tweets downloaded | 3227 | 3194 | 3223 | | Retweets | 464 | 509 | 297 | | Short tweets | 246 | 415 | 240 | | Tweets kept | 2517 | 2270 | 2686 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3shpfqlw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kelseyhightower-mipsytipsy-rakyll's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2kgnzkmq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2kgnzkmq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/kelseyhightower-mipsytipsy-rakyll') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
manirai91/enlm-roberta-final
manirai91
2022-11-30T21:40:33Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-28T03:41:11Z
--- tags: - generated_from_trainer model-index: - name: enlm-roberta-final results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # enlm-roberta-final This model is a fine-tuned version of [manirai91/enlm-roberta](https://huggingface.co/manirai91/enlm-roberta) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4187 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 128 - total_train_batch_size: 8192 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-06 - lr_scheduler_type: polynomial - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.5245 | 0.34 | 160 | 1.4187 | | 1.5245 | 0.69 | 320 | 1.4183 | | 1.5259 | 1.03 | 480 | 1.4177 | | 1.5265 | 1.37 | 640 | 1.4185 | | 1.5245 | 1.72 | 800 | 1.4190 | | 1.5241 | 2.06 | 960 | 1.4172 | | 1.5227 | 2.4 | 1120 | 1.4165 | | 1.5226 | 2.75 | 1280 | 1.4152 | | 1.522 | 3.09 | 1440 | 1.4190 | | 1.5243 | 3.43 | 1600 | 1.4177 | | 1.5213 | 3.78 | 1760 | 1.4134 | | 1.524 | 4.12 | 1920 | 1.4140 | | 1.5223 | 4.46 | 2080 | 1.4173 | | 1.5236 | 4.81 | 2240 | 1.4121 | | 1.5239 | 5.15 | 2400 | 1.4186 | | 1.5203 | 5.49 | 2560 | 1.4154 | | 1.522 | 5.84 | 2720 | 1.4162 | | 1.5209 | 6.18 | 2880 | 1.4154 | | 1.5196 | 6.52 | 3040 | 1.4153 | | 1.5209 | 6.87 | 3200 | 1.4122 | | 1.5202 | 7.21 | 3360 | 1.4146 | | 1.5192 | 7.55 | 3520 | 1.4141 | | 1.5215 | 7.9 | 3680 | 1.4123 | | 1.5228 | 8.24 | 3840 | 1.4147 | | 1.5222 | 8.58 | 4000 | 1.4144 | | 1.5201 | 8.93 | 4160 | 1.4173 | | 1.523 | 9.27 | 4320 | 1.4171 | | 1.5212 | 9.61 | 4480 | 1.4149 | | 1.522 | 9.96 | 4640 | 1.4187 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.3.2 - Tokenizers 0.12.1
fathyshalab/all-roberta-large-v1-banking-2-16-5
fathyshalab
2022-11-30T21:37:06Z
5
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T16:08:54Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-banking-2-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-banking-2-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2920 - Accuracy: 0.3982 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7211 | 1.0 | 1 | 2.5748 | 0.2301 | | 2.2722 | 2.0 | 2 | 2.4566 | 0.3009 | | 1.9185 | 3.0 | 3 | 2.3596 | 0.3805 | | 1.667 | 4.0 | 4 | 2.2920 | 0.3982 | | 1.4704 | 5.0 | 5 | 2.2565 | 0.3982 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
jmunoz/finetuning-sentiment-model-3000-samples_jmnew
jmunoz
2022-11-30T21:32:18Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T21:09:51Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples_jmnew results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8733333333333333 - name: F1 type: f1 value: 0.875 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples_jmnew This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3148 - Accuracy: 0.8733 - F1: 0.875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
elloco/Kobayashi
elloco
2022-11-30T21:15:21Z
0
0
null
[ "region:us" ]
null
2022-11-30T20:50:30Z
--- illustrator : Mitsuhiro Kimura license: Futabasha ---from Kobayashi-san Chi No Maid Dragon from PIL import Image url = https://static.wikia.nocookie.net/wikiseriesjaponesas/images/d/d4/Kobayashi.png/revision/latest?cb=20170801205650&path-prefix=es image = https://static.wikia.nocookie.net/wikiseriesjaponesas/images/d/d2/Kobayashi.png/revision/latest?cb=20170801205650&path-prefix=es feature_extractor = ViTFeatureExtractor.from_pretrained(https://ficcion-sin-limites.fandom.com/es/wiki/Kobayashi model = ViTModel.from_pretrained('google/vit-base-patch32-224-in21k') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) last_hidden_state = outputs.last_hidden_state
fathyshalab/all-roberta-large-v1-banking-1-16-5
fathyshalab
2022-11-30T21:09:17Z
5
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T15:45:09Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-banking-1-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-banking-1-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4479 - Accuracy: 0.2301 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.716 | 1.0 | 1 | 2.6641 | 0.1327 | | 2.1674 | 2.0 | 2 | 2.5852 | 0.1858 | | 1.7169 | 3.0 | 3 | 2.5202 | 0.2035 | | 1.3976 | 4.0 | 4 | 2.4729 | 0.2124 | | 1.2503 | 5.0 | 5 | 2.4479 | 0.2301 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
louis030195/multi-qa-MiniLM-L6-cos-v1-obsidian
louis030195
2022-11-30T19:42:24Z
13
2
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-08-07T18:41:33Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # louis030195/multi-qa-MiniLM-L6-cos-v1-obsidian This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. It has been fine-tuned on https://brain.louis030195.com using code from https://github.com/louis030195/obsidian-search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('louis030195/multi-qa-MiniLM-L6-cos-v1-obsidian') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('louis030195/multi-qa-MiniLM-L6-cos-v1-obsidian') model = AutoModel.from_pretrained('louis030195/multi-qa-MiniLM-L6-cos-v1-obsidian') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=louis030195/multi-qa-MiniLM-L6-cos-v1-obsidian) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 218 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.DenoisingAutoEncoderLoss.DenoisingAutoEncoderLoss` Parameters of the fit()-Method: ``` { "epochs": 2, "evaluation_steps": 500, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 3e-05 }, "scheduler": "constantlr", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
pere/whisper-medium-NST-uf-linlr
pere
2022-11-30T19:24:35Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "NbAiLab/NST", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-28T07:44:59Z
--- license: apache-2.0 tags: - hf-asr-leaderboard - automatic-speech-recognition - NbAiLab/NST - generated_from_trainer metrics: - wer model-index: - name: whisper-medium-NST-uf-linlr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-medium-NST-uf-linlr This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the NBAILAB/NST - NO-CLOSE dataset. It achieves the following results on the evaluation set: - Loss: 0.3007 - Wer: 9.1220 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 72 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 20000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.2046 | 0.05 | 1000 | 0.3426 | 15.2794 | | 0.148 | 0.1 | 2000 | 0.3284 | 10.8324 | | 0.121 | 0.15 | 3000 | 0.3092 | 12.8848 | | 0.1089 | 0.2 | 4000 | 0.2808 | 10.4903 | | 0.0976 | 0.25 | 5000 | 0.2617 | 9.9202 | | 0.0901 | 0.3 | 6000 | 0.2604 | 21.8928 | | 0.0834 | 0.35 | 7000 | 0.2877 | 9.3501 | | 0.0825 | 0.4 | 8000 | 0.2794 | 9.3501 | | 0.0553 | 1.05 | 9000 | 0.2845 | 9.5781 | | 0.0472 | 1.1 | 10000 | 0.2814 | 24.1733 | | 0.0409 | 1.15 | 11000 | 0.3084 | 8.0958 | | 0.041 | 1.2 | 12000 | 0.2865 | 9.2360 | | 0.0353 | 1.25 | 13000 | 0.2828 | 6.4994 | | 0.0348 | 1.3 | 14000 | 0.2708 | 7.5257 | | 0.0349 | 1.35 | 15000 | 0.2842 | 23.0331 | | 0.0361 | 1.4 | 16000 | 0.2769 | 10.1482 | | 0.0249 | 2.04 | 17000 | 0.2935 | 8.8940 | | 0.0204 | 2.09 | 18000 | 0.2874 | 12.4287 | | 0.0175 | 2.14 | 19000 | 0.2882 | 12.9989 | | 0.0197 | 2.19 | 20000 | 0.3007 | 9.1220 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.1
DarkBeam/MengerSierpSponges
DarkBeam
2022-11-30T18:55:15Z
0
2
null
[ "region:us" ]
null
2022-11-30T18:00:52Z
A model tried on approximately 20 fractal images for each keyword, with a variety of different styles, it can reproduce an effect similar to a fractal of the corresponding types. TRIGGERING KEYWORDS: mengersponge for Menger; sierpsponge for Sierpinski The Menger model is trained on a variety of 3D renders, while the Sierpinski uses a mix of 2D and 3D images. For some reason, they tend to produce similar outputs sometimes. For the Menger images I tried this simple prompt: Spectacular mengersponge castle entrance view, 4k trending detailed render, volumetric lighting, cinematic octane render For the Sierpinski images I tried this simple prompt: Spiked ornate triangle abstract art, sierpsponge, colorful octane render, realistic 4k
jmunoz/finetuning-sentiment-model-3000-samples
jmunoz
2022-11-30T18:41:53Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-29T22:47:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cpu - Datasets 1.2.1 - Tokenizers 0.12.1
pig4431/TweetEval_ALBERT_5E
pig4431
2022-11-30T18:32:36Z
103
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T18:32:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - accuracy model-index: - name: TweetEval_ALBERT_5E results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval config: sentiment split: train args: sentiment metrics: - name: Accuracy type: accuracy value: 0.9266666666666666 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TweetEval_ALBERT_5E This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.1990 - Accuracy: 0.9267 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4636 | 0.04 | 50 | 0.3662 | 0.8667 | | 0.442 | 0.08 | 100 | 0.3471 | 0.84 | | 0.3574 | 0.12 | 150 | 0.3446 | 0.86 | | 0.392 | 0.16 | 200 | 0.6776 | 0.6267 | | 0.4801 | 0.2 | 250 | 0.4307 | 0.7667 | | 0.487 | 0.24 | 300 | 0.5127 | 0.8 | | 0.4414 | 0.28 | 350 | 0.3912 | 0.8133 | | 0.4495 | 0.32 | 400 | 0.4056 | 0.8333 | | 0.4637 | 0.37 | 450 | 0.3635 | 0.8533 | | 0.4231 | 0.41 | 500 | 0.4235 | 0.84 | | 0.4049 | 0.45 | 550 | 0.4094 | 0.8067 | | 0.4481 | 0.49 | 600 | 0.3977 | 0.7733 | | 0.4024 | 0.53 | 650 | 0.3361 | 0.8733 | | 0.3901 | 0.57 | 700 | 0.3014 | 0.8667 | | 0.3872 | 0.61 | 750 | 0.3363 | 0.8533 | | 0.377 | 0.65 | 800 | 0.3754 | 0.8 | | 0.459 | 0.69 | 850 | 0.3861 | 0.8 | | 0.437 | 0.73 | 900 | 0.3834 | 0.8333 | | 0.3823 | 0.77 | 950 | 0.3541 | 0.8733 | | 0.3561 | 0.81 | 1000 | 0.3177 | 0.84 | | 0.4536 | 0.85 | 1050 | 0.4291 | 0.78 | | 0.4457 | 0.89 | 1100 | 0.3193 | 0.86 | | 0.3478 | 0.93 | 1150 | 0.3159 | 0.8533 | | 0.4613 | 0.97 | 1200 | 0.3605 | 0.84 | | 0.4081 | 1.01 | 1250 | 0.4291 | 0.7867 | | 0.3849 | 1.06 | 1300 | 0.3114 | 0.8733 | | 0.4071 | 1.1 | 1350 | 0.2939 | 0.8667 | | 0.3484 | 1.14 | 1400 | 0.3212 | 0.84 | | 0.3869 | 1.18 | 1450 | 0.2717 | 0.8933 | | 0.3877 | 1.22 | 1500 | 0.3459 | 0.84 | | 0.4245 | 1.26 | 1550 | 0.3404 | 0.8733 | | 0.4148 | 1.3 | 1600 | 0.2863 | 0.8667 | | 0.3542 | 1.34 | 1650 | 0.3377 | 0.86 | | 0.4093 | 1.38 | 1700 | 0.2972 | 0.8867 | | 0.3579 | 1.42 | 1750 | 0.3926 | 0.86 | | 0.3892 | 1.46 | 1800 | 0.2870 | 0.8667 | | 0.3569 | 1.5 | 1850 | 0.4027 | 0.8467 | | 0.3493 | 1.54 | 1900 | 0.3069 | 0.8467 | | 0.36 | 1.58 | 1950 | 0.3197 | 0.8733 | | 0.3532 | 1.62 | 2000 | 0.3711 | 0.8667 | | 0.3311 | 1.66 | 2050 | 0.2897 | 0.8867 | | 0.346 | 1.7 | 2100 | 0.2938 | 0.88 | | 0.3389 | 1.75 | 2150 | 0.2734 | 0.8933 | | 0.3289 | 1.79 | 2200 | 0.2606 | 0.8867 | | 0.3558 | 1.83 | 2250 | 0.3070 | 0.88 | | 0.3277 | 1.87 | 2300 | 0.2757 | 0.8867 | | 0.3166 | 1.91 | 2350 | 0.2759 | 0.8733 | | 0.3223 | 1.95 | 2400 | 0.2053 | 0.9133 | | 0.317 | 1.99 | 2450 | 0.2307 | 0.8867 | | 0.3408 | 2.03 | 2500 | 0.2557 | 0.9067 | | 0.3212 | 2.07 | 2550 | 0.2508 | 0.8867 | | 0.2806 | 2.11 | 2600 | 0.2472 | 0.88 | | 0.3567 | 2.15 | 2650 | 0.2790 | 0.8933 | | 0.2887 | 2.19 | 2700 | 0.3197 | 0.88 | | 0.3222 | 2.23 | 2750 | 0.2943 | 0.8667 | | 0.2773 | 2.27 | 2800 | 0.2297 | 0.88 | | 0.2728 | 2.31 | 2850 | 0.2813 | 0.8733 | | 0.3115 | 2.35 | 2900 | 0.3470 | 0.8867 | | 0.3001 | 2.39 | 2950 | 0.2702 | 0.8933 | | 0.3464 | 2.44 | 3000 | 0.2855 | 0.9 | | 0.3041 | 2.48 | 3050 | 0.2366 | 0.8867 | | 0.2717 | 2.52 | 3100 | 0.3220 | 0.88 | | 0.2903 | 2.56 | 3150 | 0.2230 | 0.9 | | 0.2959 | 2.6 | 3200 | 0.2439 | 0.9067 | | 0.2753 | 2.64 | 3250 | 0.2918 | 0.8733 | | 0.2515 | 2.68 | 3300 | 0.2493 | 0.88 | | 0.295 | 2.72 | 3350 | 0.2673 | 0.8867 | | 0.2572 | 2.76 | 3400 | 0.2842 | 0.8733 | | 0.2988 | 2.8 | 3450 | 0.2306 | 0.9067 | | 0.2923 | 2.84 | 3500 | 0.2329 | 0.8933 | | 0.2856 | 2.88 | 3550 | 0.2374 | 0.88 | | 0.2867 | 2.92 | 3600 | 0.2294 | 0.8733 | | 0.306 | 2.96 | 3650 | 0.2169 | 0.92 | | 0.2312 | 3.0 | 3700 | 0.2456 | 0.88 | | 0.2438 | 3.04 | 3750 | 0.2134 | 0.8867 | | 0.2103 | 3.08 | 3800 | 0.2242 | 0.92 | | 0.2469 | 3.12 | 3850 | 0.2407 | 0.92 | | 0.2346 | 3.17 | 3900 | 0.1866 | 0.92 | | 0.2275 | 3.21 | 3950 | 0.2318 | 0.92 | | 0.2542 | 3.25 | 4000 | 0.2256 | 0.9 | | 0.2544 | 3.29 | 4050 | 0.2246 | 0.9133 | | 0.2468 | 3.33 | 4100 | 0.2436 | 0.8733 | | 0.2105 | 3.37 | 4150 | 0.2098 | 0.9067 | | 0.2818 | 3.41 | 4200 | 0.2304 | 0.88 | | 0.2041 | 3.45 | 4250 | 0.2430 | 0.8933 | | 0.28 | 3.49 | 4300 | 0.1990 | 0.9067 | | 0.1997 | 3.53 | 4350 | 0.2515 | 0.8933 | | 0.2409 | 3.57 | 4400 | 0.2315 | 0.9 | | 0.1969 | 3.61 | 4450 | 0.2160 | 0.8933 | | 0.2246 | 3.65 | 4500 | 0.1979 | 0.92 | | 0.2185 | 3.69 | 4550 | 0.2238 | 0.9 | | 0.259 | 3.73 | 4600 | 0.2011 | 0.9067 | | 0.2407 | 3.77 | 4650 | 0.1911 | 0.92 | | 0.2198 | 3.81 | 4700 | 0.2083 | 0.92 | | 0.235 | 3.86 | 4750 | 0.1724 | 0.9267 | | 0.26 | 3.9 | 4800 | 0.1640 | 0.9333 | | 0.2334 | 3.94 | 4850 | 0.1778 | 0.9267 | | 0.2121 | 3.98 | 4900 | 0.2062 | 0.8933 | | 0.173 | 4.02 | 4950 | 0.1987 | 0.92 | | 0.1942 | 4.06 | 5000 | 0.2509 | 0.8933 | | 0.1703 | 4.1 | 5050 | 0.2179 | 0.9 | | 0.1735 | 4.14 | 5100 | 0.2429 | 0.8867 | | 0.2098 | 4.18 | 5150 | 0.1938 | 0.9267 | | 0.2126 | 4.22 | 5200 | 0.1971 | 0.92 | | 0.164 | 4.26 | 5250 | 0.2539 | 0.9067 | | 0.2271 | 4.3 | 5300 | 0.1765 | 0.94 | | 0.2245 | 4.34 | 5350 | 0.1894 | 0.94 | | 0.182 | 4.38 | 5400 | 0.1790 | 0.9467 | | 0.1835 | 4.42 | 5450 | 0.2014 | 0.9333 | | 0.2185 | 4.46 | 5500 | 0.1881 | 0.9467 | | 0.2113 | 4.5 | 5550 | 0.1742 | 0.9333 | | 0.1997 | 4.55 | 5600 | 0.1762 | 0.94 | | 0.1959 | 4.59 | 5650 | 0.1657 | 0.9467 | | 0.2035 | 4.63 | 5700 | 0.1973 | 0.92 | | 0.228 | 4.67 | 5750 | 0.1769 | 0.9467 | | 0.1632 | 4.71 | 5800 | 0.1968 | 0.9267 | | 0.1468 | 4.75 | 5850 | 0.1822 | 0.9467 | | 0.1936 | 4.79 | 5900 | 0.1832 | 0.94 | | 0.1743 | 4.83 | 5950 | 0.1987 | 0.9267 | | 0.1654 | 4.87 | 6000 | 0.1943 | 0.9267 | | 0.1859 | 4.91 | 6050 | 0.1990 | 0.92 | | 0.2039 | 4.95 | 6100 | 0.1982 | 0.9267 | | 0.2325 | 4.99 | 6150 | 0.1990 | 0.9267 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.7.1 - Tokenizers 0.13.2
pig4431/TweetEval_ELECTRA_5E
pig4431
2022-11-30T17:42:45Z
103
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T17:42:11Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - accuracy model-index: - name: TweetEval_ELECTRA_5E results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval config: sentiment split: train args: sentiment metrics: - name: Accuracy type: accuracy value: 0.9066666666666666 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TweetEval_ELECTRA_5E This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.2935 - Accuracy: 0.9067 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6466 | 0.04 | 50 | 0.6006 | 0.7333 | | 0.5974 | 0.08 | 100 | 0.5769 | 0.7333 | | 0.5884 | 0.12 | 150 | 0.5486 | 0.7333 | | 0.5601 | 0.16 | 200 | 0.4799 | 0.76 | | 0.5125 | 0.2 | 250 | 0.4380 | 0.8533 | | 0.4603 | 0.24 | 300 | 0.4169 | 0.84 | | 0.4353 | 0.28 | 350 | 0.3775 | 0.86 | | 0.4498 | 0.32 | 400 | 0.3460 | 0.9 | | 0.4014 | 0.37 | 450 | 0.3812 | 0.8467 | | 0.4072 | 0.41 | 500 | 0.3383 | 0.88 | | 0.3891 | 0.45 | 550 | 0.3377 | 0.88 | | 0.3482 | 0.49 | 600 | 0.3289 | 0.8933 | | 0.3705 | 0.53 | 650 | 0.3162 | 0.8933 | | 0.3249 | 0.57 | 700 | 0.2967 | 0.9 | | 0.332 | 0.61 | 750 | 0.2925 | 0.8867 | | 0.3166 | 0.65 | 800 | 0.2916 | 0.9067 | | 0.334 | 0.69 | 850 | 0.3083 | 0.8667 | | 0.3039 | 0.73 | 900 | 0.2966 | 0.8867 | | 0.3066 | 0.77 | 950 | 0.3054 | 0.88 | | 0.3238 | 0.81 | 1000 | 0.3060 | 0.88 | | 0.308 | 0.85 | 1050 | 0.3103 | 0.88 | | 0.2889 | 0.89 | 1100 | 0.2922 | 0.88 | | 0.2773 | 0.93 | 1150 | 0.2986 | 0.8933 | | 0.3078 | 0.97 | 1200 | 0.2852 | 0.8933 | | 0.2529 | 1.01 | 1250 | 0.2957 | 0.8933 | | 0.2968 | 1.06 | 1300 | 0.2893 | 0.8867 | | 0.2536 | 1.1 | 1350 | 0.2902 | 0.88 | | 0.2836 | 1.14 | 1400 | 0.3085 | 0.88 | | 0.3066 | 1.18 | 1450 | 0.2909 | 0.88 | | 0.28 | 1.22 | 1500 | 0.2953 | 0.8867 | | 0.2549 | 1.26 | 1550 | 0.3019 | 0.8867 | | 0.2974 | 1.3 | 1600 | 0.2796 | 0.88 | | 0.2808 | 1.34 | 1650 | 0.2762 | 0.9 | | 0.2548 | 1.38 | 1700 | 0.2808 | 0.9 | | 0.2879 | 1.42 | 1750 | 0.2819 | 0.8933 | | 0.2583 | 1.46 | 1800 | 0.2904 | 0.88 | | 0.2387 | 1.5 | 1850 | 0.3016 | 0.8733 | | 0.2574 | 1.54 | 1900 | 0.2981 | 0.8933 | | 0.2589 | 1.58 | 1950 | 0.2907 | 0.8933 | | 0.2436 | 1.62 | 2000 | 0.2926 | 0.8867 | | 0.2606 | 1.66 | 2050 | 0.2807 | 0.8933 | | 0.2841 | 1.7 | 2100 | 0.2805 | 0.9 | | 0.2497 | 1.75 | 2150 | 0.2765 | 0.8867 | | 0.2866 | 1.79 | 2200 | 0.2821 | 0.9 | | 0.2614 | 1.83 | 2250 | 0.2759 | 0.8867 | | 0.2605 | 1.87 | 2300 | 0.2704 | 0.8933 | | 0.2365 | 1.91 | 2350 | 0.2623 | 0.9 | | 0.2274 | 1.95 | 2400 | 0.2651 | 0.8933 | | 0.2564 | 1.99 | 2450 | 0.2664 | 0.9 | | 0.2481 | 2.03 | 2500 | 0.2706 | 0.9 | | 0.2382 | 2.07 | 2550 | 0.2819 | 0.8933 | | 0.2351 | 2.11 | 2600 | 0.2848 | 0.9 | | 0.18 | 2.15 | 2650 | 0.2881 | 0.8933 | | 0.2343 | 2.19 | 2700 | 0.2983 | 0.9 | | 0.2043 | 2.23 | 2750 | 0.2908 | 0.8933 | | 0.2272 | 2.27 | 2800 | 0.3000 | 0.8867 | | 0.246 | 2.31 | 2850 | 0.3136 | 0.8867 | | 0.2577 | 2.35 | 2900 | 0.3126 | 0.88 | | 0.2316 | 2.39 | 2950 | 0.2803 | 0.8933 | | 0.2156 | 2.44 | 3000 | 0.2737 | 0.9067 | | 0.223 | 2.48 | 3050 | 0.2883 | 0.8933 | | 0.2215 | 2.52 | 3100 | 0.2660 | 0.8867 | | 0.2488 | 2.56 | 3150 | 0.2551 | 0.9 | | 0.2095 | 2.6 | 3200 | 0.2645 | 0.9 | | 0.2247 | 2.64 | 3250 | 0.2751 | 0.8933 | | 0.2292 | 2.68 | 3300 | 0.2851 | 0.8867 | | 0.237 | 2.72 | 3350 | 0.2824 | 0.8867 | | 0.2086 | 2.76 | 3400 | 0.2805 | 0.8867 | | 0.2063 | 2.8 | 3450 | 0.2771 | 0.9 | | 0.2015 | 2.84 | 3500 | 0.2981 | 0.8933 | | 0.2036 | 2.88 | 3550 | 0.2937 | 0.8933 | | 0.247 | 2.92 | 3600 | 0.2985 | 0.8933 | | 0.23 | 2.96 | 3650 | 0.2866 | 0.9067 | | 0.2625 | 3.0 | 3700 | 0.2836 | 0.9 | | 0.2064 | 3.04 | 3750 | 0.2911 | 0.8933 | | 0.1867 | 3.08 | 3800 | 0.2868 | 0.8933 | | 0.2143 | 3.12 | 3850 | 0.2903 | 0.9 | | 0.1993 | 3.17 | 3900 | 0.2987 | 0.8933 | | 0.1762 | 3.21 | 3950 | 0.3066 | 0.9067 | | 0.1935 | 3.25 | 4000 | 0.3185 | 0.8867 | | 0.234 | 3.29 | 4050 | 0.3043 | 0.9067 | | 0.195 | 3.33 | 4100 | 0.2905 | 0.9067 | | 0.2434 | 3.37 | 4150 | 0.3081 | 0.9 | | 0.2168 | 3.41 | 4200 | 0.2919 | 0.9067 | | 0.2044 | 3.45 | 4250 | 0.2903 | 0.9 | | 0.2419 | 3.49 | 4300 | 0.2955 | 0.8933 | | 0.191 | 3.53 | 4350 | 0.2957 | 0.9067 | | 0.1927 | 3.57 | 4400 | 0.3075 | 0.8933 | | 0.2267 | 3.61 | 4450 | 0.2823 | 0.9067 | | 0.1971 | 3.65 | 4500 | 0.2933 | 0.9067 | | 0.2164 | 3.69 | 4550 | 0.2910 | 0.9067 | | 0.1939 | 3.73 | 4600 | 0.2813 | 0.9067 | | 0.1834 | 3.77 | 4650 | 0.2913 | 0.9067 | | 0.234 | 3.81 | 4700 | 0.2841 | 0.9067 | | 0.2226 | 3.86 | 4750 | 0.2888 | 0.9067 | | 0.2176 | 3.9 | 4800 | 0.2902 | 0.9067 | | 0.2279 | 3.94 | 4850 | 0.2842 | 0.9067 | | 0.1948 | 3.98 | 4900 | 0.2856 | 0.9067 | | 0.2044 | 4.02 | 4950 | 0.2845 | 0.9067 | | 0.2075 | 4.06 | 5000 | 0.2825 | 0.9067 | | 0.1721 | 4.1 | 5050 | 0.2796 | 0.9067 | | 0.2206 | 4.14 | 5100 | 0.2752 | 0.9067 | | 0.2012 | 4.18 | 5150 | 0.2738 | 0.9067 | | 0.1868 | 4.22 | 5200 | 0.2932 | 0.9 | | 0.2117 | 4.26 | 5250 | 0.2881 | 0.9 | | 0.1946 | 4.3 | 5300 | 0.2985 | 0.9 | | 0.2138 | 4.34 | 5350 | 0.3025 | 0.8933 | | 0.1841 | 4.38 | 5400 | 0.2906 | 0.9067 | | 0.2171 | 4.42 | 5450 | 0.2919 | 0.9067 | | 0.2116 | 4.46 | 5500 | 0.2889 | 0.9067 | | 0.162 | 4.5 | 5550 | 0.2994 | 0.8933 | | 0.1821 | 4.55 | 5600 | 0.2975 | 0.9 | | 0.1802 | 4.59 | 5650 | 0.2994 | 0.9 | | 0.1619 | 4.63 | 5700 | 0.2978 | 0.9 | | 0.1955 | 4.67 | 5750 | 0.2984 | 0.9 | | 0.2031 | 4.71 | 5800 | 0.2925 | 0.9067 | | 0.1937 | 4.75 | 5850 | 0.2939 | 0.9067 | | 0.1799 | 4.79 | 5900 | 0.2955 | 0.9067 | | 0.2106 | 4.83 | 5950 | 0.2965 | 0.9067 | | 0.196 | 4.87 | 6000 | 0.2954 | 0.9067 | | 0.2336 | 4.91 | 6050 | 0.2932 | 0.9067 | | 0.1805 | 4.95 | 6100 | 0.2931 | 0.9067 | | 0.1877 | 4.99 | 6150 | 0.2935 | 0.9067 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.7.1 - Tokenizers 0.13.2
edgertej/poebert-checkpoint-finetuned-poetry-foundation-2
edgertej
2022-11-30T17:14:10Z
78
0
transformers
[ "transformers", "tf", "bert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-30T16:14:34Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: edgertej/poebert-checkpoint-finetuned-poetry-foundation-2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # edgertej/poebert-checkpoint-finetuned-poetry-foundation-2 This model is a fine-tuned version of [edgertej/poebert-checkpoint-finetuned-poetry-foundation](https://huggingface.co/edgertej/poebert-checkpoint-finetuned-poetry-foundation) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.8653 - Validation Loss: 3.5986 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.9003 | 3.6587 | 0 | | 3.8970 | 3.6169 | 1 | | 3.8653 | 3.5986 | 2 | ### Framework versions - Transformers 4.19.2 - TensorFlow 2.9.1 - Datasets 2.4.0 - Tokenizers 0.12.1
Leo446673/q-Taxi-v3
Leo446673
2022-11-30T16:58:06Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-11-30T16:58:00Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Leo446673/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
alexrofail/sd-class-butterflies-32
alexrofail
2022-11-30T16:31:22Z
33
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-30T16:29:47Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. In this run I just ran each cell of the NB to understand what is going on. Experimentation to follow 🙏 ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(alexrofail/sd-class-butterflies-32) image = pipeline().images[0] image ```
Leo446673/q-FrozenLake-v1-4x4-noSlippery
Leo446673
2022-11-30T16:22:01Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-11-30T16:21:54Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Leo446673/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
juancopi81/sd-class-butterflies-64
juancopi81
2022-11-30T15:30:50Z
41
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-30T15:29:58Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(juancopi81/sd-class-butterflies-64) image = pipeline().images[0] image ```
syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless5-2022-11-29
syzym
2022-11-30T15:30:12Z
0
0
null
[ "tensorboard", "region:us" ]
null
2022-11-29T12:53:02Z
# Introduction This repo contains pre-trained models, checkpoints, training logs and decoding results of the following pull-request: https://github.com/k2-fsa/icefall/pull/706
fathyshalab/all-roberta-large-v1-banking-17-16-5
fathyshalab
2022-11-30T15:28:05Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T21:57:40Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-banking-17-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-banking-17-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.7470 - Accuracy: 0.0756 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.8182 | 1.0 | 1 | 2.7709 | 0.0356 | | 2.6751 | 2.0 | 2 | 2.7579 | 0.0578 | | 2.5239 | 3.0 | 3 | 2.7509 | 0.0622 | | 2.4346 | 4.0 | 4 | 2.7470 | 0.0756 | | 2.4099 | 5.0 | 5 | 2.7452 | 0.0756 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1 - Datasets 2.3.2 - Tokenizers 0.12.1
fathyshalab/all-roberta-large-v1-banking-16-16-5
fathyshalab
2022-11-30T15:24:44Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T21:34:27Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-banking-16-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-banking-16-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.7470 - Accuracy: 0.0756 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.8182 | 1.0 | 1 | 2.7709 | 0.0356 | | 2.6751 | 2.0 | 2 | 2.7579 | 0.0578 | | 2.5239 | 3.0 | 3 | 2.7509 | 0.0622 | | 2.4346 | 4.0 | 4 | 2.7470 | 0.0756 | | 2.4099 | 5.0 | 5 | 2.7452 | 0.0756 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1 - Datasets 2.3.2 - Tokenizers 0.12.1
fathyshalab/all-roberta-large-v1-banking-14-16-5
fathyshalab
2022-11-30T15:17:52Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T20:48:52Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-banking-14-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-banking-14-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.7470 - Accuracy: 0.0756 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.8182 | 1.0 | 1 | 2.7709 | 0.0356 | | 2.6751 | 2.0 | 2 | 2.7579 | 0.0578 | | 2.5239 | 3.0 | 3 | 2.7509 | 0.0622 | | 2.4346 | 4.0 | 4 | 2.7470 | 0.0756 | | 2.4099 | 5.0 | 5 | 2.7452 | 0.0756 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1 - Datasets 2.3.2 - Tokenizers 0.12.1
fathyshalab/all-roberta-large-v1-banking-11-16-5
fathyshalab
2022-11-30T15:07:43Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T19:38:45Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-banking-11-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-banking-11-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.7470 - Accuracy: 0.0756 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.8182 | 1.0 | 1 | 2.7709 | 0.0356 | | 2.6751 | 2.0 | 2 | 2.7579 | 0.0578 | | 2.5239 | 3.0 | 3 | 2.7509 | 0.0622 | | 2.4346 | 4.0 | 4 | 2.7470 | 0.0756 | | 2.4099 | 5.0 | 5 | 2.7452 | 0.0756 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1 - Datasets 2.3.2 - Tokenizers 0.12.1
gd1m3y/sentiment_bert
gd1m3y
2022-11-30T15:04:50Z
159
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:financial_phrasebank", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T14:20:13Z
--- tags: - generated_from_trainer datasets: - financial_phrasebank metrics: - accuracy model-index: - name: sentiment_bert results: - task: name: Text Classification type: text-classification dataset: name: financial_phrasebank type: financial_phrasebank config: sentences_66agree split: train args: sentences_66agree metrics: - name: Accuracy type: accuracy value: 0.9360189573459715 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment_bert This model is a fine-tuned version of [SALT-NLP/FLANG-BERT](https://huggingface.co/SALT-NLP/FLANG-BERT) on the financial_phrasebank dataset. It achieves the following results on the evaluation set: - Loss: 0.3754 - Accuracy: 0.9360 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
juancopi81/sd-class-butterflies-32
juancopi81
2022-11-30T14:48:29Z
32
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-30T14:47:59Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(juancopi81/sd-class-butterflies-32) image = pipeline().images[0] image ```
AhmedSSoliman/MarianCG-CoNaLa
AhmedSSoliman
2022-11-30T14:22:17Z
129
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- widget: - text: "create array containing the maximum value of respective elements of array `[2, 3, 4]` and array `[1, 5, 2]" - text: "check if all elements in list `mylist` are identical" - text: "enable debug mode on flask application `app`" - text: "getting the length of `my_tuple`" - text: 'find all files in directory "/mydir" with extension ".txt"' --- ``` ``` [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/mariancg-a-code-generation-transformer-model/code-generation-on-conala)](https://paperswithcode.com/sota/code-generation-on-conala?p=mariancg-a-code-generation-transformer-model) ``` ``` # MarianCG: a code generation transformer model inspired by machine translation This model is to improve the solving of the code generation problem and implement a transformer model that can work with high accurate results. We implemented MarianCG transformer model which is a code generation model that can be able to generate code from natural language. This work declares the impact of using Marian machine translation model for solving the problem of code generation. In our implementation, we prove that a machine translation model can be operated and working as a code generation model. Finally, we set the new contributors and state-of-the-art on CoNaLa reaching a BLEU score of 30.92 and Exact Match Accuracy of 6.2 in the code generation problem with CoNaLa dataset. MarianCG model and its implemetation with the code of training and the generated output is available at this repository: https://github.com/AhmedSSoliman/MarianCG-NL-to-Code CoNaLa Dataset for Code Generation is available at https://huggingface.co/datasets/AhmedSSoliman/CoNaLa This is the model is avialable on the huggingface hub https://huggingface.co/AhmedSSoliman/MarianCG-CoNaLa ```python # Model and Tokenizer from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # model_name = "AhmedSSoliman/MarianCG-NL-to-Code" model = AutoModelForSeq2SeqLM.from_pretrained("AhmedSSoliman/MarianCG-CoNaLa") tokenizer = AutoTokenizer.from_pretrained("AhmedSSoliman/MarianCG-CoNaLa") # Input (Natural Language) and Output (Python Code) NL_input = "create array containing the maximum value of respective elements of array `[2, 3, 4]` and array `[1, 5, 2]" output = model.generate(**tokenizer(NL_input, padding="max_length", truncation=True, max_length=512, return_tensors="pt")) output_code = tokenizer.decode(output[0], skip_special_tokens=True) ``` This model is available in spaces using gradio at: https://huggingface.co/spaces/AhmedSSoliman/MarianCG-CoNaLa --- Tasks: - Translation - Code Generation - Text2Text Generation - Text Generation --- # Citation We now have a [paper](https://doi.org/10.1186/s44147-022-00159-4) for this work and you can cite: ``` @article{soliman2022mariancg, title={MarianCG: a code generation transformer model inspired by machine translation}, author={Soliman, Ahmed S and Hadhoud, Mayada M and Shaheen, Samir I}, journal={Journal of Engineering and Applied Science}, volume={69}, number={1}, pages={1--23}, year={2022}, publisher={SpringerOpen} url={https://doi.org/10.1186/s44147-022-00159-4} } ```
yorko/sd-class-butterflies-32
yorko
2022-11-30T13:41:32Z
35
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-30T13:30:35Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained("yorko/sd-class-butterflies-32") image = pipeline().images[0] image ```
nixmaverick1997/app-setfit-classifier
nixmaverick1997
2022-11-30T13:32:26Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-classifier", "transformers", "sentiment-classifier", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-10-31T16:11:57Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-classifier - transformers - sentiment-classifier --- # SetFit Sentiment Classifier This is a variant of the [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> Uses Siamese and triplet network structures to generate semantically meaningful sentence embeddings ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install setfit ``` Then you can use the model like this: ```python from setfit import SetFitModel sentences = ["This is an example sentence", "Each sentence is converted"] model = SetFitModel.from_pretrained("nixmaverick1997/app-setfit-classifier") embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained("nixmaverick1997/app-setfit-classifier") model = AutoModel.from_pretrained("nixmaverick1997/app-setfit-classifier") # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> Loss class = CosineSimilarityLoss ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 640 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 640, "warmup_steps": 64, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Watwat100/256data
Watwat100
2022-11-30T13:00:52Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-30T13:00:38Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1576 with parameters: ``` {'batch_size': 13, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 4728, "warmup_steps": 473, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
MGanesh29/distilbert-base-uncased-finetuned-cola
MGanesh29
2022-11-30T12:47:22Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T10:50:17Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1195 - Matthews Correlation: 0.6749 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | No log | 1.0 | 8 | 1.6008 | 0.5863 | | No log | 2.0 | 16 | 1.5039 | 0.4583 | | No log | 3.0 | 24 | 1.3972 | 0.6021 | | No log | 4.0 | 32 | 1.2925 | 0.6038 | | No log | 5.0 | 40 | 1.2222 | 0.6333 | | No log | 6.0 | 48 | 1.1626 | 0.6333 | | No log | 7.0 | 56 | 1.1195 | 0.6749 | | No log | 8.0 | 64 | 1.1048 | 0.6749 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
ririying/mt5-small-finetuned-mt5-class1
ririying
2022-11-30T11:35:36Z
61
0
transformers
[ "transformers", "tf", "mt5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-30T09:29:19Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: ririying/mt5-small-finetuned-mt5-class1 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ririying/mt5-small-finetuned-mt5-class1 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.0908 - Validation Loss: 1.7689 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 71320, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.8999 | 2.2395 | 0 | | 2.6457 | 1.9951 | 1 | | 2.3865 | 1.8784 | 2 | | 2.2622 | 1.8179 | 3 | | 2.1877 | 1.7959 | 4 | | 2.1395 | 1.7820 | 5 | | 2.1085 | 1.7720 | 6 | | 2.0908 | 1.7689 | 7 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.7.1 - Tokenizers 0.13.2
aareblau/diffusers-tutorial-butterflies-64
aareblau
2022-11-30T11:32:12Z
36
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-30T11:31:21Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(aareblau/diffusers-tutorial-butterflies-64) image = pipeline().images[0] image ```
roscazo/DisTEMIST_fine_tuned_sentence
roscazo
2022-11-30T11:30:15Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-23T09:51:37Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: DisTEMIST_fine_tuned_sentence results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DisTEMIST_fine_tuned_sentence This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-es) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2164 - Precision: 0.6069 - Recall: 0.6401 - F1: 0.6231 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=2.6e-09 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 73 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:| | 0.1166 | 1.0 | 1099 | 0.1152 | 0.5214 | 0.6433 | 0.5760 | | 0.0718 | 2.0 | 2198 | 0.1096 | 0.6015 | 0.6297 | 0.6153 | | 0.0438 | 3.0 | 3297 | 0.1517 | 0.6573 | 0.5895 | 0.6215 | | 0.0293 | 4.0 | 4396 | 0.1496 | 0.6212 | 0.6198 | 0.6205 | | 0.0179 | 5.0 | 5495 | 0.1665 | 0.5670 | 0.6505 | 0.6059 | | 0.0119 | 6.0 | 6594 | 0.1602 | 0.6035 | 0.6379 | 0.6202 | | 0.0078 | 7.0 | 7693 | 0.1844 | 0.6008 | 0.6347 | 0.6173 | | 0.0041 | 8.0 | 8792 | 0.2019 | 0.6006 | 0.6288 | 0.6144 | | 0.0026 | 9.0 | 9891 | 0.2075 | 0.6015 | 0.6270 | 0.6140 | | 0.0014 | 10.0 | 10990 | 0.2164 | 0.6069 | 0.6401 | 0.6231 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
fofoforever/distilbert-base-uncased-finetuned-imdb
fofoforever
2022-11-30T11:27:13Z
162
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-30T10:38:47Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4724 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7096 | 1.0 | 157 | 2.4928 | | 2.5783 | 2.0 | 314 | 2.4239 | | 2.528 | 3.0 | 471 | 2.4358 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
projecte-aina/roberta-base-ca-v2-cased-pos
projecte-aina
2022-11-30T11:06:57Z
108
1
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "catalan", "part of speech tagging", "pos", "CaText", "Catalan Textual Corpus", "ca", "dataset:universal_dependencies", "arxiv:1907.11692", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-30T07:56:13Z
--- language: - ca license: apache-2.0 tags: - "catalan" - "part of speech tagging" - "pos" - "CaText" - "Catalan Textual Corpus" datasets: - "universal_dependencies" metrics: - f1 inference: parameters: aggregation_strategy: "first" model-index: - name: roberta-base-ca-v2-cased-pos results: - task: type: token-classification dataset: type: universal_dependencies name: Ancora-ca-POS metrics: - name: F1 type: f1 value: 0.9896 widget: - text: "Em dic Lluïsa i visc a Santa Maria del Camí." - text: "L'Aina, la Berta i la Norma són molt amigues." - text: "El Martí llegeix el Cavall Fort." --- # Catalan BERTa-v2 (roberta-base-ca-v2) finetuned for Part-of-speech-tagging (POS) ## Table of Contents <details> <summary>Click to expand</summary> - [Model description](#model-description) - [Intended uses and limitations](#intended-use) - [How to use](#how-to-use) - [Limitations and bias](#limitations-and-bias) - [Training](#training) - [Training data](#training-data) - [Training procedure](#training-procedure) - [Evaluation](#evaluation) - [Variable and metrics](#variable-and-metrics) - [Evaluation results](#evaluation-results) - [Additional information](#additional-information) - [Author](#author) - [Contact information](#contact-information) - [Copyright](#copyright) - [Licensing information](#licensing-information) - [Funding](#funding) - [Citing information](#citing-information) - [Disclaimer](#disclaimer) </details> ## Model description The **roberta-base-ca-v2-cased-pos** is a Part-of-speech-tagging (POS) model for the Catalan language fine-tuned from the [roberta-base-ca-v2](https://huggingface.co/projecte-aina/roberta-base-ca-v2) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the roberta-base-ca-v2 model card for more details). ## Intended uses and limitations **roberta-base-ca-v2-cased-pos** model can be used to Part-of-speech-tagging (POS) a text. The model is limited by its training dataset and may not generalize well for all use cases. ## How to use Here is how to use this model: ```python from transformers import pipeline from pprint import pprint nlp = pipeline("token-classification", model="projecte-aina/roberta-base-ca-v2-cased-pos") example = "Em dic Lluïsa i visc a Santa Maria del Camí." pos_results = nlp(example) pprint(pos_results) ``` ## Limitations and bias At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated. ## Training ### Training data We used the POS dataset in Catalan from the [Universal Dependencies Treebank](https://huggingface.co/datasets/universal_dependencies) we refer to _Ancora-ca-pos_ for training and evaluation. ### Training procedure The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set. ## Evaluation ### Variable and metrics This model was finetuned maximizing F1 score. ## Evaluation results We evaluated the _roberta-base-ca-v2-cased-pos_ on the Ancora-ca-ner test set against standard multilingual and monolingual baselines: | Model | Ancora-ca-pos (F1) | | ------------|:-------------| | roberta-base-ca-v2-cased-pos | **98.96** | | roberta-base-ca-cased-pos | **98.96** | | mBERT | 98.83 | | XLM-RoBERTa | 98.89 | For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club). ## Additional information ### Author Text Mining Unit (TeMU) at the Barcelona Supercomputing Center ([email protected]) ### Contact information For further information, send an email to [email protected] ### Copyright Copyright (c) 2022 Text Mining Unit at Barcelona Supercomputing Center ### Licensing information [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ### Funding This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina). ### Citation information If you use any of these resources (datasets or models) in your work, please cite our latest paper: ```bibtex @inproceedings{armengol-estape-etal-2021-multilingual, title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan", author = "Armengol-Estap{\'e}, Jordi and Carrino, Casimiro Pio and Rodriguez-Penagos, Carlos and de Gibert Bonet, Ona and Armentano-Oller, Carme and Gonzalez-Agirre, Aitor and Melero, Maite and Villegas, Marta", booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-acl.437", doi = "10.18653/v1/2021.findings-acl.437", pages = "4933--4946", } ``` ### Disclaimer <details> <summary>Click to expand</summary> The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions. When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence. In no event shall the owner and creator of the models (BSC – Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models.
kejian/immaculate-rwr
kejian
2022-11-30T11:00:02Z
103
0
transformers
[ "transformers", "pytorch", "gpt2", "generated_from_trainer", "en", "dataset:kejian/codeparrot-train-more-filter-3.3b-cleaned", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2022-11-29T15:11:18Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - kejian/codeparrot-train-more-filter-3.3b-cleaned model-index: - name: immaculate-rwr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # immaculate-rwr This model was trained from scratch on the kejian/codeparrot-train-more-filter-3.3b-cleaned dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 50354 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.23.0 - Pytorch 1.13.0+cu116 - Datasets 2.0.0 - Tokenizers 0.12.1 # Full config {'dataset': {'datasets': ['kejian/codeparrot-train-more-filter-3.3b-cleaned'], 'is_split_by_sentences': True}, 'generation': {'batch_size': 128, 'metrics_configs': [{}, {'n': 1}, {}], 'scenario_configs': [{'display_as_html': True, 'generate_kwargs': {'do_sample': True, 'eos_token_id': 0, 'max_length': 640, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 512}, {'display_as_html': True, 'generate_kwargs': {'do_sample': True, 'eos_token_id': 0, 'max_length': 272, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'functions', 'num_samples': 512, 'prompts_path': 'resources/functions_csnet.jsonl', 'use_prompt_for_scoring': True}], 'scorer_config': {}}, 'kl_gpt3_callback': {'gpt3_kwargs': {'model_name': 'code-cushman-001'}, 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'model_kwargs': {'value_head_config': {'is_detached': False}}, 'path_or_name': 'codeparrot/codeparrot-small'}, 'objective': {'alpha': 1, 'beta': 10, 'name': 'AWR'}, 'tokenizer': {'path_or_name': 'codeparrot/codeparrot-small'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'immaculate-rwr', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.001, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000.0, 'output_dir': 'training_output', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25177, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/kejian/uncategorized/runs/1scuo839