modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-16 12:29:00
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
523 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-16 12:28:25
card
stringlengths
11
1.01M
sanjayadhikesaven/Llama-2-7b-hf3bit
sanjayadhikesaven
2024-02-21T20:34:59Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "3-bit", "gptq", "region:us" ]
text-generation
2024-02-21T20:32:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Technoculture/BioMistral-Hermes-Dare
Technoculture
2024-02-21T20:22:28Z
49
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "BioMistral/BioMistral-7B-DARE", "NousResearch/Nous-Hermes-2-Mistral-7B-DPO", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-21T20:17:41Z
--- license: apache-2.0 tags: - merge - mergekit - BioMistral/BioMistral-7B-DARE - NousResearch/Nous-Hermes-2-Mistral-7B-DPO --- # BioMistral-Hermes-Dare BioMistral-Hermes-Dare is a merge of the following models: * [BioMistral/BioMistral-7B-DARE](https://huggingface.co/BioMistral/BioMistral-7B-DARE) * [NousResearch/Nous-Hermes-2-Mistral-7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mistral-7B-DPO) ## Evaluations | Benchmark | BioMistral-Hermes-Dare | Orca-2-7b | llama-2-7b | meditron-7b | meditron-70b | | --- | --- | --- | --- | --- | --- | | MedMCQA | | | | | | | ClosedPubMedQA | | | | | | | PubMedQA | | | | | | | MedQA | | | | | | | MedQA4 | | | | | | | MedicationQA | | | | | | | MMLU Medical | | | | | | | MMLU | | | | | | | TruthfulQA | | | | | | | GSM8K | | | | | | | ARC | | | | | | | HellaSwag | | | | | | | Winogrande | | | | | | More details on the Open LLM Leaderboard evaluation results can be found here. ## 🧩 Configuration ```yaml models: - model: BioMistral/BioMistral-7B-DARE parameters: weight: 1.0 - model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO parameters: weight: 0.6 merge_method: linear dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Technoculture/BioMistral-Hermes-Dare" messages = [{"role": "user", "content": "I am feeling sleepy these days"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
megaaziib/Miacaroni-7B-Indonesia
megaaziib
2024-02-21T20:20:18Z
10
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "SanjiWatsuki/Loyal-Macaroni-Maid-7B", "indischepartij/OpenMia-Indo-Mistral-7b-v4", "base_model:SanjiWatsuki/Loyal-Macaroni-Maid-7B", "base_model:merge:SanjiWatsuki/Loyal-Macaroni-Maid-7B", "base_model:indischepartij/OpenMia-Indo-Mistral-7b-v4", "base_model:merge:indischepartij/OpenMia-Indo-Mistral-7b-v4", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-21T20:14:17Z
--- tags: - merge - mergekit - lazymergekit - SanjiWatsuki/Loyal-Macaroni-Maid-7B - indischepartij/OpenMia-Indo-Mistral-7b-v4 base_model: - SanjiWatsuki/Loyal-Macaroni-Maid-7B - indischepartij/OpenMia-Indo-Mistral-7b-v4 --- # Miacaroni-7B-Indonesia Miacaroni-7B-Indonesia is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [SanjiWatsuki/Loyal-Macaroni-Maid-7B](https://huggingface.co/SanjiWatsuki/Loyal-Macaroni-Maid-7B) * [indischepartij/OpenMia-Indo-Mistral-7b-v4](https://huggingface.co/indischepartij/OpenMia-Indo-Mistral-7b-v4) ## 🧩 Configuration ```yaml slices: - sources: - model: SanjiWatsuki/Loyal-Macaroni-Maid-7B layer_range: [0, 32] - model: indischepartij/OpenMia-Indo-Mistral-7b-v4 layer_range: [0, 32] merge_method: slerp base_model: SanjiWatsuki/Loyal-Macaroni-Maid-7B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "megaaziib/Miacaroni-7B-Indonesia" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
OscarGalavizC/Reinforce-Cartpole-v1
OscarGalavizC
2024-02-21T20:13:56Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-02-21T20:13:46Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Cartpole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
eren23/gemma-2b-tr-instruct-test-lora
eren23
2024-02-21T20:11:44Z
2
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:google/gemma-2b-it", "base_model:adapter:google/gemma-2b-it", "region:us" ]
null
2024-02-21T20:11:39Z
--- library_name: peft base_model: google/gemma-2b-it --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.8.2
Technoculture/BioMistral-Hermes-Slerp
Technoculture
2024-02-21T20:10:14Z
56
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "BioMistral/BioMistral-7B-DARE", "NousResearch/Nous-Hermes-2-Mistral-7B-DPO", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-21T20:05:32Z
--- license: apache-2.0 tags: - merge - mergekit - BioMistral/BioMistral-7B-DARE - NousResearch/Nous-Hermes-2-Mistral-7B-DPO --- # BioMistral-Hermes-Slerp BioMistral-Hermes-Slerp is a merge of the following models: * [BioMistral/BioMistral-7B-DARE](https://huggingface.co/BioMistral/BioMistral-7B-DARE) * [NousResearch/Nous-Hermes-2-Mistral-7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mistral-7B-DPO) ## Evaluations | Benchmark | BioMistral-Hermes-Slerp | Orca-2-7b | llama-2-7b | meditron-7b | meditron-70b | | --- | --- | --- | --- | --- | --- | | MedMCQA | | | | | | | ClosedPubMedQA | | | | | | | PubMedQA | | | | | | | MedQA | | | | | | | MedQA4 | | | | | | | MedicationQA | | | | | | | MMLU Medical | | | | | | | MMLU | | | | | | | TruthfulQA | | | | | | | GSM8K | | | | | | | ARC | | | | | | | HellaSwag | | | | | | | Winogrande | | | | | | More details on the Open LLM Leaderboard evaluation results can be found here. ## 🧩 Configuration ```yaml slices: - sources: - model: BioMistral/BioMistral-7B-DARE layer_range: [0, 32] - model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO layer_range: [0, 32] merge_method: slerp base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 # fallback for rest of tensors dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Technoculture/BioMistral-Hermes-Slerp" messages = [{"role": "user", "content": "I am feeling sleepy these days"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
smcleod/Smaug-Mixtral-v0.1-GGUF
smcleod
2024-02-21T20:08:00Z
13
3
null
[ "gguf", "smaug", "mixtral", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
2024-02-21T02:34:26Z
--- license: other license_name: other license_link: LICENSE tags: - smaug - mixtral --- GGUF Quantised variants of https://huggingface.co/abacusai/Smaug-Mixtral-v0.1
Weni/heading_investigation_e1.0
Weni
2024-02-21T19:57:44Z
1
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "region:us" ]
null
2024-02-21T19:36:28Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer datasets: - generator base_model: mistralai/Mistral-7B-v0.1 model-index: - name: heading_investigation_e1.0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # heading_investigation_e1.0 This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 0.9729 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 2 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.7.1 - Transformers 4.39.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.16.1 - Tokenizers 0.15.1
A-Issa-1999/test_1
A-Issa-1999
2024-02-21T19:48:01Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-21T19:47:53Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
nes07/mistral-7b-metlife-ia-congreso-balanced-data
nes07
2024-02-21T19:47:37Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-21T18:10:43Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lex-hue/LexGPT-V2.5
lex-hue
2024-02-21T19:39:14Z
4
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-05T20:15:32Z
--- license: mit --- # Model Card ### Model Name: LexGPT-V2.5 #### Overview: Purpose: This general-purpose language model serves as a powerful tool for personal exploration and learning in the domain of AI development. Its rapid evolution suggests the potential to surpass the performance of some established state-of-the-art models. Status: The model remains under active development, with continuous improvements leading to more robust capabilities. The next major iteration is undergoing rigorous testing and is expected to release this weekend (Saturday or Sunday). Skills: LexGPT-2.5 demonstrates impressive reasoning abilities, excelling in STEM (Science, Technology, Engineering, and Math) related fields. Surprisingly, it also possesses a capacity for imaginative engagement, making it surprisingly adept at roleplaying scenarios. Evaluation: MT-BENCH scores indicate LexGPT-2.5's rapid progress. While it has yet to fully surpass GPT-3.5, its current performance is remarkably close and demonstrates significant potential for further improvement. MT-BENCH SCORE: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64a87f9532c9473fed9caab0/9RMij-cb8OoVYRUUrsHge.png) ###### First turn | model | turn | score | |---|---|---| | gpt-4 | 1 | 8.956250 | | claude-v1 | 1 | 8.150000 | | LexGPT-V2.5 | 1 | 8.075949 | | gpt-3.5-turbo | 1 | 8.075000 | | vicuna-13b-v1.3 | 1 | 6.812500 | ###### Second turn | model | turn | score | |---|---|---| | gpt-4 | 2 | 9.0250 | | gpt-3.5-turbo | 2 | 7.8125 | | LexGPT-V2.5 | 2 | 7.7500 | | claude-v1 | 2 | 7.6500 | | vicuna-13b-v1.3 | 2 | 5.9625 | ###### Average | model | score | |---|---| | gpt-4 | 8.990625 | | gpt-3.5-turbo | 7.943750 | | LexGPT-V2.5 | 7.920530 | | claude-v1 | 7.900000 | | vicuna-13b-v1.3 | 6.387500 | ### Intended Use: Primary Use: Designed for general language generation tasks and to facilitate the creator's personal explorations in AI development. It offers a valuable sandbox for experimentation and learning. Potential Additional Uses: The model's STEM proficiency and roleplaying ability suggest it might find applications in educational tools or creative writing assistants. Potential Risks: As with many powerful language models, there's a potential for the generation of harmful, biased, or offensive content. Careful monitoring and the implementation of appropriate safeguards are essential. ### Ethical Considerations The model is largely uncensored, emphasizing user responsibility to avoid using it for illegal or intentionally harmful purposes. Ongoing evaluation during development is crucial for identifying and addressing potential biases in the model's generated outputs. Transparency and regular updates to this model card will foster ethical awareness in its use. ### Additional Notes LexGPT-2.5 showcases impressive progress, rapidly approaching the capabilities of GPT-3.5 and hinting at significant untapped potential. The creator welcomes questions, feedback, and collaboration to continue developing this model responsibly.
juliowaissman/Reinforce-CartPole-v1
juliowaissman
2024-02-21T19:36:32Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-02-21T19:36:21Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Danjie/SQLMaster_13b
Danjie
2024-02-21T19:36:00Z
0
0
null
[ "safetensors", "license:mit", "region:us" ]
null
2024-02-10T22:48:55Z
--- license: mit --- # SQLMaster A minimum of 10 GB VRAM is required. ## Colab Example https://colab.research.google.com/drive/1Nvwie-klMNPPWI4o7Nae4l5spxEX1PaD?usp=sharing ## Install Prerequisite ```bash !pip install peft !pip install transformers !pip install bitsandbytes !pip install accelerate ``` ## Login Using Huggingface Token ```bash # You need a huggingface token that can access llama2 from huggingface_hub import notebook_login notebook_login() ``` ## Download Model ```python import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig device = torch.device("cuda" if torch.cuda.is_available() else "cpu") bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) peft_model_id = "Danjie/SQLMaster_13b" config = PeftConfig.from_pretrained(peft_model_id) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, device_map='auto', quantization_config=bnb_config) model.resize_token_embeddings(len(tokenizer) + 1) # Load the Lora model model = PeftModel.from_pretrained(model, peft_model_id) ``` ## Inference ```python def create_sql_query(question: str, context: str) -> str: input = "Question: " + question + "\nContext:" + context + "\nAnswer" # Encode and move tensor into cuda if applicable. encoded_input = tokenizer(input, return_tensors='pt') encoded_input = {k: v.to(device) for k, v in encoded_input.items()} output = model.generate(**encoded_input, max_new_tokens=256) response = tokenizer.decode(output[0], skip_special_tokens=True) response = response[len(input):] return response ``` ## Example ```python create_sql_query("What is the highest age of users with name Danjie", "CREATE TABLE user (age INTEGER, name STRING)") ```
Fhermin/ReinforcePixelCopter
Fhermin
2024-02-21T19:25:44Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-02-21T19:24:56Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: ReinforcePixelCopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 36.80 +/- 27.97 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
furrutiav/bert_qa_extractor_cockatiel_2022_ulra_by_kmeans_Q_nllf_sub_best_ef_signal_it_136
furrutiav
2024-02-21T19:25:18Z
5
0
transformers
[ "transformers", "safetensors", "bert", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
2024-02-21T19:24:43Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
baseten/gemma-7b-it-trtllm-3k-1k-64bs
baseten
2024-02-21T19:25:07Z
1
0
transformers
[ "transformers", "endpoints_compatible", "region:us" ]
null
2024-02-21T18:53:04Z
trtllm-build --checkpoint_dir ./trt-ckpt/ --gemm_plugin bfloat16 --gpt_attention_plugin bfloat16 --max_batch_size 64 --max_input_len 3000 --max_output_len 1000 --context_fmha enable --output_dir ./engines quantized to int8 as per the `config.json`
Jaimefebe/llama-2-7b-euskara-v1
Jaimefebe
2024-02-21T19:15:22Z
1
2
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:NousResearch/Llama-2-7b-chat-hf", "base_model:adapter:NousResearch/Llama-2-7b-chat-hf", "region:us" ]
null
2024-02-21T19:15:00Z
--- library_name: peft base_model: NousResearch/Llama-2-7b-chat-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.2
predibase/dbpedia
predibase
2024-02-21T19:14:00Z
1,720
8
peft
[ "peft", "safetensors", "text-generation", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "region:us" ]
text-generation
2024-02-19T23:16:23Z
--- library_name: peft base_model: mistralai/Mistral-7B-v0.1 pipeline_tag: text-generation --- Description: Topic extraction from a news article and title\ Original dataset: https://huggingface.co/datasets/fancyzhx/dbpedia_14 \ ---\ Try querying this adapter for free in Lora Land at https://predibase.com/lora-land! \ The adapter_category is Topic Identification and the name is News Topic Identification (dbpedia)\ ---\ Sample input: You are given the title and the body of an article below. Please determine the type of the article.\n### Title: Great White Whale\n\n### Body: Great White Whale is the debut album by the Canadian rock band Secret and Whisper. The album was in the works for about a year and was released on February 12 2008. A music video was shot in Pittsburgh for the album's first single XOXOXO. The album reached number 17 on iTunes's top 100 albums in its first week on sale.\n\n### Article Type: \ ---\ Sample output: 11\ ---\ Try using this adapter yourself! ``` from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "mistralai/Mistral-7B-v0.1" peft_model_id = "predibase/dbpedia" model = AutoModelForCausalLM.from_pretrained(model_id) model.load_adapter(peft_model_id) ```
predibase/hellaswag
predibase
2024-02-21T19:13:58Z
47
3
peft
[ "peft", "safetensors", "text-generation", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "region:us" ]
text-generation
2024-02-19T19:11:15Z
--- library_name: peft base_model: mistralai/Mistral-7B-v0.1 pipeline_tag: text-generation --- Description: Multiple-choice sentence completion\ Original dataset: https://huggingface.co/datasets/Rowan/hellaswag \ ---\ Try querying this adapter for free in Lora Land at https://predibase.com/lora-land! \ The adapter_category is Other and the name is Multiple Choice Sentence Completion (hellaswag)\ ---\ Sample input: You are provided with an incomplete passage below as well as 4 endings in quotes and separated by commas, with only one of them being the correct ending. Treat the endings as being labelled 0, 1, 2, 3 in order. Please respond with the number corresponding to the correct ending for the passage.\n\n### Passage: The mother instructs them on how to brush their teeth while laughing. The boy helps his younger sister brush his teeth. she\n\n### Endings: ['shows how to hit the mom and then kiss his dad as well.' 'brushes past the camera, looking better soon after.' 'glows from the center of the camera as a reaction.' 'gets them some water to gargle in their mouths.']\n\n### Correct Ending Number: \ ---\ Sample output: 3.0\ ---\ Try using this adapter yourself! ``` from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "mistralai/Mistral-7B-v0.1" peft_model_id = "predibase/hellaswag" model = AutoModelForCausalLM.from_pretrained(model_id) model.load_adapter(peft_model_id) ```
predibase/bc5cdr
predibase
2024-02-21T19:13:58Z
105
1
peft
[ "peft", "safetensors", "text-generation", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "region:us" ]
text-generation
2024-02-20T02:59:29Z
--- library_name: peft base_model: mistralai/Mistral-7B-v0.1 pipeline_tag: text-generation --- Description: 1500 PubMed articles with 4409 annotated chemicals, 5818 diseases and 3116 chemical-disease interactions.\ Original dataset: https://huggingface.co/datasets/tner/bc5cdr \ ---\ Try querying this adapter for free in Lora Land at https://predibase.com/lora-land! \ The adapter_category is Named Entity Recognition and the name is Chemical and Disease Recognition (bc5cdr)\ ---\ Sample input: Your task is a Named Entity Recognition (NER) task. Predict the category of each entity, then place the entity into the list associated with the category in an output JSON payload. Below is an example: Input: "Naloxone reverses the antihypertensive effect of clonidine ." Output: {'B-Chemical': ['Naloxone', 'clonidine'], 'B-Disease': [], 'I-Disease': [], 'I-Chemical': []} Now, complete the task. Input: "A standardized loading dose of VPA was administered , and venous blood was sampled at 0 , 1 , 2 , 3 , and 4 hours ." Output: \ ---\ Sample output: {'B-Chemical': ['VPA'], 'B-Disease': [], 'I-Disease': [], 'I-Chemical': []}\ ---\ Try using this adapter yourself! ``` from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "mistralai/Mistral-7B-v0.1" peft_model_id = "predibase/bc5cdr" model = AutoModelForCausalLM.from_pretrained(model_id) model.load_adapter(peft_model_id) ```
predibase/e2e_nlg
predibase
2024-02-21T19:13:56Z
110
1
peft
[ "peft", "safetensors", "text-generation", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "region:us" ]
text-generation
2024-02-19T19:06:55Z
--- library_name: peft base_model: mistralai/Mistral-7B-v0.1 pipeline_tag: text-generation --- Description: Translation from meaning representation to natural language\ Original dataset: https://huggingface.co/datasets/e2e_nlg \ ---\ Try querying this adapter for free in Lora Land at https://predibase.com/lora-land! \ The adapter_category is Structured-to-Text and the name is Structured-to-Text (e2e_nlg)\ ---\ Sample input: You are given a meaning representation below. Please translate it into plain English. Here is an example:\n\n### Meaning Representation: name[Blue Spice], eatType[coffee shop], area[city centre]\n\n### Plain English: A coffee shop in the city centre area called Blue Spice.\n\nNow please translate the following meaning representation:\n\n### Meaning Representation: name[Blue Spice], eatType[pub], food[Chinese], area[city centre], familyFriendly[yes], near[Rainbow Vegetarian Café]\n\n### Plain English:\ ---\ Sample output: Blue Spice is a pub that serves Chinese food. It is located in the city centre near Rainbow Vegetarian Café.\ ---\ Try using this adapter yourself! ``` from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "mistralai/Mistral-7B-v0.1" peft_model_id = "predibase/e2e_nlg" model = AutoModelForCausalLM.from_pretrained(model_id) model.load_adapter(peft_model_id) ```
predibase/drop
predibase
2024-02-21T19:13:54Z
30
4
peft
[ "peft", "safetensors", "text-generation", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "region:us" ]
text-generation
2024-02-19T23:22:39Z
--- library_name: peft base_model: mistralai/Mistral-7B-v0.1 pipeline_tag: text-generation --- Description: Question answering given a passage\ Original dataset: https://huggingface.co/datasets/drop \ ---\ Try querying this adapter for free in Lora Land at https://predibase.com/lora-land! \ The adapter_category is Other and the name is Question Answering (drop)\ ---\ Sample input: Given a passage, you need to accurately identify and extract relevant spans of text that answer specific questions. Provide concise and coherent responses based on the information present in the passage.\n\n### Passage: Coming off their home win over the Browns, the Ravens flew to Heinz Field for their first road game of the year, as they played a Week 4 MNF duel with the throwback-clad Pittsburgh Steelers. In the first quarter, Baltimore trailed early as Steelers kicker Jeff Reed got a 49-yard field goal. The Ravens responded with kicker Matt Stover getting a 33-yard field goal. Baltimore gained the lead in the second quarter as Stover kicked a 20-yard field goal, while rookie quarterback Joe Flacco completed his first career touchdown pass as he hooked up with TE Daniel Wilcox from 4 yards out. In the third quarter, Pittsburgh took the lead with quarterback Ben Roethlisberger completing a 38-yard TD pass to WR Santonio Holmes, along with LB James Harrison forcing a fumble from Flacco with LB LaMarr Woodley returning the fumble 7 yards for a touchdown. In the fourth quarter, the Steelers increased their lead with Reed getting a 19-yard field goal. Afterwards, the Ravens tied the game with RB Le'Ron McClain getting a 2-yard TD run. However, despite winning the coin toss in overtime, Baltimore was unable to gain ground. In the end, Pittsburgh sealed Baltimore's fate as Reed nailed the game-winning 46-yard field goal.\n### Question: How many more field goals were made in the first half than in the second?\n### Answer:\ ---\ Sample output: 1\ ---\ Try using this adapter yourself! ``` from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "mistralai/Mistral-7B-v0.1" peft_model_id = "predibase/drop" model = AutoModelForCausalLM.from_pretrained(model_id) model.load_adapter(peft_model_id) ```
predibase/wikisql
predibase
2024-02-21T19:13:53Z
31
4
peft
[ "peft", "safetensors", "text-generation", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "region:us" ]
text-generation
2024-02-19T23:24:39Z
--- library_name: peft base_model: mistralai/Mistral-7B-v0.1 pipeline_tag: text-generation --- Description: SQL generation given a table and question\ Original dataset: https://huggingface.co/datasets/wikisql \ ---\ Try querying this adapter for free in Lora Land at https://predibase.com/lora-land! \ The adapter_category is Reasoning and the name is WikiSQL (SQL Generation)\ ---\ Sample input: Considering the provided database schema and associated query, produce SQL code to retrieve the answer to the query.\n### Database Schema: {'header': ['Game', 'Date', 'Opponent', 'Score', 'Decision', 'Location/Attendance', 'Record'], 'types': ['real', 'real', 'text', 'text', 'text', 'text', 'text'], 'rows': [array(['77', '1', 'Pittsburgh Penguins', '1-6', 'Brodeur', 'Mellon Arena - 17,132', '47-26-4'], dtype=object), array(['78', '3', 'Tampa Bay Lightning', '4-5 (OT)', 'Brodeur', 'Prudential Center - 17,625', '48-26-4'], dtype=object), array(['79', '4', 'Buffalo Sabres', '3-2', 'Brodeur', 'HSBC Arena - 18,690', '49-26-4'], dtype=object), array(['80', '7', 'Toronto Maple Leafs', '4-1', 'Brodeur', 'Prudential Center - 15,046', '49-27-4'], dtype=object), array(['81', '9', 'Ottawa Senators', '3-2 (SO)', 'Brodeur', 'Scotiabank Place - 20,151', '50-27-4'], dtype=object), array(['82', '11', 'Carolina Hurricanes', '2-3', 'Brodeur', 'Prudential Center - 17,625', '51-27-4'], dtype=object)]}\n### Query: What is Score, when Game is greater than 78, and when Date is "4"?\n### SQL: \ ---\ Sample output: SELECT Score FROM table WHERE Game > 78 AND Date = 4\ ---\ Try using this adapter yourself! ``` from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "mistralai/Mistral-7B-v0.1" peft_model_id = "predibase/wikisql" model = AutoModelForCausalLM.from_pretrained(model_id) model.load_adapter(peft_model_id) ```
Jingni/my_first_food_model
Jingni
2024-02-21T18:44:51Z
7
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-02-21T16:10:27Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer metrics: - accuracy model-index: - name: my_first_food_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_first_food_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9013 - Accuracy: 0.965 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.584 | 1.0 | 25 | 2.8238 | 0.9475 | | 2.2086 | 2.0 | 50 | 2.0773 | 0.95 | | 1.941 | 3.0 | 75 | 1.9013 | 0.965 | ### Framework versions - Transformers 4.38.0 - Pytorch 2.1.2 - Datasets 2.17.1 - Tokenizers 0.15.2
navneetDS/en_pipeline
navneetDS
2024-02-21T18:39:07Z
0
0
spacy
[ "spacy", "token-classification", "en", "model-index", "region:us" ]
token-classification
2024-02-21T18:39:04Z
--- tags: - spacy - token-classification language: - en model-index: - name: en_pipeline results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 1.0 - name: NER Recall type: recall value: 1.0 - name: NER F Score type: f_score value: 1.0 --- | Feature | Description | | --- | --- | | **Name** | `en_pipeline` | | **Version** | `0.0.0` | | **spaCy** | `>=3.6.1,<3.7.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (1 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `URL` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 100.00 | | `ENTS_P` | 100.00 | | `ENTS_R` | 100.00 | | `TOK2VEC_LOSS` | 0.00 | | `NER_LOSS` | 0.00 |
furrutiav/bert_qa_extractor_cockatiel_2022_ulra_by_question_type_sub_best_ef_signal_it_149
furrutiav
2024-02-21T18:34:56Z
5
0
transformers
[ "transformers", "safetensors", "bert", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
2024-02-21T18:34:24Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
AsphyXIA/baarat-hin-summarization
AsphyXIA
2024-02-21T18:33:23Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-02-21T18:30:12Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl base_model: baarat-summarization --- # Uploaded model - **Developed by:** AsphyXIA - **License:** apache-2.0 - **Finetuned from model :** baarat-summarization This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
almugabo/refprocess-tl-v0.1
almugabo
2024-02-21T18:18:17Z
6
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-21T17:31:40Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hahmadraz/sepformer-libri3mix-48k
hahmadraz
2024-02-21T18:06:23Z
9
1
speechbrain
[ "speechbrain", "Source Separation", "Speech Separation", "Audio Source Separation", "Libri3Mix", "SepFormer", "Transformer", "audio-to-audio", "audio-source-separation", "en", "dataset:Libri3Mix", "arxiv:2010.13154", "arxiv:2106.04624", "license:apache-2.0", "region:us" ]
audio-to-audio
2024-02-11T15:39:31Z
--- language: "en" thumbnail: tags: - Source Separation - Speech Separation - Audio Source Separation - Libri3Mix - SepFormer - Transformer - audio-to-audio - audio-source-separation - speechbrain license: "apache-2.0" datasets: - Libri3Mix metrics: - SI-SNRi - SDRi --- <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe> <br/><br/> # SepFormer trained on Libri3Mix This repository provides all the necessary tools to perform audio source separation with a [SepFormer](https://arxiv.org/abs/2010.13154v2) model, implemented with SpeechBrain, and pretrained on Libri3Mix dataset. For a better experience we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io). The model performance is 19.8 dB SI-SNRi on the test set of Libri3Mix dataset. | Release | Test-Set SI-SNRi | Test-Set SDRi | |:-------------:|:--------------:|:--------------:| | 16-09-22 | 19.0dB | 19.4dB | ## Install SpeechBrain First of all, please install SpeechBrain with the following command: ``` pip install speechbrain ``` Please notice that we encourage you to read our tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). ### Perform source separation on your own audio file ```python from speechbrain.pretrained import SepformerSeparation as separator import torchaudio model = separator.from_hparams(source="speechbrain/sepformer-libri3mix", savedir='pretrained_models/sepformer-libri3mix') est_sources = model.separate_file(path='speechbrain/sepformer-wsj03mix/test_mixture_3spks.wav') torchaudio.save("source1hat.wav", est_sources[:, :, 0].detach().cpu(), 8000) torchaudio.save("source2hat.wav", est_sources[:, :, 1].detach().cpu(), 8000) torchaudio.save("source3hat.wav", est_sources[:, :, 2].detach().cpu(), 8000) ``` The system expects input recordings sampled at 8kHz (single channel). If your signal has a different sample rate, resample it (e.g, using torchaudio or sox) before using the interface. ### Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. ### Training The model was trained with SpeechBrain (fc2eabb7). To train it from scratch follows these steps: 1. Clone SpeechBrain: ```bash git clone https://github.com/speechbrain/speechbrain/ ``` 2. Install it: ``` cd speechbrain pip install -r requirements.txt pip install -e . ``` 3. Run Training: ``` cd recipes/LibriMix/separation python train.py hparams/sepformer.yaml --data_folder=your_data_folder ``` Note: change num_spks to 3 in the yaml file. You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1DN49LtAs6cq1X0jZ8tRMlh2Pj6AecClz). ### Limitations The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets. #### Referencing SpeechBrain ```bibtex @misc{speechbrain, title={{SpeechBrain}: A General-Purpose Speech Toolkit}, author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio}, year={2021}, eprint={2106.04624}, archivePrefix={arXiv}, primaryClass={eess.AS}, note={arXiv:2106.04624} } ``` #### Referencing SepFormer ```bibtex @inproceedings{subakan2021attention, title={Attention is All You Need in Speech Separation}, author={Cem Subakan and Mirco Ravanelli and Samuele Cornell and Mirko Bronzi and Jianyuan Zhong}, year={2021}, booktitle={ICASSP 2021} } @misc{subakan2022sepformer author = {Subakan, Cem and Ravanelli, Mirco and Cornell, Samuele and Grondin, Francois and Bronzi, Mirko}, title = {On Using Transformers for Speech-Separation}, year = {2022}, copyright = {arXiv.org perpetual, non-exclusive license} } ``` # **About SpeechBrain** - Website: https://speechbrain.github.io/ - Code: https://github.com/speechbrain/speechbrain/ - HuggingFace: https://huggingface.co/speechbrain/
analys/distilbert-base-uncased-finetuned-ner
analys
2024-02-21T18:03:14Z
61
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "token-classification", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-02-21T17:56:08Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: analys/distilbert-base-uncased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # analys/distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0335 - Validation Loss: 0.0603 - Train Precision: 0.9219 - Train Recall: 0.9361 - Train F1: 0.9290 - Train Accuracy: 0.9833 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2631, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 0.1940 | 0.0711 | 0.8980 | 0.9167 | 0.9072 | 0.9795 | 0 | | 0.0546 | 0.0613 | 0.9107 | 0.9303 | 0.9204 | 0.9822 | 1 | | 0.0335 | 0.0603 | 0.9219 | 0.9361 | 0.9290 | 0.9833 | 2 | ### Framework versions - Transformers 4.37.2 - TensorFlow 2.15.0 - Datasets 2.17.1 - Tokenizers 0.15.2
machinelearningzuu/phi-2-biotech-qlora-synthetic-poc
machinelearningzuu
2024-02-21T18:01:57Z
5
0
transformers
[ "transformers", "safetensors", "phi", "text-generation", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-21T17:32:00Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
tomaarsen/distilroberta-base-nli-matryoshka-256
tomaarsen
2024-02-21T17:47:31Z
58
3
sentence-transformers
[ "sentence-transformers", "safetensors", "roberta", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-02-21T17:47:11Z
--- library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # tomaarsen/distilroberta-base-nli-matryoshka-256 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 256 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('tomaarsen/distilroberta-base-nli-matryoshka-256') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=tomaarsen/distilroberta-base-nli-matryoshka-256) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 4403 with parameters: ``` {'batch_size': 128} ``` **Loss**: `sentence_transformers.losses.MatryoshkaLoss.MatryoshkaLoss` with parameters: ``` {'loss': 'MultipleNegativesRankingLoss', 'matryoshka_dims': [256, 128, 64, 32, 16], 'matryoshka_weights': [1, 1, 1, 1, 1]} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 440, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 441, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Dense({'in_features': 768, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
AdithyaSK/gemma-Code-Instruct-Finetune-test
AdithyaSK
2024-02-21T17:45:10Z
5
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-21T17:42:29Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
gayanin/bart-with-asr-noise-sub-0.5
gayanin
2024-02-21T17:39:58Z
7
0
transformers
[ "transformers", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "base_model:facebook/bart-base", "base_model:finetune:facebook/bart-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-21T17:33:20Z
--- license: apache-2.0 base_model: facebook/bart-base tags: - generated_from_trainer model-index: - name: bart-with-asr-noise-sub-0.5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-with-asr-noise-sub-0.5 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1120 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.3753 | 0.62 | 500 | 0.2679 | | 0.1725 | 1.24 | 1000 | 0.1595 | | 0.0782 | 1.86 | 1500 | 0.1241 | | 0.0505 | 2.48 | 2000 | 0.1120 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.2+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
raqdo09/singlish-to-english-synthetic
raqdo09
2024-02-21T17:39:34Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "simplification", "generated_from_trainer", "base_model:google-t5/t5-base", "base_model:finetune:google-t5/t5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-21T17:37:01Z
--- license: apache-2.0 base_model: google-t5/t5-base tags: - simplification - generated_from_trainer metrics: - bleu model-index: - name: singlish-to-english-synthetic results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # singlish-to-english-synthetic This model is a fine-tuned version of [google-t5/t5-base](https://huggingface.co/google-t5/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8281 - Bleu: 43.2955 - Gen Len: 14.68 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 57 | 0.8919 | 42.8283 | 14.54 | | No log | 2.0 | 114 | 0.8281 | 43.2955 | 14.68 | ### Framework versions - Transformers 4.38.0 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
Pankracy1918/my_awesome_eli5_mlm_model
Pankracy1918
2024-02-21T17:39:26Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "fill-mask", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2024-02-20T15:30:24Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: my_awesome_eli5_mlm_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_eli5_mlm_model This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0690 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.657 | 1.0 | 1357 | 2.2376 | | 2.0353 | 2.0 | 2714 | 2.1395 | | 2.1131 | 3.0 | 4071 | 2.1349 | | 2.0894 | 4.0 | 5428 | 2.1160 | | 2.0451 | 5.0 | 6785 | 2.1023 | | 2.0114 | 6.0 | 8142 | 2.0706 | | 1.9932 | 7.0 | 9499 | 2.0818 | | 1.9551 | 8.0 | 10856 | 2.0797 | | 1.9218 | 9.0 | 12213 | 2.0679 | | 1.9186 | 10.0 | 13570 | 2.0555 | | 1.8722 | 11.0 | 14927 | 2.0491 | | 1.8438 | 12.0 | 16284 | 2.0430 | | 1.8256 | 13.0 | 17641 | 2.0785 | | 1.816 | 14.0 | 18998 | 2.0475 | | 1.766 | 15.0 | 20355 | 2.0607 | | 1.7689 | 16.0 | 21712 | 2.0758 | | 1.7354 | 17.0 | 23069 | 2.0443 | | 1.7548 | 18.0 | 24426 | 2.0540 | | 1.7188 | 19.0 | 25783 | 2.0538 | | 1.6965 | 20.0 | 27140 | 2.0513 | | 1.7066 | 21.0 | 28497 | 2.0490 | | 1.6711 | 22.0 | 29854 | 2.0513 | | 1.6549 | 23.0 | 31211 | 2.0515 | | 1.6577 | 24.0 | 32568 | 2.0498 | | 1.6214 | 25.0 | 33925 | 2.0438 | | 1.6057 | 26.0 | 35282 | 2.0488 | | 1.6001 | 27.0 | 36639 | 2.0541 | | 1.6148 | 28.0 | 37996 | 2.0475 | | 1.6062 | 29.0 | 39353 | 2.0325 | | 1.5588 | 30.0 | 40710 | 2.0191 | | 1.5607 | 31.0 | 42067 | 2.0388 | | 1.5558 | 32.0 | 43424 | 2.0510 | | 1.5453 | 33.0 | 44781 | 2.0344 | | 1.5322 | 34.0 | 46138 | 2.0475 | | 1.5437 | 35.0 | 47495 | 2.0348 | | 1.5306 | 36.0 | 48852 | 2.0493 | | 1.5184 | 37.0 | 50209 | 2.0489 | | 1.5131 | 38.0 | 51566 | 2.0512 | | 1.4835 | 39.0 | 52923 | 2.0650 | | 1.4758 | 40.0 | 54280 | 2.0277 | | 1.4841 | 41.0 | 55637 | 2.0662 | | 1.4877 | 42.0 | 56994 | 2.0451 | | 1.4691 | 43.0 | 58351 | 2.0401 | | 1.4565 | 44.0 | 59708 | 2.0735 | | 1.4654 | 45.0 | 61065 | 2.0493 | | 1.4432 | 46.0 | 62422 | 2.0325 | | 1.4763 | 47.0 | 63779 | 2.0493 | | 1.4511 | 48.0 | 65136 | 2.0284 | | 1.4633 | 49.0 | 66493 | 2.0282 | | 1.4457 | 50.0 | 67850 | 2.0690 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.2 - Datasets 2.1.0 - Tokenizers 0.15.1
SuYee189/health-qa-gpt2
SuYee189
2024-02-21T17:36:37Z
7
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-21T17:32:45Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
gayanin/bart-with-asr-noise-ins-0.4
gayanin
2024-02-21T17:27:50Z
5
0
transformers
[ "transformers", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "base_model:facebook/bart-base", "base_model:finetune:facebook/bart-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-21T17:03:21Z
--- license: apache-2.0 base_model: facebook/bart-base tags: - generated_from_trainer model-index: - name: bart-with-asr-noise-ins-0.4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-with-asr-noise-ins-0.4 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0541 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.1609 | 0.62 | 500 | 0.0887 | | 0.0935 | 1.24 | 1000 | 0.0645 | | 0.0532 | 1.86 | 1500 | 0.0592 | | 0.0267 | 2.48 | 2000 | 0.0541 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.2+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
gayanin/bart-with-asr-noise-sub-0.4
gayanin
2024-02-21T17:27:41Z
8
0
transformers
[ "transformers", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "base_model:facebook/bart-base", "base_model:finetune:facebook/bart-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-21T17:03:24Z
--- license: apache-2.0 base_model: facebook/bart-base tags: - generated_from_trainer model-index: - name: bart-with-asr-noise-sub-0.4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-with-asr-noise-sub-0.4 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0985 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.3216 | 0.62 | 500 | 0.2307 | | 0.1661 | 1.24 | 1000 | 0.1390 | | 0.0787 | 1.86 | 1500 | 0.1089 | | 0.0304 | 2.48 | 2000 | 0.0985 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.2+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
gayanin/bart-with-asr-noise-del-0.4
gayanin
2024-02-21T17:26:44Z
6
0
transformers
[ "transformers", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "base_model:facebook/bart-base", "base_model:finetune:facebook/bart-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-21T17:03:27Z
--- license: apache-2.0 base_model: facebook/bart-base tags: - generated_from_trainer model-index: - name: bart-with-asr-noise-del-0.4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-with-asr-noise-del-0.4 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0343 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.3196 | 0.62 | 500 | 1.1758 | | 1.1351 | 1.24 | 1000 | 1.0880 | | 0.9108 | 1.86 | 1500 | 1.0304 | | 0.7589 | 2.48 | 2000 | 1.0343 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.2+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
lazarustda/my-4bit-gemma
lazarustda
2024-02-21T17:26:14Z
9
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "mlx", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-21T17:23:58Z
--- license: other library_name: transformers tags: - mlx extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged-in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license license_name: gemma-terms-of-use license_link: https://ai.google.dev/gemma/terms --- # lazarustda/my-4bit-gemma This model was converted to MLX format from [`google/gemma-2b`](). Refer to the [original model card](https://huggingface.co/google/gemma-2b) for more details on the model. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("lazarustda/my-4bit-gemma") response = generate(model, tokenizer, prompt="hello", verbose=True) ```
prithviraj-maurya/sft_llama
prithviraj-maurya
2024-02-21T17:17:38Z
5
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "text-generation", "base_model:TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T", "base_model:adapter:TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T", "license:apache-2.0", "region:us" ]
text-generation
2024-02-21T16:26:04Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer - text-generation base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T model-index: - name: sft_llama results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deleteme This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 2000 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.8.2 - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
tomaarsen/distilroberta-base-nli-matryoshka
tomaarsen
2024-02-21T17:16:52Z
8
0
sentence-transformers
[ "sentence-transformers", "safetensors", "roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-02-21T17:16:31Z
--- library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # tomaarsen/distilroberta-base-nli-matryoshka This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('tomaarsen/distilroberta-base-nli-matryoshka') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('tomaarsen/distilroberta-base-nli-matryoshka') model = AutoModel.from_pretrained('tomaarsen/distilroberta-base-nli-matryoshka') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=tomaarsen/distilroberta-base-nli-matryoshka) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 4403 with parameters: ``` {'batch_size': 128} ``` **Loss**: `sentence_transformers.losses.MatryoshkaLoss.MatryoshkaLoss` with parameters: ``` {'loss': 'MultipleNegativesRankingLoss', 'matryoshka_dims': [768, 512, 256, 128, 64], 'matryoshka_weights': [1, 1, 1, 1, 1]} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 440, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 441, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Priyanka-Balivada/stable-diffusion-stack-trial
Priyanka-Balivada
2024-02-21T17:14:05Z
7
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-02-21T17:10:10Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Stable-diffusion-stack Dreambooth model trained by Priyanka-Balivada with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
HES-XPLAIN/sport_classification
HES-XPLAIN
2024-02-21T17:13:57Z
0
0
null
[ "license:bsd-3-clause", "region:us" ]
null
2023-10-27T13:55:11Z
--- license: bsd-3-clause --- # HES-XPLAIN ML models for [HES-XPLAIN](https://github.com/HES-XPLAIN/)
cmp-nct/llava-1.6-gguf
cmp-nct
2024-02-21T17:05:52Z
2,378
75
transformers
[ "transformers", "gguf", "image-text-to-text", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
image-text-to-text
2024-02-02T02:17:56Z
--- license: apache-2.0 pipeline_tag: image-text-to-text --- Update: PR is merged, llama.cpp now natively supports these models Important: Verify that processing a simple question with any image at least uses 1200 tokens of prompt processing, that shows that the new PR is in use. If your prompt is just 576 + a few tokens, you are using llava-1.5 code (or projector) and this is incompatible with llava-1.6 **note** Keep in mind the different fine tunes as described in the llama.cpp llava readme, it's essential to use the non defaults for non vicuna models The mmproj files are the embedded ViT's that came with llava-1.6, I've not compared them but given the previous releases from the team I'd be surprised if the ViT has not been fine tuned this time. If that's the case, using another ViT can cause issues. You need to use the mmproj of the right model but you can mix quantizations. Original models: https://github.com/haotian-liu/LLaVA
gohzy/fine-tuned-singlish-toxic-bert-10000-LoRA-1
gohzy
2024-02-21T17:02:34Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-21T17:02:31Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
adalib/beatnum-sub-cond-gen-codegen-350M-mono-prefix
adalib
2024-02-21T16:57:02Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Salesforce/codegen-350M-mono", "base_model:adapter:Salesforce/codegen-350M-mono", "region:us" ]
null
2024-02-21T16:56:59Z
--- library_name: peft base_model: Salesforce/codegen-350M-mono --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
AiManatee/RoBERTa_poem_sentiment
AiManatee
2024-02-21T16:55:37Z
10
1
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "sentiment-analysis", "poem-sentiment-detection", "poem-sentiment", "poem-sentiment-classification", "sentiment-classification", "en", "dataset:poem_sentiment", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-02T15:34:16Z
--- license: apache-2.0 datasets: - poem_sentiment language: - en metrics: - Accuracy, F1 score library_name: transformers pipeline_tag: text-classification tags: - text-classification - sentiment-analysis - poem-sentiment-detection - poem-sentiment - poem-sentiment-classification - sentiment-classification widget: - text: >- Rapidly, merrily, Life's sunny hours flit by, Gratefully, cheerily, Enjoy them as they fly! example_title: "Life" - text: It so happens I am sick of my feet and my nails, and my hair and my shadow. It so happens I am sick of being a man. example_title: "Walking Around" - text: >- No man is an island, Entire of itself, Every man is a piece of the continent, A part of the main. example_title: "No man is an island" - text: >- Some have won a wild delight, By daring wilder sorrow; Could I gain thy love to-night, I'd hazard death to-morrow. example_title: "Passion" --- ## AiManatee/RoBERTa_poem_sentiment This model is a fine-tuned version of the [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) transformer for the task of poem sentiment analysis. It predicts the sentiment of a given poem verse into one of four categories: negative, positive, no impact, or mixed (positive and negative). ### Dataset RoBERTa_poem_sentiment was trained on the [poem_sentiment](https://huggingface.co/datasets/poem_sentiment) dataset which consists of poem verses across four sentiment labels: negative, positive, no impact, and mixed sentiment. However, the Validation and Test subsets of the original dataset lack 'mixed' sentiment examples. To address this and ensure a thorough evaluation, data augmentation was performed: 32 'mixed' sentiment verses from different English poems were added to the Validation (16) and Test (16) subsets; the original Train subset remained intact. All the augmented samples were tested for semantic consistency, diversity (cosine similarity), length variation and novelty (ensuring the augmented data introduced new, relevant vocabulary). This strategy allowed for a more comprehensive evaluation of the model's generalization ability across all trained labels. The final model was tested on both the original dataset and the augmented dataset. #### Labels ``` {0: 'negative', 1: 'positive', 2: 'no_impact', 3: 'mixed'} ``` ### Training Hyperparameters ``` learning_rate: 2e-5, weight_decay: 0.01, batch_size: 16, num_epochs: 8, optimizer: AdamW: betas=(0.9, 0.999), eps=1e-08 seed: 16 early_stopper: min_delta=0.001, patience=3 ``` ``` scheduler = ReduceLROnPlateau( optimizer, mode="min", factor=0.5, patience=0, threshold=0.001, eps=1e-8, ) ``` ### Model Performance ##### Validation results on the original dataset (class 3 is not being evaluated here) | Epoch | Training Loss | Validation Loss | Accuracy | F1 | |-------|---------------|-----------------|----------|----------| | 1 | 1.365169 | 1.010353 | 0.761905 | 0.771733 | | 2 | 0.860945 | 0.810045 | 0.723810 | 0.740809 | | 3 | 0.570005 | 0.637439 | 0.761905 | 0.802184 | | 4 | 0.355776 | 0.699637 | 0.780952 | 0.797572 | | 5 | 0.252919 | 0.586395 | 0.847619 | 0.860519 | | 6 | 0.156633 | 0.610439 | 0.819048 | 0.834072 | | 7 | 0.084868 | 0.515130 | 0.876190 | 0.884736 | | 8 | 0.062830 | 0.572643 | 0.885714 | 0.902510 | ##### Validation results on the augmented dataset | Epoch | Training Loss | Validation Loss | Accuracy | F1 | |-------|---------------|-----------------|----------|----------| | 1 | 1.365169 | 1.168057 | 0.661157 | 0.628737 | | 2 | 0.860945 | 0.869521 | 0.694214 | 0.717916 | | 3 | 0.570005 | 0.637439 | 0.776859 | 0.790842 | | 4 | 0.355776 | 0.681563 | 0.768595 | 0.776540 | | 5 | 0.252919 | 0.585692 | 0.834710 | 0.841590 | | 6 | 0.156633 | 0.542949 | 0.809917 | 0.815361 | | 7 | 0.092444 | 0.581075 | 0.826446 | 0.830607 | | 8 | 0.049480 | 0.583749 | 0.884297 | 0.881360 | ### How to Use the Model Here is how to predict the sentiment of a poem verse using this model: ```python from transformers import pipeline sentiment_classifier = pipeline(task='text-classification', model='AiManatee/RoBERTa_poem_sentiment') verse1 = "Rapidly, merrily, Life's sunny hours flit by, Gratefully, cheerily, Enjoy them as they fly!" verse2 = "It so happens I am sick of my feet and my nails, and my hair and my shadow. It so happens I am sick of being a man." verse3 = "No man is an island, Entire of itself, Every man is a piece of the continent, A part of the main." verse4 = "Some have won a wild delight, By daring wilder sorrow; Could I gain thy love to-night, I'd hazard death to-morrow." print(sentiment_classifier(verse1)) print(sentiment_classifier(verse2)) print(sentiment_classifier(verse3)) print(sentiment_classifier(verse4)) ``` ### Evaluation ##### Original dataset ``` {Loss: 0.5726433790155819 Accuracy: 0.8857142857142857 Precision: 0.9201298701298701 Recall: 0.8857142857142857 F1: 0.9025108225108224 } ``` ##### Augmented dataset ``` {Loss: 0.5837492472492158 Accuracy: 0.8842975206611571 Precision: 0.8810538160090016 Recall: 0.8842975206611571 F1: 0.8813606847697756 } ``` ### Framework Versions - **Transformers:** 4.35.2 - **PyTorch:** 2.1.0+cu118 - **Datasets:** 2.16.1 - **Tokenizers:** 0.15.1
Dagobert42/distilbert-base-uncased-biored-finetuned
Dagobert42
2024-02-21T16:54:49Z
4
0
transformers
[ "transformers", "safetensors", "distilbert", "token-classification", "low-resource NER", "token_classification", "biomedicine", "medical NER", "generated_from_trainer", "en", "dataset:medicine", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-02-14T18:32:39Z
--- language: - en license: mit base_model: distilbert-base-uncased tags: - low-resource NER - token_classification - biomedicine - medical NER - generated_from_trainer datasets: - medicine metrics: - accuracy - precision - recall - f1 model-index: - name: Dagobert42/distilbert-base-uncased-biored-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Dagobert42/distilbert-base-uncased-biored-finetuned This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the bigbio/biored dataset. It achieves the following results on the evaluation set: - Loss: 0.6868 - Accuracy: 0.7768 - Precision: 0.5392 - Recall: 0.4561 - F1: 0.4898 - Weighted F1: 0.764 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Weighted F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----------:| | No log | 1.0 | 25 | 0.9323 | 0.7124 | 0.3944 | 0.1486 | 0.1309 | 0.5993 | | No log | 2.0 | 50 | 0.8737 | 0.7248 | 0.5187 | 0.2132 | 0.2341 | 0.6271 | | No log | 3.0 | 75 | 0.8157 | 0.7353 | 0.4968 | 0.2886 | 0.3314 | 0.6804 | | No log | 4.0 | 100 | 0.7927 | 0.7452 | 0.5213 | 0.3185 | 0.3686 | 0.6883 | | No log | 5.0 | 125 | 0.7601 | 0.7507 | 0.5119 | 0.3734 | 0.4161 | 0.7116 | | No log | 6.0 | 150 | 0.7480 | 0.7555 | 0.5381 | 0.3829 | 0.4285 | 0.718 | | No log | 7.0 | 175 | 0.7393 | 0.7588 | 0.5393 | 0.4031 | 0.4479 | 0.7272 | | No log | 8.0 | 200 | 0.7342 | 0.7655 | 0.5512 | 0.4143 | 0.4614 | 0.7363 | | No log | 9.0 | 225 | 0.7391 | 0.7591 | 0.5262 | 0.4425 | 0.4709 | 0.7395 | | No log | 10.0 | 250 | 0.7264 | 0.7644 | 0.5332 | 0.4539 | 0.4849 | 0.7484 | | No log | 11.0 | 275 | 0.7350 | 0.7694 | 0.5419 | 0.452 | 0.4852 | 0.7483 | | No log | 12.0 | 300 | 0.7389 | 0.77 | 0.5341 | 0.4641 | 0.4921 | 0.752 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.15.0
vishnu027/cm1132_type5_re_m2
vishnu027
2024-02-21T16:51:21Z
5
0
transformers
[ "transformers", "safetensors", "vision-encoder-decoder", "image-text-to-text", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
image-text-to-text
2024-02-21T16:46:12Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
vadhri/rl_course_vizdoom_health_gathering_supreme
vadhri
2024-02-21T16:51:06Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-02-21T16:50:58Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 10.68 +/- 4.91 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r vadhri/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
vishnu027/cm1132_type5_re
vishnu027
2024-02-21T16:42:04Z
7
0
transformers
[ "transformers", "safetensors", "vision-encoder-decoder", "image-text-to-text", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
image-text-to-text
2024-02-21T16:12:52Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
freshpearYoon/v3_concat
freshpearYoon
2024-02-21T16:38:37Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "ko", "base_model:openai/whisper-large-v3", "base_model:finetune:openai/whisper-large-v3", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-02-21T13:41:25Z
--- language: - ko license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer metrics: - wer base_model: openai/whisper-large-v3 model-index: - name: whisper_finetune results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_finetune This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the aihub_100000 dataset. It achieves the following results on the evaluation set: - Loss: 0.4970 - Cer: 5.4843 - Wer: 22.9248 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-08 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 0.9923 | 0.9 | 1000 | 0.5893 | 6.0827 | 25.3866 | | 0.9389 | 1.79 | 2000 | 0.4970 | 5.4843 | 22.9248 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.17.1 - Tokenizers 0.15.2
Weni/ZeroShot-3.3.1-Mistral-7b-Multilanguage-3.2.0-merged
Weni
2024-02-21T16:25:03Z
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-21T16:15:38Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ANUPAMKU/my-pet-dog-xzg
ANUPAMKU
2024-02-21T16:16:35Z
7
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-02-21T16:12:38Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Dog-XZG Dreambooth model trained by ANUPAMKU following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: 21/CSE/064(D) Sample pictures of this concept: ![0](https://huggingface.co/ANUPAMKU/my-pet-dog-xzg/resolve/main/sample_images/dog(2).jpg) ![1](https://huggingface.co/ANUPAMKU/my-pet-dog-xzg/resolve/main/sample_images/dog(1).jpg) ![2](https://huggingface.co/ANUPAMKU/my-pet-dog-xzg/resolve/main/sample_images/dog(4).jpg) ![3](https://huggingface.co/ANUPAMKU/my-pet-dog-xzg/resolve/main/sample_images/dog(3).jpg) ![4](https://huggingface.co/ANUPAMKU/my-pet-dog-xzg/resolve/main/sample_images/dog(5).jpg)
likhith231/bloomz-560m_PROMPT_TUNING_CAUSAL_LM
likhith231
2024-02-21T16:11:11Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-21T16:11:09Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
vadhri/ppo-CartPole-v1
vadhri
2024-02-21T16:10:54Z
0
0
null
[ "tensorboard", "CartPole-v1", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2024-02-21T16:10:45Z
--- tags: - CartPole-v1 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 258.60 +/- 124.45 name: mean_reward verified: false --- # PPO Agent Playing CartPole-v1 This is a trained model of a PPO agent playing CartPole-v1. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'CartPole-v1' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'vadhri/ppo-CartPole-v1' 'batch_size': 512 'minibatch_size': 128} ```
mhenrichsen/gemma-2b
mhenrichsen
2024-02-21T16:09:11Z
72
1
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "arxiv:2312.11805", "arxiv:2009.03300", "arxiv:1905.07830", "arxiv:1911.11641", "arxiv:1904.09728", "arxiv:1905.10044", "arxiv:1907.10641", "arxiv:1811.00937", "arxiv:1809.02789", "arxiv:1911.01547", "arxiv:1705.03551", "arxiv:2107.03374", "arxiv:2108.07732", "arxiv:2110.14168", "arxiv:2304.06364", "arxiv:2206.04615", "arxiv:1804.06876", "arxiv:2110.08193", "arxiv:2009.11462", "arxiv:2101.11718", "arxiv:1804.09301", "arxiv:2109.07958", "arxiv:2203.09509", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-21T16:05:10Z
--- library_name: transformers tags: [] --- # Reupload of Gemma 2b base. Original readme below. # Gemma Model Card **Model Page**: [Gemma](https://ai.google.dev/gemma/docs) This model card corresponds to the 2B base version of the Gemma model. You can also visit the model card of the [7B base model](https://huggingface.co/google/gemma-7b), [7B instruct model](https://huggingface.co/google/gemma-7b-it), and [2B instruct model](https://huggingface.co/google/gemma-2b-it). **Resources and Technical Documentation**: * [Responsible Generative AI Toolkit](https://ai.google.dev/responsible) * [Gemma on Kaggle](https://www.kaggle.com/models/google/gemma) * [Gemma on Vertex Model Garden](https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/335?version=gemma-2b-gg-hf) **Terms of Use**: [Terms](https://www.kaggle.com/models/google/gemma/license/consent) **Authors**: Google ## Model Information Summary description and brief definition of inputs and outputs. ### Description Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models. They are text-to-text, decoder-only large language models, available in English, with open weights, pre-trained variants, and instruction-tuned variants. Gemma models are well-suited for a variety of text generation tasks, including question answering, summarization, and reasoning. Their relatively small size makes it possible to deploy them in environments with limited resources such as a laptop, desktop or your own cloud infrastructure, democratizing access to state of the art AI models and helping foster innovation for everyone. ### Usage Below we share some code snippets on how to get quickly started with running the model. First make sure to `pip install -U transformers`, then copy the snippet from the section that is relevant for your usecase. #### Fine-tuning the model You can find fine-tuning scripts and notebook under the [`examples/` directory](https://huggingface.co/google/gemma-7b/tree/main/examples) of [`google/gemma-7b`](https://huggingface.co/google/gemma-7b) repository. To adapt it to this model, simply change the model-id to `google/gemma-2b`. In that repository, we provide: * A script to perform Supervised Fine-Tuning (SFT) on UltraChat dataset using QLoRA * A script to perform SFT using FSDP on TPU devices * A notebook that you can run on a free-tier Google Colab instance to perform SFT on English quotes dataset #### Running the model on a CPU ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b") model = AutoModelForCausalLM.from_pretrained("google/gemma-2b") input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(**input_text, return_tensors="pt") outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ``` #### Running the model on a single / multi GPU ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b") model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", device_map="auto") input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Running the model on a GPU using different precisions * _Using `torch.float16`_ ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b") model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", device_map="auto", torch_dtype=torch.float16) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` * _Using `torch.bfloat16`_ ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b") model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", device_map="auto", torch_dtype=torch.bfloat16) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Quantized Versions through `bitsandbytes` * _Using 8-bit precision (int8)_ ```python # pip install bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_8bit=True) tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b") model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", quantization_config=quantization_config) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` * _Using 4-bit precision_ ```python # pip install bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_4bit=True) tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b") model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", quantization_config=quantization_config) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Other optimizations * _Flash Attention 2_ First make sure to install `flash-attn` in your environment `pip install flash-attn` ```diff model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, + attn_implementation="flash_attention_2" ).to(0) ``` ### Inputs and outputs * **Input:** Text string, such as a question, a prompt, or a document to be summarized. * **Output:** Generated English-language text in response to the input, such as an answer to a question, or a summary of a document. ## Model Data Data used for model training and how the data was processed. ### Training Dataset These models were trained on a dataset of text data that includes a wide variety of sources, totaling 6 trillion tokens. Here are the key components: * Web Documents: A diverse collection of web text ensures the model is exposed to a broad range of linguistic styles, topics, and vocabulary. Primarily English-language content. * Code: Exposing the model to code helps it to learn the syntax and patterns of programming languages, which improves its ability to generate code or understand code-related questions. * Mathematics: Training on mathematical text helps the model learn logical reasoning, symbolic representation, and to address mathematical queries. The combination of these diverse data sources is crucial for training a powerful language model that can handle a wide variety of different tasks and text formats. ### Data Preprocessing Here are the key data cleaning and filtering methods applied to the training data: * CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was applied at multiple stages in the data preparation process to ensure the exclusion of harmful and illegal content * Sensitive Data Filtering: As part of making Gemma pre-trained models safe and reliable, automated techniques were used to filter out certain personal information and other sensitive data from training sets. * Additional methods: Filtering based on content quality and safely in line with [our policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11). ## Implementation Information Details about the model internals. ### Hardware Gemma was trained using the latest generation of [Tensor Processing Unit (TPU)](https://cloud.google.com/tpu/docs/intro-to-tpu) hardware (TPUv5e). Training large language models requires significant computational power. TPUs, designed specifically for matrix operations common in machine learning, offer several advantages in this domain: * Performance: TPUs are specifically designed to handle the massive computations involved in training LLMs. They can speed up training considerably compared to CPUs. * Memory: TPUs often come with large amounts of high-bandwidth memory, allowing for the handling of large models and batch sizes during training. This can lead to better model quality. * Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for handling the growing complexity of large foundation models. You can distribute training across multiple TPU devices for faster and more efficient processing. * Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective solution for training large models compared to CPU-based infrastructure, especially when considering the time and resources saved due to faster training. * These advantages are aligned with [Google's commitments to operate sustainably](https://sustainability.google/operating-sustainably/). ### Software Training was done using [JAX](https://github.com/google/jax) and [ML Pathways](https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/ml-pathways). JAX allows researchers to take advantage of the latest generation of hardware, including TPUs, for faster and more efficient training of large models. ML Pathways is Google's latest effort to build artificially intelligent systems capable of generalizing across multiple tasks. This is specially suitable for [foundation models](https://ai.google/discover/foundation-models/), including large language models like these ones. Together, JAX and ML Pathways are used as described in the [paper about the Gemini family of models](https://arxiv.org/abs/2312.11805); "the 'single controller' programming model of Jax and Pathways allows a single Python process to orchestrate the entire training run, dramatically simplifying the development workflow." ## Evaluation Model evaluation metrics and results. ### Benchmark Results These models were evaluated against a large collection of different datasets and metrics to cover different aspects of text generation: | Benchmark | Metric | 2B Params | 7B Params | | ------------------------------ | ------------- | ----------- | --------- | | [MMLU](https://arxiv.org/abs/2009.03300) | 5-shot, top-1 | 42.3 | 64.3 | | [HellaSwag](https://arxiv.org/abs/1905.07830) | 0-shot |71.4 | 81.2 | | [PIQA](https://arxiv.org/abs/1911.11641) | 0-shot | 77.3 | 81.2 | | [SocialIQA](https://arxiv.org/abs/1904.09728) | 0-shot | 59.7 | 51.8 | | [BooIQ](https://arxiv.org/abs/1905.10044) | 0-shot | 69.4 | 83.2 | | [WinoGrande](https://arxiv.org/abs/1907.10641) | partial score | 65.4 | 72.3 | | [CommonsenseQA](https://arxiv.org/abs/1811.00937) | 7-shot | 65.3 | 71.3 | | [OpenBookQA](https://arxiv.org/abs/1809.02789) | | 47.8 | 52.8 | | [ARC-e](https://arxiv.org/abs/1911.01547) | | 73.2 | 81.5 | | [ARC-c](https://arxiv.org/abs/1911.01547) | | 42.1 | 53.2 | | [TriviaQA](https://arxiv.org/abs/1705.03551) | 5-shot | 53.2 | 63.4 | | [Natural Questions](https://github.com/google-research-datasets/natural-questions) | 5-shot | - | 23 | | [HumanEval](https://arxiv.org/abs/2107.03374) | pass@1 | 22.0 | 32.3 | | [MBPP](https://arxiv.org/abs/2108.07732) | 3-shot | 29.2 | 44.4 | | [GSM8K](https://arxiv.org/abs/2110.14168) | maj@1 | 17.7 | 46.4 | | [MATH](https://arxiv.org/abs/2108.07732) | 4-shot | 11.8 | 24.3 | | [AGIEval](https://arxiv.org/abs/2304.06364) | | 24.2 | 41.7 | | [BIG-Bench](https://arxiv.org/abs/2206.04615) | | 35.2 | 55.1 | | ------------------------------ | ------------- | ----------- | --------- | | **Average** | | **54.0** | **56.4** | ## Ethics and Safety Ethics and safety evaluation approach and results. ### Evaluation Approach Our evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including: * Text-to-Text Content Safety: Human evaluation on prompts covering safety policies including child sexual abuse and exploitation, harassment, violence and gore, and hate speech. * Text-to-Text Representational Harms: Benchmark against relevant academic datasets such as [WinoBias](https://arxiv.org/abs/1804.06876) and [BBQ Dataset](https://arxiv.org/abs/2110.08193v2). * Memorization: Automated evaluation of memorization of training data, including the risk of personally identifiable information exposure. * Large-scale harm: Tests for "dangerous capabilities," such as chemical, biological, radiological, and nuclear (CBRN) risks. ### Evaluation Results The results of ethics and safety evaluations are within acceptable thresholds for meeting [internal policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11) for categories such as child safety, content safety, representational harms, memorization, large-scale harms. On top of robust internal evaluations, the results of well known safety benchmarks like BBQ, BOLD, Winogender, Winobias, RealToxicity, and TruthfulQA are shown here. | Benchmark | Metric | 2B Params | 7B Params | | ------------------------------ | ------------- | ----------- | --------- | | [RealToxicity](https://arxiv.org/abs/2009.11462) | average | 6.86 | 7.90 | | [BOLD](https://arxiv.org/abs/2101.11718) | | 45.57 | 49.08 | | [CrowS-Pairs](https://aclanthology.org/2020.emnlp-main.154/) | top-1 | 45.82 | 51.33 | | [BBQ Ambig](https://arxiv.org/abs/2110.08193v2) | 1-shot, top-1 | 62.58 | 92.54 | | [BBQ Disambig](https://arxiv.org/abs/2110.08193v2) | top-1 | 54.62 | 71.99 | | [Winogender](https://arxiv.org/abs/1804.09301) | top-1 | 51.25 | 54.17 | | [TruthfulQA](https://arxiv.org/abs/2109.07958) | | 44.84 | 31.81 | | [Winobias 1_2](https://arxiv.org/abs/1804.06876) | | 56.12 | 59.09 | | [Winobias 2_2](https://arxiv.org/abs/1804.06876) | | 91.10 | 92.23 | | [Toxigen](https://arxiv.org/abs/2203.09509) | | 29.77 | 39.59 | | ------------------------------ | ------------- | ----------- | --------- | ## Usage and Limitations These models have certain limitations that users should be aware of. ### Intended Usage Open Large Language Models (LLMs) have a wide range of applications across various industries and domains. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development. * Content Creation and Communication * Text Generation: These models can be used to generate creative text formats such as poems, scripts, code, marketing copy, and email drafts. * Chatbots and Conversational AI: Power conversational interfaces for customer service, virtual assistants, or interactive applications. * Text Summarization: Generate concise summaries of a text corpus, research papers, or reports. * Research and Education * Natural Language Processing (NLP) Research: These models can serve as a foundation for researchers to experiment with NLP techniques, develop algorithms, and contribute to the advancement of the field. * Language Learning Tools: Support interactive language learning experiences, aiding in grammar correction or providing writing practice. * Knowledge Exploration: Assist researchers in exploring large bodies of text by generating summaries or answering questions about specific topics. ### Limitations * Training Data * The quality and diversity of the training data significantly influence the model's capabilities. Biases or gaps in the training data can lead to limitations in the model's responses. * The scope of the training dataset determines the subject areas the model can handle effectively. * Context and Task Complexity * LLMs are better at tasks that can be framed with clear prompts and instructions. Open-ended or highly complex tasks might be challenging. * A model's performance can be influenced by the amount of context provided (longer context generally leads to better outputs, up to a certain point). * Language Ambiguity and Nuance * Natural language is inherently complex. LLMs might struggle to grasp subtle nuances, sarcasm, or figurative language. * Factual Accuracy * LLMs generate responses based on information they learned from their training datasets, but they are not knowledge bases. They may generate incorrect or outdated factual statements. * Common Sense * LLMs rely on statistical patterns in language. They might lack the ability to apply common sense reasoning in certain situations. ### Ethical Considerations and Risks The development of large language models (LLMs) raises several ethical concerns. In creating an open model, we have carefully considered the following: * Bias and Fairness * LLMs trained on large-scale, real-world text data can reflect socio-cultural biases embedded in the training material. These models underwent careful scrutiny, input data pre-processing described and posterior evaluations reported in this card. * Misinformation and Misuse * LLMs can be misused to generate text that is false, misleading, or harmful. * Guidelines are provided for responsible use with the model, see the [Responsible Generative AI Toolkit](http://ai.google.dev/gemma/responsible). * Transparency and Accountability: * This model card summarizes details on the models' architecture, capabilities, limitations, and evaluation processes. * A responsibly developed open model offers the opportunity to share innovation by making LLM technology accessible to developers and researchers across the AI ecosystem. Risks identified and mitigations: * Perpetuation of biases: It's encouraged to perform continuous monitoring (using evaluation metrics, human review) and the exploration of de-biasing techniques during model training, fine-tuning, and other use cases. * Generation of harmful content: Mechanisms and guidelines for content safety are essential. Developers are encouraged to exercise caution and implement appropriate content safety safeguards based on their specific product policies and application use cases. * Misuse for malicious purposes: Technical limitations and developer and end-user education can help mitigate against malicious applications of LLMs. Educational resources and reporting mechanisms for users to flag misuse are provided. Prohibited uses of Gemma models are outlined in the [Gemma Prohibited Use Policy](https://ai.google.dev/gemma/prohibited_use_policy). * Privacy violations: Models were trained on data filtered for removal of PII (Personally Identifiable Information). Developers are encouraged to adhere to privacy regulations with privacy-preserving techniques. ### Benefits At the time of release, this family of models provides high-performance open large language model implementations designed from the ground up for Responsible AI development compared to similarly sized models. Using the benchmark evaluation metrics described in this document, these models have shown to provide superior performance to other, comparably-sized open model alternatives.
fashxp/cars-countries-2
fashxp
2024-02-21T16:07:02Z
10
0
transformers
[ "transformers", "safetensors", "convnextv2", "image-classification", "autotrain", "dataset:cars-countries-2/autotrain-data", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-02-21T16:06:44Z
--- tags: - autotrain - image-classification widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace datasets: - cars-countries-2/autotrain-data --- # Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metricsg loss: 0.7695896625518799 f1_macro: 0.6246525462930008 f1_micro: 0.7667984189723321 f1_weighted: 0.7486990681361966 precision_macro: 0.6264646464646464 precision_micro: 0.766798418972332 precision_weighted: 0.7372225929538182 recall_macro: 0.6284365875018805 recall_micro: 0.766798418972332 recall_weighted: 0.766798418972332 accuracy: 0.766798418972332
Deci/DeciLM-7B-instruct
Deci
2024-02-21T16:05:34Z
13,750
96
transformers
[ "transformers", "safetensors", "deci", "text-generation", "conversational", "custom_code", "en", "dataset:Open-Orca/SlimOrca", "license:apache-2.0", "autotrain_compatible", "region:us" ]
text-generation
2023-12-10T16:28:21Z
--- license: apache-2.0 language: - en datasets: - Open-Orca/SlimOrca --- # DeciLM-7B-instruct DeciLM-7B-instruct is a model for short-form instruction following. It is built by LoRA fine-tuning on the [SlimOrca dataset](https://huggingface.co/datasets/Open-Orca/SlimOrca). ## Model Details ### Model Description DeciLM-7B-instruct is a derivative of the recently released [DeciLM-7B](https://huggingface.co/Deci/DeciLM-7B) language model, a pre-trained, high-efficiency generative text model with 7 billion parameters. DeciLM-7B-instruct is one the best 7B instruct models obtained using simple LoRA fine-tuning, without relying on preference optimization techniques such as RLHF and DPO. - **Developed by:** [Deci](https://deci.ai/?utm_campaign=repos&utm_source=hugging-face&utm_medium=model-card&utm_content=decilm-7b-instruct) - **Model type:** DeciLM is an auto-regressive language model using an optimized transformer decoder architecture that includes variable Grouped-Query Attention. - **Language(s) (NLP):** English - **License:** Apache 2.0 ## Model Architecture | Parameters | Layers | Heads | Sequence Length | GQA num_key_value_heads* | |:----------|:----------|:----------|:----------|:----------| | 7.04 billion | 32 | 32 | 8192 | Variable | *AutoNAC was employed to optimize the selection of the GQA num_key_value_heads for each model layer. ### Model Sources - **Blog:** [DeciLM-7B Technical Blog](https://deci.ai/blog/introducing-DeciLM-7B-the-fastest-and-most-accurate-7b-large-language-model-to-date/?utm_campaign=repos&utm_source=hugging-face&utm_medium=model-card&utm_content=decilm-7b-instruct) - **Demo:** [DeciLM-7B-instruct Demo](https://huggingface.co/spaces/Deci/DeciLM-7B-instruct) - **Finetuning Notebook:** [DeciLM-7B Finetuning Notebook](https://colab.research.google.com/drive/1kEV6i96AQ94xTCvSd11TxkEaksTb5o3U?usp=sharing) - **Text Generation Notebook:** [DeciLM-7B-instruct Text Generation Notebook](https://bit.ly/declm-7b-instruct) ### Prompt Template ``` ### System: {system_prompt} ### User: {user_prompt} ### Assistant: ``` ## Uses The model is intended for commercial and research use in English. ## How to Get Started with the Model Use the code below to get started with the model. ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, pipeline model_name = "Deci/DeciLM-7B-instruct" device = "cuda" # for GPU usage or "cpu" for CPU usage quantize = False # Optional. Useful for GPUs with less than 24GB memory if quantize: dtype_kwargs = dict(quantization_config=BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16 )) else: dtype_kwargs = dict(torch_dtype="auto") model = AutoModelForCausalLM.from_pretrained( model_name, device_map="auto", trust_remote_code=True, **dtype_kwargs ) tokenizer = AutoTokenizer.from_pretrained(model_name) tokenizer.pad_token = tokenizer.eos_token deci_generator = pipeline("text-generation", model=model, tokenizer=tokenizer, temperature=0.1, device_map="auto", max_length=4096, return_full_text=False) system_prompt = "You are an AI assistant that follows instruction extremely well. Help as much as you can." user_prompt = "How do I make the most delicious pancakes the world has ever tasted?" prompt = tokenizer.apply_chat_template([ {"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}, ], tokenize=False, add_generation_prompt=True) response = deci_generator(prompt)[0]['generated_text'] print(prompt + response) ``` ## Evaluation Below are DeciLM-7B and DeciLM-7B-instruct's evaluation results. | Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | |:----------|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:| | DecilLM-7B | 61.55 | 59.39 | 82.51 | 59.76 | 40.33 | 79.95 | 47.38 | | DecilLM-7B-instruct | 63.19 | 61.01 | 82.37 | 60.24 | 49.75 | 79.72 | 46.02 | ### Runtime Benchmarks | Inference Tool | Hardware | Prompt length | Generation length | Generated tokens/sec | Batch Size | Number of Prompts | |:----------|:----------|:---------:|:---------:|:---------:|:---------:|:---------:| | HuggingFace (PyTorch) | A100 (SXM4-80GB-400W) | 512 | 512 | **1174** | 352 | 352 | | HuggingFace (PyTorch) | A100 (SXM4-80GB-400W) | 2048 | 2048 | **328** | 72 | 72 | | Infery-LLM | A100 (SXM4-80GB-400W)| 512 | 512 | **4559** | 1024 | 4096 | | Infery-LLM | A100 (SXM4-80GB-400W) | 2048 | 2048 | **3997** | 512 | 2048 | | Infery-LLM | A10 | 512 | 512 | **1345** | 128 | 512 | | Infery-LLM | A10 | 2048 | 2048 | **599** | 32 | 128 | - In order to replicate the results of the Hugging Face benchmarks, you can use this [code example](https://huggingface.co/Deci/DeciLM-7B/blob/main/benchmark_hf_model.py). - Infery-LLM, Deci's inference engine, features a suite of optimization algorithms, including selective quantization, optimized beam search, continuous batching, and custom CUDA kernels. To explore the full capabilities of Infery-LLM, [schedule a live demo](https://deci.ai/infery-llm-book-a-demo/?utm_campaign=DeciLM%207B%20Launch&utm_source=HF&utm_medium=decilm7b-model-card&utm_term=infery-demo). ## Ethical Considerations and Limitations DeciLM-7B-instruct is a new technology that comes with inherent risks associated with its use. The testing conducted so far has been primarily in English and does not encompass all possible scenarios. Like those of all large language models, DeciLM-7B's outputs are unpredictable, and the model may generate responses that are inaccurate, biased, or otherwise objectionable. Consequently, developers planning to use DeciLM-7B should undertake thorough safety testing and tuning designed explicitly for their intended applications of the model before deployment. ## How to Cite Please cite this model using this format. ```bibtex @misc{DeciFoundationModels, title = {DeciLM-7B-instruct}, author = {DeciAI Research Team}, year = {2023} url={https://huggingface.co/Deci/DeciLM-7B-instruct}, } ```
ryusangwon/1691_Llama-2-7b-hf
ryusangwon
2024-02-21T16:05:17Z
2
0
peft
[ "peft", "safetensors", "generated_from_trainer", "dataset:samsum", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2024-02-21T16:05:11Z
--- base_model: meta-llama/Llama-2-7b-hf tags: - generated_from_trainer datasets: - samsum model-index: - name: 1691_Llama-2-7b-hf results: [] library_name: peft --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 1691_Llama-2-7b-hf This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the samsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - PEFT 0.4.0 - Transformers 4.36.2 - Pytorch 2.0.1+cu117 - Datasets 2.15.0 - Tokenizers 0.15.0
damerajee/Gaja.ver-1
damerajee
2024-02-21T16:04:10Z
0
0
transformers
[ "transformers", "base_model:sarvamai/OpenHathi-7B-Hi-v0.1-Base", "base_model:finetune:sarvamai/OpenHathi-7B-Hi-v0.1-Base", "endpoints_compatible", "region:us" ]
null
2024-02-21T16:03:14Z
--- library_name: transformers base_model: sarvamai/OpenHathi-7B-Hi-v0.1-Base ---
Deci/DeciLM-7B
Deci
2024-02-21T16:04:09Z
5,416
225
transformers
[ "transformers", "safetensors", "deci", "text-generation", "conversational", "custom_code", "en", "license:apache-2.0", "autotrain_compatible", "region:us" ]
text-generation
2023-12-10T16:22:14Z
--- license: apache-2.0 language: - en --- # DeciLM-7B DeciLM-7B is a 7.04 billion parameter decoder-only text generation model, released under the Apache 2.0 license. At the time of release, DeciLM-7B is the top-performing 7B base language model on the Open LLM Leaderboard. With support for an 8K-token sequence length, this highly efficient model uses variable Grouped-Query Attention (GQA) to achieve a superior balance between accuracy and computational efficiency. The model's architecture was generated using Deci's proprietary Neural Architecture Search technology, AutoNAC. ## Model Details ### Model Description Deci developed and released the DeciLM-7B language model, a pre-trained, high-efficiency text generation model with 7 billion parameters. DeciLM-7B is not only the most accurate 7B base model, but it also outpaces all models in its class with a throughput that is up to 4.4x that of Mistral-7B's. An instruct version [DeciLM-7B-instruct](https://huggingface.co/Deci/DeciLM-7B-instruct) has also been released. - **Developed by:** [Deci](https://deci.ai/?utm_campaign=repos&utm_source=hugging-face&utm_medium=model-card&utm_content=decilm-7b) - **Model type:** DeciLM is an auto-regressive language model using an optimized transformer decoder architecture that includes variable Grouped-Query Attention. - **Language(s) (NLP):** English - **License:** Apache 2.0 ## Model Architecture | Parameters | Layers | Heads | Sequence Length | GQA num_key_value_heads* | |:----------|:----------|:----------|:----------|:----------| | 7.04 billion | 32 | 32 | 8192 | Variable | *AutoNAC was employed to optimize the selection of the GQA num_key_value_heads for each layer. ### Model Sources - **Blog:** [DeciLM-7B Technical Blog](https://deci.ai/blog/introducing-DeciLM-7B-the-fastest-and-most-accurate-7b-large-language-model-to-date/?utm_campaign=repos&utm_source=hugging-face&utm_medium=model-card&utm_content=decilm-7b) - **Demo:** [DeciLM-7B-instruct Demo](https://huggingface.co/spaces/Deci/DeciLM-7B-instruct) - **Finetuning Notebook:** [DeciLM-7B Finetuning Notebook](https://colab.research.google.com/drive/1kEV6i96AQ94xTCvSd11TxkEaksTb5o3U?usp=sharing) - **Text Generation Notebook:** [DeciLM-7B-instruct Text Generation Notebook](https://bit.ly/declm-7b-instruct) ## Uses The model is intended for commercial and research use in English and can be fine-tuned for various tasks and languages. ## How to Get Started with the Model Use the code below to get started with the model. ```bibtex import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Deci/DeciLM-7B" device = "cuda" # for GPU usage or "cpu" for CPU usage tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", trust_remote_code=True).to(device) inputs = tokenizer.encode("In a shocking finding, scientists discovered a herd of unicorns living in", return_tensors="pt").to(device) outputs = model.generate(inputs, max_new_tokens=100, do_sample=True, top_p=0.95) print(tokenizer.decode(outputs[0])) # The model can also be used via the text-generation pipeline interface from transformers import pipeline generator = pipeline("text-generation", "Deci/DeciLM-7B", torch_dtype="auto", trust_remote_code=True, device=device) outputs = generator("In a shocking finding, scientists discovered a herd of unicorns living in", max_new_tokens=100, do_sample=True, top_p=0.95) print(outputs[0]["generated_text"]) ``` ## Evaluation Below are DeciLM-7B and DeciLM-7B-instruct's Open LLM Leaderboard results. | Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | |:----------|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:| | DecilLM-7B | 61.55 | 59.39 | 82.51 | 59.76 | 40.33 | 79.95 | 47.38 | | DecilLM-7B-instruct | 63.19 | 61.01 | 82.37 | 60.24 | 49.75 | 79.72 | 46.02 | ### Runtime Benchmarks | Inference Tool | Hardware | Prompt length | Generation length | Generated tokens/sec | Batch Size | Number of Prompts | |:----------|:----------|:---------:|:---------:|:---------:|:---------:|:---------:| | HuggingFace (PyTorch) | A100 (SXM4-80GB-400W) | 512 | 512 | **1174** | 352 | 352 | | HuggingFace (PyTorch) | A100 (SXM4-80GB-400W) | 2048 | 2048 | **328** | 72 | 72 | | Infery-LLM | A100 (SXM4-80GB-400W)| 512 | 512 | **4559** | 1024 | 4096 | | Infery-LLM | A100 (SXM4-80GB-400W) | 2048 | 2048 | **3997** | 512 | 2048 | | Infery-LLM | A10 | 512 | 512 | **1345** | 128 | 512 | | Infery-LLM | A10 | 2048 | 2048 | **599** | 32 | 128 | - In order to replicate the results of the Hugging Face benchmarks, you can use this [code example](https://huggingface.co/Deci/DeciLM-7B/blob/main/benchmark_hf_model.py). - Infery-LLM, Deci's inference engine, features a suite of optimization algorithms, including selective quantization, optimized beam search, continuous batching, and custom CUDA kernels. To explore the capabilities of Infery-LLM, [schedule a live demo](https://deci.ai/infery-llm-book-a-demo/?utm_campaign=DeciLM%207B%20Launch&utm_source=HF&utm_medium=decilm7b-model-card&utm_term=infery-demo). ## Ethical Considerations and Limitations DeciLM-7B is a new technology that comes with inherent risks associated with its use. The testing conducted so far has been primarily in English and does not encompass all possible scenarios. Like those of all large language models, DeciLM-7B's outputs are unpredictable, and the model may generate responses that are inaccurate, biased, or otherwise objectionable. Consequently, developers planning to use DeciLM-7B should undertake thorough safety testing and tuning designed explicitly for their intended applications of the model before deployment. ## How to Cite Please cite this model using this format. ```bibtex @misc{DeciFoundationModels, title = {DeciLM-7B}, author = {DeciAI Research Team}, year = {2023} url={https://huggingface.co/Deci/DeciLM-7B}, } ```
sanjayadhikesaven/opt-125m-4bit
sanjayadhikesaven
2024-02-21T16:02:39Z
5
0
transformers
[ "transformers", "safetensors", "opt", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "gptq", "region:us" ]
text-generation
2024-02-21T15:51:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mixtralyanis/zephyr_summarizer
mixtralyanis
2024-02-21T16:01:05Z
0
0
null
[ "safetensors", "autotrain", "text-generation", "conversational", "license:other", "endpoints_compatible", "region:us" ]
text-generation
2024-02-21T16:00:58Z
--- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
sanjayadhikesaven/opt-125m-2bit
sanjayadhikesaven
2024-02-21T15:59:16Z
5
0
transformers
[ "transformers", "safetensors", "opt", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "2-bit", "gptq", "region:us" ]
text-generation
2024-02-21T15:45:30Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
brittlewis12/gemma-7b-GGUF
brittlewis12
2024-02-21T15:58:40Z
215
2
null
[ "gguf", "text-generation", "en", "arxiv:2009.03300", "arxiv:1905.07830", "arxiv:1911.11641", "arxiv:1904.09728", "arxiv:1905.10044", "arxiv:1907.10641", "arxiv:1811.00937", "arxiv:1809.02789", "arxiv:1911.01547", "arxiv:1705.03551", "arxiv:2107.03374", "arxiv:2108.07732", "arxiv:2110.14168", "arxiv:2304.06364", "arxiv:2206.04615", "arxiv:2009.11462", "arxiv:2101.11718", "arxiv:2110.08193", "arxiv:1804.09301", "arxiv:2109.07958", "arxiv:1804.06876", "arxiv:2203.09509", "base_model:google/gemma-7b", "base_model:quantized:google/gemma-7b", "license:other", "region:us" ]
text-generation
2024-02-21T14:54:12Z
--- base_model: google/gemma-7b inference: false language: - en model_creator: google model_name: gemma-7b model_type: gemma pipeline_tag: text-generation license: other license_name: gemma-terms-of-use license_link: https://ai.google.dev/gemma/terms quantized_by: brittlewis12 --- # Gemma 7B GGUF **Original model**: [gemma-7b](https://huggingface.co/google/gemma-7b) **Model creator**: [google](https://huggingface.co/google) This repo contains GGUF format model files for Google’s Gemma-7B. > Gemma is a family of lightweight, state-of-the-art open models from Google, > built from the same research and technology used to create the Gemini models. > They are text-to-text, decoder-only large language models, available in English, > with open weights, pre-trained variants, and instruction-tuned variants. Gemma > models are well-suited for a variety of text generation tasks, including > question answering, summarization, and reasoning. Their relatively small size > makes it possible to deploy them in environments with limited resources such as > a laptop, desktop or your own cloud infrastructure, democratizing access to > state of the art AI models and helping foster innovation for everyone. Learn more on Google’s [Model page](https://ai.google.dev/gemma/docs). ### What is GGUF? GGUF is a file format for representing AI models. It is the third version of the format, introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Converted using llama.cpp build 2226 (revision [eccd7a2](https://github.com/ggerganov/llama.cpp/commit/eccd7a26ddbff19e4b8805648f5f14c501957859)) --- ## Download & run with [cnvrs](https://twitter.com/cnvrsai) on iPhone, iPad, and Mac! ![cnvrs.ai](https://pbs.twimg.com/profile_images/1744049151241797632/0mIP-P9e_400x400.jpg) [cnvrs](https://testflight.apple.com/join/sFWReS7K) is the best app for private, local AI on your device: - create & save **Characters** with custom system prompts & temperature settings - download and experiment with any **GGUF model** you can [find on HuggingFace](https://huggingface.co/models?library=gguf)! - make it your own with custom **Theme colors** - powered by Metal ⚡️ & [Llama.cpp](https://github.com/ggerganov/llama.cpp), with **haptics** during response streaming! - **try it out** yourself today, on [Testflight](https://testflight.apple.com/join/sFWReS7K)! - follow [cnvrs on twitter](https://twitter.com/cnvrsai) to stay up to date --- ## Original Model Evaluation | Benchmark | Metric | 2B Params | 7B Params | | ------------------------------ | ------------- | ----------- | --------- | | [MMLU](https://arxiv.org/abs/2009.03300) | 5-shot, top-1 | 42.3 | 64.3 | | [HellaSwag](https://arxiv.org/abs/1905.07830) | 0-shot |71.4 | 81.2 | | [PIQA](https://arxiv.org/abs/1911.11641) | 0-shot | 77.3 | 81.2 | | [SocialIQA](https://arxiv.org/abs/1904.09728) | 0-shot | 59.7 | 51.8 | | [BooIQ](https://arxiv.org/abs/1905.10044) | 0-shot | 69.4 | 83.2 | | [WinoGrande](https://arxiv.org/abs/1907.10641) | partial score | 65.4 | 72.3 | | [CommonsenseQA](https://arxiv.org/abs/1811.00937) | 7-shot | 65.3 | 71.3 | | [OpenBookQA](https://arxiv.org/abs/1809.02789) | | 47.8 | 52.8 | | [ARC-e](https://arxiv.org/abs/1911.01547) | | 73.2 | 81.5 | | [ARC-c](https://arxiv.org/abs/1911.01547) | | 42.1 | 53.2 | | [TriviaQA](https://arxiv.org/abs/1705.03551) | 5-shot | 53.2 | 63.4 | | [Natural Questions](https://github.com/google-research-datasets/natural-questions) | 5-shot | - | 23 | | [HumanEval](https://arxiv.org/abs/2107.03374) | pass@1 | 22.0 | 32.3 | | [MBPP](https://arxiv.org/abs/2108.07732) | 3-shot | 29.2 | 44.4 | | [GSM8K](https://arxiv.org/abs/2110.14168) | maj@1 | 17.7 | 46.4 | | [MATH](https://arxiv.org/abs/2108.07732) | 4-shot | 11.8 | 24.3 | | [AGIEval](https://arxiv.org/abs/2304.06364) | | 24.2 | 41.7 | | [BIG-Bench](https://arxiv.org/abs/2206.04615) | | 35.2 | 55.1 | | **Average** | | **54.0** | **56.4** | | Benchmark | Metric | 2B Params | 7B Params | | ------------------------------ | ------------- | ----------- | --------- | | [RealToxicity](https://arxiv.org/abs/2009.11462) | average | 6.86 | 7.90 | | [BOLD](https://arxiv.org/abs/2101.11718) | | 45.57 | 49.08 | | [CrowS-Pairs](https://aclanthology.org/2020.emnlp-main.154/) | top-1 | 45.82 | 51.33 | | [BBQ Ambig](https://arxiv.org/abs/2110.08193v2) | 1-shot, top-1 | 62.58 | 92.54 | | [BBQ Disambig](https://arxiv.org/abs/2110.08193v2) | top-1 | 54.62 | 71.99 | | [Winogender](https://arxiv.org/abs/1804.09301) | top-1 | 51.25 | 54.17 | | [TruthfulQA](https://arxiv.org/abs/2109.07958) | | 44.84 | 31.81 | | [Winobias 1_2](https://arxiv.org/abs/1804.06876) | | 56.12 | 59.09 | | [Winobias 2_2](https://arxiv.org/abs/1804.06876) | | 91.10 | 92.23 | | [Toxigen](https://arxiv.org/abs/2203.09509) | | 29.77 | 39.59 |
Gordon119/TAT-openai-whisper-large-v3-special-tag-v1-epoch5-total5epoch
Gordon119
2024-02-21T15:57:14Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-19T18:36:16Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
avinasht/FLANG-ELECTRA_roberta-base
avinasht
2024-02-21T15:51:11Z
6
0
transformers
[ "transformers", "safetensors", "electra", "text-classification", "generated_from_trainer", "base_model:SALT-NLP/FLANG-ELECTRA", "base_model:finetune:SALT-NLP/FLANG-ELECTRA", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-21T15:50:27Z
--- base_model: SALT-NLP/FLANG-ELECTRA tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: FLANG-ELECTRA_roberta-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # FLANG-ELECTRA_roberta-base This model is a fine-tuned version of [SALT-NLP/FLANG-ELECTRA](https://huggingface.co/SALT-NLP/FLANG-ELECTRA) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4678 - Accuracy: 0.8736 - F1: 0.8728 - Precision: 0.8738 - Recall: 0.8736 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.6813 | 1.0 | 181 | 0.5968 | 0.7457 | 0.7326 | 0.7488 | 0.7457 | | 0.4427 | 2.0 | 362 | 0.5072 | 0.8222 | 0.8200 | 0.8321 | 0.8222 | | 0.2366 | 3.0 | 543 | 0.4216 | 0.8518 | 0.8509 | 0.8523 | 0.8518 | | 0.2022 | 4.0 | 724 | 0.5838 | 0.8518 | 0.8501 | 0.8526 | 0.8518 | | 0.1299 | 5.0 | 905 | 0.4678 | 0.8736 | 0.8728 | 0.8738 | 0.8736 | | 0.2016 | 6.0 | 1086 | 0.5147 | 0.8362 | 0.8346 | 0.8355 | 0.8362 | | 0.1255 | 7.0 | 1267 | 0.6612 | 0.8471 | 0.8438 | 0.8549 | 0.8471 | | 0.1713 | 8.0 | 1448 | 0.8831 | 0.8003 | 0.7992 | 0.8107 | 0.8003 | | 0.092 | 9.0 | 1629 | 0.6286 | 0.8440 | 0.8434 | 0.8525 | 0.8440 | | 0.0476 | 10.0 | 1810 | 0.7429 | 0.8690 | 0.8692 | 0.8697 | 0.8690 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.2 - Datasets 2.1.0 - Tokenizers 0.15.1
fashxp/cars-countries
fashxp
2024-02-21T15:47:26Z
8
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "autotrain", "dataset:cars-countries/autotrain-data", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-02-21T15:47:13Z
--- tags: - autotrain - image-classification widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace datasets: - cars-countries/autotrain-data --- # Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metricsg loss: 1.2113300561904907 f1_macro: 0.35240829346092506 f1_micro: 0.5098039215686274 f1_weighted: 0.43996622572473965 precision_macro: 0.443963963963964 precision_micro: 0.5098039215686274 precision_weighted: 0.5037272566684332 recall_macro: 0.36746031746031743 recall_micro: 0.5098039215686274 recall_weighted: 0.5098039215686274 accuracy: 0.5098039215686274
mhenrichsen/gemma-7b
mhenrichsen
2024-02-21T15:45:05Z
277
4
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "arxiv:2305.14314", "arxiv:2312.11805", "arxiv:2009.03300", "arxiv:1905.07830", "arxiv:1911.11641", "arxiv:1904.09728", "arxiv:1905.10044", "arxiv:1907.10641", "arxiv:1811.00937", "arxiv:1809.02789", "arxiv:1911.01547", "arxiv:1705.03551", "arxiv:2107.03374", "arxiv:2108.07732", "arxiv:2110.14168", "arxiv:2304.06364", "arxiv:2206.04615", "arxiv:1804.06876", "arxiv:2110.08193", "arxiv:2009.11462", "arxiv:2101.11718", "arxiv:1804.09301", "arxiv:2109.07958", "arxiv:2203.09509", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-21T15:35:34Z
--- library_name: transformers --- # Reupload of Google Gemma - Find original readme below. # Gemma Model Card **Model Page**: [Gemma](https://ai.google.dev/gemma/docs) This model card corresponds to the 7B base version of the Gemma model. You can also visit the model card of the [2B base model](https://huggingface.co/google/gemma-2b), [7B instruct model](https://huggingface.co/google/gemma-7b-it), and [2B instruct model](https://huggingface.co/google/gemma-2b-it). **Resources and Technical Documentation**: * [Responsible Generative AI Toolkit](https://ai.google.dev/responsible) * [Gemma on Kaggle](https://www.kaggle.com/models/google/gemma) * [Gemma on Vertex Model Garden](https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/335?version=gemma-7b-gg-hf) **Terms of Use**: [Terms](https://www.kaggle.com/models/google/gemma/license/consent) **Authors**: Google ## Model Information Summary description and brief definition of inputs and outputs. ### Description Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models. They are text-to-text, decoder-only large language models, available in English, with open weights, pre-trained variants, and instruction-tuned variants. Gemma models are well-suited for a variety of text generation tasks, including question answering, summarization, and reasoning. Their relatively small size makes it possible to deploy them in environments with limited resources such as a laptop, desktop or your own cloud infrastructure, democratizing access to state of the art AI models and helping foster innovation for everyone. ### Usage Below we share some code snippets on how to get quickly started with running the model. First make sure to `pip install -U transformers`, then copy the snippet from the section that is relevant for your usecase. #### Fine-tuning examples You can find fine-tuning notebooks under the [`examples/` directory](https://huggingface.co/google/gemma-7b/tree/main/examples). We provide: * A script to perform Supervised Fine-Tuning (SFT) on UltraChat dataset using [QLoRA](https://huggingface.co/papers/2305.14314) * A script to perform SFT using FSDP on TPU devices * A notebook that you can run on a free-tier Google Colab instance to perform SFT on English quotes dataset #### Running the model on a CPU ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b") model = AutoModelForCausalLM.from_pretrained("google/gemma-7b") input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(**input_text, return_tensors="pt") outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ``` #### Running the model on a single / multi GPU ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b") model = AutoModelForCausalLM.from_pretrained("google/gemma-7b", device_map="auto") input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Running the model on a GPU using different precisions * _Using `torch.float16`_ ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b") model = AutoModelForCausalLM.from_pretrained("google/gemma-7b", device_map="auto", torch_dtype=torch.float16) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` * _Using `torch.bfloat16`_ ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b") model = AutoModelForCausalLM.from_pretrained("google/gemma-7b", device_map="auto", torch_dtype=torch.bfloat16) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Quantized Versions through `bitsandbytes` * _Using 8-bit precision (int8)_ ```python # pip install bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_8bit=True) tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b") model = AutoModelForCausalLM.from_pretrained("google/gemma-7b", quantization_config=quantization_config) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` * _Using 4-bit precision_ ```python # pip install bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_4bit=True) tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b") model = AutoModelForCausalLM.from_pretrained("google/gemma-7b", quantization_config=quantization_config) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Other optimizations * _Flash Attention 2_ First make sure to install `flash-attn` in your environment `pip install flash-attn` ```diff model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, + attn_implementation="flash_attention_2" ).to(0) ``` ### Inputs and outputs * **Input:** Text string, such as a question, a prompt, or a document to be summarized. * **Output:** Generated English-language text in response to the input, such as an answer to a question, or a summary of a document. ## Model Data Data used for model training and how the data was processed. ### Training Dataset These models were trained on a dataset of text data that includes a wide variety of sources, totaling 6 trillion tokens. Here are the key components: * Web Documents: A diverse collection of web text ensures the model is exposed to a broad range of linguistic styles, topics, and vocabulary. Primarily English-language content. * Code: Exposing the model to code helps it to learn the syntax and patterns of programming languages, which improves its ability to generate code or understand code-related questions. * Mathematics: Training on mathematical text helps the model learn logical reasoning, symbolic representation, and to address mathematical queries. The combination of these diverse data sources is crucial for training a powerful language model that can handle a wide variety of different tasks and text formats. ### Data Preprocessing Here are the key data cleaning and filtering methods applied to the training data: * CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was applied at multiple stages in the data preparation process to ensure the exclusion of harmful and illegal content * Sensitive Data Filtering: As part of making Gemma pre-trained models safe and reliable, automated techniques were used to filter out certain personal information and other sensitive data from training sets. * Additional methods: Filtering based on content quality and safely in line with [our policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11). ## Implementation Information Details about the model internals. ### Hardware Gemma was trained using the latest generation of [Tensor Processing Unit (TPU)](https://cloud.google.com/tpu/docs/intro-to-tpu) hardware (TPUv5e). Training large language models requires significant computational power. TPUs, designed specifically for matrix operations common in machine learning, offer several advantages in this domain: * Performance: TPUs are specifically designed to handle the massive computations involved in training LLMs. They can speed up training considerably compared to CPUs. * Memory: TPUs often come with large amounts of high-bandwidth memory, allowing for the handling of large models and batch sizes during training. This can lead to better model quality. * Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for handling the growing complexity of large foundation models. You can distribute training across multiple TPU devices for faster and more efficient processing. * Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective solution for training large models compared to CPU-based infrastructure, especially when considering the time and resources saved due to faster training. * These advantages are aligned with [Google's commitments to operate sustainably](https://sustainability.google/operating-sustainably/). ### Software Training was done using [JAX](https://github.com/google/jax) and [ML Pathways](https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture). JAX allows researchers to take advantage of the latest generation of hardware, including TPUs, for faster and more efficient training of large models. ML Pathways is Google's latest effort to build artificially intelligent systems capable of generalizing across multiple tasks. This is specially suitable for [foundation models](https://ai.google/discover/foundation-models/), including large language models like these ones. Together, JAX and ML Pathways are used as described in the [paper about the Gemini family of models](https://arxiv.org/abs/2312.11805); "the 'single controller' programming model of Jax and Pathways allows a single Python process to orchestrate the entire training run, dramatically simplifying the development workflow." ## Evaluation Model evaluation metrics and results. ### Benchmark Results These models were evaluated against a large collection of different datasets and metrics to cover different aspects of text generation: | Benchmark | Metric | 2B Params | 7B Params | | ------------------------------ | ------------- | ----------- | --------- | | [MMLU](https://arxiv.org/abs/2009.03300) | 5-shot, top-1 | 42.3 | 64.3 | | [HellaSwag](https://arxiv.org/abs/1905.07830) | 0-shot |71.4 | 81.2 | | [PIQA](https://arxiv.org/abs/1911.11641) | 0-shot | 77.3 | 81.2 | | [SocialIQA](https://arxiv.org/abs/1904.09728) | 0-shot | 59.7 | 51.8 | | [BooIQ](https://arxiv.org/abs/1905.10044) | 0-shot | 69.4 | 83.2 | | [WinoGrande](https://arxiv.org/abs/1907.10641) | partial score | 65.4 | 72.3 | | [CommonsenseQA](https://arxiv.org/abs/1811.00937) | 7-shot | 65.3 | 71.3 | | [OpenBookQA](https://arxiv.org/abs/1809.02789) | | 47.8 | 52.8 | | [ARC-e](https://arxiv.org/abs/1911.01547) | | 73.2 | 81.5 | | [ARC-c](https://arxiv.org/abs/1911.01547) | | 42.1 | 53.2 | | [TriviaQA](https://arxiv.org/abs/1705.03551) | 5-shot | 53.2 | 63.4 | | [Natural Questions](https://github.com/google-research-datasets/natural-questions) | 5-shot | - | 23 | | [HumanEval](https://arxiv.org/abs/2107.03374) | pass@1 | 22.0 | 32.3 | | [MBPP](https://arxiv.org/abs/2108.07732) | 3-shot | 29.2 | 44.4 | | [GSM8K](https://arxiv.org/abs/2110.14168) | maj@1 | 17.7 | 46.4 | | [MATH](https://arxiv.org/abs/2108.07732) | 4-shot | 11.8 | 24.3 | | [AGIEval](https://arxiv.org/abs/2304.06364) | | 24.2 | 41.7 | | [BIG-Bench](https://arxiv.org/abs/2206.04615) | | 35.2 | 55.1 | | ------------------------------ | ------------- | ----------- | --------- | | **Average** | | **54.0** | **56.4** | ## Ethics and Safety Ethics and safety evaluation approach and results. ### Evaluation Approach Our evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including: * Text-to-Text Content Safety: Human evaluation on prompts covering safety policies including child sexual abuse and exploitation, harassment, violence and gore, and hate speech. * Text-to-Text Representational Harms: Benchmark against relevant academic datasets such as [WinoBias](https://arxiv.org/abs/1804.06876) and [BBQ Dataset](https://arxiv.org/abs/2110.08193v2). * Memorization: Automated evaluation of memorization of training data, including the risk of personally identifiable information exposure. * Large-scale harm: Tests for "dangerous capabilities," such as chemical, biological, radiological, and nuclear (CBRN) risks. ### Evaluation Results The results of ethics and safety evaluations are within acceptable thresholds for meeting [internal policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11) for categories such as child safety, content safety, representational harms, memorization, large-scale harms. On top of robust internal evaluations, the results of well known safety benchmarks like BBQ, BOLD, Winogender, Winobias, RealToxicity, and TruthfulQA are shown here. | Benchmark | Metric | 2B Params | 7B Params | | ------------------------------ | ------------- | ----------- | --------- | | [RealToxicity](https://arxiv.org/abs/2009.11462) | average | 6.86 | 7.90 | | [BOLD](https://arxiv.org/abs/2101.11718) | | 45.57 | 49.08 | | [CrowS-Pairs](https://aclanthology.org/2020.emnlp-main.154/) | top-1 | 45.82 | 51.33 | | [BBQ Ambig](https://arxiv.org/abs/2110.08193v2) | 1-shot, top-1 | 62.58 | 92.54 | | [BBQ Disambig](https://arxiv.org/abs/2110.08193v2) | top-1 | 54.62 | 71.99 | | [Winogender](https://arxiv.org/abs/1804.09301) | top-1 | 51.25 | 54.17 | | [TruthfulQA](https://arxiv.org/abs/2109.07958) | | 44.84 | 31.81 | | [Winobias 1_2](https://arxiv.org/abs/1804.06876) | | 56.12 | 59.09 | | [Winobias 2_2](https://arxiv.org/abs/1804.06876) | | 91.10 | 92.23 | | [Toxigen](https://arxiv.org/abs/2203.09509) | | 29.77 | 39.59 | | ------------------------------ | ------------- | ----------- | --------- | ## Usage and Limitations These models have certain limitations that users should be aware of. ### Intended Usage Open Large Language Models (LLMs) have a wide range of applications across various industries and domains. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development. * Content Creation and Communication * Text Generation: These models can be used to generate creative text formats such as poems, scripts, code, marketing copy, and email drafts. * Chatbots and Conversational AI: Power conversational interfaces for customer service, virtual assistants, or interactive applications. * Text Summarization: Generate concise summaries of a text corpus, research papers, or reports. * Research and Education * Natural Language Processing (NLP) Research: These models can serve as a foundation for researchers to experiment with NLP techniques, develop algorithms, and contribute to the advancement of the field. * Language Learning Tools: Support interactive language learning experiences, aiding in grammar correction or providing writing practice. * Knowledge Exploration: Assist researchers in exploring large bodies of text by generating summaries or answering questions about specific topics. ### Limitations * Training Data * The quality and diversity of the training data significantly influence the model's capabilities. Biases or gaps in the training data can lead to limitations in the model's responses. * The scope of the training dataset determines the subject areas the model can handle effectively. * Context and Task Complexity * LLMs are better at tasks that can be framed with clear prompts and instructions. Open-ended or highly complex tasks might be challenging. * A model's performance can be influenced by the amount of context provided (longer context generally leads to better outputs, up to a certain point). * Language Ambiguity and Nuance * Natural language is inherently complex. LLMs might struggle to grasp subtle nuances, sarcasm, or figurative language. * Factual Accuracy * LLMs generate responses based on information they learned from their training datasets, but they are not knowledge bases. They may generate incorrect or outdated factual statements. * Common Sense * LLMs rely on statistical patterns in language. They might lack the ability to apply common sense reasoning in certain situations. ### Ethical Considerations and Risks The development of large language models (LLMs) raises several ethical concerns. In creating an open model, we have carefully considered the following: * Bias and Fairness * LLMs trained on large-scale, real-world text data can reflect socio-cultural biases embedded in the training material. These models underwent careful scrutiny, input data pre-processing described and posterior evaluations reported in this card. * Misinformation and Misuse * LLMs can be misused to generate text that is false, misleading, or harmful. * Guidelines are provided for responsible use with the model, see the [Responsible Generative AI Toolkit](http://ai.google.dev/gemma/responsible). * Transparency and Accountability: * This model card summarizes details on the models' architecture, capabilities, limitations, and evaluation processes. * A responsibly developed open model offers the opportunity to share innovation by making LLM technology accessible to developers and researchers across the AI ecosystem. Risks identified and mitigations: * Perpetuation of biases: It's encouraged to perform continuous monitoring (using evaluation metrics, human review) and the exploration of de-biasing techniques during model training, fine-tuning, and other use cases. * Generation of harmful content: Mechanisms and guidelines for content safety are essential. Developers are encouraged to exercise caution and implement appropriate content safety safeguards based on their specific product policies and application use cases. * Misuse for malicious purposes: Technical limitations and developer and end-user education can help mitigate against malicious applications of LLMs. Educational resources and reporting mechanisms for users to flag misuse are provided. Prohibited uses of Gemma models are outlined in the [Gemma Prohibited Use Policy](https://ai.google.dev/gemma/prohibited_use_policy). * Privacy violations: Models were trained on data filtered for removal of PII (Personally Identifiable Information). Developers are encouraged to adhere to privacy regulations with privacy-preserving techniques. ### Benefits At the time of release, this family of models provides high-performance open large language model implementations designed from the ground up for Responsible AI development compared to similarly sized models. Using the benchmark evaluation metrics described in this document, these models have shown to provide superior performance to other, comparably-sized open model alternatives.
Cippppy/my_awesome_model2
Cippppy
2024-02-21T15:43:11Z
6
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-21T15:24:09Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: my_awesome_model2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6933 - Accuracy: 0.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.2 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 247.4414 | 1.0 | 782 | 0.6933 | 0.5 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu118 - Datasets 2.17.1 - Tokenizers 0.15.2
rahuldshetty/gemma-2b-gguf-quantized
rahuldshetty
2024-02-21T15:35:18Z
29
6
transformers
[ "transformers", "gguf", "arxiv:2312.11805", "arxiv:2009.03300", "arxiv:1905.07830", "arxiv:1911.11641", "arxiv:1904.09728", "arxiv:1905.10044", "arxiv:1907.10641", "arxiv:1811.00937", "arxiv:1809.02789", "arxiv:1911.01547", "arxiv:1705.03551", "arxiv:2107.03374", "arxiv:2108.07732", "arxiv:2110.14168", "arxiv:2304.06364", "arxiv:2206.04615", "arxiv:1804.06876", "arxiv:2110.08193", "arxiv:2009.11462", "arxiv:2101.11718", "arxiv:1804.09301", "arxiv:2109.07958", "arxiv:2203.09509", "license:other", "endpoints_compatible", "region:us" ]
null
2024-02-21T14:58:30Z
--- library_name: transformers tags: [] extra_gated_heading: "Access Gemma on Hugging Face" extra_gated_prompt: "To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged-in to Hugging Face and click below. Requests are processed immediately." extra_gated_button_content: "Acknowledge license" license: other license_name: gemma-terms-of-use license_link: https://ai.google.dev/gemma/terms --- GGUF Quantized version of [gemma-2b](https://huggingface.co/google/gemma-2b). | Name | Quant method | Bits | Size | Use case | | ---- | ---- | ---- | ---- | ----- | | [gemma-2b-Q2_K.gguf](https://huggingface.co/rahuldshetty/gemma-2b-gguf-quantized/blob/main/gemma-2b-Q2_K.gguf) | Q2_K | 2 | 900 MB | smallest, significant quality loss - not recommended for most purposes | | [gemma-2b-Q4_K_M.gguf](https://huggingface.co/rahuldshetty/gemma-2b-gguf-quantized/blob/main/gemma-2b-Q4_K_M.gguf) | Q4_K_M | 4 | 1.5 GB | medium, balanced quality - recommended | | [gemma-2b-Q8_0.gguf](https://huggingface.co/rahuldshetty/gemma-2b-gguf-quantized/blob/main/gemma-2b-Q8_0.gguf) | Q8_0 | 8 | 2.67 GB | very large, extremely low quality loss - not recommended| # Gemma Model Card (Taken from Official HF Repo) **Model Page**: [Gemma](https://ai.google.dev/gemma/docs) This model card corresponds to the 2B base version of the Gemma model. You can also visit the model card of the [7B base model](https://huggingface.co/google/gemma-7b), [7B instruct model](https://huggingface.co/google/gemma-7b-it), and [2B instruct model](https://huggingface.co/google/gemma-2b-it). **Resources and Technical Documentation**: * [Responsible Generative AI Toolkit](https://ai.google.dev/responsible) * [Gemma on Kaggle](https://www.kaggle.com/models/google/gemma) * [Gemma on Vertex Model Garden](https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/335?version=gemma-2b-gg-hf) **Terms of Use**: [Terms](https://www.kaggle.com/models/google/gemma/license/consent) **Authors**: Google ## Model Information Summary description and brief definition of inputs and outputs. ### Description Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models. They are text-to-text, decoder-only large language models, available in English, with open weights, pre-trained variants, and instruction-tuned variants. Gemma models are well-suited for a variety of text generation tasks, including question answering, summarization, and reasoning. Their relatively small size makes it possible to deploy them in environments with limited resources such as a laptop, desktop or your own cloud infrastructure, democratizing access to state of the art AI models and helping foster innovation for everyone. ### Usage Below we share some code snippets on how to get quickly started with running the model. First make sure to `pip install -U transformers`, then copy the snippet from the section that is relevant for your usecase. #### Fine-tuning the model You can find fine-tuning scripts and notebook under the [`examples/` directory](https://huggingface.co/google/gemma-7b/tree/main/examples) of [`google/gemma-7b`](https://huggingface.co/google/gemma-7b) repository. To adapt it to this model, simply change the model-id to `google/gemma-2b`. In that repository, we provide: * A script to perform Supervised Fine-Tuning (SFT) on UltraChat dataset using QLoRA * A script to perform SFT using FSDP on TPU devices * A notebook that you can run on a free-tier Google Colab instance to perform SFT on English quotes dataset #### Running the model on a CPU ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b") model = AutoModelForCausalLM.from_pretrained("google/gemma-2b") input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(**input_text, return_tensors="pt") outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ``` #### Running the model on a single / multi GPU ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b") model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", device_map="auto") input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Running the model on a GPU using different precisions * _Using `torch.float16`_ ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b") model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", device_map="auto", torch_dtype=torch.float16) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` * _Using `torch.bfloat16`_ ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b") model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", device_map="auto", torch_dtype=torch.bfloat16) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Quantized Versions through `bitsandbytes` * _Using 8-bit precision (int8)_ ```python # pip install bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_8bit=True) tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b") model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", quantization_config=quantization_config) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` * _Using 4-bit precision_ ```python # pip install bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_4bit=True) tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b") model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", quantization_config=quantization_config) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Other optimizations * _Flash Attention 2_ First make sure to install `flash-attn` in your environment `pip install flash-attn` ```diff model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, + attn_implementation="flash_attention_2" ).to(0) ``` ### Inputs and outputs * **Input:** Text string, such as a question, a prompt, or a document to be summarized. * **Output:** Generated English-language text in response to the input, such as an answer to a question, or a summary of a document. ## Model Data Data used for model training and how the data was processed. ### Training Dataset These models were trained on a dataset of text data that includes a wide variety of sources, totaling 6 trillion tokens. Here are the key components: * Web Documents: A diverse collection of web text ensures the model is exposed to a broad range of linguistic styles, topics, and vocabulary. Primarily English-language content. * Code: Exposing the model to code helps it to learn the syntax and patterns of programming languages, which improves its ability to generate code or understand code-related questions. * Mathematics: Training on mathematical text helps the model learn logical reasoning, symbolic representation, and to address mathematical queries. The combination of these diverse data sources is crucial for training a powerful language model that can handle a wide variety of different tasks and text formats. ### Data Preprocessing Here are the key data cleaning and filtering methods applied to the training data: * CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was applied at multiple stages in the data preparation process to ensure the exclusion of harmful and illegal content * Sensitive Data Filtering: As part of making Gemma pre-trained models safe and reliable, automated techniques were used to filter out certain personal information and other sensitive data from training sets. * Additional methods: Filtering based on content quality and safely in line with [our policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11). ## Implementation Information Details about the model internals. ### Hardware Gemma was trained using the latest generation of [Tensor Processing Unit (TPU)](https://cloud.google.com/tpu/docs/intro-to-tpu) hardware (TPUv5e). Training large language models requires significant computational power. TPUs, designed specifically for matrix operations common in machine learning, offer several advantages in this domain: * Performance: TPUs are specifically designed to handle the massive computations involved in training LLMs. They can speed up training considerably compared to CPUs. * Memory: TPUs often come with large amounts of high-bandwidth memory, allowing for the handling of large models and batch sizes during training. This can lead to better model quality. * Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for handling the growing complexity of large foundation models. You can distribute training across multiple TPU devices for faster and more efficient processing. * Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective solution for training large models compared to CPU-based infrastructure, especially when considering the time and resources saved due to faster training. * These advantages are aligned with [Google's commitments to operate sustainably](https://sustainability.google/operating-sustainably/). ### Software Training was done using [JAX](https://github.com/google/jax) and [ML Pathways](https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/ml-pathways). JAX allows researchers to take advantage of the latest generation of hardware, including TPUs, for faster and more efficient training of large models. ML Pathways is Google's latest effort to build artificially intelligent systems capable of generalizing across multiple tasks. This is specially suitable for [foundation models](https://ai.google/discover/foundation-models/), including large language models like these ones. Together, JAX and ML Pathways are used as described in the [paper about the Gemini family of models](https://arxiv.org/abs/2312.11805); "the 'single controller' programming model of Jax and Pathways allows a single Python process to orchestrate the entire training run, dramatically simplifying the development workflow." ## Evaluation Model evaluation metrics and results. ### Benchmark Results These models were evaluated against a large collection of different datasets and metrics to cover different aspects of text generation: | Benchmark | Metric | 2B Params | 7B Params | | ------------------------------ | ------------- | ----------- | --------- | | [MMLU](https://arxiv.org/abs/2009.03300) | 5-shot, top-1 | 42.3 | 64.3 | | [HellaSwag](https://arxiv.org/abs/1905.07830) | 0-shot |71.4 | 81.2 | | [PIQA](https://arxiv.org/abs/1911.11641) | 0-shot | 77.3 | 81.2 | | [SocialIQA](https://arxiv.org/abs/1904.09728) | 0-shot | 59.7 | 51.8 | | [BooIQ](https://arxiv.org/abs/1905.10044) | 0-shot | 69.4 | 83.2 | | [WinoGrande](https://arxiv.org/abs/1907.10641) | partial score | 65.4 | 72.3 | | [CommonsenseQA](https://arxiv.org/abs/1811.00937) | 7-shot | 65.3 | 71.3 | | [OpenBookQA](https://arxiv.org/abs/1809.02789) | | 47.8 | 52.8 | | [ARC-e](https://arxiv.org/abs/1911.01547) | | 73.2 | 81.5 | | [ARC-c](https://arxiv.org/abs/1911.01547) | | 42.1 | 53.2 | | [TriviaQA](https://arxiv.org/abs/1705.03551) | 5-shot | 53.2 | 63.4 | | [Natural Questions](https://github.com/google-research-datasets/natural-questions) | 5-shot | - | 23 | | [HumanEval](https://arxiv.org/abs/2107.03374) | pass@1 | 22.0 | 32.3 | | [MBPP](https://arxiv.org/abs/2108.07732) | 3-shot | 29.2 | 44.4 | | [GSM8K](https://arxiv.org/abs/2110.14168) | maj@1 | 17.7 | 46.4 | | [MATH](https://arxiv.org/abs/2108.07732) | 4-shot | 11.8 | 24.3 | | [AGIEval](https://arxiv.org/abs/2304.06364) | | 24.2 | 41.7 | | [BIG-Bench](https://arxiv.org/abs/2206.04615) | | 35.2 | 55.1 | | ------------------------------ | ------------- | ----------- | --------- | | **Average** | | **54.0** | **56.4** | ## Ethics and Safety Ethics and safety evaluation approach and results. ### Evaluation Approach Our evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including: * Text-to-Text Content Safety: Human evaluation on prompts covering safety policies including child sexual abuse and exploitation, harassment, violence and gore, and hate speech. * Text-to-Text Representational Harms: Benchmark against relevant academic datasets such as [WinoBias](https://arxiv.org/abs/1804.06876) and [BBQ Dataset](https://arxiv.org/abs/2110.08193v2). * Memorization: Automated evaluation of memorization of training data, including the risk of personally identifiable information exposure. * Large-scale harm: Tests for "dangerous capabilities," such as chemical, biological, radiological, and nuclear (CBRN) risks. ### Evaluation Results The results of ethics and safety evaluations are within acceptable thresholds for meeting [internal policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11) for categories such as child safety, content safety, representational harms, memorization, large-scale harms. On top of robust internal evaluations, the results of well known safety benchmarks like BBQ, BOLD, Winogender, Winobias, RealToxicity, and TruthfulQA are shown here. | Benchmark | Metric | 2B Params | 7B Params | | ------------------------------ | ------------- | ----------- | --------- | | [RealToxicity](https://arxiv.org/abs/2009.11462) | average | 6.86 | 7.90 | | [BOLD](https://arxiv.org/abs/2101.11718) | | 45.57 | 49.08 | | [CrowS-Pairs](https://aclanthology.org/2020.emnlp-main.154/) | top-1 | 45.82 | 51.33 | | [BBQ Ambig](https://arxiv.org/abs/2110.08193v2) | 1-shot, top-1 | 62.58 | 92.54 | | [BBQ Disambig](https://arxiv.org/abs/2110.08193v2) | top-1 | 54.62 | 71.99 | | [Winogender](https://arxiv.org/abs/1804.09301) | top-1 | 51.25 | 54.17 | | [TruthfulQA](https://arxiv.org/abs/2109.07958) | | 44.84 | 31.81 | | [Winobias 1_2](https://arxiv.org/abs/1804.06876) | | 56.12 | 59.09 | | [Winobias 2_2](https://arxiv.org/abs/1804.06876) | | 91.10 | 92.23 | | [Toxigen](https://arxiv.org/abs/2203.09509) | | 29.77 | 39.59 | | ------------------------------ | ------------- | ----------- | --------- | ## Usage and Limitations These models have certain limitations that users should be aware of. ### Intended Usage Open Large Language Models (LLMs) have a wide range of applications across various industries and domains. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development. * Content Creation and Communication * Text Generation: These models can be used to generate creative text formats such as poems, scripts, code, marketing copy, and email drafts. * Chatbots and Conversational AI: Power conversational interfaces for customer service, virtual assistants, or interactive applications. * Text Summarization: Generate concise summaries of a text corpus, research papers, or reports. * Research and Education * Natural Language Processing (NLP) Research: These models can serve as a foundation for researchers to experiment with NLP techniques, develop algorithms, and contribute to the advancement of the field. * Language Learning Tools: Support interactive language learning experiences, aiding in grammar correction or providing writing practice. * Knowledge Exploration: Assist researchers in exploring large bodies of text by generating summaries or answering questions about specific topics. ### Limitations * Training Data * The quality and diversity of the training data significantly influence the model's capabilities. Biases or gaps in the training data can lead to limitations in the model's responses. * The scope of the training dataset determines the subject areas the model can handle effectively. * Context and Task Complexity * LLMs are better at tasks that can be framed with clear prompts and instructions. Open-ended or highly complex tasks might be challenging. * A model's performance can be influenced by the amount of context provided (longer context generally leads to better outputs, up to a certain point). * Language Ambiguity and Nuance * Natural language is inherently complex. LLMs might struggle to grasp subtle nuances, sarcasm, or figurative language. * Factual Accuracy * LLMs generate responses based on information they learned from their training datasets, but they are not knowledge bases. They may generate incorrect or outdated factual statements. * Common Sense * LLMs rely on statistical patterns in language. They might lack the ability to apply common sense reasoning in certain situations. ### Ethical Considerations and Risks The development of large language models (LLMs) raises several ethical concerns. In creating an open model, we have carefully considered the following: * Bias and Fairness * LLMs trained on large-scale, real-world text data can reflect socio-cultural biases embedded in the training material. These models underwent careful scrutiny, input data pre-processing described and posterior evaluations reported in this card. * Misinformation and Misuse * LLMs can be misused to generate text that is false, misleading, or harmful. * Guidelines are provided for responsible use with the model, see the [Responsible Generative AI Toolkit](http://ai.google.dev/gemma/responsible). * Transparency and Accountability: * This model card summarizes details on the models' architecture, capabilities, limitations, and evaluation processes. * A responsibly developed open model offers the opportunity to share innovation by making LLM technology accessible to developers and researchers across the AI ecosystem. Risks identified and mitigations: * Perpetuation of biases: It's encouraged to perform continuous monitoring (using evaluation metrics, human review) and the exploration of de-biasing techniques during model training, fine-tuning, and other use cases. * Generation of harmful content: Mechanisms and guidelines for content safety are essential. Developers are encouraged to exercise caution and implement appropriate content safety safeguards based on their specific product policies and application use cases. * Misuse for malicious purposes: Technical limitations and developer and end-user education can help mitigate against malicious applications of LLMs. Educational resources and reporting mechanisms for users to flag misuse are provided. Prohibited uses of Gemma models are outlined in the [Gemma Prohibited Use Policy](https://ai.google.dev/gemma/prohibited_use_policy). * Privacy violations: Models were trained on data filtered for removal of PII (Personally Identifiable Information). Developers are encouraged to adhere to privacy regulations with privacy-preserving techniques. ### Benefits At the time of release, this family of models provides high-performance open large language model implementations designed from the ground up for Responsible AI development compared to similarly sized models. Using the benchmark evaluation metrics described in this document, these models have shown to provide superior performance to other, comparably-sized open model alternatives.
ryusangwon/9552_Llama-2-7b-hf
ryusangwon
2024-02-21T15:22:56Z
1
0
peft
[ "peft", "safetensors", "generated_from_trainer", "dataset:samsum", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2024-02-21T15:22:51Z
--- base_model: meta-llama/Llama-2-7b-hf tags: - generated_from_trainer datasets: - samsum model-index: - name: 9552_Llama-2-7b-hf results: [] library_name: peft --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 9552_Llama-2-7b-hf This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the samsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - PEFT 0.4.0 - Transformers 4.36.2 - Pytorch 2.0.1+cu117 - Datasets 2.15.0 - Tokenizers 0.15.0
JoseLuis95/spanish-t5-small-neutralization
JoseLuis95
2024-02-21T15:22:28Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "simplification", "generated_from_trainer", "base_model:flax-community/spanish-t5-small", "base_model:finetune:flax-community/spanish-t5-small", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-21T09:34:31Z
--- license: mit base_model: flax-community/spanish-t5-small tags: - simplification - generated_from_trainer metrics: - bleu model-index: - name: spanish-t5-small-neutralization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanish-t5-small-neutralization This model is a fine-tuned version of [flax-community/spanish-t5-small](https://huggingface.co/flax-community/spanish-t5-small) on [hackathon-pln-es/neutral-es dataset](https://huggingface.co/datasets/hackathon-pln-es/neutral-es). It achieves the following results on the evaluation set: - Loss: 0.1364 - Bleu: 85.9727 - Gen Len: 14.6667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 440 | 0.1866 | 84.2055 | 14.7604 | | 0.3 | 2.0 | 880 | 0.1364 | 85.9727 | 14.6667 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
leelandzhang/integration
leelandzhang
2024-02-21T15:21:46Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "region:us" ]
null
2024-02-21T15:21:20Z
--- library_name: peft base_model: mistralai/Mistral-7B-v0.1 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.8.2
whitefox123/whisper-ar-14
whitefox123
2024-02-21T15:21:20Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "hi", "dataset:mozilla-foundation/common_voice_11_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-02-21T14:28:03Z
--- language: - hi license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Hi - Sanchit Gandhi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: default split: test args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 265.44144144144144 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Hi - Sanchit Gandhi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1023 - Wer: 265.4414 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0706 | 1.6 | 1000 | 0.1023 | 265.4414 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.17.1 - Tokenizers 0.15.2
CatBarks/GPT2ES_ClassWeighted2_4bce_tokenizer
CatBarks
2024-02-21T15:21:17Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-21T15:21:16Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
CatBarks/GPT2ES_ClassWeighted2_4bce_model
CatBarks
2024-02-21T15:21:15Z
6
0
transformers
[ "transformers", "safetensors", "gpt2", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2024-02-21T15:20:16Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
JoseLuis95/mbart-en-translation
JoseLuis95
2024-02-21T15:20:50Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "mbart", "text2text-generation", "simplification", "generated_from_trainer", "base_model:facebook/mbart-large-50", "base_model:finetune:facebook/mbart-large-50", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-21T14:22:15Z
--- license: mit base_model: facebook/mbart-large-50 tags: - simplification - generated_from_trainer metrics: - bleu model-index: - name: mbart-en-translation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-en-translation This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on [watermelonhydro/es_en_2999 dataset](https://huggingface.co/datasets/watermelonhydro/es_en_2999). It achieves the following results on the evaluation set: - Loss: 1.2646 - Bleu: 51.3603 - Gen Len: 51.072 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 282 | 1.0701 | 46.0434 | 49.7947 | | 1.2218 | 2.0 | 564 | 0.9959 | 49.3118 | 50.584 | | 1.2218 | 3.0 | 846 | 1.0847 | 50.359 | 51.352 | | 0.311 | 4.0 | 1128 | 1.2012 | 50.6484 | 50.9733 | | 0.311 | 5.0 | 1410 | 1.2646 | 51.3603 | 51.072 | ### Framework versions - Transformers 4.38.0 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
RupeshVavilla/my-pet-dog
RupeshVavilla
2024-02-21T15:20:49Z
2
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-02-21T15:13:11Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Dog Dreambooth model trained by RupeshVavilla following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: GoX19932gAS Sample pictures of this concept: ![0](https://huggingface.co/RupeshVavilla/my-pet-dog/resolve/main/sample_images/test.png)
Weni/ZeroShot-3.3.1-Mistral-7b-Multilanguage-3.2.0
Weni
2024-02-21T15:18:38Z
0
0
peft
[ "peft", "safetensors", "mistral", "trl", "sft", "generated_from_trainer", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.2", "license:apache-2.0", "region:us" ]
null
2024-02-18T14:57:54Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer base_model: mistralai/Mistral-7B-Instruct-v0.2 model-index: - name: ZeroShot-3.3.1-Mistral-7b-Multilanguage-3.1.0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ZeroShot-3.3.1-Mistral-7b-Multilanguage-3.1.0 This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3819 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7016 | 0.03 | 50 | 0.6892 | | 0.53 | 0.06 | 100 | 0.5066 | | 0.4652 | 0.09 | 150 | 0.4579 | | 0.4299 | 0.12 | 200 | 0.4434 | | 0.4337 | 0.16 | 250 | 0.4362 | | 0.4213 | 0.19 | 300 | 0.4306 | | 0.4207 | 0.22 | 350 | 0.4242 | | 0.4161 | 0.25 | 400 | 0.4199 | | 0.418 | 0.28 | 450 | 0.4170 | | 0.4 | 0.31 | 500 | 0.4134 | | 0.4119 | 0.34 | 550 | 0.4105 | | 0.3993 | 0.37 | 600 | 0.4075 | | 0.394 | 0.4 | 650 | 0.4048 | | 0.389 | 0.43 | 700 | 0.4023 | | 0.391 | 0.47 | 750 | 0.4004 | | 0.4052 | 0.5 | 800 | 0.3978 | | 0.3817 | 0.53 | 850 | 0.3960 | | 0.3781 | 0.56 | 900 | 0.3940 | | 0.3889 | 0.59 | 950 | 0.3920 | | 0.3923 | 0.62 | 1000 | 0.3902 | | 0.3759 | 0.65 | 1050 | 0.3891 | | 0.3825 | 0.68 | 1100 | 0.3878 | | 0.3832 | 0.71 | 1150 | 0.3863 | | 0.3726 | 0.74 | 1200 | 0.3851 | | 0.3826 | 0.78 | 1250 | 0.3844 | | 0.3822 | 0.81 | 1300 | 0.3836 | | 0.3764 | 0.84 | 1350 | 0.3829 | | 0.385 | 0.87 | 1400 | 0.3824 | | 0.3755 | 0.9 | 1450 | 0.3821 | | 0.3621 | 0.93 | 1500 | 0.3820 | | 0.3749 | 0.96 | 1550 | 0.3819 | | 0.3778 | 0.99 | 1600 | 0.3819 | ### Framework versions - PEFT 0.8.2 - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
chosenone80/bert-ner-test-2
chosenone80
2024-02-21T15:17:59Z
59
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-02-21T15:14:13Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_keras_callback model-index: - name: chosenone80/bert-ner-test-2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # chosenone80/bert-ner-test-2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1789 - Validation Loss: 0.0707 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 878, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1789 | 0.0707 | 0 | ### Framework versions - Transformers 4.37.2 - TensorFlow 2.15.0 - Datasets 2.17.1 - Tokenizers 0.15.2
brittlewis12/gemma-2b-GGUF
brittlewis12
2024-02-21T15:11:39Z
211
0
null
[ "gguf", "text-generation", "en", "arxiv:2009.03300", "arxiv:1905.07830", "arxiv:1911.11641", "arxiv:1904.09728", "arxiv:1905.10044", "arxiv:1907.10641", "arxiv:1811.00937", "arxiv:1809.02789", "arxiv:1911.01547", "arxiv:1705.03551", "arxiv:2107.03374", "arxiv:2108.07732", "arxiv:2110.14168", "arxiv:2304.06364", "arxiv:2206.04615", "arxiv:2009.11462", "arxiv:2101.11718", "arxiv:2110.08193", "arxiv:1804.09301", "arxiv:2109.07958", "arxiv:1804.06876", "arxiv:2203.09509", "base_model:google/gemma-2b", "base_model:quantized:google/gemma-2b", "license:other", "region:us" ]
text-generation
2024-02-21T14:32:05Z
--- base_model: google/gemma-2b inference: false language: - en model_creator: google model_name: gemma-2b model_type: gemma pipeline_tag: text-generation license: other license_name: gemma-terms-of-use license_link: https://ai.google.dev/gemma/terms quantized_by: brittlewis12 --- # Gemma 2B GGUF **Original model**: [gemma-2b](https://huggingface.co/google/gemma-2b) **Model creator**: [google](https://huggingface.co/google) This repo contains GGUF format model files for Google’s Gemma-2B. > Gemma is a family of lightweight, state-of-the-art open models from Google, > built from the same research and technology used to create the Gemini models. > They are text-to-text, decoder-only large language models, available in English, > with open weights, pre-trained variants, and instruction-tuned variants. Gemma > models are well-suited for a variety of text generation tasks, including > question answering, summarization, and reasoning. Their relatively small size > makes it possible to deploy them in environments with limited resources such as > a laptop, desktop or your own cloud infrastructure, democratizing access to > state of the art AI models and helping foster innovation for everyone. Learn more on Google’s [Model page](https://ai.google.dev/gemma/docs). ### What is GGUF? GGUF is a file format for representing AI models. It is the third version of the format, introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Converted using llama.cpp build 2226 (revision [eccd7a2](https://github.com/ggerganov/llama.cpp/commit/eccd7a26ddbff19e4b8805648f5f14c501957859)) --- ## Download & run with [cnvrs](https://twitter.com/cnvrsai) on iPhone, iPad, and Mac! ![cnvrs.ai](https://pbs.twimg.com/profile_images/1744049151241797632/0mIP-P9e_400x400.jpg) [cnvrs](https://testflight.apple.com/join/sFWReS7K) is the best app for private, local AI on your device: - create & save **Characters** with custom system prompts & temperature settings - download and experiment with any **GGUF model** you can [find on HuggingFace](https://huggingface.co/models?library=gguf)! - make it your own with custom **Theme colors** - powered by Metal ⚡️ & [Llama.cpp](https://github.com/ggerganov/llama.cpp), with **haptics** during response streaming! - **try it out** yourself today, on [Testflight](https://testflight.apple.com/join/sFWReS7K)! - follow [cnvrs on twitter](https://twitter.com/cnvrsai) to stay up to date --- ## Original Model Evaluation | Benchmark | Metric | 2B Params | 7B Params | | ------------------------------ | ------------- | ----------- | --------- | | [MMLU](https://arxiv.org/abs/2009.03300) | 5-shot, top-1 | 42.3 | 64.3 | | [HellaSwag](https://arxiv.org/abs/1905.07830) | 0-shot |71.4 | 81.2 | | [PIQA](https://arxiv.org/abs/1911.11641) | 0-shot | 77.3 | 81.2 | | [SocialIQA](https://arxiv.org/abs/1904.09728) | 0-shot | 59.7 | 51.8 | | [BooIQ](https://arxiv.org/abs/1905.10044) | 0-shot | 69.4 | 83.2 | | [WinoGrande](https://arxiv.org/abs/1907.10641) | partial score | 65.4 | 72.3 | | [CommonsenseQA](https://arxiv.org/abs/1811.00937) | 7-shot | 65.3 | 71.3 | | [OpenBookQA](https://arxiv.org/abs/1809.02789) | | 47.8 | 52.8 | | [ARC-e](https://arxiv.org/abs/1911.01547) | | 73.2 | 81.5 | | [ARC-c](https://arxiv.org/abs/1911.01547) | | 42.1 | 53.2 | | [TriviaQA](https://arxiv.org/abs/1705.03551) | 5-shot | 53.2 | 63.4 | | [Natural Questions](https://github.com/google-research-datasets/natural-questions) | 5-shot | - | 23 | | [HumanEval](https://arxiv.org/abs/2107.03374) | pass@1 | 22.0 | 32.3 | | [MBPP](https://arxiv.org/abs/2108.07732) | 3-shot | 29.2 | 44.4 | | [GSM8K](https://arxiv.org/abs/2110.14168) | maj@1 | 17.7 | 46.4 | | [MATH](https://arxiv.org/abs/2108.07732) | 4-shot | 11.8 | 24.3 | | [AGIEval](https://arxiv.org/abs/2304.06364) | | 24.2 | 41.7 | | [BIG-Bench](https://arxiv.org/abs/2206.04615) | | 35.2 | 55.1 | | **Average** | | **54.0** | **56.4** | | Benchmark | Metric | 2B Params | 7B Params | | ------------------------------ | ------------- | ----------- | --------- | | [RealToxicity](https://arxiv.org/abs/2009.11462) | average | 6.86 | 7.90 | | [BOLD](https://arxiv.org/abs/2101.11718) | | 45.57 | 49.08 | | [CrowS-Pairs](https://aclanthology.org/2020.emnlp-main.154/) | top-1 | 45.82 | 51.33 | | [BBQ Ambig](https://arxiv.org/abs/2110.08193v2) | 1-shot, top-1 | 62.58 | 92.54 | | [BBQ Disambig](https://arxiv.org/abs/2110.08193v2) | top-1 | 54.62 | 71.99 | | [Winogender](https://arxiv.org/abs/1804.09301) | top-1 | 51.25 | 54.17 | | [TruthfulQA](https://arxiv.org/abs/2109.07958) | | 44.84 | 31.81 | | [Winobias 1_2](https://arxiv.org/abs/1804.06876) | | 56.12 | 59.09 | | [Winobias 2_2](https://arxiv.org/abs/1804.06876) | | 91.10 | 92.23 | | [Toxigen](https://arxiv.org/abs/2203.09509) | | 29.77 | 39.59 |
FerchoPez/hola
FerchoPez
2024-02-21T15:11:29Z
0
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:stabilityai/stable-cascade", "base_model:adapter:stabilityai/stable-cascade", "license:apache-2.0", "region:us" ]
text-to-image
2024-02-21T15:11:26Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: erase sky output: url: images/zagreb_cathedral copia.jpeg base_model: stabilityai/stable-cascade instance_prompt: building license: apache-2.0 --- # zagreb <Gallery /> ## Trigger words You should use `building` to trigger the image generation. ## Download model [Download](/FerchoPez/hola/tree/main) them in the Files & versions tab.
Ayus077BCT014Bhandari/vartat5-using-100K
Ayus077BCT014Bhandari
2024-02-21T15:05:53Z
5
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-21T13:02:58Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Rugvidh/my-pet-dog
Rugvidh
2024-02-21T15:03:34Z
1
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-02-21T14:59:11Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Dog Dreambooth model trained by Rugvidh following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: GoX19932gAS Sample pictures of this concept: ![0](https://huggingface.co/Rugvidh/my-pet-dog/resolve/main/sample_images/download.jpeg)
VavillaRupesh/my-pet-dog
VavillaRupesh
2024-02-21T15:00:56Z
8
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-02-21T14:56:50Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Dog Dreambooth model trained by VavillaRupesh following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: GoX19932gAS Sample pictures of this concept: ![0](https://huggingface.co/VavillaRupesh/my-pet-dog/resolve/main/sample_images/xzg(2).jpg) ![1](https://huggingface.co/VavillaRupesh/my-pet-dog/resolve/main/sample_images/xzg(5).jpg) ![2](https://huggingface.co/VavillaRupesh/my-pet-dog/resolve/main/sample_images/xzg(3).jpg) ![3](https://huggingface.co/VavillaRupesh/my-pet-dog/resolve/main/sample_images/xzg(1).jpg) ![4](https://huggingface.co/VavillaRupesh/my-pet-dog/resolve/main/sample_images/xzg(4).jpg)
abhinavkulkarni/mosaicml-mpt-7b-chat-w4-g128-awq
abhinavkulkarni
2024-02-21T14:59:51Z
11
0
transformers
[ "transformers", "pytorch", "safetensors", "mpt", "text-generation", "MosaicML", "AWQ", "custom_code", "license:cc-by-sa-3.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-07-05T07:20:39Z
--- license: cc-by-sa-3.0 tags: - MosaicML - AWQ inference: false --- # MPT-7B-Chat (4-bit 128g AWQ Quantized) [MPT-7B-Chat](https://huggingface.co/mosaicml/mpt-7b-chat) is a chatbot-like model for dialogue generation. This model is a 4-bit 128 group size AWQ quantized model. For more information about AWQ quantization, please click [here](https://github.com/mit-han-lab/llm-awq). ## Model Date July 5, 2023 ## Model License Please refer to original MPT model license ([link](https://huggingface.co/mosaicml/mpt-7b-chat)). Please refer to the AWQ quantization license ([link](https://github.com/llm-awq/blob/main/LICENSE)). ## CUDA Version This model was successfully tested on CUDA driver v530.30.02 and runtime v11.7 with Python v3.10.11. Please note that AWQ requires NVIDIA GPUs with compute capability of `8.0` or higher. For Docker users, the `nvcr.io/nvidia/pytorch:23.06-py3` image is runtime v12.1 but otherwise the same as the configuration above and has also been verified to work. ## How to Use ```bash git clone https://github.com/mit-han-lab/llm-awq \ && cd llm-awq \ && git checkout f084f40bd996f3cf3a0633c1ad7d9d476c318aaa \ && pip install -e . \ && cd awq/kernels \ && python setup.py install ``` ```python import time import torch from awq.quantize.quantizer import real_quantize_model_weight from transformers import AutoModelForCausalLM, AutoConfig, AutoTokenizer, TextStreamer from accelerate import init_empty_weights, load_checkpoint_and_dispatch from huggingface_hub import snapshot_download model_name = "abhinavkulkarni/mosaicml-mpt-7b-chat-w4-g128-awq" # Config config = AutoConfig.from_pretrained(model_name, trust_remote_code=True) # Tokenizer try: tokenizer = AutoTokenizer.from_pretrained(config.tokenizer_name, trust_remote_code=True) except: tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False, trust_remote_code=True) streamer = TextStreamer(tokenizer, skip_special_tokens=True) # Model w_bit = 4 q_config = { "zero_point": True, "q_group_size": 128, } load_quant = snapshot_download(model_name) with init_empty_weights(): model = AutoModelForCausalLM.from_config(config=config, torch_dtype=torch.float16, trust_remote_code=True) real_quantize_model_weight(model, w_bit=w_bit, q_config=q_config, init_only=True) model.tie_weights() model = load_checkpoint_and_dispatch(model, load_quant, device_map="balanced") # Inference prompt = f'''What is the difference between nuclear fusion and fission? ###Response:''' input_ids = tokenizer(prompt, return_tensors='pt').input_ids.cuda() output = model.generate( inputs=input_ids, temperature=0.7, max_new_tokens=512, top_p=0.15, top_k=0, repetition_penalty=1.1, eos_token_id=tokenizer.eos_token_id, streamer=streamer) ``` ## Evaluation This evaluation was done using [LM-Eval](https://github.com/EleutherAI/lm-evaluation-harness). [MPT-7B-Chat](https://huggingface.co/mosaicml/mpt-7b-chat) | Task |Version| Metric | Value | |Stderr| |--------|------:|---------------|------:|---|------| |wikitext| 1|word_perplexity|13.5936| | | | | |byte_perplexity| 1.6291| | | | | |bits_per_byte | 0.7040| | | [MPT-7B-Chat (4-bit 128-group AWQ)](https://huggingface.co/abhinavkulkarni/mosiacml-mpt-7b-chat-w4-g128-awq) | Task |Version| Metric | Value | |Stderr| |--------|------:|---------------|------:|---|------| |wikitext| 1|word_perplexity|14.0922| | | | | |byte_perplexity| 1.6401| | | | | |bits_per_byte | 0.7138| | | ## Acknowledgements The MPT model was originally finetuned by Sam Havens and the MosaicML NLP team. Please cite this model using the following format: ``` @online{MosaicML2023Introducing, author = {MosaicML NLP Team}, title = {Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs}, year = {2023}, url = {www.mosaicml.com/blog/mpt-7b}, note = {Accessed: 2023-03-28}, % change this date urldate = {2023-03-28} % change this date } ``` The model was quantized with AWQ technique. If you find AWQ useful or relevant to your research, please kindly cite the paper: ``` @article{lin2023awq, title={AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration}, author={Lin, Ji and Tang, Jiaming and Tang, Haotian and Yang, Shang and Dang, Xingyu and Han, Song}, journal={arXiv}, year={2023} } ```
Vasanth/gemma-chatbot
Vasanth
2024-02-21T14:59:51Z
3
2
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:google/gemma-2b-it", "base_model:adapter:google/gemma-2b-it", "license:other", "region:us" ]
null
2024-02-21T14:53:58Z
--- license: other library_name: peft tags: - trl - sft - generated_from_trainer base_model: google/gemma-2b-it model-index: - name: gemma-chatbot results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gemma-chatbot This model is a fine-tuned version of [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it) on the None dataset. ## Model description This model is finetuned on a Customer Support chat data to act like a customer support AI ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 250 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.8.2 - Transformers 4.39.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
Vargol/sdxl-lightning-4-steps
Vargol
2024-02-21T14:59:37Z
5
2
diffusers
[ "diffusers", "safetensors", "license:openrail++", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2024-02-21T14:48:10Z
--- license: openrail++ --- This is a copy of the unet 4 step version of https://huggingface.co/ByteDance/SDXL-Lightning with the SDXL base model other bits an madebyollin's fp16 bit fixed SDXL frankensteined together This copy has been created simply for my convience.a
AlisaMenekse/BCPErrorCategoriesTest10kNewDataFormat
AlisaMenekse
2024-02-21T14:56:52Z
0
0
null
[ "safetensors", "autotrain", "text-generation", "conversational", "license:other", "endpoints_compatible", "region:us" ]
text-generation
2024-02-21T14:56:46Z
--- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
wladimir/a2c-PandaPickAndPlace-v3
wladimir
2024-02-21T14:55:50Z
2
0
stable-baselines3
[ "stable-baselines3", "PandaPickAndPlace-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-02-21T14:51:20Z
--- library_name: stable-baselines3 tags: - PandaPickAndPlace-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaPickAndPlace-v3 type: PandaPickAndPlace-v3 metrics: - type: mean_reward value: -50.00 +/- 0.00 name: mean_reward verified: false --- # **A2C** Agent playing **PandaPickAndPlace-v3** This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
KoljaB/XTTS_Lasinya
KoljaB
2024-02-21T14:40:47Z
136
1
transformers
[ "transformers", "license:other", "endpoints_compatible", "region:us" ]
null
2024-02-21T10:02:41Z
--- license: other license_name: coqui-license-1.0.0 license_link: https://coqui.ai/cpml ---
balacheran/my-pet-horse
balacheran
2024-02-21T14:35:08Z
0
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-02-21T14:31:16Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Horse Dreambooth model trained by balacheran following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: GoX19932gAS Sample pictures of this concept: ![0](https://huggingface.co/balacheran/my-pet-horse/resolve/main/sample_images/bcv_(4).jpg)
nopainkiller/Gemma-2B-GGUF
nopainkiller
2024-02-21T14:34:49Z
8
0
null
[ "gguf", "license:other", "endpoints_compatible", "region:us" ]
null
2024-02-21T14:12:31Z
--- license: other license_name: gemma-terms-of-use license_link: LICENSE --- DO NOT Use Yet. It is not functioning with llama.cpp somehow with error "llama_model_load: error loading model: create_tensor: tensor 'output.weight' not found"
breadontoast/Vorleser
breadontoast
2024-02-21T14:27:22Z
0
0
null
[ "license:cc-by-nc-nd-3.0", "region:us" ]
null
2024-02-21T14:04:49Z
--- license: cc-by-nc-nd-3.0 ---
mu0gum/AIFT-42dot_LLM-SFT-1.3B-ao-instruct-all-v1.1
mu0gum
2024-02-21T14:21:25Z
55
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-21T14:06:40Z
--- license: cc-by-nc-4.0 --- # AIFT-42dot-LLM-PLM-1.3B-ao-instruct-all-v1.11 베이스 모델 : 42dot/42dot_LLM-SFT-1.3B 학습 데이터 : 자체 제작한 Open Orca 스타일 데이터셋 약 48,000건 (중복 제거 및 데이터 분포 조정) 학습 방법 : Full finetuning epoch : 3 ## ko-lm-evaluation-harness(5-shot) |kobest_boolq|kobest_copa|kobest_hellaswag|pawsx_ko| |--|--|--|--| |0.52065527065527|0.721|0.466|0.5475| ## Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.0.0 - Tokenizers 0.15.0
alex-miller/nyt-cat
alex-miller
2024-02-21T14:19:48Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "dataset:dstefa/New_York_Times_Topics", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-19T20:39:51Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - dstefa/New_York_Times_Topics metrics: - accuracy model-index: - name: DistilBERT base classify news topics - Devinit results: - task: name: Text Classification type: text-classification dataset: name: New York Times Topics type: dstefa/New_York_Times_Topics metrics: - name: Accuracy type: accuracy value: 0.913482481060606 widget: - text: "Insurers: Costs Would Skyrocket Under House Health Bill." --- # DistilBERT base classify news topics - Devinit This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the New York Times Topics dataset. It achieves the following results on the evaluation set: - Loss: 0.2871 - Accuracy: 0.9135 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.386 | 1.0 | 1340 | 0.3275 | 0.8921 | | 0.2833 | 2.0 | 2680 | 0.2840 | 0.9033 | | 0.2411 | 3.0 | 4020 | 0.2694 | 0.9102 | | 0.2069 | 4.0 | 5360 | 0.2665 | 0.9114 | | 0.1796 | 5.0 | 6700 | 0.2657 | 0.9128 | | 0.1636 | 6.0 | 8040 | 0.2674 | 0.9142 | | 0.144 | 7.0 | 9380 | 0.2761 | 0.9129 | | 0.1277 | 8.0 | 10720 | 0.2820 | 0.9125 | | 0.1201 | 9.0 | 12060 | 0.2853 | 0.9136 | | 0.1104 | 10.0 | 13400 | 0.2871 | 0.9135 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0