modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-06-26 00:41:36
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 496
values | tags
sequencelengths 1
4.05k
| pipeline_tag
stringclasses 54
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-06-26 00:41:32
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
DaniyalMufti/q-FrozenLake-v1-4x4-noSlippery | DaniyalMufti | 2023-01-09T13:53:26Z | 0 | 0 | null | [
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | reinforcement-learning | 2023-01-09T13:18:18Z | ---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="AxlDM124/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
xianbao/dashdash-toy-heywhale | xianbao | 2023-01-09T13:40:56Z | 31 | 1 | diffusers | [
"diffusers",
"text-to-image",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | 2023-01-09T13:28:39Z | ---
tags:
- text-to-image
--- |
muhtasham/small-vanilla-target-glue-cola | muhtasham | 2023-01-09T13:08:10Z | 106 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-01-09T12:28:43Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- matthews_correlation
model-index:
- name: small-vanilla-target-glue-cola
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# small-vanilla-target-glue-cola
This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3381
- Matthews Correlation: 0.3994
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.5491 | 1.87 | 500 | 0.6232 | 0.2182 |
| 0.3596 | 3.73 | 1000 | 0.7203 | 0.3078 |
| 0.233 | 5.6 | 1500 | 0.7825 | 0.3833 |
| 0.168 | 7.46 | 2000 | 0.9239 | 0.3657 |
| 0.1299 | 9.33 | 2500 | 1.1005 | 0.4196 |
| 0.1085 | 11.19 | 3000 | 1.2032 | 0.3906 |
| 0.0931 | 13.06 | 3500 | 1.3157 | 0.3226 |
| 0.0766 | 14.93 | 4000 | 1.3381 | 0.3994 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
KJIM/kobigbird-base30-73567294 | KJIM | 2023-01-09T12:43:57Z | 90 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"big_bird",
"question-answering",
"generated_from_trainer",
"dataset:custom_squad_v2",
"endpoints_compatible",
"region:us"
] | question-answering | 2023-01-09T07:11:38Z | ---
tags:
- generated_from_trainer
datasets:
- custom_squad_v2
model-index:
- name: kobigbird-base30-73567294
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# kobigbird-base30-73567294
This model is a fine-tuned version of [monologg/kobigbird-bert-base](https://huggingface.co/monologg/kobigbird-bert-base) on the custom_squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3291
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 30
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 0.99 | 42 | 1.4308 |
| No log | 1.99 | 84 | 1.3291 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
brand25/ppo-Huggy | brand25 | 2023-01-09T12:43:33Z | 5 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] | reinforcement-learning | 2023-01-09T12:43:24Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: brand25/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
sd-dreambooth-library/riffusion-dragonfriction-tequila | sd-dreambooth-library | 2023-01-09T12:41:50Z | 31 | 0 | diffusers | [
"diffusers",
"text-to-image",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | 2023-01-09T12:40:57Z | ---
license: creativeml-openrail-m
tags:
- text-to-image
---
### riffusion_dragonfriction-tequila on Stable Diffusion via Dreambooth
#### model by ololo123
This your the Stable Diffusion model fine-tuned the riffusion_dragonfriction-tequila concept taught to Stable Diffusion with Dreambooth.
It can be used by modifying the `instance_prompt`: **dragonfriction**
You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb).
And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts)
Here are the images used for training this concept:















|
wxcvbnw/havrans | wxcvbnw | 2023-01-09T12:29:04Z | 29 | 0 | diffusers | [
"diffusers",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | text-to-image | 2023-01-09T12:18:23Z | ---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### havrans Dreambooth model trained by wxcvbnw with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Sample pictures of this concept:
|
yuch0001/pokemon | yuch0001 | 2023-01-09T11:54:13Z | 4 | 1 | diffusers | [
"diffusers",
"tensorboard",
"en",
"dataset:lambdalabs/pokemon-blip-captions",
"license:apache-2.0",
"diffusers:DDPMPipeline",
"region:us"
] | null | 2023-01-09T10:48:05Z | ---
language: en
license: apache-2.0
library_name: diffusers
tags: []
datasets: lambdalabs/pokemon-blip-captions
metrics: []
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# pokemon
## Model description
This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library
on the `lambdalabs/pokemon-blip-captions` dataset.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training data
[TODO: describe the data used to train the model]
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- gradient_accumulation_steps: 1
- optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None
- lr_scheduler: None
- lr_warmup_steps: 500
- ema_inv_gamma: None
- ema_inv_gamma: None
- ema_inv_gamma: None
- mixed_precision: fp16
### Training results
📈 [TensorBoard logs](https://huggingface.co/yuch0001/pokemon/tensorboard?#scalars)
|
muhtasham/tiny-mlm-glue-stsb-target-glue-mrpc | muhtasham | 2023-01-09T11:45:56Z | 105 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-01-09T11:39:31Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: tiny-mlm-glue-stsb-target-glue-mrpc
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-mlm-glue-stsb-target-glue-mrpc
This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-stsb](https://huggingface.co/muhtasham/tiny-mlm-glue-stsb) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2364
- Accuracy: 0.7132
- F1: 0.8047
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.5901 | 4.35 | 500 | 0.5567 | 0.7108 | 0.8072 |
| 0.4581 | 8.7 | 1000 | 0.5798 | 0.7377 | 0.8283 |
| 0.3115 | 13.04 | 1500 | 0.6576 | 0.7426 | 0.8247 |
| 0.197 | 17.39 | 2000 | 0.7977 | 0.7255 | 0.8152 |
| 0.1153 | 21.74 | 2500 | 1.0637 | 0.7059 | 0.7973 |
| 0.0843 | 26.09 | 3000 | 1.2364 | 0.7132 | 0.8047 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
vinayak361/token_fine_tunned_flipkart_2_gl7 | vinayak361 | 2023-01-09T11:34:50Z | 117 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2023-01-05T09:41:22Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: token_fine_tunned_flipkart_2_gl7
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# token_fine_tunned_flipkart_2_gl7
This model is a fine-tuned version of [vinayak361/token_fine_tunned_flipkart_2_gl](https://huggingface.co/vinayak361/token_fine_tunned_flipkart_2_gl) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7179
- Precision: 0.7122
- Recall: 0.7571
- F1: 0.7340
- Accuracy: 0.7485
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 135 | 1.0392 | 0.6634 | 0.7121 | 0.6869 | 0.6982 |
| No log | 2.0 | 270 | 0.8567 | 0.6697 | 0.7128 | 0.6906 | 0.7093 |
| No log | 3.0 | 405 | 0.8102 | 0.6707 | 0.7204 | 0.6947 | 0.7146 |
| 0.9223 | 4.0 | 540 | 0.7840 | 0.6860 | 0.7363 | 0.7103 | 0.7253 |
| 0.9223 | 5.0 | 675 | 0.7668 | 0.6886 | 0.7301 | 0.7088 | 0.7267 |
| 0.9223 | 6.0 | 810 | 0.7543 | 0.6886 | 0.7329 | 0.7100 | 0.7301 |
| 0.9223 | 7.0 | 945 | 0.7501 | 0.6997 | 0.7384 | 0.7185 | 0.7340 |
| 0.708 | 8.0 | 1080 | 0.7383 | 0.6949 | 0.7426 | 0.7180 | 0.7335 |
| 0.708 | 9.0 | 1215 | 0.7360 | 0.7030 | 0.7453 | 0.7235 | 0.7379 |
| 0.708 | 10.0 | 1350 | 0.7319 | 0.7048 | 0.7453 | 0.7245 | 0.7389 |
| 0.708 | 11.0 | 1485 | 0.7306 | 0.7052 | 0.7467 | 0.7254 | 0.7398 |
| 0.6327 | 12.0 | 1620 | 0.7220 | 0.7049 | 0.7488 | 0.7262 | 0.7413 |
| 0.6327 | 13.0 | 1755 | 0.7198 | 0.7059 | 0.7509 | 0.7277 | 0.7432 |
| 0.6327 | 14.0 | 1890 | 0.7203 | 0.7108 | 0.7585 | 0.7338 | 0.7481 |
| 0.5954 | 15.0 | 2025 | 0.7193 | 0.7118 | 0.7571 | 0.7337 | 0.7481 |
| 0.5954 | 16.0 | 2160 | 0.7175 | 0.7122 | 0.7585 | 0.7346 | 0.7476 |
| 0.5954 | 17.0 | 2295 | 0.7176 | 0.7144 | 0.7599 | 0.7364 | 0.7481 |
| 0.5954 | 18.0 | 2430 | 0.7183 | 0.7153 | 0.7599 | 0.7369 | 0.7490 |
| 0.5699 | 19.0 | 2565 | 0.7173 | 0.7122 | 0.7571 | 0.7340 | 0.7485 |
| 0.5699 | 20.0 | 2700 | 0.7179 | 0.7122 | 0.7571 | 0.7340 | 0.7485 |
### Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0+cu102
- Datasets 2.2.2
- Tokenizers 0.12.1
|
lixiqi/beit-base-patch16-224-pt22k-ft22k-finetuned-FER2013-5e-05 | lixiqi | 2023-01-09T11:26:49Z | 174 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"beit",
"image-classification",
"generated_from_trainer",
"dataset:image_folder",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2023-01-09T10:43:04Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- image_folder
metrics:
- accuracy
model-index:
- name: beit-base-patch16-224-pt22k-ft22k-finetuned-FER2013-5e-05
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: image_folder
type: image_folder
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.6833379771524102
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# beit-base-patch16-224-pt22k-ft22k-finetuned-FER2013-5e-05
This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the image_folder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8610
- Accuracy: 0.6833
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.1691 | 1.0 | 224 | 0.9764 | 0.6310 |
| 1.0304 | 2.0 | 448 | 0.8965 | 0.6666 |
| 0.9844 | 3.0 | 672 | 0.8610 | 0.6833 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1
|
toinsson/Reinforce-cartpole-0 | toinsson | 2023-01-09T11:11:20Z | 0 | 0 | null | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | reinforcement-learning | 2023-01-09T11:11:09Z | ---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-cartpole-0
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 488.40 +/- 34.80
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
YuJungSoo/kobigbird-base26-46196128 | YuJungSoo | 2023-01-09T11:00:47Z | 90 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"big_bird",
"question-answering",
"generated_from_trainer",
"dataset:custom_squad_v2",
"endpoints_compatible",
"region:us"
] | question-answering | 2023-01-09T10:08:47Z | ---
tags:
- generated_from_trainer
datasets:
- custom_squad_v2
model-index:
- name: kobigbird-base26-46196128
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# kobigbird-base26-46196128
This model is a fine-tuned version of [monologg/kobigbird-bert-base](https://huggingface.co/monologg/kobigbird-bert-base) on the custom_squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4533
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 26
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 0.99 | 42 | 1.8458 |
| No log | 1.99 | 84 | 1.4533 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
BiggieW/classification_chnsenticorp_eda_aug | BiggieW | 2023-01-09T10:57:00Z | 103 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-01-09T09:55:45Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: classification_chnsenticorp_eda_aug
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# classification_chnsenticorp_eda_aug
This model is a fine-tuned version of [hfl/chinese-roberta-wwm-ext](https://huggingface.co/hfl/chinese-roberta-wwm-ext) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7802
- Accuracy: 0.55
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4849 | 1.0 | 20 | 0.6880 | 0.4 |
| 0.0979 | 2.0 | 40 | 0.8746 | 0.6 |
| 0.0238 | 3.0 | 60 | 0.7802 | 0.55 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
muhtasham/tiny-mlm-glue-sst2-target-glue-stsb | muhtasham | 2023-01-09T10:55:52Z | 105 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-01-09T10:43:36Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- spearmanr
model-index:
- name: tiny-mlm-glue-sst2-target-glue-stsb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-mlm-glue-sst2-target-glue-stsb
This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-sst2](https://huggingface.co/muhtasham/tiny-mlm-glue-sst2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9195
- Pearson: 0.8130
- Spearmanr: 0.8114
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|
| 2.7776 | 2.78 | 500 | 1.1238 | 0.7313 | 0.7669 |
| 0.932 | 5.56 | 1000 | 1.0628 | 0.7833 | 0.8086 |
| 0.737 | 8.33 | 1500 | 1.0050 | 0.8025 | 0.8208 |
| 0.6099 | 11.11 | 2000 | 0.8592 | 0.8165 | 0.8220 |
| 0.5164 | 13.89 | 2500 | 0.8875 | 0.8158 | 0.8181 |
| 0.4659 | 16.67 | 3000 | 0.9524 | 0.8155 | 0.8198 |
| 0.4114 | 19.44 | 3500 | 0.8872 | 0.8173 | 0.8174 |
| 0.3728 | 22.22 | 4000 | 0.9423 | 0.8163 | 0.8166 |
| 0.3396 | 25.0 | 4500 | 0.9953 | 0.8197 | 0.8202 |
| 0.321 | 27.78 | 5000 | 0.9409 | 0.8160 | 0.8160 |
| 0.3034 | 30.56 | 5500 | 0.9273 | 0.8142 | 0.8139 |
| 0.2811 | 33.33 | 6000 | 0.9195 | 0.8130 | 0.8114 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
dustofappearan/Dispoa | dustofappearan | 2023-01-09T10:52:29Z | 0 | 0 | diffusers | [
"diffusers",
"en",
"dataset:nateraw/midjourney-texttoimage",
"region:us"
] | null | 2023-01-09T10:51:14Z | ---
datasets:
- nateraw/midjourney-texttoimage
language:
- en
library_name: diffusers
--- |
KJIM/kobigbird-base21-97861855 | KJIM | 2023-01-09T10:41:12Z | 90 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"big_bird",
"question-answering",
"generated_from_trainer",
"dataset:custom_squad_v2",
"endpoints_compatible",
"region:us"
] | question-answering | 2023-01-09T09:55:21Z | ---
tags:
- generated_from_trainer
datasets:
- custom_squad_v2
model-index:
- name: kobigbird-base21-97861855
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# kobigbird-base21-97861855
This model is a fine-tuned version of [monologg/kobigbird-bert-base](https://huggingface.co/monologg/kobigbird-bert-base) on the custom_squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3456
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 21
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 0.99 | 42 | 2.1518 |
| No log | 1.99 | 84 | 1.3456 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
lixiqi/beit-base-patch16-224-pt22k-ft22k-finetuned-FER2013-9e-05 | lixiqi | 2023-01-09T10:37:20Z | 176 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"beit",
"image-classification",
"generated_from_trainer",
"dataset:image_folder",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2023-01-08T20:18:08Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- image_folder
metrics:
- accuracy
model-index:
- name: beit-base-patch16-224-pt22k-ft22k-finetuned-FER2013-9e-05
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: image_folder
type: image_folder
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.6840345500139314
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# beit-base-patch16-224-pt22k-ft22k-finetuned-FER2013-9e-05
This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the image_folder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8481
- Accuracy: 0.6840
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 9e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.1839 | 1.0 | 224 | 1.0266 | 0.6120 |
| 1.0333 | 2.0 | 448 | 0.9063 | 0.6608 |
| 0.9655 | 3.0 | 672 | 0.8481 | 0.6840 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1
|
roscazo/CTEBMSP_ANAT_DISO | roscazo | 2023-01-09T10:27:00Z | 108 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"roberta",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2023-01-09T08:48:42Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: CTEBMSP_ANAT_DISO
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# CTEBMSP_ANAT_DISO
This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0909
- Anat Precision: 0.7522
- Anat Recall: 0.7147
- Anat F1: 0.7330
- Anat Number: 361
- Diso Precision: 0.8915
- Diso Recall: 0.8919
- Diso F1: 0.8917
- Diso Number: 2645
- Overall Precision: 0.8755
- Overall Recall: 0.8706
- Overall F1: 0.8731
- Overall Accuracy: 0.9873
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Anat Precision | Anat Recall | Anat F1 | Anat Number | Diso Precision | Diso Recall | Diso F1 | Diso Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------------:|:-----------:|:-------:|:-----------:|:--------------:|:-----------:|:-------:|:-----------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.0592 | 1.0 | 2133 | 0.0506 | 0.6950 | 0.4986 | 0.5806 | 361 | 0.8635 | 0.8609 | 0.8622 | 2645 | 0.8484 | 0.8174 | 0.8326 | 0.9843 |
| 0.0323 | 2.0 | 4266 | 0.0583 | 0.7899 | 0.6039 | 0.6845 | 361 | 0.8780 | 0.8817 | 0.8798 | 2645 | 0.8697 | 0.8483 | 0.8589 | 0.9858 |
| 0.0201 | 3.0 | 6399 | 0.0580 | 0.6565 | 0.7147 | 0.6844 | 361 | 0.8598 | 0.8764 | 0.8680 | 2645 | 0.8339 | 0.8570 | 0.8453 | 0.9851 |
| 0.0121 | 4.0 | 8532 | 0.0758 | 0.7240 | 0.6759 | 0.6991 | 361 | 0.8976 | 0.8752 | 0.8863 | 2645 | 0.8776 | 0.8513 | 0.8642 | 0.9863 |
| 0.0078 | 5.0 | 10665 | 0.0814 | 0.7219 | 0.7119 | 0.7169 | 361 | 0.8776 | 0.8975 | 0.8875 | 2645 | 0.8595 | 0.8752 | 0.8673 | 0.9862 |
| 0.0031 | 6.0 | 12798 | 0.0974 | 0.7599 | 0.6399 | 0.6947 | 361 | 0.8895 | 0.8915 | 0.8905 | 2645 | 0.8761 | 0.8613 | 0.8686 | 0.9867 |
| 0.002 | 7.0 | 14931 | 0.0980 | 0.7143 | 0.6787 | 0.6960 | 361 | 0.8813 | 0.8957 | 0.8884 | 2645 | 0.8624 | 0.8696 | 0.8660 | 0.9860 |
| 0.0005 | 8.0 | 17064 | 0.0909 | 0.7522 | 0.7147 | 0.7330 | 361 | 0.8915 | 0.8919 | 0.8917 | 2645 | 0.8755 | 0.8706 | 0.8731 | 0.9873 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
muhtasham/tiny-mlm-glue-sst2-target-glue-rte | muhtasham | 2023-01-09T10:24:09Z | 103 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-01-09T10:18:38Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: tiny-mlm-glue-sst2-target-glue-rte
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-mlm-glue-sst2-target-glue-rte
This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-sst2](https://huggingface.co/muhtasham/tiny-mlm-glue-sst2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5470
- Accuracy: 0.6065
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6398 | 6.41 | 500 | 0.6742 | 0.5993 |
| 0.437 | 12.82 | 1000 | 0.8177 | 0.6318 |
| 0.2692 | 19.23 | 1500 | 1.0300 | 0.6137 |
| 0.1609 | 25.64 | 2000 | 1.2420 | 0.6137 |
| 0.1 | 32.05 | 2500 | 1.5470 | 0.6065 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
sudong97/kobigbird-base23-84859751 | sudong97 | 2023-01-09T10:23:26Z | 90 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"big_bird",
"question-answering",
"generated_from_trainer",
"dataset:custom_squad_v2",
"endpoints_compatible",
"region:us"
] | question-answering | 2023-01-09T09:38:27Z | ---
tags:
- generated_from_trainer
datasets:
- custom_squad_v2
model-index:
- name: kobigbird-base23-84859751
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# kobigbird-base23-84859751
This model is a fine-tuned version of [monologg/kobigbird-bert-base](https://huggingface.co/monologg/kobigbird-bert-base) on the custom_squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4628
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 23
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 0.99 | 42 | 1.6141 |
| No log | 1.99 | 84 | 1.4628 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
rohitp1/libri-alpha-0.75-Temp-1-attention-3-layers-distil-with-6-layers-loss-att-take-2 | rohitp1 | 2023-01-09T10:22:07Z | 103 | 0 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2023-01-09T04:36:47Z | ---
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: libri-alpha-0.75-Temp-1-attention-3-layers-distil-with-6-layers-loss-att-take-2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# libri-alpha-0.75-Temp-1-attention-3-layers-distil-with-6-layers-loss-att-take-2
This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 26.4101
- Wer: 0.2791
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 40
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 202.4293 | 0.45 | 200 | 26.7777 | 0.2779 |
| 197.6471 | 0.9 | 400 | 25.8300 | 0.2760 |
| 204.8931 | 1.35 | 600 | 25.6774 | 0.2747 |
| 193.3182 | 1.79 | 800 | 25.6049 | 0.2737 |
| 205.2241 | 2.24 | 1000 | 25.5552 | 0.2739 |
| 186.0407 | 2.69 | 1200 | 25.4364 | 0.2737 |
| 191.7055 | 3.14 | 1400 | 25.7949 | 0.2764 |
| 185.0721 | 3.59 | 1600 | 26.1202 | 0.2753 |
| 198.8579 | 4.04 | 1800 | 25.8496 | 0.2763 |
| 185.7877 | 4.48 | 2000 | 27.0753 | 0.2731 |
| 194.9394 | 4.93 | 2200 | 25.6920 | 0.2775 |
| 188.2296 | 5.38 | 2400 | 25.7362 | 0.2742 |
| 188.0202 | 5.83 | 2600 | 25.9170 | 0.2755 |
| 191.5541 | 6.28 | 2800 | 26.8590 | 0.2771 |
| 198.2817 | 6.73 | 3000 | 26.4101 | 0.2791 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1
- Datasets 2.7.0
- Tokenizers 0.11.0
|
TransLL/bert-base-uncased-issues-128 | TransLL | 2023-01-09T10:18:48Z | 106 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"fill-mask",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2023-01-09T09:08:09Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: bert-base-uncased-issues-128
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-issues-128
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2456
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 16
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.0986 | 1.0 | 291 | 1.6929 |
| 1.6401 | 2.0 | 582 | 1.4304 |
| 1.4881 | 3.0 | 873 | 1.3916 |
| 1.4 | 4.0 | 1164 | 1.3796 |
| 1.3416 | 5.0 | 1455 | 1.2012 |
| 1.2807 | 6.0 | 1746 | 1.2733 |
| 1.2396 | 7.0 | 2037 | 1.2646 |
| 1.1993 | 8.0 | 2328 | 1.2098 |
| 1.1661 | 9.0 | 2619 | 1.1862 |
| 1.1406 | 10.0 | 2910 | 1.2223 |
| 1.1294 | 11.0 | 3201 | 1.2056 |
| 1.1042 | 12.0 | 3492 | 1.1655 |
| 1.0827 | 13.0 | 3783 | 1.2525 |
| 1.0738 | 14.0 | 4074 | 1.1685 |
| 1.0626 | 15.0 | 4365 | 1.1182 |
| 1.0629 | 16.0 | 4656 | 1.2456 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
muhtasham/tiny-mlm-glue-sst2-target-glue-qqp | muhtasham | 2023-01-09T10:16:48Z | 105 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-01-09T09:23:29Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: tiny-mlm-glue-sst2-target-glue-qqp
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-mlm-glue-sst2-target-glue-qqp
This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-sst2](https://huggingface.co/muhtasham/tiny-mlm-glue-sst2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4117
- Accuracy: 0.7972
- F1: 0.7705
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
| 0.578 | 0.04 | 500 | 0.5173 | 0.7295 | 0.6786 |
| 0.5102 | 0.09 | 1000 | 0.4813 | 0.7532 | 0.7023 |
| 0.4981 | 0.13 | 1500 | 0.4910 | 0.7409 | 0.7150 |
| 0.4808 | 0.18 | 2000 | 0.4655 | 0.7558 | 0.7214 |
| 0.4728 | 0.22 | 2500 | 0.4552 | 0.7634 | 0.7282 |
| 0.4557 | 0.26 | 3000 | 0.4475 | 0.7693 | 0.7353 |
| 0.4577 | 0.31 | 3500 | 0.4464 | 0.7690 | 0.7379 |
| 0.4507 | 0.35 | 4000 | 0.4495 | 0.7670 | 0.7397 |
| 0.4511 | 0.4 | 4500 | 0.4409 | 0.7721 | 0.7437 |
| 0.4414 | 0.44 | 5000 | 0.4189 | 0.7903 | 0.7499 |
| 0.4291 | 0.48 | 5500 | 0.4267 | 0.7838 | 0.7510 |
| 0.431 | 0.53 | 6000 | 0.4064 | 0.8005 | 0.7566 |
| 0.4236 | 0.57 | 6500 | 0.4161 | 0.7930 | 0.7573 |
| 0.4258 | 0.62 | 7000 | 0.4038 | 0.8030 | 0.7608 |
| 0.4167 | 0.66 | 7500 | 0.4066 | 0.8041 | 0.7648 |
| 0.4312 | 0.7 | 8000 | 0.4111 | 0.7966 | 0.7621 |
| 0.4203 | 0.75 | 8500 | 0.3971 | 0.8068 | 0.7671 |
| 0.4143 | 0.79 | 9000 | 0.4187 | 0.7894 | 0.7613 |
| 0.4115 | 0.84 | 9500 | 0.3884 | 0.8127 | 0.7688 |
| 0.4133 | 0.88 | 10000 | 0.3849 | 0.8172 | 0.7731 |
| 0.4091 | 0.92 | 10500 | 0.3826 | 0.8178 | 0.7725 |
| 0.4085 | 0.97 | 11000 | 0.3832 | 0.8186 | 0.7723 |
| 0.4066 | 1.01 | 11500 | 0.4000 | 0.8039 | 0.7711 |
| 0.3859 | 1.06 | 12000 | 0.3798 | 0.8195 | 0.7758 |
| 0.3955 | 1.1 | 12500 | 0.3835 | 0.8159 | 0.7781 |
| 0.3833 | 1.14 | 13000 | 0.3872 | 0.8138 | 0.7764 |
| 0.3722 | 1.19 | 13500 | 0.4117 | 0.7972 | 0.7705 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
Shobhank-iiitdwd/BERT-L-QA | Shobhank-iiitdwd | 2023-01-09T10:06:34Z | 108 | 0 | transformers | [
"transformers",
"pytorch",
"jax",
"bert",
"question-answering",
"en",
"dataset:squad_v2",
"license:cc-by-4.0",
"model-index",
"endpoints_compatible",
"region:us"
] | question-answering | 2023-01-09T09:54:33Z | ---
language: en
license: cc-by-4.0
datasets:
- squad_v2
model-index:
- name: deepset/bert-large-uncased-whole-word-masking-squad2
results:
- task:
type: question-answering
name: Question Answering
dataset:
name: squad_v2
type: squad_v2
config: squad_v2
split: validation
metrics:
- type: exact_match
value: 80.8846
name: Exact Match
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2E5ZGNkY2ExZWViZGEwNWE3OGRmMWM2ZmE4ZDU4ZDQ1OGM3ZWE0NTVmZjFmYmZjZmJmNjJmYTc3NTM3OTk3OSIsInZlcnNpb24iOjF9.aSblF4ywh1fnHHrN6UGL392R5KLaH3FCKQlpiXo_EdQ4XXEAENUCjYm9HWDiFsgfSENL35GkbSyz_GAhnefsAQ
- type: f1
value: 83.8765
name: F1
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGFlNmEzMTk2NjRkNTI3ZTk3ZTU1NWNlYzIyN2E0ZDFlNDA2ZjYwZWJlNThkMmRmMmE0YzcwYjIyZDM5NmRiMCIsInZlcnNpb24iOjF9.-rc2_Bsp_B26-o12MFYuAU0Ad2Hg9PDx7Preuk27WlhYJDeKeEr32CW8LLANQABR3Mhw2x8uTYkEUrSDMxxLBw
---
# bert-large-uncased-whole-word-masking-squad2
This is a berta-large model, fine-tuned using the SQuAD2.0 dataset for the task of question answering.
## Overview
**Language model:** bert-large
**Language:** English
**Downstream-task:** Extractive QA
**Training data:** SQuAD 2.0
**Eval data:** SQuAD 2.0
**Code:** See [an example QA pipeline on Haystack](https://haystack.deepset.ai/tutorials/first-qa-system)
## Usage
### In Haystack
Haystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in [Haystack](https://github.com/deepset-ai/haystack/):
```python
reader = FARMReader(model_name_or_path="deepset/bert-large-uncased-whole-word-masking-squad2")
# or
reader = TransformersReader(model_name_or_path="FILL",tokenizer="deepset/bert-large-uncased-whole-word-masking-squad2")
```
### In Transformers
```python
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
model_name = "deepset/bert-large-uncased-whole-word-masking-squad2"
# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
'question': 'Why is model conversion important?',
'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)
# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
```
## About us
<div class="grid lg:grid-cols-2 gap-x-4 gap-y-3">
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/>
</div>
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/haystack-logo-colored.png" class="w-40"/>
</div>
</div>
[deepset](http://deepset.ai/) is the company behind the open-source NLP framework [Haystack](https://haystack.deepset.ai/) which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.
Some of our other work:
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")]([https://huggingface.co/deepset/tinyroberta-squad2)
- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
- [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad)
## Get in touch and join the Haystack community
<p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://docs.haystack.deepset.ai">Documentation</a></strong>.
We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p>
[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community/join) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai)
By the way: [we're hiring!](http://www.deepset.ai/jobs) |
nc33/T5_finetuned | nc33 | 2023-01-09T09:47:09Z | 107 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:super_glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2023-01-09T04:38:33Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- super_glue
metrics:
- rouge
model-index:
- name: T5_finetuned
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: super_glue
type: super_glue
config: boolq
split: train
args: boolq
metrics:
- name: Rouge1
type: rouge
value: 79.3272
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# T5_finetuned
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the super_glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1077
- Rouge1: 79.3272
- Rouge2: 0.0
- Rougel: 79.2966
- Rougelsum: 79.3272
- Gen Len: 2.8269
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| 0.5134 | 1.0 | 590 | 0.1102 | 79.8165 | 0.0 | 79.8165 | 79.8471 | 2.7713 |
| 0.105 | 2.0 | 1180 | 0.1049 | 80.3364 | 0.0 | 80.3364 | 80.367 | 2.6483 |
| 0.1023 | 3.0 | 1770 | 0.1077 | 79.3272 | 0.0 | 79.2966 | 79.3272 | 2.8269 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
KJIM/kobigbird-pure50-8977015 | KJIM | 2023-01-09T09:34:26Z | 92 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"big_bird",
"question-answering",
"generated_from_trainer",
"dataset:custom_squad_v2",
"endpoints_compatible",
"region:us"
] | question-answering | 2023-01-09T09:09:05Z | ---
tags:
- generated_from_trainer
datasets:
- custom_squad_v2
model-index:
- name: kobigbird-pure50-8977015
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# kobigbird-pure50-8977015
This model is a fine-tuned version of [monologg/kobigbird-bert-base](https://huggingface.co/monologg/kobigbird-bert-base) on the custom_squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2394
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 50
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 0.99 | 42 | 1.8128 |
| No log | 1.99 | 84 | 1.2394 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
ilhkn/my-awesome-setfit-model1 | ilhkn | 2023-01-09T09:21:34Z | 2 | 0 | sentence-transformers | [
"sentence-transformers",
"pytorch",
"mpnet",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | sentence-similarity | 2023-01-09T09:21:15Z | ---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 40 with parameters:
```
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 40,
"warmup_steps": 4,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information --> |
susooo/kobigbird-base27-63168558 | susooo | 2023-01-09T09:12:33Z | 91 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"big_bird",
"question-answering",
"generated_from_trainer",
"dataset:custom_squad_v2",
"endpoints_compatible",
"region:us"
] | question-answering | 2023-01-09T05:46:16Z | ---
tags:
- generated_from_trainer
datasets:
- custom_squad_v2
model-index:
- name: kobigbird-base27-63168558
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# kobigbird-base27-63168558
This model is a fine-tuned version of [monologg/kobigbird-bert-base](https://huggingface.co/monologg/kobigbird-bert-base) on the custom_squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3353
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 27
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 0.99 | 42 | 1.3859 |
| No log | 1.99 | 84 | 1.3353 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
bdiptesh99/rl-ql-Taxi-v3 | bdiptesh99 | 2023-01-09T09:00:38Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | reinforcement-learning | 2023-01-09T07:22:18Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: rl-ql-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="bdiptesh99/rl-ql-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
muhtasham/tiny-mlm-glue-sst2-target-glue-mnli | muhtasham | 2023-01-09T09:00:24Z | 108 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-01-09T08:28:58Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: tiny-mlm-glue-sst2-target-glue-mnli
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-mlm-glue-sst2-target-glue-mnli
This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-sst2](https://huggingface.co/muhtasham/tiny-mlm-glue-sst2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7870
- Accuracy: 0.6519
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 1.076 | 0.04 | 500 | 1.0342 | 0.4657 |
| 1.0114 | 0.08 | 1000 | 0.9714 | 0.5393 |
| 0.9654 | 0.12 | 1500 | 0.9268 | 0.5736 |
| 0.9381 | 0.16 | 2000 | 0.9120 | 0.5849 |
| 0.9266 | 0.2 | 2500 | 0.8942 | 0.5953 |
| 0.9171 | 0.24 | 3000 | 0.8783 | 0.6014 |
| 0.9009 | 0.29 | 3500 | 0.8687 | 0.6085 |
| 0.8932 | 0.33 | 4000 | 0.8567 | 0.6191 |
| 0.8767 | 0.37 | 4500 | 0.8524 | 0.6171 |
| 0.8768 | 0.41 | 5000 | 0.8436 | 0.6231 |
| 0.8702 | 0.45 | 5500 | 0.8374 | 0.6220 |
| 0.8673 | 0.49 | 6000 | 0.8345 | 0.6271 |
| 0.8684 | 0.53 | 6500 | 0.8274 | 0.6274 |
| 0.8606 | 0.57 | 7000 | 0.8282 | 0.6298 |
| 0.8528 | 0.61 | 7500 | 0.8146 | 0.6363 |
| 0.8529 | 0.65 | 8000 | 0.8103 | 0.6406 |
| 0.8467 | 0.69 | 8500 | 0.8237 | 0.6320 |
| 0.8478 | 0.73 | 9000 | 0.7964 | 0.6473 |
| 0.8399 | 0.77 | 9500 | 0.8081 | 0.6391 |
| 0.8295 | 0.81 | 10000 | 0.7954 | 0.6475 |
| 0.833 | 0.86 | 10500 | 0.7994 | 0.6439 |
| 0.8316 | 0.9 | 11000 | 0.7886 | 0.6513 |
| 0.8239 | 0.94 | 11500 | 0.7847 | 0.6544 |
| 0.8247 | 0.98 | 12000 | 0.7848 | 0.6512 |
| 0.81 | 1.02 | 12500 | 0.7915 | 0.6507 |
| 0.8059 | 1.06 | 13000 | 0.7870 | 0.6519 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
KJIM/kobigbird-pure49-55481524 | KJIM | 2023-01-09T08:57:33Z | 90 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"big_bird",
"question-answering",
"generated_from_trainer",
"dataset:custom_squad_v2",
"endpoints_compatible",
"region:us"
] | question-answering | 2023-01-09T08:24:50Z | ---
tags:
- generated_from_trainer
datasets:
- custom_squad_v2
model-index:
- name: kobigbird-pure49-55481524
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# kobigbird-pure49-55481524
This model is a fine-tuned version of [monologg/kobigbird-bert-base](https://huggingface.co/monologg/kobigbird-bert-base) on the custom_squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1357
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 49
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 0.99 | 42 | 1.2047 |
| No log | 1.99 | 84 | 1.1357 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
Niraya666/q-FrozenLake-v1-4x4-noSlippery | Niraya666 | 2023-01-09T08:53:03Z | 0 | 0 | null | [
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | reinforcement-learning | 2023-01-09T08:52:56Z | ---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="Niraya666/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
ThaiKami/bartpho-word-BA-fix-001 | ThaiKami | 2023-01-09T08:51:01Z | 103 | 0 | transformers | [
"transformers",
"pytorch",
"mbart",
"text2text-generation",
"legal",
"vi",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2023-01-09T08:23:04Z | ---
language:
- vi
metrics:
- rouge
library_name: transformers
pipeline_tag: text2text-generation
tags:
- legal
--- |
padmajabfrl/demo | padmajabfrl | 2023-01-09T08:46:16Z | 109 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-01-09T07:33:32Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: demo
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# demo
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0000
- Accuracy: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0059 | 1.0 | 4390 | 0.0000 | 1.0 |
| 0.0 | 2.0 | 8780 | 0.0000 | 1.0 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
charlemagne/distilbert-base-uncased-new2-mnli | charlemagne | 2023-01-09T08:29:50Z | 106 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-01-09T08:25:40Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-new2-mnli
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-new2-mnli
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2204
- Accuracy: 0.9427
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 164 | 0.4336 | 0.8678 |
| No log | 2.0 | 328 | 0.2592 | 0.9320 |
| No log | 3.0 | 492 | 0.2546 | 0.9351 |
| 0.4501 | 4.0 | 656 | 0.2204 | 0.9427 |
| 0.4501 | 5.0 | 820 | 0.2181 | 0.9404 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.8.0+cu111
- Datasets 2.1.0
- Tokenizers 0.11.6
|
likejazz/xlm-roberta-base-finetuned-panx-all | likejazz | 2023-01-09T08:24:10Z | 111 | 0 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2023-01-09T08:19:17Z | ---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-all
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-all
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1574
- F1: 0.8504
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 96
- eval_batch_size: 96
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 179 | 0.1897 | 0.8147 |
| No log | 2.0 | 358 | 0.1624 | 0.8394 |
| No log | 3.0 | 537 | 0.1574 | 0.8504 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.13.1+cu117
- Datasets 1.16.1
- Tokenizers 0.10.3
|
likejazz/xlm-roberta-base-finetuned-panx-en | likejazz | 2023-01-09T08:19:05Z | 112 | 0 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"dataset:xtreme",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2023-01-09T08:15:51Z | ---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-en
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.en
metrics:
- name: F1
type: f1
value: 0.4989626556016597
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-en
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6888
- F1: 0.4990
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 96
- eval_batch_size: 96
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 13 | 1.1149 | 0.1584 |
| No log | 2.0 | 26 | 0.7899 | 0.4283 |
| No log | 3.0 | 39 | 0.6888 | 0.4990 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.13.1+cu117
- Datasets 1.16.1
- Tokenizers 0.10.3
|
sudong97/kobigbird-pure23-34112365 | sudong97 | 2023-01-09T08:17:50Z | 90 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"big_bird",
"question-answering",
"generated_from_trainer",
"dataset:custom_squad_v2",
"endpoints_compatible",
"region:us"
] | question-answering | 2023-01-09T07:43:09Z | ---
tags:
- generated_from_trainer
datasets:
- custom_squad_v2
model-index:
- name: kobigbird-pure23-34112365
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# kobigbird-pure23-34112365
This model is a fine-tuned version of [monologg/kobigbird-bert-base](https://huggingface.co/monologg/kobigbird-bert-base) on the custom_squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6619
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 23
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 0.99 | 42 | 1.5290 |
| No log | 1.99 | 84 | 1.3679 |
| No log | 2.99 | 126 | 1.6619 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
likejazz/xlm-roberta-base-finetuned-panx-fr | likejazz | 2023-01-09T08:11:43Z | 108 | 0 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"dataset:xtreme",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2023-01-09T08:08:17Z | ---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-fr
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.fr
metrics:
- name: F1
type: f1
value: 0.8205897051474264
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-fr
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2859
- F1: 0.8206
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 96
- eval_batch_size: 96
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 48 | 0.4009 | 0.7464 |
| No log | 2.0 | 96 | 0.3035 | 0.7971 |
| No log | 3.0 | 144 | 0.2859 | 0.8206 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.13.1+cu117
- Datasets 1.16.1
- Tokenizers 0.10.3
|
likejazz/xlm-roberta-base-finetuned-panx-de | likejazz | 2023-01-09T08:00:12Z | 108 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"dataset:xtreme",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2023-01-06T07:37:23Z | ---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.de
metrics:
- name: F1
type: f1
value: 0.8515740425048302
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1351
- F1: 0.8516
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 96
- eval_batch_size: 96
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 132 | 0.1641 | 0.8141 |
| No log | 2.0 | 264 | 0.1410 | 0.8399 |
| No log | 3.0 | 396 | 0.1351 | 0.8516 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.13.1+cu117
- Datasets 1.16.1
- Tokenizers 0.10.3
|
LarryAIDraw/bocchi3-20000 | LarryAIDraw | 2023-01-09T07:59:40Z | 0 | 1 | null | [
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-01-09T07:59:20Z | ---
license: creativeml-openrail-m
---
|
AdiKompella/Reinforce-PixelCopter | AdiKompella | 2023-01-09T07:49:12Z | 0 | 0 | null | [
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | reinforcement-learning | 2023-01-09T07:49:08Z | ---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-PixelCopter
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 22.20 +/- 21.60
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
muhtasham/tiny-mlm-glue-rte-target-glue-qqp | muhtasham | 2023-01-09T07:34:18Z | 105 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-01-09T06:40:02Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: tiny-mlm-glue-rte-target-glue-qqp
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-mlm-glue-rte-target-glue-qqp
This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-rte](https://huggingface.co/muhtasham/tiny-mlm-glue-rte) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4155
- Accuracy: 0.7949
- F1: 0.7691
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
| 0.5776 | 0.04 | 500 | 0.5189 | 0.7264 | 0.6855 |
| 0.5081 | 0.09 | 1000 | 0.4824 | 0.7519 | 0.7059 |
| 0.4951 | 0.13 | 1500 | 0.4940 | 0.7377 | 0.7141 |
| 0.4792 | 0.18 | 2000 | 0.4704 | 0.7526 | 0.7221 |
| 0.4722 | 0.22 | 2500 | 0.4571 | 0.7618 | 0.7277 |
| 0.4557 | 0.26 | 3000 | 0.4496 | 0.7677 | 0.7346 |
| 0.4567 | 0.31 | 3500 | 0.4480 | 0.7677 | 0.7378 |
| 0.4497 | 0.35 | 4000 | 0.4502 | 0.7655 | 0.7386 |
| 0.4503 | 0.4 | 4500 | 0.4426 | 0.7712 | 0.7432 |
| 0.4412 | 0.44 | 5000 | 0.4216 | 0.7889 | 0.7501 |
| 0.4291 | 0.48 | 5500 | 0.4284 | 0.7837 | 0.7515 |
| 0.4293 | 0.53 | 6000 | 0.4075 | 0.8004 | 0.7577 |
| 0.4241 | 0.57 | 6500 | 0.4230 | 0.7879 | 0.7559 |
| 0.4253 | 0.62 | 7000 | 0.4067 | 0.8002 | 0.7601 |
| 0.4166 | 0.66 | 7500 | 0.4083 | 0.8026 | 0.7646 |
| 0.4302 | 0.7 | 8000 | 0.4121 | 0.7964 | 0.7624 |
| 0.4206 | 0.75 | 8500 | 0.3993 | 0.8051 | 0.7667 |
| 0.4147 | 0.79 | 9000 | 0.4202 | 0.7884 | 0.7610 |
| 0.4117 | 0.84 | 9500 | 0.3915 | 0.8094 | 0.7677 |
| 0.4131 | 0.88 | 10000 | 0.3863 | 0.8156 | 0.7735 |
| 0.4089 | 0.92 | 10500 | 0.3832 | 0.8157 | 0.7713 |
| 0.4086 | 0.97 | 11000 | 0.3836 | 0.8180 | 0.7732 |
| 0.406 | 1.01 | 11500 | 0.4042 | 0.8018 | 0.7707 |
| 0.3854 | 1.06 | 12000 | 0.3819 | 0.8182 | 0.7763 |
| 0.3952 | 1.1 | 12500 | 0.3836 | 0.8149 | 0.7771 |
| 0.3827 | 1.14 | 13000 | 0.3898 | 0.8134 | 0.7766 |
| 0.3719 | 1.19 | 13500 | 0.4155 | 0.7949 | 0.7691 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
Nishant91/Reinforce-CartPole8 | Nishant91 | 2023-01-09T06:57:07Z | 0 | 0 | null | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | reinforcement-learning | 2023-01-09T06:56:57Z | ---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-CartPole8
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
LarryAIDraw/kblueleaf | LarryAIDraw | 2023-01-09T06:56:35Z | 0 | 0 | null | [
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-01-09T05:49:16Z | ---
license: creativeml-openrail-m
---
|
leoleung93/dqn-SpaceInvadersNoFrameskip-v4 | leoleung93 | 2023-01-09T06:49:36Z | 2 | 0 | stable-baselines3 | [
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | 2023-01-09T06:49:08Z | ---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 14.50 +/- 12.34
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga leoleung93 -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga leoleung93 -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga leoleung93
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 100000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
yansong/trained_models_3 | yansong | 2023-01-09T06:41:21Z | 0 | 0 | null | [
"region:us"
] | null | 2023-01-09T06:41:03Z | This directory includes a few sample datasets to get you started.
* `california_housing_data*.csv` is California housing data from the 1990 US
Census; more information is available at:
https://developers.google.com/machine-learning/crash-course/california-housing-data-description
* `mnist_*.csv` is a small sample of the
[MNIST database](https://en.wikipedia.org/wiki/MNIST_database), which is
described at: http://yann.lecun.com/exdb/mnist/
* `anscombe.json` contains a copy of
[Anscombe's quartet](https://en.wikipedia.org/wiki/Anscombe%27s_quartet); it
was originally described in
Anscombe, F. J. (1973). 'Graphs in Statistical Analysis'. American
Statistician. 27 (1): 17-21. JSTOR 2682899.
and our copy was prepared by the
[vega_datasets library](https://github.com/altair-viz/vega_datasets/blob/4f67bdaad10f45e3549984e17e1b3088c731503d/vega_datasets/_data/anscombe.json).
|
KJIM/kobigbird-base29-54981035 | KJIM | 2023-01-09T06:26:20Z | 89 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"big_bird",
"question-answering",
"generated_from_trainer",
"dataset:custom_squad_v2",
"endpoints_compatible",
"region:us"
] | question-answering | 2023-01-09T05:40:59Z | ---
tags:
- generated_from_trainer
datasets:
- custom_squad_v2
model-index:
- name: kobigbird-base29-54981035
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# kobigbird-base29-54981035
This model is a fine-tuned version of [monologg/kobigbird-bert-base](https://huggingface.co/monologg/kobigbird-bert-base) on the custom_squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 6.2076
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 29
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 0.99 | 42 | 6.2076 |
| No log | 1.99 | 84 | 6.2076 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
muhtasham/tiny-mlm-glue-rte-target-glue-mnli | muhtasham | 2023-01-09T06:17:04Z | 107 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-01-09T05:45:57Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: tiny-mlm-glue-rte-target-glue-mnli
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-mlm-glue-rte-target-glue-mnli
This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-rte](https://huggingface.co/muhtasham/tiny-mlm-glue-rte) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7947
- Accuracy: 0.6475
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 1.0719 | 0.04 | 500 | 1.0318 | 0.4653 |
| 1.0131 | 0.08 | 1000 | 0.9779 | 0.5247 |
| 0.9748 | 0.12 | 1500 | 0.9293 | 0.5769 |
| 0.9415 | 0.16 | 2000 | 0.9073 | 0.5893 |
| 0.9255 | 0.2 | 2500 | 0.8888 | 0.6011 |
| 0.9168 | 0.24 | 3000 | 0.8789 | 0.6042 |
| 0.8998 | 0.29 | 3500 | 0.8704 | 0.6077 |
| 0.8948 | 0.33 | 4000 | 0.8624 | 0.6114 |
| 0.8791 | 0.37 | 4500 | 0.8571 | 0.6176 |
| 0.8832 | 0.41 | 5000 | 0.8501 | 0.6192 |
| 0.8742 | 0.45 | 5500 | 0.8423 | 0.6247 |
| 0.87 | 0.49 | 6000 | 0.8410 | 0.6280 |
| 0.874 | 0.53 | 6500 | 0.8322 | 0.6328 |
| 0.8623 | 0.57 | 7000 | 0.8342 | 0.6296 |
| 0.8563 | 0.61 | 7500 | 0.8192 | 0.6394 |
| 0.8562 | 0.65 | 8000 | 0.8194 | 0.6367 |
| 0.8504 | 0.69 | 8500 | 0.8284 | 0.6327 |
| 0.8519 | 0.73 | 9000 | 0.8044 | 0.6424 |
| 0.8436 | 0.77 | 9500 | 0.8175 | 0.6354 |
| 0.8349 | 0.81 | 10000 | 0.8015 | 0.6438 |
| 0.8372 | 0.86 | 10500 | 0.8094 | 0.6368 |
| 0.835 | 0.9 | 11000 | 0.7958 | 0.6469 |
| 0.8291 | 0.94 | 11500 | 0.7922 | 0.6479 |
| 0.8274 | 0.98 | 12000 | 0.7938 | 0.6449 |
| 0.8158 | 1.02 | 12500 | 0.7971 | 0.6450 |
| 0.8111 | 1.06 | 13000 | 0.7947 | 0.6475 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
carrtesy/cartpole-v1 | carrtesy | 2023-01-09T06:16:27Z | 0 | 0 | null | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | reinforcement-learning | 2023-01-09T06:15:16Z | ---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: cartpole-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 376.00 +/- 27.91
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
|
LarryAIDraw/kblueleaf-hypernet | LarryAIDraw | 2023-01-09T05:59:56Z | 0 | 0 | null | [
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-01-09T05:49:49Z | ---
license: creativeml-openrail-m
---
|
szamanian/sd-class-butterflies-64 | szamanian | 2023-01-09T05:48:39Z | 29 | 0 | diffusers | [
"diffusers",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"license:mit",
"diffusers:DDPMPipeline",
"region:us"
] | unconditional-image-generation | 2023-01-09T05:23:50Z | ---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class)
This model is a diffusion model for unconditional image generation of cute 🦋.
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('szamanian/sd-class-butterflies-32')
image = pipeline().images[0]
image
``` |
muhtasham/tiny-mlm-glue-rte-target-glue-cola | muhtasham | 2023-01-09T05:42:10Z | 103 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-01-09T05:30:08Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- matthews_correlation
model-index:
- name: tiny-mlm-glue-rte-target-glue-cola
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-mlm-glue-rte-target-glue-cola
This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-rte](https://huggingface.co/muhtasham/tiny-mlm-glue-rte) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7986
- Matthews Correlation: 0.1168
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.6097 | 1.87 | 500 | 0.6209 | 0.0 |
| 0.6011 | 3.73 | 1000 | 0.6173 | 0.0 |
| 0.5827 | 5.6 | 1500 | 0.6197 | 0.0622 |
| 0.5534 | 7.46 | 2000 | 0.6410 | 0.0939 |
| 0.5244 | 9.33 | 2500 | 0.6664 | 0.1184 |
| 0.5087 | 11.19 | 3000 | 0.6684 | 0.1327 |
| 0.4867 | 13.06 | 3500 | 0.6789 | 0.0999 |
| 0.4693 | 14.93 | 4000 | 0.7124 | 0.1109 |
| 0.4483 | 16.79 | 4500 | 0.7333 | 0.1388 |
| 0.4303 | 18.66 | 5000 | 0.7486 | 0.1287 |
| 0.4105 | 20.52 | 5500 | 0.7961 | 0.1321 |
| 0.4046 | 22.39 | 6000 | 0.7986 | 0.1168 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
vitorhgomes/Reinforce-Pixelcopter-v3 | vitorhgomes | 2023-01-09T05:35:31Z | 0 | 0 | null | [
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | reinforcement-learning | 2023-01-09T05:30:41Z | ---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-Pixelcopter-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 26.70 +/- 17.41
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
aplnestrella/pegasus-samsum-14 | aplnestrella | 2023-01-09T05:30:01Z | 104 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"pegasus",
"text2text-generation",
"generated_from_trainer",
"dataset:samsum",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2023-01-09T03:51:48Z | ---
tags:
- generated_from_trainer
datasets:
- samsum
model-index:
- name: pegasus-samsum-14
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pegasus-samsum-14
This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4292
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 14
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.7704 | 0.47 | 500 | 1.4958 |
| 1.65 | 0.95 | 1000 | 1.4292 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
muhtasham/tiny-mlm-glue-qqp-target-glue-stsb | muhtasham | 2023-01-09T05:23:55Z | 105 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-01-09T05:11:50Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- spearmanr
model-index:
- name: tiny-mlm-glue-qqp-target-glue-stsb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-mlm-glue-qqp-target-glue-stsb
This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-qqp](https://huggingface.co/muhtasham/tiny-mlm-glue-qqp) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9234
- Pearson: 0.8132
- Spearmanr: 0.8116
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|
| 2.9883 | 2.78 | 500 | 1.1659 | 0.7141 | 0.7498 |
| 0.9795 | 5.56 | 1000 | 1.0600 | 0.7790 | 0.8006 |
| 0.753 | 8.33 | 1500 | 0.9585 | 0.8042 | 0.8166 |
| 0.6208 | 11.11 | 2000 | 0.8495 | 0.8153 | 0.8188 |
| 0.5239 | 13.89 | 2500 | 0.8834 | 0.8149 | 0.8174 |
| 0.4691 | 16.67 | 3000 | 0.9556 | 0.8160 | 0.8195 |
| 0.4148 | 19.44 | 3500 | 0.8703 | 0.8180 | 0.8178 |
| 0.3779 | 22.22 | 4000 | 0.9027 | 0.8179 | 0.8177 |
| 0.3446 | 25.0 | 4500 | 0.9613 | 0.8191 | 0.8194 |
| 0.3215 | 27.78 | 5000 | 0.9470 | 0.8162 | 0.8160 |
| 0.3034 | 30.56 | 5500 | 0.9345 | 0.8161 | 0.8158 |
| 0.28 | 33.33 | 6000 | 0.9234 | 0.8132 | 0.8116 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
muhtasham/tiny-mlm-glue-qqp-target-glue-sst2 | muhtasham | 2023-01-09T05:11:04Z | 105 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-01-09T04:54:09Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: tiny-mlm-glue-qqp-target-glue-sst2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-mlm-glue-qqp-target-glue-sst2
This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-qqp](https://huggingface.co/muhtasham/tiny-mlm-glue-qqp) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5039
- Accuracy: 0.8291
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5922 | 0.24 | 500 | 0.4935 | 0.7798 |
| 0.4475 | 0.48 | 1000 | 0.4672 | 0.7936 |
| 0.3948 | 0.71 | 1500 | 0.4418 | 0.7947 |
| 0.3742 | 0.95 | 2000 | 0.4701 | 0.7878 |
| 0.3364 | 1.19 | 2500 | 0.4464 | 0.8050 |
| 0.318 | 1.43 | 3000 | 0.4442 | 0.8108 |
| 0.2982 | 1.66 | 3500 | 0.4462 | 0.8062 |
| 0.2942 | 1.9 | 4000 | 0.4449 | 0.8211 |
| 0.2759 | 2.14 | 4500 | 0.4794 | 0.8062 |
| 0.2554 | 2.38 | 5000 | 0.4390 | 0.8200 |
| 0.2476 | 2.61 | 5500 | 0.4339 | 0.8303 |
| 0.2572 | 2.85 | 6000 | 0.4432 | 0.8268 |
| 0.2383 | 3.09 | 6500 | 0.4562 | 0.8291 |
| 0.2339 | 3.33 | 7000 | 0.4548 | 0.8349 |
| 0.2178 | 3.56 | 7500 | 0.4400 | 0.8349 |
| 0.2156 | 3.8 | 8000 | 0.4745 | 0.8337 |
| 0.2135 | 4.04 | 8500 | 0.5039 | 0.8291 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
vitorhgomes/Reinforce-Pixelcopter-v2 | vitorhgomes | 2023-01-09T05:08:12Z | 0 | 0 | null | [
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | reinforcement-learning | 2023-01-09T05:07:27Z | ---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-Pixelcopter-v2
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 13.86 +/- 15.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
akgeni/pixelcopter-v2 | akgeni | 2023-01-09T04:52:51Z | 0 | 0 | null | [
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | reinforcement-learning | 2023-01-09T04:52:43Z | ---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: pixelcopter-v2
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 11.80 +/- 9.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
vitorhgomes/Reinforce-Pixelcopter-v1 | vitorhgomes | 2023-01-09T04:40:06Z | 0 | 0 | null | [
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | reinforcement-learning | 2023-01-09T04:39:00Z | ---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-Pixelcopter-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 20.40 +/- 15.54
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
TheTeamBuilder/q-FrozenLake-v1-4x4-noSlippery | TheTeamBuilder | 2023-01-09T04:38:30Z | 0 | 0 | null | [
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | reinforcement-learning | 2023-01-09T04:38:24Z | ---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="TheTeamBuilder/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
leeju/08-3-4-distilbert-base-uncased-finetuned-clinc | leeju | 2023-01-09T04:12:02Z | 27 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:clinc_oos",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-01-09T02:14:27Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- clinc_oos
metrics:
- accuracy
model-index:
- name: 08-3-4-distilbert-base-uncased-finetuned-clinc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: clinc_oos
type: clinc_oos
config: plus
split: train
args: plus
metrics:
- name: Accuracy
type: accuracy
value: 0.9151612903225806
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 08-3-4-distilbert-base-uncased-finetuned-clinc
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7777
- Accuracy: 0.9152
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 318 | 3.3018 | 0.7439 |
| 3.7971 | 2.0 | 636 | 1.8880 | 0.8406 |
| 3.7971 | 3.0 | 954 | 1.1649 | 0.8932 |
| 1.7002 | 4.0 | 1272 | 0.8611 | 0.9119 |
| 0.9041 | 5.0 | 1590 | 0.7777 | 0.9152 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.1
- Datasets 2.8.0
- Tokenizers 0.13.2
|
EduardoCGarridoMerchan/pixelCopter | EduardoCGarridoMerchan | 2023-01-09T04:05:07Z | 0 | 0 | null | [
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | reinforcement-learning | 2023-01-08T16:09:10Z | ---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: pixelCopter
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 105.30 +/- 132.52
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
egumasa/roberta-base-academic | egumasa | 2023-01-09T04:00:27Z | 119 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"roberta",
"fill-mask",
"generated_from_trainer",
"dataset:orieg/elsevier-oa-cc-by",
"license:cc-by-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2023-01-05T08:19:33Z | ---
license: cc-by-sa-4.0
tags:
- generated_from_trainer
model-index:
- name: roberta-base-academic
results: []
datasets:
- orieg/elsevier-oa-cc-by
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-academic
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on a combination of Elsevier OA CC-by dataset and other corpora of university essays such as [BAWE](https://www.coventry.ac.uk/research/research-directories/current-projects/2015/british-academic-written-english-corpus-bawe/) and [MICUSP](https://elicorpora.info/main).
It achieves the following results on the evaluation set:
- Loss: 1.4229
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.99) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.671 | 1.0 | 338 | 1.5581 |
| 1.6395 | 1.99 | 676 | 1.5276 |
| 1.5991 | 2.99 | 1014 | 1.5108 |
| 1.5659 | 3.99 | 1352 | 1.4903 |
| 1.5393 | 4.99 | 1690 | 1.4668 |
| 1.5178 | 5.98 | 2028 | 1.4621 |
| 1.4962 | 6.98 | 2366 | 1.4388 |
| 1.4783 | 7.98 | 2704 | 1.4320 |
| 1.4652 | 8.97 | 3042 | 1.4216 |
| 1.4542 | 9.97 | 3380 | 1.4180 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2 |
Bill010602/dqn-SpaceInvadersNoFrameskip-v4_V4 | Bill010602 | 2023-01-09T03:58:14Z | 4 | 0 | stable-baselines3 | [
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | 2023-01-09T03:57:34Z | ---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 686.50 +/- 131.00
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Bill010602 -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Bill010602 -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Bill010602
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.05),
('exploration_fraction', 0.4),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
bellengc/wav2vec2-large-xls-r-300m-asp-project-bribri | bellengc | 2023-01-09T03:35:23Z | 76 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2023-01-09T01:59:53Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-large-xls-r-300m-asp-project-bribri
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-asp-project-bribri
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 9.2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.24.0
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
alphahg/koelectra-base-86371428 | alphahg | 2023-01-09T03:21:56Z | 104 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"electra",
"question-answering",
"generated_from_trainer",
"dataset:custom_squad_v2",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | question-answering | 2023-01-09T02:41:59Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- custom_squad_v2
model-index:
- name: koelectra-base-86371428
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# koelectra-base-86371428
This model is a fine-tuned version of [monologg/koelectra-base-v3-discriminator](https://huggingface.co/monologg/koelectra-base-v3-discriminator) on the custom_squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6169
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 128
- eval_batch_size: 128
- seed: 30
- gradient_accumulation_steps: 8
- total_train_batch_size: 1024
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 0.94 | 10 | 1.8078 |
| No log | 1.94 | 20 | 1.6169 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
muhtasham/tiny-mlm-glue-qnli-target-glue-stsb | muhtasham | 2023-01-09T02:42:47Z | 105 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-01-09T02:35:29Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- spearmanr
model-index:
- name: tiny-mlm-glue-qnli-target-glue-stsb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-mlm-glue-qnli-target-glue-stsb
This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-qnli](https://huggingface.co/muhtasham/tiny-mlm-glue-qnli) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8934
- Pearson: 0.8154
- Spearmanr: 0.8157
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|
| 2.952 | 2.78 | 500 | 1.1581 | 0.7199 | 0.7571 |
| 0.9583 | 5.56 | 1000 | 1.1118 | 0.7743 | 0.7995 |
| 0.7459 | 8.33 | 1500 | 0.9843 | 0.8028 | 0.8182 |
| 0.6197 | 11.11 | 2000 | 0.8616 | 0.8165 | 0.8217 |
| 0.5182 | 13.89 | 2500 | 0.9113 | 0.8140 | 0.8169 |
| 0.4676 | 16.67 | 3000 | 0.9804 | 0.8144 | 0.8183 |
| 0.4128 | 19.44 | 3500 | 0.8934 | 0.8154 | 0.8157 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
muhtasham/tiny-mlm-glue-qnli-target-glue-sst2 | muhtasham | 2023-01-09T02:34:44Z | 105 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-01-09T02:17:58Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: tiny-mlm-glue-qnli-target-glue-sst2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-mlm-glue-qnli-target-glue-sst2
This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-qnli](https://huggingface.co/muhtasham/tiny-mlm-glue-qnli) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5008
- Accuracy: 0.8211
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5757 | 0.24 | 500 | 0.4901 | 0.7775 |
| 0.4436 | 0.48 | 1000 | 0.4673 | 0.7833 |
| 0.3947 | 0.71 | 1500 | 0.4434 | 0.7970 |
| 0.3751 | 0.95 | 2000 | 0.4601 | 0.7970 |
| 0.3326 | 1.19 | 2500 | 0.4463 | 0.8005 |
| 0.316 | 1.43 | 3000 | 0.4510 | 0.8005 |
| 0.2981 | 1.66 | 3500 | 0.4367 | 0.8142 |
| 0.2929 | 1.9 | 4000 | 0.4383 | 0.8108 |
| 0.2746 | 2.14 | 4500 | 0.4873 | 0.8016 |
| 0.256 | 2.38 | 5000 | 0.4395 | 0.8165 |
| 0.246 | 2.61 | 5500 | 0.4444 | 0.8280 |
| 0.2522 | 2.85 | 6000 | 0.4478 | 0.8245 |
| 0.2371 | 3.09 | 6500 | 0.4556 | 0.8291 |
| 0.2299 | 3.33 | 7000 | 0.4655 | 0.8326 |
| 0.2143 | 3.56 | 7500 | 0.4581 | 0.8314 |
| 0.2153 | 3.8 | 8000 | 0.4869 | 0.8291 |
| 0.2134 | 4.04 | 8500 | 0.5008 | 0.8211 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
AleNunezArroyo/bert-from-scratch-15e-10334t-finetuned-opinion | AleNunezArroyo | 2023-01-09T02:31:42Z | 114 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2023-01-09T00:21:36Z | ---
tags:
- generated_from_trainer
model-index:
- name: bert-from-scratch-15e-10334t-finetuned-opinion
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-from-scratch-15e-10334t-finetuned-opinion
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 5.5936
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 6.5669 | 1.0 | 902 | 6.2062 |
| 6.1906 | 2.0 | 1804 | 6.0842 |
| 6.0858 | 3.0 | 2706 | 6.0119 |
| 6.0325 | 4.0 | 3608 | 5.9765 |
| 5.9894 | 5.0 | 4510 | 5.9406 |
| 5.958 | 6.0 | 5412 | 5.9109 |
| 5.9195 | 7.0 | 6314 | 5.8513 |
| 5.8653 | 8.0 | 7216 | 5.8068 |
| 5.8215 | 9.0 | 8118 | 5.7579 |
| 5.772 | 10.0 | 9020 | 5.7021 |
| 5.7374 | 11.0 | 9922 | 5.6582 |
| 5.7041 | 12.0 | 10824 | 5.6425 |
| 5.6762 | 13.0 | 11726 | 5.6251 |
| 5.6606 | 14.0 | 12628 | 5.6135 |
| 5.655 | 15.0 | 13530 | 5.6090 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
DiegoD616/Reinforce-CartPole-v1 | DiegoD616 | 2023-01-09T02:25:08Z | 0 | 0 | null | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | reinforcement-learning | 2023-01-09T02:08:31Z | ---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-CartPole-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 486.85 +/- 53.55
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
muhtasham/tiny-mlm-glue-qnli-target-glue-rte | muhtasham | 2023-01-09T02:16:51Z | 105 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-01-09T02:12:18Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: tiny-mlm-glue-qnli-target-glue-rte
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-mlm-glue-qnli-target-glue-rte
This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-qnli](https://huggingface.co/muhtasham/tiny-mlm-glue-qnli) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2152
- Accuracy: 0.6029
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6386 | 6.41 | 500 | 0.6664 | 0.6245 |
| 0.4313 | 12.82 | 1000 | 0.8105 | 0.6245 |
| 0.2642 | 19.23 | 1500 | 1.0035 | 0.6101 |
| 0.1617 | 25.64 | 2000 | 1.2152 | 0.6029 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
muhtasham/tiny-mlm-glue-qnli-target-glue-qqp | muhtasham | 2023-01-09T02:10:29Z | 104 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-01-09T01:16:55Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: tiny-mlm-glue-qnli-target-glue-qqp
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-mlm-glue-qnli-target-glue-qqp
This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-qnli](https://huggingface.co/muhtasham/tiny-mlm-glue-qnli) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4125
- Accuracy: 0.7971
- F1: 0.7707
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
| 0.5776 | 0.04 | 500 | 0.5177 | 0.7272 | 0.6831 |
| 0.5088 | 0.09 | 1000 | 0.4828 | 0.7515 | 0.7055 |
| 0.4952 | 0.13 | 1500 | 0.4939 | 0.7383 | 0.7143 |
| 0.4797 | 0.18 | 2000 | 0.4681 | 0.7547 | 0.7225 |
| 0.4723 | 0.22 | 2500 | 0.4564 | 0.7621 | 0.7274 |
| 0.4551 | 0.26 | 3000 | 0.4475 | 0.7693 | 0.7351 |
| 0.4573 | 0.31 | 3500 | 0.4479 | 0.7676 | 0.7372 |
| 0.4496 | 0.35 | 4000 | 0.4483 | 0.7668 | 0.7390 |
| 0.4503 | 0.4 | 4500 | 0.4413 | 0.7720 | 0.7436 |
| 0.4407 | 0.44 | 5000 | 0.4192 | 0.7899 | 0.7498 |
| 0.4288 | 0.48 | 5500 | 0.4261 | 0.7845 | 0.7512 |
| 0.4292 | 0.53 | 6000 | 0.4058 | 0.8022 | 0.7581 |
| 0.4235 | 0.57 | 6500 | 0.4201 | 0.7893 | 0.7560 |
| 0.4251 | 0.62 | 7000 | 0.4050 | 0.8007 | 0.7593 |
| 0.4161 | 0.66 | 7500 | 0.4063 | 0.8040 | 0.7652 |
| 0.4297 | 0.7 | 8000 | 0.4116 | 0.7959 | 0.7617 |
| 0.4201 | 0.75 | 8500 | 0.3975 | 0.8069 | 0.7677 |
| 0.4142 | 0.79 | 9000 | 0.4186 | 0.7889 | 0.7609 |
| 0.4113 | 0.84 | 9500 | 0.3900 | 0.8112 | 0.7687 |
| 0.413 | 0.88 | 10000 | 0.3852 | 0.8161 | 0.7732 |
| 0.4084 | 0.92 | 10500 | 0.3826 | 0.8161 | 0.7714 |
| 0.4083 | 0.97 | 11000 | 0.3826 | 0.8187 | 0.7733 |
| 0.4057 | 1.01 | 11500 | 0.4016 | 0.8029 | 0.7711 |
| 0.3846 | 1.06 | 12000 | 0.3803 | 0.8187 | 0.7759 |
| 0.3949 | 1.1 | 12500 | 0.3827 | 0.8154 | 0.7773 |
| 0.3823 | 1.14 | 13000 | 0.3878 | 0.8136 | 0.7763 |
| 0.3717 | 1.19 | 13500 | 0.4125 | 0.7971 | 0.7707 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
jkap/ppo-Huggy | jkap | 2023-01-09T02:00:55Z | 12 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] | reinforcement-learning | 2023-01-09T02:00:48Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: jkap/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
YuJungSoo/koelectra-50769988 | YuJungSoo | 2023-01-09T01:55:34Z | 106 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"roberta",
"question-answering",
"generated_from_trainer",
"dataset:custom_squad_v2",
"endpoints_compatible",
"region:us"
] | question-answering | 2023-01-09T01:09:27Z | ---
tags:
- generated_from_trainer
datasets:
- custom_squad_v2
model-index:
- name: koelectra-50769988
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# koelectra-50769988
This model is a fine-tuned version of [klue/roberta-large](https://huggingface.co/klue/roberta-large) on the custom_squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2600
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 64
- eval_batch_size: 64
- seed: 30
- gradient_accumulation_steps: 8
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 0.99 | 21 | 1.4204 |
| No log | 1.99 | 42 | 1.2600 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
Drasimov/Charo | Drasimov | 2023-01-09T01:37:17Z | 0 | 0 | nemo | [
"nemo",
"es",
"en",
"dataset:ksang/Summoner-Statistics",
"dataset:quinsclr/answerable_tydiqa_statistical",
"dataset:wikipedia",
"dataset:gamino/wiki_medical_terms",
"dataset:medical_dialog",
"dataset:bigbio/medical_data",
"license:openrail",
"region:us"
] | null | 2023-01-09T01:30:40Z | ---
license: openrail
datasets:
- ksang/Summoner-Statistics
- quinsclr/answerable_tydiqa_statistical
- wikipedia
- gamino/wiki_medical_terms
- medical_dialog
- bigbio/medical_data
language:
- es
- en
library_name: nemo
--- |
bellengc/output | bellengc | 2023-01-09T01:19:41Z | 106 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2023-01-05T00:01:39Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: output
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# output
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 9.241648134793786e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.24.0
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
fort-ests/forest | fort-ests | 2023-01-09T01:18:31Z | 0 | 0 | null | [
"en",
"te",
"hi",
"ta",
"ml",
"as",
"bn",
"gu",
"mr",
"license:bsd",
"region:us"
] | null | 2023-01-09T01:17:09Z | ---
license: bsd
language:
- en
- te
- hi
- ta
- ml
- as
- bn
- gu
- mr
--- |
jpopham91/ppo-Huggy | jpopham91 | 2023-01-09T00:58:00Z | 14 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] | reinforcement-learning | 2023-01-09T00:57:53Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: jpopham91/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
muhtasham/tiny-mlm-glue-qnli-target-glue-mnli | muhtasham | 2023-01-09T00:52:24Z | 105 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-01-09T00:22:58Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: tiny-mlm-glue-qnli-target-glue-mnli
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-mlm-glue-qnli-target-glue-mnli
This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-qnli](https://huggingface.co/muhtasham/tiny-mlm-glue-qnli) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7907
- Accuracy: 0.6507
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 1.0753 | 0.04 | 500 | 1.0327 | 0.4677 |
| 1.0084 | 0.08 | 1000 | 0.9655 | 0.5434 |
| 0.962 | 0.12 | 1500 | 0.9232 | 0.5779 |
| 0.9358 | 0.16 | 2000 | 0.9087 | 0.5874 |
| 0.9241 | 0.2 | 2500 | 0.8928 | 0.5963 |
| 0.9157 | 0.24 | 3000 | 0.8772 | 0.5988 |
| 0.8992 | 0.29 | 3500 | 0.8687 | 0.6088 |
| 0.8928 | 0.33 | 4000 | 0.8571 | 0.6173 |
| 0.8757 | 0.37 | 4500 | 0.8529 | 0.6164 |
| 0.8774 | 0.41 | 5000 | 0.8438 | 0.6232 |
| 0.8694 | 0.45 | 5500 | 0.8372 | 0.6246 |
| 0.8653 | 0.49 | 6000 | 0.8350 | 0.6265 |
| 0.8677 | 0.53 | 6500 | 0.8268 | 0.6292 |
| 0.8584 | 0.57 | 7000 | 0.8270 | 0.6326 |
| 0.8508 | 0.61 | 7500 | 0.8134 | 0.6391 |
| 0.8521 | 0.65 | 8000 | 0.8110 | 0.6416 |
| 0.8447 | 0.69 | 8500 | 0.8264 | 0.6323 |
| 0.8466 | 0.73 | 9000 | 0.7951 | 0.6468 |
| 0.8379 | 0.77 | 9500 | 0.8089 | 0.6401 |
| 0.8277 | 0.81 | 10000 | 0.7941 | 0.6477 |
| 0.8307 | 0.86 | 10500 | 0.7999 | 0.6437 |
| 0.8289 | 0.9 | 11000 | 0.7874 | 0.6530 |
| 0.8228 | 0.94 | 11500 | 0.7835 | 0.6524 |
| 0.8228 | 0.98 | 12000 | 0.7851 | 0.6511 |
| 0.8078 | 1.02 | 12500 | 0.7907 | 0.6507 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
Jbot/ppo-LunarLander-v2 | Jbot | 2023-01-09T00:49:36Z | 1 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | 2023-01-08T22:35:41Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 273.86 +/- 17.81
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
huggingtweets/benshapiro-joerogan-jordanbpeterson | huggingtweets | 2023-01-09T00:48:35Z | 105 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2023-01-09T00:47:20Z | ---
language: en
thumbnail: http://www.huggingtweets.com/benshapiro-joerogan-jordanbpeterson/1673225310208/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1580596905721171969/0NnLeJWA_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1407056014776614923/TKBC60e1_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/552307347851210752/vrXDcTFC_400x400.jpeg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Ben Shapiro & Dr Jordan B Peterson & Joe Rogan</div>
<div style="text-align: center; font-size: 14px;">@benshapiro-joerogan-jordanbpeterson</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Ben Shapiro & Dr Jordan B Peterson & Joe Rogan.
| Data | Ben Shapiro | Dr Jordan B Peterson | Joe Rogan |
| --- | --- | --- | --- |
| Tweets downloaded | 3244 | 3244 | 3192 |
| Retweets | 2399 | 960 | 1129 |
| Short tweets | 66 | 198 | 44 |
| Tweets kept | 779 | 2086 | 2019 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/319qduw1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @benshapiro-joerogan-jordanbpeterson's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/kq320mm4) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/kq320mm4/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/benshapiro-joerogan-jordanbpeterson')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
BhavyaMuni/taylor-swift-model-temp | BhavyaMuni | 2023-01-09T00:36:25Z | 103 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2023-01-09T00:07:11Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: taylor-swift-model-temp
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# taylor-swift-model-temp
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.1118
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 4.0072 | 1.0 | 58 | 3.7794 |
| 3.8685 | 2.0 | 116 | 3.6857 |
| 3.8123 | 3.0 | 174 | 3.6220 |
| 3.7141 | 4.0 | 232 | 3.5796 |
| 3.3674 | 5.0 | 290 | 3.5402 |
| 3.556 | 6.0 | 348 | 3.5092 |
| 3.442 | 7.0 | 406 | 3.4829 |
| 3.5147 | 8.0 | 464 | 3.4609 |
| 3.3591 | 9.0 | 522 | 3.4289 |
| 3.3258 | 10.0 | 580 | 3.4135 |
| 3.2393 | 11.0 | 638 | 3.3918 |
| 3.2989 | 12.0 | 696 | 3.3756 |
| 3.2535 | 13.0 | 754 | 3.3557 |
| 3.1144 | 14.0 | 812 | 3.3352 |
| 2.9332 | 15.0 | 870 | 3.3305 |
| 3.0371 | 16.0 | 928 | 3.3078 |
| 3.0357 | 17.0 | 986 | 3.2889 |
| 2.8728 | 18.0 | 1044 | 3.2851 |
| 2.9121 | 19.0 | 1102 | 3.2688 |
| 2.9804 | 20.0 | 1160 | 3.2562 |
| 2.855 | 21.0 | 1218 | 3.2485 |
| 2.7546 | 22.0 | 1276 | 3.2275 |
| 2.9248 | 23.0 | 1334 | 3.2233 |
| 2.9627 | 24.0 | 1392 | 3.2113 |
| 2.891 | 25.0 | 1450 | 3.1965 |
| 2.7106 | 26.0 | 1508 | 3.1925 |
| 2.8863 | 27.0 | 1566 | 3.1836 |
| 2.8311 | 28.0 | 1624 | 3.1869 |
| 2.6953 | 29.0 | 1682 | 3.1769 |
| 2.7916 | 30.0 | 1740 | 3.1717 |
| 2.7262 | 31.0 | 1798 | 3.1609 |
| 2.6203 | 32.0 | 1856 | 3.1564 |
| 2.7066 | 33.0 | 1914 | 3.1492 |
| 2.3818 | 34.0 | 1972 | 3.1475 |
| 2.7237 | 35.0 | 2030 | 3.1412 |
| 2.4593 | 36.0 | 2088 | 3.1372 |
| 2.5471 | 37.0 | 2146 | 3.1298 |
| 2.6026 | 38.0 | 2204 | 3.1324 |
| 2.5049 | 39.0 | 2262 | 3.1285 |
| 2.5509 | 40.0 | 2320 | 3.1262 |
| 2.7736 | 41.0 | 2378 | 3.1142 |
| 2.7144 | 42.0 | 2436 | 3.1159 |
| 2.5972 | 43.0 | 2494 | 3.1145 |
| 2.5897 | 44.0 | 2552 | 3.1142 |
| 2.4131 | 45.0 | 2610 | 3.1152 |
| 2.5602 | 46.0 | 2668 | 3.1130 |
| 2.4986 | 47.0 | 2726 | 3.1123 |
| 2.5507 | 48.0 | 2784 | 3.1108 |
| 2.4885 | 49.0 | 2842 | 3.1124 |
| 2.4204 | 50.0 | 2900 | 3.1118 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
muhtasham/tiny-mlm-glue-qnli-target-glue-cola | muhtasham | 2023-01-09T00:19:16Z | 103 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-01-09T00:10:08Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- matthews_correlation
model-index:
- name: tiny-mlm-glue-qnli-target-glue-cola
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-mlm-glue-qnli-target-glue-cola
This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-qnli](https://huggingface.co/muhtasham/tiny-mlm-glue-qnli) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7322
- Matthews Correlation: 0.1353
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.6099 | 1.87 | 500 | 0.6209 | 0.0 |
| 0.6009 | 3.73 | 1000 | 0.6169 | 0.0 |
| 0.5819 | 5.6 | 1500 | 0.6196 | 0.0545 |
| 0.5519 | 7.46 | 2000 | 0.6391 | 0.0997 |
| 0.5226 | 9.33 | 2500 | 0.6657 | 0.1182 |
| 0.5061 | 11.19 | 3000 | 0.6671 | 0.1357 |
| 0.4831 | 13.06 | 3500 | 0.6787 | 0.1205 |
| 0.4652 | 14.93 | 4000 | 0.7167 | 0.1264 |
| 0.4443 | 16.79 | 4500 | 0.7322 | 0.1353 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
gaalocastillo/wav2vec2-large-xls-r-300m-asp-project-bribri | gaalocastillo | 2023-01-09T00:12:44Z | 104 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2023-01-08T23:40:16Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-large-xls-r-300m-asp-project-bribri
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-asp-project-bribri
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 9.24e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.24.0
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
muhtasham/tiny-mlm-glue-mrpc-target-glue-sst2 | muhtasham | 2023-01-08T23:50:59Z | 105 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-01-08T23:34:09Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: tiny-mlm-glue-mrpc-target-glue-sst2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-mlm-glue-mrpc-target-glue-sst2
This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-mrpc](https://huggingface.co/muhtasham/tiny-mlm-glue-mrpc) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4921
- Accuracy: 0.8314
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5814 | 0.24 | 500 | 0.4938 | 0.7706 |
| 0.4444 | 0.48 | 1000 | 0.4690 | 0.7844 |
| 0.3934 | 0.71 | 1500 | 0.4458 | 0.7982 |
| 0.3733 | 0.95 | 2000 | 0.4633 | 0.7890 |
| 0.3319 | 1.19 | 2500 | 0.4503 | 0.7982 |
| 0.3151 | 1.43 | 3000 | 0.4525 | 0.8028 |
| 0.2971 | 1.66 | 3500 | 0.4431 | 0.8142 |
| 0.2899 | 1.9 | 4000 | 0.4452 | 0.8108 |
| 0.2716 | 2.14 | 4500 | 0.4914 | 0.7993 |
| 0.2548 | 2.38 | 5000 | 0.4419 | 0.8177 |
| 0.2443 | 2.61 | 5500 | 0.4475 | 0.8245 |
| 0.2515 | 2.85 | 6000 | 0.4462 | 0.8257 |
| 0.2357 | 3.09 | 6500 | 0.4509 | 0.8314 |
| 0.2279 | 3.33 | 7000 | 0.4641 | 0.8337 |
| 0.2134 | 3.56 | 7500 | 0.4615 | 0.8326 |
| 0.2136 | 3.8 | 8000 | 0.4882 | 0.8314 |
| 0.2122 | 4.04 | 8500 | 0.4921 | 0.8314 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
Orokusaki/q-FrozenLake-v1-8x8-Slippery | Orokusaki | 2023-01-08T23:44:04Z | 0 | 0 | null | [
"FrozenLake-v1-8x8",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | reinforcement-learning | 2023-01-08T23:43:59Z | ---
tags:
- FrozenLake-v1-8x8
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-8x8-Slippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-8x8
type: FrozenLake-v1-8x8
metrics:
- type: mean_reward
value: 0.12 +/- 0.32
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="Orokusaki/q-FrozenLake-v1-8x8-Slippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
muhtasham/tiny-mlm-glue-mrpc-target-glue-rte | muhtasham | 2023-01-08T23:33:01Z | 106 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-01-08T23:28:29Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: tiny-mlm-glue-mrpc-target-glue-rte
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-mlm-glue-mrpc-target-glue-rte
This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-mrpc](https://huggingface.co/muhtasham/tiny-mlm-glue-mrpc) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2201
- Accuracy: 0.6101
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6409 | 6.41 | 500 | 0.6648 | 0.6209 |
| 0.4327 | 12.82 | 1000 | 0.8199 | 0.6173 |
| 0.2663 | 19.23 | 1500 | 1.0143 | 0.5921 |
| 0.1606 | 25.64 | 2000 | 1.2201 | 0.6101 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
armargolis/Reinforce-Pixelcopter-PLE-v0 | armargolis | 2023-01-08T22:56:26Z | 0 | 0 | null | [
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | reinforcement-learning | 2023-01-08T22:56:16Z | ---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-Pixelcopter-PLE-v0
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 46.00 +/- 38.96
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
kelestemur/q-Taxi-v3 | kelestemur | 2023-01-08T22:43:21Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | reinforcement-learning | 2023-01-08T22:43:17Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="kelestemur/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
kelestemur/q-FrozenLake-v1-4x4-noSlippery | kelestemur | 2023-01-08T22:34:19Z | 0 | 0 | null | [
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | reinforcement-learning | 2023-01-08T22:34:15Z | ---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="kelestemur/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
muhtasham/tiny-mlm-glue-mrpc-target-glue-qnli | muhtasham | 2023-01-08T22:30:30Z | 104 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-01-08T22:19:38Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: tiny-mlm-glue-mrpc-target-glue-qnli
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-mlm-glue-mrpc-target-glue-qnli
This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-mrpc](https://huggingface.co/muhtasham/tiny-mlm-glue-mrpc) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4717
- Accuracy: 0.7798
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6112 | 0.15 | 500 | 0.5408 | 0.7346 |
| 0.5426 | 0.31 | 1000 | 0.5351 | 0.7366 |
| 0.522 | 0.46 | 1500 | 0.5029 | 0.7619 |
| 0.5151 | 0.61 | 2000 | 0.5191 | 0.7529 |
| 0.5116 | 0.76 | 2500 | 0.4829 | 0.7758 |
| 0.5052 | 0.92 | 3000 | 0.4673 | 0.7833 |
| 0.4909 | 1.07 | 3500 | 0.4521 | 0.7921 |
| 0.4811 | 1.22 | 4000 | 0.4689 | 0.7827 |
| 0.4672 | 1.37 | 4500 | 0.4819 | 0.7730 |
| 0.4744 | 1.53 | 5000 | 0.4717 | 0.7798 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
muhtasham/tiny-mlm-glue-mrpc-target-glue-mrpc | muhtasham | 2023-01-08T22:18:03Z | 101 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-01-08T22:12:42Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: tiny-mlm-glue-mrpc-target-glue-mrpc
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-mlm-glue-mrpc-target-glue-mrpc
This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-mrpc](https://huggingface.co/muhtasham/tiny-mlm-glue-mrpc) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0963
- Accuracy: 0.7034
- F1: 0.7738
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.5884 | 4.35 | 500 | 0.5523 | 0.7059 | 0.8046 |
| 0.4494 | 8.7 | 1000 | 0.5547 | 0.7574 | 0.8358 |
| 0.304 | 13.04 | 1500 | 0.6339 | 0.7525 | 0.8256 |
| 0.1927 | 17.39 | 2000 | 0.7843 | 0.7230 | 0.8000 |
| 0.1179 | 21.74 | 2500 | 1.0963 | 0.7034 | 0.7738 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
muhtasham/tiny-mlm-glue-mrpc-target-glue-mnli | muhtasham | 2023-01-08T22:11:38Z | 103 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-01-08T21:46:57Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: tiny-mlm-glue-mrpc-target-glue-mnli
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-mlm-glue-mrpc-target-glue-mnli
This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-mrpc](https://huggingface.co/muhtasham/tiny-mlm-glue-mrpc) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8094
- Accuracy: 0.6373
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 1.0737 | 0.04 | 500 | 1.0366 | 0.4615 |
| 1.0169 | 0.08 | 1000 | 0.9833 | 0.5194 |
| 0.9799 | 0.12 | 1500 | 0.9344 | 0.5719 |
| 0.9452 | 0.16 | 2000 | 0.9106 | 0.5879 |
| 0.9293 | 0.2 | 2500 | 0.8905 | 0.5962 |
| 0.9189 | 0.24 | 3000 | 0.8801 | 0.6026 |
| 0.9017 | 0.29 | 3500 | 0.8705 | 0.6103 |
| 0.896 | 0.33 | 4000 | 0.8619 | 0.6178 |
| 0.881 | 0.37 | 4500 | 0.8574 | 0.6211 |
| 0.8854 | 0.41 | 5000 | 0.8495 | 0.6201 |
| 0.8756 | 0.45 | 5500 | 0.8434 | 0.6223 |
| 0.8713 | 0.49 | 6000 | 0.8410 | 0.6263 |
| 0.8757 | 0.53 | 6500 | 0.8337 | 0.6301 |
| 0.8624 | 0.57 | 7000 | 0.8363 | 0.6284 |
| 0.8576 | 0.61 | 7500 | 0.8203 | 0.6356 |
| 0.8583 | 0.65 | 8000 | 0.8188 | 0.6378 |
| 0.8523 | 0.69 | 8500 | 0.8294 | 0.6304 |
| 0.8533 | 0.73 | 9000 | 0.8052 | 0.6429 |
| 0.8448 | 0.77 | 9500 | 0.8180 | 0.6356 |
| 0.8368 | 0.81 | 10000 | 0.8030 | 0.6399 |
| 0.8389 | 0.86 | 10500 | 0.8094 | 0.6373 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
nolanaatama/stable-diffusion-webui | nolanaatama | 2023-01-08T22:09:12Z | 0 | 10 | null | [
"region:us"
] | null | 2023-01-08T22:05:44Z | # Stable Diffusion web UI
A browser interface based on Gradio library for Stable Diffusion.

Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts) wiki page for extra scripts developed by users.
## Features
[Detailed feature showcase with images](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features):
- Original txt2img and img2img modes
- One click install and run script (but you still must install python and git)
- Outpainting
- Inpainting
- Color Sketch
- Prompt Matrix
- Stable Diffusion Upscale
- Attention, specify parts of text that the model should pay more attention to
- a man in a ((tuxedo)) - will pay more attention to tuxedo
- a man in a (tuxedo:1.21) - alternative syntax
- select text and press ctrl+up or ctrl+down to automatically adjust attention to selected text (code contributed by anonymous user)
- Loopback, run img2img processing multiple times
- X/Y plot, a way to draw a 2 dimensional plot of images with different parameters
- Textual Inversion
- have as many embeddings as you want and use any names you like for them
- use multiple embeddings with different numbers of vectors per token
- works with half precision floating point numbers
- train embeddings on 8GB (also reports of 6GB working)
- Extras tab with:
- GFPGAN, neural network that fixes faces
- CodeFormer, face restoration tool as an alternative to GFPGAN
- RealESRGAN, neural network upscaler
- ESRGAN, neural network upscaler with a lot of third party models
- SwinIR and Swin2SR([see here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/2092)), neural network upscalers
- LDSR, Latent diffusion super resolution upscaling
- Resizing aspect ratio options
- Sampling method selection
- Adjust sampler eta values (noise multiplier)
- More advanced noise setting options
- Interrupt processing at any time
- 4GB video card support (also reports of 2GB working)
- Correct seeds for batches
- Live prompt token length validation
- Generation parameters
- parameters you used to generate images are saved with that image
- in PNG chunks for PNG, in EXIF for JPEG
- can drag the image to PNG info tab to restore generation parameters and automatically copy them into UI
- can be disabled in settings
- drag and drop an image/text-parameters to promptbox
- Read Generation Parameters Button, loads parameters in promptbox to UI
- Settings page
- Running arbitrary python code from UI (must run with --allow-code to enable)
- Mouseover hints for most UI elements
- Possible to change defaults/mix/max/step values for UI elements via text config
- Random artist button
- Tiling support, a checkbox to create images that can be tiled like textures
- Progress bar and live image generation preview
- Negative prompt, an extra text field that allows you to list what you don't want to see in generated image
- Styles, a way to save part of prompt and easily apply them via dropdown later
- Variations, a way to generate same image but with tiny differences
- Seed resizing, a way to generate same image but at slightly different resolution
- CLIP interrogator, a button that tries to guess prompt from an image
- Prompt Editing, a way to change prompt mid-generation, say to start making a watermelon and switch to anime girl midway
- Batch Processing, process a group of files using img2img
- Img2img Alternative, reverse Euler method of cross attention control
- Highres Fix, a convenience option to produce high resolution pictures in one click without usual distortions
- Reloading checkpoints on the fly
- Checkpoint Merger, a tab that allows you to merge up to 3 checkpoints into one
- [Custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts) with many extensions from community
- [Composable-Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/), a way to use multiple prompts at once
- separate prompts using uppercase `AND`
- also supports weights for prompts: `a cat :1.2 AND a dog AND a penguin :2.2`
- No token limit for prompts (original stable diffusion lets you use up to 75 tokens)
- DeepDanbooru integration, creates danbooru style tags for anime prompts
- [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add --xformers to commandline args)
- via extension: [History tab](https://github.com/yfszzx/stable-diffusion-webui-images-browser): view, direct and delete images conveniently within the UI
- Generate forever option
- Training tab
- hypernetworks and embeddings options
- Preprocessing images: cropping, mirroring, autotagging using BLIP or deepdanbooru (for anime)
- Clip skip
- Use Hypernetworks
- Use VAEs
- Estimated completion time in progress bar
- API
- Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML.
- via extension: [Aesthetic Gradients](https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients), a way to generate images with a specific aesthetic by using clip images embeds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients))
- [Stable Diffusion 2.0](https://github.com/Stability-AI/stablediffusion) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#stable-diffusion-20) for instructions
## Installation and Running
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
Alternatively, use online services (like Google Colab):
- [List of Online Services](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Online-Services)
### Automatic Installation on Windows
1. Install [Python 3.10.6](https://www.python.org/downloads/windows/), checking "Add Python to PATH"
2. Install [git](https://git-scm.com/download/win).
3. Download the stable-diffusion-webui repository, for example by running `git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git`.
4. Place `model.ckpt` in the `models` directory (see [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) for where to get it).
5. _*(Optional)*_ Place `GFPGANv1.4.pth` in the base directory, alongside `webui.py` (see [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) for where to get it).
6. Run `webui-user.bat` from Windows Explorer as normal, non-administrator, user.
### Automatic Installation on Linux
1. Install the dependencies:
```bash
# Debian-based:
sudo apt install wget git python3 python3-venv
# Red Hat-based:
sudo dnf install wget git python3
# Arch-based:
sudo pacman -S wget git python3
```
2. To install in `/home/$(whoami)/stable-diffusion-webui/`, run:
```bash
bash <(wget -qO- https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui/master/webui.sh)
```
### Installation on Apple Silicon
Find the instructions [here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Installation-on-Apple-Silicon).
## Contributing
Here's how to add code to this repo: [Contributing](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Contributing)
## Documentation
The documentation was moved from this README over to the project's [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki).
## Credits
- Stable Diffusion - https://github.com/CompVis/stable-diffusion, https://github.com/CompVis/taming-transformers
- k-diffusion - https://github.com/crowsonkb/k-diffusion.git
- GFPGAN - https://github.com/TencentARC/GFPGAN.git
- CodeFormer - https://github.com/sczhou/CodeFormer
- ESRGAN - https://github.com/xinntao/ESRGAN
- SwinIR - https://github.com/JingyunLiang/SwinIR
- Swin2SR - https://github.com/mv-lab/swin2sr
- LDSR - https://github.com/Hafiidz/latent-diffusion
- MiDaS - https://github.com/isl-org/MiDaS
- Ideas for optimizations - https://github.com/basujindal/stable-diffusion
- Cross Attention layer optimization - Doggettx - https://github.com/Doggettx/stable-diffusion, original idea for prompt editing.
- Cross Attention layer optimization - InvokeAI, lstein - https://github.com/invoke-ai/InvokeAI (originally http://github.com/lstein/stable-diffusion)
- Textual Inversion - Rinon Gal - https://github.com/rinongal/textual_inversion (we're not using his code, but we are using his ideas).
- Idea for SD upscale - https://github.com/jquesnelle/txt2imghd
- Noise generation for outpainting mk2 - https://github.com/parlance-zz/g-diffuser-bot
- CLIP interrogator idea and borrowing some code - https://github.com/pharmapsychotic/clip-interrogator
- Idea for Composable Diffusion - https://github.com/energy-based-model/Compositional-Visual-Generation-with-Composable-Diffusion-Models-PyTorch
- xformers - https://github.com/facebookresearch/xformers
- DeepDanbooru - interrogator for anime diffusers https://github.com/KichangKim/DeepDanbooru
- Security advice - RyotaK
- Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user.
- (You)
|
ManuD/videomae-base-finetuned-dfl_clips | ManuD | 2023-01-08T22:04:14Z | 63 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"videomae",
"video-classification",
"generated_from_trainer",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us"
] | video-classification | 2023-01-08T17:59:48Z | ---
license: cc-by-nc-4.0
tags:
- generated_from_trainer
model-index:
- name: videomae-base-finetuned-dfl_clips
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# videomae-base-finetuned-dfl_clips
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 532
### Training results
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
kelestemur/deep_rl | kelestemur | 2023-01-08T21:58:21Z | 1 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | 2023-01-08T21:57:58Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 264.57 +/- 20.35
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Closen/ppo-LunarLander-v2 | Closen | 2023-01-08T21:54:31Z | 2 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | 2023-01-08T21:54:03Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 244.97 +/- 28.21
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
muhtasham/tiny-mlm-glue-mrpc-target-glue-cola | muhtasham | 2023-01-08T21:43:14Z | 103 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2023-01-08T21:31:31Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- matthews_correlation
model-index:
- name: tiny-mlm-glue-mrpc-target-glue-cola
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-mlm-glue-mrpc-target-glue-cola
This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-mrpc](https://huggingface.co/muhtasham/tiny-mlm-glue-mrpc) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7869
- Matthews Correlation: 0.1551
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.6097 | 1.87 | 500 | 0.6213 | 0.0 |
| 0.6008 | 3.73 | 1000 | 0.6170 | 0.0 |
| 0.5827 | 5.6 | 1500 | 0.6185 | 0.0615 |
| 0.5534 | 7.46 | 2000 | 0.6389 | 0.1043 |
| 0.5246 | 9.33 | 2500 | 0.6589 | 0.1507 |
| 0.5102 | 11.19 | 3000 | 0.6608 | 0.1476 |
| 0.4873 | 13.06 | 3500 | 0.6693 | 0.1282 |
| 0.4681 | 14.93 | 4000 | 0.7066 | 0.1577 |
| 0.448 | 16.79 | 4500 | 0.7266 | 0.1613 |
| 0.4302 | 18.66 | 5000 | 0.7454 | 0.1446 |
| 0.4108 | 20.52 | 5500 | 0.7858 | 0.1595 |
| 0.4023 | 22.39 | 6000 | 0.7869 | 0.1551 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|
Subsets and Splits