modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
great0001/07033457-a0a9-421e-b394-e7c68192121a
great0001
2025-01-15T13:05:32Z
17
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct", "base_model:adapter:VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct", "license:llama3.1", "region:us" ]
null
2025-01-15T12:59:03Z
--- library_name: peft license: llama3.1 base_model: VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 07033457-a0a9-421e-b394-e7c68192121a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 076b950e817955d5_train_data.json ds_type: json format: custom path: /workspace/input_data/076b950e817955d5_train_data.json type: field_instruction: document_description field_output: generated_text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: great0001/07033457-a0a9-421e-b394-e7c68192121a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/076b950e817955d5_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 22a9c3e5-2d1c-4708-a824-5e8c2b882e45 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 22a9c3e5-2d1c-4708-a824-5e8c2b882e45 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 07033457-a0a9-421e-b394-e7c68192121a This model is a fine-tuned version of [VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct](https://huggingface.co/VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2990 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.1896 | 0.0002 | 1 | 1.3592 | | 1.5352 | 0.0005 | 3 | 1.3583 | | 1.5301 | 0.0009 | 6 | 1.3463 | | 1.2542 | 0.0014 | 9 | 1.2990 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
roleplaiapp/Llama-3.3-70B-Instruct-Q4_K_S-GGUF
roleplaiapp
2025-01-15T13:04:27Z
29
0
transformers
[ "transformers", "gguf", "llama-cpp", "Llama-3.3-70B-Instruct", "Q4_K_S", "meta-llama", "code", "math", "chat", "roleplay", "text-generation", "safetensors", "nlp", "en", "fr", "it", "pt", "hi", "es", "th", "de", "base_model:meta-llama/Llama-3.1-70B", "base_model:quantized:meta-llama/Llama-3.1-70B", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-01-15T12:58:15Z
--- library_name: transformers language: - en - fr - it - pt - hi - es - th - de base_model: - meta-llama/Llama-3.1-70B tags: - llama-cpp - Llama-3.3-70B-Instruct - gguf - Q4_K_S - llama-cpp - gguf - meta-llama - code - math - chat - roleplay - text-generation - safetensors - nlp - code pipeline_tag: text-generation --- # roleplaiapp/Llama-3.3-70B-Instruct-Q4_K_S-GGUF **Repo:** `roleplaiapp/Llama-3.3-70B-Instruct-Q4_K_S-GGUF` **Original Model:** `Llama-3.3-70B-Instruct` **Organization:** `meta-llama` **Quantized File:** `llama-3.3-70b-instruct-q4_k_s.gguf` **Quantization:** `GGUF` **Quantization Method:** `Q4_K_SL` **Use Imatrix:** `False` **Split Model:** `False` ## Overview This is an GGUF Q4_K_S quantized version of [Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct). ## Quantization By I often have idle A100 GPUs while building/testing and training the RP app, so I put them to use quantizing models. I hope the community finds these quantizations useful. Andrew Webby @ [RolePlai](https://roleplai.app/)
Kort/Cm12
Kort
2025-01-15T13:04:08Z
52
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-15T12:09:13Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
prxy5608/01a1a26c-2d52-45e8-839d-acf6ac4d32f0
prxy5608
2025-01-15T13:04:03Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:scb10x/llama-3-typhoon-v1.5-8b-instruct", "base_model:adapter:scb10x/llama-3-typhoon-v1.5-8b-instruct", "license:llama3", "region:us" ]
null
2025-01-15T12:01:30Z
--- library_name: peft license: llama3 base_model: scb10x/llama-3-typhoon-v1.5-8b-instruct tags: - axolotl - generated_from_trainer model-index: - name: 01a1a26c-2d52-45e8-839d-acf6ac4d32f0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: scb10x/llama-3-typhoon-v1.5-8b-instruct bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - dce9896700f0ce5f_train_data.json ds_type: json format: custom path: /workspace/input_data/dce9896700f0ce5f_train_data.json type: field_instruction: src field_output: tgt format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: prxy5608/01a1a26c-2d52-45e8-839d-acf6ac4d32f0 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/dce9896700f0ce5f_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 52ef6789-f01a-4c8b-8f1e-8b1f2647b104 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 52ef6789-f01a-4c8b-8f1e-8b1f2647b104 warmup_steps: 20 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 01a1a26c-2d52-45e8-839d-acf6ac4d32f0 This model is a fine-tuned version of [scb10x/llama-3-typhoon-v1.5-8b-instruct](https://huggingface.co/scb10x/llama-3-typhoon-v1.5-8b-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4535 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.2967 | 0.0004 | 1 | 2.6983 | | 1.6368 | 0.0185 | 50 | 1.5613 | | 1.3982 | 0.0370 | 100 | 1.4993 | | 1.2559 | 0.0554 | 150 | 1.4673 | | 1.477 | 0.0739 | 200 | 1.4535 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nhoxinh/4c244fe0-342d-412f-83d2-817a14228fcd
nhoxinh
2025-01-15T13:03:14Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:Vikhrmodels/Vikhr-7B-instruct_0.4", "base_model:adapter:Vikhrmodels/Vikhr-7B-instruct_0.4", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-15T12:32:46Z
--- library_name: peft base_model: Vikhrmodels/Vikhr-7B-instruct_0.4 tags: - axolotl - generated_from_trainer model-index: - name: 4c244fe0-342d-412f-83d2-817a14228fcd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Vikhrmodels/Vikhr-7B-instruct_0.4 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 0c711a1480f59d37_train_data.json ds_type: json format: custom path: /workspace/input_data/0c711a1480f59d37_train_data.json type: field_instruction: source field_output: target format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhoxinh/4c244fe0-342d-412f-83d2-817a14228fcd hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/0c711a1480f59d37_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: c88fd593-37b5-4dc0-be79-680dbbc06811 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: c88fd593-37b5-4dc0-be79-680dbbc06811 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 4c244fe0-342d-412f-83d2-817a14228fcd This model is a fine-tuned version of [Vikhrmodels/Vikhr-7B-instruct_0.4](https://huggingface.co/Vikhrmodels/Vikhr-7B-instruct_0.4) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5657 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3866 | 0.0841 | 200 | 1.5657 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
0x1202/c593a074-ad0a-4259-bc18-4ac31e2ac0aa
0x1202
2025-01-15T13:02:57Z
6
0
peft
[ "peft", "safetensors", "phi3", "axolotl", "generated_from_trainer", "custom_code", "base_model:microsoft/Phi-3-mini-128k-instruct", "base_model:adapter:microsoft/Phi-3-mini-128k-instruct", "license:mit", "region:us" ]
null
2025-01-15T12:33:21Z
--- library_name: peft license: mit base_model: microsoft/Phi-3-mini-128k-instruct tags: - axolotl - generated_from_trainer model-index: - name: c593a074-ad0a-4259-bc18-4ac31e2ac0aa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: microsoft/Phi-3-mini-128k-instruct bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 7b96ec4cd4e81767_train_data.json ds_type: json format: custom path: /workspace/input_data/7b96ec4cd4e81767_train_data.json type: field_instruction: text field_output: title format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: 0x1202/c593a074-ad0a-4259-bc18-4ac31e2ac0aa hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/7b96ec4cd4e81767_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7097860e-e08a-4e11-a1f3-efd6d3f0bd8f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 7097860e-e08a-4e11-a1f3-efd6d3f0bd8f warmup_steps: 20 weight_decay: 0.0 xformers_attention: null ``` </details><br> # c593a074-ad0a-4259-bc18-4ac31e2ac0aa This model is a fine-tuned version of [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 16.3855 | 0.0006 | 1 | nan | | 0.0 | 0.0306 | 50 | nan | | 0.0 | 0.0613 | 100 | nan | | 0.0 | 0.0919 | 150 | nan | | 0.0 | 0.1226 | 200 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
dimasik87/7778942c-1cac-4374-85e6-e1e4e3e568e2
dimasik87
2025-01-15T13:02:41Z
6
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/Phi-3-mini-4k-instruct", "base_model:adapter:unsloth/Phi-3-mini-4k-instruct", "license:mit", "region:us" ]
null
2025-01-15T12:55:22Z
--- library_name: peft license: mit base_model: unsloth/Phi-3-mini-4k-instruct tags: - axolotl - generated_from_trainer model-index: - name: 7778942c-1cac-4374-85e6-e1e4e3e568e2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Phi-3-mini-4k-instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 1fe352d62e94ba0a_train_data.json ds_type: json format: custom path: /workspace/input_data/1fe352d62e94ba0a_train_data.json type: field_instruction: input persona field_output: synthesized text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: dimasik87/7778942c-1cac-4374-85e6-e1e4e3e568e2 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 78GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/1fe352d62e94ba0a_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 30e72060-83cb-4d3e-8303-a4de21bdca5c wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 30e72060-83cb-4d3e-8303-a4de21bdca5c warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 7778942c-1cac-4374-85e6-e1e4e3e568e2 This model is a fine-tuned version of [unsloth/Phi-3-mini-4k-instruct](https://huggingface.co/unsloth/Phi-3-mini-4k-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | nan | | 0.0 | 0.0008 | 5 | nan | | 0.0 | 0.0017 | 10 | nan | | 0.0 | 0.0025 | 15 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
cunghoctienganh/87369a10-86ee-40c2-ba09-e64f285fd967
cunghoctienganh
2025-01-15T13:02:15Z
7
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:Vikhrmodels/Vikhr-7B-instruct_0.4", "base_model:adapter:Vikhrmodels/Vikhr-7B-instruct_0.4", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-15T12:32:12Z
--- library_name: peft base_model: Vikhrmodels/Vikhr-7B-instruct_0.4 tags: - axolotl - generated_from_trainer model-index: - name: 87369a10-86ee-40c2-ba09-e64f285fd967 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Vikhrmodels/Vikhr-7B-instruct_0.4 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 0c711a1480f59d37_train_data.json ds_type: json format: custom path: /workspace/input_data/0c711a1480f59d37_train_data.json type: field_instruction: source field_output: target format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: cunghoctienganh/87369a10-86ee-40c2-ba09-e64f285fd967 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/0c711a1480f59d37_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: c88fd593-37b5-4dc0-be79-680dbbc06811 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: c88fd593-37b5-4dc0-be79-680dbbc06811 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 87369a10-86ee-40c2-ba09-e64f285fd967 This model is a fine-tuned version of [Vikhrmodels/Vikhr-7B-instruct_0.4](https://huggingface.co/Vikhrmodels/Vikhr-7B-instruct_0.4) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5655 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3954 | 0.0841 | 200 | 1.5655 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nttx/3d38c258-f124-449b-a214-658d9eba7889
nttx
2025-01-15T13:02:13Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "base_model:adapter:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "license:apache-2.0", "region:us" ]
null
2025-01-15T12:47:59Z
--- library_name: peft license: apache-2.0 base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 tags: - axolotl - generated_from_trainer model-index: - name: 3d38c258-f124-449b-a214-658d9eba7889 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 81e3afe9598012d3_train_data.json ds_type: json format: custom path: /workspace/input_data/81e3afe9598012d3_train_data.json type: field_input: article_url field_instruction: lang field_output: article_title format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: nttx/3d38c258-f124-449b-a214-658d9eba7889 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/81e3afe9598012d3_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d099f438-67f0-42ef-85d5-1117981da441 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d099f438-67f0-42ef-85d5-1117981da441 warmup_steps: 30 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 3d38c258-f124-449b-a214-658d9eba7889 This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7563 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 30 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.039 | 0.0005 | 1 | 1.8852 | | 1.6283 | 0.0250 | 50 | 0.8585 | | 1.6549 | 0.0500 | 100 | 0.8010 | | 1.5797 | 0.0750 | 150 | 0.7674 | | 1.6391 | 0.1000 | 200 | 0.7563 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
trangtrannnnn/519e190e-89bc-4f70-a74e-9cea6d7931b3
trangtrannnnn
2025-01-15T13:02:10Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:Vikhrmodels/Vikhr-7B-instruct_0.4", "base_model:adapter:Vikhrmodels/Vikhr-7B-instruct_0.4", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-15T12:31:11Z
--- library_name: peft base_model: Vikhrmodels/Vikhr-7B-instruct_0.4 tags: - axolotl - generated_from_trainer model-index: - name: 519e190e-89bc-4f70-a74e-9cea6d7931b3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Vikhrmodels/Vikhr-7B-instruct_0.4 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 0c711a1480f59d37_train_data.json ds_type: json format: custom path: /workspace/input_data/0c711a1480f59d37_train_data.json type: field_instruction: source field_output: target format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: trangtrannnnn/519e190e-89bc-4f70-a74e-9cea6d7931b3 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/0c711a1480f59d37_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: c88fd593-37b5-4dc0-be79-680dbbc06811 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: c88fd593-37b5-4dc0-be79-680dbbc06811 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 519e190e-89bc-4f70-a74e-9cea6d7931b3 This model is a fine-tuned version of [Vikhrmodels/Vikhr-7B-instruct_0.4](https://huggingface.co/Vikhrmodels/Vikhr-7B-instruct_0.4) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5642 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3807 | 0.0841 | 200 | 1.5642 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso01/ed0e8564-b196-4f10-ade5-828737cacb29
lesso01
2025-01-15T13:01:50Z
11
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-1.7B", "base_model:adapter:unsloth/SmolLM2-1.7B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-15T12:48:16Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-1.7B tags: - axolotl - generated_from_trainer model-index: - name: ed0e8564-b196-4f10-ade5-828737cacb29 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM2-1.7B bf16: true chat_template: llama3 datasets: - data_files: - f580d7de8a316926_train_data.json ds_type: json format: custom path: /workspace/input_data/f580d7de8a316926_train_data.json type: field_input: Context field_instruction: Question field_output: Answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso01/ed0e8564-b196-4f10-ade5-828737cacb29 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/f580d7de8a316926_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: cad08d50-283a-4923-8652-b01a3766bb86 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: cad08d50-283a-4923-8652-b01a3766bb86 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # ed0e8564-b196-4f10-ade5-828737cacb29 This model is a fine-tuned version of [unsloth/SmolLM2-1.7B](https://huggingface.co/unsloth/SmolLM2-1.7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0002 | 1 | nan | | 0.0 | 0.0009 | 5 | nan | | 0.0 | 0.0018 | 10 | nan | | 0.0 | 0.0026 | 15 | nan | | 0.0 | 0.0035 | 20 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
thaffggg/42ddee19-3646-45ba-b1d9-7e28b1b8926e
thaffggg
2025-01-15T13:00:55Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-1.7B", "base_model:adapter:unsloth/SmolLM2-1.7B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-15T12:47:52Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-1.7B tags: - axolotl - generated_from_trainer model-index: - name: 42ddee19-3646-45ba-b1d9-7e28b1b8926e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM2-1.7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f580d7de8a316926_train_data.json ds_type: json format: custom path: /workspace/input_data/f580d7de8a316926_train_data.json type: field_input: Context field_instruction: Question field_output: Answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: thaffggg/42ddee19-3646-45ba-b1d9-7e28b1b8926e hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/f580d7de8a316926_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: cad08d50-283a-4923-8652-b01a3766bb86 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: cad08d50-283a-4923-8652-b01a3766bb86 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 42ddee19-3646-45ba-b1d9-7e28b1b8926e This model is a fine-tuned version of [unsloth/SmolLM2-1.7B](https://huggingface.co/unsloth/SmolLM2-1.7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2163 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.3232 | 0.0352 | 200 | 2.2163 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso04/8519eb17-9998-41d5-ac3f-0da7827ed541
lesso04
2025-01-15T12:55:32Z
7
0
peft
[ "peft", "safetensors", "phi", "axolotl", "generated_from_trainer", "base_model:microsoft/phi-2", "base_model:adapter:microsoft/phi-2", "license:mit", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-15T12:41:24Z
--- library_name: peft license: mit base_model: microsoft/phi-2 tags: - axolotl - generated_from_trainer model-index: - name: 8519eb17-9998-41d5-ac3f-0da7827ed541 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: microsoft/phi-2 bf16: true chat_template: llama3 datasets: - data_files: - 590fd4cbceee3791_train_data.json ds_type: json format: custom path: /workspace/input_data/590fd4cbceee3791_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso04/8519eb17-9998-41d5-ac3f-0da7827ed541 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/590fd4cbceee3791_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 78bbc8a0-78c1-4557-a1dd-2fa1b271760f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 78bbc8a0-78c1-4557-a1dd-2fa1b271760f warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 8519eb17-9998-41d5-ac3f-0da7827ed541 This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0683 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.0992 | 0.0006 | 1 | 4.7135 | | 4.0554 | 0.0028 | 5 | 4.6688 | | 4.0266 | 0.0057 | 10 | 4.2980 | | 3.9737 | 0.0085 | 15 | 3.4516 | | 2.776 | 0.0114 | 20 | 3.1267 | | 3.7507 | 0.0142 | 25 | 3.0683 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso14/006fe55c-031f-470b-a252-4c282ecff834
lesso14
2025-01-15T12:53:33Z
11
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:Vikhrmodels/Vikhr-7B-instruct_0.4", "base_model:adapter:Vikhrmodels/Vikhr-7B-instruct_0.4", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-15T12:31:55Z
--- library_name: peft base_model: Vikhrmodels/Vikhr-7B-instruct_0.4 tags: - axolotl - generated_from_trainer model-index: - name: 006fe55c-031f-470b-a252-4c282ecff834 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Vikhrmodels/Vikhr-7B-instruct_0.4 bf16: true chat_template: llama3 datasets: - data_files: - 0c711a1480f59d37_train_data.json ds_type: json format: custom path: /workspace/input_data/0c711a1480f59d37_train_data.json type: field_instruction: source field_output: target format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso14/006fe55c-031f-470b-a252-4c282ecff834 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/0c711a1480f59d37_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: c88fd593-37b5-4dc0-be79-680dbbc06811 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: c88fd593-37b5-4dc0-be79-680dbbc06811 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 006fe55c-031f-470b-a252-4c282ecff834 This model is a fine-tuned version of [Vikhrmodels/Vikhr-7B-instruct_0.4](https://huggingface.co/Vikhrmodels/Vikhr-7B-instruct_0.4) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0004 | 1 | nan | | 0.0 | 0.0021 | 5 | nan | | 0.0 | 0.0042 | 10 | nan | | 0.0 | 0.0063 | 15 | nan | | 0.0 | 0.0084 | 20 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
AminSharif/FineTunedSnappFoodReg
AminSharif
2025-01-15T12:52:33Z
5
0
transformers
[ "transformers", "safetensors", "bert", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-01-15T12:52:09Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kk-aivio/645df65a-0012-4614-8a68-7850e782f052
kk-aivio
2025-01-15T12:51:49Z
14
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:Vikhrmodels/Vikhr-7B-instruct_0.4", "base_model:adapter:Vikhrmodels/Vikhr-7B-instruct_0.4", "region:us" ]
null
2025-01-15T12:48:00Z
--- library_name: peft base_model: Vikhrmodels/Vikhr-7B-instruct_0.4 tags: - axolotl - generated_from_trainer model-index: - name: 645df65a-0012-4614-8a68-7850e782f052 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Vikhrmodels/Vikhr-7B-instruct_0.4 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 0c711a1480f59d37_train_data.json ds_type: json format: custom path: /workspace/input_data/0c711a1480f59d37_train_data.json type: field_instruction: source field_output: target format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kk-aivio/645df65a-0012-4614-8a68-7850e782f052 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/0c711a1480f59d37_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: c88fd593-37b5-4dc0-be79-680dbbc06811 wandb_project: birthday-sn56-17-Gradients-On-Demand wandb_run: your_name wandb_runid: c88fd593-37b5-4dc0-be79-680dbbc06811 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 645df65a-0012-4614-8a68-7850e782f052 This model is a fine-tuned version of [Vikhrmodels/Vikhr-7B-instruct_0.4](https://huggingface.co/Vikhrmodels/Vikhr-7B-instruct_0.4) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0004 | 1 | nan | | 0.0 | 0.0013 | 3 | nan | | 0.0 | 0.0025 | 6 | nan | | 0.0 | 0.0038 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
MayBashendy/ArabicNewSplits7_OSS_usingWellWrittenEssays_FineTuningAraBERT_run1_AugV5_k4_task1_organization
MayBashendy
2025-01-15T12:51:28Z
7
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-15T12:34:24Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits7_OSS_usingWellWrittenEssays_FineTuningAraBERT_run1_AugV5_k4_task1_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits7_OSS_usingWellWrittenEssays_FineTuningAraBERT_run1_AugV5_k4_task1_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1682 - Qwk: 0.5663 - Mse: 1.1682 - Rmse: 1.0808 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-------:|:----:|:---------------:|:------:|:------:|:------:| | No log | 0.0667 | 2 | 6.8411 | 0.0290 | 6.8411 | 2.6155 | | No log | 0.1333 | 4 | 4.5055 | 0.0794 | 4.5055 | 2.1226 | | No log | 0.2 | 6 | 2.7652 | 0.0870 | 2.7652 | 1.6629 | | No log | 0.2667 | 8 | 2.0825 | 0.1594 | 2.0825 | 1.4431 | | No log | 0.3333 | 10 | 1.7389 | 0.2264 | 1.7389 | 1.3187 | | No log | 0.4 | 12 | 1.6371 | 0.1905 | 1.6371 | 1.2795 | | No log | 0.4667 | 14 | 1.6820 | 0.1495 | 1.6820 | 1.2969 | | No log | 0.5333 | 16 | 1.7122 | 0.3548 | 1.7122 | 1.3085 | | No log | 0.6 | 18 | 1.7297 | 0.2645 | 1.7297 | 1.3152 | | No log | 0.6667 | 20 | 1.7308 | 0.2456 | 1.7308 | 1.3156 | | No log | 0.7333 | 22 | 1.9098 | 0.1565 | 1.9098 | 1.3819 | | No log | 0.8 | 24 | 1.9363 | 0.0847 | 1.9363 | 1.3915 | | No log | 0.8667 | 26 | 1.7360 | 0.1667 | 1.7360 | 1.3176 | | No log | 0.9333 | 28 | 1.4894 | 0.1947 | 1.4894 | 1.2204 | | No log | 1.0 | 30 | 1.4493 | 0.3740 | 1.4493 | 1.2039 | | No log | 1.0667 | 32 | 1.5090 | 0.3333 | 1.5090 | 1.2284 | | No log | 1.1333 | 34 | 1.6048 | 0.2835 | 1.6048 | 1.2668 | | No log | 1.2 | 36 | 1.5969 | 0.3333 | 1.5969 | 1.2637 | | No log | 1.2667 | 38 | 1.5607 | 0.3256 | 1.5607 | 1.2493 | | No log | 1.3333 | 40 | 1.5836 | 0.3053 | 1.5836 | 1.2584 | | No log | 1.4 | 42 | 1.5397 | 0.3382 | 1.5397 | 1.2408 | | No log | 1.4667 | 44 | 1.5278 | 0.3913 | 1.5278 | 1.2361 | | No log | 1.5333 | 46 | 1.4911 | 0.4160 | 1.4911 | 1.2211 | | No log | 1.6 | 48 | 1.3562 | 0.4286 | 1.3562 | 1.1645 | | No log | 1.6667 | 50 | 1.3315 | 0.4769 | 1.3315 | 1.1539 | | No log | 1.7333 | 52 | 1.7800 | 0.2901 | 1.7800 | 1.3342 | | No log | 1.8 | 54 | 1.6626 | 0.3077 | 1.6626 | 1.2894 | | No log | 1.8667 | 56 | 1.2296 | 0.4426 | 1.2296 | 1.1089 | | No log | 1.9333 | 58 | 1.1936 | 0.3571 | 1.1936 | 1.0925 | | No log | 2.0 | 60 | 1.2190 | 0.4407 | 1.2190 | 1.1041 | | No log | 2.0667 | 62 | 1.2760 | 0.4961 | 1.2760 | 1.1296 | | No log | 2.1333 | 64 | 1.3799 | 0.4462 | 1.3799 | 1.1747 | | No log | 2.2 | 66 | 1.4315 | 0.4857 | 1.4315 | 1.1964 | | No log | 2.2667 | 68 | 1.4433 | 0.4242 | 1.4433 | 1.2014 | | No log | 2.3333 | 70 | 1.3643 | 0.4648 | 1.3643 | 1.1681 | | No log | 2.4 | 72 | 1.4124 | 0.4460 | 1.4124 | 1.1884 | | No log | 2.4667 | 74 | 1.3953 | 0.4148 | 1.3953 | 1.1812 | | No log | 2.5333 | 76 | 1.4697 | 0.4444 | 1.4697 | 1.2123 | | No log | 2.6 | 78 | 1.4942 | 0.4211 | 1.4942 | 1.2224 | | No log | 2.6667 | 80 | 1.3468 | 0.4806 | 1.3468 | 1.1605 | | No log | 2.7333 | 82 | 1.1612 | 0.5512 | 1.1612 | 1.0776 | | No log | 2.8 | 84 | 1.0878 | 0.528 | 1.0878 | 1.0430 | | No log | 2.8667 | 86 | 1.1252 | 0.6119 | 1.1252 | 1.0608 | | No log | 2.9333 | 88 | 1.1308 | 0.5778 | 1.1308 | 1.0634 | | No log | 3.0 | 90 | 1.1582 | 0.5143 | 1.1582 | 1.0762 | | No log | 3.0667 | 92 | 1.3523 | 0.5576 | 1.3523 | 1.1629 | | No log | 3.1333 | 94 | 1.4646 | 0.4815 | 1.4646 | 1.2102 | | No log | 3.2 | 96 | 1.3034 | 0.4783 | 1.3034 | 1.1417 | | No log | 3.2667 | 98 | 1.2189 | 0.5538 | 1.2189 | 1.1041 | | No log | 3.3333 | 100 | 1.1976 | 0.5954 | 1.1976 | 1.0943 | | No log | 3.4 | 102 | 1.2458 | 0.5 | 1.2458 | 1.1162 | | No log | 3.4667 | 104 | 1.1685 | 0.5294 | 1.1685 | 1.0810 | | No log | 3.5333 | 106 | 1.0799 | 0.5735 | 1.0799 | 1.0392 | | No log | 3.6 | 108 | 0.9817 | 0.6277 | 0.9817 | 0.9908 | | No log | 3.6667 | 110 | 0.9840 | 0.6619 | 0.9840 | 0.9920 | | No log | 3.7333 | 112 | 1.0359 | 0.6571 | 1.0359 | 1.0178 | | No log | 3.8 | 114 | 1.1027 | 0.6 | 1.1027 | 1.0501 | | No log | 3.8667 | 116 | 1.1618 | 0.5734 | 1.1618 | 1.0779 | | No log | 3.9333 | 118 | 1.3260 | 0.5325 | 1.3260 | 1.1515 | | No log | 4.0 | 120 | 1.5194 | 0.5031 | 1.5194 | 1.2326 | | No log | 4.0667 | 122 | 1.4042 | 0.5 | 1.4042 | 1.1850 | | No log | 4.1333 | 124 | 1.2303 | 0.5395 | 1.2303 | 1.1092 | | No log | 4.2 | 126 | 1.1265 | 0.5547 | 1.1265 | 1.0614 | | No log | 4.2667 | 128 | 1.0583 | 0.6567 | 1.0583 | 1.0288 | | No log | 4.3333 | 130 | 1.0741 | 0.6212 | 1.0741 | 1.0364 | | No log | 4.4 | 132 | 1.1067 | 0.6107 | 1.1067 | 1.0520 | | No log | 4.4667 | 134 | 1.1166 | 0.6165 | 1.1166 | 1.0567 | | No log | 4.5333 | 136 | 1.2331 | 0.5175 | 1.2331 | 1.1105 | | No log | 4.6 | 138 | 1.2278 | 0.5068 | 1.2278 | 1.1081 | | No log | 4.6667 | 140 | 1.1185 | 0.5755 | 1.1185 | 1.0576 | | No log | 4.7333 | 142 | 1.0165 | 0.6418 | 1.0165 | 1.0082 | | No log | 4.8 | 144 | 0.9863 | 0.6619 | 0.9863 | 0.9931 | | No log | 4.8667 | 146 | 1.0320 | 0.6174 | 1.0320 | 1.0159 | | No log | 4.9333 | 148 | 1.1882 | 0.5897 | 1.1882 | 1.0901 | | No log | 5.0 | 150 | 1.1527 | 0.5987 | 1.1527 | 1.0736 | | No log | 5.0667 | 152 | 1.0692 | 0.6577 | 1.0692 | 1.0340 | | No log | 5.1333 | 154 | 0.9798 | 0.6761 | 0.9798 | 0.9899 | | No log | 5.2 | 156 | 1.0669 | 0.6423 | 1.0669 | 1.0329 | | No log | 5.2667 | 158 | 1.2467 | 0.5135 | 1.2467 | 1.1166 | | No log | 5.3333 | 160 | 1.3934 | 0.4845 | 1.3934 | 1.1804 | | No log | 5.4 | 162 | 1.3303 | 0.4935 | 1.3303 | 1.1534 | | No log | 5.4667 | 164 | 1.1582 | 0.5333 | 1.1582 | 1.0762 | | No log | 5.5333 | 166 | 1.0258 | 0.6131 | 1.0258 | 1.0128 | | No log | 5.6 | 168 | 0.9112 | 0.6567 | 0.9112 | 0.9546 | | No log | 5.6667 | 170 | 0.8672 | 0.6716 | 0.8672 | 0.9312 | | No log | 5.7333 | 172 | 0.8603 | 0.6861 | 0.8603 | 0.9275 | | No log | 5.8 | 174 | 0.9279 | 0.6370 | 0.9279 | 0.9633 | | No log | 5.8667 | 176 | 1.0725 | 0.6099 | 1.0725 | 1.0356 | | No log | 5.9333 | 178 | 1.1306 | 0.5612 | 1.1306 | 1.0633 | | No log | 6.0 | 180 | 1.1694 | 0.5714 | 1.1694 | 1.0814 | | No log | 6.0667 | 182 | 1.1824 | 0.5571 | 1.1824 | 1.0874 | | No log | 6.1333 | 184 | 1.1753 | 0.5547 | 1.1753 | 1.0841 | | No log | 6.2 | 186 | 1.1645 | 0.5734 | 1.1645 | 1.0791 | | No log | 6.2667 | 188 | 1.0933 | 0.5588 | 1.0933 | 1.0456 | | No log | 6.3333 | 190 | 1.0788 | 0.6131 | 1.0788 | 1.0387 | | No log | 6.4 | 192 | 1.0192 | 0.6423 | 1.0192 | 1.0096 | | No log | 6.4667 | 194 | 0.9612 | 0.6667 | 0.9612 | 0.9804 | | No log | 6.5333 | 196 | 1.0047 | 0.6667 | 1.0047 | 1.0023 | | No log | 6.6 | 198 | 1.0488 | 0.6423 | 1.0488 | 1.0241 | | No log | 6.6667 | 200 | 1.1262 | 0.5578 | 1.1262 | 1.0612 | | No log | 6.7333 | 202 | 1.1493 | 0.5625 | 1.1493 | 1.0720 | | No log | 6.8 | 204 | 1.0030 | 0.6241 | 1.0030 | 1.0015 | | No log | 6.8667 | 206 | 0.7999 | 0.6857 | 0.7999 | 0.8944 | | No log | 6.9333 | 208 | 0.6923 | 0.7153 | 0.6923 | 0.8320 | | No log | 7.0 | 210 | 0.7225 | 0.7101 | 0.7225 | 0.8500 | | No log | 7.0667 | 212 | 0.7961 | 0.6765 | 0.7961 | 0.8922 | | No log | 7.1333 | 214 | 0.9400 | 0.6418 | 0.9400 | 0.9695 | | No log | 7.2 | 216 | 1.1221 | 0.5758 | 1.1221 | 1.0593 | | No log | 7.2667 | 218 | 1.1054 | 0.5954 | 1.1054 | 1.0514 | | No log | 7.3333 | 220 | 1.1653 | 0.6119 | 1.1653 | 1.0795 | | No log | 7.4 | 222 | 1.2698 | 0.4966 | 1.2698 | 1.1268 | | No log | 7.4667 | 224 | 1.3247 | 0.4969 | 1.3247 | 1.1509 | | No log | 7.5333 | 226 | 1.1623 | 0.6053 | 1.1623 | 1.0781 | | No log | 7.6 | 228 | 1.0819 | 0.6301 | 1.0819 | 1.0401 | | No log | 7.6667 | 230 | 0.9733 | 0.6525 | 0.9733 | 0.9866 | | No log | 7.7333 | 232 | 1.1109 | 0.6207 | 1.1109 | 1.0540 | | No log | 7.8 | 234 | 1.3954 | 0.5562 | 1.3954 | 1.1813 | | No log | 7.8667 | 236 | 1.5114 | 0.5059 | 1.5114 | 1.2294 | | No log | 7.9333 | 238 | 1.3694 | 0.525 | 1.3694 | 1.1702 | | No log | 8.0 | 240 | 1.1268 | 0.5906 | 1.1268 | 1.0615 | | No log | 8.0667 | 242 | 0.9815 | 0.6993 | 0.9815 | 0.9907 | | No log | 8.1333 | 244 | 0.9961 | 0.6667 | 0.9961 | 0.9980 | | No log | 8.2 | 246 | 1.1060 | 0.5578 | 1.1060 | 1.0517 | | No log | 8.2667 | 248 | 1.1312 | 0.5616 | 1.1312 | 1.0636 | | No log | 8.3333 | 250 | 1.0797 | 0.6241 | 1.0797 | 1.0391 | | No log | 8.4 | 252 | 1.0239 | 0.6277 | 1.0239 | 1.0119 | | No log | 8.4667 | 254 | 0.9819 | 0.6763 | 0.9819 | 0.9909 | | No log | 8.5333 | 256 | 0.9788 | 0.6667 | 0.9788 | 0.9893 | | No log | 8.6 | 258 | 1.0502 | 0.6418 | 1.0502 | 1.0248 | | No log | 8.6667 | 260 | 1.1559 | 0.6029 | 1.1559 | 1.0751 | | No log | 8.7333 | 262 | 1.2523 | 0.5109 | 1.2523 | 1.1191 | | No log | 8.8 | 264 | 1.2236 | 0.5109 | 1.2236 | 1.1062 | | No log | 8.8667 | 266 | 1.1008 | 0.5865 | 1.1008 | 1.0492 | | No log | 8.9333 | 268 | 1.0131 | 0.5865 | 1.0131 | 1.0065 | | No log | 9.0 | 270 | 0.9567 | 0.6316 | 0.9567 | 0.9781 | | No log | 9.0667 | 272 | 0.9227 | 0.6277 | 0.9227 | 0.9606 | | No log | 9.1333 | 274 | 0.9190 | 0.6522 | 0.9190 | 0.9586 | | No log | 9.2 | 276 | 0.9918 | 0.6405 | 0.9918 | 0.9959 | | No log | 9.2667 | 278 | 1.0030 | 0.6667 | 1.0030 | 1.0015 | | No log | 9.3333 | 280 | 0.8790 | 0.6324 | 0.8790 | 0.9375 | | No log | 9.4 | 282 | 0.8730 | 0.6324 | 0.8730 | 0.9343 | | No log | 9.4667 | 284 | 0.9293 | 0.6187 | 0.9293 | 0.9640 | | No log | 9.5333 | 286 | 0.9091 | 0.6324 | 0.9091 | 0.9535 | | No log | 9.6 | 288 | 0.8488 | 0.6615 | 0.8488 | 0.9213 | | No log | 9.6667 | 290 | 0.8677 | 0.6815 | 0.8677 | 0.9315 | | No log | 9.7333 | 292 | 0.9591 | 0.6812 | 0.9591 | 0.9794 | | No log | 9.8 | 294 | 1.1017 | 0.5882 | 1.1017 | 1.0496 | | No log | 9.8667 | 296 | 1.2618 | 0.5509 | 1.2618 | 1.1233 | | No log | 9.9333 | 298 | 1.3770 | 0.5325 | 1.3770 | 1.1734 | | No log | 10.0 | 300 | 1.3422 | 0.5238 | 1.3422 | 1.1585 | | No log | 10.0667 | 302 | 1.1776 | 0.5578 | 1.1776 | 1.0852 | | No log | 10.1333 | 304 | 0.9751 | 0.6716 | 0.9751 | 0.9875 | | No log | 10.2 | 306 | 0.8607 | 0.6406 | 0.8607 | 0.9277 | | No log | 10.2667 | 308 | 0.8602 | 0.5984 | 0.8602 | 0.9275 | | No log | 10.3333 | 310 | 0.8909 | 0.625 | 0.8909 | 0.9439 | | No log | 10.4 | 312 | 0.9768 | 0.6906 | 0.9768 | 0.9883 | | No log | 10.4667 | 314 | 1.1032 | 0.6225 | 1.1032 | 1.0503 | | No log | 10.5333 | 316 | 1.1913 | 0.6265 | 1.1913 | 1.0915 | | No log | 10.6 | 318 | 1.1459 | 0.5860 | 1.1459 | 1.0705 | | No log | 10.6667 | 320 | 0.9666 | 0.6892 | 0.9666 | 0.9831 | | No log | 10.7333 | 322 | 0.8932 | 0.6269 | 0.8932 | 0.9451 | | No log | 10.8 | 324 | 0.8935 | 0.6269 | 0.8935 | 0.9452 | | No log | 10.8667 | 326 | 0.9379 | 0.6912 | 0.9379 | 0.9684 | | No log | 10.9333 | 328 | 1.0794 | 0.6309 | 1.0794 | 1.0389 | | No log | 11.0 | 330 | 1.1860 | 0.6296 | 1.1860 | 1.0891 | | No log | 11.0667 | 332 | 1.1891 | 0.6429 | 1.1891 | 1.0904 | | No log | 11.1333 | 334 | 1.0631 | 0.6581 | 1.0631 | 1.0311 | | No log | 11.2 | 336 | 0.9568 | 0.6763 | 0.9568 | 0.9782 | | No log | 11.2667 | 338 | 0.9640 | 0.6324 | 0.9640 | 0.9818 | | No log | 11.3333 | 340 | 0.9778 | 0.6324 | 0.9778 | 0.9889 | | No log | 11.4 | 342 | 1.0438 | 0.6519 | 1.0438 | 1.0217 | | No log | 11.4667 | 344 | 1.2155 | 0.5655 | 1.2155 | 1.1025 | | No log | 11.5333 | 346 | 1.3660 | 0.5256 | 1.3660 | 1.1688 | | No log | 11.6 | 348 | 1.2987 | 0.5325 | 1.2987 | 1.1396 | | No log | 11.6667 | 350 | 1.0831 | 0.6029 | 1.0831 | 1.0407 | | No log | 11.7333 | 352 | 0.9538 | 0.6260 | 0.9538 | 0.9766 | | No log | 11.8 | 354 | 0.9300 | 0.6269 | 0.9300 | 0.9644 | | No log | 11.8667 | 356 | 0.9813 | 0.6324 | 0.9813 | 0.9906 | | No log | 11.9333 | 358 | 1.1209 | 0.6232 | 1.1209 | 1.0587 | | No log | 12.0 | 360 | 1.3313 | 0.5170 | 1.3313 | 1.1538 | | No log | 12.0667 | 362 | 1.4482 | 0.4196 | 1.4482 | 1.2034 | | No log | 12.1333 | 364 | 1.3954 | 0.4265 | 1.3954 | 1.1813 | | No log | 12.2 | 366 | 1.2580 | 0.5294 | 1.2580 | 1.1216 | | No log | 12.2667 | 368 | 1.1873 | 0.5882 | 1.1873 | 1.0896 | | No log | 12.3333 | 370 | 1.1016 | 0.6466 | 1.1016 | 1.0496 | | No log | 12.4 | 372 | 1.0789 | 0.6519 | 1.0789 | 1.0387 | | No log | 12.4667 | 374 | 1.1158 | 0.5915 | 1.1158 | 1.0563 | | No log | 12.5333 | 376 | 1.2124 | 0.5806 | 1.2124 | 1.1011 | | No log | 12.6 | 378 | 1.2120 | 0.5974 | 1.2120 | 1.1009 | | No log | 12.6667 | 380 | 1.1104 | 0.6207 | 1.1104 | 1.0538 | | No log | 12.7333 | 382 | 1.0596 | 0.6197 | 1.0596 | 1.0294 | | No log | 12.8 | 384 | 1.0240 | 0.6197 | 1.0240 | 1.0119 | | No log | 12.8667 | 386 | 1.0451 | 0.6197 | 1.0451 | 1.0223 | | No log | 12.9333 | 388 | 1.0846 | 0.6197 | 1.0846 | 1.0415 | | No log | 13.0 | 390 | 1.0829 | 0.6241 | 1.0829 | 1.0406 | | No log | 13.0667 | 392 | 1.0886 | 0.6241 | 1.0886 | 1.0434 | | No log | 13.1333 | 394 | 1.0738 | 0.6197 | 1.0738 | 1.0362 | | No log | 13.2 | 396 | 1.1437 | 0.6144 | 1.1437 | 1.0694 | | No log | 13.2667 | 398 | 1.1341 | 0.6174 | 1.1341 | 1.0649 | | No log | 13.3333 | 400 | 1.0499 | 0.6197 | 1.0499 | 1.0246 | | No log | 13.4 | 402 | 1.0067 | 0.6277 | 1.0067 | 1.0033 | | No log | 13.4667 | 404 | 1.0055 | 0.6061 | 1.0055 | 1.0027 | | No log | 13.5333 | 406 | 1.0464 | 0.6061 | 1.0464 | 1.0229 | | No log | 13.6 | 408 | 1.0631 | 0.5909 | 1.0631 | 1.0311 | | No log | 13.6667 | 410 | 1.0617 | 0.6061 | 1.0617 | 1.0304 | | No log | 13.7333 | 412 | 1.0727 | 0.6260 | 1.0727 | 1.0357 | | No log | 13.8 | 414 | 1.1313 | 0.6119 | 1.1313 | 1.0636 | | No log | 13.8667 | 416 | 1.2340 | 0.5503 | 1.2340 | 1.1109 | | No log | 13.9333 | 418 | 1.3273 | 0.5350 | 1.3273 | 1.1521 | | No log | 14.0 | 420 | 1.3200 | 0.5385 | 1.3200 | 1.1489 | | No log | 14.0667 | 422 | 1.3247 | 0.5223 | 1.3247 | 1.1510 | | No log | 14.1333 | 424 | 1.2907 | 0.5170 | 1.2907 | 1.1361 | | No log | 14.2 | 426 | 1.2642 | 0.5468 | 1.2642 | 1.1244 | | No log | 14.2667 | 428 | 1.2646 | 0.5401 | 1.2646 | 1.1245 | | No log | 14.3333 | 430 | 1.1767 | 0.5909 | 1.1767 | 1.0848 | | No log | 14.4 | 432 | 1.1276 | 0.5802 | 1.1276 | 1.0619 | | No log | 14.4667 | 434 | 1.0721 | 0.5512 | 1.0721 | 1.0354 | | No log | 14.5333 | 436 | 1.0481 | 0.5649 | 1.0481 | 1.0237 | | No log | 14.6 | 438 | 1.0613 | 0.6131 | 1.0613 | 1.0302 | | No log | 14.6667 | 440 | 1.1536 | 0.5811 | 1.1536 | 1.0741 | | No log | 14.7333 | 442 | 1.3342 | 0.5395 | 1.3342 | 1.1551 | | No log | 14.8 | 444 | 1.3475 | 0.5548 | 1.3475 | 1.1608 | | No log | 14.8667 | 446 | 1.2069 | 0.5714 | 1.2069 | 1.0986 | | No log | 14.9333 | 448 | 1.0777 | 0.6232 | 1.0777 | 1.0381 | | No log | 15.0 | 450 | 0.9441 | 0.6277 | 0.9441 | 0.9717 | | No log | 15.0667 | 452 | 0.8969 | 0.6212 | 0.8969 | 0.9470 | | No log | 15.1333 | 454 | 0.9045 | 0.6569 | 0.9045 | 0.9511 | | No log | 15.2 | 456 | 1.0174 | 0.6395 | 1.0174 | 1.0086 | | No log | 15.2667 | 458 | 1.2439 | 0.6182 | 1.2439 | 1.1153 | | No log | 15.3333 | 460 | 1.3134 | 0.6024 | 1.3134 | 1.1460 | | No log | 15.4 | 462 | 1.2133 | 0.5897 | 1.2133 | 1.1015 | | No log | 15.4667 | 464 | 1.0636 | 0.6525 | 1.0636 | 1.0313 | | No log | 15.5333 | 466 | 0.9961 | 0.6316 | 0.9961 | 0.9981 | | No log | 15.6 | 468 | 1.0037 | 0.6316 | 1.0037 | 1.0019 | | No log | 15.6667 | 470 | 1.0793 | 0.6569 | 1.0793 | 1.0389 | | No log | 15.7333 | 472 | 1.2025 | 0.6099 | 1.2025 | 1.0966 | | No log | 15.8 | 474 | 1.2963 | 0.5890 | 1.2963 | 1.1386 | | No log | 15.8667 | 476 | 1.2393 | 0.5899 | 1.2393 | 1.1132 | | No log | 15.9333 | 478 | 1.1624 | 0.6324 | 1.1624 | 1.0781 | | No log | 16.0 | 480 | 1.1372 | 0.6119 | 1.1372 | 1.0664 | | No log | 16.0667 | 482 | 1.1336 | 0.6131 | 1.1336 | 1.0647 | | No log | 16.1333 | 484 | 1.0423 | 0.6331 | 1.0423 | 1.0209 | | No log | 16.2 | 486 | 0.9645 | 0.6620 | 0.9645 | 0.9821 | | No log | 16.2667 | 488 | 0.9296 | 0.6755 | 0.9296 | 0.9641 | | No log | 16.3333 | 490 | 0.8918 | 0.7006 | 0.8918 | 0.9444 | | No log | 16.4 | 492 | 0.8814 | 0.7 | 0.8814 | 0.9388 | | No log | 16.4667 | 494 | 0.9504 | 0.6424 | 0.9504 | 0.9749 | | No log | 16.5333 | 496 | 1.0877 | 0.6509 | 1.0877 | 1.0429 | | No log | 16.6 | 498 | 1.0546 | 0.6220 | 1.0546 | 1.0270 | | 0.372 | 16.6667 | 500 | 0.9086 | 0.6667 | 0.9086 | 0.9532 | | 0.372 | 16.7333 | 502 | 0.8080 | 0.6806 | 0.8080 | 0.8989 | | 0.372 | 16.8 | 504 | 0.8219 | 0.7206 | 0.8219 | 0.9066 | | 0.372 | 16.8667 | 506 | 0.8541 | 0.6667 | 0.8541 | 0.9242 | | 0.372 | 16.9333 | 508 | 0.8858 | 0.6667 | 0.8858 | 0.9412 | | 0.372 | 17.0 | 510 | 0.9483 | 0.6119 | 0.9483 | 0.9738 | | 0.372 | 17.0667 | 512 | 1.0789 | 0.6438 | 1.0789 | 1.0387 | | 0.372 | 17.1333 | 514 | 1.1682 | 0.5663 | 1.1682 | 1.0808 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
nbninh/0d47e552-fa12-456d-acb3-29792f1b41d3
nbninh
2025-01-15T12:48:49Z
6
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:zake7749/gemma-2-2b-it-chinese-kyara-dpo", "base_model:adapter:zake7749/gemma-2-2b-it-chinese-kyara-dpo", "license:gemma", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-15T12:34:45Z
--- library_name: peft license: gemma base_model: zake7749/gemma-2-2b-it-chinese-kyara-dpo tags: - axolotl - generated_from_trainer model-index: - name: 0d47e552-fa12-456d-acb3-29792f1b41d3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: zake7749/gemma-2-2b-it-chinese-kyara-dpo bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 34a8ecc953c9036c_train_data.json ds_type: json format: custom path: /workspace/input_data/34a8ecc953c9036c_train_data.json type: field_input: title_main field_instruction: texte field_output: texteHtml format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nbninh/0d47e552-fa12-456d-acb3-29792f1b41d3 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/34a8ecc953c9036c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 4cab3fe6-17ad-4a26-9515-f652b7692aed wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 4cab3fe6-17ad-4a26-9515-f652b7692aed warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 0d47e552-fa12-456d-acb3-29792f1b41d3 This model is a fine-tuned version of [zake7749/gemma-2-2b-it-chinese-kyara-dpo](https://huggingface.co/zake7749/gemma-2-2b-it-chinese-kyara-dpo) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1003 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.1282 | 0.2454 | 200 | 0.1003 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nhung01/1bc7a2fd-8257-45c0-a2ad-46fa41293d91
nhung01
2025-01-15T12:47:33Z
7
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-1.7B", "base_model:adapter:unsloth/SmolLM2-1.7B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-15T12:26:36Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-1.7B tags: - axolotl - generated_from_trainer model-index: - name: 1bc7a2fd-8257-45c0-a2ad-46fa41293d91 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM2-1.7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 8492dab84eb4a872_train_data.json ds_type: json format: custom path: /workspace/input_data/8492dab84eb4a872_train_data.json type: field_input: Abstract field_instruction: Title field_output: Hypothesis format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhung01/1bc7a2fd-8257-45c0-a2ad-46fa41293d91 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/8492dab84eb4a872_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: bb4dd990-a545-4b1a-8ec7-8e5c79e135a9 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: bb4dd990-a545-4b1a-8ec7-8e5c79e135a9 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 1bc7a2fd-8257-45c0-a2ad-46fa41293d91 This model is a fine-tuned version of [unsloth/SmolLM2-1.7B](https://huggingface.co/unsloth/SmolLM2-1.7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4799 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.3891 | 0.0120 | 200 | 0.4799 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nhung03/595181d3-f1cb-438b-a2e0-5e773a889fca
nhung03
2025-01-15T12:46:55Z
7
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:zake7749/gemma-2-2b-it-chinese-kyara-dpo", "base_model:adapter:zake7749/gemma-2-2b-it-chinese-kyara-dpo", "license:gemma", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-15T12:33:15Z
--- library_name: peft license: gemma base_model: zake7749/gemma-2-2b-it-chinese-kyara-dpo tags: - axolotl - generated_from_trainer model-index: - name: 595181d3-f1cb-438b-a2e0-5e773a889fca results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: zake7749/gemma-2-2b-it-chinese-kyara-dpo bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 34a8ecc953c9036c_train_data.json ds_type: json format: custom path: /workspace/input_data/34a8ecc953c9036c_train_data.json type: field_input: title_main field_instruction: texte field_output: texteHtml format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhung03/595181d3-f1cb-438b-a2e0-5e773a889fca hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/34a8ecc953c9036c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 4cab3fe6-17ad-4a26-9515-f652b7692aed wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 4cab3fe6-17ad-4a26-9515-f652b7692aed warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 595181d3-f1cb-438b-a2e0-5e773a889fca This model is a fine-tuned version of [zake7749/gemma-2-2b-it-chinese-kyara-dpo](https://huggingface.co/zake7749/gemma-2-2b-it-chinese-kyara-dpo) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0998 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.127 | 0.2454 | 200 | 0.0998 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
growwithgarry/gwg
growwithgarry
2025-01-15T12:46:29Z
22
1
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-15T11:46:11Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: garry --- # Gwg <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `garry` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('growwithgarry/gwg', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
ivangrapher/c2f92ade-8d4b-48de-8cd4-be397d723092
ivangrapher
2025-01-15T12:45:34Z
11
0
peft
[ "peft", "safetensors", "phi", "axolotl", "generated_from_trainer", "base_model:microsoft/phi-2", "base_model:adapter:microsoft/phi-2", "license:mit", "region:us" ]
null
2025-01-15T12:41:07Z
--- library_name: peft license: mit base_model: microsoft/phi-2 tags: - axolotl - generated_from_trainer model-index: - name: c2f92ade-8d4b-48de-8cd4-be397d723092 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: microsoft/phi-2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 590fd4cbceee3791_train_data.json ds_type: json format: custom path: /workspace/input_data/590fd4cbceee3791_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null gradient_accumulation_steps: 6 gradient_checkpointing: false group_by_length: false hub_model_id: ivangrapher/c2f92ade-8d4b-48de-8cd4-be397d723092 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 70GiB max_steps: 30 micro_batch_size: 4 mlflow_experiment_name: /tmp/590fd4cbceee3791_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 78bbc8a0-78c1-4557-a1dd-2fa1b271760f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 78bbc8a0-78c1-4557-a1dd-2fa1b271760f warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # c2f92ade-8d4b-48de-8cd4-be397d723092 This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8462 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 6 - total_train_batch_size: 24 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0017 | 1 | 3.5257 | | 3.4061 | 0.0137 | 8 | 3.1505 | | 2.563 | 0.0273 | 16 | 2.2606 | | 1.9834 | 0.0410 | 24 | 1.8462 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mrHungddddh/a82cdf3b-5f09-4f16-93eb-d3fffb95ea55
mrHungddddh
2025-01-15T12:45:29Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:heegyu/WizardVicuna2-13b-hf", "base_model:adapter:heegyu/WizardVicuna2-13b-hf", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-15T09:10:39Z
--- library_name: peft base_model: heegyu/WizardVicuna2-13b-hf tags: - axolotl - generated_from_trainer model-index: - name: a82cdf3b-5f09-4f16-93eb-d3fffb95ea55 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: heegyu/WizardVicuna2-13b-hf bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ace8777dda8ac20a_train_data.json ds_type: json format: custom path: /workspace/input_data/ace8777dda8ac20a_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: mrHungddddh/a82cdf3b-5f09-4f16-93eb-d3fffb95ea55 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/ace8777dda8ac20a_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: c1949657-d260-41e7-bb7f-22bfda51db95 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: c1949657-d260-41e7-bb7f-22bfda51db95 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # a82cdf3b-5f09-4f16-93eb-d3fffb95ea55 This model is a fine-tuned version of [heegyu/WizardVicuna2-13b-hf](https://huggingface.co/heegyu/WizardVicuna2-13b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0714 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3496 | 0.0032 | 200 | 1.0714 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso05/a3b98087-b7e3-454e-9cf0-f213d1cfa238
lesso05
2025-01-15T12:44:10Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:Vikhrmodels/Vikhr-7B-instruct_0.4", "base_model:adapter:Vikhrmodels/Vikhr-7B-instruct_0.4", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-15T12:32:05Z
--- library_name: peft base_model: Vikhrmodels/Vikhr-7B-instruct_0.4 tags: - axolotl - generated_from_trainer model-index: - name: a3b98087-b7e3-454e-9cf0-f213d1cfa238 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Vikhrmodels/Vikhr-7B-instruct_0.4 bf16: true chat_template: llama3 datasets: - data_files: - 0c711a1480f59d37_train_data.json ds_type: json format: custom path: /workspace/input_data/0c711a1480f59d37_train_data.json type: field_instruction: source field_output: target format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso05/a3b98087-b7e3-454e-9cf0-f213d1cfa238 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/0c711a1480f59d37_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: c88fd593-37b5-4dc0-be79-680dbbc06811 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: c88fd593-37b5-4dc0-be79-680dbbc06811 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # a3b98087-b7e3-454e-9cf0-f213d1cfa238 This model is a fine-tuned version of [Vikhrmodels/Vikhr-7B-instruct_0.4](https://huggingface.co/Vikhrmodels/Vikhr-7B-instruct_0.4) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0004 | 1 | nan | | 0.0 | 0.0021 | 5 | nan | | 0.0 | 0.0042 | 10 | nan | | 0.0 | 0.0063 | 15 | nan | | 0.0 | 0.0084 | 20 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
MayBashendy/ArabicNewSplits8_usingALLEssays_FineTuningAraBERT_run3_AugV5_k4_task2_organization
MayBashendy
2025-01-15T12:43:50Z
7
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-15T12:20:24Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits8_usingALLEssays_FineTuningAraBERT_run3_AugV5_k4_task2_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits8_usingALLEssays_FineTuningAraBERT_run3_AugV5_k4_task2_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5702 - Qwk: 0.5276 - Mse: 0.5702 - Rmse: 0.7551 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.0909 | 2 | 4.1289 | -0.0163 | 4.1289 | 2.0320 | | No log | 0.1818 | 4 | 2.3335 | 0.0928 | 2.3335 | 1.5276 | | No log | 0.2727 | 6 | 1.3547 | 0.1304 | 1.3547 | 1.1639 | | No log | 0.3636 | 8 | 0.8243 | 0.1612 | 0.8243 | 0.9079 | | No log | 0.4545 | 10 | 0.8167 | 0.1543 | 0.8167 | 0.9037 | | No log | 0.5455 | 12 | 0.8909 | 0.0600 | 0.8909 | 0.9439 | | No log | 0.6364 | 14 | 0.8382 | 0.0797 | 0.8382 | 0.9155 | | No log | 0.7273 | 16 | 0.9294 | 0.0710 | 0.9295 | 0.9641 | | No log | 0.8182 | 18 | 0.9013 | 0.0364 | 0.9013 | 0.9494 | | No log | 0.9091 | 20 | 0.7705 | 0.1758 | 0.7705 | 0.8778 | | No log | 1.0 | 22 | 0.8491 | 0.1837 | 0.8491 | 0.9215 | | No log | 1.0909 | 24 | 1.0730 | -0.0064 | 1.0730 | 1.0359 | | No log | 1.1818 | 26 | 0.9685 | 0.1752 | 0.9685 | 0.9841 | | No log | 1.2727 | 28 | 0.8001 | 0.2758 | 0.8001 | 0.8945 | | No log | 1.3636 | 30 | 0.6932 | 0.3324 | 0.6932 | 0.8326 | | No log | 1.4545 | 32 | 0.6469 | 0.3085 | 0.6469 | 0.8043 | | No log | 1.5455 | 34 | 0.7003 | 0.3825 | 0.7003 | 0.8369 | | No log | 1.6364 | 36 | 0.9571 | 0.3413 | 0.9571 | 0.9783 | | No log | 1.7273 | 38 | 0.8095 | 0.3397 | 0.8095 | 0.8997 | | No log | 1.8182 | 40 | 0.6484 | 0.3199 | 0.6484 | 0.8052 | | No log | 1.9091 | 42 | 0.6724 | 0.3422 | 0.6724 | 0.8200 | | No log | 2.0 | 44 | 0.9376 | 0.3737 | 0.9376 | 0.9683 | | No log | 2.0909 | 46 | 0.9724 | 0.2971 | 0.9724 | 0.9861 | | No log | 2.1818 | 48 | 0.6714 | 0.3809 | 0.6714 | 0.8194 | | No log | 2.2727 | 50 | 0.6992 | 0.4827 | 0.6992 | 0.8362 | | No log | 2.3636 | 52 | 0.6801 | 0.4829 | 0.6801 | 0.8247 | | No log | 2.4545 | 54 | 0.7007 | 0.3582 | 0.7007 | 0.8371 | | No log | 2.5455 | 56 | 0.8167 | 0.2229 | 0.8167 | 0.9037 | | No log | 2.6364 | 58 | 0.8054 | 0.3327 | 0.8054 | 0.8975 | | No log | 2.7273 | 60 | 0.7523 | 0.4179 | 0.7523 | 0.8674 | | No log | 2.8182 | 62 | 0.7476 | 0.3990 | 0.7476 | 0.8646 | | No log | 2.9091 | 64 | 0.7602 | 0.4638 | 0.7602 | 0.8719 | | No log | 3.0 | 66 | 0.7520 | 0.4320 | 0.7520 | 0.8672 | | No log | 3.0909 | 68 | 0.7639 | 0.4721 | 0.7639 | 0.8740 | | No log | 3.1818 | 70 | 0.7820 | 0.4843 | 0.7820 | 0.8843 | | No log | 3.2727 | 72 | 0.7551 | 0.4786 | 0.7551 | 0.8689 | | No log | 3.3636 | 74 | 0.7043 | 0.4932 | 0.7043 | 0.8392 | | No log | 3.4545 | 76 | 0.6817 | 0.5159 | 0.6817 | 0.8257 | | No log | 3.5455 | 78 | 0.8143 | 0.5015 | 0.8143 | 0.9024 | | No log | 3.6364 | 80 | 0.7963 | 0.4933 | 0.7963 | 0.8924 | | No log | 3.7273 | 82 | 0.6655 | 0.4843 | 0.6655 | 0.8158 | | No log | 3.8182 | 84 | 0.6994 | 0.5257 | 0.6994 | 0.8363 | | No log | 3.9091 | 86 | 0.7376 | 0.5171 | 0.7376 | 0.8589 | | No log | 4.0 | 88 | 0.6865 | 0.5336 | 0.6865 | 0.8286 | | No log | 4.0909 | 90 | 0.6946 | 0.5355 | 0.6946 | 0.8334 | | No log | 4.1818 | 92 | 0.6506 | 0.5309 | 0.6506 | 0.8066 | | No log | 4.2727 | 94 | 0.7794 | 0.4715 | 0.7794 | 0.8829 | | No log | 4.3636 | 96 | 0.9749 | 0.4178 | 0.9749 | 0.9874 | | No log | 4.4545 | 98 | 0.7843 | 0.4764 | 0.7843 | 0.8856 | | No log | 4.5455 | 100 | 0.6275 | 0.5193 | 0.6275 | 0.7921 | | No log | 4.6364 | 102 | 0.6422 | 0.5641 | 0.6422 | 0.8013 | | No log | 4.7273 | 104 | 0.6895 | 0.5382 | 0.6895 | 0.8303 | | No log | 4.8182 | 106 | 0.6924 | 0.5332 | 0.6924 | 0.8321 | | No log | 4.9091 | 108 | 0.7141 | 0.5619 | 0.7141 | 0.8451 | | No log | 5.0 | 110 | 0.7168 | 0.5298 | 0.7168 | 0.8466 | | No log | 5.0909 | 112 | 0.7726 | 0.5584 | 0.7726 | 0.8790 | | No log | 5.1818 | 114 | 0.6981 | 0.5476 | 0.6981 | 0.8355 | | No log | 5.2727 | 116 | 0.7291 | 0.5198 | 0.7291 | 0.8539 | | No log | 5.3636 | 118 | 0.6943 | 0.5069 | 0.6943 | 0.8332 | | No log | 5.4545 | 120 | 0.6622 | 0.5123 | 0.6622 | 0.8138 | | No log | 5.5455 | 122 | 0.6204 | 0.5496 | 0.6204 | 0.7877 | | No log | 5.6364 | 124 | 0.6236 | 0.4926 | 0.6236 | 0.7897 | | No log | 5.7273 | 126 | 0.6298 | 0.5655 | 0.6298 | 0.7936 | | No log | 5.8182 | 128 | 0.6542 | 0.5416 | 0.6542 | 0.8088 | | No log | 5.9091 | 130 | 0.6566 | 0.5531 | 0.6566 | 0.8103 | | No log | 6.0 | 132 | 0.6911 | 0.5088 | 0.6911 | 0.8313 | | No log | 6.0909 | 134 | 0.6520 | 0.5248 | 0.6520 | 0.8075 | | No log | 6.1818 | 136 | 0.6579 | 0.5327 | 0.6579 | 0.8111 | | No log | 6.2727 | 138 | 0.6381 | 0.5191 | 0.6381 | 0.7988 | | No log | 6.3636 | 140 | 0.7690 | 0.5085 | 0.7690 | 0.8769 | | No log | 6.4545 | 142 | 0.7417 | 0.5101 | 0.7417 | 0.8612 | | No log | 6.5455 | 144 | 0.7300 | 0.5151 | 0.7300 | 0.8544 | | No log | 6.6364 | 146 | 0.6336 | 0.5285 | 0.6336 | 0.7960 | | No log | 6.7273 | 148 | 0.6141 | 0.5239 | 0.6141 | 0.7836 | | No log | 6.8182 | 150 | 0.6567 | 0.4857 | 0.6567 | 0.8104 | | No log | 6.9091 | 152 | 0.8897 | 0.4287 | 0.8897 | 0.9432 | | No log | 7.0 | 154 | 0.8958 | 0.4398 | 0.8958 | 0.9465 | | No log | 7.0909 | 156 | 0.6126 | 0.5023 | 0.6126 | 0.7827 | | No log | 7.1818 | 158 | 0.6669 | 0.4960 | 0.6669 | 0.8166 | | No log | 7.2727 | 160 | 0.7190 | 0.5039 | 0.7190 | 0.8479 | | No log | 7.3636 | 162 | 0.5995 | 0.5081 | 0.5995 | 0.7742 | | No log | 7.4545 | 164 | 0.6595 | 0.4752 | 0.6595 | 0.8121 | | No log | 7.5455 | 166 | 0.6808 | 0.4536 | 0.6808 | 0.8251 | | No log | 7.6364 | 168 | 0.6300 | 0.5618 | 0.6300 | 0.7937 | | No log | 7.7273 | 170 | 0.8434 | 0.4557 | 0.8434 | 0.9184 | | No log | 7.8182 | 172 | 0.9728 | 0.4074 | 0.9728 | 0.9863 | | No log | 7.9091 | 174 | 0.7747 | 0.4881 | 0.7747 | 0.8802 | | No log | 8.0 | 176 | 0.6230 | 0.5875 | 0.6230 | 0.7893 | | No log | 8.0909 | 178 | 0.6791 | 0.4978 | 0.6791 | 0.8241 | | No log | 8.1818 | 180 | 0.6281 | 0.4657 | 0.6281 | 0.7925 | | No log | 8.2727 | 182 | 0.5617 | 0.5652 | 0.5617 | 0.7495 | | No log | 8.3636 | 184 | 0.5606 | 0.5505 | 0.5606 | 0.7487 | | No log | 8.4545 | 186 | 0.5504 | 0.5796 | 0.5504 | 0.7419 | | No log | 8.5455 | 188 | 0.5510 | 0.5837 | 0.5510 | 0.7423 | | No log | 8.6364 | 190 | 0.5509 | 0.5607 | 0.5509 | 0.7423 | | No log | 8.7273 | 192 | 0.5612 | 0.6065 | 0.5612 | 0.7491 | | No log | 8.8182 | 194 | 0.5691 | 0.5554 | 0.5691 | 0.7544 | | No log | 8.9091 | 196 | 0.5771 | 0.5593 | 0.5771 | 0.7596 | | No log | 9.0 | 198 | 0.5954 | 0.5587 | 0.5954 | 0.7716 | | No log | 9.0909 | 200 | 0.5969 | 0.5646 | 0.5969 | 0.7726 | | No log | 9.1818 | 202 | 0.6034 | 0.5788 | 0.6034 | 0.7768 | | No log | 9.2727 | 204 | 0.5833 | 0.5182 | 0.5833 | 0.7637 | | No log | 9.3636 | 206 | 0.5934 | 0.5093 | 0.5934 | 0.7703 | | No log | 9.4545 | 208 | 0.6044 | 0.5188 | 0.6044 | 0.7774 | | No log | 9.5455 | 210 | 0.6236 | 0.5380 | 0.6236 | 0.7897 | | No log | 9.6364 | 212 | 0.5629 | 0.5505 | 0.5629 | 0.7503 | | No log | 9.7273 | 214 | 0.6084 | 0.5056 | 0.6084 | 0.7800 | | No log | 9.8182 | 216 | 0.6008 | 0.5297 | 0.6008 | 0.7751 | | No log | 9.9091 | 218 | 0.5704 | 0.5538 | 0.5704 | 0.7552 | | No log | 10.0 | 220 | 0.7712 | 0.4946 | 0.7712 | 0.8782 | | No log | 10.0909 | 222 | 0.8232 | 0.4794 | 0.8232 | 0.9073 | | No log | 10.1818 | 224 | 0.6717 | 0.5239 | 0.6717 | 0.8196 | | No log | 10.2727 | 226 | 0.5981 | 0.5822 | 0.5981 | 0.7734 | | No log | 10.3636 | 228 | 0.6178 | 0.5023 | 0.6178 | 0.7860 | | No log | 10.4545 | 230 | 0.5906 | 0.5396 | 0.5906 | 0.7685 | | No log | 10.5455 | 232 | 0.5917 | 0.5563 | 0.5917 | 0.7692 | | No log | 10.6364 | 234 | 0.6051 | 0.5379 | 0.6051 | 0.7779 | | No log | 10.7273 | 236 | 0.6386 | 0.5126 | 0.6386 | 0.7991 | | No log | 10.8182 | 238 | 0.6946 | 0.5119 | 0.6946 | 0.8334 | | No log | 10.9091 | 240 | 0.6808 | 0.5139 | 0.6808 | 0.8251 | | No log | 11.0 | 242 | 0.6435 | 0.5568 | 0.6435 | 0.8022 | | No log | 11.0909 | 244 | 0.6000 | 0.6099 | 0.6000 | 0.7746 | | No log | 11.1818 | 246 | 0.6166 | 0.4752 | 0.6166 | 0.7852 | | No log | 11.2727 | 248 | 0.6222 | 0.4687 | 0.6222 | 0.7888 | | No log | 11.3636 | 250 | 0.6081 | 0.4735 | 0.6081 | 0.7798 | | No log | 11.4545 | 252 | 0.5607 | 0.5700 | 0.5607 | 0.7488 | | No log | 11.5455 | 254 | 0.5646 | 0.5525 | 0.5646 | 0.7514 | | No log | 11.6364 | 256 | 0.6002 | 0.5763 | 0.6002 | 0.7747 | | No log | 11.7273 | 258 | 0.6733 | 0.5753 | 0.6733 | 0.8205 | | No log | 11.8182 | 260 | 0.6699 | 0.5775 | 0.6699 | 0.8185 | | No log | 11.9091 | 262 | 0.5880 | 0.5019 | 0.5880 | 0.7668 | | No log | 12.0 | 264 | 0.5843 | 0.5121 | 0.5843 | 0.7644 | | No log | 12.0909 | 266 | 0.6040 | 0.5077 | 0.6040 | 0.7772 | | No log | 12.1818 | 268 | 0.6133 | 0.4956 | 0.6133 | 0.7831 | | No log | 12.2727 | 270 | 0.6544 | 0.5354 | 0.6544 | 0.8089 | | No log | 12.3636 | 272 | 0.6838 | 0.5656 | 0.6838 | 0.8269 | | No log | 12.4545 | 274 | 0.7079 | 0.5411 | 0.7079 | 0.8414 | | No log | 12.5455 | 276 | 0.7326 | 0.5266 | 0.7326 | 0.8559 | | No log | 12.6364 | 278 | 0.7464 | 0.5266 | 0.7464 | 0.8640 | | No log | 12.7273 | 280 | 0.6757 | 0.5393 | 0.6757 | 0.8220 | | No log | 12.8182 | 282 | 0.6755 | 0.4877 | 0.6755 | 0.8219 | | No log | 12.9091 | 284 | 0.6310 | 0.5049 | 0.6310 | 0.7944 | | No log | 13.0 | 286 | 0.5879 | 0.5054 | 0.5879 | 0.7667 | | No log | 13.0909 | 288 | 0.6253 | 0.5079 | 0.6253 | 0.7907 | | No log | 13.1818 | 290 | 0.6147 | 0.5212 | 0.6147 | 0.7840 | | No log | 13.2727 | 292 | 0.6433 | 0.5331 | 0.6433 | 0.8021 | | No log | 13.3636 | 294 | 0.6557 | 0.5281 | 0.6557 | 0.8098 | | No log | 13.4545 | 296 | 0.6136 | 0.5360 | 0.6136 | 0.7833 | | No log | 13.5455 | 298 | 0.6470 | 0.4562 | 0.6470 | 0.8044 | | No log | 13.6364 | 300 | 0.6222 | 0.5155 | 0.6222 | 0.7888 | | No log | 13.7273 | 302 | 0.6224 | 0.5463 | 0.6224 | 0.7889 | | No log | 13.8182 | 304 | 0.6831 | 0.5348 | 0.6831 | 0.8265 | | No log | 13.9091 | 306 | 0.7109 | 0.4983 | 0.7109 | 0.8432 | | No log | 14.0 | 308 | 0.8132 | 0.5264 | 0.8132 | 0.9018 | | No log | 14.0909 | 310 | 0.8106 | 0.5281 | 0.8106 | 0.9003 | | No log | 14.1818 | 312 | 0.8155 | 0.5224 | 0.8155 | 0.9030 | | No log | 14.2727 | 314 | 0.8112 | 0.5047 | 0.8112 | 0.9007 | | No log | 14.3636 | 316 | 0.7349 | 0.5357 | 0.7349 | 0.8573 | | No log | 14.4545 | 318 | 0.6635 | 0.5399 | 0.6635 | 0.8146 | | No log | 14.5455 | 320 | 0.6214 | 0.5192 | 0.6214 | 0.7883 | | No log | 14.6364 | 322 | 0.5802 | 0.4865 | 0.5802 | 0.7617 | | No log | 14.7273 | 324 | 0.5878 | 0.4999 | 0.5878 | 0.7667 | | No log | 14.8182 | 326 | 0.6374 | 0.4750 | 0.6374 | 0.7984 | | No log | 14.9091 | 328 | 0.6116 | 0.5086 | 0.6116 | 0.7820 | | No log | 15.0 | 330 | 0.5774 | 0.5774 | 0.5774 | 0.7599 | | No log | 15.0909 | 332 | 0.5823 | 0.5630 | 0.5823 | 0.7631 | | No log | 15.1818 | 334 | 0.5991 | 0.5491 | 0.5991 | 0.7740 | | No log | 15.2727 | 336 | 0.6026 | 0.5310 | 0.6026 | 0.7763 | | No log | 15.3636 | 338 | 0.6061 | 0.5100 | 0.6061 | 0.7785 | | No log | 15.4545 | 340 | 0.6039 | 0.5768 | 0.6039 | 0.7771 | | No log | 15.5455 | 342 | 0.5981 | 0.5768 | 0.5981 | 0.7734 | | No log | 15.6364 | 344 | 0.5939 | 0.5581 | 0.5939 | 0.7707 | | No log | 15.7273 | 346 | 0.5895 | 0.5097 | 0.5895 | 0.7678 | | No log | 15.8182 | 348 | 0.6569 | 0.4596 | 0.6569 | 0.8105 | | No log | 15.9091 | 350 | 0.7011 | 0.4467 | 0.7011 | 0.8373 | | No log | 16.0 | 352 | 0.6249 | 0.4118 | 0.6249 | 0.7905 | | No log | 16.0909 | 354 | 0.6025 | 0.5829 | 0.6025 | 0.7762 | | No log | 16.1818 | 356 | 0.6402 | 0.5698 | 0.6402 | 0.8001 | | No log | 16.2727 | 358 | 0.6214 | 0.5536 | 0.6214 | 0.7883 | | No log | 16.3636 | 360 | 0.6119 | 0.5828 | 0.6119 | 0.7822 | | No log | 16.4545 | 362 | 0.6061 | 0.5514 | 0.6061 | 0.7785 | | No log | 16.5455 | 364 | 0.6042 | 0.5487 | 0.6042 | 0.7773 | | No log | 16.6364 | 366 | 0.6121 | 0.5191 | 0.6121 | 0.7824 | | No log | 16.7273 | 368 | 0.6307 | 0.4672 | 0.6307 | 0.7942 | | No log | 16.8182 | 370 | 0.6117 | 0.4934 | 0.6117 | 0.7821 | | No log | 16.9091 | 372 | 0.6233 | 0.5046 | 0.6233 | 0.7895 | | No log | 17.0 | 374 | 0.6423 | 0.5361 | 0.6423 | 0.8014 | | No log | 17.0909 | 376 | 0.6115 | 0.5180 | 0.6115 | 0.7820 | | No log | 17.1818 | 378 | 0.5932 | 0.4978 | 0.5932 | 0.7702 | | No log | 17.2727 | 380 | 0.5943 | 0.4733 | 0.5943 | 0.7709 | | No log | 17.3636 | 382 | 0.5906 | 0.4686 | 0.5906 | 0.7685 | | No log | 17.4545 | 384 | 0.5974 | 0.5132 | 0.5974 | 0.7729 | | No log | 17.5455 | 386 | 0.6258 | 0.5490 | 0.6258 | 0.7911 | | No log | 17.6364 | 388 | 0.6177 | 0.5638 | 0.6177 | 0.7860 | | No log | 17.7273 | 390 | 0.5997 | 0.4885 | 0.5997 | 0.7744 | | No log | 17.8182 | 392 | 0.6634 | 0.4593 | 0.6634 | 0.8145 | | No log | 17.9091 | 394 | 0.6374 | 0.4895 | 0.6374 | 0.7983 | | No log | 18.0 | 396 | 0.5936 | 0.5303 | 0.5936 | 0.7705 | | No log | 18.0909 | 398 | 0.6190 | 0.5291 | 0.6190 | 0.7867 | | No log | 18.1818 | 400 | 0.5982 | 0.5314 | 0.5982 | 0.7734 | | No log | 18.2727 | 402 | 0.5839 | 0.5270 | 0.5839 | 0.7641 | | No log | 18.3636 | 404 | 0.5840 | 0.5200 | 0.5840 | 0.7642 | | No log | 18.4545 | 406 | 0.6128 | 0.5291 | 0.6128 | 0.7828 | | No log | 18.5455 | 408 | 0.6391 | 0.5301 | 0.6391 | 0.7994 | | No log | 18.6364 | 410 | 0.6248 | 0.5260 | 0.6248 | 0.7905 | | No log | 18.7273 | 412 | 0.6061 | 0.5223 | 0.6061 | 0.7785 | | No log | 18.8182 | 414 | 0.6178 | 0.5208 | 0.6178 | 0.7860 | | No log | 18.9091 | 416 | 0.6389 | 0.5228 | 0.6389 | 0.7993 | | No log | 19.0 | 418 | 0.6360 | 0.5523 | 0.6360 | 0.7975 | | No log | 19.0909 | 420 | 0.6266 | 0.5758 | 0.6266 | 0.7916 | | No log | 19.1818 | 422 | 0.6141 | 0.6061 | 0.6141 | 0.7836 | | No log | 19.2727 | 424 | 0.6449 | 0.5323 | 0.6449 | 0.8031 | | No log | 19.3636 | 426 | 0.7252 | 0.5203 | 0.7252 | 0.8516 | | No log | 19.4545 | 428 | 0.6828 | 0.5255 | 0.6828 | 0.8263 | | No log | 19.5455 | 430 | 0.5977 | 0.5641 | 0.5977 | 0.7731 | | No log | 19.6364 | 432 | 0.5565 | 0.5570 | 0.5565 | 0.7460 | | No log | 19.7273 | 434 | 0.5654 | 0.6175 | 0.5654 | 0.7519 | | No log | 19.8182 | 436 | 0.5554 | 0.5818 | 0.5554 | 0.7453 | | No log | 19.9091 | 438 | 0.5352 | 0.5562 | 0.5352 | 0.7316 | | No log | 20.0 | 440 | 0.5657 | 0.4958 | 0.5657 | 0.7521 | | No log | 20.0909 | 442 | 0.5662 | 0.4867 | 0.5662 | 0.7524 | | No log | 20.1818 | 444 | 0.5347 | 0.5535 | 0.5347 | 0.7312 | | No log | 20.2727 | 446 | 0.5350 | 0.5589 | 0.5350 | 0.7315 | | No log | 20.3636 | 448 | 0.5352 | 0.5453 | 0.5352 | 0.7316 | | No log | 20.4545 | 450 | 0.5375 | 0.5543 | 0.5375 | 0.7332 | | No log | 20.5455 | 452 | 0.5444 | 0.5676 | 0.5444 | 0.7378 | | No log | 20.6364 | 454 | 0.5717 | 0.6178 | 0.5717 | 0.7561 | | No log | 20.7273 | 456 | 0.5784 | 0.5864 | 0.5784 | 0.7605 | | No log | 20.8182 | 458 | 0.5722 | 0.5709 | 0.5722 | 0.7564 | | No log | 20.9091 | 460 | 0.6167 | 0.5341 | 0.6167 | 0.7853 | | No log | 21.0 | 462 | 0.5992 | 0.5503 | 0.5992 | 0.7741 | | No log | 21.0909 | 464 | 0.5725 | 0.5087 | 0.5725 | 0.7566 | | No log | 21.1818 | 466 | 0.5554 | 0.5020 | 0.5554 | 0.7453 | | No log | 21.2727 | 468 | 0.5592 | 0.4928 | 0.5592 | 0.7478 | | No log | 21.3636 | 470 | 0.5891 | 0.4863 | 0.5891 | 0.7675 | | No log | 21.4545 | 472 | 0.6507 | 0.4865 | 0.6507 | 0.8067 | | No log | 21.5455 | 474 | 0.6651 | 0.5132 | 0.6651 | 0.8155 | | No log | 21.6364 | 476 | 0.6183 | 0.4811 | 0.6183 | 0.7863 | | No log | 21.7273 | 478 | 0.5829 | 0.5549 | 0.5829 | 0.7635 | | No log | 21.8182 | 480 | 0.6007 | 0.5189 | 0.6007 | 0.7751 | | No log | 21.9091 | 482 | 0.5915 | 0.5553 | 0.5915 | 0.7691 | | No log | 22.0 | 484 | 0.5931 | 0.4946 | 0.5931 | 0.7701 | | No log | 22.0909 | 486 | 0.5943 | 0.5091 | 0.5943 | 0.7709 | | No log | 22.1818 | 488 | 0.6062 | 0.5314 | 0.6062 | 0.7786 | | No log | 22.2727 | 490 | 0.5855 | 0.5155 | 0.5855 | 0.7652 | | No log | 22.3636 | 492 | 0.5791 | 0.5081 | 0.5791 | 0.7610 | | No log | 22.4545 | 494 | 0.5685 | 0.5339 | 0.5685 | 0.7540 | | No log | 22.5455 | 496 | 0.5644 | 0.5155 | 0.5644 | 0.7512 | | No log | 22.6364 | 498 | 0.5690 | 0.5502 | 0.5690 | 0.7544 | | 0.3089 | 22.7273 | 500 | 0.5745 | 0.5685 | 0.5745 | 0.7579 | | 0.3089 | 22.8182 | 502 | 0.5815 | 0.5549 | 0.5815 | 0.7625 | | 0.3089 | 22.9091 | 504 | 0.5910 | 0.5373 | 0.5910 | 0.7688 | | 0.3089 | 23.0 | 506 | 0.5781 | 0.5402 | 0.5781 | 0.7603 | | 0.3089 | 23.0909 | 508 | 0.5665 | 0.5440 | 0.5665 | 0.7526 | | 0.3089 | 23.1818 | 510 | 0.5702 | 0.5276 | 0.5702 | 0.7551 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
phungkhaccuong/568ec1ab-a12a-4b2f-913f-a3d1fdbd003e
phungkhaccuong
2025-01-15T12:42:49Z
12
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:zake7749/gemma-2-2b-it-chinese-kyara-dpo", "base_model:adapter:zake7749/gemma-2-2b-it-chinese-kyara-dpo", "license:gemma", "region:us" ]
null
2025-01-15T12:33:01Z
--- library_name: peft license: gemma base_model: zake7749/gemma-2-2b-it-chinese-kyara-dpo tags: - axolotl - generated_from_trainer model-index: - name: 568ec1ab-a12a-4b2f-913f-a3d1fdbd003e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: zake7749/gemma-2-2b-it-chinese-kyara-dpo bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 34a8ecc953c9036c_train_data.json ds_type: json format: custom path: /workspace/input_data/34a8ecc953c9036c_train_data.json type: field_input: title_main field_instruction: texte field_output: texteHtml format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: phungkhaccuong/568ec1ab-a12a-4b2f-913f-a3d1fdbd003e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/34a8ecc953c9036c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 4cab3fe6-17ad-4a26-9515-f652b7692aed wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 4cab3fe6-17ad-4a26-9515-f652b7692aed warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 568ec1ab-a12a-4b2f-913f-a3d1fdbd003e This model is a fine-tuned version of [zake7749/gemma-2-2b-it-chinese-kyara-dpo](https://huggingface.co/zake7749/gemma-2-2b-it-chinese-kyara-dpo) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1213 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0012 | 1 | 0.8833 | | 0.6431 | 0.0123 | 10 | 0.4092 | | 0.2016 | 0.0245 | 20 | 0.1782 | | 0.1453 | 0.0368 | 30 | 0.1392 | | 0.129 | 0.0491 | 40 | 0.1237 | | 0.1143 | 0.0613 | 50 | 0.1213 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
duyphu/9a662880-dd97-4b40-ae74-f6c55cb8b3de
duyphu
2025-01-15T12:41:56Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen1.5-0.5B-Chat", "base_model:adapter:Qwen/Qwen1.5-0.5B-Chat", "license:other", "region:us" ]
null
2025-01-15T12:39:01Z
--- library_name: peft license: other base_model: Qwen/Qwen1.5-0.5B-Chat tags: - axolotl - generated_from_trainer model-index: - name: 9a662880-dd97-4b40-ae74-f6c55cb8b3de results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen1.5-0.5B-Chat bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 311f161d394c0f20_train_data.json ds_type: json format: custom path: /workspace/input_data/311f161d394c0f20_train_data.json type: field_input: answer_1 field_instruction: question field_output: answer_2 format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: duyphu/9a662880-dd97-4b40-ae74-f6c55cb8b3de hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/311f161d394c0f20_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d87d5d3f-f10b-4275-a4e4-bfe0eaa3d151 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d87d5d3f-f10b-4275-a4e4-bfe0eaa3d151 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 9a662880-dd97-4b40-ae74-f6c55cb8b3de This model is a fine-tuned version of [Qwen/Qwen1.5-0.5B-Chat](https://huggingface.co/Qwen/Qwen1.5-0.5B-Chat) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5425 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0043 | 1 | 2.7217 | | 2.5721 | 0.0434 | 10 | 2.6530 | | 2.6293 | 0.0869 | 20 | 2.5852 | | 2.3779 | 0.1303 | 30 | 2.5555 | | 2.3164 | 0.1737 | 40 | 2.5445 | | 2.5845 | 0.2172 | 50 | 2.5425 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
bustamiyusoef/_Arabic_nougat_AHR
bustamiyusoef
2025-01-15T12:41:46Z
14
0
transformers
[ "transformers", "safetensors", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "base_model:MohamedRashad/arabic-base-nougat", "base_model:finetune:MohamedRashad/arabic-base-nougat", "license:gpl-3.0", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-01-15T12:40:21Z
--- library_name: transformers license: gpl-3.0 base_model: MohamedRashad/arabic-base-nougat tags: - generated_from_trainer model-index: - name: _Arabic_nougat_AHR results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # _Arabic_nougat_AHR This model is a fine-tuned version of [MohamedRashad/arabic-base-nougat](https://huggingface.co/MohamedRashad/arabic-base-nougat) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3533 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 6 - total_train_batch_size: 48 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 2.3594 | 1.0 | 77 | 0.3758 | | 1.6401 | 2.0 | 154 | 0.3143 | | 1.4332 | 3.0 | 231 | 0.2986 | | 0.9917 | 4.0 | 308 | 0.2993 | | 0.8202 | 5.0 | 385 | 0.3082 | | 0.669 | 6.0 | 462 | 0.3103 | | 0.5788 | 7.0 | 539 | 0.3233 | | 0.4873 | 8.0 | 616 | 0.3336 | | 0.4865 | 9.0 | 693 | 0.3366 | | 0.3386 | 10.0 | 770 | 0.3503 | | 0.3643 | 11.0 | 847 | 0.3476 | | 0.3229 | 12.0 | 924 | 0.3546 | | 0.3406 | 13.0 | 1001 | 0.3536 | | 0.331 | 14.0 | 1078 | 0.3534 | | 0.3016 | 14.8140 | 1140 | 0.3533 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
lesso03/3fceefbb-ef0f-4e97-afe5-1fd1691eb752
lesso03
2025-01-15T12:41:32Z
8
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:zake7749/gemma-2-2b-it-chinese-kyara-dpo", "base_model:adapter:zake7749/gemma-2-2b-it-chinese-kyara-dpo", "license:gemma", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-15T12:34:57Z
--- library_name: peft license: gemma base_model: zake7749/gemma-2-2b-it-chinese-kyara-dpo tags: - axolotl - generated_from_trainer model-index: - name: 3fceefbb-ef0f-4e97-afe5-1fd1691eb752 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: zake7749/gemma-2-2b-it-chinese-kyara-dpo bf16: true chat_template: llama3 datasets: - data_files: - 34a8ecc953c9036c_train_data.json ds_type: json format: custom path: /workspace/input_data/34a8ecc953c9036c_train_data.json type: field_input: title_main field_instruction: texte field_output: texteHtml format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso03/3fceefbb-ef0f-4e97-afe5-1fd1691eb752 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/34a8ecc953c9036c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 4cab3fe6-17ad-4a26-9515-f652b7692aed wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 4cab3fe6-17ad-4a26-9515-f652b7692aed warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 3fceefbb-ef0f-4e97-afe5-1fd1691eb752 This model is a fine-tuned version of [zake7749/gemma-2-2b-it-chinese-kyara-dpo](https://huggingface.co/zake7749/gemma-2-2b-it-chinese-kyara-dpo) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1601 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.6828 | 0.0012 | 1 | 0.8920 | | 0.6502 | 0.0061 | 5 | 0.6842 | | 0.4316 | 0.0123 | 10 | 0.2525 | | 0.1992 | 0.0184 | 15 | 0.1788 | | 0.1733 | 0.0245 | 20 | 0.1621 | | 0.1932 | 0.0307 | 25 | 0.1601 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Best000/2fd95b9e-76a3-44ff-8ec5-6dfff15f2c7f
Best000
2025-01-15T12:40:22Z
15
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:Vikhrmodels/Vikhr-7B-instruct_0.4", "base_model:adapter:Vikhrmodels/Vikhr-7B-instruct_0.4", "region:us" ]
null
2025-01-15T12:36:37Z
--- library_name: peft base_model: Vikhrmodels/Vikhr-7B-instruct_0.4 tags: - axolotl - generated_from_trainer model-index: - name: 2fd95b9e-76a3-44ff-8ec5-6dfff15f2c7f results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Vikhrmodels/Vikhr-7B-instruct_0.4 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 0c711a1480f59d37_train_data.json ds_type: json format: custom path: /workspace/input_data/0c711a1480f59d37_train_data.json type: field_instruction: source field_output: target format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: Best000/2fd95b9e-76a3-44ff-8ec5-6dfff15f2c7f hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/0c711a1480f59d37_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: c88fd593-37b5-4dc0-be79-680dbbc06811 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: c88fd593-37b5-4dc0-be79-680dbbc06811 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 2fd95b9e-76a3-44ff-8ec5-6dfff15f2c7f This model is a fine-tuned version of [Vikhrmodels/Vikhr-7B-instruct_0.4](https://huggingface.co/Vikhrmodels/Vikhr-7B-instruct_0.4) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0004 | 1 | nan | | 0.0 | 0.0013 | 3 | nan | | 0.0 | 0.0025 | 6 | nan | | 0.0 | 0.0038 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
tensorwa/c3_q5_1
tensorwa
2025-01-15T12:40:18Z
51
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-15T12:36:52Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
duyphu/380bc76e-f068-4938-8563-66819cf1d4af
duyphu
2025-01-15T12:37:56Z
14
0
peft
[ "peft", "safetensors", "phi3", "axolotl", "generated_from_trainer", "custom_code", "base_model:microsoft/Phi-3-mini-128k-instruct", "base_model:adapter:microsoft/Phi-3-mini-128k-instruct", "license:mit", "region:us" ]
null
2025-01-15T12:23:11Z
--- library_name: peft license: mit base_model: microsoft/Phi-3-mini-128k-instruct tags: - axolotl - generated_from_trainer model-index: - name: 380bc76e-f068-4938-8563-66819cf1d4af results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: microsoft/Phi-3-mini-128k-instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - a46d02fc217c0509_train_data.json ds_type: json format: custom path: /workspace/input_data/a46d02fc217c0509_train_data.json type: field_instruction: question field_output: answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: duyphu/380bc76e-f068-4938-8563-66819cf1d4af hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/a46d02fc217c0509_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: da5a59e4-b4e2-40cf-906c-59fc8d44af6a wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: da5a59e4-b4e2-40cf-906c-59fc8d44af6a warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 380bc76e-f068-4938-8563-66819cf1d4af This model is a fine-tuned version of [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2988 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0007 | 1 | 5.1141 | | 19.9015 | 0.0068 | 10 | 4.7637 | | 15.6149 | 0.0137 | 20 | 3.2703 | | 9.8552 | 0.0205 | 30 | 2.5106 | | 7.8637 | 0.0274 | 40 | 2.3464 | | 10.2621 | 0.0342 | 50 | 2.2988 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
John6666/naixl-mmmmix-v45-sdxl
John6666
2025-01-15T12:37:46Z
393
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "girls", "detail", "color", "illustrious", "en", "base_model:Laxhar/noobai-XL-1.0", "base_model:finetune:Laxhar/noobai-XL-1.0", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-01-15T12:32:01Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - girls - detail - color - illustrious base_model: Laxhar/noobai-XL-1.0 --- Original model is [here](https://civitai.com/models/997769/naixlmmmmix?modelVersionId=1286203). This model created by [xiaofan941297](https://civitai.com/user/xiaofan941297).
ClarenceDan/fd4e7993-fd51-4e4c-967c-2c3418dace26
ClarenceDan
2025-01-15T12:36:23Z
15
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-1.7B", "base_model:adapter:unsloth/SmolLM2-1.7B", "license:apache-2.0", "region:us" ]
null
2025-01-15T12:26:38Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-1.7B tags: - axolotl - generated_from_trainer model-index: - name: fd4e7993-fd51-4e4c-967c-2c3418dace26 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM2-1.7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 8492dab84eb4a872_train_data.json ds_type: json format: custom path: /workspace/input_data/8492dab84eb4a872_train_data.json type: field_input: Abstract field_instruction: Title field_output: Hypothesis format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: ClarenceDan/fd4e7993-fd51-4e4c-967c-2c3418dace26 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/8492dab84eb4a872_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: bb4dd990-a545-4b1a-8ec7-8e5c79e135a9 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: bb4dd990-a545-4b1a-8ec7-8e5c79e135a9 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # fd4e7993-fd51-4e4c-967c-2c3418dace26 This model is a fine-tuned version of [unsloth/SmolLM2-1.7B](https://huggingface.co/unsloth/SmolLM2-1.7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0001 | 1 | nan | | 4.1641 | 0.0002 | 3 | nan | | 6.308 | 0.0004 | 6 | nan | | 3.1081 | 0.0005 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
kostiantynk-out/ffeb230c-753e-4b7d-b713-b1159dd0866b
kostiantynk-out
2025-01-15T12:33:56Z
18
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/llama-3-8b-Instruct", "base_model:adapter:unsloth/llama-3-8b-Instruct", "license:llama3", "region:us" ]
null
2025-01-15T12:19:39Z
--- library_name: peft license: llama3 base_model: unsloth/llama-3-8b-Instruct tags: - axolotl - generated_from_trainer model-index: - name: ffeb230c-753e-4b7d-b713-b1159dd0866b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/llama-3-8b-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 22898ffc4e984aab_train_data.json ds_type: json format: custom path: /workspace/input_data/22898ffc4e984aab_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kostiantynk-out/ffeb230c-753e-4b7d-b713-b1159dd0866b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/22898ffc4e984aab_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 537ea366-0d00-4215-a8bf-12dd9968edce wandb_project: Mine-SN56-1-Gradients-On-Demand wandb_run: your_name wandb_runid: 537ea366-0d00-4215-a8bf-12dd9968edce warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # ffeb230c-753e-4b7d-b713-b1159dd0866b This model is a fine-tuned version of [unsloth/llama-3-8b-Instruct](https://huggingface.co/unsloth/llama-3-8b-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0001 | 1 | nan | | 0.0 | 0.0002 | 3 | nan | | 0.0 | 0.0004 | 6 | nan | | 0.0 | 0.0006 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
MayBashendy/ArabicNewSplits7_OSS_usingWellWrittenEssays_FineTuningAraBERT_run1_AugV5_k3_task1_organization
MayBashendy
2025-01-15T12:33:54Z
7
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-15T12:16:01Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits7_OSS_usingWellWrittenEssays_FineTuningAraBERT_run1_AugV5_k3_task1_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits7_OSS_usingWellWrittenEssays_FineTuningAraBERT_run1_AugV5_k3_task1_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6083 - Qwk: 0.7613 - Mse: 0.6083 - Rmse: 0.7800 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-------:|:----:|:---------------:|:------:|:------:|:------:| | No log | 0.0870 | 2 | 6.7965 | 0.0242 | 6.7965 | 2.6070 | | No log | 0.1739 | 4 | 5.2676 | 0.0366 | 5.2676 | 2.2951 | | No log | 0.2609 | 6 | 3.0917 | 0.0595 | 3.0917 | 1.7583 | | No log | 0.3478 | 8 | 2.5803 | 0.0132 | 2.5803 | 1.6063 | | No log | 0.4348 | 10 | 3.5005 | 0.0787 | 3.5005 | 1.8710 | | No log | 0.5217 | 12 | 2.6461 | 0.0141 | 2.6461 | 1.6267 | | No log | 0.6087 | 14 | 1.7385 | 0.2478 | 1.7385 | 1.3185 | | No log | 0.6957 | 16 | 1.6891 | 0.0583 | 1.6891 | 1.2996 | | No log | 0.7826 | 18 | 1.6908 | 0.1296 | 1.6908 | 1.3003 | | No log | 0.8696 | 20 | 1.6275 | 0.1308 | 1.6275 | 1.2757 | | No log | 0.9565 | 22 | 1.4872 | 0.1538 | 1.4872 | 1.2195 | | No log | 1.0435 | 24 | 1.5368 | 0.3158 | 1.5368 | 1.2397 | | No log | 1.1304 | 26 | 1.3818 | 0.3158 | 1.3818 | 1.1755 | | No log | 1.2174 | 28 | 1.2881 | 0.3932 | 1.2881 | 1.1349 | | No log | 1.3043 | 30 | 1.1907 | 0.3621 | 1.1907 | 1.0912 | | No log | 1.3913 | 32 | 1.1694 | 0.3652 | 1.1694 | 1.0814 | | No log | 1.4783 | 34 | 1.1661 | 0.3214 | 1.1661 | 1.0798 | | No log | 1.5652 | 36 | 1.0867 | 0.4138 | 1.0867 | 1.0425 | | No log | 1.6522 | 38 | 1.0225 | 0.4959 | 1.0225 | 1.0112 | | No log | 1.7391 | 40 | 0.9464 | 0.6970 | 0.9464 | 0.9728 | | No log | 1.8261 | 42 | 0.8481 | 0.7482 | 0.8481 | 0.9209 | | No log | 1.9130 | 44 | 0.7664 | 0.7260 | 0.7664 | 0.8754 | | No log | 2.0 | 46 | 0.7207 | 0.7651 | 0.7207 | 0.8489 | | No log | 2.0870 | 48 | 0.9562 | 0.5926 | 0.9562 | 0.9779 | | No log | 2.1739 | 50 | 1.2811 | 0.5224 | 1.2811 | 1.1319 | | No log | 2.2609 | 52 | 1.1457 | 0.5481 | 1.1457 | 1.0704 | | No log | 2.3478 | 54 | 1.0695 | 0.5630 | 1.0695 | 1.0342 | | No log | 2.4348 | 56 | 1.2533 | 0.5180 | 1.2533 | 1.1195 | | No log | 2.5217 | 58 | 1.4337 | 0.4714 | 1.4337 | 1.1974 | | No log | 2.6087 | 60 | 1.1399 | 0.5693 | 1.1399 | 1.0677 | | No log | 2.6957 | 62 | 0.8858 | 0.5926 | 0.8858 | 0.9412 | | No log | 2.7826 | 64 | 0.9129 | 0.6567 | 0.9129 | 0.9555 | | No log | 2.8696 | 66 | 1.2352 | 0.5 | 1.2352 | 1.1114 | | No log | 2.9565 | 68 | 1.1034 | 0.5606 | 1.1034 | 1.0504 | | No log | 3.0435 | 70 | 0.9522 | 0.5891 | 0.9522 | 0.9758 | | No log | 3.1304 | 72 | 0.9261 | 0.6142 | 0.9261 | 0.9624 | | No log | 3.2174 | 74 | 0.9060 | 0.6515 | 0.9060 | 0.9519 | | No log | 3.3043 | 76 | 0.8631 | 0.6667 | 0.8631 | 0.9290 | | No log | 3.3913 | 78 | 0.8798 | 0.6522 | 0.8798 | 0.9380 | | No log | 3.4783 | 80 | 0.8796 | 0.6324 | 0.8796 | 0.9379 | | No log | 3.5652 | 82 | 0.9746 | 0.6222 | 0.9746 | 0.9872 | | No log | 3.6522 | 84 | 1.0278 | 0.5899 | 1.0278 | 1.0138 | | No log | 3.7391 | 86 | 0.9362 | 0.6479 | 0.9362 | 0.9676 | | No log | 3.8261 | 88 | 0.9420 | 0.6383 | 0.9420 | 0.9706 | | No log | 3.9130 | 90 | 1.0282 | 0.6383 | 1.0282 | 1.0140 | | No log | 4.0 | 92 | 1.3175 | 0.5 | 1.3175 | 1.1478 | | No log | 4.0870 | 94 | 1.2619 | 0.5324 | 1.2619 | 1.1234 | | No log | 4.1739 | 96 | 0.9363 | 0.6716 | 0.9363 | 0.9676 | | No log | 4.2609 | 98 | 0.7244 | 0.7194 | 0.7244 | 0.8511 | | No log | 4.3478 | 100 | 0.7534 | 0.7586 | 0.7534 | 0.8680 | | No log | 4.4348 | 102 | 0.7001 | 0.7286 | 0.7001 | 0.8367 | | No log | 4.5217 | 104 | 0.7011 | 0.7324 | 0.7011 | 0.8373 | | No log | 4.6087 | 106 | 0.7827 | 0.6897 | 0.7827 | 0.8847 | | No log | 4.6957 | 108 | 0.7922 | 0.7034 | 0.7922 | 0.8900 | | No log | 4.7826 | 110 | 0.8235 | 0.6377 | 0.8235 | 0.9075 | | No log | 4.8696 | 112 | 0.8034 | 0.6331 | 0.8034 | 0.8963 | | No log | 4.9565 | 114 | 0.7506 | 0.6897 | 0.7506 | 0.8664 | | No log | 5.0435 | 116 | 0.8669 | 0.6525 | 0.8669 | 0.9311 | | No log | 5.1304 | 118 | 0.9777 | 0.6241 | 0.9777 | 0.9888 | | No log | 5.2174 | 120 | 0.8365 | 0.6525 | 0.8365 | 0.9146 | | No log | 5.3043 | 122 | 0.7675 | 0.7034 | 0.7675 | 0.8761 | | No log | 5.3913 | 124 | 0.8405 | 0.7222 | 0.8405 | 0.9168 | | No log | 5.4783 | 126 | 0.8176 | 0.7020 | 0.8176 | 0.9042 | | No log | 5.5652 | 128 | 0.7173 | 0.7027 | 0.7173 | 0.8469 | | No log | 5.6522 | 130 | 0.7593 | 0.6897 | 0.7593 | 0.8714 | | No log | 5.7391 | 132 | 0.7562 | 0.6806 | 0.7562 | 0.8696 | | No log | 5.8261 | 134 | 0.7676 | 0.6475 | 0.7676 | 0.8761 | | No log | 5.9130 | 136 | 0.7785 | 0.6812 | 0.7785 | 0.8823 | | No log | 6.0 | 138 | 0.8224 | 0.6667 | 0.8224 | 0.9069 | | No log | 6.0870 | 140 | 0.7774 | 0.6963 | 0.7774 | 0.8817 | | No log | 6.1739 | 142 | 0.7749 | 0.6906 | 0.7749 | 0.8803 | | No log | 6.2609 | 144 | 0.7668 | 0.6906 | 0.7668 | 0.8757 | | No log | 6.3478 | 146 | 0.7373 | 0.7273 | 0.7373 | 0.8587 | | No log | 6.4348 | 148 | 0.7192 | 0.7310 | 0.7192 | 0.8481 | | No log | 6.5217 | 150 | 0.7090 | 0.7333 | 0.7090 | 0.8420 | | No log | 6.6087 | 152 | 0.7434 | 0.7248 | 0.7434 | 0.8622 | | No log | 6.6957 | 154 | 0.9131 | 0.6957 | 0.9131 | 0.9555 | | No log | 6.7826 | 156 | 1.0124 | 0.6497 | 1.0124 | 1.0062 | | No log | 6.8696 | 158 | 1.0566 | 0.6364 | 1.0566 | 1.0279 | | No log | 6.9565 | 160 | 0.9694 | 0.6316 | 0.9694 | 0.9846 | | No log | 7.0435 | 162 | 0.8067 | 0.7042 | 0.8067 | 0.8982 | | No log | 7.1304 | 164 | 0.7349 | 0.6944 | 0.7349 | 0.8573 | | No log | 7.2174 | 166 | 0.6986 | 0.7310 | 0.6986 | 0.8358 | | No log | 7.3043 | 168 | 0.6657 | 0.7582 | 0.6657 | 0.8159 | | No log | 7.3913 | 170 | 0.6363 | 0.7516 | 0.6363 | 0.7977 | | No log | 7.4783 | 172 | 0.6082 | 0.7625 | 0.6082 | 0.7799 | | No log | 7.5652 | 174 | 0.7006 | 0.7248 | 0.7006 | 0.8370 | | No log | 7.6522 | 176 | 0.7965 | 0.6906 | 0.7965 | 0.8925 | | No log | 7.7391 | 178 | 0.8408 | 0.6715 | 0.8408 | 0.9169 | | No log | 7.8261 | 180 | 0.8113 | 0.6815 | 0.8113 | 0.9007 | | No log | 7.9130 | 182 | 0.7450 | 0.7101 | 0.7450 | 0.8631 | | No log | 8.0 | 184 | 0.7569 | 0.6765 | 0.7569 | 0.8700 | | No log | 8.0870 | 186 | 0.8218 | 0.6364 | 0.8218 | 0.9065 | | No log | 8.1739 | 188 | 0.8568 | 0.7353 | 0.8568 | 0.9256 | | No log | 8.2609 | 190 | 0.8843 | 0.7007 | 0.8843 | 0.9404 | | No log | 8.3478 | 192 | 0.8448 | 0.7092 | 0.8448 | 0.9191 | | No log | 8.4348 | 194 | 0.8084 | 0.7133 | 0.8084 | 0.8991 | | No log | 8.5217 | 196 | 0.8005 | 0.6901 | 0.8005 | 0.8947 | | No log | 8.6087 | 198 | 0.8825 | 0.6099 | 0.8825 | 0.9394 | | No log | 8.6957 | 200 | 0.9992 | 0.5899 | 0.9992 | 0.9996 | | No log | 8.7826 | 202 | 0.9517 | 0.6471 | 0.9517 | 0.9756 | | No log | 8.8696 | 204 | 0.7884 | 0.6619 | 0.7884 | 0.8879 | | No log | 8.9565 | 206 | 0.6833 | 0.7483 | 0.6833 | 0.8266 | | No log | 9.0435 | 208 | 0.6564 | 0.7534 | 0.6564 | 0.8102 | | No log | 9.1304 | 210 | 0.6524 | 0.7260 | 0.6524 | 0.8077 | | No log | 9.2174 | 212 | 0.7133 | 0.7114 | 0.7133 | 0.8446 | | No log | 9.3043 | 214 | 0.7107 | 0.7097 | 0.7107 | 0.8430 | | No log | 9.3913 | 216 | 0.6151 | 0.7248 | 0.6151 | 0.7843 | | No log | 9.4783 | 218 | 0.5884 | 0.7632 | 0.5884 | 0.7671 | | No log | 9.5652 | 220 | 0.6203 | 0.7453 | 0.6203 | 0.7876 | | No log | 9.6522 | 222 | 0.6408 | 0.7586 | 0.6408 | 0.8005 | | No log | 9.7391 | 224 | 0.5502 | 0.8136 | 0.5502 | 0.7417 | | No log | 9.8261 | 226 | 0.5383 | 0.8095 | 0.5383 | 0.7337 | | No log | 9.9130 | 228 | 0.5737 | 0.7738 | 0.5737 | 0.7575 | | No log | 10.0 | 230 | 0.7389 | 0.7317 | 0.7389 | 0.8596 | | No log | 10.0870 | 232 | 0.7915 | 0.6933 | 0.7915 | 0.8897 | | No log | 10.1739 | 234 | 0.7053 | 0.7042 | 0.7053 | 0.8398 | | No log | 10.2609 | 236 | 0.6509 | 0.7639 | 0.6509 | 0.8068 | | No log | 10.3478 | 238 | 0.6944 | 0.7448 | 0.6944 | 0.8333 | | No log | 10.4348 | 240 | 0.6575 | 0.7867 | 0.6575 | 0.8109 | | No log | 10.5217 | 242 | 0.6312 | 0.8077 | 0.6312 | 0.7945 | | No log | 10.6087 | 244 | 0.5962 | 0.7413 | 0.5962 | 0.7721 | | No log | 10.6957 | 246 | 0.7272 | 0.7117 | 0.7272 | 0.8528 | | No log | 10.7826 | 248 | 0.9181 | 0.7159 | 0.9181 | 0.9582 | | No log | 10.8696 | 250 | 0.9041 | 0.7273 | 0.9041 | 0.9509 | | No log | 10.9565 | 252 | 0.7246 | 0.7261 | 0.7246 | 0.8512 | | No log | 11.0435 | 254 | 0.6210 | 0.7123 | 0.6210 | 0.7880 | | No log | 11.1304 | 256 | 0.6441 | 0.7975 | 0.6441 | 0.8026 | | No log | 11.2174 | 258 | 0.6400 | 0.7722 | 0.6400 | 0.8000 | | No log | 11.3043 | 260 | 0.6608 | 0.7133 | 0.6608 | 0.8129 | | No log | 11.3913 | 262 | 0.6943 | 0.7050 | 0.6943 | 0.8333 | | No log | 11.4783 | 264 | 0.7331 | 0.7194 | 0.7331 | 0.8562 | | No log | 11.5652 | 266 | 0.8334 | 0.6619 | 0.8334 | 0.9129 | | No log | 11.6522 | 268 | 0.8575 | 0.6277 | 0.8575 | 0.9260 | | No log | 11.7391 | 270 | 0.7644 | 0.6765 | 0.7644 | 0.8743 | | No log | 11.8261 | 272 | 0.6426 | 0.7552 | 0.6426 | 0.8016 | | No log | 11.9130 | 274 | 0.6004 | 0.7792 | 0.6004 | 0.7749 | | No log | 12.0 | 276 | 0.5728 | 0.7871 | 0.5728 | 0.7569 | | No log | 12.0870 | 278 | 0.5652 | 0.7831 | 0.5652 | 0.7518 | | No log | 12.1739 | 280 | 0.6229 | 0.7727 | 0.6229 | 0.7893 | | No log | 12.2609 | 282 | 0.6352 | 0.7574 | 0.6352 | 0.7970 | | No log | 12.3478 | 284 | 0.6230 | 0.7712 | 0.6230 | 0.7893 | | No log | 12.4348 | 286 | 0.6832 | 0.7143 | 0.6832 | 0.8266 | | No log | 12.5217 | 288 | 0.7361 | 0.7429 | 0.7361 | 0.8580 | | No log | 12.6087 | 290 | 0.7906 | 0.7092 | 0.7906 | 0.8892 | | No log | 12.6957 | 292 | 0.7854 | 0.6901 | 0.7854 | 0.8863 | | No log | 12.7826 | 294 | 0.7310 | 0.7172 | 0.7310 | 0.8550 | | No log | 12.8696 | 296 | 0.6754 | 0.7432 | 0.6754 | 0.8219 | | No log | 12.9565 | 298 | 0.6937 | 0.7347 | 0.6937 | 0.8329 | | No log | 13.0435 | 300 | 0.7777 | 0.7172 | 0.7777 | 0.8819 | | No log | 13.1304 | 302 | 0.8698 | 0.6806 | 0.8698 | 0.9326 | | No log | 13.2174 | 304 | 0.8839 | 0.6806 | 0.8839 | 0.9402 | | No log | 13.3043 | 306 | 0.8234 | 0.6901 | 0.8234 | 0.9074 | | No log | 13.3913 | 308 | 0.7608 | 0.6950 | 0.7608 | 0.8722 | | No log | 13.4783 | 310 | 0.6967 | 0.7222 | 0.6967 | 0.8347 | | No log | 13.5652 | 312 | 0.6828 | 0.7083 | 0.6828 | 0.8263 | | No log | 13.6522 | 314 | 0.7175 | 0.7342 | 0.7175 | 0.8470 | | No log | 13.7391 | 316 | 0.7009 | 0.7545 | 0.7009 | 0.8372 | | No log | 13.8261 | 318 | 0.5856 | 0.7619 | 0.5856 | 0.7653 | | No log | 13.9130 | 320 | 0.5438 | 0.7516 | 0.5438 | 0.7374 | | No log | 14.0 | 322 | 0.5434 | 0.8075 | 0.5434 | 0.7371 | | No log | 14.0870 | 324 | 0.5506 | 0.7949 | 0.5506 | 0.7420 | | No log | 14.1739 | 326 | 0.5678 | 0.7722 | 0.5678 | 0.7535 | | No log | 14.2609 | 328 | 0.6371 | 0.6986 | 0.6371 | 0.7982 | | No log | 14.3478 | 330 | 0.7045 | 0.7034 | 0.7045 | 0.8394 | | No log | 14.4348 | 332 | 0.6817 | 0.6901 | 0.6817 | 0.8256 | | No log | 14.5217 | 334 | 0.6294 | 0.7222 | 0.6294 | 0.7933 | | No log | 14.6087 | 336 | 0.6336 | 0.7361 | 0.6336 | 0.7960 | | No log | 14.6957 | 338 | 0.6504 | 0.7222 | 0.6504 | 0.8065 | | No log | 14.7826 | 340 | 0.7387 | 0.7034 | 0.7387 | 0.8595 | | No log | 14.8696 | 342 | 0.7726 | 0.7485 | 0.7726 | 0.8790 | | No log | 14.9565 | 344 | 0.6830 | 0.7389 | 0.6830 | 0.8264 | | No log | 15.0435 | 346 | 0.5874 | 0.7582 | 0.5874 | 0.7664 | | No log | 15.1304 | 348 | 0.5782 | 0.7895 | 0.5782 | 0.7604 | | No log | 15.2174 | 350 | 0.5740 | 0.7895 | 0.5740 | 0.7576 | | No log | 15.3043 | 352 | 0.5592 | 0.7821 | 0.5592 | 0.7478 | | No log | 15.3913 | 354 | 0.5783 | 0.7643 | 0.5783 | 0.7605 | | No log | 15.4783 | 356 | 0.6894 | 0.7152 | 0.6894 | 0.8303 | | No log | 15.5652 | 358 | 0.8083 | 0.7152 | 0.8083 | 0.8991 | | No log | 15.6522 | 360 | 0.7990 | 0.7034 | 0.7990 | 0.8938 | | No log | 15.7391 | 362 | 0.7269 | 0.7391 | 0.7269 | 0.8526 | | No log | 15.8261 | 364 | 0.6937 | 0.7286 | 0.6937 | 0.8329 | | No log | 15.9130 | 366 | 0.6747 | 0.7413 | 0.6747 | 0.8214 | | No log | 16.0 | 368 | 0.7028 | 0.7391 | 0.7028 | 0.8384 | | No log | 16.0870 | 370 | 0.7329 | 0.7042 | 0.7329 | 0.8561 | | No log | 16.1739 | 372 | 0.7263 | 0.7042 | 0.7263 | 0.8522 | | No log | 16.2609 | 374 | 0.6680 | 0.7234 | 0.6680 | 0.8173 | | No log | 16.3478 | 376 | 0.6554 | 0.7324 | 0.6554 | 0.8096 | | No log | 16.4348 | 378 | 0.6463 | 0.7092 | 0.6463 | 0.8039 | | No log | 16.5217 | 380 | 0.6519 | 0.6993 | 0.6519 | 0.8074 | | No log | 16.6087 | 382 | 0.7800 | 0.7355 | 0.7800 | 0.8832 | | No log | 16.6957 | 384 | 0.8796 | 0.7135 | 0.8796 | 0.9379 | | No log | 16.7826 | 386 | 0.8313 | 0.7412 | 0.8313 | 0.9117 | | No log | 16.8696 | 388 | 0.7209 | 0.7403 | 0.7209 | 0.8491 | | No log | 16.9565 | 390 | 0.6469 | 0.6993 | 0.6469 | 0.8043 | | No log | 17.0435 | 392 | 0.6308 | 0.7429 | 0.6308 | 0.7942 | | No log | 17.1304 | 394 | 0.6557 | 0.7391 | 0.6557 | 0.8098 | | No log | 17.2174 | 396 | 0.6678 | 0.7206 | 0.6678 | 0.8172 | | No log | 17.3043 | 398 | 0.6687 | 0.7299 | 0.6687 | 0.8177 | | No log | 17.3913 | 400 | 0.6655 | 0.7299 | 0.6655 | 0.8158 | | No log | 17.4783 | 402 | 0.6923 | 0.7286 | 0.6923 | 0.8321 | | No log | 17.5652 | 404 | 0.6951 | 0.7092 | 0.6951 | 0.8337 | | No log | 17.6522 | 406 | 0.6981 | 0.7299 | 0.6981 | 0.8355 | | No log | 17.7391 | 408 | 0.6696 | 0.7259 | 0.6696 | 0.8183 | | No log | 17.8261 | 410 | 0.6481 | 0.7338 | 0.6481 | 0.8051 | | No log | 17.9130 | 412 | 0.6289 | 0.7465 | 0.6289 | 0.7930 | | No log | 18.0 | 414 | 0.6130 | 0.7448 | 0.6130 | 0.7829 | | No log | 18.0870 | 416 | 0.6391 | 0.7172 | 0.6391 | 0.7995 | | No log | 18.1739 | 418 | 0.6525 | 0.7285 | 0.6525 | 0.8078 | | No log | 18.2609 | 420 | 0.6984 | 0.6993 | 0.6984 | 0.8357 | | No log | 18.3478 | 422 | 0.7015 | 0.6993 | 0.7015 | 0.8376 | | No log | 18.4348 | 424 | 0.6479 | 0.7083 | 0.6479 | 0.8049 | | No log | 18.5217 | 426 | 0.6102 | 0.7568 | 0.6102 | 0.7812 | | No log | 18.6087 | 428 | 0.6221 | 0.7619 | 0.6221 | 0.7887 | | No log | 18.6957 | 430 | 0.6196 | 0.7682 | 0.6196 | 0.7871 | | No log | 18.7826 | 432 | 0.6425 | 0.7465 | 0.6425 | 0.8016 | | No log | 18.8696 | 434 | 0.7384 | 0.7564 | 0.7384 | 0.8593 | | No log | 18.9565 | 436 | 0.7683 | 0.7468 | 0.7683 | 0.8765 | | No log | 19.0435 | 438 | 0.7516 | 0.7355 | 0.7516 | 0.8670 | | No log | 19.1304 | 440 | 0.6607 | 0.76 | 0.6607 | 0.8129 | | No log | 19.2174 | 442 | 0.6014 | 0.7552 | 0.6014 | 0.7755 | | No log | 19.3043 | 444 | 0.5984 | 0.7552 | 0.5984 | 0.7736 | | No log | 19.3913 | 446 | 0.5899 | 0.7273 | 0.5899 | 0.7681 | | No log | 19.4783 | 448 | 0.6044 | 0.7632 | 0.6044 | 0.7774 | | No log | 19.5652 | 450 | 0.6503 | 0.7333 | 0.6503 | 0.8064 | | No log | 19.6522 | 452 | 0.6377 | 0.7333 | 0.6377 | 0.7985 | | No log | 19.7391 | 454 | 0.6340 | 0.7451 | 0.6340 | 0.7962 | | No log | 19.8261 | 456 | 0.6477 | 0.7451 | 0.6477 | 0.8048 | | No log | 19.9130 | 458 | 0.6841 | 0.7448 | 0.6841 | 0.8271 | | No log | 20.0 | 460 | 0.6696 | 0.7376 | 0.6696 | 0.8183 | | No log | 20.0870 | 462 | 0.6422 | 0.7586 | 0.6422 | 0.8014 | | No log | 20.1739 | 464 | 0.6321 | 0.7483 | 0.6321 | 0.7951 | | No log | 20.2609 | 466 | 0.6653 | 0.7586 | 0.6653 | 0.8157 | | No log | 20.3478 | 468 | 0.7282 | 0.7162 | 0.7282 | 0.8533 | | No log | 20.4348 | 470 | 0.8254 | 0.6939 | 0.8254 | 0.9085 | | No log | 20.5217 | 472 | 0.8982 | 0.675 | 0.8982 | 0.9478 | | No log | 20.6087 | 474 | 0.9288 | 0.6667 | 0.9288 | 0.9638 | | No log | 20.6957 | 476 | 0.8928 | 0.6757 | 0.8928 | 0.9449 | | No log | 20.7826 | 478 | 0.7766 | 0.6993 | 0.7766 | 0.8812 | | No log | 20.8696 | 480 | 0.7318 | 0.6861 | 0.7318 | 0.8554 | | No log | 20.9565 | 482 | 0.7215 | 0.7299 | 0.7215 | 0.8494 | | No log | 21.0435 | 484 | 0.7576 | 0.7050 | 0.7576 | 0.8704 | | No log | 21.1304 | 486 | 0.8378 | 0.6901 | 0.8378 | 0.9153 | | No log | 21.2174 | 488 | 0.8329 | 0.6713 | 0.8329 | 0.9126 | | No log | 21.3043 | 490 | 0.7573 | 0.6806 | 0.7573 | 0.8702 | | No log | 21.3913 | 492 | 0.6638 | 0.7534 | 0.6638 | 0.8147 | | No log | 21.4783 | 494 | 0.6208 | 0.7712 | 0.6208 | 0.7879 | | No log | 21.5652 | 496 | 0.5694 | 0.7771 | 0.5694 | 0.7546 | | No log | 21.6522 | 498 | 0.5471 | 0.7643 | 0.5471 | 0.7397 | | 0.3686 | 21.7391 | 500 | 0.5431 | 0.7643 | 0.5431 | 0.7369 | | 0.3686 | 21.8261 | 502 | 0.5557 | 0.7875 | 0.5557 | 0.7455 | | 0.3686 | 21.9130 | 504 | 0.6282 | 0.7907 | 0.6282 | 0.7926 | | 0.3686 | 22.0 | 506 | 0.6934 | 0.7746 | 0.6934 | 0.8327 | | 0.3686 | 22.0870 | 508 | 0.7206 | 0.7283 | 0.7206 | 0.8489 | | 0.3686 | 22.1739 | 510 | 0.6874 | 0.775 | 0.6874 | 0.8291 | | 0.3686 | 22.2609 | 512 | 0.6474 | 0.7517 | 0.6474 | 0.8046 | | 0.3686 | 22.3478 | 514 | 0.6205 | 0.7660 | 0.6205 | 0.7877 | | 0.3686 | 22.4348 | 516 | 0.6134 | 0.7660 | 0.6134 | 0.7832 | | 0.3686 | 22.5217 | 518 | 0.6145 | 0.7606 | 0.6145 | 0.7839 | | 0.3686 | 22.6087 | 520 | 0.6451 | 0.7552 | 0.6451 | 0.8032 | | 0.3686 | 22.6957 | 522 | 0.7010 | 0.7564 | 0.7010 | 0.8372 | | 0.3686 | 22.7826 | 524 | 0.6915 | 0.7673 | 0.6915 | 0.8316 | | 0.3686 | 22.8696 | 526 | 0.6316 | 0.775 | 0.6316 | 0.7947 | | 0.3686 | 22.9565 | 528 | 0.5589 | 0.7925 | 0.5589 | 0.7476 | | 0.3686 | 23.0435 | 530 | 0.5466 | 0.8101 | 0.5466 | 0.7393 | | 0.3686 | 23.1304 | 532 | 0.5849 | 0.7922 | 0.5849 | 0.7648 | | 0.3686 | 23.2174 | 534 | 0.6205 | 0.7397 | 0.6205 | 0.7877 | | 0.3686 | 23.3043 | 536 | 0.6262 | 0.7586 | 0.6262 | 0.7913 | | 0.3686 | 23.3913 | 538 | 0.6058 | 0.7778 | 0.6058 | 0.7783 | | 0.3686 | 23.4783 | 540 | 0.5877 | 0.7862 | 0.5877 | 0.7666 | | 0.3686 | 23.5652 | 542 | 0.5880 | 0.7838 | 0.5880 | 0.7668 | | 0.3686 | 23.6522 | 544 | 0.6254 | 0.7534 | 0.6254 | 0.7908 | | 0.3686 | 23.7391 | 546 | 0.6427 | 0.7417 | 0.6427 | 0.8017 | | 0.3686 | 23.8261 | 548 | 0.6254 | 0.75 | 0.6254 | 0.7909 | | 0.3686 | 23.9130 | 550 | 0.6155 | 0.7550 | 0.6155 | 0.7845 | | 0.3686 | 24.0 | 552 | 0.6083 | 0.7613 | 0.6083 | 0.7800 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
MayBashendy/ArabicNewSplits8_usingWellWrittenEssays_FineTuningAraBERT_run3_AugV5_k6_task2_organization
MayBashendy
2025-01-15T12:32:22Z
6
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-15T11:45:03Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits8_usingWellWrittenEssays_FineTuningAraBERT_run3_AugV5_k6_task2_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits8_usingWellWrittenEssays_FineTuningAraBERT_run3_AugV5_k6_task2_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5851 - Qwk: 0.5238 - Mse: 0.5851 - Rmse: 0.7649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.0588 | 2 | 4.2485 | -0.0156 | 4.2485 | 2.0612 | | No log | 0.1176 | 4 | 2.5637 | -0.0104 | 2.5637 | 1.6012 | | No log | 0.1765 | 6 | 1.5789 | -0.0456 | 1.5789 | 1.2566 | | No log | 0.2353 | 8 | 1.2683 | -0.0259 | 1.2683 | 1.1262 | | No log | 0.2941 | 10 | 1.1621 | -0.0337 | 1.1621 | 1.0780 | | No log | 0.3529 | 12 | 1.0159 | -0.0140 | 1.0159 | 1.0079 | | No log | 0.4118 | 14 | 0.8383 | 0.2268 | 0.8383 | 0.9156 | | No log | 0.4706 | 16 | 0.8062 | 0.2054 | 0.8062 | 0.8979 | | No log | 0.5294 | 18 | 0.8402 | 0.1922 | 0.8402 | 0.9166 | | No log | 0.5882 | 20 | 1.0113 | 0.0292 | 1.0113 | 1.0056 | | No log | 0.6471 | 22 | 0.9396 | 0.0680 | 0.9396 | 0.9693 | | No log | 0.7059 | 24 | 0.7996 | 0.2435 | 0.7996 | 0.8942 | | No log | 0.7647 | 26 | 0.7495 | 0.2155 | 0.7495 | 0.8657 | | No log | 0.8235 | 28 | 0.7557 | 0.2328 | 0.7557 | 0.8693 | | No log | 0.8824 | 30 | 0.7473 | 0.2713 | 0.7473 | 0.8645 | | No log | 0.9412 | 32 | 0.8925 | 0.1834 | 0.8925 | 0.9447 | | No log | 1.0 | 34 | 1.0835 | 0.2175 | 1.0835 | 1.0409 | | No log | 1.0588 | 36 | 1.0439 | 0.2112 | 1.0439 | 1.0217 | | No log | 1.1176 | 38 | 0.8152 | 0.2243 | 0.8152 | 0.9029 | | No log | 1.1765 | 40 | 0.7194 | 0.3018 | 0.7194 | 0.8481 | | No log | 1.2353 | 42 | 0.7743 | 0.2588 | 0.7743 | 0.8799 | | No log | 1.2941 | 44 | 0.8231 | 0.1781 | 0.8231 | 0.9073 | | No log | 1.3529 | 46 | 0.7435 | 0.3122 | 0.7435 | 0.8623 | | No log | 1.4118 | 48 | 0.7604 | 0.2666 | 0.7604 | 0.8720 | | No log | 1.4706 | 50 | 0.9134 | 0.2599 | 0.9134 | 0.9557 | | No log | 1.5294 | 52 | 0.8661 | 0.2888 | 0.8661 | 0.9307 | | No log | 1.5882 | 54 | 0.7149 | 0.2841 | 0.7149 | 0.8455 | | No log | 1.6471 | 56 | 0.7210 | 0.2769 | 0.7210 | 0.8491 | | No log | 1.7059 | 58 | 0.8713 | 0.1589 | 0.8713 | 0.9334 | | No log | 1.7647 | 60 | 0.8904 | 0.1283 | 0.8904 | 0.9436 | | No log | 1.8235 | 62 | 0.7626 | 0.2642 | 0.7626 | 0.8733 | | No log | 1.8824 | 64 | 0.7187 | 0.3132 | 0.7187 | 0.8478 | | No log | 1.9412 | 66 | 0.8067 | 0.2907 | 0.8067 | 0.8982 | | No log | 2.0 | 68 | 0.8208 | 0.2830 | 0.8208 | 0.9060 | | No log | 2.0588 | 70 | 0.7667 | 0.2983 | 0.7667 | 0.8756 | | No log | 2.1176 | 72 | 0.7410 | 0.3213 | 0.7410 | 0.8608 | | No log | 2.1765 | 74 | 0.7136 | 0.2980 | 0.7136 | 0.8447 | | No log | 2.2353 | 76 | 0.6835 | 0.3174 | 0.6835 | 0.8267 | | No log | 2.2941 | 78 | 0.6724 | 0.3509 | 0.6724 | 0.8200 | | No log | 2.3529 | 80 | 0.6937 | 0.3915 | 0.6937 | 0.8329 | | No log | 2.4118 | 82 | 0.7255 | 0.3296 | 0.7255 | 0.8518 | | No log | 2.4706 | 84 | 0.7434 | 0.3053 | 0.7434 | 0.8622 | | No log | 2.5294 | 86 | 0.7694 | 0.3353 | 0.7694 | 0.8772 | | No log | 2.5882 | 88 | 0.8723 | 0.3636 | 0.8723 | 0.9339 | | No log | 2.6471 | 90 | 0.8411 | 0.3477 | 0.8411 | 0.9171 | | No log | 2.7059 | 92 | 0.6901 | 0.4623 | 0.6901 | 0.8307 | | No log | 2.7647 | 94 | 0.6437 | 0.4589 | 0.6437 | 0.8023 | | No log | 2.8235 | 96 | 0.6571 | 0.4623 | 0.6571 | 0.8106 | | No log | 2.8824 | 98 | 0.7280 | 0.4235 | 0.7280 | 0.8532 | | No log | 2.9412 | 100 | 0.8504 | 0.3167 | 0.8504 | 0.9221 | | No log | 3.0 | 102 | 0.8681 | 0.3267 | 0.8681 | 0.9317 | | No log | 3.0588 | 104 | 0.8187 | 0.3179 | 0.8187 | 0.9048 | | No log | 3.1176 | 106 | 0.7494 | 0.3920 | 0.7494 | 0.8657 | | No log | 3.1765 | 108 | 0.6629 | 0.4437 | 0.6629 | 0.8142 | | No log | 3.2353 | 110 | 0.6774 | 0.4997 | 0.6774 | 0.8230 | | No log | 3.2941 | 112 | 0.7155 | 0.4949 | 0.7155 | 0.8459 | | No log | 3.3529 | 114 | 0.8639 | 0.4722 | 0.8639 | 0.9294 | | No log | 3.4118 | 116 | 0.9335 | 0.4192 | 0.9335 | 0.9662 | | No log | 3.4706 | 118 | 0.7860 | 0.4967 | 0.7860 | 0.8866 | | No log | 3.5294 | 120 | 0.8043 | 0.4562 | 0.8043 | 0.8968 | | No log | 3.5882 | 122 | 0.8883 | 0.4266 | 0.8883 | 0.9425 | | No log | 3.6471 | 124 | 0.8110 | 0.4864 | 0.8110 | 0.9006 | | No log | 3.7059 | 126 | 0.6893 | 0.4937 | 0.6893 | 0.8303 | | No log | 3.7647 | 128 | 0.8110 | 0.4875 | 0.8110 | 0.9006 | | No log | 3.8235 | 130 | 0.9066 | 0.4615 | 0.9066 | 0.9522 | | No log | 3.8824 | 132 | 0.8055 | 0.5385 | 0.8055 | 0.8975 | | No log | 3.9412 | 134 | 0.7313 | 0.4896 | 0.7313 | 0.8551 | | No log | 4.0 | 136 | 0.7418 | 0.4825 | 0.7418 | 0.8613 | | No log | 4.0588 | 138 | 0.7470 | 0.4723 | 0.7470 | 0.8643 | | No log | 4.1176 | 140 | 0.7239 | 0.5155 | 0.7239 | 0.8508 | | No log | 4.1765 | 142 | 0.6995 | 0.5010 | 0.6995 | 0.8363 | | No log | 4.2353 | 144 | 0.6883 | 0.4595 | 0.6883 | 0.8296 | | No log | 4.2941 | 146 | 0.7031 | 0.4769 | 0.7031 | 0.8385 | | No log | 4.3529 | 148 | 0.7061 | 0.4804 | 0.7061 | 0.8403 | | No log | 4.4118 | 150 | 0.7192 | 0.5183 | 0.7192 | 0.8480 | | No log | 4.4706 | 152 | 0.7615 | 0.5452 | 0.7615 | 0.8726 | | No log | 4.5294 | 154 | 0.7200 | 0.5110 | 0.7200 | 0.8485 | | No log | 4.5882 | 156 | 0.7410 | 0.4783 | 0.7410 | 0.8608 | | No log | 4.6471 | 158 | 0.7483 | 0.4747 | 0.7483 | 0.8650 | | No log | 4.7059 | 160 | 0.7235 | 0.5315 | 0.7235 | 0.8506 | | No log | 4.7647 | 162 | 0.7217 | 0.5064 | 0.7217 | 0.8495 | | No log | 4.8235 | 164 | 0.7235 | 0.5290 | 0.7235 | 0.8506 | | No log | 4.8824 | 166 | 0.7096 | 0.5103 | 0.7096 | 0.8424 | | No log | 4.9412 | 168 | 0.7022 | 0.4665 | 0.7022 | 0.8380 | | No log | 5.0 | 170 | 0.6739 | 0.4512 | 0.6739 | 0.8209 | | No log | 5.0588 | 172 | 0.6859 | 0.4587 | 0.6859 | 0.8282 | | No log | 5.1176 | 174 | 0.7779 | 0.5032 | 0.7779 | 0.8820 | | No log | 5.1765 | 176 | 0.9455 | 0.4098 | 0.9455 | 0.9724 | | No log | 5.2353 | 178 | 0.8335 | 0.4479 | 0.8335 | 0.9129 | | No log | 5.2941 | 180 | 0.7403 | 0.4956 | 0.7403 | 0.8604 | | No log | 5.3529 | 182 | 0.8064 | 0.4327 | 0.8064 | 0.8980 | | No log | 5.4118 | 184 | 0.7402 | 0.4811 | 0.7402 | 0.8604 | | No log | 5.4706 | 186 | 0.6703 | 0.4196 | 0.6703 | 0.8187 | | No log | 5.5294 | 188 | 0.7171 | 0.4628 | 0.7171 | 0.8468 | | No log | 5.5882 | 190 | 0.6880 | 0.3967 | 0.6880 | 0.8294 | | No log | 5.6471 | 192 | 0.6416 | 0.4439 | 0.6416 | 0.8010 | | No log | 5.7059 | 194 | 0.6648 | 0.4515 | 0.6648 | 0.8153 | | No log | 5.7647 | 196 | 0.6668 | 0.4902 | 0.6668 | 0.8166 | | No log | 5.8235 | 198 | 0.7114 | 0.5057 | 0.7114 | 0.8434 | | No log | 5.8824 | 200 | 0.8108 | 0.4496 | 0.8108 | 0.9004 | | No log | 5.9412 | 202 | 0.7854 | 0.4541 | 0.7854 | 0.8862 | | No log | 6.0 | 204 | 0.6801 | 0.4663 | 0.6801 | 0.8247 | | No log | 6.0588 | 206 | 0.6470 | 0.4712 | 0.6470 | 0.8044 | | No log | 6.1176 | 208 | 0.6386 | 0.4576 | 0.6386 | 0.7991 | | No log | 6.1765 | 210 | 0.6587 | 0.4120 | 0.6587 | 0.8116 | | No log | 6.2353 | 212 | 0.7042 | 0.3974 | 0.7042 | 0.8392 | | No log | 6.2941 | 214 | 0.7193 | 0.4004 | 0.7193 | 0.8481 | | No log | 6.3529 | 216 | 0.7123 | 0.4666 | 0.7123 | 0.8440 | | No log | 6.4118 | 218 | 0.7234 | 0.4607 | 0.7234 | 0.8505 | | No log | 6.4706 | 220 | 0.7197 | 0.5033 | 0.7197 | 0.8484 | | No log | 6.5294 | 222 | 0.7207 | 0.4620 | 0.7207 | 0.8490 | | No log | 6.5882 | 224 | 0.6765 | 0.5343 | 0.6765 | 0.8225 | | No log | 6.6471 | 226 | 0.7690 | 0.4761 | 0.7690 | 0.8769 | | No log | 6.7059 | 228 | 1.0657 | 0.3568 | 1.0657 | 1.0323 | | No log | 6.7647 | 230 | 1.1470 | 0.3344 | 1.1470 | 1.0710 | | No log | 6.8235 | 232 | 0.9939 | 0.3778 | 0.9939 | 0.9969 | | No log | 6.8824 | 234 | 0.7471 | 0.4560 | 0.7471 | 0.8643 | | No log | 6.9412 | 236 | 0.6309 | 0.4554 | 0.6309 | 0.7943 | | No log | 7.0 | 238 | 0.7472 | 0.4660 | 0.7472 | 0.8644 | | No log | 7.0588 | 240 | 0.8777 | 0.4507 | 0.8777 | 0.9369 | | No log | 7.1176 | 242 | 0.8329 | 0.4823 | 0.8329 | 0.9126 | | No log | 7.1765 | 244 | 0.7236 | 0.5522 | 0.7236 | 0.8506 | | No log | 7.2353 | 246 | 0.8029 | 0.4660 | 0.8029 | 0.8960 | | No log | 7.2941 | 248 | 0.8907 | 0.5006 | 0.8907 | 0.9438 | | No log | 7.3529 | 250 | 0.7899 | 0.4520 | 0.7899 | 0.8887 | | No log | 7.4118 | 252 | 0.7340 | 0.4031 | 0.7340 | 0.8568 | | No log | 7.4706 | 254 | 0.6632 | 0.4763 | 0.6632 | 0.8143 | | No log | 7.5294 | 256 | 0.6525 | 0.4423 | 0.6525 | 0.8078 | | No log | 7.5882 | 258 | 0.6569 | 0.5359 | 0.6569 | 0.8105 | | No log | 7.6471 | 260 | 0.6665 | 0.5027 | 0.6665 | 0.8164 | | No log | 7.7059 | 262 | 0.6648 | 0.4845 | 0.6648 | 0.8153 | | No log | 7.7647 | 264 | 0.6536 | 0.4870 | 0.6536 | 0.8085 | | No log | 7.8235 | 266 | 0.6566 | 0.4419 | 0.6566 | 0.8103 | | No log | 7.8824 | 268 | 0.7273 | 0.4598 | 0.7273 | 0.8528 | | No log | 7.9412 | 270 | 0.7580 | 0.3981 | 0.7580 | 0.8707 | | No log | 8.0 | 272 | 0.7426 | 0.4591 | 0.7426 | 0.8617 | | No log | 8.0588 | 274 | 0.7707 | 0.4424 | 0.7707 | 0.8779 | | No log | 8.1176 | 276 | 0.7222 | 0.4897 | 0.7222 | 0.8498 | | No log | 8.1765 | 278 | 0.7096 | 0.5026 | 0.7096 | 0.8424 | | No log | 8.2353 | 280 | 0.7185 | 0.4843 | 0.7185 | 0.8476 | | No log | 8.2941 | 282 | 0.7012 | 0.4945 | 0.7012 | 0.8374 | | No log | 8.3529 | 284 | 0.7021 | 0.5295 | 0.7021 | 0.8379 | | No log | 8.4118 | 286 | 0.6953 | 0.4943 | 0.6953 | 0.8339 | | No log | 8.4706 | 288 | 0.7171 | 0.5111 | 0.7171 | 0.8468 | | No log | 8.5294 | 290 | 0.7915 | 0.4689 | 0.7915 | 0.8897 | | No log | 8.5882 | 292 | 0.7922 | 0.4562 | 0.7922 | 0.8901 | | No log | 8.6471 | 294 | 0.7179 | 0.5305 | 0.7179 | 0.8473 | | No log | 8.7059 | 296 | 0.6863 | 0.4300 | 0.6863 | 0.8285 | | No log | 8.7647 | 298 | 0.7722 | 0.4761 | 0.7722 | 0.8788 | | No log | 8.8235 | 300 | 0.7703 | 0.4838 | 0.7703 | 0.8777 | | No log | 8.8824 | 302 | 0.6793 | 0.4749 | 0.6793 | 0.8242 | | No log | 8.9412 | 304 | 0.6400 | 0.4825 | 0.6400 | 0.8000 | | No log | 9.0 | 306 | 0.6309 | 0.4779 | 0.6309 | 0.7943 | | No log | 9.0588 | 308 | 0.6125 | 0.4797 | 0.6125 | 0.7826 | | No log | 9.1176 | 310 | 0.6178 | 0.4318 | 0.6178 | 0.7860 | | No log | 9.1765 | 312 | 0.6304 | 0.4330 | 0.6304 | 0.7940 | | No log | 9.2353 | 314 | 0.6627 | 0.4711 | 0.6627 | 0.8141 | | No log | 9.2941 | 316 | 0.7113 | 0.5436 | 0.7113 | 0.8434 | | No log | 9.3529 | 318 | 0.7140 | 0.5066 | 0.7140 | 0.8450 | | No log | 9.4118 | 320 | 0.7302 | 0.5275 | 0.7302 | 0.8545 | | No log | 9.4706 | 322 | 0.7854 | 0.5391 | 0.7854 | 0.8862 | | No log | 9.5294 | 324 | 0.7996 | 0.5035 | 0.7996 | 0.8942 | | No log | 9.5882 | 326 | 0.7257 | 0.5931 | 0.7257 | 0.8519 | | No log | 9.6471 | 328 | 0.6872 | 0.5355 | 0.6872 | 0.8290 | | No log | 9.7059 | 330 | 0.6687 | 0.5403 | 0.6687 | 0.8177 | | No log | 9.7647 | 332 | 0.6758 | 0.4822 | 0.6758 | 0.8221 | | No log | 9.8235 | 334 | 0.6939 | 0.4643 | 0.6939 | 0.8330 | | No log | 9.8824 | 336 | 0.7078 | 0.4634 | 0.7078 | 0.8413 | | No log | 9.9412 | 338 | 0.7023 | 0.5081 | 0.7023 | 0.8380 | | No log | 10.0 | 340 | 0.6937 | 0.4858 | 0.6937 | 0.8329 | | No log | 10.0588 | 342 | 0.7242 | 0.4408 | 0.7242 | 0.8510 | | No log | 10.1176 | 344 | 0.7756 | 0.4040 | 0.7756 | 0.8807 | | No log | 10.1765 | 346 | 0.7637 | 0.3981 | 0.7637 | 0.8739 | | No log | 10.2353 | 348 | 0.7216 | 0.5171 | 0.7216 | 0.8495 | | No log | 10.2941 | 350 | 0.7633 | 0.5101 | 0.7633 | 0.8737 | | No log | 10.3529 | 352 | 0.7913 | 0.4946 | 0.7913 | 0.8895 | | No log | 10.4118 | 354 | 0.8214 | 0.4734 | 0.8214 | 0.9063 | | No log | 10.4706 | 356 | 0.8124 | 0.4948 | 0.8124 | 0.9013 | | No log | 10.5294 | 358 | 0.7774 | 0.5228 | 0.7774 | 0.8817 | | No log | 10.5882 | 360 | 0.7380 | 0.5405 | 0.7380 | 0.8591 | | No log | 10.6471 | 362 | 0.7255 | 0.5367 | 0.7255 | 0.8517 | | No log | 10.7059 | 364 | 0.6853 | 0.4181 | 0.6853 | 0.8278 | | No log | 10.7647 | 366 | 0.6645 | 0.3809 | 0.6645 | 0.8151 | | No log | 10.8235 | 368 | 0.6476 | 0.3557 | 0.6476 | 0.8047 | | No log | 10.8824 | 370 | 0.6435 | 0.3628 | 0.6435 | 0.8022 | | No log | 10.9412 | 372 | 0.6541 | 0.4212 | 0.6541 | 0.8088 | | No log | 11.0 | 374 | 0.6862 | 0.5225 | 0.6862 | 0.8284 | | No log | 11.0588 | 376 | 0.7527 | 0.5572 | 0.7527 | 0.8676 | | No log | 11.1176 | 378 | 0.7487 | 0.5435 | 0.7487 | 0.8653 | | No log | 11.1765 | 380 | 0.7236 | 0.5499 | 0.7236 | 0.8506 | | No log | 11.2353 | 382 | 0.7257 | 0.4765 | 0.7257 | 0.8519 | | No log | 11.2941 | 384 | 0.7522 | 0.5076 | 0.7522 | 0.8673 | | No log | 11.3529 | 386 | 0.7128 | 0.4571 | 0.7128 | 0.8443 | | No log | 11.4118 | 388 | 0.6497 | 0.3925 | 0.6497 | 0.8061 | | No log | 11.4706 | 390 | 0.6308 | 0.3232 | 0.6308 | 0.7942 | | No log | 11.5294 | 392 | 0.6387 | 0.3715 | 0.6387 | 0.7992 | | No log | 11.5882 | 394 | 0.6364 | 0.3847 | 0.6364 | 0.7978 | | No log | 11.6471 | 396 | 0.6358 | 0.4367 | 0.6358 | 0.7974 | | No log | 11.7059 | 398 | 0.6556 | 0.4959 | 0.6556 | 0.8097 | | No log | 11.7647 | 400 | 0.6475 | 0.5051 | 0.6475 | 0.8047 | | No log | 11.8235 | 402 | 0.6302 | 0.4673 | 0.6302 | 0.7939 | | No log | 11.8824 | 404 | 0.6903 | 0.4678 | 0.6903 | 0.8308 | | No log | 11.9412 | 406 | 0.8763 | 0.4185 | 0.8763 | 0.9361 | | No log | 12.0 | 408 | 0.9604 | 0.3992 | 0.9604 | 0.9800 | | No log | 12.0588 | 410 | 0.8835 | 0.4185 | 0.8835 | 0.9399 | | No log | 12.1176 | 412 | 0.7104 | 0.4840 | 0.7104 | 0.8429 | | No log | 12.1765 | 414 | 0.6346 | 0.5216 | 0.6346 | 0.7966 | | No log | 12.2353 | 416 | 0.6736 | 0.5743 | 0.6736 | 0.8207 | | No log | 12.2941 | 418 | 0.6957 | 0.5704 | 0.6957 | 0.8341 | | No log | 12.3529 | 420 | 0.6756 | 0.5818 | 0.6756 | 0.8220 | | No log | 12.4118 | 422 | 0.6608 | 0.5818 | 0.6608 | 0.8129 | | No log | 12.4706 | 424 | 0.6390 | 0.6041 | 0.6390 | 0.7994 | | No log | 12.5294 | 426 | 0.6535 | 0.4786 | 0.6535 | 0.8084 | | No log | 12.5882 | 428 | 0.7111 | 0.5341 | 0.7111 | 0.8433 | | No log | 12.6471 | 430 | 0.6959 | 0.4936 | 0.6959 | 0.8342 | | No log | 12.7059 | 432 | 0.6518 | 0.5336 | 0.6518 | 0.8073 | | No log | 12.7647 | 434 | 0.6609 | 0.5686 | 0.6609 | 0.8130 | | No log | 12.8235 | 436 | 0.7146 | 0.4976 | 0.7146 | 0.8454 | | No log | 12.8824 | 438 | 0.7310 | 0.4914 | 0.7310 | 0.8550 | | No log | 12.9412 | 440 | 0.7018 | 0.4922 | 0.7018 | 0.8377 | | No log | 13.0 | 442 | 0.6455 | 0.5547 | 0.6455 | 0.8034 | | No log | 13.0588 | 444 | 0.6285 | 0.4903 | 0.6285 | 0.7928 | | No log | 13.1176 | 446 | 0.6367 | 0.4690 | 0.6367 | 0.7979 | | No log | 13.1765 | 448 | 0.6682 | 0.5175 | 0.6682 | 0.8174 | | No log | 13.2353 | 450 | 0.6803 | 0.4860 | 0.6803 | 0.8248 | | No log | 13.2941 | 452 | 0.6586 | 0.5050 | 0.6586 | 0.8115 | | No log | 13.3529 | 454 | 0.6274 | 0.4497 | 0.6274 | 0.7921 | | No log | 13.4118 | 456 | 0.6181 | 0.4465 | 0.6181 | 0.7862 | | No log | 13.4706 | 458 | 0.6224 | 0.4592 | 0.6224 | 0.7889 | | No log | 13.5294 | 460 | 0.6388 | 0.4955 | 0.6388 | 0.7993 | | No log | 13.5882 | 462 | 0.6646 | 0.4935 | 0.6646 | 0.8152 | | No log | 13.6471 | 464 | 0.6527 | 0.4970 | 0.6527 | 0.8079 | | No log | 13.7059 | 466 | 0.6422 | 0.5578 | 0.6422 | 0.8014 | | No log | 13.7647 | 468 | 0.6360 | 0.5618 | 0.6360 | 0.7975 | | No log | 13.8235 | 470 | 0.6323 | 0.5618 | 0.6323 | 0.7952 | | No log | 13.8824 | 472 | 0.6272 | 0.5365 | 0.6272 | 0.7920 | | No log | 13.9412 | 474 | 0.6172 | 0.5451 | 0.6172 | 0.7856 | | No log | 14.0 | 476 | 0.6331 | 0.5373 | 0.6331 | 0.7957 | | No log | 14.0588 | 478 | 0.6403 | 0.5440 | 0.6403 | 0.8002 | | No log | 14.1176 | 480 | 0.6331 | 0.5795 | 0.6331 | 0.7956 | | No log | 14.1765 | 482 | 0.6445 | 0.5454 | 0.6445 | 0.8028 | | No log | 14.2353 | 484 | 0.6847 | 0.5153 | 0.6847 | 0.8275 | | No log | 14.2941 | 486 | 0.6750 | 0.5281 | 0.6750 | 0.8216 | | No log | 14.3529 | 488 | 0.6337 | 0.5109 | 0.6337 | 0.7960 | | No log | 14.4118 | 490 | 0.6167 | 0.4863 | 0.6167 | 0.7853 | | No log | 14.4706 | 492 | 0.6180 | 0.5391 | 0.6180 | 0.7861 | | No log | 14.5294 | 494 | 0.6047 | 0.4623 | 0.6047 | 0.7776 | | No log | 14.5882 | 496 | 0.5923 | 0.4450 | 0.5923 | 0.7696 | | No log | 14.6471 | 498 | 0.5896 | 0.4418 | 0.5896 | 0.7679 | | 0.3918 | 14.7059 | 500 | 0.5917 | 0.4559 | 0.5917 | 0.7692 | | 0.3918 | 14.7647 | 502 | 0.5980 | 0.4770 | 0.5980 | 0.7733 | | 0.3918 | 14.8235 | 504 | 0.6001 | 0.4938 | 0.6001 | 0.7747 | | 0.3918 | 14.8824 | 506 | 0.6367 | 0.5600 | 0.6367 | 0.7979 | | 0.3918 | 14.9412 | 508 | 0.7449 | 0.4813 | 0.7449 | 0.8631 | | 0.3918 | 15.0 | 510 | 0.7550 | 0.4813 | 0.7550 | 0.8689 | | 0.3918 | 15.0588 | 512 | 0.6861 | 0.5507 | 0.6861 | 0.8283 | | 0.3918 | 15.1176 | 514 | 0.6178 | 0.4992 | 0.6178 | 0.7860 | | 0.3918 | 15.1765 | 516 | 0.6035 | 0.4860 | 0.6035 | 0.7768 | | 0.3918 | 15.2353 | 518 | 0.6112 | 0.4719 | 0.6112 | 0.7818 | | 0.3918 | 15.2941 | 520 | 0.6147 | 0.5032 | 0.6147 | 0.7840 | | 0.3918 | 15.3529 | 522 | 0.6193 | 0.5065 | 0.6193 | 0.7870 | | 0.3918 | 15.4118 | 524 | 0.6320 | 0.4938 | 0.6320 | 0.7950 | | 0.3918 | 15.4706 | 526 | 0.6353 | 0.4972 | 0.6353 | 0.7970 | | 0.3918 | 15.5294 | 528 | 0.6292 | 0.4757 | 0.6292 | 0.7932 | | 0.3918 | 15.5882 | 530 | 0.6250 | 0.4196 | 0.6250 | 0.7906 | | 0.3918 | 15.6471 | 532 | 0.6276 | 0.4089 | 0.6276 | 0.7922 | | 0.3918 | 15.7059 | 534 | 0.6329 | 0.4696 | 0.6329 | 0.7956 | | 0.3918 | 15.7647 | 536 | 0.6420 | 0.4883 | 0.6420 | 0.8012 | | 0.3918 | 15.8235 | 538 | 0.6517 | 0.5272 | 0.6517 | 0.8073 | | 0.3918 | 15.8824 | 540 | 0.6652 | 0.5692 | 0.6652 | 0.8156 | | 0.3918 | 15.9412 | 542 | 0.6888 | 0.5498 | 0.6888 | 0.8299 | | 0.3918 | 16.0 | 544 | 0.6949 | 0.5377 | 0.6949 | 0.8336 | | 0.3918 | 16.0588 | 546 | 0.6754 | 0.5366 | 0.6754 | 0.8218 | | 0.3918 | 16.1176 | 548 | 0.6469 | 0.5408 | 0.6469 | 0.8043 | | 0.3918 | 16.1765 | 550 | 0.6144 | 0.5503 | 0.6144 | 0.7838 | | 0.3918 | 16.2353 | 552 | 0.6100 | 0.4808 | 0.6100 | 0.7811 | | 0.3918 | 16.2941 | 554 | 0.6360 | 0.4962 | 0.6360 | 0.7975 | | 0.3918 | 16.3529 | 556 | 0.6303 | 0.4286 | 0.6303 | 0.7939 | | 0.3918 | 16.4118 | 558 | 0.6136 | 0.3695 | 0.6136 | 0.7833 | | 0.3918 | 16.4706 | 560 | 0.5994 | 0.3584 | 0.5994 | 0.7742 | | 0.3918 | 16.5294 | 562 | 0.6010 | 0.4234 | 0.6010 | 0.7753 | | 0.3918 | 16.5882 | 564 | 0.6085 | 0.4677 | 0.6085 | 0.7801 | | 0.3918 | 16.6471 | 566 | 0.6252 | 0.4803 | 0.6252 | 0.7907 | | 0.3918 | 16.7059 | 568 | 0.6603 | 0.5610 | 0.6603 | 0.8126 | | 0.3918 | 16.7647 | 570 | 0.6710 | 0.5707 | 0.6710 | 0.8191 | | 0.3918 | 16.8235 | 572 | 0.6614 | 0.5907 | 0.6614 | 0.8133 | | 0.3918 | 16.8824 | 574 | 0.6368 | 0.5139 | 0.6368 | 0.7980 | | 0.3918 | 16.9412 | 576 | 0.6066 | 0.5026 | 0.6066 | 0.7789 | | 0.3918 | 17.0 | 578 | 0.5901 | 0.4018 | 0.5901 | 0.7682 | | 0.3918 | 17.0588 | 580 | 0.5974 | 0.4403 | 0.5974 | 0.7729 | | 0.3918 | 17.1176 | 582 | 0.5963 | 0.4538 | 0.5963 | 0.7722 | | 0.3918 | 17.1765 | 584 | 0.5798 | 0.4545 | 0.5798 | 0.7614 | | 0.3918 | 17.2353 | 586 | 0.5773 | 0.4731 | 0.5773 | 0.7598 | | 0.3918 | 17.2941 | 588 | 0.5876 | 0.4749 | 0.5876 | 0.7666 | | 0.3918 | 17.3529 | 590 | 0.5970 | 0.4749 | 0.5970 | 0.7726 | | 0.3918 | 17.4118 | 592 | 0.6078 | 0.4998 | 0.6078 | 0.7796 | | 0.3918 | 17.4706 | 594 | 0.6095 | 0.4880 | 0.6095 | 0.7807 | | 0.3918 | 17.5294 | 596 | 0.6004 | 0.4727 | 0.6004 | 0.7749 | | 0.3918 | 17.5882 | 598 | 0.6079 | 0.4600 | 0.6079 | 0.7797 | | 0.3918 | 17.6471 | 600 | 0.6002 | 0.4057 | 0.6002 | 0.7747 | | 0.3918 | 17.7059 | 602 | 0.5849 | 0.4552 | 0.5849 | 0.7648 | | 0.3918 | 17.7647 | 604 | 0.5880 | 0.4741 | 0.5880 | 0.7668 | | 0.3918 | 17.8235 | 606 | 0.6024 | 0.5161 | 0.6024 | 0.7762 | | 0.3918 | 17.8824 | 608 | 0.6131 | 0.5077 | 0.6131 | 0.7830 | | 0.3918 | 17.9412 | 610 | 0.6283 | 0.5403 | 0.6283 | 0.7926 | | 0.3918 | 18.0 | 612 | 0.6478 | 0.5352 | 0.6478 | 0.8049 | | 0.3918 | 18.0588 | 614 | 0.6582 | 0.5954 | 0.6582 | 0.8113 | | 0.3918 | 18.1176 | 616 | 0.7024 | 0.5628 | 0.7024 | 0.8381 | | 0.3918 | 18.1765 | 618 | 0.7590 | 0.4995 | 0.7590 | 0.8712 | | 0.3918 | 18.2353 | 620 | 0.7485 | 0.4870 | 0.7485 | 0.8651 | | 0.3918 | 18.2941 | 622 | 0.6925 | 0.5853 | 0.6925 | 0.8322 | | 0.3918 | 18.3529 | 624 | 0.6287 | 0.5391 | 0.6287 | 0.7929 | | 0.3918 | 18.4118 | 626 | 0.6060 | 0.4935 | 0.6060 | 0.7784 | | 0.3918 | 18.4706 | 628 | 0.5976 | 0.5013 | 0.5976 | 0.7731 | | 0.3918 | 18.5294 | 630 | 0.6017 | 0.5160 | 0.6017 | 0.7757 | | 0.3918 | 18.5882 | 632 | 0.6361 | 0.4799 | 0.6361 | 0.7975 | | 0.3918 | 18.6471 | 634 | 0.6765 | 0.5188 | 0.6765 | 0.8225 | | 0.3918 | 18.7059 | 636 | 0.6872 | 0.5158 | 0.6872 | 0.8289 | | 0.3918 | 18.7647 | 638 | 0.6661 | 0.5466 | 0.6661 | 0.8161 | | 0.3918 | 18.8235 | 640 | 0.6293 | 0.5415 | 0.6293 | 0.7933 | | 0.3918 | 18.8824 | 642 | 0.6420 | 0.4364 | 0.6420 | 0.8012 | | 0.3918 | 18.9412 | 644 | 0.6843 | 0.4755 | 0.6843 | 0.8272 | | 0.3918 | 19.0 | 646 | 0.6889 | 0.4628 | 0.6889 | 0.8300 | | 0.3918 | 19.0588 | 648 | 0.6765 | 0.4892 | 0.6765 | 0.8225 | | 0.3918 | 19.1176 | 650 | 0.6667 | 0.5031 | 0.6667 | 0.8165 | | 0.3918 | 19.1765 | 652 | 0.6394 | 0.4384 | 0.6394 | 0.7997 | | 0.3918 | 19.2353 | 654 | 0.6206 | 0.4224 | 0.6206 | 0.7878 | | 0.3918 | 19.2941 | 656 | 0.6130 | 0.4224 | 0.6130 | 0.7829 | | 0.3918 | 19.3529 | 658 | 0.6222 | 0.4735 | 0.6222 | 0.7888 | | 0.3918 | 19.4118 | 660 | 0.6539 | 0.4996 | 0.6539 | 0.8086 | | 0.3918 | 19.4706 | 662 | 0.6528 | 0.4996 | 0.6528 | 0.8079 | | 0.3918 | 19.5294 | 664 | 0.6141 | 0.4714 | 0.6141 | 0.7836 | | 0.3918 | 19.5882 | 666 | 0.5948 | 0.5088 | 0.5948 | 0.7712 | | 0.3918 | 19.6471 | 668 | 0.5990 | 0.5146 | 0.5990 | 0.7740 | | 0.3918 | 19.7059 | 670 | 0.5988 | 0.5146 | 0.5988 | 0.7738 | | 0.3918 | 19.7647 | 672 | 0.5902 | 0.4878 | 0.5902 | 0.7683 | | 0.3918 | 19.8235 | 674 | 0.5974 | 0.4841 | 0.5974 | 0.7729 | | 0.3918 | 19.8824 | 676 | 0.6222 | 0.4859 | 0.6222 | 0.7888 | | 0.3918 | 19.9412 | 678 | 0.6215 | 0.4777 | 0.6215 | 0.7884 | | 0.3918 | 20.0 | 680 | 0.5905 | 0.4258 | 0.5905 | 0.7684 | | 0.3918 | 20.0588 | 682 | 0.5802 | 0.4862 | 0.5802 | 0.7617 | | 0.3918 | 20.1176 | 684 | 0.5996 | 0.5132 | 0.5996 | 0.7743 | | 0.3918 | 20.1765 | 686 | 0.6009 | 0.5132 | 0.6009 | 0.7751 | | 0.3918 | 20.2353 | 688 | 0.5929 | 0.5203 | 0.5929 | 0.7700 | | 0.3918 | 20.2941 | 690 | 0.5944 | 0.5409 | 0.5944 | 0.7710 | | 0.3918 | 20.3529 | 692 | 0.6020 | 0.5545 | 0.6020 | 0.7759 | | 0.3918 | 20.4118 | 694 | 0.6068 | 0.5618 | 0.6068 | 0.7790 | | 0.3918 | 20.4706 | 696 | 0.6231 | 0.5865 | 0.6231 | 0.7894 | | 0.3918 | 20.5294 | 698 | 0.6437 | 0.6175 | 0.6437 | 0.8023 | | 0.3918 | 20.5882 | 700 | 0.6649 | 0.6175 | 0.6649 | 0.8154 | | 0.3918 | 20.6471 | 702 | 0.6809 | 0.5997 | 0.6809 | 0.8252 | | 0.3918 | 20.7059 | 704 | 0.6652 | 0.5888 | 0.6652 | 0.8156 | | 0.3918 | 20.7647 | 706 | 0.6458 | 0.6170 | 0.6458 | 0.8036 | | 0.3918 | 20.8235 | 708 | 0.6437 | 0.6106 | 0.6437 | 0.8023 | | 0.3918 | 20.8824 | 710 | 0.6456 | 0.6043 | 0.6456 | 0.8035 | | 0.3918 | 20.9412 | 712 | 0.6392 | 0.6161 | 0.6392 | 0.7995 | | 0.3918 | 21.0 | 714 | 0.6180 | 0.5920 | 0.6180 | 0.7861 | | 0.3918 | 21.0588 | 716 | 0.5833 | 0.5464 | 0.5833 | 0.7637 | | 0.3918 | 21.1176 | 718 | 0.5713 | 0.5173 | 0.5713 | 0.7558 | | 0.3918 | 21.1765 | 720 | 0.5694 | 0.5173 | 0.5694 | 0.7546 | | 0.3918 | 21.2353 | 722 | 0.5676 | 0.5162 | 0.5676 | 0.7534 | | 0.3918 | 21.2941 | 724 | 0.5711 | 0.5415 | 0.5711 | 0.7557 | | 0.3918 | 21.3529 | 726 | 0.5801 | 0.5607 | 0.5801 | 0.7616 | | 0.3918 | 21.4118 | 728 | 0.5782 | 0.5607 | 0.5782 | 0.7604 | | 0.3918 | 21.4706 | 730 | 0.5819 | 0.5607 | 0.5819 | 0.7629 | | 0.3918 | 21.5294 | 732 | 0.5789 | 0.5222 | 0.5789 | 0.7609 | | 0.3918 | 21.5882 | 734 | 0.5782 | 0.5239 | 0.5782 | 0.7604 | | 0.3918 | 21.6471 | 736 | 0.5770 | 0.4880 | 0.5770 | 0.7596 | | 0.3918 | 21.7059 | 738 | 0.5823 | 0.4676 | 0.5823 | 0.7631 | | 0.3918 | 21.7647 | 740 | 0.6076 | 0.4507 | 0.6076 | 0.7795 | | 0.3918 | 21.8235 | 742 | 0.6266 | 0.4925 | 0.6266 | 0.7916 | | 0.3918 | 21.8824 | 744 | 0.6113 | 0.4449 | 0.6113 | 0.7818 | | 0.3918 | 21.9412 | 746 | 0.5919 | 0.4652 | 0.5919 | 0.7694 | | 0.3918 | 22.0 | 748 | 0.5944 | 0.4666 | 0.5944 | 0.7710 | | 0.3918 | 22.0588 | 750 | 0.6001 | 0.4642 | 0.6001 | 0.7747 | | 0.3918 | 22.1176 | 752 | 0.5973 | 0.5018 | 0.5973 | 0.7729 | | 0.3918 | 22.1765 | 754 | 0.5895 | 0.5011 | 0.5895 | 0.7678 | | 0.3918 | 22.2353 | 756 | 0.5925 | 0.5367 | 0.5925 | 0.7697 | | 0.3918 | 22.2941 | 758 | 0.5901 | 0.5595 | 0.5901 | 0.7682 | | 0.3918 | 22.3529 | 760 | 0.5850 | 0.5079 | 0.5850 | 0.7649 | | 0.3918 | 22.4118 | 762 | 0.5769 | 0.4900 | 0.5769 | 0.7596 | | 0.3918 | 22.4706 | 764 | 0.5735 | 0.5093 | 0.5735 | 0.7573 | | 0.3918 | 22.5294 | 766 | 0.5825 | 0.5158 | 0.5825 | 0.7632 | | 0.3918 | 22.5882 | 768 | 0.5932 | 0.5129 | 0.5932 | 0.7702 | | 0.3918 | 22.6471 | 770 | 0.5945 | 0.5129 | 0.5945 | 0.7710 | | 0.3918 | 22.7059 | 772 | 0.6038 | 0.4726 | 0.6038 | 0.7770 | | 0.3918 | 22.7647 | 774 | 0.6190 | 0.4927 | 0.6190 | 0.7867 | | 0.3918 | 22.8235 | 776 | 0.6073 | 0.4735 | 0.6073 | 0.7793 | | 0.3918 | 22.8824 | 778 | 0.5857 | 0.4909 | 0.5857 | 0.7653 | | 0.3918 | 22.9412 | 780 | 0.5805 | 0.5124 | 0.5805 | 0.7619 | | 0.3918 | 23.0 | 782 | 0.5867 | 0.5082 | 0.5867 | 0.7659 | | 0.3918 | 23.0588 | 784 | 0.5916 | 0.4875 | 0.5916 | 0.7692 | | 0.3918 | 23.1176 | 786 | 0.5859 | 0.5018 | 0.5859 | 0.7654 | | 0.3918 | 23.1765 | 788 | 0.5807 | 0.5158 | 0.5807 | 0.7620 | | 0.3918 | 23.2353 | 790 | 0.5749 | 0.5279 | 0.5749 | 0.7582 | | 0.3918 | 23.2941 | 792 | 0.5766 | 0.5451 | 0.5766 | 0.7593 | | 0.3918 | 23.3529 | 794 | 0.5789 | 0.5451 | 0.5789 | 0.7608 | | 0.3918 | 23.4118 | 796 | 0.5855 | 0.5337 | 0.5855 | 0.7652 | | 0.3918 | 23.4706 | 798 | 0.6022 | 0.5374 | 0.6022 | 0.7760 | | 0.3918 | 23.5294 | 800 | 0.6309 | 0.5307 | 0.6309 | 0.7943 | | 0.3918 | 23.5882 | 802 | 0.6382 | 0.5257 | 0.6382 | 0.7989 | | 0.3918 | 23.6471 | 804 | 0.6009 | 0.5251 | 0.6009 | 0.7752 | | 0.3918 | 23.7059 | 806 | 0.5728 | 0.5601 | 0.5728 | 0.7568 | | 0.3918 | 23.7647 | 808 | 0.5721 | 0.6129 | 0.5721 | 0.7564 | | 0.3918 | 23.8235 | 810 | 0.5689 | 0.6211 | 0.5689 | 0.7542 | | 0.3918 | 23.8824 | 812 | 0.5595 | 0.6135 | 0.5595 | 0.7480 | | 0.3918 | 23.9412 | 814 | 0.5570 | 0.5451 | 0.5570 | 0.7463 | | 0.3918 | 24.0 | 816 | 0.5633 | 0.5228 | 0.5633 | 0.7505 | | 0.3918 | 24.0588 | 818 | 0.5642 | 0.5415 | 0.5642 | 0.7512 | | 0.3918 | 24.1176 | 820 | 0.5661 | 0.5427 | 0.5661 | 0.7524 | | 0.3918 | 24.1765 | 822 | 0.5730 | 0.5524 | 0.5730 | 0.7570 | | 0.3918 | 24.2353 | 824 | 0.5758 | 0.5729 | 0.5758 | 0.7588 | | 0.3918 | 24.2941 | 826 | 0.5743 | 0.5625 | 0.5743 | 0.7578 | | 0.3918 | 24.3529 | 828 | 0.5716 | 0.5517 | 0.5716 | 0.7560 | | 0.3918 | 24.4118 | 830 | 0.5673 | 0.5199 | 0.5673 | 0.7532 | | 0.3918 | 24.4706 | 832 | 0.5666 | 0.5178 | 0.5666 | 0.7527 | | 0.3918 | 24.5294 | 834 | 0.5681 | 0.5402 | 0.5681 | 0.7537 | | 0.3918 | 24.5882 | 836 | 0.5687 | 0.5493 | 0.5687 | 0.7541 | | 0.3918 | 24.6471 | 838 | 0.5753 | 0.5812 | 0.5753 | 0.7585 | | 0.3918 | 24.7059 | 840 | 0.5764 | 0.6486 | 0.5764 | 0.7592 | | 0.3918 | 24.7647 | 842 | 0.5666 | 0.5256 | 0.5666 | 0.7527 | | 0.3918 | 24.8235 | 844 | 0.5572 | 0.5549 | 0.5572 | 0.7465 | | 0.3918 | 24.8824 | 846 | 0.5665 | 0.4823 | 0.5665 | 0.7527 | | 0.3918 | 24.9412 | 848 | 0.5975 | 0.4975 | 0.5975 | 0.7730 | | 0.3918 | 25.0 | 850 | 0.6125 | 0.4968 | 0.6125 | 0.7826 | | 0.3918 | 25.0588 | 852 | 0.5985 | 0.4585 | 0.5985 | 0.7736 | | 0.3918 | 25.1176 | 854 | 0.5667 | 0.4953 | 0.5667 | 0.7528 | | 0.3918 | 25.1765 | 856 | 0.5642 | 0.5172 | 0.5642 | 0.7511 | | 0.3918 | 25.2353 | 858 | 0.5741 | 0.5187 | 0.5741 | 0.7577 | | 0.3918 | 25.2941 | 860 | 0.5808 | 0.5126 | 0.5808 | 0.7621 | | 0.3918 | 25.3529 | 862 | 0.5812 | 0.5177 | 0.5812 | 0.7624 | | 0.3918 | 25.4118 | 864 | 0.5927 | 0.5585 | 0.5927 | 0.7698 | | 0.3918 | 25.4706 | 866 | 0.6099 | 0.5139 | 0.6099 | 0.7809 | | 0.3918 | 25.5294 | 868 | 0.6299 | 0.4876 | 0.6299 | 0.7937 | | 0.3918 | 25.5882 | 870 | 0.6153 | 0.4924 | 0.6153 | 0.7844 | | 0.3918 | 25.6471 | 872 | 0.5982 | 0.5061 | 0.5982 | 0.7734 | | 0.3918 | 25.7059 | 874 | 0.5903 | 0.5195 | 0.5903 | 0.7683 | | 0.3918 | 25.7647 | 876 | 0.5891 | 0.4856 | 0.5891 | 0.7675 | | 0.3918 | 25.8235 | 878 | 0.5887 | 0.4903 | 0.5887 | 0.7673 | | 0.3918 | 25.8824 | 880 | 0.5904 | 0.4865 | 0.5904 | 0.7684 | | 0.3918 | 25.9412 | 882 | 0.5950 | 0.4991 | 0.5950 | 0.7714 | | 0.3918 | 26.0 | 884 | 0.6039 | 0.5532 | 0.6039 | 0.7771 | | 0.3918 | 26.0588 | 886 | 0.6091 | 0.5369 | 0.6091 | 0.7805 | | 0.3918 | 26.1176 | 888 | 0.6070 | 0.5536 | 0.6070 | 0.7791 | | 0.3918 | 26.1765 | 890 | 0.6108 | 0.5658 | 0.6108 | 0.7816 | | 0.3918 | 26.2353 | 892 | 0.6055 | 0.5658 | 0.6055 | 0.7781 | | 0.3918 | 26.2941 | 894 | 0.5977 | 0.5658 | 0.5977 | 0.7731 | | 0.3918 | 26.3529 | 896 | 0.5979 | 0.5539 | 0.5979 | 0.7732 | | 0.3918 | 26.4118 | 898 | 0.5896 | 0.5329 | 0.5896 | 0.7678 | | 0.3918 | 26.4706 | 900 | 0.5703 | 0.5209 | 0.5703 | 0.7552 | | 0.3918 | 26.5294 | 902 | 0.5636 | 0.5271 | 0.5636 | 0.7508 | | 0.3918 | 26.5882 | 904 | 0.5685 | 0.5119 | 0.5685 | 0.7540 | | 0.3918 | 26.6471 | 906 | 0.5743 | 0.5228 | 0.5743 | 0.7578 | | 0.3918 | 26.7059 | 908 | 0.5881 | 0.4840 | 0.5881 | 0.7669 | | 0.3918 | 26.7647 | 910 | 0.5849 | 0.4853 | 0.5849 | 0.7648 | | 0.3918 | 26.8235 | 912 | 0.5862 | 0.4788 | 0.5862 | 0.7656 | | 0.3918 | 26.8824 | 914 | 0.5908 | 0.4895 | 0.5908 | 0.7686 | | 0.3918 | 26.9412 | 916 | 0.5989 | 0.4594 | 0.5989 | 0.7739 | | 0.3918 | 27.0 | 918 | 0.5888 | 0.4594 | 0.5888 | 0.7673 | | 0.3918 | 27.0588 | 920 | 0.5724 | 0.4727 | 0.5724 | 0.7565 | | 0.3918 | 27.1176 | 922 | 0.5651 | 0.5072 | 0.5651 | 0.7518 | | 0.3918 | 27.1765 | 924 | 0.5699 | 0.4849 | 0.5699 | 0.7549 | | 0.3918 | 27.2353 | 926 | 0.5909 | 0.5876 | 0.5909 | 0.7687 | | 0.3918 | 27.2941 | 928 | 0.6105 | 0.6081 | 0.6105 | 0.7813 | | 0.3918 | 27.3529 | 930 | 0.6054 | 0.6081 | 0.6054 | 0.7781 | | 0.3918 | 27.4118 | 932 | 0.5801 | 0.6076 | 0.5801 | 0.7617 | | 0.3918 | 27.4706 | 934 | 0.5679 | 0.5077 | 0.5679 | 0.7536 | | 0.3918 | 27.5294 | 936 | 0.5841 | 0.5581 | 0.5841 | 0.7643 | | 0.3918 | 27.5882 | 938 | 0.5862 | 0.5561 | 0.5862 | 0.7656 | | 0.3918 | 27.6471 | 940 | 0.5726 | 0.5077 | 0.5726 | 0.7567 | | 0.3918 | 27.7059 | 942 | 0.5775 | 0.6232 | 0.5775 | 0.7599 | | 0.3918 | 27.7647 | 944 | 0.6216 | 0.5797 | 0.6216 | 0.7884 | | 0.3918 | 27.8235 | 946 | 0.6529 | 0.5313 | 0.6529 | 0.8080 | | 0.3918 | 27.8824 | 948 | 0.6343 | 0.5713 | 0.6343 | 0.7964 | | 0.3918 | 27.9412 | 950 | 0.6166 | 0.5609 | 0.6166 | 0.7853 | | 0.3918 | 28.0 | 952 | 0.6021 | 0.5544 | 0.6021 | 0.7760 | | 0.3918 | 28.0588 | 954 | 0.6034 | 0.5544 | 0.6034 | 0.7768 | | 0.3918 | 28.1176 | 956 | 0.5986 | 0.5633 | 0.5986 | 0.7737 | | 0.3918 | 28.1765 | 958 | 0.5955 | 0.5227 | 0.5955 | 0.7717 | | 0.3918 | 28.2353 | 960 | 0.6130 | 0.5510 | 0.6130 | 0.7830 | | 0.3918 | 28.2941 | 962 | 0.6348 | 0.6071 | 0.6348 | 0.7967 | | 0.3918 | 28.3529 | 964 | 0.6331 | 0.5617 | 0.6331 | 0.7956 | | 0.3918 | 28.4118 | 966 | 0.6188 | 0.5164 | 0.6188 | 0.7867 | | 0.3918 | 28.4706 | 968 | 0.6077 | 0.5027 | 0.6077 | 0.7796 | | 0.3918 | 28.5294 | 970 | 0.6065 | 0.5287 | 0.6065 | 0.7788 | | 0.3918 | 28.5882 | 972 | 0.6064 | 0.5373 | 0.6064 | 0.7787 | | 0.3918 | 28.6471 | 974 | 0.6006 | 0.5259 | 0.6006 | 0.7750 | | 0.3918 | 28.7059 | 976 | 0.5964 | 0.4998 | 0.5964 | 0.7722 | | 0.3918 | 28.7647 | 978 | 0.5970 | 0.4998 | 0.5970 | 0.7726 | | 0.3918 | 28.8235 | 980 | 0.5899 | 0.4998 | 0.5899 | 0.7681 | | 0.3918 | 28.8824 | 982 | 0.5820 | 0.5042 | 0.5820 | 0.7629 | | 0.3918 | 28.9412 | 984 | 0.5815 | 0.5042 | 0.5815 | 0.7626 | | 0.3918 | 29.0 | 986 | 0.5882 | 0.5109 | 0.5882 | 0.7670 | | 0.3918 | 29.0588 | 988 | 0.5910 | 0.4932 | 0.5910 | 0.7688 | | 0.3918 | 29.1176 | 990 | 0.6070 | 0.4783 | 0.6070 | 0.7791 | | 0.3918 | 29.1765 | 992 | 0.6357 | 0.5119 | 0.6357 | 0.7973 | | 0.3918 | 29.2353 | 994 | 0.6589 | 0.5104 | 0.6589 | 0.8118 | | 0.3918 | 29.2941 | 996 | 0.6479 | 0.5189 | 0.6479 | 0.8049 | | 0.3918 | 29.3529 | 998 | 0.6206 | 0.5216 | 0.6206 | 0.7878 | | 0.065 | 29.4118 | 1000 | 0.6013 | 0.5239 | 0.6013 | 0.7754 | | 0.065 | 29.4706 | 1002 | 0.5965 | 0.5088 | 0.5965 | 0.7723 | | 0.065 | 29.5294 | 1004 | 0.5949 | 0.5178 | 0.5949 | 0.7713 | | 0.065 | 29.5882 | 1006 | 0.5877 | 0.4998 | 0.5877 | 0.7666 | | 0.065 | 29.6471 | 1008 | 0.5784 | 0.5155 | 0.5784 | 0.7606 | | 0.065 | 29.7059 | 1010 | 0.5779 | 0.5267 | 0.5779 | 0.7602 | | 0.065 | 29.7647 | 1012 | 0.5902 | 0.5093 | 0.5902 | 0.7682 | | 0.065 | 29.8235 | 1014 | 0.6111 | 0.4927 | 0.6111 | 0.7817 | | 0.065 | 29.8824 | 1016 | 0.6095 | 0.4780 | 0.6095 | 0.7807 | | 0.065 | 29.9412 | 1018 | 0.5898 | 0.4781 | 0.5898 | 0.7680 | | 0.065 | 30.0 | 1020 | 0.5851 | 0.5238 | 0.5851 | 0.7649 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
MayBashendy/ArabicNewSplits7_usingWellWrittenEssays_FineTuningAraBERT_run1_AugV5_k6_task1_organization
MayBashendy
2025-01-15T12:32:04Z
7
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-15T12:14:36Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits7_usingWellWrittenEssays_FineTuningAraBERT_run1_AugV5_k6_task1_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits7_usingWellWrittenEssays_FineTuningAraBERT_run1_AugV5_k6_task1_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1023 - Qwk: 0.2302 - Mse: 2.1023 - Rmse: 1.4499 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.0769 | 2 | 6.9275 | -0.0056 | 6.9275 | 2.6320 | | No log | 0.1538 | 4 | 4.4704 | 0.0702 | 4.4704 | 2.1143 | | No log | 0.2308 | 6 | 3.7767 | -0.0208 | 3.7767 | 1.9434 | | No log | 0.3077 | 8 | 4.9755 | -0.0855 | 4.9755 | 2.2306 | | No log | 0.3846 | 10 | 4.8314 | -0.0889 | 4.8314 | 2.1980 | | No log | 0.4615 | 12 | 3.2770 | -0.0686 | 3.2770 | 1.8102 | | No log | 0.5385 | 14 | 2.3898 | 0.0584 | 2.3898 | 1.5459 | | No log | 0.6154 | 16 | 2.4053 | 0.0 | 2.4053 | 1.5509 | | No log | 0.6923 | 18 | 2.3197 | 0.0305 | 2.3197 | 1.5231 | | No log | 0.7692 | 20 | 2.0640 | 0.1148 | 2.0640 | 1.4367 | | No log | 0.8462 | 22 | 1.8753 | 0.1379 | 1.8753 | 1.3694 | | No log | 0.9231 | 24 | 1.8365 | 0.1368 | 1.8365 | 1.3552 | | No log | 1.0 | 26 | 1.7928 | 0.1930 | 1.7928 | 1.3389 | | No log | 1.0769 | 28 | 1.7491 | 0.0784 | 1.7491 | 1.3225 | | No log | 1.1538 | 30 | 1.7718 | 0.0971 | 1.7718 | 1.3311 | | No log | 1.2308 | 32 | 1.8360 | 0.0769 | 1.8360 | 1.3550 | | No log | 1.3077 | 34 | 1.9071 | 0.0748 | 1.9071 | 1.3810 | | No log | 1.3846 | 36 | 2.0981 | 0.1322 | 2.0981 | 1.4485 | | No log | 1.4615 | 38 | 1.9696 | 0.1186 | 1.9696 | 1.4034 | | No log | 1.5385 | 40 | 1.7876 | 0.1053 | 1.7876 | 1.3370 | | No log | 1.6154 | 42 | 1.7216 | 0.1818 | 1.7216 | 1.3121 | | No log | 1.6923 | 44 | 1.7784 | 0.0962 | 1.7784 | 1.3336 | | No log | 1.7692 | 46 | 1.8010 | 0.2679 | 1.8010 | 1.3420 | | No log | 1.8462 | 48 | 1.7625 | 0.2957 | 1.7625 | 1.3276 | | No log | 1.9231 | 50 | 1.6574 | 0.2951 | 1.6574 | 1.2874 | | No log | 2.0 | 52 | 1.5691 | 0.3651 | 1.5691 | 1.2526 | | No log | 2.0769 | 54 | 1.5583 | 0.2602 | 1.5583 | 1.2483 | | No log | 2.1538 | 56 | 1.5564 | 0.3636 | 1.5564 | 1.2475 | | No log | 2.2308 | 58 | 1.8582 | 0.3101 | 1.8582 | 1.3632 | | No log | 2.3077 | 60 | 1.9456 | 0.2985 | 1.9456 | 1.3948 | | No log | 2.3846 | 62 | 1.7541 | 0.3382 | 1.7541 | 1.3244 | | No log | 2.4615 | 64 | 1.6197 | 0.2689 | 1.6197 | 1.2727 | | No log | 2.5385 | 66 | 1.6497 | 0.1724 | 1.6497 | 1.2844 | | No log | 2.6154 | 68 | 1.6558 | 0.1739 | 1.6558 | 1.2868 | | No log | 2.6923 | 70 | 1.6264 | 0.1897 | 1.6264 | 1.2753 | | No log | 2.7692 | 72 | 1.5811 | 0.3577 | 1.5811 | 1.2574 | | No log | 2.8462 | 74 | 1.5280 | 0.3548 | 1.5280 | 1.2361 | | No log | 2.9231 | 76 | 1.5087 | 0.3548 | 1.5087 | 1.2283 | | No log | 3.0 | 78 | 1.5833 | 0.3939 | 1.5833 | 1.2583 | | No log | 3.0769 | 80 | 1.8412 | 0.2609 | 1.8412 | 1.3569 | | No log | 3.1538 | 82 | 1.8000 | 0.2920 | 1.8000 | 1.3416 | | No log | 3.2308 | 84 | 1.6949 | 0.3676 | 1.6949 | 1.3019 | | No log | 3.3077 | 86 | 1.7790 | 0.3358 | 1.7790 | 1.3338 | | No log | 3.3846 | 88 | 1.8963 | 0.3333 | 1.8963 | 1.3771 | | No log | 3.4615 | 90 | 1.9345 | 0.2857 | 1.9345 | 1.3908 | | No log | 3.5385 | 92 | 1.8385 | 0.3478 | 1.8385 | 1.3559 | | No log | 3.6154 | 94 | 1.7298 | 0.3259 | 1.7298 | 1.3152 | | No log | 3.6923 | 96 | 1.7603 | 0.3382 | 1.7603 | 1.3268 | | No log | 3.7692 | 98 | 1.8919 | 0.3000 | 1.8919 | 1.3755 | | No log | 3.8462 | 100 | 1.8871 | 0.3650 | 1.8871 | 1.3737 | | No log | 3.9231 | 102 | 1.7185 | 0.3636 | 1.7185 | 1.3109 | | No log | 4.0 | 104 | 1.5748 | 0.2203 | 1.5748 | 1.2549 | | No log | 4.0769 | 106 | 1.5630 | 0.2903 | 1.5630 | 1.2502 | | No log | 4.1538 | 108 | 1.6675 | 0.3636 | 1.6675 | 1.2913 | | No log | 4.2308 | 110 | 1.8266 | 0.3066 | 1.8266 | 1.3515 | | No log | 4.3077 | 112 | 1.8425 | 0.3088 | 1.8425 | 1.3574 | | No log | 4.3846 | 114 | 1.6335 | 0.2992 | 1.6335 | 1.2781 | | No log | 4.4615 | 116 | 1.4517 | 0.2414 | 1.4517 | 1.2049 | | No log | 4.5385 | 118 | 1.4063 | 0.3423 | 1.4063 | 1.1859 | | No log | 4.6154 | 120 | 1.4478 | 0.3529 | 1.4478 | 1.2032 | | No log | 4.6923 | 122 | 1.4713 | 0.3415 | 1.4713 | 1.2130 | | No log | 4.7692 | 124 | 1.4835 | 0.4094 | 1.4835 | 1.2180 | | No log | 4.8462 | 126 | 1.5031 | 0.4186 | 1.5031 | 1.2260 | | No log | 4.9231 | 128 | 1.5503 | 0.4 | 1.5503 | 1.2451 | | No log | 5.0 | 130 | 1.5101 | 0.4062 | 1.5101 | 1.2289 | | No log | 5.0769 | 132 | 1.5969 | 0.4 | 1.5969 | 1.2637 | | No log | 5.1538 | 134 | 1.7464 | 0.3459 | 1.7464 | 1.3215 | | No log | 5.2308 | 136 | 1.6598 | 0.3485 | 1.6598 | 1.2883 | | No log | 5.3077 | 138 | 1.4752 | 0.3871 | 1.4752 | 1.2146 | | No log | 5.3846 | 140 | 1.3852 | 0.3140 | 1.3852 | 1.1769 | | No log | 5.4615 | 142 | 1.4471 | 0.3692 | 1.4471 | 1.2030 | | No log | 5.5385 | 144 | 1.9736 | 0.2657 | 1.9736 | 1.4049 | | No log | 5.6154 | 146 | 2.2646 | 0.2192 | 2.2646 | 1.5049 | | No log | 5.6923 | 148 | 2.0866 | 0.2657 | 2.0866 | 1.4445 | | No log | 5.7692 | 150 | 1.8099 | 0.3165 | 1.8099 | 1.3453 | | No log | 5.8462 | 152 | 1.6534 | 0.3852 | 1.6534 | 1.2859 | | No log | 5.9231 | 154 | 1.6880 | 0.3529 | 1.6880 | 1.2992 | | No log | 6.0 | 156 | 1.9886 | 0.2676 | 1.9886 | 1.4102 | | No log | 6.0769 | 158 | 2.2375 | 0.1549 | 2.2375 | 1.4958 | | No log | 6.1538 | 160 | 2.1110 | 0.1857 | 2.1110 | 1.4529 | | No log | 6.2308 | 162 | 1.8239 | 0.3235 | 1.8239 | 1.3505 | | No log | 6.3077 | 164 | 1.7347 | 0.3485 | 1.7347 | 1.3171 | | No log | 6.3846 | 166 | 1.7939 | 0.3235 | 1.7939 | 1.3394 | | No log | 6.4615 | 168 | 2.0819 | 0.2113 | 2.0819 | 1.4429 | | No log | 6.5385 | 170 | 2.2585 | 0.1806 | 2.2585 | 1.5028 | | No log | 6.6154 | 172 | 2.1435 | 0.2361 | 2.1435 | 1.4641 | | No log | 6.6923 | 174 | 1.8139 | 0.2734 | 1.8139 | 1.3468 | | No log | 6.7692 | 176 | 1.6765 | 0.3407 | 1.6765 | 1.2948 | | No log | 6.8462 | 178 | 1.6456 | 0.4 | 1.6456 | 1.2828 | | No log | 6.9231 | 180 | 1.6312 | 0.3740 | 1.6312 | 1.2772 | | No log | 7.0 | 182 | 1.7430 | 0.3359 | 1.7430 | 1.3202 | | No log | 7.0769 | 184 | 1.8327 | 0.2794 | 1.8327 | 1.3538 | | No log | 7.1538 | 186 | 1.8168 | 0.2774 | 1.8168 | 1.3479 | | No log | 7.2308 | 188 | 1.6506 | 0.3308 | 1.6506 | 1.2848 | | No log | 7.3077 | 190 | 1.3571 | 0.4252 | 1.3571 | 1.1650 | | No log | 7.3846 | 192 | 1.3120 | 0.4 | 1.3120 | 1.1454 | | No log | 7.4615 | 194 | 1.4381 | 0.4275 | 1.4381 | 1.1992 | | No log | 7.5385 | 196 | 1.7564 | 0.3000 | 1.7564 | 1.3253 | | No log | 7.6154 | 198 | 2.2107 | 0.2069 | 2.2107 | 1.4868 | | No log | 7.6923 | 200 | 2.5409 | -0.0292 | 2.5409 | 1.5940 | | No log | 7.7692 | 202 | 2.5550 | -0.0438 | 2.5550 | 1.5985 | | No log | 7.8462 | 204 | 2.4114 | 0.0699 | 2.4114 | 1.5529 | | No log | 7.9231 | 206 | 2.0969 | 0.1549 | 2.0969 | 1.4481 | | No log | 8.0 | 208 | 1.7141 | 0.3235 | 1.7141 | 1.3092 | | No log | 8.0769 | 210 | 1.4594 | 0.4094 | 1.4594 | 1.2080 | | No log | 8.1538 | 212 | 1.4004 | 0.4 | 1.4004 | 1.1834 | | No log | 8.2308 | 214 | 1.5184 | 0.4 | 1.5184 | 1.2322 | | No log | 8.3077 | 216 | 1.7736 | 0.3165 | 1.7736 | 1.3318 | | No log | 8.3846 | 218 | 1.9138 | 0.2083 | 1.9138 | 1.3834 | | No log | 8.4615 | 220 | 1.8375 | 0.2837 | 1.8375 | 1.3555 | | No log | 8.5385 | 222 | 1.6468 | 0.3111 | 1.6468 | 1.2833 | | No log | 8.6154 | 224 | 1.5440 | 0.3846 | 1.5440 | 1.2426 | | No log | 8.6923 | 226 | 1.5017 | 0.4390 | 1.5017 | 1.2254 | | No log | 8.7692 | 228 | 1.4905 | 0.4516 | 1.4905 | 1.2209 | | No log | 8.8462 | 230 | 1.5342 | 0.375 | 1.5342 | 1.2386 | | No log | 8.9231 | 232 | 1.5819 | 0.3692 | 1.5819 | 1.2577 | | No log | 9.0 | 234 | 1.6323 | 0.3759 | 1.6323 | 1.2776 | | No log | 9.0769 | 236 | 1.7617 | 0.3043 | 1.7617 | 1.3273 | | No log | 9.1538 | 238 | 1.7586 | 0.2774 | 1.7586 | 1.3261 | | No log | 9.2308 | 240 | 1.6349 | 0.3817 | 1.6349 | 1.2786 | | No log | 9.3077 | 242 | 1.5181 | 0.375 | 1.5181 | 1.2321 | | No log | 9.3846 | 244 | 1.4331 | 0.3492 | 1.4331 | 1.1971 | | No log | 9.4615 | 246 | 1.4270 | 0.3780 | 1.4270 | 1.1946 | | No log | 9.5385 | 248 | 1.5527 | 0.3788 | 1.5527 | 1.2461 | | No log | 9.6154 | 250 | 1.8277 | 0.2878 | 1.8277 | 1.3519 | | No log | 9.6923 | 252 | 1.8965 | 0.2714 | 1.8965 | 1.3771 | | No log | 9.7692 | 254 | 1.8916 | 0.2878 | 1.8916 | 1.3754 | | No log | 9.8462 | 256 | 1.7666 | 0.3382 | 1.7666 | 1.3291 | | No log | 9.9231 | 258 | 1.6458 | 0.3910 | 1.6458 | 1.2829 | | No log | 10.0 | 260 | 1.6844 | 0.3910 | 1.6844 | 1.2978 | | No log | 10.0769 | 262 | 1.8749 | 0.2609 | 1.8749 | 1.3693 | | No log | 10.1538 | 264 | 1.9623 | 0.2336 | 1.9623 | 1.4008 | | No log | 10.2308 | 266 | 2.0164 | 0.2174 | 2.0164 | 1.4200 | | No log | 10.3077 | 268 | 1.9008 | 0.2446 | 1.9008 | 1.3787 | | No log | 10.3846 | 270 | 1.8635 | 0.2899 | 1.8635 | 1.3651 | | No log | 10.4615 | 272 | 1.8457 | 0.2899 | 1.8457 | 1.3586 | | No log | 10.5385 | 274 | 1.8511 | 0.2899 | 1.8511 | 1.3605 | | No log | 10.6154 | 276 | 1.7922 | 0.2899 | 1.7922 | 1.3387 | | No log | 10.6923 | 278 | 1.8583 | 0.2899 | 1.8583 | 1.3632 | | No log | 10.7692 | 280 | 1.7983 | 0.3556 | 1.7983 | 1.3410 | | No log | 10.8462 | 282 | 1.8143 | 0.3382 | 1.8143 | 1.3470 | | No log | 10.9231 | 284 | 1.8287 | 0.3212 | 1.8287 | 1.3523 | | No log | 11.0 | 286 | 1.7774 | 0.3382 | 1.7774 | 1.3332 | | No log | 11.0769 | 288 | 1.7852 | 0.3212 | 1.7852 | 1.3361 | | No log | 11.1538 | 290 | 1.9110 | 0.2590 | 1.9110 | 1.3824 | | No log | 11.2308 | 292 | 2.0481 | 0.2411 | 2.0481 | 1.4311 | | No log | 11.3077 | 294 | 2.0703 | 0.2411 | 2.0703 | 1.4389 | | No log | 11.3846 | 296 | 1.8326 | 0.2590 | 1.8326 | 1.3537 | | No log | 11.4615 | 298 | 1.5138 | 0.3566 | 1.5138 | 1.2304 | | No log | 11.5385 | 300 | 1.4477 | 0.3780 | 1.4477 | 1.2032 | | No log | 11.6154 | 302 | 1.5371 | 0.3692 | 1.5371 | 1.2398 | | No log | 11.6923 | 304 | 1.7766 | 0.2590 | 1.7766 | 1.3329 | | No log | 11.7692 | 306 | 2.0222 | 0.2143 | 2.0222 | 1.4220 | | No log | 11.8462 | 308 | 2.1366 | 0.1871 | 2.1366 | 1.4617 | | No log | 11.9231 | 310 | 2.0079 | 0.1871 | 2.0079 | 1.4170 | | No log | 12.0 | 312 | 1.7520 | 0.3511 | 1.7520 | 1.3236 | | No log | 12.0769 | 314 | 1.5289 | 0.3802 | 1.5289 | 1.2365 | | No log | 12.1538 | 316 | 1.4179 | 0.3898 | 1.4179 | 1.1908 | | No log | 12.2308 | 318 | 1.3929 | 0.4516 | 1.3929 | 1.1802 | | No log | 12.3077 | 320 | 1.6046 | 0.2963 | 1.6046 | 1.2667 | | No log | 12.3846 | 322 | 2.0543 | 0.2535 | 2.0543 | 1.4333 | | No log | 12.4615 | 324 | 2.4063 | 0.2270 | 2.4063 | 1.5512 | | No log | 12.5385 | 326 | 2.4551 | 0.2113 | 2.4551 | 1.5669 | | No log | 12.6154 | 328 | 2.3467 | 0.2113 | 2.3467 | 1.5319 | | No log | 12.6923 | 330 | 2.1283 | 0.2113 | 2.1283 | 1.4589 | | No log | 12.7692 | 332 | 1.9246 | 0.2446 | 1.9246 | 1.3873 | | No log | 12.8462 | 334 | 1.7449 | 0.2985 | 1.7449 | 1.3210 | | No log | 12.9231 | 336 | 1.6519 | 0.4132 | 1.6519 | 1.2853 | | No log | 13.0 | 338 | 1.6722 | 0.4098 | 1.6722 | 1.2931 | | No log | 13.0769 | 340 | 1.7216 | 0.2857 | 1.7216 | 1.3121 | | No log | 13.1538 | 342 | 1.7916 | 0.2628 | 1.7916 | 1.3385 | | No log | 13.2308 | 344 | 2.0251 | 0.2270 | 2.0251 | 1.4231 | | No log | 13.3077 | 346 | 2.1530 | 0.2621 | 2.1530 | 1.4673 | | No log | 13.3846 | 348 | 2.1996 | 0.2535 | 2.1996 | 1.4831 | | No log | 13.4615 | 350 | 2.0259 | 0.2535 | 2.0259 | 1.4233 | | No log | 13.5385 | 352 | 1.8258 | 0.3066 | 1.8258 | 1.3512 | | No log | 13.6154 | 354 | 1.6659 | 0.3511 | 1.6659 | 1.2907 | | No log | 13.6923 | 356 | 1.6352 | 0.4032 | 1.6352 | 1.2787 | | No log | 13.7692 | 358 | 1.6428 | 0.4098 | 1.6428 | 1.2817 | | No log | 13.8462 | 360 | 1.6896 | 0.3465 | 1.6896 | 1.2998 | | No log | 13.9231 | 362 | 1.7458 | 0.3158 | 1.7458 | 1.3213 | | No log | 14.0 | 364 | 1.8685 | 0.2774 | 1.8685 | 1.3669 | | No log | 14.0769 | 366 | 1.9395 | 0.2429 | 1.9395 | 1.3927 | | No log | 14.1538 | 368 | 1.8290 | 0.3333 | 1.8290 | 1.3524 | | No log | 14.2308 | 370 | 1.7674 | 0.3235 | 1.7674 | 1.3294 | | No log | 14.3077 | 372 | 1.6785 | 0.3235 | 1.6785 | 1.2956 | | No log | 14.3846 | 374 | 1.5667 | 0.4091 | 1.5667 | 1.2517 | | No log | 14.4615 | 376 | 1.5535 | 0.3969 | 1.5535 | 1.2464 | | No log | 14.5385 | 378 | 1.6077 | 0.4091 | 1.6077 | 1.2680 | | No log | 14.6154 | 380 | 1.6691 | 0.3910 | 1.6691 | 1.2919 | | No log | 14.6923 | 382 | 1.7313 | 0.3235 | 1.7313 | 1.3158 | | No log | 14.7692 | 384 | 1.7110 | 0.3235 | 1.7110 | 1.3080 | | No log | 14.8462 | 386 | 1.6179 | 0.3969 | 1.6179 | 1.2720 | | No log | 14.9231 | 388 | 1.6247 | 0.3459 | 1.6247 | 1.2747 | | No log | 15.0 | 390 | 1.6917 | 0.3212 | 1.6917 | 1.3006 | | No log | 15.0769 | 392 | 1.7400 | 0.3043 | 1.7400 | 1.3191 | | No log | 15.1538 | 394 | 1.8131 | 0.2857 | 1.8131 | 1.3465 | | No log | 15.2308 | 396 | 1.7250 | 0.3382 | 1.7250 | 1.3134 | | No log | 15.3077 | 398 | 1.6234 | 0.3731 | 1.6234 | 1.2741 | | No log | 15.3846 | 400 | 1.6672 | 0.3731 | 1.6672 | 1.2912 | | No log | 15.4615 | 402 | 1.6508 | 0.3731 | 1.6508 | 1.2848 | | No log | 15.5385 | 404 | 1.6605 | 0.3212 | 1.6605 | 1.2886 | | No log | 15.6154 | 406 | 1.8215 | 0.2857 | 1.8215 | 1.3496 | | No log | 15.6923 | 408 | 1.9213 | 0.2695 | 1.9213 | 1.3861 | | No log | 15.7692 | 410 | 1.8671 | 0.2628 | 1.8671 | 1.3664 | | No log | 15.8462 | 412 | 1.6789 | 0.3407 | 1.6789 | 1.2957 | | No log | 15.9231 | 414 | 1.5121 | 0.4286 | 1.5121 | 1.2297 | | No log | 16.0 | 416 | 1.4929 | 0.4640 | 1.4929 | 1.2218 | | No log | 16.0769 | 418 | 1.5600 | 0.4062 | 1.5600 | 1.2490 | | No log | 16.1538 | 420 | 1.7432 | 0.2815 | 1.7432 | 1.3203 | | No log | 16.2308 | 422 | 1.9998 | 0.1871 | 1.9998 | 1.4141 | | No log | 16.3077 | 424 | 2.1962 | 0.2000 | 2.1962 | 1.4820 | | No log | 16.3846 | 426 | 2.2117 | 0.2000 | 2.2117 | 1.4872 | | No log | 16.4615 | 428 | 2.1421 | 0.2000 | 2.1421 | 1.4636 | | No log | 16.5385 | 430 | 2.0120 | 0.2143 | 2.0120 | 1.4185 | | No log | 16.6154 | 432 | 1.8857 | 0.25 | 1.8857 | 1.3732 | | No log | 16.6923 | 434 | 1.8615 | 0.2628 | 1.8615 | 1.3644 | | No log | 16.7692 | 436 | 1.9075 | 0.2609 | 1.9075 | 1.3811 | | No log | 16.8462 | 438 | 1.9806 | 0.2174 | 1.9806 | 1.4073 | | No log | 16.9231 | 440 | 2.0912 | 0.1871 | 2.0912 | 1.4461 | | No log | 17.0 | 442 | 2.1281 | 0.1871 | 2.1281 | 1.4588 | | No log | 17.0769 | 444 | 2.0521 | 0.1871 | 2.0521 | 1.4325 | | No log | 17.1538 | 446 | 1.8757 | 0.2464 | 1.8757 | 1.3695 | | No log | 17.2308 | 448 | 1.6782 | 0.3284 | 1.6782 | 1.2954 | | No log | 17.3077 | 450 | 1.6164 | 0.3759 | 1.6164 | 1.2714 | | No log | 17.3846 | 452 | 1.6502 | 0.3609 | 1.6502 | 1.2846 | | No log | 17.4615 | 454 | 1.7342 | 0.2920 | 1.7342 | 1.3169 | | No log | 17.5385 | 456 | 1.7119 | 0.2920 | 1.7119 | 1.3084 | | No log | 17.6154 | 458 | 1.7253 | 0.2920 | 1.7253 | 1.3135 | | No log | 17.6923 | 460 | 1.7881 | 0.2920 | 1.7881 | 1.3372 | | No log | 17.7692 | 462 | 1.8963 | 0.2143 | 1.8963 | 1.3771 | | No log | 17.8462 | 464 | 1.8805 | 0.2411 | 1.8805 | 1.3713 | | No log | 17.9231 | 466 | 1.7983 | 0.2571 | 1.7983 | 1.3410 | | No log | 18.0 | 468 | 1.7421 | 0.2941 | 1.7421 | 1.3199 | | No log | 18.0769 | 470 | 1.7326 | 0.2941 | 1.7326 | 1.3163 | | No log | 18.1538 | 472 | 1.7824 | 0.2774 | 1.7824 | 1.3351 | | No log | 18.2308 | 474 | 1.8736 | 0.2302 | 1.8736 | 1.3688 | | No log | 18.3077 | 476 | 1.9124 | 0.2029 | 1.9124 | 1.3829 | | No log | 18.3846 | 478 | 1.8789 | 0.2190 | 1.8789 | 1.3707 | | No log | 18.4615 | 480 | 1.7623 | 0.2388 | 1.7623 | 1.3275 | | No log | 18.5385 | 482 | 1.5831 | 0.3538 | 1.5831 | 1.2582 | | No log | 18.6154 | 484 | 1.4844 | 0.4000 | 1.4844 | 1.2184 | | No log | 18.6923 | 486 | 1.4965 | 0.3307 | 1.4965 | 1.2233 | | No log | 18.7692 | 488 | 1.6275 | 0.3359 | 1.6275 | 1.2757 | | No log | 18.8462 | 490 | 1.8117 | 0.2647 | 1.8117 | 1.3460 | | No log | 18.9231 | 492 | 1.8712 | 0.2647 | 1.8712 | 1.3679 | | No log | 19.0 | 494 | 1.7784 | 0.2963 | 1.7784 | 1.3336 | | No log | 19.0769 | 496 | 1.6606 | 0.3636 | 1.6606 | 1.2886 | | No log | 19.1538 | 498 | 1.6373 | 0.3511 | 1.6373 | 1.2796 | | 0.3621 | 19.2308 | 500 | 1.6432 | 0.3511 | 1.6432 | 1.2819 | | 0.3621 | 19.3077 | 502 | 1.6127 | 0.3538 | 1.6127 | 1.2699 | | 0.3621 | 19.3846 | 504 | 1.6164 | 0.3538 | 1.6164 | 1.2714 | | 0.3621 | 19.4615 | 506 | 1.7241 | 0.3182 | 1.7241 | 1.3131 | | 0.3621 | 19.5385 | 508 | 1.8258 | 0.2963 | 1.8258 | 1.3512 | | 0.3621 | 19.6154 | 510 | 1.9375 | 0.2302 | 1.9375 | 1.3919 | | 0.3621 | 19.6923 | 512 | 2.0132 | 0.2302 | 2.0132 | 1.4189 | | 0.3621 | 19.7692 | 514 | 2.1023 | 0.2302 | 2.1023 | 1.4499 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
BeardedMonster/SabiYarn-125M-finetune
BeardedMonster
2025-01-15T12:31:44Z
22
0
transformers
[ "transformers", "safetensors", "nanogpt-j", "text-generation", "custom_code", "autotrain_compatible", "region:us" ]
text-generation
2024-07-31T16:47:53Z
--- library_name: transformers tags: [] --- # SabiYarn Test the whole generation capabilities here: https://huggingface.co/spaces/BeardedMonster/SabiYarn_125M Pretrained model on Nigerian languages including English using a causal language modeling (CLM) Multi-task objective. Finetuned on the following downstream tasks: NER, sentiment analysis, topic classification, translation. ## Model Details ### Model Description SabiYarn-125M is the first of a series of transformer models (adopted from nanogpt and inspired by GPT-J's architecture) pretrained on a large corpus of Nigerian language data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token i only uses the inputs from 1 to i but not the future tokens. It also makes sure attention is not calculated across documents. This way, the model learns an inner representation of the languages that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating coherent texts. This is the smallest version, with 125M parameters. - **Developed by:** Aletheia.ai Research Lab - **Funded by [optional]:** Personal - **Shared by [optional]:** Jeffreypaul - **Model type:** GPTJX (Adopted from NanoGPT) - **Language(s) (NLP):** Majorly English, Yoruba, Hausa, Igbo, Pidgin and some others: Fulah/Fulfulde, Efik, Urhobo. ### Model Sources [optional] - **Demo:** https://huggingface.co/spaces/BeardedMonster/SabiYarn_125M ## Uses You can use the raw model for text generation or fine-tune it to a downstream task. ## Bias, Risks, and Limitations The training data used for this model is mostly an aggregation of data available on huggingface for nigerian languages. We know it contains a lot of unfiltered content from the internet, which is far from neutral. Because large-scale language models of this size do not distinguish fact from fiction, we don’t support use-cases that require the generated text to be true. Additionally, language models often reflect the biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a study of biases relevant to the intended use-case. ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import AutoModelForCausalLM, AutoTokenizer from transformers import GenerationConfig generation_config = GenerationConfig( max_length=100, # Adjust this based on your translation requirements max_new_tokens=50, # Ensure sufficient tokens for your translations num_beams=5, # Moderate number of beams for a balance between speed and quality do_sample=False, # Disable sampling to make output deterministic temperature=1.0, # Neutral temperature since sampling is off top_k=0, # Disable top-k sampling (since sampling is off) top_p=0, # Disable top-p (nucleus) sampling (since sampling is off) repetition_penalty=4.0, # Neutral repetition penalty for translation length_penalty=3.0, # No penalty for sequence length; modify if your translations tend to be too short/long early_stopping=True # Stop early when all beams finish to speed up generation ) repo_name = "BeardedMonster/SabiYarn-125M-finetune" tokenizer_name = "BeardedMonster/SabiYarn-125M" model = AutoModelForCausalLM.from_pretrained(repo_name, trust_remote_code=True) tokenizer= AutoTokenizer.from_pretrained(tokenizer_name, trust_remote_code=True) Use the following tags for the following downstream tasks: - Translation ```python <translate> <yor>, <translate> .... <ibo>, <translate> ... <hau>, <translate> .... <efi>, <translate> .... <pcm>, <translate> ..... <urh> ``` - Topic classification ```python <classify> ...... <topic> ``` - Sentiment Analysis ```python <classify> .... <sentiment> ``` - Named Entity Recognition ```python <NER>.... <tag> ``` You should typically put user's input between these 2 tags. Currently, model also doesnt perform very well on NER due to the scarce data on this. ### Model Architecture and Objective Architecture is very similar to GPT-J
aleegis09/6563dd2c-a986-4604-b48c-3a5848287abc
aleegis09
2025-01-15T12:29:33Z
10
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:NousResearch/Nous-Hermes-2-Mistral-7B-DPO", "base_model:adapter:NousResearch/Nous-Hermes-2-Mistral-7B-DPO", "license:apache-2.0", "region:us" ]
null
2025-01-15T11:55:13Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO tags: - axolotl - generated_from_trainer model-index: - name: 6563dd2c-a986-4604-b48c-3a5848287abc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 3b3212a50f486d00_train_data.json ds_type: json format: custom path: /workspace/input_data/3b3212a50f486d00_train_data.json type: field_instruction: query field_output: ori_review format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: aleegis09/6563dd2c-a986-4604-b48c-3a5848287abc hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/3b3212a50f486d00_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b1835142-c2f8-424f-bb55-34bf09e30efe wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b1835142-c2f8-424f-bb55-34bf09e30efe warmup_steps: 20 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 6563dd2c-a986-4604-b48c-3a5848287abc This model is a fine-tuned version of [NousResearch/Nous-Hermes-2-Mistral-7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mistral-7B-DPO) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6913 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 8.255 | 0.0016 | 1 | 2.5185 | | 7.1064 | 0.0801 | 50 | 1.8420 | | 6.9319 | 0.1602 | 100 | 1.8480 | | 6.8434 | 0.2403 | 150 | 1.7523 | | 7.2686 | 0.3204 | 200 | 1.6913 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nicholasKluge/TeenyTinyLlama-460m
nicholasKluge
2025-01-15T12:26:45Z
1,269
11
transformers
[ "transformers", "pytorch", "jax", "safetensors", "llama", "text-generation", "text-generation-inference", "pt", "dataset:nicholasKluge/Pt-Corpus-Instruct", "arxiv:2401.16640", "license:apache-2.0", "model-index", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-01-02T13:59:11Z
--- language: - pt license: apache-2.0 library_name: transformers tags: - text-generation-inference datasets: - nicholasKluge/Pt-Corpus-Instruct metrics: - perplexity pipeline_tag: text-generation widget: - text: 'A PUCRS é uma universidade ' example_title: Exemplo - text: A muitos anos atrás, em uma galáxia muito distante, vivia uma raça de example_title: Exemplo - text: Em meio a um escândalo, a frente parlamentar pediu ao Senador Silva para example_title: Exemplo inference: parameters: repetition_penalty: 1.2 temperature: 0.1 top_k: 50 top_p: 1.0 max_new_tokens: 150 co2_eq_emissions: emissions: 41100 source: CodeCarbon training_type: pre-training geographical_location: Germany hardware_used: NVIDIA A100-SXM4-40GB model-index: - name: TeenyTinyLlama-460m results: - task: type: text-generation name: Text Generation dataset: name: ENEM Challenge (No Images) type: eduagarcia/enem_challenge split: train args: num_few_shot: 3 metrics: - type: acc value: 20.15 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-460m name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BLUEX (No Images) type: eduagarcia-temp/BLUEX_without_images split: train args: num_few_shot: 3 metrics: - type: acc value: 25.73 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-460m name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: OAB Exams type: eduagarcia/oab_exams split: train args: num_few_shot: 3 metrics: - type: acc value: 27.02 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-460m name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Assin2 RTE type: assin2 split: test args: num_few_shot: 15 metrics: - type: f1_macro value: 53.61 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-460m name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Assin2 STS type: eduagarcia/portuguese_benchmark split: test args: num_few_shot: 15 metrics: - type: pearson value: 13.0 name: pearson source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-460m name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: FaQuAD NLI type: ruanchaves/faquad-nli split: test args: num_few_shot: 15 metrics: - type: f1_macro value: 46.41 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-460m name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HateBR Binary type: ruanchaves/hatebr split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 33.59 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-460m name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: PT Hate Speech Binary type: hate_speech_portuguese split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 22.99 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-460m name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: tweetSentBR type: eduagarcia-temp/tweetsentbr split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 17.28 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-460m name: Open Portuguese LLM Leaderboard --- # TeenyTinyLlama-460m <img src="./logo.png" alt="A curious llama exploring a mushroom forest." height="200"> ## Model Summary Large language models (LLMs) have significantly advanced natural language processing, but their progress has yet to be equal across languages. While most LLMs are trained in high-resource languages like English, multilingual models generally underperform monolingual ones. Additionally, aspects of their multilingual foundation sometimes restrict the byproducts they produce, like computational demands and licensing regimes. Hence, we developed the _TeenyTinyLlama_ pair: two compact models for Brazilian Portuguese text generation. Read our article [here](https://www.sciencedirect.com/science/article/pii/S2666827024000343). ## Details - **Architecture:** a Transformer-based model pre-trained via causal language modeling - **Size:** 468,239,360 parameters - **Context length:** 2048 tokens - **Dataset:** [Pt-Corpus Instruct](https://huggingface.co/datasets/nicholasKluge/Pt-Corpus-Instruct) (6.2B tokens) - **Language:** Portuguese - **Number of steps:** 1,200,000 - **GPU:** 1 NVIDIA A100-SXM4-40GB - **Training time**: ~ 280 hours - **Emissions:** 41.1 KgCO2 (Germany) - **Total energy consumption:** 115.69 kWh This repository has the [source code](https://github.com/Nkluge-correa/TeenyTinyLlama) used to train this model. The main libraries used are: - [Transformers](https://github.com/huggingface/transformers) - [PyTorch](https://github.com/pytorch/pytorch) - [Datasets](https://github.com/huggingface/datasets) - [Tokenizers](https://github.com/huggingface/tokenizers) - [Sentencepiece](https://github.com/google/sentencepiece) - [Accelerate](https://github.com/huggingface/accelerate) - [FlashAttention](https://github.com/Dao-AILab/flash-attention) - [Codecarbon](https://github.com/mlco2/codecarbon) ## Intended Uses The primary intended use of TeenyTinyLlama is to research the challenges related to developing language models for low-resource languages. Checkpoints saved during training are intended to provide a controlled setting for performing scientific experiments. You may also further fine-tune and adapt TeenyTinyLlama for deployment, as long as your use is following the Apache 2.0 license. If you decide to use pre-trained TeenyTinyLlama as a basis for your fine-tuned model, please conduct your own risk and bias assessment. ## Out-of-scope Use TeenyTinyLlama is not intended for deployment. It is not a product and should not be used for human-facing interactions. TeenyTinyLlama models are Brazilian Portuguese language only and are not suitable for translation or generating text in other languages. TeenyTinyLlama has not been fine-tuned for downstream contexts in which language models are commonly deployed. ## Basic usage Using the `pipeline`: ```python from transformers import pipeline generator = pipeline("text-generation", model="nicholasKluge/TeenyTinyLlama-460m") completions = generator("Astronomia é a ciência", num_return_sequences=2, max_new_tokens=100) for comp in completions: print(f"🤖 {comp['generated_text']}") ``` Using the `AutoTokenizer` and `AutoModelForCausalLM`: ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Load model and the tokenizer tokenizer = AutoTokenizer.from_pretrained("nicholasKluge/TeenyTinyLlama-460m", revision='main') model = AutoModelForCausalLM.from_pretrained("nicholasKluge/TeenyTinyLlama-460m", revision='main') # Pass the model to your device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.eval() model.to(device) # Tokenize the inputs and pass them to the device inputs = tokenizer("Astronomia é a ciência", return_tensors="pt").to(device) # Generate some text completions = model.generate(**inputs, num_return_sequences=2, max_new_tokens=100) # Print the generated text for i, completion in enumerate(completions): print(f'🤖 {tokenizer.decode(completion)}') ``` ## Limitations Like almost all other language models trained on large text datasets scraped from the web, the TTL pair exhibited behavior that does not make them an out-of-the-box solution to many real-world applications, especially those requiring factual, reliable, nontoxic text generation. Our models are all subject to the following: - **Hallucinations:** This model can produce content that can be mistaken for truth but is, in fact, misleading or entirely false, i.e., hallucination. - **Biases and Toxicity:** This model inherits the social and historical stereotypes from the data used to train it. Given these biases, the model can produce toxic content, i.e., harmful, offensive, or detrimental to individuals, groups, or communities. - **Unreliable Code:** The model may produce incorrect code snippets and statements. These code generations should not be treated as suggestions or accurate solutions. - **Language Limitations:** The model is primarily designed to understand standard Brazilian Portuguese. Other languages might challenge its comprehension, leading to potential misinterpretations or errors in response. - **Repetition and Verbosity:** The model may get stuck on repetition loops (especially if the repetition penalty during generations is set to a meager value) or produce verbose responses unrelated to the prompt it was given. Hence, even though our models are released with a permissive license, we urge users to perform their risk analysis on these models if intending to use them for real-world applications and also have humans moderating the outputs of these models in applications where they will interact with an audience, guaranteeing users are always aware they are interacting with a language model. ## Evaluations During our training runs, both models showed consistent convergence. At no point did our evaluation curves show signs of overfitting or saturation. In the case of our 460m parameter model, we intentionally trained past the optimal point by approximately 75,000 steps to assess if there were any signs of saturation, but our evaluations consistently gave better results. We hypothesize that our models are under-trained but can improve if further trained to pass the Chinchilla optimal range. | Processed Tokens | Perplexity | Energy Consumption (kWh) | Emissions (KgCO2eq) | |------------------|------------|---------------------------|----------------------| | 8.1M | 20.49 | 9.40 | 3.34 | | 1.6B | 16.90 | 18.82 | 6.70 | | 2.4B | 15.43 | 28.59 | 10.16 | | 3.2B | 14.64 | 38.20 | 13.57 | | 4.0B | 14.08 | 48.04 | 17.07 | | 4.9B | 13.61 | 57.74 | 20.52 | | 5.7B | 13.25 | 67.32 | 23.92 | | 6.5B | 12.87 | 76.84 | 27.30 | | 7.3B | 12.57 | 86.40 | 30.70 | | 8.1B | 12.27 | 96.19 | 34.18 | | 9.0B | 11.96 | 106.06 | 37.70 | | 9.8B | 11.77 | 115.69 | 41.31 | ## Benchmarks Evaluations on benchmarks were performed using the [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) (by [EleutherAI](https://www.eleuther.ai/)). [Laiviet](https://github.com/laiviet/lm-evaluation-harness) translated the tasks from the LM-Evaluation-Harness we used. The results of models marked with an "*" were extracted from the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). | | **ARC** | **HellaSwag** | **MMLU** | **TruthfulQA** | **Average** | |------------------|-----------|---------------|-----------|----------------|-------------| | Pythia-410m | 24.83* | 41.29* | 25.99* | 40.95* | 33.26 | | **TTL-460m** | 29.40 | 33.00 | 28.55 | 41.10 | 33.01 | | Bloom-560m | 24.74* | 37.15* | 24.22* | 42.44* | 32.13 | | Xglm-564M | 25.56 | 34.64* | 25.18* | 42.53 | 31.97 | | OPT-350m | 23.55* | 36.73* | 26.02* | 40.83* | 31.78 | | **TTL-160m** | 26.15 | 29.29 | 28.11 | 41.12 | 31.16 | | Pythia-160m | 24.06* | 31.39* | 24.86* | 44.34* | 31.16 | | OPT-125m | 22.87* | 31.47* | 26.02* | 42.87* | 30.80 | | GPorTuguese-2 | 22.48 | 29.62 | 27.36 | 41.44 | 30.22 | | Gpt2-small | 21.48* | 31.60* | 25.79* | 40.65* | 29.97 | | Multilingual GPT | 23.81 | 26.37* | 25.17* | 39.62 | 28.73 | Evaluations on Brazilian Portuguese benchmarks were performed using a [Portuguese implementation of the EleutherAI LM Evaluation Harness](https://github.com/eduagarcia/lm-evaluation-harness-pt) (created by [Eduardo Garcia](https://github.com/eduagarcia/lm-evaluation-harness-pt)). | | **ASSIN2 RTE** | **ASSIN2 STS** | **BLUEX** | **ENEM** | **FAQUAD NLI** | **HateBR** | **OAB Exams** | **Average** | |----------------|----------------|----------------|-----------|----------|----------------|------------|---------------|-------------| | Qwen-1.8B | 64.83 | 19.53 | 26.15 | 30.23 | 43.97 | 33.33 | 27.20 | 35.03 | | TinyLlama-1.1B | 58.93 | 13.57 | 22.81 | 22.25 | 43.97 | 36.92 | 23.64 | 31.72 | | **TTL-460m** | 53.93 | 12.66 | 22.81 | 19.87 | 49.01 | 33.59 | 27.06 | 31.27 | | XGLM-564m | 49.61 | 22.91 | 19.61 | 19.38 | 43.97 | 33.99 | 23.42 | 30.41 | | Bloom-1b7 | 53.60 | 4.81 | 21.42 | 18.96 | 43.97 | 34.89 | 23.05 | 28.67 | | **TTL-160m** | 53.36 | 2.58 | 21.84 | 18.75 | 43.97 | 36.88 | 22.60 | 28.56 | | OPT-125m | 39.77 | 2.00 | 21.84 | 17.42 | 43.97 | 47.04 | 22.78 | 27.83 | | Pythia-160 | 33.33 | 12.81 | 16.13 | 16.66 | 50.36 | 41.09 | 22.82 | 27.60 | | OLMo-1b | 34.12 | 9.28 | 18.92 | 20.29 | 43.97 | 41.33 | 22.96 | 27.26 | | Bloom-560m | 33.33 | 8.48 | 18.92 | 19.03 | 43.97 | 37.07 | 23.05 | 26.26 | | Pythia-410m | 33.33 | 4.80 | 19.47 | 19.45 | 43.97 | 33.33 | 23.01 | 25.33 | | OPT-350m | 33.33 | 3.65 | 20.72 | 17.35 | 44.71 | 33.33 | 23.01 | 25.15 | | GPT-2 small | 33.26 | 0.00 | 10.43 | 11.20 | 43.52 | 33.68 | 13.12 | 20.74 | | GPorTuguese | 33.33 | 3.85 | 14.74 | 3.01 | 28.81 | 33.33 | 21.23 | 19.75 | | Samba-1.1B | 33.33 | 1.30 | 8.07 | 10.22 | 17.72 | 35.79 | 15.03 | 17.35 | ## Fine-Tuning Comparisons To further evaluate the downstream capabilities of our models, we decided to employ a basic fine-tuning procedure for our TTL pair on a subset of tasks from the Poeta benchmark. We apply the same procedure for comparison purposes on both [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) models, given that they are also LLM trained from scratch in Brazilian Portuguese and have a similar size range to our models. We used these comparisons to assess if our pre-training runs produced LLM capable of producing good results ("good" here means "close to BERTimbau") when utilized for downstream applications. | Models | IMDB | FaQuAD-NLI | HateBr | Assin2 | AgNews | Average | |-----------------|-----------|------------|-----------|-----------|-----------|---------| | BERTimbau-large | **93.58** | 92.26 | 91.57 | **88.97** | 94.11 | 92.10 | | BERTimbau-small | 92.22 | **93.07** | 91.28 | 87.45 | 94.19 | 91.64 | | **TTL-460m** | 91.64 | 91.18 | **92.28** | 86.43 | **94.42** | 91.19 | | **TTL-160m** | 91.14 | 90.00 | 90.71 | 85.78 | 94.05 | 90.34 | All the shown results are the higher accuracy scores achieved on the respective task test sets after fine-tuning the models on the training sets. All fine-tuning runs used the same hyperparameters, and the code implementation can be found in the [model cards](https://huggingface.co/nicholasKluge/TeenyTinyLlama-460m-HateBR) of our fine-tuned models. ## Cite as 🤗 ```latex @misc{correa24ttllama, title = {TeenyTinyLlama: open-source tiny language models trained in Brazilian Portuguese}, author = {Corr{\^e}a, Nicholas Kluge and Falk, Sophia and Fatimah, Shiza and Sen, Aniket and De Oliveira, Nythamar}, journal={arXiv preprint arXiv:2401.16640}, year={2024} } @misc{correa24ttllama, doi = {10.1016/j.mlwa.2024.100558}, url = {https://www.sciencedirect.com/science/article/pii/S2666827024000343}, title = {TeenyTinyLlama: open-source tiny language models trained in Brazilian Portuguese}, author = {Corr{\^e}a, Nicholas Kluge and Falk, Sophia and Fatimah, Shiza and Sen, Aniket and De Oliveira, Nythamar}, journal={Machine Learning With Applications}, publisher = {Springer}, year={2024} } ``` ## Funding This repository was built as part of the RAIES ([Rede de Inteligência Artificial Ética e Segura](https://www.raies.org/)) initiative, a project supported by FAPERGS - ([Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul](https://fapergs.rs.gov.br/inicial)), Brazil. ## License TeenyTinyLlama-460m is licensed under the Apache License, Version 2.0. See the [LICENSE](LICENSE) file for more details.
nicholasKluge/TeenyTinyLlama-460m-awq
nicholasKluge
2025-01-15T12:26:02Z
94
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "pt", "dataset:nicholasKluge/Pt-Corpus-Instruct", "arxiv:2401.16640", "base_model:nicholasKluge/TeenyTinyLlama-460m", "base_model:quantized:nicholasKluge/TeenyTinyLlama-460m", "license:apache-2.0", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "4-bit", "awq", "region:us" ]
text-generation
2024-01-21T22:52:00Z
--- license: apache-2.0 datasets: - nicholasKluge/Pt-Corpus-Instruct language: - pt metrics: - perplexity library_name: transformers pipeline_tag: text-generation tags: - text-generation-inference widget: - text: 'A PUCRS é uma universidade ' example_title: Exemplo - text: A muitos anos atrás, em uma galáxia muito distante, vivia uma raça de example_title: Exemplo - text: Em meio a um escândalo, a frente parlamentar pediu ao Senador Silva para example_title: Exemplo inference: parameters: repetition_penalty: 1.2 temperature: 0.1 top_k: 50 top_p: 1. max_new_tokens: 150 co2_eq_emissions: emissions: 41100 source: CodeCarbon training_type: pre-training geographical_location: Germany hardware_used: NVIDIA A100-SXM4-40GB base_model: - nicholasKluge/TeenyTinyLlama-460m --- # TeenyTinyLlama-460m-awq <img src="460m-llama.png" alt="A curious llama exploring a mushroom forest." height="200"> ## Model Summary **Note: This model is a quantized version of [TeenyTinyLlama-460m](https://huggingface.co/nicholasKluge/TeenyTinyLlama-460m). Quantization was performed using [AutoAWQ](https://github.com/casper-hansen/AutoAWQ), allowing this version to be 80% lighter, 20% faster, and with almost no performance loss. A GPU is required to run the AWQ-quantized models.** Large language models (LLMs) have significantly advanced natural language processing, but their progress has yet to be equal across languages. While most LLMs are trained in high-resource languages like English, multilingual models generally underperform monolingual ones. Additionally, aspects of their multilingual foundation sometimes restrict the byproducts they produce, like computational demands and licensing regimes. Hence, we developed the _TeenyTinyLlama_ pair: two compact models for Brazilian Portuguese text generation. Read our article [here](https://www.sciencedirect.com/science/article/pii/S2666827024000343). ## Details - **Architecture:** a Transformer-based model pre-trained via causal language modeling - **Size:** 468,239,360 parameters - **Context length:** 2048 tokens - **Dataset:** [Pt-Corpus Instruct](https://huggingface.co/datasets/nicholasKluge/Pt-Corpus-Instruct) (6.2B tokens) - **Language:** Portuguese - **Number of steps:** 1,200,000 - **GPU:** 1 NVIDIA A100-SXM4-40GB - **Training time**: ~ 280 hours - **Emissions:** 41.1 KgCO2 (Germany) - **Total energy consumption:** 115.69 kWh - **Quantization Configuration:** - `bits`: 4 - `group_size`: 128 - `quant_method`: "awq" - `version`: "gemm" - `zero_point`: True This repository has the [source code](https://github.com/Nkluge-correa/TeenyTinyLlama) used to train this model. The main libraries used are: - [Transformers](https://github.com/huggingface/transformers) - [PyTorch](https://github.com/pytorch/pytorch) - [Datasets](https://github.com/huggingface/datasets) - [Tokenizers](https://github.com/huggingface/tokenizers) - [Sentencepiece](https://github.com/google/sentencepiece) - [Accelerate](https://github.com/huggingface/accelerate) - [FlashAttention](https://github.com/Dao-AILab/flash-attention) - [Codecarbon](https://github.com/mlco2/codecarbon) - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) ## Intended Uses The primary intended use of TeenyTinyLlama is to research the challenges related to developing language models for low-resource languages. Checkpoints saved during training are intended to provide a controlled setting for performing scientific experiments. You may also further fine-tune and adapt TeenyTinyLlama for deployment, as long as your use is following the Apache 2.0 license. If you decide to use pre-trained TeenyTinyLlama as a basis for your fine-tuned model, please conduct your own risk and bias assessment. ## Out-of-scope Use TeenyTinyLlama is not intended for deployment. It is not a product and should not be used for human-facing interactions. TeenyTinyLlama models are Brazilian Portuguese language only and are not suitable for translation or generating text in other languages. TeenyTinyLlama has not been fine-tuned for downstream contexts in which language models are commonly deployed. ## Basic usage **Note: Using quantized models required the installation of `autoawq==0.1.7`. A GPU is required to run the AWQ-quantized models.** Using the `pipeline`: ```python !pip install autoawq==0.1.7 -q from transformers import pipeline generator = pipeline("text-generation", model="nicholasKluge/TeenyTinyLlama-460m-awq") completions = generator("Astronomia é a ciência", num_return_sequences=2, max_new_tokens=100) for comp in completions: print(f"🤖 {comp['generated_text']}") ``` Using the `AutoTokenizer` and `AutoModelForCausalLM`: ```python !pip install autoawq==0.1.7 -q from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Load model and the tokenizer tokenizer = AutoTokenizer.from_pretrained("nicholasKluge/TeenyTinyLlama-460m-awq", revision='main') model = AutoModelForCausalLM.from_pretrained("nicholasKluge/TeenyTinyLlama-460m-awq", revision='main') # Pass the model to your device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.eval() model.to(device) # Tokenize the inputs and pass them to the device inputs = tokenizer("Astronomia é a ciência", return_tensors="pt").to(device) # Generate some text completions = model.generate(**inputs, num_return_sequences=2, max_new_tokens=100) # Print the generated text for i, completion in enumerate(completions): print(f'🤖 {tokenizer.decode(completion)}') ``` ## Limitations Like almost all other language models trained on large text datasets scraped from the web, the TTL pair exhibited behavior that does not make them an out-of-the-box solution to many real-world applications, especially those requiring factual, reliable, nontoxic text generation. Our models are all subject to the following: - **Hallucinations:** This model can produce content that can be mistaken for truth but is, in fact, misleading or entirely false, i.e., hallucination. - **Biases and Toxicity:** This model inherits the social and historical stereotypes from the data used to train it. Given these biases, the model can produce toxic content, i.e., harmful, offensive, or detrimental to individuals, groups, or communities. - **Unreliable Code:** The model may produce incorrect code snippets and statements. These code generations should not be treated as suggestions or accurate solutions. - **Language Limitations:** The model is primarily designed to understand standard Brazilian Portuguese. Other languages might challenge its comprehension, leading to potential misinterpretations or errors in response. - **Repetition and Verbosity:** The model may get stuck on repetition loops (especially if the repetition penalty during generations is set to a meager value) or produce verbose responses unrelated to the prompt it was given. Hence, even though our models are released with a permissive license, we urge users to perform their risk analysis on these models if intending to use them for real-world applications and also have humans moderating the outputs of these models in applications where they will interact with an audience, guaranteeing users are always aware they are interacting with a language model. ## Evaluations During our training runs, both models showed consistent convergence. At no point did our evaluation curves show signs of overfitting or saturation. In the case of our 460m parameter model, we intentionally trained past the optimal point by approximately 75,000 steps to assess if there were any signs of saturation, but our evaluations consistently gave better results. We hypothesize that our models are under-trained but can improve if further trained to pass the Chinchilla optimal range. | Processed Tokens | Perplexity | Energy Consumption (kWh) | Emissions (KgCO2eq) | |------------------|------------|---------------------------|----------------------| | 8.1M | 20.49 | 9.40 | 3.34 | | 1.6B | 16.90 | 18.82 | 6.70 | | 2.4B | 15.43 | 28.59 | 10.16 | | 3.2B | 14.64 | 38.20 | 13.57 | | 4.0B | 14.08 | 48.04 | 17.07 | | 4.9B | 13.61 | 57.74 | 20.52 | | 5.7B | 13.25 | 67.32 | 23.92 | | 6.5B | 12.87 | 76.84 | 27.30 | | 7.3B | 12.57 | 86.40 | 30.70 | | 8.1B | 12.27 | 96.19 | 34.18 | | 9.0B | 11.96 | 106.06 | 37.70 | | 9.8B | 11.77 | 115.69 | 41.31 | ## Benchmarks Evaluations on benchmarks were performed using the [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) (by [EleutherAI](https://www.eleuther.ai/)). [Laiviet](https://github.com/laiviet/lm-evaluation-harness) translated the tasks from the LM-Evaluation-Harness we used. The results of models marked with an "*" were extracted from the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). | | **ARC** | **HellaSwag** | **MMLU** | **TruthfulQA** | **Average** | |------------------|-----------|---------------|-----------|----------------|-------------| | Pythia-410m | 24.83* | 41.29* | 25.99* | 40.95* | 33.26 | | **TTL-460m** | 29.40 | 33.00 | 28.55 | 41.10 | 33.01 | | Bloom-560m | 24.74* | 37.15* | 24.22* | 42.44* | 32.13 | | Xglm-564M | 25.56 | 34.64* | 25.18* | 42.53 | 31.97 | | OPT-350m | 23.55* | 36.73* | 26.02* | 40.83* | 31.78 | | **TTL-160m** | 26.15 | 29.29 | 28.11 | 41.12 | 31.16 | | Pythia-160m | 24.06* | 31.39* | 24.86* | 44.34* | 31.16 | | OPT-125m | 22.87* | 31.47* | 26.02* | 42.87* | 30.80 | | GPorTuguese-2 | 22.48 | 29.62 | 27.36 | 41.44 | 30.22 | | Gpt2-small | 21.48* | 31.60* | 25.79* | 40.65* | 29.97 | | Multilingual GPT | 23.81 | 26.37* | 25.17* | 39.62 | 28.73 | Evaluations on Brazilian Portuguese benchmarks were performed using a [Portuguese implementation of the EleutherAI LM Evaluation Harness](https://github.com/eduagarcia/lm-evaluation-harness-pt) (created by [Eduardo Garcia](https://github.com/eduagarcia/lm-evaluation-harness-pt)). | | **ASSIN2 RTE** | **ASSIN2 STS** | **BLUEX** | **ENEM** | **FAQUAD NLI** | **HateBR** | **OAB Exams** | **Average** | |----------------|----------------|----------------|-----------|----------|----------------|------------|---------------|-------------| | Qwen-1.8B | 64.83 | 19.53 | 26.15 | 30.23 | 43.97 | 33.33 | 27.20 | 35.03 | | TinyLlama-1.1B | 58.93 | 13.57 | 22.81 | 22.25 | 43.97 | 36.92 | 23.64 | 31.72 | | **TTL-460m** | 53.93 | 12.66 | 22.81 | 19.87 | 49.01 | 33.59 | 27.06 | 31.27 | | XGLM-564m | 49.61 | 22.91 | 19.61 | 19.38 | 43.97 | 33.99 | 23.42 | 30.41 | | Bloom-1b7 | 53.60 | 4.81 | 21.42 | 18.96 | 43.97 | 34.89 | 23.05 | 28.67 | | **TTL-160m** | 53.36 | 2.58 | 21.84 | 18.75 | 43.97 | 36.88 | 22.60 | 28.56 | | OPT-125m | 39.77 | 2.00 | 21.84 | 17.42 | 43.97 | 47.04 | 22.78 | 27.83 | | Pythia-160 | 33.33 | 12.81 | 16.13 | 16.66 | 50.36 | 41.09 | 22.82 | 27.60 | | OLMo-1b | 34.12 | 9.28 | 18.92 | 20.29 | 43.97 | 41.33 | 22.96 | 27.26 | | Bloom-560m | 33.33 | 8.48 | 18.92 | 19.03 | 43.97 | 37.07 | 23.05 | 26.26 | | Pythia-410m | 33.33 | 4.80 | 19.47 | 19.45 | 43.97 | 33.33 | 23.01 | 25.33 | | OPT-350m | 33.33 | 3.65 | 20.72 | 17.35 | 44.71 | 33.33 | 23.01 | 25.15 | | GPT-2 small | 33.26 | 0.00 | 10.43 | 11.20 | 43.52 | 33.68 | 13.12 | 20.74 | | GPorTuguese | 33.33 | 3.85 | 14.74 | 3.01 | 28.81 | 33.33 | 21.23 | 19.75 | | Samba-1.1B | 33.33 | 1.30 | 8.07 | 10.22 | 17.72 | 35.79 | 15.03 | 17.35 | ## Fine-Tuning Comparisons To further evaluate the downstream capabilities of our models, we decided to employ a basic fine-tuning procedure for our TTL pair on a subset of tasks from the Poeta benchmark. We apply the same procedure for comparison purposes on both [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) models, given that they are also LLM trained from scratch in Brazilian Portuguese and have a similar size range to our models. We used these comparisons to assess if our pre-training runs produced LLM capable of producing good results ("good" here means "close to BERTimbau") when utilized for downstream applications. | Models | IMDB | FaQuAD-NLI | HateBr | Assin2 | AgNews | Average | |-----------------|-----------|------------|-----------|-----------|-----------|---------| | BERTimbau-large | **93.58** | 92.26 | 91.57 | **88.97** | 94.11 | 92.10 | | BERTimbau-small | 92.22 | **93.07** | 91.28 | 87.45 | 94.19 | 91.64 | | **TTL-460m** | 91.64 | 91.18 | **92.28** | 86.43 | **94.42** | 91.19 | | **TTL-160m** | 91.14 | 90.00 | 90.71 | 85.78 | 94.05 | 90.34 | All the shown results are the higher accuracy scores achieved on the respective task test sets after fine-tuning the models on the training sets. All fine-tuning runs used the same hyperparameters, and the code implementation can be found in the [model cards](https://huggingface.co/nicholasKluge/TeenyTinyLlama-460m-HateBR) of our fine-tuned models. ## Cite as 🤗 ```latex @misc{correa24ttllama, title = {TeenyTinyLlama: open-source tiny language models trained in Brazilian Portuguese}, author = {Corr{\^e}a, Nicholas Kluge and Falk, Sophia and Fatimah, Shiza and Sen, Aniket and De Oliveira, Nythamar}, journal={arXiv preprint arXiv:2401.16640}, year={2024} } @misc{correa24ttllama, doi = {10.1016/j.mlwa.2024.100558}, url = {https://www.sciencedirect.com/science/article/pii/S2666827024000343}, title = {TeenyTinyLlama: open-source tiny language models trained in Brazilian Portuguese}, author = {Corr{\^e}a, Nicholas Kluge and Falk, Sophia and Fatimah, Shiza and Sen, Aniket and De Oliveira, Nythamar}, journal={Machine Learning With Applications}, publisher = {Springer}, year={2024} } ``` ## Funding This repository was built as part of the RAIES ([Rede de Inteligência Artificial Ética e Segura](https://www.raies.org/)) initiative, a project supported by FAPERGS - ([Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul](https://fapergs.rs.gov.br/inicial)), Brazil. ## License TeenyTinyLlama-460m is licensed under the Apache License, Version 2.0. See the [LICENSE](LICENSE) file for more details.
thakkkkkk/9b151d29-c5d3-4386-a929-c561ff09d717
thakkkkkk
2025-01-15T12:23:49Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-1.7B", "base_model:adapter:unsloth/SmolLM2-1.7B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-15T12:10:33Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-1.7B tags: - axolotl - generated_from_trainer model-index: - name: 9b151d29-c5d3-4386-a929-c561ff09d717 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM2-1.7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2f52f5d4dd7c3b59_train_data.json ds_type: json format: custom path: /workspace/input_data/2f52f5d4dd7c3b59_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: thakkkkkk/9b151d29-c5d3-4386-a929-c561ff09d717 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/2f52f5d4dd7c3b59_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0ad070a1-afeb-4188-a303-62e6e389155d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 0ad070a1-afeb-4188-a303-62e6e389155d warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 9b151d29-c5d3-4386-a929-c561ff09d717 This model is a fine-tuned version of [unsloth/SmolLM2-1.7B](https://huggingface.co/unsloth/SmolLM2-1.7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9968 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.0093 | 0.3751 | 200 | 1.9968 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nbninh/172c7694-a669-4533-8464-b01b6d31a288
nbninh
2025-01-15T12:23:24Z
5
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-0.5B", "base_model:adapter:unsloth/Qwen2-0.5B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-15T12:13:14Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-0.5B tags: - axolotl - generated_from_trainer model-index: - name: 172c7694-a669-4533-8464-b01b6d31a288 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-0.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - a4928fa9f76b3319_train_data.json ds_type: json format: custom path: /workspace/input_data/a4928fa9f76b3319_train_data.json type: field_instruction: problem field_output: solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nbninh/172c7694-a669-4533-8464-b01b6d31a288 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/a4928fa9f76b3319_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: da2c4866-8529-49e5-8b28-ddb4da385107 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: da2c4866-8529-49e5-8b28-ddb4da385107 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 172c7694-a669-4533-8464-b01b6d31a288 This model is a fine-tuned version of [unsloth/Qwen2-0.5B](https://huggingface.co/unsloth/Qwen2-0.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6855 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.8131 | 0.2159 | 200 | 0.6855 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Keltezaa/avril-lavigne-2000s-flux-lora
Keltezaa
2025-01-15T12:22:19Z
702
2
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "migrated", "model", "woman", "1990s", "celebrity", "realistic", "hot", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-15T12:22:17Z
--- license: other license_name: bespoke-lora-trained-license license_link: https://multimodal.art/civitai-licenses?allowNoCredit=True&allowCommercialUse=Image&allowDerivatives=True&allowDifferentLicense=True tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora - migrated - model - woman - 1990s - celebrity - realistic - hot base_model: black-forest-labs/FLUX.1-dev instance_prompt: avrilflx widget: - text: 'portrait inspired by Peter Lindbergh''s photographic style of avrilflx, a blonde woman with black eyeliner looking directly into the camera with an intimate and deep expression.' output: url: >- 51623099.jpeg - text: 'Create a hyper-realistic portrait of a regal woman inspired by the "Game of Thrones" aesthetic, but dressed in battle-ready attire. She stands in a windswept mountain pass, her armor gleaming under the muted sunlight. Her outfit combines elegance with practicality: a fitted leather cuirass adorned with intricate carvings of wolves and stars, layered over chainmail. A dark cloak with a fur-trimmed collar billows behind her, hinting at her noble lineage. Her blonde hair is tied back in a loose braid, with small strands framing her strong, determined face. She carries a finely crafted longsword at her side, its hilt encrusted with subtle gemstones. Her piercing gaze reflects both beauty and unyielding strength. The scene is detailed with rugged terrain, distant snow-capped peaks, and the faint howl of the wind, evoking an air of mystery and power' output: url: >- 51623100.jpeg - text: 'High quality realistic beauty shot of avrilflx. A close-up shot of a woman. She is wearing a white blouse. Her messy blonde hair is styled like an emo girl. The backdrop is a light gray. She is giving a beautiful smile showing her white teeth. She is wearing black eyeliner.' output: url: >- 51625044.jpeg - text: 'An ethereal depiction of an ancient goddess or princess, inspired by classical mythology. The woman has delicate, noble features and is adorned in a flowing, white Grecian-style gown with gold accents along the neckline. Her long, golden hair is styled in loose waves and intricate braids, cascading over her shoulder. A sheer, patterned veil drapes over her head, framing her serene expression and bright, piercing blue eyes. She stands in soft, natural light, with blurred, sandy stone structures in the background, evoking the grandeur of an ancient palace or temple. The atmosphere radiates grace, poise, and a sense of timeless beauty.' output: url: >- 51623101.jpeg - text: 'An intimate close-up of a woman captures her face in detail, highlighting every feature with soft, enveloping light. The camera, a Sony A7III with a 50mm f/1.2 lens, focuses on her seductive and daring gaze, full of intensity and mystery. The black eyeliner creates a perfect line that enhances her captivating look. Her lips are slightly parted, with a subtle shine that contrasts with her pale, smooth skin. Her platinum hair falls in a messy but stylized manner over her forehead, framing her face as if it were a canvas of contained energy. Her background is almost non-existent, blurred into soft shadows that allow all the focus to be on her. The image conveys a sense of strength, mystery and a subtle but powerful sensuality, reflecting her bold character and enigmatic presence.,Midjourney v6' output: url: >- 51623107.jpeg - text: 'High quality realistic beauty shot of avrilflx. A close-up shot of a woman. She is wearing a white blouse. Her messy blonde hair is styled like an emo girl. The backdrop is a light gray. She is giving a beautiful smile. She is wearing black eyeliner.' output: url: >- 51624712.jpeg - text: 'A cyborg blonde woman, in the center of a futuristic background, bathed in soft, even light. Her proportional and detailed face, with piercing eyes, gazes directly at the viewer, exuding an air of mastery. the day time lighting accentuates her striking features. The overall effect is a true masterpiece, boasting best quality visuals that draw the viewer in.' output: url: >- 51623102.jpeg - text: 'black and white portrait inspired by Peter Lindbergh''s photographic style of avrilflx, a blonde woman with black eyeliner looking directly into the camera with an intimate and deep expression.' output: url: >- 51623103.jpeg - text: 'An intimate close-up of a woman captures her face in detail, highlighting every feature with soft, enveloping light. The camera, a Sony A7III with a 50mm f/1.2 lens, focuses on her seductive and daring gaze, full of intensity and mystery. The black eyeliner creates a perfect line that enhances her captivating look. Her lips are slightly parted, with a subtle shine that contrasts with her pale, smooth skin. Her platinum hair falls in a messy but stylized manner over her forehead, framing her face as if it were a canvas of contained energy. Her background is almost non-existent, blurred into soft shadows that allow all the focus to be on her. The image conveys a sense of strength, mystery and a subtle but powerful sensuality, reflecting her bold character and enigmatic presence.,Midjourney v6' output: url: >- 51623105.jpeg - text: 'A modern portrait of a woman with blonde emo hair styled to frame her face. She has a serene expression, with piercing eyes with black eyeliner and a flawless, natural makeup look that enhances her features. She wears a simple white sweater, exuding elegance and sophistication. The background is a clean, gradient blue, providing a crisp contrast to her light complexion and understated gold earrings. The lighting is soft and diffused, creating a warm and inviting atmosphere while highlighting her skin''s natural texture' output: url: >- 51624437.jpeg --- # Avril Lavigne - 2000s (Flux LoRa) <Gallery /> ([CivitAI](https://civitai.com/models/)) ## Model description <p>Helps create HD images of singer Avril Lavigne from 2000s.</p><p></p><p>Use "Blonde hair" and "black eyeliner" in prompt to replicate her style from 2000s.</p> ## Trigger words You should use `avrilflx` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Keltezaa/avril-lavigne-2000s-flux-lora/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch device = "cuda" if torch.cuda.is_available() else "cpu" pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.bfloat16).to(device) pipeline.load_lora_weights('Keltezaa/avril-lavigne-2000s-flux-lora', weight_name='avrilflx_flux-lora-000002.safetensors') image = pipeline('A modern portrait of a woman with blonde emo hair styled to frame her face. She has a serene expression, with piercing eyes with black eyeliner and a flawless, natural makeup look that enhances her features. She wears a simple white sweater, exuding elegance and sophistication. The background is a clean, gradient blue, providing a crisp contrast to her light complexion and understated gold earrings. The lighting is soft and diffused, creating a warm and inviting atmosphere while highlighting her skin's natural texture').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
adammandic87/b80b8909-704b-42ca-a65f-3ee8d294eb46
adammandic87
2025-01-15T12:21:38Z
5
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:oopsung/llama2-7b-n-ox-test-v1", "base_model:adapter:oopsung/llama2-7b-n-ox-test-v1", "region:us" ]
null
2025-01-15T12:20:54Z
--- library_name: peft base_model: oopsung/llama2-7b-n-ox-test-v1 tags: - axolotl - generated_from_trainer model-index: - name: b80b8909-704b-42ca-a65f-3ee8d294eb46 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: oopsung/llama2-7b-n-ox-test-v1 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c1fdfb3f4e449665_train_data.json ds_type: json format: custom path: /workspace/input_data/c1fdfb3f4e449665_train_data.json type: field_instruction: question field_output: best_answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: adammandic87/b80b8909-704b-42ca-a65f-3ee8d294eb46 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/c1fdfb3f4e449665_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 212c681b-11df-434d-a645-a52b9b33936f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 212c681b-11df-434d-a645-a52b9b33936f warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # b80b8909-704b-42ca-a65f-3ee8d294eb46 This model is a fine-tuned version of [oopsung/llama2-7b-n-ox-test-v1](https://huggingface.co/oopsung/llama2-7b-n-ox-test-v1) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0132 | 1 | nan | | 0.0 | 0.0397 | 3 | nan | | 0.0 | 0.0795 | 6 | nan | | 0.0 | 0.1192 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Keltezaa/kristen-bell
Keltezaa
2025-01-15T12:20:17Z
99
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "migrated", "woman", "actor", "celebrity", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-15T12:20:15Z
--- license: other license_name: bespoke-lora-trained-license license_link: https://multimodal.art/civitai-licenses?allowNoCredit=True&allowCommercialUse=Image&allowDerivatives=True&allowDifferentLicense=True tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora - migrated - woman - actor - celebrity base_model: black-forest-labs/FLUX.1-dev instance_prompt: kristen widget: - text: ' ' output: url: >- 50568466.jpeg - text: ' ' output: url: >- 50568509.jpeg - text: ' ' output: url: >- 50568521.jpeg - text: ' ' output: url: >- 50568561.jpeg - text: ' ' output: url: >- 50568661.jpeg - text: ' ' output: url: >- 50568692.jpeg - text: ' ' output: url: >- 50568716.jpeg - text: ' ' output: url: >- 50568740.jpeg - text: ' ' output: url: >- 50568807.jpeg --- # kristen bell <Gallery /> ([CivitAI](https://civitai.com/models/)) ## Model description <p>Kristen Anne Bell (born July 18, 1980) is an American actress.</p><p></p><p></p><p></p><p></p> ## Trigger words You should use `kristen` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Keltezaa/kristen-bell/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch device = "cuda" if torch.cuda.is_available() else "cpu" pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.bfloat16).to(device) pipeline.load_lora_weights('Keltezaa/kristen-bell', weight_name='kristen_bell_dev_f1_k.safetensors') image = pipeline('`kristen`').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
Xinging/llama2-7b_sft_0.5_ratio_alpaca_gpt4_proj_by_mmlu_ntrain_1531_template
Xinging
2025-01-15T12:20:15Z
14
0
transformers
[ "transformers", "tensorboard", "safetensors", "llama", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:meta-llama/Llama-2-7b-hf", "base_model:finetune:meta-llama/Llama-2-7b-hf", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-15T09:56:59Z
--- library_name: transformers license: other base_model: meta-llama/Llama-2-7b-hf tags: - llama-factory - full - generated_from_trainer model-index: - name: llama2-7b_sft_0.5_ratio_alpaca_gpt4_proj_by_mmlu_ntrain_1531 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama2-7b_sft_0.5_ratio_alpaca_gpt4_proj_by_mmlu_ntrain_1531 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the 0.5_ratio_alpaca_gpt4_proj_by_mmlu_ntrain_1531 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.46.1 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.20.3
nhung01/6ffe8f65-c228-4a61-8aea-c925877d5d33
nhung01
2025-01-15T12:20:11Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-1.7B", "base_model:adapter:unsloth/SmolLM2-1.7B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-15T12:10:24Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-1.7B tags: - axolotl - generated_from_trainer model-index: - name: 6ffe8f65-c228-4a61-8aea-c925877d5d33 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM2-1.7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2f52f5d4dd7c3b59_train_data.json ds_type: json format: custom path: /workspace/input_data/2f52f5d4dd7c3b59_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhung01/6ffe8f65-c228-4a61-8aea-c925877d5d33 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/2f52f5d4dd7c3b59_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0ad070a1-afeb-4188-a303-62e6e389155d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 0ad070a1-afeb-4188-a303-62e6e389155d warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 6ffe8f65-c228-4a61-8aea-c925877d5d33 This model is a fine-tuned version of [unsloth/SmolLM2-1.7B](https://huggingface.co/unsloth/SmolLM2-1.7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0691 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.953 | 0.1875 | 200 | 2.0691 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
sudo7/aragpt2-fine-tuned-lyrics
sudo7
2025-01-15T12:20:08Z
6
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-15T10:22:33Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Keltezaa/rachael-leigh-cook-2000s-flux
Keltezaa
2025-01-15T12:19:59Z
37
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "migrated", "photorealistic", "woman", "actress", "celebrity", "girls", "realistic", "celebrity,", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-15T12:19:56Z
--- license: other license_name: bespoke-lora-trained-license license_link: https://multimodal.art/civitai-licenses?allowNoCredit=True&allowCommercialUse=RentCivit&allowDerivatives=False&allowDifferentLicense=True tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora - migrated - photorealistic - woman - actress - celebrity - girls - realistic - celebrity, base_model: black-forest-labs/FLUX.1-dev instance_prompt: ohwx widget: - text: 'Breathtaking medium shot photography of ohwx, (:1.3) , Space station,style by Eileen Gray,soft lighting, upper body shot, collarbone, smile, (upper body framing:1.3), bare shoulder, detailed texture quality wool top, simple black choker, sensual lips, eyelashes, (entirely visible beautiful hairstyle:1.2), fine hair detail, perfect eyes, iris pattern, eyes makeup, (perfectly sharp:1.3), (head to shoulders composition:1.4), background is a blurry flower field, realistic textures, (deep focus:1.1), negative space around subject, 8k uhd, dslr, ultra high quality image, film grain, Fujifilm XT3' parameters: negative_prompt: RachaelLeighCook_flux_lora_v1_Weight-1.1 output: url: >- 50456442.jpeg - text: 'Breathtaking over the shoulder shot photography of ohwx looking at viewer, imperfections, necklace, looking over shoulders, eyelashes, fine hair detail, entire hairstyle visible, perfect eyes with iris pattern, sensual lips, nose, (perfectly sharp:1.3), realistic textures, (deep focus, focus on background:1.5), 8k uhd, dslr, ultra high quality image, film grain, Fujifilm XT3' parameters: negative_prompt: RachaelLeighCook_flux_lora_v1_Weight-1.1 output: url: >- 50456498.jpeg - text: 'Breathtaking over the shoulder shot photography of ohwx looking at viewer, high collar white blouse, imperfections, necklace with ornament falling down her back, looking over shoulders, eyelashes, fine hair detail, entire hairstyle visible, perfect eyes with iris pattern, sensual lips, nose, (perfectly sharp:1.3), realistic textures, (deep focus on subject, blurred background:1.4), 8k uhd, dslr, ultra high quality image, film grain, Fujifilm XT3' parameters: negative_prompt: RachaelLeighCook_flux_lora_v1_Weight-1.1 output: url: >- 50456550.jpeg - text: 'Breathtaking medium shot photography of ohwx, collarbone, smile, (upper body framing:1.3), bare shoulder, beautiful fashion top, necklace, sensual lips, eyelashes, (entirely visible beautiful hairstyle:1.2), fine hair detail, perfect eyes, iris pattern, eyes makeup, (perfectly sharp:1.3), (head to shoulders composition:1.4), background is a blurry flower field, realistic textures, (deep focus:1.1), negative space around subject, 8k uhd, dslr, ultra high quality image, film grain, Fujifilm XT3' parameters: negative_prompt: RachaelLeighCook_flux_lora_v1_Weight-1.1 output: url: >- 50456580.jpeg - text: 'Breathtaking medium shot photography of ohwx, (Mesh long-sleeve top with rhinestone embellishments and cuffs:1.3) , niflheim icy realm in norse mythology,style by John Piper,soft lighting, upper body shot, collarbone, smile, (upper body framing:1.3), bare shoulder, detailed texture quality wool top, simple black choker, sensual lips, eyelashes, (entirely visible beautiful hairstyle:1.2), fine hair detail, perfect eyes, iris pattern, eyes makeup, (perfectly sharp:1.3), (head to shoulders composition:1.4), realistic textures, (deep focus:1.1), negative space around subject, 8k uhd, dslr, ultra high quality image, film grain, Fujifilm XT3' parameters: negative_prompt: RachaelLeighCook_flux_lora_v1_Weight-1.1 output: url: >- 50456751.jpeg - text: 'Breathtaking medium shot photography of ohwx, (Halter neck top with open back and floral embroidery:1.3) , mystical Vale of Avalon,style by Miwa Komatsu,soft lighting, upper body shot, collarbone, smile, (upper body framing:1.3), bare shoulder, detailed texture quality wool top, simple black choker, sensual lips, eyelashes, (entirely visible beautiful hairstyle:1.2), fine hair detail, perfect eyes, iris pattern, eyes makeup, (perfectly sharp:1.3), (head to shoulders composition:1.4), realistic textures, (deep focus:1.1), negative space around subject, 8k uhd, dslr, ultra high quality image, film grain, Fujifilm XT3' parameters: negative_prompt: RachaelLeighCook_flux_lora_v1_Weight-1.1 output: url: >- 50456773.jpeg --- # 👑 Rachael Leigh Cook (2000s)(Flux) 🎬 <Gallery /> ([CivitAI](https://civitai.com/models/)) ## Model description <h1 id="***-if-you-love-it-like-it!-***-j86xw6qjv">👍 <span style="color:rgb(64, 192, 87)">***</span> <strong><em><span style="color:rgb(34, 139, 230)">If you love it, like it!</span></em></strong> <span style="color:rgb(64, 192, 87)">***</span>👍</h1><p><em>workflow: </em><a target="_blank" rel="ugc" href="https://civitai.com/models/1088678"><em>https://civitai.com/models/1088678</em></a></p><h1 id="rachael-leigh-cook-(2000s)-rk431afk5">👑 <span style="color:#7950f2">Rachael Leigh Cook</span><span style="color:rgb(121, 80, 242)"> (</span><span style="color:#228be6">2000s</span><span style="color:rgb(121, 80, 242)">)</span>🎬</h1><p><strong>About my celebrities loras</strong><br />90% of the dataset used to build my loras only use head images. That really help the blend with other lora or model as there is no hands, feet, that may or will interfere in the final image render. When you get distorted hands with a person lora, it's because there is info on hands in the dataset used to train the lora, but that will not happen with my loras.</p><p>I've trained on Flux.1 Dev so other merged or trained checkpoint may not work well with my loras.</p><p>The drawback side of that is that the body may not be reflecting the reality. It may not be a drawback tho.</p><p></p><p>This is a lora for Flux.1 Dev. Work with other model but you must drop some simple bloc (good start 19-32).</p><p>Trained with ai-toolkit, so merging it is not easy.</p><p></p><p><strong>To get the best result</strong></p><p><em>Guidance: </em><strong><em>2.2-3</em></strong></p><p><em>Steps (dev): </em><strong><em>30-40</em></strong></p><p><em>daemon detailer (lying sigma sampler): factor: -0.02, start 0.06, end 0.75</em></p><p><em>Resolution: </em><strong><em>Upscale the latent by 1.25 or 1.5</em></strong><em> you'll get awsome result. (take longer time but worth it)</em></p><p><em>Trigger word is (may work better in certain context): </em><strong><em>ohwx</em></strong></p><p></p><p>Enjoy!</p> ## Trigger words You should use `ohwx` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Keltezaa/rachael-leigh-cook-2000s-flux/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch device = "cuda" if torch.cuda.is_available() else "cpu" pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.bfloat16).to(device) pipeline.load_lora_weights('Keltezaa/rachael-leigh-cook-2000s-flux', weight_name='RachaelLeighCook_flux_lora_v1.safetensors') image = pipeline('Breathtaking medium shot photography of ohwx, (Halter neck top with open back and floral embroidery:1.3) , mystical Vale of Avalon,style by Miwa Komatsu,soft lighting, upper body shot, collarbone, smile, (upper body framing:1.3), bare shoulder, detailed texture quality wool top, simple black choker, sensual lips, eyelashes, (entirely visible beautiful hairstyle:1.2), fine hair detail, perfect eyes, iris pattern, eyes makeup, (perfectly sharp:1.3), (head to shoulders composition:1.4), realistic textures, (deep focus:1.1), negative space around subject, 8k uhd, dslr, ultra high quality image, film grain, Fujifilm XT3').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
glif-loradex-trainer/scrillax_Sheesh_Bot
glif-loradex-trainer
2025-01-15T12:19:51Z
312
1
diffusers
[ "diffusers", "text-to-image", "template:sd-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:finetune:black-forest-labs/FLUX.1-dev", "license:other", "region:us", "flux", "lora", "base_model:adapter:black-forest-labs/FLUX.1-dev" ]
text-to-image
2025-01-15T12:19:30Z
--- tags: - diffusers - text-to-image - template:sd-lora - base_model:black-forest-labs/FLUX.1-dev - base_model:finetune:black-forest-labs/FLUX.1-dev - license:other - region:us - flux - lora widget: - output: url: samples/1736943509591__000001500_0.jpg text: wounded centaur, mythical creature Sheesh - output: url: samples/1736943534454__000001500_1.jpg text: ruins of athens, snake Sheesh - output: url: samples/1736943559336__000001500_2.jpg text: Yeti Sheesh base_model: black-forest-labs/FLUX.1-dev trigger: "Sheesh" instance_prompt: "Sheesh" license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # Sheesh_Bot Model trained with [AI Toolkit by Ostris](https://github.com/ostris/ai-toolkit) under the [Glif Loradex program](https://huggingface.co/glif-loradex-trainer) by [Glif](https://glif.app) user `scrillax`. <Gallery /> ## Trigger words You should use `Sheesh` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/glif-loradex-trainer/scrillax_Sheesh_Bot/tree/main) them in the Files & versions tab. ## License This model is licensed under the [flux-1-dev-non-commercial-license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md).
Keltezaa/olivia-wilde-flux
Keltezaa
2025-01-15T12:19:48Z
67
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "migrated", "photorealistic", "woman", "actress", "celebrity", "girls", "realistic", "celebrity,", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-15T12:19:45Z
--- license: other license_name: bespoke-lora-trained-license license_link: https://multimodal.art/civitai-licenses?allowNoCredit=True&allowCommercialUse=RentCivit&allowDerivatives=False&allowDifferentLicense=True tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora - migrated - photorealistic - woman - actress - celebrity - girls - realistic - celebrity, base_model: black-forest-labs/FLUX.1-dev instance_prompt: ohwx widget: - text: 'Breathtaking over the shoulder shot photography of ohwx looking at viewer, imperfections, necklace, looking over shoulders, eyelashes, fine hair detail, entire hairstyle visible, perfect eyes with iris pattern, sensual lips, nose, (perfectly sharp:1.3), realistic textures, (deep focus, focus on background:1.5), 8k uhd, dslr, ultra high quality image, film grain, Fujifilm XT3' parameters: negative_prompt: OliviaWilde_flux_lora_v1_Weight-1.1 output: url: >- 50265848.jpeg - text: 'Breathtaking medium shot photography of ohwx, (Off-shoulder silky blouse with ruched bust and flared sleeves:1.3) , Outhouse,style by Eve Arnold,soft lighting, upper body shot, collarbone, smile, (upper body framing:1.3), bare shoulder, detailed texture quality wool top, simple black choker, sensual lips, eyelashes, (entirely visible beautiful hairstyle:1.2), fine hair detail, perfect eyes, iris pattern, eyes makeup, (perfectly sharp:1.3), (head to shoulders composition:1.4), background is a blurry flower field, realistic textures, (deep focus:1.1), negative space around subject, 8k uhd, dslr, ultra high quality image, film grain, Fujifilm XT3' parameters: negative_prompt: OliviaWilde_flux_lora_v1_Weight-1.1 output: url: >- 50265911.jpeg - text: 'Breathtaking medium shot photography of ohwx, (Asymmetric one-shoulder top with draped fabric and shimmer:1.3) , elusive Land of Shadows,A towering sand dune offers panoramic views of the desert below,Tropical storm clouds with heavy rain and strong winds,soft lighting, upper body shot, collarbone, smile, (upper body framing:1.3), sensual lips, eyelashes, (entirely visible beautiful hairstyle:1.2), fine hair detail, perfect eyes, iris pattern, eyes makeup, (perfectly sharp:1.3), (head to shoulders composition:1.4), realistic textures, (deep focus:1.1), negative space around subject, 8k uhd, dslr, ultra high quality image, film grain, Fujifilm XT3' parameters: negative_prompt: OliviaWilde_flux_lora_v1_Weight-1.1 output: url: >- 50266093.jpeg --- # 👑 Olivia Wilde (Flux) 🎬 <Gallery /> ([CivitAI](https://civitai.com/models/)) ## Model description <h1 id="***-if-you-love-it-like-it!-***-41en9ow9n">👍 <span style="color:rgb(64, 192, 87)">***</span> <strong><em><span style="color:rgb(34, 139, 230)">If you love it, like it!</span></em></strong> <span style="color:rgb(64, 192, 87)">***</span>👍</h1><p><em>workflow: </em><a target="_blank" rel="ugc" href="https://civitai.com/models/1088678"><em>https://civitai.com/models/1088678</em></a></p><h1 id="olivia-wilde-7l1tu9rzf">👑 <span style="color:rgb(121, 80, 242)">Olivia Wilde </span>🎬</h1><p><strong>About my celebrities loras</strong><br />90% of the dataset used to build my loras only use head images. That really help the blend with other lora or model as there is no hands, feet, that may or will interfere in the final image render. When you get distorted hands with a person lora, it's because there is info on hands in the dataset used to train the lora, but that will not happen with my loras.</p><p>I've trained on Flux.1 Dev so other merged or trained checkpoint may not work well with my loras.</p><p>The drawback side of that is that the body may not be reflecting the reality. It may not be a drawback tho.</p><p></p><p>This is a lora for Flux.1 Dev. Work with other model but you must drop some simple bloc (good start 19-32).</p><p>Trained with ai-toolkit, so merging it is not easy.</p><p></p><p><strong>To get the best result</strong></p><p><em>Guidance: </em><strong><em>2.2-3</em></strong></p><p><em>Steps (dev): </em><strong><em>30-40</em></strong></p><p><em>daemon detailer (lying sigma sampler): factor: -0.02, start 0.06, end 0.75</em></p><p><em>Resolution: </em><strong><em>Upscale the latent by 1.25 or 1.5</em></strong><em> you'll get awsome result. (take longer time but worth it)</em></p><p><em>Trigger word is (may work better in certain context): </em><strong><em>ohwx</em></strong></p><p></p><p>Enjoy!</p> ## Trigger words You should use `ohwx` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Keltezaa/olivia-wilde-flux/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch device = "cuda" if torch.cuda.is_available() else "cpu" pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.bfloat16).to(device) pipeline.load_lora_weights('Keltezaa/olivia-wilde-flux', weight_name='OliviaWilde_flux_lora_v1.safetensors') image = pipeline('Breathtaking medium shot photography of ohwx, (Asymmetric one-shoulder top with draped fabric and shimmer:1.3) , elusive Land of Shadows,A towering sand dune offers panoramic views of the desert below,Tropical storm clouds with heavy rain and strong winds,soft lighting, upper body shot, collarbone, smile, (upper body framing:1.3), sensual lips, eyelashes, (entirely visible beautiful hairstyle:1.2), fine hair detail, perfect eyes, iris pattern, eyes makeup, (perfectly sharp:1.3), (head to shoulders composition:1.4), realistic textures, (deep focus:1.1), negative space around subject, 8k uhd, dslr, ultra high quality image, film grain, Fujifilm XT3').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
jhuisman/jaschahuisman-flux-lora
jhuisman
2025-01-15T12:19:32Z
10
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-15T11:35:19Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: NKVDM --- # Niekvandam Flux Lora <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `NKVDM` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('jhuisman/niekvandam-flux-lora', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
AbdulRehman-hf/my_face_model
AbdulRehman-hf
2025-01-15T12:17:39Z
34
1
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-15T11:30:51Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: abdul --- # My_Face_Model <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `abdul` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('AbdulRehman-hf/my_face_model', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
Keltezaa/katherine-heigl-90s-flux
Keltezaa
2025-01-15T12:16:47Z
276
2
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "migrated", "photorealistic", "woman", "actress", "celebrity", "girls", "realistic", "celebrity,", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-15T12:16:44Z
--- license: other license_name: bespoke-lora-trained-license license_link: https://multimodal.art/civitai-licenses?allowNoCredit=True&allowCommercialUse=RentCivit&allowDerivatives=False&allowDifferentLicense=True tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora - migrated - photorealistic - woman - actress - celebrity - girls - realistic - celebrity, base_model: black-forest-labs/FLUX.1-dev instance_prompt: ohwx widget: - text: 'Breathtaking over the shoulder shot photography of ohwx looking at viewerOff-shoulder silky blouse with ruched bust and flared sleeves , necklace, eyelashes, fine hair detail, entire hairstyle visible, perfect eyes with iris pattern, sensual lips, nose, (perfectly sharp:1.3), realistic textures, (deep focus on subject, blurred background:1.4), 8k uhd, dslr, ultra high quality image, film grain, Fujifilm XT3' parameters: negative_prompt: KatherineHeigl_flux_lora_v1_Weight-1.0 output: url: >- 49761287.jpeg - text: 'Breathtaking medium shot photography of ohwx, (Corset top with boning and satin ribbon lace-up:1.3) , Townhouse,style by René Laloux,soft lighting, upper body shot, collarbone, smile, (upper body framing:1.3), bare shoulder, detailed texture quality wool top, simple black choker, sensual lips, eyelashes, (entirely visible beautiful hairstyle:1.2), fine hair detail, perfect eyes, iris pattern, eyes makeup, (perfectly sharp:1.3), (head to shoulders composition:1.4), background is a blurry flower field, realistic textures, (deep focus:1.1), negative space around subject, 8k uhd, dslr, ultra high quality image, film grain, Fujifilm XT3' parameters: negative_prompt: KatherineHeigl_flux_lora_v1_Weight-1.1 output: url: >- 49761301.jpeg - text: 'Breathtaking over the shoulder shot photography of ohwx looking at viewer, high collar white blouse, imperfections, necklace with ornament falling down her back, looking over shoulders, eyelashes, fine hair detail, entire hairstyle visible, perfect eyes with iris pattern, sensual lips, nose, (perfectly sharp:1.3), realistic textures, (deep focus on subject, blurred background:1.4), 8k uhd, dslr, ultra high quality image, film grain, Fujifilm XT3' parameters: negative_prompt: KatherineHeigl_flux_lora_v1_Weight-1.0 output: url: >- 49761313.jpeg --- # 👑 Katherine Heigl (90s)(Flux) 🎬 <Gallery /> ([CivitAI](https://civitai.com/models/)) ## Model description <h1 id="***-if-you-love-it-like-it!-***-vva150sqr">👍 <span style="color:rgb(64, 192, 87)">***</span> <strong><em><span style="color:rgb(34, 139, 230)">If you love it, like it!</span></em></strong> <span style="color:rgb(64, 192, 87)">***</span>👍</h1><p><em>workflow: </em><a target="_blank" rel="ugc" href="https://civitai.com/models/1088678"><em>https://civitai.com/models/1088678</em></a></p><h1 id="katherine-heigl-e23hl0afj">👑 <span style="color:rgb(121, 80, 242)">Katherine Heigl </span>🎬</h1><p><strong>About my celebrities loras</strong><br />90% of the dataset used to build my loras only use head images. That really help the blend with other lora or model as there is no hands, feet, that may or will interfere in the final image render. When you get distorted hands with a person lora, it's because there is info on hands in the dataset used to train the lora, but that will not happen with my loras.</p><p>I've trained on Flux.1 Dev so other merged or trained checkpoint may not work well with my loras.</p><p>The drawback side of that is that the body may not be reflecting the reality. It may not be a drawback tho.</p><p></p><p>This is a lora for Flux.1 Dev. Work with other model but you must drop some simple bloc (good start 19-32).</p><p>Trained with ai-toolkit, so merging it is not easy.</p><p></p><p><strong>To get the best result</strong></p><p><em>Guidance: </em><strong><em>2.2-3</em></strong></p><p><em>Steps (dev): </em><strong><em>30-40</em></strong></p><p><em>daemon detailer (lying sigma sampler): factor: -0.02, start 0.06, end 0.75</em></p><p><em>Resolution: </em><strong><em>Upscale the latent by 1.25 or 1.5</em></strong><em> you'll get awsome result. (take longer time but worth it)</em></p><p><em>Trigger word is (may work better in certain context): </em><strong><em>ohwx</em></strong></p><p></p><p>Enjoy!</p> ## Trigger words You should use `ohwx` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Keltezaa/katherine-heigl-90s-flux/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch device = "cuda" if torch.cuda.is_available() else "cpu" pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.bfloat16).to(device) pipeline.load_lora_weights('Keltezaa/katherine-heigl-90s-flux', weight_name='KatherineHeigl_flux_lora_v1.safetensors') image = pipeline('Breathtaking over the shoulder shot photography of ohwx looking at viewer, high collar white blouse, imperfections, necklace with ornament falling down her back, looking over shoulders, eyelashes, fine hair detail, entire hairstyle visible, perfect eyes with iris pattern, sensual lips, nose, (perfectly sharp:1.3), realistic textures, (deep focus on subject, blurred background:1.4), 8k uhd, dslr, ultra high quality image, film grain, Fujifilm XT3').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
aloosh19/bert-SSLT2-mrpc
aloosh19
2025-01-15T12:16:40Z
7
0
transformers
[ "transformers", "tf", "bert", "text-classification", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-14T12:10:24Z
--- base_model: - google-bert/bert-base-uncased library_name: transformers ---
Keltezaa/olivia-hussey-1970s-flux-lora
Keltezaa
2025-01-15T12:16:30Z
25
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "migrated", "young", "1960s", "woman", "actress", "celebrity", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-15T12:16:26Z
--- license: other license_name: bespoke-lora-trained-license license_link: https://multimodal.art/civitai-licenses?allowNoCredit=True&allowCommercialUse=Sell&allowDerivatives=True&allowDifferentLicense=True tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora - migrated - young - 1960s - woman - actress - celebrity base_model: black-forest-labs/FLUX.1-dev instance_prompt: widget: - text: ' ' output: url: >- 48441212.jpeg - text: 'Create a close-up, high-fashion portrait of a woman with striking eyes and a calm, confident expression. She wears a sophisticated black outfit that exudes elegance and minimalism. The background is a smooth gradient of dark gray, enhancing the overall refined and contemporary aesthetic. The lighting is soft yet directional, highlighting her flawless complexion and subtle makeup, with a focus on her eyes and cheekbones. The mood of the portrait is polished, modern, and artistic.,ashgflx' output: url: >- 48441262.jpeg - text: 'close up face portrait of oliviahflx, a brunette woman in martincstyle look, plain white studio backdrop, framed centered' output: url: >- 48441261.jpeg - text: '(photo of a woman), editorial photoshoot, close up, in a floral garden, shot on film camera, kodak colors, elegant pose, perfect lighting, beautiful sky showing through the leaves, she is wearing a top with floral prints, beautiful smile, 90mm lens, extremely detailed, in an exotic forest location' output: url: >- 48441258.jpeg - text: 'black and white portrait inspired by Peter Lindbergh''s photographic style of oliviahflx, a woman looking directly into the camera. ** Lighting ** must be soft and natural,avoiding exaggerated perfection,and focusing on capturing the human essence and the natural beauty of women.' output: url: >- 48441253.jpeg - text: 'Create a hyper-realistic portrait of a regal woman inspired by the "Game of Thrones" aesthetic, but dressed in battle-ready attire. She stands in a windswept mountain pass, her armor gleaming under the muted sunlight. Her outfit combines elegance with practicality: a fitted leather cuirass adorned with intricate carvings of wolves and stars, layered over chainmail. A dark cloak with a fur-trimmed collar billows behind her, hinting at her noble lineage. Her hair is tied back in a loose braid, with small strands framing her strong, determined face. She carries a finely crafted longsword at her side, its hilt encrusted with subtle gemstones. Her piercing gaze reflects both beauty and unyielding strength. The scene is detailed with rugged terrain, distant snow-capped peaks, and the faint howl of the wind, evoking an air of mystery and power,oliviahflx' output: url: >- 48441271.jpeg - text: 'Create a close-up, high-fashion portrait of a woman with striking blue eyes and a calm, confident expression. She wears a sophisticated black outfit that exudes elegance and minimalism. The background is a smooth gradient of dark gray, enhancing the overall refined and contemporary aesthetic. The lighting is soft yet directional, highlighting her flawless complexion and subtle makeup, with a focus on her eyes and cheekbones. The mood of the portrait is polished, modern, and artistic.,ashgflx' output: url: >- 48441204.jpeg - text: 'A close-up portrait of an elegant woman in a softly lit studio setting. She is wearing a light pastel blue wool jacket with intricate white trim and decorative pearl-like buttons, exuding a refined vintage style. Her blonde hair is styled in loose waves and tied back with a delicate white cotton headscarf featuring subtle floral patterns. She has a serene, contemplative expression, with her warm-toned makeup emphasizing natural beauty, including soft brown lipstick and winged eyeliner. Her look is complemented by luxurious accessories, such as drop earrings and a brooch adorned with intricate details, including emerald and diamond accents. The background is minimal and softly lit, casting gentle shadows that highlight her timeless sophistication and poise. The atmosphere is chic and polished, reminiscent of a high-fashion editorial shoot.' output: url: >- 48441257.jpeg - text: 'Create a close-up, high-fashion portrait of a woman with striking eyes and a calm, confident expression. She wears a sophisticated black outfit that exudes elegance and minimalism. The background is a smooth gradient of dark gray, enhancing the overall refined and contemporary aesthetic. The lighting is soft yet directional, highlighting her flawless complexion and subtle makeup, with a focus on her eyes and cheekbones. The mood of the portrait is polished, modern, and artistic.,ashgflx' output: url: >- 48441215.jpeg - text: 'A woman poses elegantly on the sun-kissed beach, wearing a flowy dress. Framed by the warm tones of Kodak film, her serene features are bathed in soft, golden light. The camera captures a close-up shot and there is a breathtaking sky behind her, a canvas of puffy clouds and brilliant blue.,brookesflx' output: url: >- 48441255.jpeg - text: '"A clean, minimalist portrait of oliviahflx, a confident brunette woman with striking blue eyes and a calm expression. She is wearing a light-colored sweater and gold hoop earrings that add a subtle touch of elegance. The soft, diffused lighting highlights her flawless skin and natural beauty, while the neutral background emphasizes her serene and sophisticated demeanor. She has a blac mole on top of her lips on the left side"' output: url: >- 48446372.jpeg - text: '(photo of a woman), editorial photoshoot, close up, in a floral garden, shot on film camera, kodak colors, elegant pose, perfect lighting, beautiful sky showing through the leaves, she is wearing a top with floral prints, beautiful smile, 90mm lens, extremely detailed, in an exotic forest location' output: url: >- 48441256.jpeg - text: 'An intimate close-up of a woman captures her face in detail, highlighting every feature with soft, enveloping light. The camera, a Sony A7III with a 50mm f/1.2 lens, focuses on her seductive and daring gaze, full of intensity and mystery. The black eyeliner creates a perfect line that enhances her captivating look. Her lips are slightly parted, with a subtle shine that contrasts with her pale, smooth skin. Her blonde hair falls in a messy but stylized manner over her forehead, framing her face as if it were a canvas of contained energy. Her background is almost non-existent, blurred into soft shadows that allow all the focus to be on her. The image conveys a sense of strength, mystery and a subtle but powerful sensuality, reflecting her bold character and enigmatic presence.,Midjourney v6' output: url: >- 48445672.jpeg - text: 'High quality realistic beauty shot of oliviahflx. A close-up shot of a blue eyed woman. She is wearing a camisole blouse. Her lips are a light red color. The backdrop is a light gray. She is giving a beautiful smile.' output: url: >- 48441250.jpeg - text: '"A clean, minimalist portrait of oliviahflx, a confident woman with striking blue eyes and a calm expression. She is wearing a light-colored sweater and gold hoop earrings that add a subtle touch of elegance. The soft, diffused lighting highlights her flawless skin and natural beauty, while the neutral background emphasizes her serene and sophisticated demeanor. She has a blac mole on top of her lips on the left side"' output: url: >- 48445674.jpeg - text: 'Create a hyper-realistic portrait of a regal woman inspired by the "Game of Thrones" aesthetic, but dressed in battle-ready attire. She stands in a windswept mountain pass, her armor gleaming under the muted sunlight. Her outfit combines elegance with practicality: a fitted leather cuirass adorned with intricate carvings of wolves and stars, layered over chainmail. A dark cloak with a fur-trimmed collar billows behind her, hinting at her noble lineage. Her hair is tied back in a loose braid, with small strands framing her strong, determined face. Her piercing gaze reflects both beauty and unyielding strength. The scene is detailed with rugged terrain, distant snow-capped peaks, and the faint howl of the wind, evoking an air of mystery and power' output: url: >- 48441242.jpeg - text: '"A clean, minimalist portrait of oliviahflx, a confident woman with striking blue eyes and a calm expression. She is wearing a light-colored sweater and gold hoop earrings that add a subtle touch of elegance. The soft, diffused lighting highlights her flawless skin and natural beauty, while the neutral background emphasizes her serene and sophisticated demeanor. "' output: url: >- 48446371.jpeg --- # Olivia Hussey - 1970s (Flux LoRa) <Gallery /> ([CivitAI](https://civitai.com/models/)) ## Model description <p>Helps create HD images of Olivia Hussey from 1970s - She is known for playing Juliet's Role in the Romeo and Juliet Movie.</p> ## Download model Weights for this model are available in Safetensors format. [Download](/Keltezaa/olivia-hussey-1970s-flux-lora/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch device = "cuda" if torch.cuda.is_available() else "cpu" pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.bfloat16).to(device) pipeline.load_lora_weights('Keltezaa/olivia-hussey-1970s-flux-lora', weight_name='Olivia_Hussey.safetensors') image = pipeline('"A clean, minimalist portrait of oliviahflx, a confident woman with striking blue eyes and a calm expression. She is wearing a light-colored sweater and gold hoop earrings that add a subtle touch of elegance. The soft, diffused lighting highlights her flawless skin and natural beauty, while the neutral background emphasizes her serene and sophisticated demeanor. "').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
samoline/61e48999-1e47-47b6-a8a8-03ede983f822
samoline
2025-01-15T12:16:12Z
14
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:Henrychur/MMed-Llama-3-8B-EnIns", "base_model:adapter:Henrychur/MMed-Llama-3-8B-EnIns", "license:llama3", "region:us" ]
null
2025-01-15T11:37:17Z
--- library_name: peft license: llama3 base_model: Henrychur/MMed-Llama-3-8B-EnIns tags: - axolotl - generated_from_trainer model-index: - name: 61e48999-1e47-47b6-a8a8-03ede983f822 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Henrychur/MMed-Llama-3-8B-EnIns bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3caf93e309c0d240_train_data.json ds_type: json format: custom path: /workspace/input_data/3caf93e309c0d240_train_data.json type: field_input: context field_instruction: question field_output: final_decision format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: false group_by_length: false hub_model_id: samoline/61e48999-1e47-47b6-a8a8-03ede983f822 hub_repo: samoline hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 4 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 4 lora_target_linear: true lr_scheduler: cosine max_steps: 2 micro_batch_size: 1 mlflow_experiment_name: /tmp/3caf93e309c0d240_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|end_of_text|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: samoline-nan wandb_mode: online wandb_name: 1ed6696b-303b-45a3-b84a-f185a55757de wandb_project: Gradients-On-Demand wandb_run: dev wandb_runid: 1ed6696b-303b-45a3-b84a-f185a55757de warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 61e48999-1e47-47b6-a8a8-03ede983f822 This model is a fine-tuned version of [Henrychur/MMed-Llama-3-8B-EnIns](https://huggingface.co/Henrychur/MMed-Llama-3-8B-EnIns) on the None dataset. It achieves the following results on the evaluation set: - Loss: 13.6815 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 13.3123 | 0.0000 | 1 | 13.6835 | | 11.326 | 0.0000 | 2 | 13.6815 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso04/3afb6b85-6a0d-474c-99ca-c50d688d4d10
lesso04
2025-01-15T12:14:52Z
12
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-1.7B", "base_model:adapter:unsloth/SmolLM2-1.7B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-15T12:10:18Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-1.7B tags: - axolotl - generated_from_trainer model-index: - name: 3afb6b85-6a0d-474c-99ca-c50d688d4d10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM2-1.7B bf16: true chat_template: llama3 datasets: - data_files: - 2f52f5d4dd7c3b59_train_data.json ds_type: json format: custom path: /workspace/input_data/2f52f5d4dd7c3b59_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso04/3afb6b85-6a0d-474c-99ca-c50d688d4d10 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/2f52f5d4dd7c3b59_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0ad070a1-afeb-4188-a303-62e6e389155d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 0ad070a1-afeb-4188-a303-62e6e389155d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 3afb6b85-6a0d-474c-99ca-c50d688d4d10 This model is a fine-tuned version of [unsloth/SmolLM2-1.7B](https://huggingface.co/unsloth/SmolLM2-1.7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0009 | 1 | nan | | 0.0 | 0.0047 | 5 | nan | | 0.0 | 0.0094 | 10 | nan | | 0.0 | 0.0141 | 15 | nan | | 0.0 | 0.0188 | 20 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nhungphammmmm/df195273-1c6c-4882-853a-c079519ba77e
nhungphammmmm
2025-01-15T12:14:44Z
7
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:oopsung/llama2-7b-n-ox-test-v1", "base_model:adapter:oopsung/llama2-7b-n-ox-test-v1", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-15T12:09:48Z
--- library_name: peft base_model: oopsung/llama2-7b-n-ox-test-v1 tags: - axolotl - generated_from_trainer model-index: - name: df195273-1c6c-4882-853a-c079519ba77e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: oopsung/llama2-7b-n-ox-test-v1 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c1fdfb3f4e449665_train_data.json ds_type: json format: custom path: /workspace/input_data/c1fdfb3f4e449665_train_data.json type: field_instruction: question field_output: best_answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhungphammmmm/df195273-1c6c-4882-853a-c079519ba77e hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/c1fdfb3f4e449665_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 212c681b-11df-434d-a645-a52b9b33936f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 212c681b-11df-434d-a645-a52b9b33936f warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # df195273-1c6c-4882-853a-c079519ba77e This model is a fine-tuned version of [oopsung/llama2-7b-n-ox-test-v1](https://huggingface.co/oopsung/llama2-7b-n-ox-test-v1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9566 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 76 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.2474 | 0.9934 | 75 | 0.9551 | | 1.6941 | 1.0066 | 76 | 0.9566 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
MayBashendy/ArabicNewSplits7_usingWellWrittenEssays_FineTuningAraBERT_run1_AugV5_k5_task1_organization
MayBashendy
2025-01-15T12:14:03Z
6
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-15T11:56:18Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits7_usingWellWrittenEssays_FineTuningAraBERT_run1_AugV5_k5_task1_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits7_usingWellWrittenEssays_FineTuningAraBERT_run1_AugV5_k5_task1_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5840 - Qwk: 0.3459 - Mse: 1.5840 - Rmse: 1.2586 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.0909 | 2 | 6.8706 | 0.0242 | 6.8706 | 2.6212 | | No log | 0.1818 | 4 | 4.5537 | 0.12 | 4.5537 | 2.1339 | | No log | 0.2727 | 6 | 4.4912 | -0.0648 | 4.4912 | 2.1192 | | No log | 0.3636 | 8 | 5.3606 | -0.0803 | 5.3606 | 2.3153 | | No log | 0.4545 | 10 | 3.8817 | -0.0804 | 3.8817 | 1.9702 | | No log | 0.5455 | 12 | 2.3578 | 0.1194 | 2.3578 | 1.5355 | | No log | 0.6364 | 14 | 1.8213 | 0.2342 | 1.8213 | 1.3495 | | No log | 0.7273 | 16 | 1.8044 | 0.1714 | 1.8044 | 1.3433 | | No log | 0.8182 | 18 | 2.0548 | 0.1579 | 2.0548 | 1.4334 | | No log | 0.9091 | 20 | 2.2141 | 0.0 | 2.2141 | 1.4880 | | No log | 1.0 | 22 | 2.3652 | 0.0292 | 2.3652 | 1.5379 | | No log | 1.0909 | 24 | 2.2941 | 0.0146 | 2.2941 | 1.5146 | | No log | 1.1818 | 26 | 2.2398 | 0.0435 | 2.2398 | 1.4966 | | No log | 1.2727 | 28 | 1.8855 | 0.2759 | 1.8855 | 1.3731 | | No log | 1.3636 | 30 | 1.6558 | 0.2056 | 1.6558 | 1.2868 | | No log | 1.4545 | 32 | 1.5973 | 0.2056 | 1.5973 | 1.2639 | | No log | 1.5455 | 34 | 1.5514 | 0.1869 | 1.5514 | 1.2455 | | No log | 1.6364 | 36 | 1.5700 | 0.2342 | 1.5700 | 1.2530 | | No log | 1.7273 | 38 | 1.7613 | 0.3607 | 1.7613 | 1.3272 | | No log | 1.8182 | 40 | 1.9252 | 0.2923 | 1.9252 | 1.3875 | | No log | 1.9091 | 42 | 1.8372 | 0.2923 | 1.8372 | 1.3554 | | No log | 2.0 | 44 | 1.7235 | 0.3548 | 1.7235 | 1.3128 | | No log | 2.0909 | 46 | 1.5153 | 0.2143 | 1.5153 | 1.2310 | | No log | 2.1818 | 48 | 1.5024 | 0.0971 | 1.5024 | 1.2257 | | No log | 2.2727 | 50 | 1.5660 | 0.1698 | 1.5660 | 1.2514 | | No log | 2.3636 | 52 | 1.4505 | 0.3063 | 1.4505 | 1.2044 | | No log | 2.4545 | 54 | 1.3445 | 0.3866 | 1.3445 | 1.1595 | | No log | 2.5455 | 56 | 1.5586 | 0.4394 | 1.5586 | 1.2484 | | No log | 2.6364 | 58 | 1.5318 | 0.4930 | 1.5318 | 1.2376 | | No log | 2.7273 | 60 | 1.2694 | 0.496 | 1.2694 | 1.1267 | | No log | 2.8182 | 62 | 1.3984 | 0.3103 | 1.3984 | 1.1826 | | No log | 2.9091 | 64 | 1.8260 | 0.2261 | 1.8260 | 1.3513 | | No log | 3.0 | 66 | 1.7139 | 0.2982 | 1.7139 | 1.3092 | | No log | 3.0909 | 68 | 1.3967 | 0.3932 | 1.3967 | 1.1818 | | No log | 3.1818 | 70 | 1.1238 | 0.4667 | 1.1238 | 1.0601 | | No log | 3.2727 | 72 | 1.0528 | 0.4706 | 1.0528 | 1.0261 | | No log | 3.3636 | 74 | 1.0872 | 0.4706 | 1.0872 | 1.0427 | | No log | 3.4545 | 76 | 1.1764 | 0.4724 | 1.1764 | 1.0846 | | No log | 3.5455 | 78 | 1.3521 | 0.4444 | 1.3521 | 1.1628 | | No log | 3.6364 | 80 | 1.8338 | 0.1571 | 1.8338 | 1.3542 | | No log | 3.7273 | 82 | 2.1613 | 0.1022 | 2.1613 | 1.4701 | | No log | 3.8182 | 84 | 2.2225 | 0.0 | 2.2225 | 1.4908 | | No log | 3.9091 | 86 | 2.1272 | 0.0763 | 2.1272 | 1.4585 | | No log | 4.0 | 88 | 1.9312 | 0.2482 | 1.9312 | 1.3897 | | No log | 4.0909 | 90 | 1.9328 | 0.2482 | 1.9328 | 1.3902 | | No log | 4.1818 | 92 | 1.9758 | 0.2590 | 1.9758 | 1.4056 | | No log | 4.2727 | 94 | 1.8551 | 0.3022 | 1.8551 | 1.3620 | | No log | 4.3636 | 96 | 1.6201 | 0.2836 | 1.6201 | 1.2728 | | No log | 4.4545 | 98 | 1.5038 | 0.3259 | 1.5038 | 1.2263 | | No log | 4.5455 | 100 | 1.5352 | 0.4030 | 1.5352 | 1.2390 | | No log | 4.6364 | 102 | 1.7073 | 0.3212 | 1.7073 | 1.3066 | | No log | 4.7273 | 104 | 1.6467 | 0.3759 | 1.6467 | 1.2832 | | No log | 4.8182 | 106 | 1.6483 | 0.3594 | 1.6483 | 1.2838 | | No log | 4.9091 | 108 | 1.6225 | 0.3407 | 1.6225 | 1.2738 | | No log | 5.0 | 110 | 1.6973 | 0.3212 | 1.6973 | 1.3028 | | No log | 5.0909 | 112 | 1.6400 | 0.3212 | 1.6400 | 1.2806 | | No log | 5.1818 | 114 | 1.5024 | 0.2985 | 1.5024 | 1.2257 | | No log | 5.2727 | 116 | 1.4355 | 0.3939 | 1.4355 | 1.1981 | | No log | 5.3636 | 118 | 1.4879 | 0.3158 | 1.4879 | 1.2198 | | No log | 5.4545 | 120 | 1.4161 | 0.4211 | 1.4161 | 1.1900 | | No log | 5.5455 | 122 | 1.3863 | 0.4211 | 1.3863 | 1.1774 | | No log | 5.6364 | 124 | 1.4558 | 0.3704 | 1.4558 | 1.2066 | | No log | 5.7273 | 126 | 1.4664 | 0.3942 | 1.4664 | 1.2109 | | No log | 5.8182 | 128 | 1.3583 | 0.4818 | 1.3583 | 1.1655 | | No log | 5.9091 | 130 | 1.4895 | 0.4234 | 1.4895 | 1.2204 | | No log | 6.0 | 132 | 1.7681 | 0.3000 | 1.7681 | 1.3297 | | No log | 6.0909 | 134 | 1.7664 | 0.2695 | 1.7664 | 1.3291 | | No log | 6.1818 | 136 | 1.5607 | 0.4088 | 1.5607 | 1.2493 | | No log | 6.2727 | 138 | 1.3862 | 0.4651 | 1.3862 | 1.1774 | | No log | 6.3636 | 140 | 1.4199 | 0.4186 | 1.4199 | 1.1916 | | No log | 6.4545 | 142 | 1.5884 | 0.3308 | 1.5884 | 1.2603 | | No log | 6.5455 | 144 | 1.6536 | 0.3913 | 1.6536 | 1.2859 | | No log | 6.6364 | 146 | 1.7013 | 0.3597 | 1.7013 | 1.3044 | | No log | 6.7273 | 148 | 1.7384 | 0.3453 | 1.7384 | 1.3185 | | No log | 6.8182 | 150 | 1.7644 | 0.3453 | 1.7644 | 1.3283 | | No log | 6.9091 | 152 | 1.8095 | 0.2878 | 1.8095 | 1.3452 | | No log | 7.0 | 154 | 1.8180 | 0.2878 | 1.8180 | 1.3483 | | No log | 7.0909 | 156 | 1.5243 | 0.3704 | 1.5243 | 1.2346 | | No log | 7.1818 | 158 | 1.4358 | 0.3969 | 1.4358 | 1.1983 | | No log | 7.2727 | 160 | 1.4661 | 0.3407 | 1.4661 | 1.2108 | | No log | 7.3636 | 162 | 1.7613 | 0.2571 | 1.7613 | 1.3271 | | No log | 7.4545 | 164 | 2.0139 | 0.2270 | 2.0139 | 1.4191 | | No log | 7.5455 | 166 | 2.1845 | 0.1418 | 2.1845 | 1.4780 | | No log | 7.6364 | 168 | 1.9770 | 0.2174 | 1.9770 | 1.4061 | | No log | 7.7273 | 170 | 1.6052 | 0.3731 | 1.6052 | 1.2670 | | No log | 7.8182 | 172 | 1.4131 | 0.4275 | 1.4131 | 1.1888 | | No log | 7.9091 | 174 | 1.4421 | 0.3881 | 1.4421 | 1.2009 | | No log | 8.0 | 176 | 1.6931 | 0.3407 | 1.6931 | 1.3012 | | No log | 8.0909 | 178 | 1.7649 | 0.2899 | 1.7649 | 1.3285 | | No log | 8.1818 | 180 | 1.5767 | 0.3407 | 1.5767 | 1.2557 | | No log | 8.2727 | 182 | 1.4026 | 0.4394 | 1.4026 | 1.1843 | | No log | 8.3636 | 184 | 1.4598 | 0.4296 | 1.4598 | 1.2082 | | No log | 8.4545 | 186 | 1.4396 | 0.4559 | 1.4396 | 1.1998 | | No log | 8.5455 | 188 | 1.6514 | 0.3212 | 1.6514 | 1.2851 | | No log | 8.6364 | 190 | 1.7398 | 0.3212 | 1.7398 | 1.3190 | | No log | 8.7273 | 192 | 1.5474 | 0.3942 | 1.5474 | 1.2440 | | No log | 8.8182 | 194 | 1.4336 | 0.4179 | 1.4336 | 1.1973 | | No log | 8.9091 | 196 | 1.4346 | 0.4091 | 1.4346 | 1.1978 | | No log | 9.0 | 198 | 1.5731 | 0.3582 | 1.5731 | 1.2542 | | No log | 9.0909 | 200 | 1.4968 | 0.3582 | 1.4968 | 1.2234 | | No log | 9.1818 | 202 | 1.3101 | 0.5077 | 1.3101 | 1.1446 | | No log | 9.2727 | 204 | 1.2901 | 0.5116 | 1.2901 | 1.1358 | | No log | 9.3636 | 206 | 1.2367 | 0.5000 | 1.2367 | 1.1121 | | No log | 9.4545 | 208 | 1.1997 | 0.5041 | 1.1997 | 1.0953 | | No log | 9.5455 | 210 | 1.2436 | 0.528 | 1.2436 | 1.1152 | | No log | 9.6364 | 212 | 1.4268 | 0.4308 | 1.4268 | 1.1945 | | No log | 9.7273 | 214 | 1.5813 | 0.3582 | 1.5813 | 1.2575 | | No log | 9.8182 | 216 | 1.5420 | 0.3969 | 1.5420 | 1.2418 | | No log | 9.9091 | 218 | 1.4934 | 0.4531 | 1.4934 | 1.2221 | | No log | 10.0 | 220 | 1.4864 | 0.4341 | 1.4864 | 1.2192 | | No log | 10.0909 | 222 | 1.5623 | 0.3881 | 1.5623 | 1.2499 | | No log | 10.1818 | 224 | 1.5122 | 0.4394 | 1.5122 | 1.2297 | | No log | 10.2727 | 226 | 1.4307 | 0.5039 | 1.4307 | 1.1961 | | No log | 10.3636 | 228 | 1.4624 | 0.4806 | 1.4624 | 1.2093 | | No log | 10.4545 | 230 | 1.5415 | 0.3939 | 1.5415 | 1.2416 | | No log | 10.5455 | 232 | 1.6682 | 0.3556 | 1.6682 | 1.2916 | | No log | 10.6364 | 234 | 1.6007 | 0.3939 | 1.6007 | 1.2652 | | No log | 10.7273 | 236 | 1.4173 | 0.4375 | 1.4173 | 1.1905 | | No log | 10.8182 | 238 | 1.2418 | 0.4628 | 1.2418 | 1.1144 | | No log | 10.9091 | 240 | 1.1790 | 0.4833 | 1.1790 | 1.0858 | | No log | 11.0 | 242 | 1.2143 | 0.5156 | 1.2143 | 1.1020 | | No log | 11.0909 | 244 | 1.3290 | 0.4962 | 1.3290 | 1.1528 | | No log | 11.1818 | 246 | 1.4388 | 0.4296 | 1.4388 | 1.1995 | | No log | 11.2727 | 248 | 1.5572 | 0.3212 | 1.5572 | 1.2479 | | No log | 11.3636 | 250 | 1.4754 | 0.3759 | 1.4754 | 1.2147 | | No log | 11.4545 | 252 | 1.3411 | 0.5426 | 1.3411 | 1.1581 | | No log | 11.5455 | 254 | 1.3390 | 0.5625 | 1.3390 | 1.1571 | | No log | 11.6364 | 256 | 1.4012 | 0.4885 | 1.4012 | 1.1837 | | No log | 11.7273 | 258 | 1.4428 | 0.4478 | 1.4428 | 1.2012 | | No log | 11.8182 | 260 | 1.3370 | 0.5152 | 1.3370 | 1.1563 | | No log | 11.9091 | 262 | 1.2423 | 0.5625 | 1.2423 | 1.1146 | | No log | 12.0 | 264 | 1.2537 | 0.5649 | 1.2537 | 1.1197 | | No log | 12.0909 | 266 | 1.3821 | 0.5075 | 1.3821 | 1.1756 | | No log | 12.1818 | 268 | 1.6418 | 0.3022 | 1.6418 | 1.2813 | | No log | 12.2727 | 270 | 1.7039 | 0.3022 | 1.7039 | 1.3053 | | No log | 12.3636 | 272 | 1.5771 | 0.3676 | 1.5771 | 1.2558 | | No log | 12.4545 | 274 | 1.5311 | 0.4060 | 1.5311 | 1.2374 | | No log | 12.5455 | 276 | 1.4889 | 0.4580 | 1.4889 | 1.2202 | | No log | 12.6364 | 278 | 1.5068 | 0.4275 | 1.5068 | 1.2275 | | No log | 12.7273 | 280 | 1.5146 | 0.4328 | 1.5146 | 1.2307 | | No log | 12.8182 | 282 | 1.5921 | 0.3623 | 1.5921 | 1.2618 | | No log | 12.9091 | 284 | 1.5620 | 0.3885 | 1.5620 | 1.2498 | | No log | 13.0 | 286 | 1.4116 | 0.4593 | 1.4116 | 1.1881 | | No log | 13.0909 | 288 | 1.3806 | 0.4962 | 1.3806 | 1.1750 | | No log | 13.1818 | 290 | 1.3804 | 0.4615 | 1.3804 | 1.1749 | | No log | 13.2727 | 292 | 1.3286 | 0.528 | 1.3286 | 1.1527 | | No log | 13.3636 | 294 | 1.3524 | 0.5 | 1.3524 | 1.1629 | | No log | 13.4545 | 296 | 1.4617 | 0.4462 | 1.4617 | 1.2090 | | No log | 13.5455 | 298 | 1.6156 | 0.3433 | 1.6156 | 1.2711 | | No log | 13.6364 | 300 | 1.5963 | 0.3433 | 1.5963 | 1.2635 | | No log | 13.7273 | 302 | 1.6456 | 0.3407 | 1.6456 | 1.2828 | | No log | 13.8182 | 304 | 1.5998 | 0.3433 | 1.5998 | 1.2648 | | No log | 13.9091 | 306 | 1.6562 | 0.3407 | 1.6562 | 1.2870 | | No log | 14.0 | 308 | 1.6529 | 0.3433 | 1.6529 | 1.2857 | | No log | 14.0909 | 310 | 1.5907 | 0.3759 | 1.5907 | 1.2612 | | No log | 14.1818 | 312 | 1.5256 | 0.3910 | 1.5256 | 1.2352 | | No log | 14.2727 | 314 | 1.5206 | 0.4030 | 1.5206 | 1.2331 | | No log | 14.3636 | 316 | 1.5911 | 0.3796 | 1.5911 | 1.2614 | | No log | 14.4545 | 318 | 1.6345 | 0.3121 | 1.6345 | 1.2785 | | No log | 14.5455 | 320 | 1.7117 | 0.3121 | 1.7117 | 1.3083 | | No log | 14.6364 | 322 | 1.6836 | 0.3121 | 1.6836 | 1.2975 | | No log | 14.7273 | 324 | 1.5810 | 0.3121 | 1.5810 | 1.2574 | | No log | 14.8182 | 326 | 1.4354 | 0.4148 | 1.4354 | 1.1981 | | No log | 14.9091 | 328 | 1.3537 | 0.5079 | 1.3537 | 1.1635 | | No log | 15.0 | 330 | 1.4004 | 0.4885 | 1.4004 | 1.1834 | | No log | 15.0909 | 332 | 1.5020 | 0.4060 | 1.5020 | 1.2256 | | No log | 15.1818 | 334 | 1.5804 | 0.3650 | 1.5804 | 1.2572 | | No log | 15.2727 | 336 | 1.6491 | 0.3235 | 1.6491 | 1.2842 | | No log | 15.3636 | 338 | 1.6443 | 0.3504 | 1.6443 | 1.2823 | | No log | 15.4545 | 340 | 1.5557 | 0.3676 | 1.5557 | 1.2473 | | No log | 15.5455 | 342 | 1.3950 | 0.4394 | 1.3950 | 1.1811 | | No log | 15.6364 | 344 | 1.3218 | 0.5038 | 1.3218 | 1.1497 | | No log | 15.7273 | 346 | 1.4066 | 0.4394 | 1.4066 | 1.1860 | | No log | 15.8182 | 348 | 1.5501 | 0.3676 | 1.5501 | 1.2450 | | No log | 15.9091 | 350 | 1.4747 | 0.3582 | 1.4747 | 1.2144 | | No log | 16.0 | 352 | 1.5083 | 0.3582 | 1.5083 | 1.2281 | | No log | 16.0909 | 354 | 1.6487 | 0.3165 | 1.6487 | 1.2840 | | No log | 16.1818 | 356 | 1.6896 | 0.3143 | 1.6896 | 1.2999 | | No log | 16.2727 | 358 | 1.7706 | 0.2676 | 1.7706 | 1.3306 | | No log | 16.3636 | 360 | 1.6590 | 0.3453 | 1.6590 | 1.2880 | | No log | 16.4545 | 362 | 1.5596 | 0.3478 | 1.5596 | 1.2488 | | No log | 16.5455 | 364 | 1.5449 | 0.3796 | 1.5449 | 1.2429 | | No log | 16.6364 | 366 | 1.6290 | 0.3676 | 1.6290 | 1.2763 | | No log | 16.7273 | 368 | 1.7740 | 0.2837 | 1.7740 | 1.3319 | | No log | 16.8182 | 370 | 1.9521 | 0.2411 | 1.9521 | 1.3972 | | No log | 16.9091 | 372 | 1.9071 | 0.2571 | 1.9071 | 1.3810 | | No log | 17.0 | 374 | 1.6937 | 0.3478 | 1.6937 | 1.3014 | | No log | 17.0909 | 376 | 1.3730 | 0.4496 | 1.3730 | 1.1717 | | No log | 17.1818 | 378 | 1.1612 | 0.5645 | 1.1612 | 1.0776 | | No log | 17.2727 | 380 | 1.1002 | 0.5806 | 1.1002 | 1.0489 | | No log | 17.3636 | 382 | 1.1357 | 0.5397 | 1.1357 | 1.0657 | | No log | 17.4545 | 384 | 1.3203 | 0.4697 | 1.3203 | 1.1490 | | No log | 17.5455 | 386 | 1.6017 | 0.3478 | 1.6017 | 1.2656 | | No log | 17.6364 | 388 | 1.7109 | 0.3188 | 1.7109 | 1.3080 | | No log | 17.7273 | 390 | 1.6573 | 0.3478 | 1.6573 | 1.2874 | | No log | 17.8182 | 392 | 1.4678 | 0.3676 | 1.4678 | 1.2115 | | No log | 17.9091 | 394 | 1.3405 | 0.4741 | 1.3405 | 1.1578 | | No log | 18.0 | 396 | 1.3196 | 0.4741 | 1.3196 | 1.1487 | | No log | 18.0909 | 398 | 1.4438 | 0.4088 | 1.4438 | 1.2016 | | No log | 18.1818 | 400 | 1.5150 | 0.3676 | 1.5150 | 1.2309 | | No log | 18.2727 | 402 | 1.6033 | 0.3504 | 1.6033 | 1.2662 | | No log | 18.3636 | 404 | 1.6203 | 0.3504 | 1.6203 | 1.2729 | | No log | 18.4545 | 406 | 1.6050 | 0.3676 | 1.6050 | 1.2669 | | No log | 18.5455 | 408 | 1.6324 | 0.3504 | 1.6324 | 1.2777 | | No log | 18.6364 | 410 | 1.5730 | 0.3676 | 1.5730 | 1.2542 | | No log | 18.7273 | 412 | 1.4614 | 0.3759 | 1.4614 | 1.2089 | | No log | 18.8182 | 414 | 1.3911 | 0.4688 | 1.3911 | 1.1794 | | No log | 18.9091 | 416 | 1.4258 | 0.4122 | 1.4258 | 1.1941 | | No log | 19.0 | 418 | 1.4709 | 0.4 | 1.4709 | 1.2128 | | No log | 19.0909 | 420 | 1.6050 | 0.3382 | 1.6050 | 1.2669 | | No log | 19.1818 | 422 | 1.6628 | 0.3235 | 1.6628 | 1.2895 | | No log | 19.2727 | 424 | 1.6224 | 0.3459 | 1.6224 | 1.2737 | | No log | 19.3636 | 426 | 1.5484 | 0.3846 | 1.5484 | 1.2443 | | No log | 19.4545 | 428 | 1.4464 | 0.4839 | 1.4464 | 1.2027 | | No log | 19.5455 | 430 | 1.3737 | 0.4959 | 1.3737 | 1.1721 | | No log | 19.6364 | 432 | 1.3675 | 0.496 | 1.3675 | 1.1694 | | No log | 19.7273 | 434 | 1.4818 | 0.3676 | 1.4818 | 1.2173 | | No log | 19.8182 | 436 | 1.7647 | 0.3212 | 1.7647 | 1.3284 | | No log | 19.9091 | 438 | 1.9277 | 0.2878 | 1.9277 | 1.3884 | | No log | 20.0 | 440 | 1.8568 | 0.2941 | 1.8568 | 1.3626 | | No log | 20.0909 | 442 | 1.7175 | 0.2941 | 1.7175 | 1.3105 | | No log | 20.1818 | 444 | 1.6060 | 0.3759 | 1.6060 | 1.2673 | | No log | 20.2727 | 446 | 1.5320 | 0.3969 | 1.5320 | 1.2378 | | No log | 20.3636 | 448 | 1.4896 | 0.3969 | 1.4896 | 1.2205 | | No log | 20.4545 | 450 | 1.4353 | 0.4154 | 1.4353 | 1.1980 | | No log | 20.5455 | 452 | 1.3613 | 0.4286 | 1.3613 | 1.1667 | | No log | 20.6364 | 454 | 1.3880 | 0.4252 | 1.3880 | 1.1781 | | No log | 20.7273 | 456 | 1.4123 | 0.4496 | 1.4123 | 1.1884 | | No log | 20.8182 | 458 | 1.4129 | 0.4275 | 1.4129 | 1.1886 | | No log | 20.9091 | 460 | 1.3080 | 0.48 | 1.3080 | 1.1437 | | No log | 21.0 | 462 | 1.2757 | 0.5 | 1.2757 | 1.1295 | | No log | 21.0909 | 464 | 1.2879 | 0.5 | 1.2879 | 1.1349 | | No log | 21.1818 | 466 | 1.3556 | 0.4762 | 1.3556 | 1.1643 | | No log | 21.2727 | 468 | 1.5139 | 0.3731 | 1.5139 | 1.2304 | | No log | 21.3636 | 470 | 1.6971 | 0.2941 | 1.6971 | 1.3027 | | No log | 21.4545 | 472 | 1.7255 | 0.2941 | 1.7255 | 1.3136 | | No log | 21.5455 | 474 | 1.6266 | 0.3459 | 1.6266 | 1.2754 | | No log | 21.6364 | 476 | 1.5223 | 0.3759 | 1.5223 | 1.2338 | | No log | 21.7273 | 478 | 1.3618 | 0.4496 | 1.3618 | 1.1670 | | No log | 21.8182 | 480 | 1.2994 | 0.5312 | 1.2994 | 1.1399 | | No log | 21.9091 | 482 | 1.2503 | 0.528 | 1.2503 | 1.1182 | | No log | 22.0 | 484 | 1.2992 | 0.5312 | 1.2992 | 1.1398 | | No log | 22.0909 | 486 | 1.4324 | 0.4296 | 1.4324 | 1.1968 | | No log | 22.1818 | 488 | 1.7009 | 0.2899 | 1.7009 | 1.3042 | | No log | 22.2727 | 490 | 1.8672 | 0.2571 | 1.8672 | 1.3664 | | No log | 22.3636 | 492 | 1.8131 | 0.2899 | 1.8131 | 1.3465 | | No log | 22.4545 | 494 | 1.6237 | 0.3478 | 1.6237 | 1.2742 | | No log | 22.5455 | 496 | 1.4523 | 0.4296 | 1.4523 | 1.2051 | | No log | 22.6364 | 498 | 1.4190 | 0.4697 | 1.4190 | 1.1912 | | 0.3783 | 22.7273 | 500 | 1.5080 | 0.4 | 1.5080 | 1.2280 | | 0.3783 | 22.8182 | 502 | 1.6746 | 0.3212 | 1.6746 | 1.2941 | | 0.3783 | 22.9091 | 504 | 1.7347 | 0.3188 | 1.7347 | 1.3171 | | 0.3783 | 23.0 | 506 | 1.6808 | 0.3212 | 1.6808 | 1.2965 | | 0.3783 | 23.0909 | 508 | 1.5253 | 0.3731 | 1.5253 | 1.2350 | | 0.3783 | 23.1818 | 510 | 1.3566 | 0.4697 | 1.3566 | 1.1647 | | 0.3783 | 23.2727 | 512 | 1.3154 | 0.4882 | 1.3154 | 1.1469 | | 0.3783 | 23.3636 | 514 | 1.3595 | 0.4320 | 1.3595 | 1.1660 | | 0.3783 | 23.4545 | 516 | 1.4158 | 0.4091 | 1.4158 | 1.1899 | | 0.3783 | 23.5455 | 518 | 1.4526 | 0.4030 | 1.4526 | 1.2052 | | 0.3783 | 23.6364 | 520 | 1.5010 | 0.4030 | 1.5010 | 1.2252 | | 0.3783 | 23.7273 | 522 | 1.5754 | 0.4030 | 1.5754 | 1.2552 | | 0.3783 | 23.8182 | 524 | 1.6426 | 0.3676 | 1.6426 | 1.2816 | | 0.3783 | 23.9091 | 526 | 1.6226 | 0.3731 | 1.6226 | 1.2738 | | 0.3783 | 24.0 | 528 | 1.6062 | 0.3459 | 1.6062 | 1.2674 | | 0.3783 | 24.0909 | 530 | 1.6226 | 0.3459 | 1.6226 | 1.2738 | | 0.3783 | 24.1818 | 532 | 1.5840 | 0.3459 | 1.5840 | 1.2586 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
nadejdatarabukina/f5056bd4-89ca-4201-bf8a-a0f0f5b88862
nadejdatarabukina
2025-01-15T12:12:42Z
14
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-1.7B", "base_model:adapter:unsloth/SmolLM2-1.7B", "license:apache-2.0", "region:us" ]
null
2025-01-15T12:10:17Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-1.7B tags: - axolotl - generated_from_trainer model-index: - name: f5056bd4-89ca-4201-bf8a-a0f0f5b88862 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM2-1.7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2f52f5d4dd7c3b59_train_data.json ds_type: json format: custom path: /workspace/input_data/2f52f5d4dd7c3b59_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null gradient_accumulation_steps: 6 gradient_checkpointing: false group_by_length: false hub_model_id: nadejdatarabukina/f5056bd4-89ca-4201-bf8a-a0f0f5b88862 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/2f52f5d4dd7c3b59_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0ad070a1-afeb-4188-a303-62e6e389155d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 0ad070a1-afeb-4188-a303-62e6e389155d warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # f5056bd4-89ca-4201-bf8a-a0f0f5b88862 This model is a fine-tuned version of [unsloth/SmolLM2-1.7B](https://huggingface.co/unsloth/SmolLM2-1.7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 6 - total_train_batch_size: 12 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0014 | 1 | nan | | 0.0 | 0.0113 | 8 | nan | | 0.0 | 0.0225 | 16 | nan | | 0.0 | 0.0338 | 24 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
CodyNeo/glass_fine_tuned_deepfake_detection
CodyNeo
2025-01-15T12:11:02Z
42
0
null
[ "safetensors", "vit", "image-classification", "dataset:glassona/Deepfake-190kf", "base_model:dima806/deepfake_vs_real_image_detection", "base_model:finetune:dima806/deepfake_vs_real_image_detection", "region:us" ]
image-classification
2025-01-15T02:43:54Z
--- datasets: - glassona/Deepfake-190kf base_model: - dima806/deepfake_vs_real_image_detection pipeline_tag: image-classification ---
thaffggg/c463b8c1-7d59-4435-9925-4fc39c79827d
thaffggg
2025-01-15T12:09:16Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Mistral-7b-64k", "base_model:adapter:NousResearch/Yarn-Mistral-7b-64k", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-15T10:33:11Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Yarn-Mistral-7b-64k tags: - axolotl - generated_from_trainer model-index: - name: c463b8c1-7d59-4435-9925-4fc39c79827d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Mistral-7b-64k bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - d38a75ba6d61a259_train_data.json ds_type: json format: custom path: /workspace/input_data/d38a75ba6d61a259_train_data.json type: field_input: GSHARE field_instruction: PC field_output: GA table format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: thaffggg/c463b8c1-7d59-4435-9925-4fc39c79827d hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/d38a75ba6d61a259_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 53d88cf6-c13c-4533-b8c3-4073bbb47744 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 53d88cf6-c13c-4533-b8c3-4073bbb47744 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # c463b8c1-7d59-4435-9925-4fc39c79827d This model is a fine-tuned version of [NousResearch/Yarn-Mistral-7b-64k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-64k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3325 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.5365 | 0.0057 | 200 | 0.3325 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
jhuisman/niekvandam-flux-lora
jhuisman
2025-01-15T12:06:24Z
16
1
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-15T11:44:26Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: NKVDM --- # Niekvandam Flux Lora <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `NKVDM` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('jhuisman/niekvandam-flux-lora', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
prxy5607/d7a4464c-fc85-4fdf-a030-4e8bee2963d5
prxy5607
2025-01-15T12:06:23Z
7
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen1.5-0.5B-Chat", "base_model:adapter:Qwen/Qwen1.5-0.5B-Chat", "license:other", "region:us" ]
null
2025-01-15T12:00:37Z
--- library_name: peft license: other base_model: Qwen/Qwen1.5-0.5B-Chat tags: - axolotl - generated_from_trainer model-index: - name: d7a4464c-fc85-4fdf-a030-4e8bee2963d5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen1.5-0.5B-Chat bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 311f161d394c0f20_train_data.json ds_type: json format: custom path: /workspace/input_data/311f161d394c0f20_train_data.json type: field_input: answer_1 field_instruction: question field_output: answer_2 format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: prxy5607/d7a4464c-fc85-4fdf-a030-4e8bee2963d5 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/311f161d394c0f20_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d87d5d3f-f10b-4275-a4e4-bfe0eaa3d151 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d87d5d3f-f10b-4275-a4e4-bfe0eaa3d151 warmup_steps: 20 weight_decay: 0.0 xformers_attention: null ``` </details><br> # d7a4464c-fc85-4fdf-a030-4e8bee2963d5 This model is a fine-tuned version of [Qwen/Qwen1.5-0.5B-Chat](https://huggingface.co/Qwen/Qwen1.5-0.5B-Chat) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2442 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - training_steps: 173 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.1748 | 0.0173 | 1 | 2.7163 | | 2.1854 | 0.8658 | 50 | 2.3032 | | 1.327 | 1.7359 | 100 | 2.2705 | | 1.8221 | 2.6061 | 150 | 2.2442 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
chauhoang/c3c0829d-9f68-466a-be5c-f566d07829a1
chauhoang
2025-01-15T12:06:21Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4", "base_model:adapter:MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4", "region:us" ]
null
2025-01-15T10:27:36Z
--- library_name: peft base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4 tags: - axolotl - generated_from_trainer model-index: - name: c3c0829d-9f68-466a-be5c-f566d07829a1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f7246e3e926d3451_train_data.json ds_type: json format: custom path: /workspace/input_data/f7246e3e926d3451_train_data.json type: field_input: post field_instruction: prompt field_output: summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: chauhoang/c3c0829d-9f68-466a-be5c-f566d07829a1 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/f7246e3e926d3451_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 3239f24a-4b85-4fb3-ad6f-d0e423363394 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 3239f24a-4b85-4fb3-ad6f-d0e423363394 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # c3c0829d-9f68-466a-be5c-f566d07829a1 This model is a fine-tuned version of [MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4](https://huggingface.co/MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7308 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 2.3396 | | 2.204 | 0.0007 | 10 | 2.0032 | | 1.8704 | 0.0013 | 20 | 1.7884 | | 1.7061 | 0.0020 | 30 | 1.7476 | | 1.6744 | 0.0026 | 40 | 1.7331 | | 1.8317 | 0.0033 | 50 | 1.7308 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
thalllsssss/6a0cb56a-3b86-4f99-a379-223018ca7038
thalllsssss
2025-01-15T12:03:31Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-7B-Instruct", "base_model:adapter:unsloth/Qwen2-7B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-15T11:43:34Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 6a0cb56a-3b86-4f99-a379-223018ca7038 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 1efd5fc4ddb558a1_train_data.json ds_type: json format: custom path: /workspace/input_data/1efd5fc4ddb558a1_train_data.json type: field_input: article_title field_instruction: passage field_output: question format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: thalllsssss/6a0cb56a-3b86-4f99-a379-223018ca7038 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/1efd5fc4ddb558a1_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d481345d-f6f1-4ade-b101-28925f9ecb10 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d481345d-f6f1-4ade-b101-28925f9ecb10 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 6a0cb56a-3b86-4f99-a379-223018ca7038 This model is a fine-tuned version of [unsloth/Qwen2-7B-Instruct](https://huggingface.co/unsloth/Qwen2-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5251 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3717 | 0.1631 | 200 | 1.5251 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
fongios/modernbert-base-conll2012_ontonotesv5-english_v4-ner
fongios
2025-01-15T12:02:35Z
17
0
transformers
[ "transformers", "safetensors", "modernbert", "token-classification", "generated_from_trainer", "base_model:answerdotai/ModernBERT-base", "base_model:finetune:answerdotai/ModernBERT-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-01-08T08:52:50Z
--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: modernbert-base-conll2012_ontonotesv5-english_v4-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # modernbert-base-conll2012_ontonotesv5-english_v4-ner This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0679 - Precision: 0.8636 - Recall: 0.8704 - F1: 0.8670 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | 0.0698 | 1.0 | 2350 | 0.0795 | 0.8121 | 0.8344 | 0.8231 | | 0.0356 | 2.0 | 4700 | 0.0707 | 0.8438 | 0.8575 | 0.8506 | | 0.0184 | 3.0 | 7050 | 0.0795 | 0.8461 | 0.8567 | 0.8513 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.5.0+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0
khaoulael43/MR_ocr
khaoulael43
2025-01-15T12:02:34Z
6
0
transformers
[ "transformers", "safetensors", "vision-encoder-decoder", "image-text-to-text", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-01-15T12:01:30Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
cvoffer/5595a1f2-87e9-40ba-8f79-710df4df370c
cvoffer
2025-01-15T12:02:29Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:jhflow/mistral7b-lora-multi-turn-v2", "base_model:adapter:jhflow/mistral7b-lora-multi-turn-v2", "region:us" ]
null
2025-01-15T10:33:32Z
--- library_name: peft base_model: jhflow/mistral7b-lora-multi-turn-v2 tags: - axolotl - generated_from_trainer model-index: - name: 5595a1f2-87e9-40ba-8f79-710df4df370c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: jhflow/mistral7b-lora-multi-turn-v2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - d0a2c031ff985a80_train_data.json ds_type: json format: custom path: /workspace/input_data/d0a2c031ff985a80_train_data.json type: field_input: cifstr field_instruction: description field_output: description_w_bondlengths format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: cvoffer/5595a1f2-87e9-40ba-8f79-710df4df370c hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 80GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/d0a2c031ff985a80_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2e5b11ba-eec1-46bc-aa83-a0403970b08e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 2e5b11ba-eec1-46bc-aa83-a0403970b08e warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 5595a1f2-87e9-40ba-8f79-710df4df370c This model is a fine-tuned version of [jhflow/mistral7b-lora-multi-turn-v2](https://huggingface.co/jhflow/mistral7b-lora-multi-turn-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | nan | | 0.0 | 0.0004 | 5 | nan | | 0.0 | 0.0007 | 10 | nan | | 0.0 | 0.0011 | 15 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
cunghoctienganh/75006cde-38ad-447b-9160-7ccef36c0eaa
cunghoctienganh
2025-01-15T12:02:27Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-7B-Instruct", "base_model:adapter:unsloth/Qwen2-7B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-15T11:43:31Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 75006cde-38ad-447b-9160-7ccef36c0eaa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 1efd5fc4ddb558a1_train_data.json ds_type: json format: custom path: /workspace/input_data/1efd5fc4ddb558a1_train_data.json type: field_input: article_title field_instruction: passage field_output: question format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: cunghoctienganh/75006cde-38ad-447b-9160-7ccef36c0eaa hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/1efd5fc4ddb558a1_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d481345d-f6f1-4ade-b101-28925f9ecb10 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d481345d-f6f1-4ade-b101-28925f9ecb10 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 75006cde-38ad-447b-9160-7ccef36c0eaa This model is a fine-tuned version of [unsloth/Qwen2-7B-Instruct](https://huggingface.co/unsloth/Qwen2-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5237 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3509 | 0.1631 | 200 | 1.5237 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Kort/Cm11
Kort
2025-01-15T12:00:53Z
1,218
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-15T11:05:12Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
standobrev/ppo-Huggy
standobrev
2025-01-15T12:00:09Z
24
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2025-01-15T12:00:05Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: standobrev/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
lesso09/96bd4178-c6cd-40ea-b73f-1b953d68d293
lesso09
2025-01-15T11:59:28Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2-0.5B", "base_model:adapter:Qwen/Qwen2-0.5B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-15T11:29:18Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2-0.5B tags: - axolotl - generated_from_trainer model-index: - name: 96bd4178-c6cd-40ea-b73f-1b953d68d293 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2-0.5B bf16: true chat_template: llama3 datasets: - data_files: - 82602250e0cc45ea_train_data.json ds_type: json format: custom path: /workspace/input_data/82602250e0cc45ea_train_data.json type: field_instruction: instruction field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso09/96bd4178-c6cd-40ea-b73f-1b953d68d293 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/82602250e0cc45ea_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 11bcdc0d-bc69-4f77-a28c-0c48d7e59612 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 11bcdc0d-bc69-4f77-a28c-0c48d7e59612 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 96bd4178-c6cd-40ea-b73f-1b953d68d293 This model is a fine-tuned version of [Qwen/Qwen2-0.5B](https://huggingface.co/Qwen/Qwen2-0.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6571 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.8361 | 0.0002 | 1 | 0.7384 | | 0.6478 | 0.0008 | 5 | 0.7304 | | 0.6054 | 0.0017 | 10 | 0.6887 | | 0.6566 | 0.0025 | 15 | 0.6769 | | 0.6887 | 0.0034 | 20 | 0.6606 | | 0.6363 | 0.0042 | 25 | 0.6571 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
MayBashendy/ArabicNewSplits7_usingALLEssays_FineTuningAraBERT_run1_AugV5_k9_task1_organization
MayBashendy
2025-01-15T11:59:27Z
184
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-12-31T15:22:00Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits7_usingALLEssays_FineTuningAraBERT_run1_AugV5_k9_task1_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits7_usingALLEssays_FineTuningAraBERT_run1_AugV5_k9_task1_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2582 - Qwk: 0.4444 - Mse: 1.2582 - Rmse: 1.1217 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-------:|:----:|:---------------:|:------:|:------:|:------:| | No log | 0.0476 | 2 | 6.6472 | 0.0308 | 6.6472 | 2.5782 | | No log | 0.0952 | 4 | 4.2066 | 0.0684 | 4.2066 | 2.0510 | | No log | 0.1429 | 6 | 3.0801 | 0.0121 | 3.0801 | 1.7550 | | No log | 0.1905 | 8 | 2.6526 | 0.1111 | 2.6526 | 1.6287 | | No log | 0.2381 | 10 | 2.2310 | 0.2090 | 2.2310 | 1.4936 | | No log | 0.2857 | 12 | 1.8827 | 0.1587 | 1.8827 | 1.3721 | | No log | 0.3333 | 14 | 1.7119 | 0.1947 | 1.7119 | 1.3084 | | No log | 0.3810 | 16 | 1.6687 | 0.1468 | 1.6687 | 1.2918 | | No log | 0.4286 | 18 | 1.7077 | 0.2143 | 1.7077 | 1.3068 | | No log | 0.4762 | 20 | 1.9203 | 0.3200 | 1.9203 | 1.3858 | | No log | 0.5238 | 22 | 2.2319 | 0.1119 | 2.2319 | 1.4940 | | No log | 0.5714 | 24 | 2.2575 | 0.1119 | 2.2575 | 1.5025 | | No log | 0.6190 | 26 | 2.0160 | 0.2901 | 2.0160 | 1.4198 | | No log | 0.6667 | 28 | 1.8143 | 0.3175 | 1.8143 | 1.3470 | | No log | 0.7143 | 30 | 1.8343 | 0.2812 | 1.8343 | 1.3543 | | No log | 0.7619 | 32 | 1.8075 | 0.2748 | 1.8075 | 1.3444 | | No log | 0.8095 | 34 | 1.8152 | 0.2941 | 1.8152 | 1.3473 | | No log | 0.8571 | 36 | 1.8236 | 0.2958 | 1.8236 | 1.3504 | | No log | 0.9048 | 38 | 1.9339 | 0.3613 | 1.9339 | 1.3906 | | No log | 0.9524 | 40 | 2.0391 | 0.3797 | 2.0391 | 1.4280 | | No log | 1.0 | 42 | 1.8790 | 0.3425 | 1.8790 | 1.3708 | | No log | 1.0476 | 44 | 1.9106 | 0.3660 | 1.9106 | 1.3822 | | No log | 1.0952 | 46 | 1.7269 | 0.3121 | 1.7269 | 1.3141 | | No log | 1.1429 | 48 | 1.6129 | 0.2537 | 1.6129 | 1.2700 | | No log | 1.1905 | 50 | 1.7054 | 0.2479 | 1.7054 | 1.3059 | | No log | 1.2381 | 52 | 1.8428 | 0.2131 | 1.8428 | 1.3575 | | No log | 1.2857 | 54 | 1.6470 | 0.3387 | 1.6470 | 1.2833 | | No log | 1.3333 | 56 | 1.7371 | 0.2290 | 1.7371 | 1.3180 | | No log | 1.3810 | 58 | 1.9184 | 0.3014 | 1.9184 | 1.3851 | | No log | 1.4286 | 60 | 1.9393 | 0.3046 | 1.9393 | 1.3926 | | No log | 1.4762 | 62 | 1.6272 | 0.3759 | 1.6272 | 1.2756 | | No log | 1.5238 | 64 | 1.4414 | 0.4242 | 1.4414 | 1.2006 | | No log | 1.5714 | 66 | 1.3736 | 0.4361 | 1.3736 | 1.1720 | | No log | 1.6190 | 68 | 1.5664 | 0.3433 | 1.5664 | 1.2516 | | No log | 1.6667 | 70 | 1.6920 | 0.3571 | 1.6920 | 1.3008 | | No log | 1.7143 | 72 | 1.8273 | 0.3776 | 1.8273 | 1.3518 | | No log | 1.7619 | 74 | 1.3764 | 0.4593 | 1.3764 | 1.1732 | | No log | 1.8095 | 76 | 1.2880 | 0.4672 | 1.2880 | 1.1349 | | No log | 1.8571 | 78 | 1.5029 | 0.4354 | 1.5029 | 1.2259 | | No log | 1.9048 | 80 | 1.7368 | 0.4286 | 1.7368 | 1.3179 | | No log | 1.9524 | 82 | 1.5037 | 0.4805 | 1.5037 | 1.2262 | | No log | 2.0 | 84 | 1.2445 | 0.5429 | 1.2445 | 1.1156 | | No log | 2.0476 | 86 | 1.1250 | 0.4839 | 1.1250 | 1.0607 | | No log | 2.0952 | 88 | 1.0446 | 0.5366 | 1.0446 | 1.0221 | | No log | 2.1429 | 90 | 1.0996 | 0.5455 | 1.0996 | 1.0486 | | No log | 2.1905 | 92 | 1.7179 | 0.4908 | 1.7179 | 1.3107 | | No log | 2.2381 | 94 | 1.9387 | 0.3721 | 1.9387 | 1.3924 | | No log | 2.2857 | 96 | 1.6140 | 0.4720 | 1.6140 | 1.2704 | | No log | 2.3333 | 98 | 1.2756 | 0.5306 | 1.2756 | 1.1294 | | No log | 2.3810 | 100 | 1.3475 | 0.5139 | 1.3475 | 1.1608 | | No log | 2.4286 | 102 | 1.5214 | 0.4755 | 1.5214 | 1.2334 | | No log | 2.4762 | 104 | 1.5458 | 0.4755 | 1.5458 | 1.2433 | | No log | 2.5238 | 106 | 1.4883 | 0.4667 | 1.4883 | 1.2200 | | No log | 2.5714 | 108 | 1.3098 | 0.5503 | 1.3098 | 1.1445 | | No log | 2.6190 | 110 | 1.1070 | 0.5455 | 1.1070 | 1.0521 | | No log | 2.6667 | 112 | 1.0150 | 0.5507 | 1.0150 | 1.0075 | | No log | 2.7143 | 114 | 0.9982 | 0.5649 | 0.9982 | 0.9991 | | No log | 2.7619 | 116 | 1.0078 | 0.5354 | 1.0078 | 1.0039 | | No log | 2.8095 | 118 | 1.0581 | 0.4878 | 1.0581 | 1.0286 | | No log | 2.8571 | 120 | 1.1103 | 0.4878 | 1.1103 | 1.0537 | | No log | 2.9048 | 122 | 1.0968 | 0.5 | 1.0968 | 1.0473 | | No log | 2.9524 | 124 | 1.0680 | 0.4677 | 1.0680 | 1.0334 | | No log | 3.0 | 126 | 1.0890 | 0.5271 | 1.0890 | 1.0436 | | No log | 3.0476 | 128 | 1.0813 | 0.5758 | 1.0813 | 1.0399 | | No log | 3.0952 | 130 | 1.0751 | 0.6061 | 1.0751 | 1.0369 | | No log | 3.1429 | 132 | 1.0860 | 0.5564 | 1.0860 | 1.0421 | | No log | 3.1905 | 134 | 1.0899 | 0.5821 | 1.0899 | 1.0440 | | No log | 3.2381 | 136 | 1.0943 | 0.5564 | 1.0943 | 1.0461 | | No log | 3.2857 | 138 | 1.1219 | 0.5038 | 1.1219 | 1.0592 | | No log | 3.3333 | 140 | 1.1773 | 0.4252 | 1.1773 | 1.0850 | | No log | 3.3810 | 142 | 1.2472 | 0.4480 | 1.2472 | 1.1168 | | No log | 3.4286 | 144 | 1.2752 | 0.4480 | 1.2752 | 1.1293 | | No log | 3.4762 | 146 | 1.2123 | 0.4923 | 1.2123 | 1.1011 | | No log | 3.5238 | 148 | 1.1778 | 0.5248 | 1.1778 | 1.0853 | | No log | 3.5714 | 150 | 1.1573 | 0.5674 | 1.1573 | 1.0758 | | No log | 3.6190 | 152 | 1.1160 | 0.5874 | 1.1160 | 1.0564 | | No log | 3.6667 | 154 | 1.1368 | 0.6014 | 1.1368 | 1.0662 | | No log | 3.7143 | 156 | 1.2000 | 0.6111 | 1.2000 | 1.0954 | | No log | 3.7619 | 158 | 1.1680 | 0.5874 | 1.1680 | 1.0807 | | No log | 3.8095 | 160 | 1.1147 | 0.5781 | 1.1147 | 1.0558 | | No log | 3.8571 | 162 | 1.1758 | 0.528 | 1.1758 | 1.0844 | | No log | 3.9048 | 164 | 1.2083 | 0.5354 | 1.2083 | 1.0992 | | No log | 3.9524 | 166 | 1.1355 | 0.5954 | 1.1355 | 1.0656 | | No log | 4.0 | 168 | 1.0779 | 0.5496 | 1.0779 | 1.0382 | | No log | 4.0476 | 170 | 1.4606 | 0.5229 | 1.4606 | 1.2085 | | No log | 4.0952 | 172 | 1.9892 | 0.3934 | 1.9892 | 1.4104 | | No log | 4.1429 | 174 | 1.8532 | 0.4372 | 1.8532 | 1.3613 | | No log | 4.1905 | 176 | 1.5890 | 0.5486 | 1.5890 | 1.2606 | | No log | 4.2381 | 178 | 1.3341 | 0.5422 | 1.3341 | 1.1550 | | No log | 4.2857 | 180 | 1.2200 | 0.6135 | 1.2200 | 1.1045 | | No log | 4.3333 | 182 | 1.1306 | 0.6115 | 1.1306 | 1.0633 | | No log | 4.3810 | 184 | 1.0350 | 0.5906 | 1.0350 | 1.0174 | | No log | 4.4286 | 186 | 1.1259 | 0.5752 | 1.1259 | 1.0611 | | No log | 4.4762 | 188 | 1.2317 | 0.56 | 1.2317 | 1.1098 | | No log | 4.5238 | 190 | 1.2799 | 0.52 | 1.2799 | 1.1313 | | No log | 4.5714 | 192 | 1.2145 | 0.5315 | 1.2145 | 1.1021 | | No log | 4.6190 | 194 | 1.1996 | 0.5315 | 1.1996 | 1.0953 | | No log | 4.6667 | 196 | 1.1966 | 0.5248 | 1.1966 | 1.0939 | | No log | 4.7143 | 198 | 1.3458 | 0.4636 | 1.3458 | 1.1601 | | No log | 4.7619 | 200 | 1.6028 | 0.4684 | 1.6028 | 1.2660 | | No log | 4.8095 | 202 | 1.2595 | 0.5298 | 1.2595 | 1.1223 | | No log | 4.8571 | 204 | 0.9573 | 0.6014 | 0.9573 | 0.9784 | | No log | 4.9048 | 206 | 0.9309 | 0.5797 | 0.9309 | 0.9648 | | No log | 4.9524 | 208 | 0.9859 | 0.5630 | 0.9859 | 0.9929 | | No log | 5.0 | 210 | 1.0402 | 0.5612 | 1.0402 | 1.0199 | | No log | 5.0476 | 212 | 1.0670 | 0.5694 | 1.0670 | 1.0330 | | No log | 5.0952 | 214 | 1.0413 | 0.5906 | 1.0413 | 1.0204 | | No log | 5.1429 | 216 | 0.9632 | 0.6216 | 0.9632 | 0.9814 | | No log | 5.1905 | 218 | 0.9811 | 0.6667 | 0.9811 | 0.9905 | | No log | 5.2381 | 220 | 1.2863 | 0.5618 | 1.2863 | 1.1342 | | No log | 5.2857 | 222 | 1.6420 | 0.53 | 1.6420 | 1.2814 | | No log | 5.3333 | 224 | 1.5117 | 0.5503 | 1.5117 | 1.2295 | | No log | 5.3810 | 226 | 1.3211 | 0.6 | 1.3211 | 1.1494 | | No log | 5.4286 | 228 | 1.3365 | 0.5875 | 1.3365 | 1.1561 | | No log | 5.4762 | 230 | 1.4392 | 0.5290 | 1.4392 | 1.1997 | | No log | 5.5238 | 232 | 1.7117 | 0.4634 | 1.7117 | 1.3083 | | No log | 5.5714 | 234 | 1.9319 | 0.3799 | 1.9319 | 1.3899 | | No log | 5.6190 | 236 | 1.5185 | 0.4868 | 1.5185 | 1.2323 | | No log | 5.6667 | 238 | 1.0712 | 0.5857 | 1.0712 | 1.0350 | | No log | 5.7143 | 240 | 0.9442 | 0.6047 | 0.9442 | 0.9717 | | No log | 5.7619 | 242 | 0.9660 | 0.5954 | 0.9660 | 0.9828 | | No log | 5.8095 | 244 | 1.0431 | 0.6299 | 1.0431 | 1.0213 | | No log | 5.8571 | 246 | 1.0299 | 0.625 | 1.0299 | 1.0148 | | No log | 5.9048 | 248 | 0.9538 | 0.5984 | 0.9538 | 0.9766 | | No log | 5.9524 | 250 | 0.9605 | 0.5857 | 0.9605 | 0.9801 | | No log | 6.0 | 252 | 1.1218 | 0.5867 | 1.1218 | 1.0592 | | No log | 6.0476 | 254 | 1.3765 | 0.5629 | 1.3765 | 1.1733 | | No log | 6.0952 | 256 | 1.5652 | 0.5810 | 1.5652 | 1.2511 | | No log | 6.1429 | 258 | 1.4702 | 0.5862 | 1.4702 | 1.2125 | | No log | 6.1905 | 260 | 1.1371 | 0.6184 | 1.1371 | 1.0664 | | No log | 6.2381 | 262 | 0.9405 | 0.5778 | 0.9405 | 0.9698 | | No log | 6.2857 | 264 | 0.9160 | 0.6260 | 0.9160 | 0.9571 | | No log | 6.3333 | 266 | 0.9142 | 0.6165 | 0.9142 | 0.9561 | | No log | 6.3810 | 268 | 0.9365 | 0.6212 | 0.9365 | 0.9677 | | No log | 6.4286 | 270 | 0.9625 | 0.6260 | 0.9625 | 0.9811 | | No log | 6.4762 | 272 | 0.9824 | 0.6457 | 0.9824 | 0.9911 | | No log | 6.5238 | 274 | 0.9827 | 0.5354 | 0.9827 | 0.9913 | | No log | 6.5714 | 276 | 1.0377 | 0.5303 | 1.0377 | 1.0187 | | No log | 6.6190 | 278 | 1.2391 | 0.5828 | 1.2391 | 1.1131 | | No log | 6.6667 | 280 | 1.8004 | 0.5055 | 1.8004 | 1.3418 | | No log | 6.7143 | 282 | 2.2646 | 0.4039 | 2.2646 | 1.5049 | | No log | 6.7619 | 284 | 1.9862 | 0.4330 | 1.9862 | 1.4093 | | No log | 6.8095 | 286 | 1.5252 | 0.5318 | 1.5252 | 1.2350 | | No log | 6.8571 | 288 | 1.2645 | 0.4935 | 1.2645 | 1.1245 | | No log | 6.9048 | 290 | 1.1673 | 0.5714 | 1.1673 | 1.0804 | | No log | 6.9524 | 292 | 1.0807 | 0.5874 | 1.0807 | 1.0396 | | No log | 7.0 | 294 | 0.9874 | 0.5692 | 0.9874 | 0.9937 | | No log | 7.0476 | 296 | 0.9655 | 0.5692 | 0.9655 | 0.9826 | | No log | 7.0952 | 298 | 1.0016 | 0.5920 | 1.0016 | 1.0008 | | No log | 7.1429 | 300 | 1.0313 | 0.5455 | 1.0313 | 1.0155 | | No log | 7.1905 | 302 | 1.0149 | 0.5528 | 1.0149 | 1.0074 | | No log | 7.2381 | 304 | 1.0110 | 0.5397 | 1.0110 | 1.0055 | | No log | 7.2857 | 306 | 1.0593 | 0.4848 | 1.0593 | 1.0292 | | No log | 7.3333 | 308 | 1.1083 | 0.5294 | 1.1083 | 1.0527 | | No log | 7.3810 | 310 | 1.0839 | 0.5441 | 1.0839 | 1.0411 | | No log | 7.4286 | 312 | 1.1438 | 0.5578 | 1.1438 | 1.0695 | | No log | 7.4762 | 314 | 1.2661 | 0.5844 | 1.2661 | 1.1252 | | No log | 7.5238 | 316 | 1.3836 | 0.4968 | 1.3836 | 1.1763 | | No log | 7.5714 | 318 | 1.3845 | 0.5256 | 1.3845 | 1.1766 | | No log | 7.6190 | 320 | 1.3110 | 0.5584 | 1.3110 | 1.1450 | | No log | 7.6667 | 322 | 1.2582 | 0.5563 | 1.2582 | 1.1217 | | No log | 7.7143 | 324 | 1.2498 | 0.5430 | 1.2498 | 1.1179 | | No log | 7.7619 | 326 | 1.3593 | 0.5605 | 1.3593 | 1.1659 | | No log | 7.8095 | 328 | 1.4905 | 0.5509 | 1.4905 | 1.2208 | | No log | 7.8571 | 330 | 1.5618 | 0.4941 | 1.5618 | 1.2497 | | No log | 7.9048 | 332 | 1.7452 | 0.4667 | 1.7452 | 1.3211 | | No log | 7.9524 | 334 | 2.0877 | 0.3731 | 2.0877 | 1.4449 | | No log | 8.0 | 336 | 2.4492 | 0.3417 | 2.4492 | 1.5650 | | No log | 8.0476 | 338 | 2.1721 | 0.4020 | 2.1721 | 1.4738 | | No log | 8.0952 | 340 | 1.7283 | 0.4615 | 1.7283 | 1.3146 | | No log | 8.1429 | 342 | 1.4234 | 0.5359 | 1.4234 | 1.1931 | | No log | 8.1905 | 344 | 1.3259 | 0.5526 | 1.3259 | 1.1515 | | No log | 8.2381 | 346 | 1.2695 | 0.5526 | 1.2695 | 1.1267 | | No log | 8.2857 | 348 | 1.2073 | 0.5828 | 1.2073 | 1.0988 | | No log | 8.3333 | 350 | 1.1797 | 0.5897 | 1.1797 | 1.0861 | | No log | 8.3810 | 352 | 1.2101 | 0.5987 | 1.2101 | 1.1000 | | No log | 8.4286 | 354 | 1.2036 | 0.5987 | 1.2036 | 1.0971 | | No log | 8.4762 | 356 | 1.1513 | 0.5676 | 1.1513 | 1.0730 | | No log | 8.5238 | 358 | 1.1727 | 0.5676 | 1.1727 | 1.0829 | | No log | 8.5714 | 360 | 1.2555 | 0.6104 | 1.2555 | 1.1205 | | No log | 8.6190 | 362 | 1.2919 | 0.6065 | 1.2919 | 1.1366 | | No log | 8.6667 | 364 | 1.2634 | 0.6065 | 1.2634 | 1.1240 | | No log | 8.7143 | 366 | 1.2480 | 0.5772 | 1.2480 | 1.1171 | | No log | 8.7619 | 368 | 1.1525 | 0.5556 | 1.1525 | 1.0735 | | No log | 8.8095 | 370 | 1.0760 | 0.5612 | 1.0760 | 1.0373 | | No log | 8.8571 | 372 | 1.0583 | 0.5414 | 1.0583 | 1.0287 | | No log | 8.9048 | 374 | 1.1234 | 0.5255 | 1.1234 | 1.0599 | | No log | 8.9524 | 376 | 1.2110 | 0.5037 | 1.2110 | 1.1004 | | No log | 9.0 | 378 | 1.1975 | 0.5113 | 1.1975 | 1.0943 | | No log | 9.0476 | 380 | 1.1380 | 0.4844 | 1.1380 | 1.0668 | | No log | 9.0952 | 382 | 1.0735 | 0.4640 | 1.0735 | 1.0361 | | No log | 9.1429 | 384 | 1.0548 | 0.5231 | 1.0548 | 1.0270 | | No log | 9.1905 | 386 | 1.1861 | 0.5733 | 1.1861 | 1.0891 | | No log | 9.2381 | 388 | 1.3574 | 0.5732 | 1.3574 | 1.1651 | | No log | 9.2857 | 390 | 1.4468 | 0.5537 | 1.4468 | 1.2028 | | No log | 9.3333 | 392 | 1.4303 | 0.5363 | 1.4303 | 1.1960 | | No log | 9.3810 | 394 | 1.3496 | 0.5542 | 1.3496 | 1.1617 | | No log | 9.4286 | 396 | 1.3178 | 0.5660 | 1.3178 | 1.1480 | | No log | 9.4762 | 398 | 1.2733 | 0.5621 | 1.2733 | 1.1284 | | No log | 9.5238 | 400 | 1.1571 | 0.5906 | 1.1571 | 1.0757 | | No log | 9.5714 | 402 | 1.0931 | 0.6225 | 1.0931 | 1.0455 | | No log | 9.6190 | 404 | 1.0566 | 0.6040 | 1.0566 | 1.0279 | | No log | 9.6667 | 406 | 1.0302 | 0.5547 | 1.0302 | 1.0150 | | No log | 9.7143 | 408 | 1.0111 | 0.5926 | 1.0111 | 1.0055 | | No log | 9.7619 | 410 | 1.0276 | 0.5564 | 1.0276 | 1.0137 | | No log | 9.8095 | 412 | 1.0673 | 0.5038 | 1.0673 | 1.0331 | | No log | 9.8571 | 414 | 1.1402 | 0.5333 | 1.1402 | 1.0678 | | No log | 9.9048 | 416 | 1.2083 | 0.5401 | 1.2083 | 1.0992 | | No log | 9.9524 | 418 | 1.1879 | 0.5522 | 1.1879 | 1.0899 | | No log | 10.0 | 420 | 1.1910 | 0.5333 | 1.1910 | 1.0913 | | No log | 10.0476 | 422 | 1.2275 | 0.5263 | 1.2275 | 1.1079 | | No log | 10.0952 | 424 | 1.3173 | 0.5 | 1.3173 | 1.1477 | | No log | 10.1429 | 426 | 1.3448 | 0.5255 | 1.3448 | 1.1596 | | No log | 10.1905 | 428 | 1.3363 | 0.5255 | 1.3363 | 1.1560 | | No log | 10.2381 | 430 | 1.2974 | 0.5 | 1.2974 | 1.1390 | | No log | 10.2857 | 432 | 1.2605 | 0.4823 | 1.2605 | 1.1227 | | No log | 10.3333 | 434 | 1.2343 | 0.5315 | 1.2343 | 1.1110 | | No log | 10.3810 | 436 | 1.2371 | 0.5211 | 1.2371 | 1.1122 | | No log | 10.4286 | 438 | 1.2290 | 0.4965 | 1.2290 | 1.1086 | | No log | 10.4762 | 440 | 1.2682 | 0.4604 | 1.2682 | 1.1261 | | No log | 10.5238 | 442 | 1.2583 | 0.4493 | 1.2583 | 1.1217 | | No log | 10.5714 | 444 | 1.3011 | 0.4648 | 1.3011 | 1.1407 | | No log | 10.6190 | 446 | 1.3544 | 0.5342 | 1.3544 | 1.1638 | | No log | 10.6667 | 448 | 1.3958 | 0.5170 | 1.3958 | 1.1814 | | No log | 10.7143 | 450 | 1.5708 | 0.5359 | 1.5708 | 1.2533 | | No log | 10.7619 | 452 | 1.6767 | 0.4815 | 1.6767 | 1.2949 | | No log | 10.8095 | 454 | 1.6674 | 0.5098 | 1.6674 | 1.2913 | | No log | 10.8571 | 456 | 1.4777 | 0.5235 | 1.4777 | 1.2156 | | No log | 10.9048 | 458 | 1.3322 | 0.4755 | 1.3322 | 1.1542 | | No log | 10.9524 | 460 | 1.2564 | 0.4789 | 1.2564 | 1.1209 | | No log | 11.0 | 462 | 1.2475 | 0.4930 | 1.2475 | 1.1169 | | No log | 11.0476 | 464 | 1.2884 | 0.5175 | 1.2884 | 1.1351 | | No log | 11.0952 | 466 | 1.3710 | 0.5 | 1.3710 | 1.1709 | | No log | 11.1429 | 468 | 1.4118 | 0.5034 | 1.4118 | 1.1882 | | No log | 11.1905 | 470 | 1.4078 | 0.4892 | 1.4078 | 1.1865 | | No log | 11.2381 | 472 | 1.3778 | 0.4818 | 1.3778 | 1.1738 | | No log | 11.2857 | 474 | 1.3127 | 0.4706 | 1.3127 | 1.1457 | | No log | 11.3333 | 476 | 1.2595 | 0.4733 | 1.2595 | 1.1223 | | No log | 11.3810 | 478 | 1.2553 | 0.4627 | 1.2553 | 1.1204 | | No log | 11.4286 | 480 | 1.3100 | 0.4748 | 1.3100 | 1.1445 | | No log | 11.4762 | 482 | 1.3904 | 0.4966 | 1.3904 | 1.1792 | | No log | 11.5238 | 484 | 1.4769 | 0.4966 | 1.4769 | 1.2153 | | No log | 11.5714 | 486 | 1.4272 | 0.4966 | 1.4272 | 1.1947 | | No log | 11.6190 | 488 | 1.3014 | 0.4828 | 1.3014 | 1.1408 | | No log | 11.6667 | 490 | 1.2514 | 0.4681 | 1.2514 | 1.1186 | | No log | 11.7143 | 492 | 1.2352 | 0.4828 | 1.2352 | 1.1114 | | No log | 11.7619 | 494 | 1.1912 | 0.4895 | 1.1912 | 1.0914 | | No log | 11.8095 | 496 | 1.1886 | 0.5106 | 1.1886 | 1.0902 | | No log | 11.8571 | 498 | 1.2480 | 0.4722 | 1.2480 | 1.1171 | | 0.3993 | 11.9048 | 500 | 1.2697 | 0.4898 | 1.2697 | 1.1268 | | 0.3993 | 11.9524 | 502 | 1.2444 | 0.5 | 1.2444 | 1.1155 | | 0.3993 | 12.0 | 504 | 1.1984 | 0.5224 | 1.1984 | 1.0947 | | 0.3993 | 12.0476 | 506 | 1.1418 | 0.5152 | 1.1418 | 1.0685 | | 0.3993 | 12.0952 | 508 | 1.0992 | 0.5231 | 1.0992 | 1.0484 | | 0.3993 | 12.1429 | 510 | 1.0826 | 0.5397 | 1.0826 | 1.0405 | | 0.3993 | 12.1905 | 512 | 1.1141 | 0.5469 | 1.1141 | 1.0555 | | 0.3993 | 12.2381 | 514 | 1.1409 | 0.5512 | 1.1409 | 1.0681 | | 0.3993 | 12.2857 | 516 | 1.1616 | 0.5323 | 1.1616 | 1.0778 | | 0.3993 | 12.3333 | 518 | 1.1678 | 0.4553 | 1.1678 | 1.0806 | | 0.3993 | 12.3810 | 520 | 1.2257 | 0.4516 | 1.2257 | 1.1071 | | 0.3993 | 12.4286 | 522 | 1.2640 | 0.4480 | 1.2640 | 1.1243 | | 0.3993 | 12.4762 | 524 | 1.2590 | 0.4355 | 1.2590 | 1.1220 | | 0.3993 | 12.5238 | 526 | 1.2582 | 0.4444 | 1.2582 | 1.1217 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
lesso06/230d9c9d-bd23-40e4-8b5a-5df40ecf6645
lesso06
2025-01-15T11:59:06Z
6
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-1b", "base_model:adapter:EleutherAI/pythia-1b", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-15T11:37:49Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-1b tags: - axolotl - generated_from_trainer model-index: - name: 230d9c9d-bd23-40e4-8b5a-5df40ecf6645 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-1b bf16: true chat_template: llama3 datasets: - data_files: - faf590c77bf66bb4_train_data.json ds_type: json format: custom path: /workspace/input_data/faf590c77bf66bb4_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso06/230d9c9d-bd23-40e4-8b5a-5df40ecf6645 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/faf590c77bf66bb4_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 22f0c3d7-b3a9-4b99-8fa8-01838f3708c6 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 22f0c3d7-b3a9-4b99-8fa8-01838f3708c6 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 230d9c9d-bd23-40e4-8b5a-5df40ecf6645 This model is a fine-tuned version of [EleutherAI/pythia-1b](https://huggingface.co/EleutherAI/pythia-1b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.6906 | 0.0001 | 1 | 2.7888 | | 10.9114 | 0.0005 | 5 | 2.5138 | | 6.8535 | 0.0010 | 10 | 1.5266 | | 3.3467 | 0.0016 | 15 | 0.6703 | | 1.464 | 0.0021 | 20 | 0.4148 | | 1.5469 | 0.0026 | 25 | 0.3721 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
great0001/e855a9f0-9dac-4a2a-a918-ce25bde13dde
great0001
2025-01-15T11:58:35Z
16
0
peft
[ "peft", "safetensors", "gpt_neo", "axolotl", "generated_from_trainer", "base_model:EleutherAI/gpt-neo-125m", "base_model:adapter:EleutherAI/gpt-neo-125m", "license:mit", "region:us" ]
null
2025-01-15T11:38:13Z
--- library_name: peft license: mit base_model: EleutherAI/gpt-neo-125m tags: - axolotl - generated_from_trainer model-index: - name: e855a9f0-9dac-4a2a-a918-ce25bde13dde results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/gpt-neo-125m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - d3a3e0021951f4ab_train_data.json ds_type: json format: custom path: /workspace/input_data/d3a3e0021951f4ab_train_data.json type: field_input: '' field_instruction: desciption field_output: caption format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: great0001/e855a9f0-9dac-4a2a-a918-ce25bde13dde hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/d3a3e0021951f4ab_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: e4703f52-35c0-4efe-9d06-eb10e804627c wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: e4703f52-35c0-4efe-9d06-eb10e804627c warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # e855a9f0-9dac-4a2a-a918-ce25bde13dde This model is a fine-tuned version of [EleutherAI/gpt-neo-125m](https://huggingface.co/EleutherAI/gpt-neo-125m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.4004 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 12.8567 | 0.0000 | 1 | 3.4390 | | 14.4906 | 0.0000 | 3 | 3.4397 | | 13.3743 | 0.0001 | 6 | 3.4318 | | 14.1981 | 0.0001 | 9 | 3.4004 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nbninh/37127357-5fa3-4fbd-a97b-566ef4554c76
nbninh
2025-01-15T11:57:31Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-1.7B-Instruct", "base_model:adapter:unsloth/SmolLM-1.7B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-15T11:38:20Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-1.7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 37127357-5fa3-4fbd-a97b-566ef4554c76 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-1.7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 0c0385643e82895c_train_data.json ds_type: json format: custom path: /workspace/input_data/0c0385643e82895c_train_data.json type: field_input: choices field_instruction: task field_output: question format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nbninh/37127357-5fa3-4fbd-a97b-566ef4554c76 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/0c0385643e82895c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7c57bd3b-4993-496e-8eee-7f49fda1578b wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 7c57bd3b-4993-496e-8eee-7f49fda1578b warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 37127357-5fa3-4fbd-a97b-566ef4554c76 This model is a fine-tuned version of [unsloth/SmolLM-1.7B-Instruct](https://huggingface.co/unsloth/SmolLM-1.7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5827 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.5868 | 0.0169 | 200 | 2.5827 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
thakkkkkk/8871f48b-ff9a-4822-93e5-7fe975a23972
thakkkkkk
2025-01-15T11:56:40Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-1.7B-Instruct", "base_model:adapter:unsloth/SmolLM-1.7B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-15T11:38:29Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-1.7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 8871f48b-ff9a-4822-93e5-7fe975a23972 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-1.7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 0c0385643e82895c_train_data.json ds_type: json format: custom path: /workspace/input_data/0c0385643e82895c_train_data.json type: field_input: choices field_instruction: task field_output: question format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: thakkkkkk/8871f48b-ff9a-4822-93e5-7fe975a23972 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/0c0385643e82895c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7c57bd3b-4993-496e-8eee-7f49fda1578b wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 7c57bd3b-4993-496e-8eee-7f49fda1578b warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 8871f48b-ff9a-4822-93e5-7fe975a23972 This model is a fine-tuned version of [unsloth/SmolLM-1.7B-Instruct](https://huggingface.co/unsloth/SmolLM-1.7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5718 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.5763 | 0.0338 | 200 | 2.5718 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
MayBashendy/ArabicNewSplits7_OSS_usingWellWrittenEssays_FineTuningAraBERT_run1_AugV5_k1_task1_organization
MayBashendy
2025-01-15T11:56:20Z
6
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-15T11:39:58Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits7_OSS_usingWellWrittenEssays_FineTuningAraBERT_run1_AugV5_k1_task1_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits7_OSS_usingWellWrittenEssays_FineTuningAraBERT_run1_AugV5_k1_task1_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0580 - Qwk: 0.6131 - Mse: 1.0580 - Rmse: 1.0286 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | No log | 0.25 | 2 | 6.0434 | 0.0261 | 6.0434 | 2.4583 | | No log | 0.5 | 4 | 3.9893 | 0.1429 | 3.9893 | 1.9973 | | No log | 0.75 | 6 | 2.6914 | 0.0500 | 2.6914 | 1.6406 | | No log | 1.0 | 8 | 1.9588 | 0.0984 | 1.9588 | 1.3996 | | No log | 1.25 | 10 | 1.7472 | 0.1111 | 1.7472 | 1.3218 | | No log | 1.5 | 12 | 1.6663 | 0.0917 | 1.6663 | 1.2908 | | No log | 1.75 | 14 | 1.6471 | 0.1416 | 1.6471 | 1.2834 | | No log | 2.0 | 16 | 1.5418 | 0.1333 | 1.5418 | 1.2417 | | No log | 2.25 | 18 | 1.4940 | 0.1714 | 1.4940 | 1.2223 | | No log | 2.5 | 20 | 1.4679 | 0.1346 | 1.4679 | 1.2116 | | No log | 2.75 | 22 | 1.3960 | 0.1905 | 1.3960 | 1.1815 | | No log | 3.0 | 24 | 1.3620 | 0.2963 | 1.3620 | 1.1671 | | No log | 3.25 | 26 | 1.3401 | 0.4655 | 1.3401 | 1.1576 | | No log | 3.5 | 28 | 1.1229 | 0.5854 | 1.1229 | 1.0597 | | No log | 3.75 | 30 | 1.1577 | 0.56 | 1.1577 | 1.0760 | | No log | 4.0 | 32 | 1.3164 | 0.4762 | 1.3164 | 1.1473 | | No log | 4.25 | 34 | 1.0964 | 0.5781 | 1.0964 | 1.0471 | | No log | 4.5 | 36 | 0.9775 | 0.6316 | 0.9775 | 0.9887 | | No log | 4.75 | 38 | 1.1159 | 0.5846 | 1.1159 | 1.0564 | | No log | 5.0 | 40 | 1.1260 | 0.5581 | 1.1260 | 1.0611 | | No log | 5.25 | 42 | 1.1567 | 0.5271 | 1.1567 | 1.0755 | | No log | 5.5 | 44 | 1.3267 | 0.4580 | 1.3267 | 1.1518 | | No log | 5.75 | 46 | 1.1694 | 0.5512 | 1.1694 | 1.0814 | | No log | 6.0 | 48 | 0.8457 | 0.6571 | 0.8457 | 0.9196 | | No log | 6.25 | 50 | 0.8401 | 0.6475 | 0.8401 | 0.9166 | | No log | 6.5 | 52 | 0.8524 | 0.6569 | 0.8524 | 0.9233 | | No log | 6.75 | 54 | 0.9563 | 0.6619 | 0.9563 | 0.9779 | | No log | 7.0 | 56 | 1.6587 | 0.3741 | 1.6587 | 1.2879 | | No log | 7.25 | 58 | 1.7114 | 0.3546 | 1.7114 | 1.3082 | | No log | 7.5 | 60 | 1.1264 | 0.5379 | 1.1264 | 1.0613 | | No log | 7.75 | 62 | 0.7990 | 0.7273 | 0.7990 | 0.8938 | | No log | 8.0 | 64 | 0.7380 | 0.6993 | 0.7380 | 0.8591 | | No log | 8.25 | 66 | 0.8104 | 0.7234 | 0.8104 | 0.9002 | | No log | 8.5 | 68 | 1.1166 | 0.5793 | 1.1166 | 1.0567 | | No log | 8.75 | 70 | 1.2192 | 0.5286 | 1.2192 | 1.1042 | | No log | 9.0 | 72 | 1.0648 | 0.5846 | 1.0648 | 1.0319 | | No log | 9.25 | 74 | 1.1797 | 0.5271 | 1.1797 | 1.0862 | | No log | 9.5 | 76 | 1.1183 | 0.5271 | 1.1183 | 1.0575 | | No log | 9.75 | 78 | 1.0274 | 0.6462 | 1.0274 | 1.0136 | | No log | 10.0 | 80 | 0.9583 | 0.6562 | 0.9583 | 0.9789 | | No log | 10.25 | 82 | 0.8749 | 0.6512 | 0.8749 | 0.9354 | | No log | 10.5 | 84 | 0.8730 | 0.6716 | 0.8730 | 0.9344 | | No log | 10.75 | 86 | 1.0355 | 0.5694 | 1.0355 | 1.0176 | | No log | 11.0 | 88 | 1.3525 | 0.5698 | 1.3525 | 1.1630 | | No log | 11.25 | 90 | 1.2799 | 0.5195 | 1.2799 | 1.1313 | | No log | 11.5 | 92 | 1.2196 | 0.5034 | 1.2196 | 1.1043 | | No log | 11.75 | 94 | 1.0260 | 0.6119 | 1.0260 | 1.0129 | | No log | 12.0 | 96 | 1.0012 | 0.5556 | 1.0012 | 1.0006 | | No log | 12.25 | 98 | 1.0046 | 0.6308 | 1.0046 | 1.0023 | | No log | 12.5 | 100 | 1.1427 | 0.4964 | 1.1427 | 1.0689 | | No log | 12.75 | 102 | 1.2576 | 0.4755 | 1.2576 | 1.1214 | | No log | 13.0 | 104 | 1.2733 | 0.4966 | 1.2733 | 1.1284 | | No log | 13.25 | 106 | 1.0226 | 0.6618 | 1.0226 | 1.0112 | | No log | 13.5 | 108 | 0.9201 | 0.7194 | 0.9201 | 0.9592 | | No log | 13.75 | 110 | 0.9727 | 0.6259 | 0.9727 | 0.9862 | | No log | 14.0 | 112 | 0.9704 | 0.6216 | 0.9704 | 0.9851 | | No log | 14.25 | 114 | 0.8100 | 0.7034 | 0.8100 | 0.9000 | | No log | 14.5 | 116 | 0.8216 | 0.6620 | 0.8216 | 0.9064 | | No log | 14.75 | 118 | 1.0284 | 0.5926 | 1.0284 | 1.0141 | | No log | 15.0 | 120 | 1.1467 | 0.5850 | 1.1467 | 1.0708 | | No log | 15.25 | 122 | 1.0504 | 0.6111 | 1.0504 | 1.0249 | | No log | 15.5 | 124 | 0.8948 | 0.6618 | 0.8948 | 0.9460 | | No log | 15.75 | 126 | 0.9033 | 0.6508 | 0.9033 | 0.9504 | | No log | 16.0 | 128 | 0.9267 | 0.6032 | 0.9267 | 0.9627 | | No log | 16.25 | 130 | 1.0021 | 0.6107 | 1.0021 | 1.0011 | | No log | 16.5 | 132 | 1.0232 | 0.5938 | 1.0232 | 1.0116 | | No log | 16.75 | 134 | 1.0181 | 0.6429 | 1.0181 | 1.0090 | | No log | 17.0 | 136 | 1.0595 | 0.6093 | 1.0595 | 1.0293 | | No log | 17.25 | 138 | 1.0922 | 0.6104 | 1.0922 | 1.0451 | | No log | 17.5 | 140 | 0.9201 | 0.6667 | 0.9201 | 0.9592 | | No log | 17.75 | 142 | 0.8927 | 0.7361 | 0.8927 | 0.9448 | | No log | 18.0 | 144 | 1.0840 | 0.6216 | 1.0840 | 1.0411 | | No log | 18.25 | 146 | 1.0815 | 0.6111 | 1.0815 | 1.0400 | | No log | 18.5 | 148 | 0.8133 | 0.7068 | 0.8133 | 0.9018 | | No log | 18.75 | 150 | 0.7630 | 0.6767 | 0.7630 | 0.8735 | | No log | 19.0 | 152 | 0.7418 | 0.7 | 0.7418 | 0.8613 | | No log | 19.25 | 154 | 0.7183 | 0.7518 | 0.7183 | 0.8475 | | No log | 19.5 | 156 | 0.9407 | 0.6351 | 0.9407 | 0.9699 | | No log | 19.75 | 158 | 1.1308 | 0.6194 | 1.1308 | 1.0634 | | No log | 20.0 | 160 | 1.0770 | 0.6 | 1.0770 | 1.0378 | | No log | 20.25 | 162 | 1.2141 | 0.5828 | 1.2141 | 1.1019 | | No log | 20.5 | 164 | 1.0783 | 0.6143 | 1.0783 | 1.0384 | | No log | 20.75 | 166 | 0.9227 | 0.6466 | 0.9227 | 0.9605 | | No log | 21.0 | 168 | 0.8481 | 0.6950 | 0.8481 | 0.9209 | | No log | 21.25 | 170 | 0.9505 | 0.6710 | 0.9505 | 0.9750 | | No log | 21.5 | 172 | 1.1145 | 0.625 | 1.1145 | 1.0557 | | No log | 21.75 | 174 | 1.3307 | 0.5714 | 1.3307 | 1.1536 | | No log | 22.0 | 176 | 1.4338 | 0.5093 | 1.4338 | 1.1974 | | No log | 22.25 | 178 | 1.3464 | 0.5590 | 1.3464 | 1.1603 | | No log | 22.5 | 180 | 1.0743 | 0.5816 | 1.0743 | 1.0365 | | No log | 22.75 | 182 | 0.8602 | 0.6963 | 0.8602 | 0.9275 | | No log | 23.0 | 184 | 0.8335 | 0.6822 | 0.8335 | 0.9130 | | No log | 23.25 | 186 | 0.8319 | 0.6614 | 0.8319 | 0.9121 | | No log | 23.5 | 188 | 0.8881 | 0.6667 | 0.8881 | 0.9424 | | No log | 23.75 | 190 | 1.0436 | 0.5778 | 1.0436 | 1.0216 | | No log | 24.0 | 192 | 1.1918 | 0.5816 | 1.1918 | 1.0917 | | No log | 24.25 | 194 | 1.0548 | 0.6099 | 1.0548 | 1.0270 | | No log | 24.5 | 196 | 0.8004 | 0.6944 | 0.8004 | 0.8946 | | No log | 24.75 | 198 | 0.6809 | 0.75 | 0.6809 | 0.8252 | | No log | 25.0 | 200 | 0.6927 | 0.7413 | 0.6927 | 0.8323 | | No log | 25.25 | 202 | 0.7597 | 0.7376 | 0.7597 | 0.8716 | | No log | 25.5 | 204 | 0.9863 | 0.5714 | 0.9863 | 0.9931 | | No log | 25.75 | 206 | 1.5548 | 0.5363 | 1.5548 | 1.2469 | | No log | 26.0 | 208 | 1.9109 | 0.4848 | 1.9109 | 1.3823 | | No log | 26.25 | 210 | 1.8090 | 0.4516 | 1.8090 | 1.3450 | | No log | 26.5 | 212 | 1.4038 | 0.4744 | 1.4038 | 1.1848 | | No log | 26.75 | 214 | 1.0982 | 0.6015 | 1.0982 | 1.0479 | | No log | 27.0 | 216 | 0.9441 | 0.64 | 0.9441 | 0.9716 | | No log | 27.25 | 218 | 0.8690 | 0.6508 | 0.8690 | 0.9322 | | No log | 27.5 | 220 | 0.8980 | 0.6522 | 0.8980 | 0.9476 | | No log | 27.75 | 222 | 0.9651 | 0.6232 | 0.9651 | 0.9824 | | No log | 28.0 | 224 | 1.0026 | 0.6029 | 1.0026 | 1.0013 | | No log | 28.25 | 226 | 0.9311 | 0.6377 | 0.9311 | 0.9649 | | No log | 28.5 | 228 | 0.7594 | 0.6901 | 0.7594 | 0.8714 | | No log | 28.75 | 230 | 0.6972 | 0.7211 | 0.6972 | 0.8350 | | No log | 29.0 | 232 | 0.8108 | 0.6667 | 0.8108 | 0.9005 | | No log | 29.25 | 234 | 0.8886 | 0.6667 | 0.8886 | 0.9426 | | No log | 29.5 | 236 | 0.8329 | 0.6846 | 0.8329 | 0.9126 | | No log | 29.75 | 238 | 0.9348 | 0.6133 | 0.9348 | 0.9669 | | No log | 30.0 | 240 | 1.0132 | 0.6065 | 1.0132 | 1.0066 | | No log | 30.25 | 242 | 0.9766 | 0.6040 | 0.9766 | 0.9883 | | No log | 30.5 | 244 | 0.8360 | 0.6714 | 0.8360 | 0.9143 | | No log | 30.75 | 246 | 0.7462 | 0.7101 | 0.7462 | 0.8638 | | No log | 31.0 | 248 | 0.7229 | 0.7059 | 0.7229 | 0.8502 | | No log | 31.25 | 250 | 0.7320 | 0.7194 | 0.7320 | 0.8556 | | No log | 31.5 | 252 | 0.8151 | 0.6853 | 0.8151 | 0.9028 | | No log | 31.75 | 254 | 0.9163 | 0.6207 | 0.9163 | 0.9572 | | No log | 32.0 | 256 | 1.0681 | 0.5811 | 1.0681 | 1.0335 | | No log | 32.25 | 258 | 1.2252 | 0.5342 | 1.2252 | 1.1069 | | No log | 32.5 | 260 | 1.0575 | 0.6197 | 1.0575 | 1.0283 | | No log | 32.75 | 262 | 0.8359 | 0.7101 | 0.8359 | 0.9143 | | No log | 33.0 | 264 | 0.7626 | 0.7023 | 0.7626 | 0.8732 | | No log | 33.25 | 266 | 0.7741 | 0.7068 | 0.7741 | 0.8798 | | No log | 33.5 | 268 | 0.8100 | 0.7068 | 0.8100 | 0.9000 | | No log | 33.75 | 270 | 0.8567 | 0.6963 | 0.8567 | 0.9256 | | No log | 34.0 | 272 | 0.9446 | 0.6269 | 0.9446 | 0.9719 | | No log | 34.25 | 274 | 0.9539 | 0.6475 | 0.9539 | 0.9767 | | No log | 34.5 | 276 | 0.8931 | 0.6714 | 0.8931 | 0.9450 | | No log | 34.75 | 278 | 0.8309 | 0.7023 | 0.8309 | 0.9115 | | No log | 35.0 | 280 | 0.8487 | 0.7023 | 0.8487 | 0.9212 | | No log | 35.25 | 282 | 0.9441 | 0.6619 | 0.9441 | 0.9717 | | No log | 35.5 | 284 | 1.0647 | 0.6471 | 1.0647 | 1.0319 | | No log | 35.75 | 286 | 1.0482 | 0.6308 | 1.0482 | 1.0238 | | No log | 36.0 | 288 | 1.0268 | 0.624 | 1.0268 | 1.0133 | | No log | 36.25 | 290 | 1.0085 | 0.6129 | 1.0085 | 1.0042 | | No log | 36.5 | 292 | 1.0605 | 0.6308 | 1.0605 | 1.0298 | | No log | 36.75 | 294 | 1.1918 | 0.5674 | 1.1918 | 1.0917 | | No log | 37.0 | 296 | 1.3213 | 0.5 | 1.3213 | 1.1495 | | No log | 37.25 | 298 | 1.2890 | 0.5161 | 1.2890 | 1.1354 | | No log | 37.5 | 300 | 1.1634 | 0.5676 | 1.1634 | 1.0786 | | No log | 37.75 | 302 | 0.9560 | 0.6716 | 0.9560 | 0.9777 | | No log | 38.0 | 304 | 0.8738 | 0.6815 | 0.8738 | 0.9348 | | No log | 38.25 | 306 | 0.8495 | 0.6715 | 0.8495 | 0.9217 | | No log | 38.5 | 308 | 0.8580 | 0.6809 | 0.8580 | 0.9263 | | No log | 38.75 | 310 | 0.9014 | 0.6294 | 0.9014 | 0.9494 | | No log | 39.0 | 312 | 0.8705 | 0.6809 | 0.8705 | 0.9330 | | No log | 39.25 | 314 | 0.7634 | 0.6957 | 0.7634 | 0.8737 | | No log | 39.5 | 316 | 0.7352 | 0.7153 | 0.7352 | 0.8574 | | No log | 39.75 | 318 | 0.7603 | 0.6957 | 0.7603 | 0.8719 | | No log | 40.0 | 320 | 0.8175 | 0.6950 | 0.8175 | 0.9041 | | No log | 40.25 | 322 | 0.9782 | 0.6503 | 0.9782 | 0.9890 | | No log | 40.5 | 324 | 1.0370 | 0.6514 | 1.0370 | 1.0183 | | No log | 40.75 | 326 | 0.8475 | 0.6708 | 0.8475 | 0.9206 | | No log | 41.0 | 328 | 0.7110 | 0.7075 | 0.7110 | 0.8432 | | No log | 41.25 | 330 | 0.7380 | 0.6842 | 0.7380 | 0.8591 | | No log | 41.5 | 332 | 0.8417 | 0.6957 | 0.8417 | 0.9175 | | No log | 41.75 | 334 | 0.7915 | 0.6755 | 0.7915 | 0.8897 | | No log | 42.0 | 336 | 0.8554 | 0.6383 | 0.8554 | 0.9249 | | No log | 42.25 | 338 | 0.8519 | 0.6765 | 0.8519 | 0.9230 | | No log | 42.5 | 340 | 0.8469 | 0.6812 | 0.8469 | 0.9203 | | No log | 42.75 | 342 | 0.8243 | 0.6912 | 0.8243 | 0.9079 | | No log | 43.0 | 344 | 0.8631 | 0.6912 | 0.8631 | 0.9290 | | No log | 43.25 | 346 | 0.9410 | 0.6715 | 0.9410 | 0.9700 | | No log | 43.5 | 348 | 1.0106 | 0.6277 | 1.0106 | 1.0053 | | No log | 43.75 | 350 | 0.9939 | 0.6471 | 0.9939 | 0.9969 | | No log | 44.0 | 352 | 0.9523 | 0.6618 | 0.9523 | 0.9759 | | No log | 44.25 | 354 | 0.9637 | 0.6618 | 0.9637 | 0.9817 | | No log | 44.5 | 356 | 1.0042 | 0.6471 | 1.0042 | 1.0021 | | No log | 44.75 | 358 | 1.0852 | 0.6232 | 1.0852 | 1.0417 | | No log | 45.0 | 360 | 1.2444 | 0.525 | 1.2444 | 1.1155 | | No log | 45.25 | 362 | 1.3566 | 0.5424 | 1.3566 | 1.1647 | | No log | 45.5 | 364 | 1.3405 | 0.5424 | 1.3405 | 1.1578 | | No log | 45.75 | 366 | 1.2306 | 0.5342 | 1.2306 | 1.1093 | | No log | 46.0 | 368 | 0.9911 | 0.6383 | 0.9911 | 0.9955 | | No log | 46.25 | 370 | 0.8483 | 0.6716 | 0.8483 | 0.9210 | | No log | 46.5 | 372 | 0.8155 | 0.6716 | 0.8155 | 0.9031 | | No log | 46.75 | 374 | 0.8317 | 0.6716 | 0.8317 | 0.9120 | | No log | 47.0 | 376 | 0.9380 | 0.6525 | 0.9380 | 0.9685 | | No log | 47.25 | 378 | 1.0442 | 0.6667 | 1.0442 | 1.0219 | | No log | 47.5 | 380 | 0.9907 | 0.6533 | 0.9907 | 0.9953 | | No log | 47.75 | 382 | 0.8545 | 0.6957 | 0.8545 | 0.9244 | | No log | 48.0 | 384 | 0.7984 | 0.7153 | 0.7984 | 0.8935 | | No log | 48.25 | 386 | 0.8040 | 0.7164 | 0.8040 | 0.8967 | | No log | 48.5 | 388 | 0.8079 | 0.7164 | 0.8079 | 0.8988 | | No log | 48.75 | 390 | 0.7967 | 0.7164 | 0.7967 | 0.8926 | | No log | 49.0 | 392 | 0.8132 | 0.7153 | 0.8132 | 0.9018 | | No log | 49.25 | 394 | 0.8581 | 0.7153 | 0.8581 | 0.9263 | | No log | 49.5 | 396 | 0.9294 | 0.6429 | 0.9294 | 0.9640 | | No log | 49.75 | 398 | 0.9568 | 0.6277 | 0.9568 | 0.9781 | | No log | 50.0 | 400 | 0.9593 | 0.6277 | 0.9593 | 0.9795 | | No log | 50.25 | 402 | 0.9249 | 0.6667 | 0.9249 | 0.9617 | | No log | 50.5 | 404 | 0.8882 | 0.7121 | 0.8882 | 0.9424 | | No log | 50.75 | 406 | 0.8933 | 0.7194 | 0.8933 | 0.9451 | | No log | 51.0 | 408 | 0.9321 | 0.6475 | 0.9321 | 0.9655 | | No log | 51.25 | 410 | 0.9890 | 0.5942 | 0.9890 | 0.9945 | | No log | 51.5 | 412 | 1.0307 | 0.5972 | 1.0307 | 1.0152 | | No log | 51.75 | 414 | 0.9892 | 0.5926 | 0.9892 | 0.9946 | | No log | 52.0 | 416 | 0.9504 | 0.6222 | 0.9504 | 0.9749 | | No log | 52.25 | 418 | 0.9264 | 0.6567 | 0.9264 | 0.9625 | | No log | 52.5 | 420 | 0.8731 | 0.6716 | 0.8731 | 0.9344 | | No log | 52.75 | 422 | 0.8332 | 0.6963 | 0.8332 | 0.9128 | | No log | 53.0 | 424 | 0.7815 | 0.7299 | 0.7815 | 0.8840 | | No log | 53.25 | 426 | 0.7639 | 0.7391 | 0.7639 | 0.8740 | | No log | 53.5 | 428 | 0.7904 | 0.7299 | 0.7904 | 0.8891 | | No log | 53.75 | 430 | 0.8083 | 0.7083 | 0.8083 | 0.8990 | | No log | 54.0 | 432 | 0.8071 | 0.7092 | 0.8071 | 0.8984 | | No log | 54.25 | 434 | 0.8213 | 0.7101 | 0.8213 | 0.9062 | | No log | 54.5 | 436 | 0.8386 | 0.7101 | 0.8386 | 0.9158 | | No log | 54.75 | 438 | 0.8172 | 0.7391 | 0.8172 | 0.9040 | | No log | 55.0 | 440 | 0.7935 | 0.7259 | 0.7935 | 0.8908 | | No log | 55.25 | 442 | 0.8106 | 0.6963 | 0.8106 | 0.9004 | | No log | 55.5 | 444 | 0.8529 | 0.6716 | 0.8529 | 0.9235 | | No log | 55.75 | 446 | 0.9613 | 0.6423 | 0.9613 | 0.9804 | | No log | 56.0 | 448 | 1.1032 | 0.5526 | 1.1032 | 1.0503 | | No log | 56.25 | 450 | 1.1277 | 0.5676 | 1.1277 | 1.0619 | | No log | 56.5 | 452 | 1.0341 | 0.6187 | 1.0341 | 1.0169 | | No log | 56.75 | 454 | 0.9163 | 0.6370 | 0.9163 | 0.9572 | | No log | 57.0 | 456 | 0.8363 | 0.6917 | 0.8363 | 0.9145 | | No log | 57.25 | 458 | 0.8126 | 0.7299 | 0.8126 | 0.9014 | | No log | 57.5 | 460 | 0.8046 | 0.7299 | 0.8046 | 0.8970 | | No log | 57.75 | 462 | 0.8150 | 0.7286 | 0.8150 | 0.9028 | | No log | 58.0 | 464 | 0.8306 | 0.6715 | 0.8306 | 0.9114 | | No log | 58.25 | 466 | 0.8860 | 0.6528 | 0.8860 | 0.9413 | | No log | 58.5 | 468 | 0.9279 | 0.6621 | 0.9279 | 0.9633 | | No log | 58.75 | 470 | 0.9801 | 0.6294 | 0.9801 | 0.9900 | | No log | 59.0 | 472 | 0.9580 | 0.6286 | 0.9580 | 0.9788 | | No log | 59.25 | 474 | 0.9449 | 0.6471 | 0.9449 | 0.9721 | | No log | 59.5 | 476 | 0.9457 | 0.6466 | 0.9457 | 0.9725 | | No log | 59.75 | 478 | 0.9064 | 0.7015 | 0.9064 | 0.9520 | | No log | 60.0 | 480 | 0.9013 | 0.7015 | 0.9013 | 0.9494 | | No log | 60.25 | 482 | 0.9293 | 0.6131 | 0.9293 | 0.9640 | | No log | 60.5 | 484 | 1.0466 | 0.5931 | 1.0466 | 1.0231 | | No log | 60.75 | 486 | 1.2370 | 0.5509 | 1.2370 | 1.1122 | | No log | 61.0 | 488 | 1.3091 | 0.5325 | 1.3091 | 1.1442 | | No log | 61.25 | 490 | 1.2488 | 0.5325 | 1.2488 | 1.1175 | | No log | 61.5 | 492 | 1.1442 | 0.5455 | 1.1442 | 1.0697 | | No log | 61.75 | 494 | 1.0592 | 0.5714 | 1.0592 | 1.0292 | | No log | 62.0 | 496 | 0.9891 | 0.6259 | 0.9891 | 0.9945 | | No log | 62.25 | 498 | 1.0005 | 0.6301 | 1.0005 | 1.0002 | | 0.3118 | 62.5 | 500 | 0.9967 | 0.6301 | 0.9967 | 0.9983 | | 0.3118 | 62.75 | 502 | 1.0340 | 0.6301 | 1.0340 | 1.0169 | | 0.3118 | 63.0 | 504 | 1.1171 | 0.5931 | 1.1171 | 1.0569 | | 0.3118 | 63.25 | 506 | 1.1605 | 0.5931 | 1.1605 | 1.0773 | | 0.3118 | 63.5 | 508 | 1.1307 | 0.5899 | 1.1307 | 1.0633 | | 0.3118 | 63.75 | 510 | 1.0580 | 0.6131 | 1.0580 | 1.0286 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
lesso01/3be9e922-837e-4ef5-aace-d2dbcca9f8f4
lesso01
2025-01-15T11:55:54Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/llama-3-8b-Instruct", "base_model:adapter:unsloth/llama-3-8b-Instruct", "license:llama3", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-15T11:00:38Z
--- library_name: peft license: llama3 base_model: unsloth/llama-3-8b-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 3be9e922-837e-4ef5-aace-d2dbcca9f8f4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/llama-3-8b-Instruct bf16: true chat_template: llama3 datasets: - data_files: - 22898ffc4e984aab_train_data.json ds_type: json format: custom path: /workspace/input_data/22898ffc4e984aab_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso01/3be9e922-837e-4ef5-aace-d2dbcca9f8f4 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/22898ffc4e984aab_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 537ea366-0d00-4215-a8bf-12dd9968edce wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 537ea366-0d00-4215-a8bf-12dd9968edce warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 3be9e922-837e-4ef5-aace-d2dbcca9f8f4 This model is a fine-tuned version of [unsloth/llama-3-8b-Instruct](https://huggingface.co/unsloth/llama-3-8b-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0001 | 1 | nan | | 0.0 | 0.0003 | 5 | nan | | 0.0 | 0.0006 | 10 | nan | | 0.0 | 0.0010 | 15 | nan | | 0.0 | 0.0013 | 20 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
duyphu/5ecbe2a6-d426-4f6e-b19f-c3076afd5015
duyphu
2025-01-15T11:55:44Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-3B", "base_model:adapter:unsloth/Qwen2.5-3B", "license:other", "region:us" ]
null
2025-01-15T06:39:32Z
--- library_name: peft license: other base_model: unsloth/Qwen2.5-3B tags: - axolotl - generated_from_trainer model-index: - name: 5ecbe2a6-d426-4f6e-b19f-c3076afd5015 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-3B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 18ad6587de8e6631_train_data.json ds_type: json format: custom path: /workspace/input_data/18ad6587de8e6631_train_data.json type: field_instruction: problem field_output: solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: duyphu/5ecbe2a6-d426-4f6e-b19f-c3076afd5015 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/18ad6587de8e6631_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8ac1862d-3420-432c-b8d4-590e546120df wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 8ac1862d-3420-432c-b8d4-590e546120df warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 5ecbe2a6-d426-4f6e-b19f-c3076afd5015 This model is a fine-tuned version of [unsloth/Qwen2.5-3B](https://huggingface.co/unsloth/Qwen2.5-3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | nan | | 0.0 | 0.0001 | 10 | nan | | 0.0 | 0.0002 | 20 | nan | | 0.0 | 0.0003 | 30 | nan | | 0.0 | 0.0004 | 40 | nan | | 0.0 | 0.0005 | 50 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ClarenceDan/a166b702-8f54-4693-9afe-a1b79246a3df
ClarenceDan
2025-01-15T11:54:55Z
12
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:oopsung/llama2-7b-n-ox-test-v1", "base_model:adapter:oopsung/llama2-7b-n-ox-test-v1", "region:us" ]
null
2025-01-15T11:54:10Z
--- library_name: peft base_model: oopsung/llama2-7b-n-ox-test-v1 tags: - axolotl - generated_from_trainer model-index: - name: a166b702-8f54-4693-9afe-a1b79246a3df results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: oopsung/llama2-7b-n-ox-test-v1 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c1fdfb3f4e449665_train_data.json ds_type: json format: custom path: /workspace/input_data/c1fdfb3f4e449665_train_data.json type: field_instruction: question field_output: best_answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: ClarenceDan/a166b702-8f54-4693-9afe-a1b79246a3df hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/c1fdfb3f4e449665_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 212c681b-11df-434d-a645-a52b9b33936f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 212c681b-11df-434d-a645-a52b9b33936f warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # a166b702-8f54-4693-9afe-a1b79246a3df This model is a fine-tuned version of [oopsung/llama2-7b-n-ox-test-v1](https://huggingface.co/oopsung/llama2-7b-n-ox-test-v1) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0132 | 1 | nan | | 0.0 | 0.0397 | 3 | nan | | 0.0 | 0.0795 | 6 | nan | | 0.0 | 0.1192 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
MayBashendy/ArabicNewSplits8_usingALLEssays_FineTuningAraBERT_run3_AugV5_k2_task2_organization
MayBashendy
2025-01-15T11:52:24Z
6
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-15T11:29:36Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits8_usingALLEssays_FineTuningAraBERT_run3_AugV5_k2_task2_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits8_usingALLEssays_FineTuningAraBERT_run3_AugV5_k2_task2_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5740 - Qwk: 0.5582 - Mse: 0.5740 - Rmse: 0.7577 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.1538 | 2 | 4.3166 | -0.0182 | 4.3166 | 2.0776 | | No log | 0.3077 | 4 | 2.0843 | 0.0215 | 2.0843 | 1.4437 | | No log | 0.4615 | 6 | 1.1484 | -0.0111 | 1.1484 | 1.0716 | | No log | 0.6154 | 8 | 0.8337 | 0.1201 | 0.8337 | 0.9131 | | No log | 0.7692 | 10 | 0.8068 | 0.2451 | 0.8068 | 0.8982 | | No log | 0.9231 | 12 | 1.0199 | -0.0335 | 1.0199 | 1.0099 | | No log | 1.0769 | 14 | 1.5561 | 0.1011 | 1.5561 | 1.2474 | | No log | 1.2308 | 16 | 1.2655 | 0.0262 | 1.2655 | 1.1249 | | No log | 1.3846 | 18 | 0.9307 | 0.1798 | 0.9307 | 0.9647 | | No log | 1.5385 | 20 | 0.9386 | 0.1789 | 0.9386 | 0.9688 | | No log | 1.6923 | 22 | 0.9229 | 0.2181 | 0.9229 | 0.9607 | | No log | 1.8462 | 24 | 0.7977 | 0.2641 | 0.7977 | 0.8931 | | No log | 2.0 | 26 | 0.6855 | 0.3686 | 0.6855 | 0.8279 | | No log | 2.1538 | 28 | 0.6591 | 0.3407 | 0.6591 | 0.8119 | | No log | 2.3077 | 30 | 0.7682 | 0.2751 | 0.7682 | 0.8765 | | No log | 2.4615 | 32 | 1.0704 | 0.1400 | 1.0704 | 1.0346 | | No log | 2.6154 | 34 | 1.0220 | 0.2000 | 1.0220 | 1.0110 | | No log | 2.7692 | 36 | 0.7401 | 0.2859 | 0.7401 | 0.8603 | | No log | 2.9231 | 38 | 0.6803 | 0.3668 | 0.6803 | 0.8248 | | No log | 3.0769 | 40 | 0.6391 | 0.3655 | 0.6391 | 0.7994 | | No log | 3.2308 | 42 | 0.6932 | 0.3668 | 0.6932 | 0.8326 | | No log | 3.3846 | 44 | 0.8723 | 0.3535 | 0.8723 | 0.9340 | | No log | 3.5385 | 46 | 0.8235 | 0.4066 | 0.8235 | 0.9075 | | No log | 3.6923 | 48 | 0.7124 | 0.4085 | 0.7124 | 0.8440 | | No log | 3.8462 | 50 | 0.8337 | 0.3710 | 0.8337 | 0.9131 | | No log | 4.0 | 52 | 1.2769 | 0.3200 | 1.2769 | 1.1300 | | No log | 4.1538 | 54 | 1.3296 | 0.2698 | 1.3296 | 1.1531 | | No log | 4.3077 | 56 | 0.8080 | 0.4030 | 0.8080 | 0.8989 | | No log | 4.4615 | 58 | 0.5909 | 0.5832 | 0.5909 | 0.7687 | | No log | 4.6154 | 60 | 0.6067 | 0.5297 | 0.6067 | 0.7789 | | No log | 4.7692 | 62 | 0.7153 | 0.4580 | 0.7153 | 0.8458 | | No log | 4.9231 | 64 | 1.0223 | 0.2693 | 1.0223 | 1.0111 | | No log | 5.0769 | 66 | 1.0004 | 0.2956 | 1.0004 | 1.0002 | | No log | 5.2308 | 68 | 0.8143 | 0.4005 | 0.8143 | 0.9024 | | No log | 5.3846 | 70 | 0.6096 | 0.4791 | 0.6096 | 0.7808 | | No log | 5.5385 | 72 | 0.5470 | 0.5367 | 0.5470 | 0.7396 | | No log | 5.6923 | 74 | 0.5499 | 0.5348 | 0.5499 | 0.7416 | | No log | 5.8462 | 76 | 0.5558 | 0.5932 | 0.5558 | 0.7455 | | No log | 6.0 | 78 | 0.5468 | 0.6171 | 0.5468 | 0.7395 | | No log | 6.1538 | 80 | 0.5554 | 0.5755 | 0.5554 | 0.7453 | | No log | 6.3077 | 82 | 0.6464 | 0.5197 | 0.6464 | 0.8040 | | No log | 6.4615 | 84 | 0.6717 | 0.5045 | 0.6717 | 0.8196 | | No log | 6.6154 | 86 | 0.6752 | 0.5394 | 0.6752 | 0.8217 | | No log | 6.7692 | 88 | 0.6191 | 0.5860 | 0.6191 | 0.7869 | | No log | 6.9231 | 90 | 0.7234 | 0.5735 | 0.7234 | 0.8505 | | No log | 7.0769 | 92 | 0.8108 | 0.5761 | 0.8108 | 0.9004 | | No log | 7.2308 | 94 | 0.8017 | 0.5777 | 0.8017 | 0.8954 | | No log | 7.3846 | 96 | 0.7130 | 0.5655 | 0.7130 | 0.8444 | | No log | 7.5385 | 98 | 0.7170 | 0.5353 | 0.7170 | 0.8468 | | No log | 7.6923 | 100 | 0.6341 | 0.5730 | 0.6341 | 0.7963 | | No log | 7.8462 | 102 | 0.5881 | 0.6089 | 0.5881 | 0.7669 | | No log | 8.0 | 104 | 0.6092 | 0.5540 | 0.6092 | 0.7805 | | No log | 8.1538 | 106 | 0.5621 | 0.5972 | 0.5621 | 0.7498 | | No log | 8.3077 | 108 | 0.8307 | 0.4650 | 0.8307 | 0.9114 | | No log | 8.4615 | 110 | 1.3354 | 0.3244 | 1.3354 | 1.1556 | | No log | 8.6154 | 112 | 1.2251 | 0.3359 | 1.2251 | 1.1068 | | No log | 8.7692 | 114 | 0.8733 | 0.4380 | 0.8733 | 0.9345 | | No log | 8.9231 | 116 | 0.6120 | 0.5583 | 0.6120 | 0.7823 | | No log | 9.0769 | 118 | 0.5930 | 0.5968 | 0.5930 | 0.7701 | | No log | 9.2308 | 120 | 0.5794 | 0.5719 | 0.5794 | 0.7612 | | No log | 9.3846 | 122 | 0.6149 | 0.5502 | 0.6149 | 0.7841 | | No log | 9.5385 | 124 | 0.6253 | 0.5717 | 0.6253 | 0.7908 | | No log | 9.6923 | 126 | 0.5867 | 0.5679 | 0.5867 | 0.7660 | | No log | 9.8462 | 128 | 0.5932 | 0.5733 | 0.5932 | 0.7702 | | No log | 10.0 | 130 | 0.7043 | 0.4465 | 0.7043 | 0.8393 | | No log | 10.1538 | 132 | 0.6316 | 0.5452 | 0.6316 | 0.7947 | | No log | 10.3077 | 134 | 0.5982 | 0.5152 | 0.5982 | 0.7734 | | No log | 10.4615 | 136 | 0.5870 | 0.5662 | 0.5870 | 0.7661 | | No log | 10.6154 | 138 | 0.6379 | 0.4895 | 0.6379 | 0.7987 | | No log | 10.7692 | 140 | 0.6773 | 0.4741 | 0.6773 | 0.8230 | | No log | 10.9231 | 142 | 0.6862 | 0.5269 | 0.6862 | 0.8284 | | No log | 11.0769 | 144 | 0.6109 | 0.5259 | 0.6109 | 0.7816 | | No log | 11.2308 | 146 | 0.5930 | 0.5385 | 0.5930 | 0.7700 | | No log | 11.3846 | 148 | 0.6006 | 0.5508 | 0.6006 | 0.7750 | | No log | 11.5385 | 150 | 0.5931 | 0.5467 | 0.5931 | 0.7702 | | No log | 11.6923 | 152 | 0.6110 | 0.5613 | 0.6110 | 0.7816 | | No log | 11.8462 | 154 | 0.6326 | 0.5724 | 0.6326 | 0.7954 | | No log | 12.0 | 156 | 0.6190 | 0.5190 | 0.6190 | 0.7868 | | No log | 12.1538 | 158 | 0.6447 | 0.5518 | 0.6447 | 0.8029 | | No log | 12.3077 | 160 | 0.6761 | 0.5431 | 0.6761 | 0.8223 | | No log | 12.4615 | 162 | 0.7183 | 0.5674 | 0.7183 | 0.8475 | | No log | 12.6154 | 164 | 0.7084 | 0.5660 | 0.7084 | 0.8417 | | No log | 12.7692 | 166 | 0.7161 | 0.5152 | 0.7161 | 0.8462 | | No log | 12.9231 | 168 | 0.7082 | 0.5103 | 0.7082 | 0.8415 | | No log | 13.0769 | 170 | 0.7004 | 0.5039 | 0.7004 | 0.8369 | | No log | 13.2308 | 172 | 0.6535 | 0.5201 | 0.6535 | 0.8084 | | No log | 13.3846 | 174 | 0.6000 | 0.5540 | 0.6000 | 0.7746 | | No log | 13.5385 | 176 | 0.5964 | 0.5259 | 0.5964 | 0.7723 | | No log | 13.6923 | 178 | 0.6162 | 0.5313 | 0.6162 | 0.7850 | | No log | 13.8462 | 180 | 0.6061 | 0.5447 | 0.6061 | 0.7785 | | No log | 14.0 | 182 | 0.6111 | 0.5808 | 0.6111 | 0.7817 | | No log | 14.1538 | 184 | 0.6116 | 0.6021 | 0.6116 | 0.7821 | | No log | 14.3077 | 186 | 0.6198 | 0.5753 | 0.6198 | 0.7873 | | No log | 14.4615 | 188 | 0.6357 | 0.5907 | 0.6357 | 0.7973 | | No log | 14.6154 | 190 | 0.6446 | 0.5628 | 0.6446 | 0.8029 | | No log | 14.7692 | 192 | 0.6561 | 0.5915 | 0.6561 | 0.8100 | | No log | 14.9231 | 194 | 0.6590 | 0.5754 | 0.6590 | 0.8118 | | No log | 15.0769 | 196 | 0.6613 | 0.5851 | 0.6613 | 0.8132 | | No log | 15.2308 | 198 | 0.6526 | 0.5872 | 0.6526 | 0.8078 | | No log | 15.3846 | 200 | 0.6648 | 0.4991 | 0.6648 | 0.8153 | | No log | 15.5385 | 202 | 0.6105 | 0.5499 | 0.6105 | 0.7814 | | No log | 15.6923 | 204 | 0.5950 | 0.5757 | 0.5950 | 0.7713 | | No log | 15.8462 | 206 | 0.5680 | 0.5560 | 0.5680 | 0.7537 | | No log | 16.0 | 208 | 0.5635 | 0.5767 | 0.5635 | 0.7507 | | No log | 16.1538 | 210 | 0.5725 | 0.5560 | 0.5725 | 0.7566 | | No log | 16.3077 | 212 | 0.5931 | 0.5540 | 0.5931 | 0.7701 | | No log | 16.4615 | 214 | 0.6073 | 0.5488 | 0.6073 | 0.7793 | | No log | 16.6154 | 216 | 0.6170 | 0.6094 | 0.6170 | 0.7855 | | No log | 16.7692 | 218 | 0.6059 | 0.5442 | 0.6059 | 0.7784 | | No log | 16.9231 | 220 | 0.5896 | 0.5476 | 0.5896 | 0.7679 | | No log | 17.0769 | 222 | 0.5934 | 0.5965 | 0.5934 | 0.7703 | | No log | 17.2308 | 224 | 0.6235 | 0.5323 | 0.6235 | 0.7896 | | No log | 17.3846 | 226 | 0.5803 | 0.5832 | 0.5803 | 0.7618 | | No log | 17.5385 | 228 | 0.5612 | 0.6000 | 0.5612 | 0.7491 | | No log | 17.6923 | 230 | 0.5804 | 0.5609 | 0.5804 | 0.7619 | | No log | 17.8462 | 232 | 0.5921 | 0.6033 | 0.5921 | 0.7695 | | No log | 18.0 | 234 | 0.6493 | 0.5634 | 0.6493 | 0.8058 | | No log | 18.1538 | 236 | 0.7160 | 0.5595 | 0.7160 | 0.8462 | | No log | 18.3077 | 238 | 0.6602 | 0.5634 | 0.6602 | 0.8125 | | No log | 18.4615 | 240 | 0.6085 | 0.5958 | 0.6085 | 0.7801 | | No log | 18.6154 | 242 | 0.6087 | 0.5420 | 0.6087 | 0.7802 | | No log | 18.7692 | 244 | 0.6068 | 0.5570 | 0.6068 | 0.7790 | | No log | 18.9231 | 246 | 0.5978 | 0.6000 | 0.5978 | 0.7732 | | No log | 19.0769 | 248 | 0.6424 | 0.6101 | 0.6424 | 0.8015 | | No log | 19.2308 | 250 | 0.6373 | 0.6100 | 0.6373 | 0.7983 | | No log | 19.3846 | 252 | 0.6111 | 0.5689 | 0.6111 | 0.7817 | | No log | 19.5385 | 254 | 0.5998 | 0.5420 | 0.5998 | 0.7745 | | No log | 19.6923 | 256 | 0.5785 | 0.5875 | 0.5785 | 0.7606 | | No log | 19.8462 | 258 | 0.5633 | 0.5816 | 0.5633 | 0.7505 | | No log | 20.0 | 260 | 0.5699 | 0.5528 | 0.5699 | 0.7549 | | No log | 20.1538 | 262 | 0.5742 | 0.5588 | 0.5742 | 0.7577 | | No log | 20.3077 | 264 | 0.5676 | 0.5675 | 0.5676 | 0.7534 | | No log | 20.4615 | 266 | 0.5787 | 0.5845 | 0.5787 | 0.7607 | | No log | 20.6154 | 268 | 0.5854 | 0.5794 | 0.5854 | 0.7651 | | No log | 20.7692 | 270 | 0.6018 | 0.5732 | 0.6018 | 0.7758 | | No log | 20.9231 | 272 | 0.6101 | 0.5748 | 0.6101 | 0.7811 | | No log | 21.0769 | 274 | 0.5999 | 0.5634 | 0.5999 | 0.7745 | | No log | 21.2308 | 276 | 0.5755 | 0.6004 | 0.5755 | 0.7586 | | No log | 21.3846 | 278 | 0.5764 | 0.5927 | 0.5764 | 0.7592 | | No log | 21.5385 | 280 | 0.5695 | 0.5991 | 0.5695 | 0.7547 | | No log | 21.6923 | 282 | 0.6902 | 0.4982 | 0.6902 | 0.8308 | | No log | 21.8462 | 284 | 0.7838 | 0.4876 | 0.7838 | 0.8853 | | No log | 22.0 | 286 | 0.7335 | 0.4734 | 0.7335 | 0.8565 | | No log | 22.1538 | 288 | 0.6043 | 0.5569 | 0.6043 | 0.7774 | | No log | 22.3077 | 290 | 0.6099 | 0.5291 | 0.6099 | 0.7809 | | No log | 22.4615 | 292 | 0.6723 | 0.4971 | 0.6723 | 0.8199 | | No log | 22.6154 | 294 | 0.6206 | 0.5386 | 0.6206 | 0.7878 | | No log | 22.7692 | 296 | 0.5784 | 0.6049 | 0.5784 | 0.7605 | | No log | 22.9231 | 298 | 0.5803 | 0.5932 | 0.5803 | 0.7618 | | No log | 23.0769 | 300 | 0.6113 | 0.5722 | 0.6113 | 0.7819 | | No log | 23.2308 | 302 | 0.5996 | 0.5705 | 0.5996 | 0.7743 | | No log | 23.3846 | 304 | 0.5707 | 0.5658 | 0.5707 | 0.7554 | | No log | 23.5385 | 306 | 0.5790 | 0.5681 | 0.5790 | 0.7609 | | No log | 23.6923 | 308 | 0.6174 | 0.5710 | 0.6174 | 0.7857 | | No log | 23.8462 | 310 | 0.6609 | 0.5311 | 0.6609 | 0.8130 | | No log | 24.0 | 312 | 0.6601 | 0.5451 | 0.6601 | 0.8125 | | No log | 24.1538 | 314 | 0.6304 | 0.5961 | 0.6304 | 0.7940 | | No log | 24.3077 | 316 | 0.6300 | 0.5864 | 0.6300 | 0.7937 | | No log | 24.4615 | 318 | 0.6495 | 0.5864 | 0.6495 | 0.8059 | | No log | 24.6154 | 320 | 0.6751 | 0.5954 | 0.6751 | 0.8216 | | No log | 24.7692 | 322 | 0.6698 | 0.5630 | 0.6698 | 0.8184 | | No log | 24.9231 | 324 | 0.6769 | 0.5499 | 0.6769 | 0.8227 | | No log | 25.0769 | 326 | 0.6889 | 0.5903 | 0.6889 | 0.8300 | | No log | 25.2308 | 328 | 0.8172 | 0.4687 | 0.8172 | 0.9040 | | No log | 25.3846 | 330 | 0.9111 | 0.4532 | 0.9111 | 0.9545 | | No log | 25.5385 | 332 | 0.8508 | 0.4682 | 0.8508 | 0.9224 | | No log | 25.6923 | 334 | 0.7333 | 0.5726 | 0.7333 | 0.8563 | | No log | 25.8462 | 336 | 0.7399 | 0.5431 | 0.7399 | 0.8602 | | No log | 26.0 | 338 | 0.7518 | 0.5606 | 0.7518 | 0.8671 | | No log | 26.1538 | 340 | 0.7097 | 0.5436 | 0.7097 | 0.8424 | | No log | 26.3077 | 342 | 0.6625 | 0.5542 | 0.6625 | 0.8139 | | No log | 26.4615 | 344 | 0.6316 | 0.5701 | 0.6316 | 0.7947 | | No log | 26.6154 | 346 | 0.6173 | 0.5787 | 0.6173 | 0.7857 | | No log | 26.7692 | 348 | 0.6029 | 0.5901 | 0.6029 | 0.7765 | | No log | 26.9231 | 350 | 0.6030 | 0.5907 | 0.6030 | 0.7765 | | No log | 27.0769 | 352 | 0.6197 | 0.5912 | 0.6197 | 0.7872 | | No log | 27.2308 | 354 | 0.6146 | 0.6004 | 0.6146 | 0.7839 | | No log | 27.3846 | 356 | 0.6062 | 0.5829 | 0.6062 | 0.7786 | | No log | 27.5385 | 358 | 0.6183 | 0.5179 | 0.6183 | 0.7863 | | No log | 27.6923 | 360 | 0.6465 | 0.5779 | 0.6465 | 0.8040 | | No log | 27.8462 | 362 | 0.6023 | 0.5725 | 0.6023 | 0.7761 | | No log | 28.0 | 364 | 0.5663 | 0.6216 | 0.5663 | 0.7525 | | No log | 28.1538 | 366 | 0.5673 | 0.5921 | 0.5673 | 0.7532 | | No log | 28.3077 | 368 | 0.5891 | 0.6027 | 0.5891 | 0.7675 | | No log | 28.4615 | 370 | 0.6038 | 0.5982 | 0.6038 | 0.7770 | | No log | 28.6154 | 372 | 0.6444 | 0.5727 | 0.6444 | 0.8027 | | No log | 28.7692 | 374 | 0.6937 | 0.5485 | 0.6937 | 0.8329 | | No log | 28.9231 | 376 | 0.7086 | 0.5382 | 0.7086 | 0.8418 | | No log | 29.0769 | 378 | 0.6423 | 0.5759 | 0.6423 | 0.8014 | | No log | 29.2308 | 380 | 0.5755 | 0.6227 | 0.5755 | 0.7586 | | No log | 29.3846 | 382 | 0.5606 | 0.5805 | 0.5606 | 0.7487 | | No log | 29.5385 | 384 | 0.5545 | 0.6075 | 0.5545 | 0.7447 | | No log | 29.6923 | 386 | 0.5713 | 0.6557 | 0.5713 | 0.7558 | | No log | 29.8462 | 388 | 0.5733 | 0.6257 | 0.5733 | 0.7572 | | No log | 30.0 | 390 | 0.5605 | 0.6478 | 0.5605 | 0.7487 | | No log | 30.1538 | 392 | 0.5521 | 0.6128 | 0.5521 | 0.7430 | | No log | 30.3077 | 394 | 0.5593 | 0.6313 | 0.5593 | 0.7479 | | No log | 30.4615 | 396 | 0.5647 | 0.6143 | 0.5647 | 0.7514 | | No log | 30.6154 | 398 | 0.5598 | 0.6031 | 0.5598 | 0.7482 | | No log | 30.7692 | 400 | 0.5529 | 0.6134 | 0.5529 | 0.7436 | | No log | 30.9231 | 402 | 0.5541 | 0.5863 | 0.5541 | 0.7444 | | No log | 31.0769 | 404 | 0.5766 | 0.5595 | 0.5766 | 0.7594 | | No log | 31.2308 | 406 | 0.5851 | 0.5576 | 0.5851 | 0.7649 | | No log | 31.3846 | 408 | 0.5802 | 0.5989 | 0.5802 | 0.7617 | | No log | 31.5385 | 410 | 0.5939 | 0.5988 | 0.5939 | 0.7706 | | No log | 31.6923 | 412 | 0.6295 | 0.5816 | 0.6295 | 0.7934 | | No log | 31.8462 | 414 | 0.6348 | 0.5318 | 0.6348 | 0.7968 | | No log | 32.0 | 416 | 0.5894 | 0.6025 | 0.5894 | 0.7677 | | No log | 32.1538 | 418 | 0.5873 | 0.5742 | 0.5873 | 0.7663 | | No log | 32.3077 | 420 | 0.6661 | 0.5471 | 0.6661 | 0.8161 | | No log | 32.4615 | 422 | 0.6914 | 0.5492 | 0.6914 | 0.8315 | | No log | 32.6154 | 424 | 0.6486 | 0.5256 | 0.6486 | 0.8053 | | No log | 32.7692 | 426 | 0.5781 | 0.5804 | 0.5781 | 0.7604 | | No log | 32.9231 | 428 | 0.5705 | 0.6007 | 0.5705 | 0.7553 | | No log | 33.0769 | 430 | 0.5963 | 0.5581 | 0.5963 | 0.7722 | | No log | 33.2308 | 432 | 0.5858 | 0.6057 | 0.5858 | 0.7654 | | No log | 33.3846 | 434 | 0.5581 | 0.6023 | 0.5581 | 0.7470 | | No log | 33.5385 | 436 | 0.5552 | 0.5746 | 0.5552 | 0.7451 | | No log | 33.6923 | 438 | 0.5499 | 0.5767 | 0.5499 | 0.7416 | | No log | 33.8462 | 440 | 0.5448 | 0.5921 | 0.5448 | 0.7381 | | No log | 34.0 | 442 | 0.5549 | 0.6065 | 0.5549 | 0.7449 | | No log | 34.1538 | 444 | 0.5462 | 0.5799 | 0.5462 | 0.7391 | | No log | 34.3077 | 446 | 0.5406 | 0.5827 | 0.5406 | 0.7353 | | No log | 34.4615 | 448 | 0.5485 | 0.5789 | 0.5485 | 0.7406 | | No log | 34.6154 | 450 | 0.5459 | 0.5887 | 0.5459 | 0.7388 | | No log | 34.7692 | 452 | 0.5542 | 0.6020 | 0.5542 | 0.7444 | | No log | 34.9231 | 454 | 0.5702 | 0.6018 | 0.5702 | 0.7551 | | No log | 35.0769 | 456 | 0.5847 | 0.5843 | 0.5847 | 0.7647 | | No log | 35.2308 | 458 | 0.5804 | 0.6128 | 0.5804 | 0.7619 | | No log | 35.3846 | 460 | 0.5919 | 0.5877 | 0.5919 | 0.7694 | | No log | 35.5385 | 462 | 0.5943 | 0.6016 | 0.5943 | 0.7709 | | No log | 35.6923 | 464 | 0.5944 | 0.5794 | 0.5944 | 0.7710 | | No log | 35.8462 | 466 | 0.5890 | 0.5872 | 0.5890 | 0.7675 | | No log | 36.0 | 468 | 0.5800 | 0.5901 | 0.5800 | 0.7616 | | No log | 36.1538 | 470 | 0.5976 | 0.5390 | 0.5976 | 0.7730 | | No log | 36.3077 | 472 | 0.5806 | 0.5308 | 0.5806 | 0.7620 | | No log | 36.4615 | 474 | 0.5507 | 0.5704 | 0.5507 | 0.7421 | | No log | 36.6154 | 476 | 0.5499 | 0.5535 | 0.5499 | 0.7416 | | No log | 36.7692 | 478 | 0.5503 | 0.5569 | 0.5503 | 0.7418 | | No log | 36.9231 | 480 | 0.5526 | 0.5535 | 0.5526 | 0.7434 | | No log | 37.0769 | 482 | 0.5537 | 0.5845 | 0.5537 | 0.7441 | | No log | 37.2308 | 484 | 0.5617 | 0.5705 | 0.5617 | 0.7494 | | No log | 37.3846 | 486 | 0.5783 | 0.5481 | 0.5783 | 0.7605 | | No log | 37.5385 | 488 | 0.5681 | 0.5745 | 0.5681 | 0.7537 | | No log | 37.6923 | 490 | 0.5650 | 0.5783 | 0.5650 | 0.7517 | | No log | 37.8462 | 492 | 0.5636 | 0.5901 | 0.5636 | 0.7507 | | No log | 38.0 | 494 | 0.5697 | 0.6065 | 0.5697 | 0.7548 | | No log | 38.1538 | 496 | 0.5675 | 0.5784 | 0.5675 | 0.7533 | | No log | 38.3077 | 498 | 0.5759 | 0.5868 | 0.5759 | 0.7589 | | 0.2756 | 38.4615 | 500 | 0.5910 | 0.5815 | 0.5910 | 0.7688 | | 0.2756 | 38.6154 | 502 | 0.5843 | 0.5693 | 0.5843 | 0.7644 | | 0.2756 | 38.7692 | 504 | 0.5624 | 0.5901 | 0.5624 | 0.7499 | | 0.2756 | 38.9231 | 506 | 0.5804 | 0.5784 | 0.5804 | 0.7618 | | 0.2756 | 39.0769 | 508 | 0.6115 | 0.5738 | 0.6115 | 0.7820 | | 0.2756 | 39.2308 | 510 | 0.6113 | 0.5659 | 0.6113 | 0.7819 | | 0.2756 | 39.3846 | 512 | 0.5769 | 0.5668 | 0.5769 | 0.7595 | | 0.2756 | 39.5385 | 514 | 0.5634 | 0.5957 | 0.5634 | 0.7506 | | 0.2756 | 39.6923 | 516 | 0.5693 | 0.5827 | 0.5693 | 0.7545 | | 0.2756 | 39.8462 | 518 | 0.5748 | 0.5827 | 0.5748 | 0.7581 | | 0.2756 | 40.0 | 520 | 0.5905 | 0.5508 | 0.5905 | 0.7684 | | 0.2756 | 40.1538 | 522 | 0.5973 | 0.5384 | 0.5973 | 0.7728 | | 0.2756 | 40.3077 | 524 | 0.5959 | 0.5567 | 0.5959 | 0.7719 | | 0.2756 | 40.4615 | 526 | 0.5811 | 0.5887 | 0.5811 | 0.7623 | | 0.2756 | 40.6154 | 528 | 0.5801 | 0.5894 | 0.5801 | 0.7616 | | 0.2756 | 40.7692 | 530 | 0.5846 | 0.5478 | 0.5846 | 0.7646 | | 0.2756 | 40.9231 | 532 | 0.5938 | 0.5404 | 0.5938 | 0.7706 | | 0.2756 | 41.0769 | 534 | 0.5872 | 0.5778 | 0.5872 | 0.7663 | | 0.2756 | 41.2308 | 536 | 0.5907 | 0.5949 | 0.5907 | 0.7686 | | 0.2756 | 41.3846 | 538 | 0.6027 | 0.6003 | 0.6027 | 0.7763 | | 0.2756 | 41.5385 | 540 | 0.6283 | 0.5896 | 0.6283 | 0.7927 | | 0.2756 | 41.6923 | 542 | 0.6599 | 0.5246 | 0.6599 | 0.8123 | | 0.2756 | 41.8462 | 544 | 0.6607 | 0.5422 | 0.6607 | 0.8128 | | 0.2756 | 42.0 | 546 | 0.6380 | 0.5348 | 0.6380 | 0.7988 | | 0.2756 | 42.1538 | 548 | 0.6070 | 0.5264 | 0.6070 | 0.7791 | | 0.2756 | 42.3077 | 550 | 0.5740 | 0.5582 | 0.5740 | 0.7577 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
nblinh/6a137c09-5bf4-4476-9c00-589796ea205e
nblinh
2025-01-15T11:50:51Z
6
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-1b", "base_model:adapter:EleutherAI/pythia-1b", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-15T11:35:43Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-1b tags: - axolotl - generated_from_trainer model-index: - name: 6a137c09-5bf4-4476-9c00-589796ea205e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-1b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - faf590c77bf66bb4_train_data.json ds_type: json format: custom path: /workspace/input_data/faf590c77bf66bb4_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nblinh/6a137c09-5bf4-4476-9c00-589796ea205e hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/faf590c77bf66bb4_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 22f0c3d7-b3a9-4b99-8fa8-01838f3708c6 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 22f0c3d7-b3a9-4b99-8fa8-01838f3708c6 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 6a137c09-5bf4-4476-9c00-589796ea205e This model is a fine-tuned version of [EleutherAI/pythia-1b](https://huggingface.co/EleutherAI/pythia-1b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0917 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4549 | 0.0209 | 200 | 0.0917 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
SergedeMaria/sergen
SergedeMaria
2025-01-15T11:47:46Z
24
1
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-15T11:07:35Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: serge --- # Sergen <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `serge` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('SergedeMaria/sergen', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
nhoxinh/afd1a1ea-e930-4525-824d-fd50c0484a7c
nhoxinh
2025-01-15T11:47:16Z
9
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-1b", "base_model:adapter:EleutherAI/pythia-1b", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-15T11:35:44Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-1b tags: - axolotl - generated_from_trainer model-index: - name: afd1a1ea-e930-4525-824d-fd50c0484a7c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-1b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - faf590c77bf66bb4_train_data.json ds_type: json format: custom path: /workspace/input_data/faf590c77bf66bb4_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhoxinh/afd1a1ea-e930-4525-824d-fd50c0484a7c hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/faf590c77bf66bb4_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 22f0c3d7-b3a9-4b99-8fa8-01838f3708c6 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 22f0c3d7-b3a9-4b99-8fa8-01838f3708c6 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # afd1a1ea-e930-4525-824d-fd50c0484a7c This model is a fine-tuned version of [EleutherAI/pythia-1b](https://huggingface.co/EleutherAI/pythia-1b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0919 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4807 | 0.0209 | 200 | 0.0919 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
dimasik87/f4772de0-fc9b-4362-958d-1191deca1a03
dimasik87
2025-01-15T11:46:40Z
12
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-1.7B-Instruct", "base_model:adapter:unsloth/SmolLM-1.7B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-15T11:38:03Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-1.7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: f4772de0-fc9b-4362-958d-1191deca1a03 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-1.7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 0c0385643e82895c_train_data.json ds_type: json format: custom path: /workspace/input_data/0c0385643e82895c_train_data.json type: field_input: choices field_instruction: task field_output: question format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: dimasik87/f4772de0-fc9b-4362-958d-1191deca1a03 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 78GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/0c0385643e82895c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7c57bd3b-4993-496e-8eee-7f49fda1578b wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 7c57bd3b-4993-496e-8eee-7f49fda1578b warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # f4772de0-fc9b-4362-958d-1191deca1a03 This model is a fine-tuned version of [unsloth/SmolLM-1.7B-Instruct](https://huggingface.co/unsloth/SmolLM-1.7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | nan | | 0.0 | 0.0004 | 5 | nan | | 0.0 | 0.0008 | 10 | nan | | 0.0 | 0.0013 | 15 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nhung01/f5f1fa2e-51be-4131-b134-568e8b19a0ec
nhung01
2025-01-15T11:46:20Z
7
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-1b", "base_model:adapter:EleutherAI/pythia-1b", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-15T11:35:43Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-1b tags: - axolotl - generated_from_trainer model-index: - name: f5f1fa2e-51be-4131-b134-568e8b19a0ec results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-1b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - faf590c77bf66bb4_train_data.json ds_type: json format: custom path: /workspace/input_data/faf590c77bf66bb4_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhung01/f5f1fa2e-51be-4131-b134-568e8b19a0ec hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/faf590c77bf66bb4_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 22f0c3d7-b3a9-4b99-8fa8-01838f3708c6 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 22f0c3d7-b3a9-4b99-8fa8-01838f3708c6 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # f5f1fa2e-51be-4131-b134-568e8b19a0ec This model is a fine-tuned version of [EleutherAI/pythia-1b](https://huggingface.co/EleutherAI/pythia-1b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0939 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4597 | 0.0209 | 200 | 0.0939 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lhong4759/0ef6a4e1-1cac-42bc-b531-b36bf5c1d9f0
lhong4759
2025-01-15T11:45:55Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2-0.5B", "base_model:adapter:Qwen/Qwen2-0.5B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-15T11:30:07Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2-0.5B tags: - axolotl - generated_from_trainer model-index: - name: 0ef6a4e1-1cac-42bc-b531-b36bf5c1d9f0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2-0.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 82602250e0cc45ea_train_data.json ds_type: json format: custom path: /workspace/input_data/82602250e0cc45ea_train_data.json type: field_instruction: instruction field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lhong4759/0ef6a4e1-1cac-42bc-b531-b36bf5c1d9f0 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/82602250e0cc45ea_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 11bcdc0d-bc69-4f77-a28c-0c48d7e59612 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 11bcdc0d-bc69-4f77-a28c-0c48d7e59612 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 0ef6a4e1-1cac-42bc-b531-b36bf5c1d9f0 This model is a fine-tuned version of [Qwen/Qwen2-0.5B](https://huggingface.co/Qwen/Qwen2-0.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6312 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.783 | 0.0338 | 200 | 0.6312 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ParitKansal/donut-docvqa-demo
ParitKansal
2025-01-15T11:45:32Z
6
0
transformers
[ "transformers", "safetensors", "vision-encoder-decoder", "image-text-to-text", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-01-15T11:43:42Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
soyanagomez/raquel
soyanagomez
2025-01-15T11:44:43Z
24
1
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-15T10:39:01Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # Raquel <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('soyanagomez/raquel', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
thangla01/32ec91b8-2cc0-4d87-80b6-c1d5941469bd
thangla01
2025-01-15T11:44:22Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2-0.5B", "base_model:adapter:Qwen/Qwen2-0.5B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-15T11:29:23Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2-0.5B tags: - axolotl - generated_from_trainer model-index: - name: 32ec91b8-2cc0-4d87-80b6-c1d5941469bd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2-0.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 82602250e0cc45ea_train_data.json ds_type: json format: custom path: /workspace/input_data/82602250e0cc45ea_train_data.json type: field_instruction: instruction field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: thangla01/32ec91b8-2cc0-4d87-80b6-c1d5941469bd hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/82602250e0cc45ea_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 11bcdc0d-bc69-4f77-a28c-0c48d7e59612 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 11bcdc0d-bc69-4f77-a28c-0c48d7e59612 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 32ec91b8-2cc0-4d87-80b6-c1d5941469bd This model is a fine-tuned version of [Qwen/Qwen2-0.5B](https://huggingface.co/Qwen/Qwen2-0.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6308 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7812 | 0.0338 | 200 | 0.6308 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
satishpednekar/sbxcertchat
satishpednekar
2025-01-15T11:43:54Z
25
0
transformers
[ "transformers", "pytorch", "gguf", "llama", "text-generation-inference", "unsloth", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-01-15T11:04:47Z
--- base_model: unsloth/meta-llama-3.1-8b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** satishpednekar - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
tmpmodelsave/fixed_no_sft_type3_4k_step200
tmpmodelsave
2025-01-15T11:43:10Z
28
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-15T11:39:49Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
nhung03/e8c89c1b-851a-4bb9-9a00-897c2e9116c3
nhung03
2025-01-15T11:42:20Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2-0.5B", "base_model:adapter:Qwen/Qwen2-0.5B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-15T11:29:10Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2-0.5B tags: - axolotl - generated_from_trainer model-index: - name: e8c89c1b-851a-4bb9-9a00-897c2e9116c3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2-0.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 82602250e0cc45ea_train_data.json ds_type: json format: custom path: /workspace/input_data/82602250e0cc45ea_train_data.json type: field_instruction: instruction field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhung03/e8c89c1b-851a-4bb9-9a00-897c2e9116c3 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/82602250e0cc45ea_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 11bcdc0d-bc69-4f77-a28c-0c48d7e59612 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 11bcdc0d-bc69-4f77-a28c-0c48d7e59612 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # e8c89c1b-851a-4bb9-9a00-897c2e9116c3 This model is a fine-tuned version of [Qwen/Qwen2-0.5B](https://huggingface.co/Qwen/Qwen2-0.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6309 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7825 | 0.0338 | 200 | 0.6309 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/Qwen2.5-0.5B-Instruct-ITA-i1-GGUF
mradermacher
2025-01-15T11:41:01Z
529
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "axolotl", "it", "en", "dataset:ReDiX/everyday-conversations-ita", "dataset:ReDiX/dataforge-cleaned", "base_model:ReDiX/Qwen2.5-0.5B-Instruct-ITA", "base_model:quantized:ReDiX/Qwen2.5-0.5B-Instruct-ITA", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-01-15T11:04:58Z
--- base_model: ReDiX/Qwen2.5-0.5B-Instruct-ITA datasets: - ReDiX/everyday-conversations-ita - ReDiX/dataforge-cleaned language: - it - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - generated_from_trainer - axolotl --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/ReDiX/Qwen2.5-0.5B-Instruct-ITA <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-ITA-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-ITA-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-ITA.i1-IQ1_S.gguf) | i1-IQ1_S | 0.5 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-ITA-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-ITA.i1-IQ1_M.gguf) | i1-IQ1_M | 0.5 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-ITA-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-ITA.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-ITA-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-ITA.i1-IQ2_XS.gguf) | i1-IQ2_XS | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-ITA-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-ITA.i1-IQ2_S.gguf) | i1-IQ2_S | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-ITA-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-ITA.i1-IQ2_M.gguf) | i1-IQ2_M | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-ITA-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-ITA.i1-Q2_K_S.gguf) | i1-Q2_K_S | 0.5 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-ITA-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-ITA.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 0.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-ITA-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-ITA.i1-Q3_K_S.gguf) | i1-Q3_K_S | 0.5 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-ITA-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-ITA.i1-IQ3_S.gguf) | i1-IQ3_S | 0.5 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-ITA-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-ITA.i1-IQ3_XS.gguf) | i1-IQ3_XS | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-ITA-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-ITA.i1-Q2_K.gguf) | i1-Q2_K | 0.5 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-ITA-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-ITA.i1-IQ3_M.gguf) | i1-IQ3_M | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-ITA-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-ITA.i1-IQ4_XS.gguf) | i1-IQ4_XS | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-ITA-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-ITA.i1-IQ4_NL.gguf) | i1-IQ4_NL | 0.5 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-ITA-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-ITA.i1-Q4_0.gguf) | i1-Q4_0 | 0.5 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-ITA-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-ITA.i1-Q3_K_M.gguf) | i1-Q3_K_M | 0.5 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-ITA-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-ITA.i1-Q3_K_L.gguf) | i1-Q3_K_L | 0.5 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-ITA-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-ITA.i1-Q4_1.gguf) | i1-Q4_1 | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-ITA-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-ITA.i1-Q4_K_S.gguf) | i1-Q4_K_S | 0.6 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-ITA-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-ITA.i1-Q4_K_M.gguf) | i1-Q4_K_M | 0.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-ITA-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-ITA.i1-Q5_K_S.gguf) | i1-Q5_K_S | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-ITA-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-ITA.i1-Q5_K_M.gguf) | i1-Q5_K_M | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5B-Instruct-ITA-i1-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-ITA.i1-Q6_K.gguf) | i1-Q6_K | 0.8 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
demohong/ef2a481f-704a-497a-98fb-8599afd5e445
demohong
2025-01-15T11:40:11Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2-0.5B", "base_model:adapter:Qwen/Qwen2-0.5B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-15T10:32:07Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2-0.5B tags: - axolotl - generated_from_trainer model-index: - name: ef2a481f-704a-497a-98fb-8599afd5e445 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2-0.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - a54dfbc141335bb5_train_data.json ds_type: json format: custom path: /workspace/input_data/a54dfbc141335bb5_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: demohong/ef2a481f-704a-497a-98fb-8599afd5e445 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/a54dfbc141335bb5_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: e302ed25-6563-4139-a251-885ddd901a8d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: e302ed25-6563-4139-a251-885ddd901a8d warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # ef2a481f-704a-497a-98fb-8599afd5e445 This model is a fine-tuned version of [Qwen/Qwen2-0.5B](https://huggingface.co/Qwen/Qwen2-0.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4017 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.4013 | 0.0032 | 200 | 2.4017 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1